WO2021072714A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021072714A1
WO2021072714A1 PCT/CN2019/111751 CN2019111751W WO2021072714A1 WO 2021072714 A1 WO2021072714 A1 WO 2021072714A1 CN 2019111751 W CN2019111751 W CN 2019111751W WO 2021072714 A1 WO2021072714 A1 WO 2021072714A1
Authority
WO
WIPO (PCT)
Prior art keywords
received
maximum
channels
bits
interval
Prior art date
Application number
PCT/CN2019/111751
Other languages
English (en)
French (fr)
Inventor
黎超
李�根
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/111751 priority Critical patent/WO2021072714A1/zh
Priority to EP19948954.3A priority patent/EP4037400A4/en
Priority to CN201980100377.5A priority patent/CN114391291A/zh
Publication of WO2021072714A1 publication Critical patent/WO2021072714A1/zh
Priority to US17/721,120 priority patent/US20220248240A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • H04L1/1877Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the communication field, and more specifically, to a communication method and communication device in the communication field.
  • V2X vehicle-to-everything
  • V2X includes direct communication between vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and Vehicle-to-network (V2N) communication interaction. Except for V2N vehicles and network communication which use uplink and downlink, the other V2V/V2I/V2P data communication uses sidelink (SL) for communication.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N Vehicle-to-network
  • SL sidelink
  • the terminal device In the V2X system, for a terminal device, signals sent from many other terminal devices will reach the receiver of this terminal device. At this time, the ideal situation is that the terminal device needs to decode all the data packets that may reach the receiver of the terminal device. However, due to the implementation complexity, cost and power consumption constraints of the terminal device, the terminal device cannot guarantee to demodulate all potentially arriving data packets.
  • the present application provides a communication method and device, which can enable the first terminal device to determine the corresponding receiving capability value/sending capability value under the corresponding parameter value, which helps to control the loss caused by the missed data packet in a reasonable manner , Which is conducive to reaching an optimal balance point between the cost of the terminal and the detection performance.
  • a communication method includes: a first terminal device determines a receiving capability parameter and/or a sending capability parameter according to a first parameter, where the receiving capability parameter includes the number of channels that can be received in a first time interval , And/or, the maximum number of received bits; the transmission capability parameter includes the maximum number of transmitted bits; the first parameter is pre-configured, or the first parameter is configured by a network device.
  • the first parameter is used for sidelink transmission, and the first parameter includes one or more of the following: the maximum interval between the time slots of the initial transmission and the last retransmission, and the subcarrier interval , Subband size; the first terminal device performs sidelink transmission according to the receiving capability parameter and/or the sending capability parameter.
  • the first terminal device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system or a communication module in the communication device.
  • the communication device may be a terminal device or a network device.
  • the first terminal device can determine the receiving capability parameter according to at least one of the maximum interval between the initial transmission and the last retransmission time slot, the subcarrier interval, and the subband size, so that the first terminal device can determine the receiving capability parameter.
  • a terminal device determines the corresponding receiving capability value under the corresponding parameter value, so that when signals sent from many other terminal devices arrive at the receiver of the first terminal device, it helps to enable the first terminal device to decode All the data packets that may reach the receiver of the terminal device, thereby helping to reduce as much as possible the loss caused by missing some undetected data packets due to unreasonable restrictions, which is beneficial to the cost and performance of the terminal. Achieve an optimal balance point. and / or,
  • the first terminal device can determine the transmission capability parameter according to at least one of the maximum interval between the first transmission and the last retransmission time slot, the subcarrier interval, and the subband size, so that the first terminal device can determine the transmission capability parameter.
  • a terminal device determines the corresponding transmission capability value under the corresponding parameter value, so that when there are a large number of data packets to be sent and signals sent from many other terminal devices arrive at the receiver of the first terminal device, it helps to make the The first terminal device reasonably determines the number and size of the transmission data packets, thereby helping to reduce as much as possible the discarding of the data packets to be sent due to the unreasonable transmission buffer size.
  • the number of channels that can be received in the first time interval can also be understood as the number of users that can be received in the first time interval.
  • the channel that can be received in the first time interval is, for example, a physical sidelink control channel (PSCCH).
  • PSCCH physical sidelink control channel
  • the receiving capability parameter may also include the number of channels that can be received in the first time interval and the number of resource blocks (resource blocks, RBs) that can be detected corresponding to the number of channels, which may also be referred to as the first time interval.
  • the number of RBs corresponding to the number of channels that can be received within.
  • the number of channels that can be received in the first time interval includes:
  • the number of control channels that can be received and/or the number of data channels that can be received in the first time interval; or the number of first-level control channels and/or the number of second-level control channels that can be received in the first time interval The number of channels.
  • the receiving capability parameter further includes:
  • the number of control channels that can be received in the first time interval corresponds to the number of RBs that can be detected, and/or the number of data channels that can be received corresponds to the number of RBs that can be detected;
  • the number of first-level control channels that can be received in the first time interval corresponds to the number of detectable RBs, and/or the number of second-level control channels that can be received in the first time interval corresponds to the number of detectable RB number.
  • the first terminal device can determine the first time interval according to at least one of the maximum interval between the initial transmission and the last retransmission time slot, the subcarrier interval, and the subband size.
  • the number of channels that can be received and the number of channels correspond to the number of RBs, so that when signals sent from many other terminal devices arrive at the receiver of the first terminal device, it is helpful for the first terminal device to solve all possible possibilities.
  • the data packets arriving at the receiver of the terminal device will help to reduce as much as possible the loss caused by missing some undetected data packets due to unreasonable restrictions, which will help to achieve a maximum between the cost and performance of the terminal. Good balance point.
  • the first time interval is a time slot or is less than or equal to the interval between the initial transmission and the last retransmission of a data packet.
  • the initial transmission and the retransmission are initial transmission and retransmission based on blind retransmission, or the initial transmission and the retransmission are based on hybrid Automatically request retransmission of HARQ initial transmission and retransmission.
  • the embodiment of the present application can determine the receiving capability parameter and/or the transmitting capability parameter according to the first parameter, thereby helping to control the leakage caused by leakage in a reasonable manner.
  • the loss caused by the inspection data packet helps to achieve an optimal balance between the cost of the terminal and the inspection performance.
  • the number of channels is less than or equal to the number of channels received in each time slot in the first time interval and the number of time slots in the first time interval The product of the numbers. Therefore, according to the number of channels that can be received in each time slot in the first time interval and the number of time slots in the first time interval, the value range of the number of channels that can be received in the first time interval can be determined.
  • the maximum number of received bits includes at least one of the following:
  • the maximum number of transmitted bits includes at least one of the following:
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval
  • the subcarrier interval belongs to at least one type of subcarrier interval, and there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one type of subcarrier interval, and the greater the subcarrier interval is, The smaller the number of channels that can be received in the first time interval corresponding to the subcarrier interval; and/or
  • the interval between the time slots of the initial transmission and the last retransmission belongs to the interval between the time slots of at least one initial transmission and the last retransmission, and the number of channels that can be received in the at least one first time interval It corresponds to the interval between the at least one initial transmission and the last retransmission time slot one-to-one, and the greater the interval between the initial transmission and the last retransmission time slot, the greater the interval between the initial transmission and the last retransmission.
  • the interval between the time slots of a retransmission corresponds to the larger the number of channels that can be received in the first time interval; and/or
  • the subband size belongs to at least one subband size, the number of channels that can be received in the at least one first time interval corresponds to the at least one subband size in a one-to-one correspondence, and the larger the subband size is, the The smaller the number of channels that can be received in the first time interval corresponding to the subband size.
  • the first terminal device that is, the receiving end device
  • a predefined method such as a table
  • the maximum number of received bits belongs to at least one maximum number of received bits
  • the sub-carrier interval belongs to at least one sub-carrier interval, and there is a one-to-one correspondence between the at least one maximum received bit number and the at least one sub-carrier interval, and the greater the sub-carrier interval is, the sub-carrier interval corresponds to The smaller the maximum number of received bits; and/or
  • the maximum interval between the time slots of the initial transmission and the last retransmission belongs to the maximum interval between the time slots of at least one initial transmission and the last retransmission, and the at least one maximum number of received bits and the at least one There is a one-to-one correspondence between the maximum interval between the time slots of the initial transmission and the last retransmission, and the greater the maximum interval between the time slots of the initial transmission and the last retransmission, the greater the maximum interval between the time slots of the initial transmission and the last retransmission.
  • the maximum number of received bits corresponding to the maximum interval between transmitted time slots is greater; and/or
  • the sub-band size belongs to at least one sub-band size, the at least one maximum received bit number corresponds to the at least one sub-band size one-to-one, and the larger the sub-band size is, the sub-band size corresponds to all the sub-band sizes.
  • the said maximum number of received bits is smaller.
  • the first terminal device that is, the receiving end device
  • a predefined method such as a table
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits
  • the subcarrier interval belongs to at least one subcarrier interval, and there is a one-to-one correspondence between the at least one maximum transmission bit number and the at least one subcarrier interval, and the greater the subcarrier interval is, the subcarrier interval corresponds to The smaller the maximum number of transmitted bits; and/or
  • the maximum interval between the time slots of the initial transmission and the last retransmission belongs to the maximum interval between the time slots of at least one initial transmission and the last retransmission, the at least one maximum number of transmitted bits and the at least one There is a one-to-one correspondence between the maximum interval between the time slots of the initial transmission and the last retransmission, and the greater the maximum interval between the time slots of the initial transmission and the last retransmission, the greater the maximum interval between the time slots of the initial transmission and the last retransmission.
  • the subband size belongs to at least one subband size, the at least one maximum transmission bit number corresponds to the at least one subband size in a one-to-one correspondence, and the larger the subband size is, the subband size corresponds to all the subband sizes.
  • the said maximum number of transmitted bits is smaller.
  • the first terminal device that is, the transmitting end device
  • Support capability type according to a predefined method (such as a table) to determine the maximum number of transmission bits supported by the first terminal device, so that the receiving end device can determine the transmission capability value corresponding to its corresponding transmission capability under the first parameter (that is, the maximum Number of bits sent).
  • a predefined method such as a table
  • the first parameter further includes one or more of the following:
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval
  • the received type level belongs to at least one received type level, there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one received type level, and the received The higher the type level of, the greater the number of channels that can be received in the first time interval corresponding to the received type level; and/or
  • the bandwidth size belongs to at least one bandwidth size, there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one bandwidth size, and the larger the bandwidth size is, the The larger the number of channels that can be received in the first time interval corresponding to the bandwidth size;
  • the number of carriers belongs to at least one type of carrier quantity, and there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one type of carrier quantity, and the greater the number of carriers, the The greater the number of channels that can be received in the first time interval corresponding to the number of carriers; and/or
  • the carrier combination belongs to at least one carrier combination, and there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one carrier combination, and the greater the total bandwidth in the carrier combination , The greater the number of channels that can be received in the first time interval corresponding to the carrier combination; and/or
  • the number of spatial layers belongs to at least one type of spatial layer, and there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one spatial layer, and the greater the number of spatial layers If the number of spatial layers is larger, the number of channels that can be received in the first time interval corresponding to the number of spatial layers is larger.
  • the first terminal device that is, the receiving end device
  • the first terminal device can be based on at least one of the receiving type level, the bandwidth size, the number of carriers or the combination of carriers, the number of spatial layers, and the type of its supporting capabilities according to the pre-
  • a defined method (such as a table) is used to determine the number of channels supported by the first terminal device that can be received in the first time interval, so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability under the first parameter (ie The number of channels that can be received in the first time interval).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum number of received bits belongs to at least one maximum number of received bits
  • the received type level belongs to at least one received type level, there is a one-to-one correspondence between the at least one maximum number of received bits and the at least one received type level, and the higher the received type level is, The larger the maximum number of received bits corresponding to the received type level; and/or
  • the bandwidth size belongs to at least one bandwidth size, there is a one-to-one correspondence between the at least one maximum received bit number and the at least one bandwidth size, and the larger the bandwidth size is, the first bandwidth size corresponds to the first one. The greater the maximum number of received bits that can be received within the time interval; and/or
  • the number of carriers belongs to at least one type of carrier number, and there is a one-to-one correspondence between the at least one maximum received bit number and the at least one carrier number, and the greater the number of carriers, the more the number of carriers corresponds to the The greater the maximum number of received bits; and/or
  • the carrier combination belongs to at least one carrier combination, and there is a one-to-one correspondence between the at least one maximum received bit number and the at least one carrier combination, and the larger the total bandwidth in the carrier combination is, the carrier combination corresponds to The greater the maximum number of received bits; and/or
  • the number of spatial layers belongs to at least one type of spatial layer, and there is a one-to-one correspondence between the at least one maximum received bit number and the at least one spatial layer, and the more the number of spatial layers, the more the spatial layer The maximum number of received bits corresponding to the number is greater.
  • the first terminal device that is, the receiving end device
  • the first terminal device can be based on at least one of the receiving type level, the bandwidth size, the number of carriers or the combination of carriers, the number of spatial layers, and the type of its support capabilities, according to the pre-determined
  • a defined method (such as a table) is used to determine the maximum number of received bits of the first terminal device, so that the receiving end device can determine the receiving capability value (ie, the maximum number of received bits) corresponding to its corresponding receiving capability under the first parameter.
  • the receiving capability value ie, the maximum number of received bits
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits
  • the transmission type level belongs to at least one transmission type level, there is a one-to-one correspondence between the at least one maximum number of transmitted bits and the at least one transmission type level, and the higher the transmission type level is, The greater the maximum number of transmitted bits corresponding to the type of transmission; and/or
  • the bandwidth size belongs to at least one bandwidth size, there is a one-to-one correspondence between the at least one maximum number of transmitted bits and the at least one bandwidth size, and the larger the bandwidth size is, the larger the bandwidth size corresponds to the The greater the maximum number of transmitted bits; and/or
  • the carrier quantity belongs to at least one carrier quantity, and there is a one-to-one correspondence between the at least one maximum transmission bit quantity and the at least one carrier quantity, and the greater the carrier quantity, the more the carrier quantity corresponds to the carrier quantity.
  • the carrier combination belongs to at least one carrier combination, and there is a one-to-one correspondence between the at least one maximum number of transmitted bits and the at least one carrier combination, and the larger the total bandwidth in the carrier combination, the corresponding carrier combination The greater the maximum number of transmitted bits; and/or
  • the number of space layers belongs to at least one number of space layers, and there is a one-to-one correspondence between the at least one maximum number of transmitted bits and the number of space layers, and the more the number of space layers, the more the number of space layers The maximum number of transmitted bits corresponding to the number is greater.
  • the first terminal device that is, the transmitting end device
  • the first terminal device can be based on at least one of the received type level, bandwidth size, carrier number or carrier combination, spatial layer number, and its supporting capability type according to the pre-determined
  • a defined method (such as a table) is used to determine the maximum number of transmission bits supported by the first terminal device, so that the receiving end device can determine the transmission capability value corresponding to its corresponding transmission capability (ie, the maximum number of transmission bits) under the first parameter.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the first terminal device determining the receiving capability parameter and/or the sending capability parameter according to the first parameter includes:
  • the first terminal device determines the number of channels according to the first parameter and/or one or more of the following parameters:
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval
  • the pattern of the demodulation reference signal belongs to the pattern of at least one kind of demodulation reference signal, and the number of channels that can be received in the at least one first time interval is one-to-one with the pattern of the at least one kind of demodulation reference signal.
  • the pattern of the demodulation reference signal is a pattern that occupies a larger number of symbols, the number of channels that can be received in the first time interval corresponding to the pattern of the demodulation reference signal is smaller; and/or
  • the maximum number of received bits belongs to at least one maximum number of received bits, the number of channels that can be received in the at least one first time interval corresponds to the at least one maximum number of received bits, and the maximum number of received bits The larger the number, the larger the number of channels that can be received in the first time interval corresponding to the maximum number of received bits.
  • the first terminal device that is, the receiving end device
  • can follow a predefined manner (such as a table) according to at least one of the pattern of the demodulation reference signal, the maximum number of received bits, and the type of its support capability.
  • a predefined manner such as a table
  • the receiving end device can determine the receiving capacity value corresponding to its corresponding receiving capacity under the first parameter (that is, the receiving capacity value can be received in the first time interval). Number of channels).
  • the first terminal device determining the receiving capability parameter according to the first parameter includes:
  • the first terminal device determines the maximum number of received bits according to the first parameter and/or modulation method.
  • the maximum number of received bits belongs to at least one maximum number of received bits
  • the modulation method belongs to at least one modulation method, and the at least one modulation method corresponds to the at least one maximum number of received bits one-to-one, and the higher the modulation method is, the maximum received bit number corresponding to the modulation method is The larger the number of bits.
  • the first terminal device that is, the receiving end device, can determine the first terminal device according to at least one of the first parameter, the modulation mode, and the type of its support capability in a predefined manner (such as a table).
  • the maximum number of received bits of the terminal device so that the receiving end device can determine the receiving capacity value corresponding to its corresponding receiving capacity (that is, the maximum number of received bits) under the first parameter and/or modulation mode.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the first terminal device determining the receiving capability parameter according to the first parameter includes:
  • the first terminal device determines the maximum number of transmitted bits according to the first parameter and/or modulation method.
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits
  • the modulation method belongs to at least one modulation method, and the at least one modulation method corresponds to the at least one maximum number of transmission bits one-to-one, and the higher the modulation method is, the maximum transmission value corresponding to the modulation method is The larger the number of bits.
  • the first terminal device may determine the first terminal device according to at least one of the first parameter, the modulation mode, and the type of its support capability in a predefined manner (such as a table).
  • the maximum number of transmission bits of the terminal device so that the receiving end device can determine the transmission capacity value corresponding to its corresponding transmission capacity (that is, the maximum number of transmission bits) under the first parameter and/or modulation mode.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • some implementations of the first aspect further include:
  • the first terminal device When the buffer of the first terminal device is full and/or when the number of channels received by the first terminal device reaches the maximum value, the first terminal device performs any one of the following processes:
  • the first terminal device discards processes or data that are more than a preset distance from the first terminal device or whose distance exceeds the minimum communication distance required by the corresponding data packet;
  • the first terminal device discards the to-be-received blind transmission process or data
  • the first terminal device discards the synchronization signal to be received.
  • the first terminal device When the data to be transmitted is transmitted in HARQ mode, the first terminal device discards the data when the number of retransmissions exceeds the preset number of times, or when the data to be received is transmitted in HARQ mode, the first terminal device discards the retransmission Data when the number of times exceeds the preset number;
  • the first terminal device determines to discard the data to be received according to the type of transmission, and the type of transmission includes unicast, multicast or broadcast;
  • the first terminal device When the buffer of the first terminal device is full and/or when the number of users sent by the first terminal device reaches the maximum number of users, the first terminal device performs any one of the following processes:
  • the first terminal device discards data with a priority lower than a preset priority among the data to be sent;
  • the first terminal device discards processes or data that are more than a preset distance from the first terminal device or a distance that exceeds the minimum communication distance required by the corresponding data packet;
  • the first terminal device discards the to-be-sent blind transmission process or data
  • the first terminal device discards the synchronization signal to be sent
  • the first terminal device When the data to be transmitted is transmitted in HARQ mode, the first terminal device discards the data when the number of retransmissions exceeds the preset number of times, or when the data to be received is transmitted in HARQ mode, the first terminal device discards the retransmission Data when the number of times exceeds the preset number;
  • the first terminal device determines to discard the data to be sent according to the type of transmission, and the type of transmission includes unicast, multicast, or broadcast.
  • some implementations of the first aspect further include:
  • the first terminal device sends first indication information to the second terminal device, where the first indication information is used to indicate the receiving capability parameter and/or the sending capability parameter.
  • the first terminal device and the second terminal device can perform processing according to the sending capability parameter and/or receiving capability parameter of the opposite terminal device. Communication, so that the first terminal device and the second terminal device can communicate within the corresponding receiving capacity and/or sending capacity, which helps to avoid data loss due to the matching of the receiving capacity and/or sending capacity ratio during data transmission .
  • a communication device in a second aspect, includes a processor for implementing the method executed by the first communication device in the first aspect.
  • the communication device may also include a memory for storing program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement any method executed by the first terminal device in the first aspect.
  • the communication device may further include a transceiver, and the transceiver is used for the communication device to communicate with other devices.
  • an embodiment of the present application provides a communication device, including: a processing unit, configured to determine a receiving capability parameter and/or a sending capability parameter according to a first parameter, where the receiving capability parameter includes the data that can be received within the first time interval The number of channels, and/or the maximum number of received bits; the transmission capability parameter includes the maximum number of transmitted bits; the first parameter is pre-configured, or the first parameter is configured by a network device.
  • the first parameter is used for sidelink transmission, and the first parameter includes one or more of the following: the maximum interval between the time slots of the initial transmission and the last retransmission, and the subcarrier interval , The size of the subband; the transceiver unit is configured to perform sidelink transmission according to the receiving capability parameter and/or the sending capability parameter under the control of the processing unit.
  • the communication device provided in the third aspect can be used to execute the method corresponding to the first device in the first aspect.
  • the communication device provided in the third aspect can be used to execute the method corresponding to the first device in the first aspect.
  • the communication device provided in the third aspect please refer to the foregoing embodiments, and will not be repeated here. .
  • a computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the method executed by the first terminal device in the above aspects .
  • the present application provides a chip system that includes a processor for implementing the functions of the first terminal device in the methods of the foregoing aspects, for example, receiving or processing the data and data involved in the foregoing methods. /Or information.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the first terminal device in the above aspects is implemented.
  • Fig. 1 is a schematic diagram of V2X provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a communication device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a communication device provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a communication device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of the application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), aircraft (such as UAV, hot air balloon, civil aviation passenger plane, etc.) or user device, etc.
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • Remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units.
  • the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, On-board components, on-board chips, or on-board units can implement the method of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • IP Internet Protocol
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the 5G NR system, or it can also include the centralized unit (CU) in the cloud radio access network (cloud RAN) system. And distributed unit (DU), the embodiment of the present application is not limited.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional NodeB evolutional NodeB
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • CU centralized unit
  • cloud RAN cloud radio access network
  • DU distributed unit
  • V2X is the key technology of the future intelligent transportation system. It enables communication between vehicles, vehicles and base stations, and base stations and base stations. In this way, a series of traffic information such as real-time road conditions, road information, and pedestrian information can be obtained, thereby improving driving safety, reducing congestion, improving traffic efficiency, and providing in-vehicle entertainment information.
  • V2X was successfully established as a major application of device-to-device (D2D) technology.
  • V2X will optimize the specific application requirements of V2X on the basis of the existing D2D technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and There are several application requirements such as vehicle-to-network (V2N) communication and interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU
  • V2N refers to the communication between the vehicle and the base station/network.
  • RSU includes two types: terminal type RSU, because it is located on the roadside, this terminal type RSU is in a non-mobile state, and there is no need to consider mobility; base station type RSU can provide timing synchronization for vehicles communicating with it And resource scheduling.
  • the terms “system” and “network” in the embodiments of this application can be used interchangeably.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one refers to including one, two or more, and does not limit which ones are included. For example, including at least one of A, B, and C, then the included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the technical solutions provided by the embodiments of the present application may be applied to 5G systems, or applied to future communication systems or other similar communication systems.
  • the technical solutions provided by the embodiments of the present application can be applied to a cellular link, and can also be applied to a link between devices, such as a device to device (D2D) link.
  • the D2D link can also be called a sidelink, and the side link can also be called a side link or a secondary link.
  • the D2D link it includes the D2D link defined by 3GPP Release (Rel)-12/13, as well as the car-to-car, car-to-mobile phone, or car-to-mobile V2X link defined by 3GPP for the Internet of Vehicles, including Rel -14/15.
  • the aforementioned inter-device links all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type can mean that both parties in communication are terminal devices, it can also mean that both parties in communication are base station devices, and it can also mean that both parties in communication are relay node devices. Not limited.
  • FIG. 2 is a network architecture applied in the embodiment of this application.
  • FIG 2 is a schematic diagram of a V2X network architecture.
  • Figure 2 includes three terminal devices and four network devices.
  • the three terminal devices are UE1, UE2, and UE3, and the four network devices are two base stations, one RUS and one global navigation satellite system. system, GNSS).
  • the base station corresponds to different equipment in different systems.
  • 4G 4th generation
  • eNB eNode B
  • 5G 5G
  • V2X terminal equipment can also be called vehicle-mounted equipment.
  • Vehicle-mounted equipment can communicate with each other to realize information exchange and information sharing. For example, vehicle linkage status information including vehicle location and driving speed can be used to determine road traffic conditions.
  • RSU can communicate with various vehicle-mounted equipment and/or base station equipment, and can be used to detect road surface conditions and guide vehicles to select the best driving path.
  • the base station communicates with each vehicle-mounted device and/or RSU, and GNSS can provide positioning and timing information for other network elements.
  • the vehicle-mounted equipment in the Internet of Vehicles can also communicate with people. Specific users can communicate with the vehicle through wireless communication means such as WiFi, Bluetooth, and cellular, so that the user can monitor and control the vehicle through the corresponding mobile terminal device.
  • the three UEs and RUS can all be covered by two base stations, and each base station can communicate with the three UEs and RUS.
  • the base station in Figure 2 is optional. If there is a base station, it is a scenario with network coverage; if there is no base station equipment, it is a scenario without network coverage.
  • the terminal device in FIG. 2 may be a V2X terminal device, such as a vehicle-mounted terminal device or a vehicle as an example, but the terminal device in the embodiment of the present application is not limited to this.
  • the above-mentioned devices can communicate with each other through the side link and the uplink and the downlink.
  • the spectrum of the cellular link can be used for communication, the intelligent transportation spectrum near 5.9GHz or the spectrum on the high frequency band above 6GHz can also be used.
  • the technology for each device to communicate with each other can be enhanced based on the communication network protocol (such as the LTE protocol), and can be enhanced based on the D2D technology.
  • the embodiment of the present application provides a communication method. Please refer to FIG. 3, which is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method may be executed by a first terminal device, and this terminal device may be a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the functions required by the method.
  • the method executed by the first terminal device is taken as an example.
  • the first terminal device hereinafter may be any one of the terminal devices in FIG. 2, such as a vehicle-mounted device, etc., or a network device.
  • the embodiment of the present application only takes execution through the first terminal device as an example, and is not limited to this scenario.
  • the second terminal device may be any one of the terminal devices in FIG. 2, such as a vehicle-mounted device, or a network device.
  • the embodiments of the present application are not limited to this.
  • FIG. 3 is a flowchart of the method. The flow of the method is described as follows.
  • the first terminal device determines a receiving capability parameter and/or a sending capability parameter according to the first parameter.
  • the receiving capability parameter is used to indicate the receiving capability of the first terminal device
  • the sending capability parameter is used to indicate the sending capability of the first terminal device.
  • the first parameter includes one or more of the following: the maximum interval between the time slots of the initial transmission and the last retransmission, the subcarrier spacing (SCS), and the subband size.
  • the first parameter is pre-configured, or the first parameter is configured by the network device, which is not limited in the embodiment of the present application.
  • the first parameter may be used for side link transmission or cellular link, which is not limited in the embodiment of the present application.
  • the reception capability parameter may be V2X high reception capability (V2X high reception capability), or medium reception capability, or low reception capability, or V2X default reception capability (V2X default reception capability), but this application is not limited to this.
  • the receiving capability parameter includes the number of channels that can be received in the first time interval, and/or the maximum number of received bits.
  • the value of the first parameter can affect the maximum parallelism in the first time interval
  • the larger the SCS the smaller the number of parallel receiving channels that can be carried by the first terminal device under a fixed bandwidth value.
  • the larger the subband size the smaller the number of parallel receiving channels that the first terminal device can carry under a fixed bandwidth value.
  • the size of the first time interval can affect the number of time slots that the first terminal device needs to receive.
  • the larger the first time interval the larger the number of time slots that the first terminal device needs to receive, and the larger the corresponding receiving capability parameter.
  • the first terminal device can determine the receiving capability parameter according to at least one of the maximum interval between the initial transmission and the last retransmission time slot, the subcarrier interval, and the subband size, so that The first terminal device determines the corresponding receiving capability value under the corresponding parameter value, so that when signals sent from many other terminal devices arrive at the receiver of the first terminal device, it helps to enable the first terminal device to solve the problem. All the data packets that may reach the receiver of the terminal device are collected, thereby helping to reduce as much as possible the loss caused by unreasonable restrictions and missing some undetected data packets, which is beneficial to the cost and performance of the terminal. Achieve an optimal balance point between.
  • the number of channels that can be received in the first time interval can also be understood as the number of users that can be received in the first time interval.
  • the receiving capability parameter may further include the number of channels that can be received in the first time interval and the detectable resource block (resource block, RB) corresponding to the number of channels that can be received in the first time interval. Quantity (also referred to as the number of RBs corresponding to the number of channels that can be received in the first time interval).
  • the channel that can be received in the first time interval is, for example, a physical sidelink control channel (PSCCH), but the embodiment of the present application is not limited to this.
  • PSCCH physical sidelink control channel
  • the number of channels that can be received includes the number of control channels that can be received and/or the number of data channels corresponding to the control channels.
  • the receiving capability parameter may include the number of control channels that can be received in the first time interval and the corresponding number of RBs that can be received, and/or the number of data channels and the number of corresponding RBs that can be received. Quantity.
  • the PSCCH appearing in the time slot further includes the first-level PSCCH and/or the second-level PSCCH. That is, optionally, the number of PSCCHs that can be received in the first time interval may include the number of first-level PSCCHs and/or the number of second-level PSCCHs.
  • the receiving capability parameter may include the number of first-level PSCCHs that can be received in the first time interval and the corresponding number of RBs that can be received, and/or the number of second-level PSCCHs and their corresponding numbers. The number of RBs that can be received.
  • the above-mentioned first time interval is a time slot, or is less than or equal to the interval between the initial transmission and the last retransmission of a data packet, or is configured or predefined for other signaling duration.
  • blind retransmission means that when the sender sends data packets to the receiver, the number of times each data packet is sent is indicated by the signaling, or configured, or pre-defined, or pre-configured, and the receiver does not need to send data packets to the receiver.
  • the sending end feeds back the status or result of whether the data packet was successfully received. That is to say, in the data transmission process based on blind retransmission, the sender only needs to send a data packet to the receiver for the corresponding number of transmissions, and does not need to know whether the receiver has received the data packet.
  • the sender can send the same data packet to the receiver 4 times in a row.
  • the receiver receives the data packet, it does not need to send an acknowledgment (ACK) to the sender, or the receiver does not receive the data within a preset time.
  • ACK acknowledgment
  • NACK non-acknowledgment
  • the foregoing initial transmission and retransmission are initial transmission and retransmission based on hybrid automatic repeat request (HARQ).
  • HARQ transmission means that when the sending end sends a data packet to the receiving end, the receiving end needs to feed back to the sending end the status or result of whether the data packet is successfully received. That is to say, in the process of HARQ-based transmission, after the sender sends a data packet to the receiver, if it receives a NACK indication from the receiver, it continues to send the data packet. If the sending end receives the ACK indication from the receiving end, it stops sending the data packet.
  • the maximum number of retransmissions of a data packet can be predefined.
  • the same data packet supports a maximum of 32 retransmissions.
  • the number of retransmissions based on HARQ transmission can be configured or indicated within the maximum number of retransmissions.
  • the maximum number of supported processes may be defined for blind retransmission and HARQ retransmission respectively.
  • the maximum number of processes supported by blind retransmission may be 4, 8, or 16, or others, which is not limited in the embodiment of the present application.
  • the terminal device needs to detect the data of multiple communication devices, so it is necessary to define the maximum number of HARQ processes supported by the terminal device. For example, in the NR system, a maximum of 16 HARQ processes are supported. Among them, each HARQ process can correspond to data received from other communication devices or data sent to other communication devices.
  • the total maximum number of HARQ processes supported by the terminal device is the same as the total number of channels that the terminal device can receive.
  • the multiple HARQ processes correspond to the number of the multiple channels in a one-to-one correspondence.
  • the maximum number of HARQ processes supported by the terminal device is the same as the number of receiving users that the terminal device can support.
  • the multiple HARQ processes correspond to the multiple receiving users one-to-one.
  • the description is based on the maximum number of control channels supported by the terminal device.
  • the control channel may be PSCCH.
  • the maximum number of control channels supported by the terminal device may also be used to refer to the maximum number of HARQ processes supported by the terminal device, or the number of receiving users that the terminal device can support.
  • the interval between the initial transmission and the last retransmission may be one time slot or multiple time slots, which is not limited in the embodiment of the present application.
  • the number of channels that can be received in the first time interval is less than or equal to the product of the number of channels received in each time slot in the first time interval and the number of time slots in the first time interval. At this time, the number of channels received on each time slot can be the same or different.
  • the total number of channels that can be received in each time slot may be the same, but the actual number of channels received in each time slot may be the same or different.
  • the number of channels arriving on each terminal device may itself be the same or different.
  • the number of channels that the terminal device can receive in the first time interval is equal to each time in the first time interval. The product of the number of channels received on the slot and the number of time slots in the first time interval.
  • the maximum total number of PSCCHs that can be detected in the first time interval supported by the terminal device is N, where N ⁇ B, and N is a positive integer.
  • the number of channels received in multiple time slots in the first time interval is different, the number of channels that can be received in the first time interval is less than or equal to the number of channels with the largest or smallest received in the first time interval.
  • the number of channels is the product of the number of receiving channels in the time slot and the number of time slots in the first time interval.
  • the maximum number of received bits includes at least one of the following:
  • the maximum number of received bits on the transmission block of the data channel in a time slot (maximum number of bits of a SCH transport block transmitted within a slot);
  • the maximum number of received bits (maximum number of SCH transport block bits transmitted within a slot) of a data channel in a time slot;
  • the total maximum number of received bits that is, the maximum number of received bits that the terminal device can support.
  • the transmission capability parameter includes the maximum number of transmission bits.
  • the maximum number of transmitted bits includes at least one of the following:
  • the maximum number of transmitted bits on the transmission block of the data channel in a time slot (maximum number of bits of a SCH transport block transmitted within a slot);
  • the maximum number of transmitted bits of a data channel in a time slot (maximum number of SCH transport block bits transmitted within a slot);
  • the total maximum number of transmitted bits that is, the maximum number of transmitted bits that the terminal device can support.
  • the maximum number of transmitted bits/maximum number of received bits can mainly affect the buffer size of the first terminal device, the processing time and speed of data, and thus can affect the cost of the first terminal device. , Processing time and power consumption.
  • the value of the first parameter can affect the maximum value of the first time interval.
  • the larger the SCS the smaller the number of parallel transmission channels that can be carried by the first terminal device under a fixed bandwidth value.
  • the larger the subband size is, the smaller the number of parallel transmission channels that can be carried by the first terminal device under a fixed bandwidth value.
  • the size of the first time interval can affect the number of time slots that the first terminal device needs to transmit. Exemplarily, the larger the first time interval, the larger the number of time slots that the first terminal device needs to receive, and the larger the corresponding transmission capability parameter.
  • the first terminal device can determine the transmission capability parameter according to at least one of the maximum interval between the initial transmission and the last retransmission time slot, the subcarrier interval, and the subband size, so that The first terminal device determines the corresponding transmission capability value under the corresponding parameter value, so that when there are a large number of data packets to be sent, when the signals sent from many other terminal devices arrive at the receiver of the first terminal device, it helps to make The first terminal device reasonably determines the number and size of transmission data packets, thereby helping to reduce as much as possible the discarding of data packets to be sent due to an unreasonable transmission buffer size.
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval.
  • the foregoing subcarrier interval belongs to at least one subcarrier interval, and in this case, there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one subcarrier interval. And the larger the subcarrier interval, the smaller the number of channels that can be received in the first time interval corresponding to the subcarrier interval.
  • terminal devices with different receiving capabilities of terminal devices may be defined in the protocol, such as two terminal devices with different receiving capabilities.
  • the same subcarrier interval corresponds to the number of channels that can be received in a different first time interval.
  • the number of channels that can be received in the first time interval is strictly or approximately inversely proportional to the size of the SCS.
  • the number of RBs corresponding to the number of channels that can be received in the first time interval is strictly or approximately inversely proportional to the size of the SCS.
  • Table 1 shows the number of channels that can be detected by terminal devices with two different receiving capabilities corresponding to at least one SCS under a bandwidth of 20 MHz.
  • the at least one SCS is, for example, 15kHz/30kHz/60kHz/120kHz, and the two capabilities are receiving capability 1 and receiving capability 2, respectively.
  • B1 represents receiving capability 1
  • B2 represents receiving capability 2
  • the SCS value of is the number of channels that can be received in the first time interval under the corresponding various values.
  • the column where B1 is located may also indicate the receiving capability 1, the number of first-level control channels and/or the number of second-level control channels that can be received in the first time interval, and the column where B2 is located may also be When representing the receiving capability 2, the number of first-level control channels and/or the number of second-level control channels that can be received in the first time interval.
  • the first terminal device that is, the receiving end device, can perform a predefined method (such as Table 1) according to the value of the SCS and its supporting capability type (such as receiving capability 1 or receiving capability 2).
  • a predefined method such as Table 1
  • its supporting capability type such as receiving capability 1 or receiving capability 2.
  • Quantity In this way, it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the receiving capability parameter further includes the number of detectable RBs corresponding to the number of channels that can be received in the first time interval
  • the number of RBs corresponding to the number of channels that can be received in the first time interval belongs to at least one first time interval
  • the number of RBs corresponding to the number of channels that can be received in the at least one first time interval corresponds to at least one SCS one-to-one.
  • the larger the SCS the smaller the number of RBs corresponding to the number of channels that can be received in the first time interval corresponding to the SCS.
  • the same SCS corresponds to the number of RBs corresponding to the number of channels that can be received in different first time intervals.
  • the embodiment of the present application takes a 20MHz bandwidth as an example for description, but the embodiment of the present application is not limited to this.
  • the bandwidth can also be 10MHz, or 30MHz, or others.
  • Table 1a shows the corresponding values of B1, B2, N_RB_1, and N_RB_1 in a bandwidth of 10 MHz.
  • different SCS values correspond to two different detection channel numbers B1, B2 and different RB numbers N_RB1, N_RB2.
  • the value of SCS is 15kHz, for receiving capability 1, the number of detection channels is 10, and the number of detected RBs is 50; for receiving capability 2, the number of detection channels is 20, The number of RBs detected is 68.
  • the number of detected channels is 6, and the number of detected RBs is 25; for receiving capability 2, the number of detected channels is 12 , The number of RBs detected is 34.
  • the embodiment of this application only takes as an example the receiving capabilities of two different terminal devices that can be defined in the protocol for description, but the embodiment of this application is not limited to this. For example, one and three types of receiving capabilities can also be defined in the protocol. The receiving capabilities of or more different terminal devices are all within the protection scope of the embodiments of the present application.
  • the first terminal device that is, the receiving end device
  • can follow a predefined method such as Table 1a
  • the type of capability it supports such as receiving capability 1 or receiving capability 2.
  • the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability under the SCS value (that is, the first time interval).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the interval between the time slots of the initial transmission and the last retransmission belongs to at least one type of interval between the time slots of the initial transmission and the last retransmission, and in this case, the interval between the at least one first time interval is The number of channels that can be received corresponds to at least one type of interval between the time slots of the first transmission and the last retransmission, and the greater the interval between the time slots of the first transmission and the last retransmission, the more The interval between the time slots of one retransmission corresponds to the larger the number of channels that can be received in the first time interval.
  • the number of channels that can be received in the first time interval is strictly or approximately proportional to the number of time slots included in the interval between the at least one initial transmission and the last retransmission time slot.
  • the interval between the initial transmission and the last retransmission may be 16 time slots.
  • the interval between the initial retransmission and the last retransmission may be the maximum number of retransmission times multiplied by the round trip time of each HARQ. For example, if the round-trip time of each HARQ is 4 time slots and the maximum number of retransmissions is 32, the interval between the initial retransmission and the last retransmission is 128 time slots.
  • the number of RBs corresponding to the number of channels that can be received within the first time corresponds to at least one interval between the initial transmission and the last retransmission time slot, and the time between the initial transmission and the last retransmission is one-to-one.
  • the greater the interval between the slots the greater the number of RBs corresponding to the number of channels that can be received in the first time interval corresponding to the interval between the time slots of the initial transmission and the last retransmission.
  • the interval between the same initial transmission and the last retransmission time slot corresponds to the number of channels that can be received in a different first time interval, or different The number of RBs corresponding to the number of channels that can be received in the first time interval.
  • Table 2 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the number of time slots K included in the interval between the time slots of at least one initial transmission and the last retransmission is, for example, 1/2/3/4.
  • B1 represents the receiving capability 1
  • B2 represents the receiving capability 2
  • B2 The column indicates the number of channels that can be received in the first time interval under various values corresponding to the interval between the time slots of the initial transmission and the last retransmission when the receiving capability is 2.
  • the first terminal device that is, the receiving end device
  • the first terminal device can be based on the interval between the time slots of the initial transmission and the last retransmission and the type of capability it supports (for example, receiving capability 1 or receiving capability 2) ,
  • the type of capability it supports for example, receiving capability 1 or receiving capability 2
  • a predefined way such as Table 2 to determine the number of channels supported by the first terminal device that can be received in the first time interval, so that the receiving end device can be used between the initial transmission and the last retransmission time slot.
  • the above subband size belongs to at least one subband size.
  • the number of channels that can be received in the at least one first time interval corresponds to the at least one subband size one-to-one, and the larger the subband size is, the The smaller the number of channels that can be received in the first time interval corresponding to the subband size.
  • the number of channels that can be received in the first time interval is strictly or approximately inversely proportional to the subband size.
  • the number of RBs corresponding to the number of channels that can be received in at least one first time interval is in one-to-one correspondence with at least one subband size, and the larger the subband size, the greater the number of RBs that can be received in the first time interval corresponding to the subband size.
  • the same subband size corresponds to the number of channels that can be received in different first time intervals, or the number of channels that can be received in different first time intervals corresponds to The number of RBs.
  • Table 3 shows the number of channels that can be detected by two terminal devices with different receiving capabilities on a 20MHz bandwidth.
  • the at least one subband size is, for example, 4/5/6/10 physical resource blocks PRB.
  • B1 represents receiving capability 1
  • B2 represents receiving capability 2
  • different subbands The number of channels that can be received in the first time interval under various values corresponding to the band size.
  • the first terminal device that is, the receiving end device
  • can follow a predefined manner for example, Table 3) according to the subband size and the type of capability it supports (for example, receiving capability 1 or receiving capability 2).
  • the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability under the subband size (that is, the receiving capability value that can be received in the first time interval). Number of channels).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum number of received bits belongs to at least one maximum number of received bits.
  • the aforementioned sub-carrier interval belongs to at least one sub-carrier interval.
  • the maximum number of received bits of the terminal device is strictly or approximately inversely proportional to the size of the SCS.
  • the same SCS corresponds to different maximum received bits.
  • Table 4 shows the maximum number of bits received by two terminal devices with different receiving capabilities under a bandwidth of 20 MHz.
  • the at least one SCS is, for example, 15kHz/30kHz/60kHz/120kHz, and the two receiving capabilities are capability 1 and capability 2, respectively.
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different SCS values when receiving capability 1
  • the column of C2 indicates receiving capability 2, corresponding to different SCS values The maximum number of bits received by the terminal device under various values of.
  • the first terminal device that is, the receiving end device, can use the value of the SCS and its supporting capability type (for example, receiving capability 1 or receiving capability 2), in a predefined manner (for example, Table 4).
  • the maximum number of received bits of the first terminal device is determined, so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) under the SCS value.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the interval between the above-mentioned initial transmission and the last retransmission time slot belongs to the maximum interval between the at least one initial transmission and the last retransmission time slot, and at this time the at least one maximum received bit number Correspond to at least one maximum interval between the time slots of the initial transmission and the last retransmission one-to-one, and the greater the maximum interval between the time slots of the initial transmission and the last retransmission, the initial transmission and the last retransmission
  • the maximum interval between the time slots corresponds to the larger the maximum number of received bits.
  • the maximum number of received bits is strictly or approximately proportional to the maximum interval between the time slots of the initial transmission and the last retransmission.
  • the interval between the same initial transmission and the last retransmission time slot corresponds to a different maximum number of received bits.
  • Table 5 shows the maximum number of received bits of two terminal devices with different receiving capabilities under a sub-carrier spacing of 15 kHz.
  • the number of time slots K included in the interval between the time slots of at least one initial transmission and the last retransmission is, for example, 1/2/3/4.
  • the column where C1 represents the receiving capability 1 the maximum number of received bits of the terminal device under various values corresponding to the interval between the time slots of the initial transmission and the last retransmission, where C2 is located
  • the column represents the maximum number of received bits of the terminal device under various values corresponding to the interval between the time slots of the initial transmission and the last retransmission when the receiving capability is 2 different.
  • K C1 C2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the receiving end device
  • the first terminal device can be based on the interval between the time slots of the initial transmission and the last retransmission and the type of its support capability (for example, receiving capability 1 or receiving capability 2), Determine the maximum number of received bits of the first terminal device according to a predefined method (such as Table 5), so that the receiving end device can determine its corresponding receiving capability in the interval between the time slots of the initial transmission and the last retransmission Corresponding to the receiving capacity value (ie the maximum number of received bits).
  • the receiving capacity value ie the maximum number of received bits
  • the aforementioned subband size belongs to at least one subband size.
  • the at least one maximum received bit number corresponds to the at least one subband size in a one-to-one relationship, and the subband The larger the size, the smaller the maximum number of received bits corresponding to the subband size.
  • the maximum number of received bits is strictly or approximately proportional to the initial transmission and subband size.
  • the same subband size corresponds to different maximum received bits.
  • Table 6 shows the maximum number of received bits for two terminal devices with different receiving capabilities under a subcarrier spacing of 15 kHz.
  • the at least one subband size is, for example, 4/5/6/10 physical resource blocks PRB.
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different subband sizes when receiving capability 1
  • the column of C2 indicates receiving capability 2, when different subbands are larger.
  • the maximum number of received bits of the terminal device under various values corresponding to the hour.
  • the number of PRBs included in the subband C1 C2 4 25456 31704 5 floor(25456/2) floor(31704/2) 6 floor(25456/3) floor(31704/3) 10 floor(25456/4) floor(31704/4)
  • floor() represents the round-down operation.
  • the first terminal device that is, the receiving end device, can determine the subband size and its support capability type (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 6)
  • the maximum number of received bits of the first terminal device so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (ie, the maximum number of received bits) under the subband size.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits.
  • the above-mentioned sub-carrier interval belongs to at least one sub-carrier interval.
  • the maximum number of transmitted bits of the terminal device is strictly or approximately inversely proportional to the size of the SCS.
  • the same SCS corresponds to different maximum transmission bits.
  • Table 7 shows the maximum number of transmitted bits of two terminal devices with different transmission capabilities on a 20MHz bandwidth.
  • the at least one SCS is, for example, 15kHz/30kHz/60kHz/120kHz, and the two capabilities are transmission capability 1 and transmission capability 2, respectively.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different SCS values when the transmission capability is 1
  • the column of D2 indicates the different SCS values when the transmission capability is 2.
  • the maximum number of bits sent by the terminal device under various values corresponding to the time.
  • the embodiment of this application only takes the sending capabilities of two different terminal devices that can be defined in the protocol as an example for description, but the embodiment of this application is not limited to this. For example, one and three types of transmission capabilities can also be defined in the protocol.
  • the sending capabilities of or more different terminal devices are all within the protection scope of the embodiments of the present application.
  • the first terminal device that is, the sending end device, can use the value of the SCS and its supporting capability type (for example, sending capability 1 or sending capability 2), according to a predefined way (for example, Table 7).
  • the maximum number of transmission bits of the first terminal device is determined, so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability under the SCS value (ie, the maximum transmission bit number).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum interval between the time slots of the initial transmission and the last retransmission belongs to the maximum interval between the time slots of at least one initial transmission and the last retransmission.
  • the at least one maximum transmission There is a one-to-one correspondence between the number of bits and the maximum interval between the time slots of at least one initial transmission and the last retransmission. The greater the maximum interval between the time slots of the initial transmission and the last retransmission, the greater the maximum interval between the initial transmission and the last retransmission. The maximum number of transmitted bits corresponding to the maximum interval between retransmitted time slots is greater.
  • the maximum number of transmitted bits of the terminal device is strictly or approximately proportional to the maximum interval between the time slots of the initial transmission and the last retransmission.
  • the interval between the time slots of the same initial transmission and the last retransmission corresponds to different maximum transmission bits.
  • Table 8 shows the maximum number of transmitted bits of two terminal devices with different transmission capabilities under a subcarrier spacing of 15 kHz.
  • the number of time slots K included in the interval between the time slots of at least one initial transmission and the last retransmission is, for example, 1/2/3/4.
  • the column where D1 is located indicates the maximum number of transmitted bits of the terminal device under various values corresponding to the interval between the time slots of different initial transmission and the last retransmission when the transmission capability is 1, and the column where D2 is located It indicates the maximum number of transmitted bits of the terminal device under various values corresponding to the interval between the time slots of the initial transmission and the last retransmission when the transmission capability is 2 different.
  • K D1 D2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the transmitting end device
  • the first terminal device can be based on the interval between the time slots of the initial transmission and the last retransmission and the type of its support capability (such as transmission capability 1 or transmission capability 2), Determine the maximum number of transmitted bits of the first terminal device according to a predefined method (such as Table 8), so that the transmitting end device can determine its corresponding transmission capability in the interval between the time slot of the initial transmission and the last retransmission
  • the sending capacity value that is, the maximum number of sent bits.
  • the foregoing subband size belongs to at least one subband size, and for a specific subcarrier interval, the at least one maximum transmission bit number corresponds to the at least one subband size in a one-to-one correspondence, and the subband The larger the size, the smaller the maximum number of transmitted bits corresponding to the subband size.
  • the maximum number of transmitted bits of the terminal device is strictly or approximately inversely proportional to the initial transmission and subband size.
  • the same subband size corresponds to different maximum transmission bits.
  • Table 9 shows the maximum number of transmitted bits of two terminal devices with different transmission capabilities under a subcarrier spacing of 15 kHz.
  • the at least one subband size is, for example, 4/5/6/10 physical resource blocks PRB.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different subband sizes when the transmission capability is 1, and the column where D2 indicates the transmission capability 2, and the different subbands are larger.
  • the maximum number of bits sent by the terminal device under various values corresponding to the hour.
  • the number of PRBs included in the subband D1 D2 4 25456 31704 5 12728 15852 6 6364 7926 10 3182 3963
  • the first terminal device that is, the transmitting end device, can perform the data in a predefined manner (such as Table 9) according to the size of the subband and the type of its supporting capabilities (such as sending capacity 1 or sending capacity 2).
  • the maximum number of transmission bits of the first terminal device is determined, so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum transmission bit number) under the subband size.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the foregoing first parameter may further include one or more of the following:
  • the bandwidth may be the channel bandwidth, the carrier bandwidth, or the BWP bandwidth, which is not limited in the embodiment of the present application.
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval.
  • the above-mentioned receiving type level belongs to at least one receiving type level, and in this case, there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one receiving type level, and The higher the received type level, the greater the number of channels that can be received in the first time interval corresponding to the received type level.
  • At least one number of RBs corresponding to the number of channels that can be received within the first time corresponds to at least one received type level, and the higher the received type level, the first time interval corresponding to the received type level The number of channels that can be received within the corresponding to the larger the number of RBs.
  • the same receiving type level corresponds to the number of channels that can be received in different first time intervals, or the number of channels that can be received in different first time intervals The number of RBs corresponding to the number.
  • Table 10 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the level of at least one type of reception is, for example, 1/2/3/4.
  • the column where B1 is located represents receiving capability 1
  • the number of channels that can be received in the first time interval under various values corresponding to different reception types and levels, and the column where B2 represents receiving capability 2 is different
  • the number of channels that can be received in the first time interval under various values corresponding to the receiving type level is different.
  • the first terminal device that is, the receiving end device
  • can follow a predefined manner for example, Table 10) according to the receiving type level and its supporting capability type (for example, receiving capability 1 or receiving capability 2).
  • the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability under the receiving type level (that is, the receiving capability value that can be received in the first time interval). The number of channels received).
  • the above-mentioned bandwidth size belongs to at least one bandwidth size.
  • the number of RBs corresponding to the number of channels that can be received in at least one first time interval corresponds to at least one bandwidth size, and the larger the bandwidth size, the channels that can be received in the first time interval corresponding to the bandwidth size The number corresponds to the larger the number of RBs.
  • the number of channels that can be received in the first time interval is strictly or approximately proportional to the bandwidth.
  • the same bandwidth corresponds to the number of channels that can be received in different first time intervals, or the number of channels that can be received in different first time intervals corresponds to The number of RBs.
  • Table 11 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a sub-carrier spacing of 15 kHz.
  • the at least one bandwidth size is, for example, 20MHz/30MHz/40MHz/50MHz/60MHz/70MHz.
  • the column of B1 indicates the number of channels that can be received in the first time interval under various values corresponding to different bandwidth sizes when receiving capability 1, and the column of B2 indicates receiving capability 2, and different bandwidths The number of channels that can be received in the first time interval under various values corresponding to the big hour.
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the bandwidth size and the type of its support capability (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 11).
  • the number of channels that can be received in the first time interval supported by the first terminal device so that the receiving end device can determine the receiving capacity value corresponding to its corresponding receiving ability under the bandwidth size (that is, the number of channels that can be received in the first time interval) ).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the number of carriers mentioned above belongs to at least one type of carrier quantity.
  • At least one number of RBs corresponding to the number of channels that can be received within the first time corresponds to the number of at least one carrier, and the number of carriers is approximately large, and the number of carriers corresponds to the number of channels that can be received within the first time interval
  • the corresponding number of RBs is larger.
  • the number of channels that can be received in the first time interval is strictly or approximately proportional to the number of carriers.
  • the same number of carriers corresponds to the number of channels that can be received in different first time intervals, or the number of channels that can be received in different first time intervals corresponds to The number of RBs.
  • Table 12 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a sub-carrier spacing of 15 kHz.
  • the number of at least one carrier is, for example, 2/3/4/5.
  • the column of B1 indicates the number of channels that can be received in the first time interval under the corresponding values when the number of carriers is 1
  • the column of B2 indicates the number of channels that can be received in the second time interval. The number is the number of channels that can be received in the first time interval under the corresponding various values.
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the number of carriers and the type of support capability (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 12).
  • the number of channels that can be received in the first time interval supported by the first terminal device so that the receiving end device can determine the receiving capacity value corresponding to its corresponding receiving ability under the number of carriers (that is, the number of channels that can be received in the first time interval) ).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the aforementioned carrier combination belongs to at least one carrier combination.
  • there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one carrier combination, and the total carrier combination The larger the bandwidth, the larger the number of channels that can be received in the first time interval corresponding to the carrier combination.
  • the number of RBs corresponding to the number of channels that can be received within the first time corresponds to at least one carrier combination one-to-one, and the larger the total bandwidth of the carrier combination, the greater the total bandwidth of the carrier combination, the receiver can be received in the first time interval corresponding to the carrier combination.
  • the number of channels corresponds to the larger the number of RBs.
  • the same carrier combination corresponds to the number of channels that can be received in a different first time interval, or the number of channels that can be received in a different first time interval corresponds to The number of RBs.
  • Table 13 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a sub-carrier spacing of 15 kHz.
  • at least one carrier combination is, for example, ⁇ 10MHz+10MHz ⁇ , ⁇ 10MHz+20MHz ⁇ , ⁇ 10MHz+30MHz ⁇ , ⁇ 20MHz+20MHz ⁇ , ⁇ 10MHz+40MHz ⁇ , ⁇ 20MHz+40MHz ⁇ , ⁇ 30MHz+30MHz ⁇ , ⁇ 50MHz+10MHz ⁇ , ⁇ 50MHz+20MHz ⁇ , ⁇ 40MHz+30MHz ⁇ .
  • the column of B1 indicates the number of channels that can be received in the first time interval under various values corresponding to different carrier combinations when receiving capability 1
  • the column of B2 indicates receiving capability 2, and different carriers The number of channels that can be received in the first time interval under various values corresponding to the combination.
  • Carrier combination B1 B2 ⁇ 10MHz+10MHz ⁇ 20 40 ⁇ 10MHz+20MHz ⁇ 25 50 ⁇ 10MHz+30MHz ⁇ 40 80 ⁇ 20MHz+20MHz ⁇ 40 80 ⁇ 10MHz+40MHz ⁇ 50 100 ⁇ 20MHz+40MHz ⁇ 60 120 ⁇ 30MHz+30MHz ⁇ 60 120 ⁇ 50MHz+10MHz ⁇ 60 120 ⁇ 50MHz+20MHz ⁇ 70 140 ⁇ 40MHz+30MHz ⁇ 70 140
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the carrier combination and its supporting capability type (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 13).
  • the number of channels that can be received in the first time interval supported by the first terminal device so that the receiving end device can determine the receiving ability value corresponding to its corresponding receiving ability under the carrier combination (that is, the number of channels that can be received in the first time interval) .
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned spatial layer number belongs to at least one spatial layer number, and at this time, there is a one-to-one correspondence between the number of channels that can be received in the at least one first time interval and the at least one spatial layer number, and the spatial layer number The greater the number, the greater the number of channels that can be received in the first time interval corresponding to the number of spatial layers.
  • At least one number of RBs corresponding to the number of channels that can be received within the first time corresponds to at least one spatial layer number, and the more the number of spatial layers, the more the number of spatial layers corresponds to the number of RBs that can be received in the first time interval corresponding to the number of spatial layers.
  • the number of channels corresponds to the larger the number of RBs.
  • the number of channels that can be received in the first time interval is strictly or approximately proportional to the number of spatial layers.
  • the same number of spatial layers corresponds to the number of channels that can be received in different first time intervals, or the number of channels that can be received in different first time intervals The number of corresponding RBs.
  • Table 14 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a bandwidth of 20 MHz.
  • the number of at least one space layer is, for example, 1/2/3/4.
  • B1 represents the receiving capability 1
  • B2 represents the receiving capability 2
  • the first terminal device that is, the receiving end device, can perform a predefined method (such as Table 1) according to the number of spatial layers and the type of its supporting capabilities (such as receiving ability 1 or receiving ability 2).
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum number of received bits belongs to at least one maximum number of received bits.
  • the above-mentioned receiving type level belongs to at least one receiving type level. At this time, there is a one-to-one correspondence between the at least one maximum received bit number and the at least one receiving type level, and the higher the receiving type level is , The larger the maximum number of received bits corresponding to the received type level.
  • the same receiving type level corresponds to different maximum received bits.
  • Table 15 shows the maximum number of received bits for two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the level of at least one type of reception is, for example, 1/2/3/4.
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to the receiving capability 1
  • the column of C2 indicates the receiving capability of 2
  • the different receiving type levels The maximum number of received bits of the terminal device under various values corresponding to the time.
  • Type level received C1 C2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the receiving end device
  • can follow a predefined way for example, Table 15
  • the receiving type level and its supporting capability type (for example, receiving capability 1 or receiving capability 2).
  • the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) under the receiving type level.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned bandwidth size belongs to at least one bandwidth size.
  • the maximum number of received bits is strictly or approximately proportional to the bandwidth size.
  • the same bandwidth size corresponds to different maximum received bits.
  • Table 16 shows the maximum number of received bits of two terminal devices with different receiving capabilities under a subcarrier spacing of 15 kHz.
  • the at least one bandwidth size is, for example, 10MHz/20MHz/30MHz/40MHz/50MHz/60MHz/70MHz.
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different bandwidth sizes when capability 1
  • the column of C2 indicates various values corresponding to different bandwidth sizes when capability 2 is present. The maximum number of bits received by the terminal device.
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the bandwidth size and the type of its support capability (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 16).
  • the maximum number of received bits of the first terminal device so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) under the bandwidth size.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned carrier quantity belongs to at least one carrier quantity.
  • the maximum number of received bits is strictly or approximately proportional to the number of carriers.
  • the same number of carriers corresponds to different maximum received bits.
  • Table 17 shows the maximum number of received bits of two terminal devices with different receiving capabilities under a subcarrier spacing of 15 kHz.
  • the number of at least one carrier is, for example, 2/3/4/5.
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different carrier numbers when receiving capability 1, and the column of C2 indicates receiving capability 2, corresponding to different carrier numbers. The maximum number of bits received by the terminal device under this value.
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the number of carriers and the type of support capability (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 17).
  • the maximum number of received bits of the first terminal device so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) under the number of carriers.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned carrier combination belongs to at least one carrier combination, and there is a one-to-one correspondence between the at least one maximum received bit number and the at least one carrier combination, and the larger the total bandwidth in the carrier combination, the The maximum number of received bits corresponding to the carrier combination is larger.
  • the same carrier combination corresponds to different maximum received bits.
  • Table 18 shows the maximum number of bits received by two terminal devices with different receiving capabilities under a subcarrier spacing of 15 kHz.
  • at least one carrier combination is, for example, ⁇ 10MHz+10MHz ⁇ , ⁇ 10MHz+20MHz ⁇ , ⁇ 10MHz+30MHz ⁇ , ⁇ 20MHz+20MHz ⁇ , ⁇ 10MHz+40MHz ⁇ , ⁇ 20MHz+40MHz ⁇ , ⁇ 30MHz+30MHz ⁇ , ⁇ 50MHz+10MHz ⁇ , ⁇ 50MHz+20MHz ⁇ , ⁇ 40MHz+30MHz ⁇ .
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different carrier combinations when receiving capability 1
  • the column of C2 indicates receiving capability 2, corresponding to different carrier combinations. The maximum number of bits received by the terminal device under this value.
  • Carrier combination C1 C2 ⁇ 10MHz+10MHz ⁇ 2*25456 2*31704 ⁇ 10MHz+20MHz ⁇ 3*25456 3*31704 ⁇ 20MHz+10MHz ⁇ , 3*25456 3*31704 ⁇ 30MHz+10MHz ⁇ 4*25456 4*31704 ⁇ 20MHz+20MHz ⁇ 4*25456 4*31704 ⁇ 40MHz+10MHz ⁇ 5*25456 5*31704 ⁇ 40MHz+20MHz ⁇ 6*25456 6*31704 ⁇ 30MHz+30MHz ⁇ 6*25456 6*31704 ⁇ 50MHz+10MHz ⁇ 6*25456 6*31704 ⁇ 50MHz+20MHz ⁇ 7*25456 7*31704 ⁇ 40MHz+30MHz ⁇ 7*25456 7*31704 ⁇ 40MHz+30MHz ⁇ 7*25456 7*31704 ⁇ 40MHz+30MHz ⁇ 7*25456 7*31704 ⁇ 40MHz+30MHz ⁇ 7*2545
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the carrier combination and its supporting capability type (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 18).
  • the maximum number of received bits of the first terminal device so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) under the carrier combination.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned spatial layer number belongs to at least one spatial layer number.
  • the maximum number of received bits corresponding to the number is greater.
  • the maximum number of received bits is strictly or approximately proportional to the number of spatial layers.
  • the same number of spatial layers corresponds to different maximum received bits.
  • Table 19 shows the maximum number of received bits for two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the number of at least one space layer is, for example, 1/2/3/4.
  • the column of C1 represents the maximum number of received bits of the terminal device under various values corresponding to the receiving capability 1
  • the column of C2 represents the receiving capability 2, corresponding to different spatial layers. The maximum number of bits received by the terminal device under various values of.
  • Space layer number C1 C2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the receiving end device
  • can use a predefined method such as Table 19 according to the number of spatial layers and the type of its supporting capabilities (such as receiving ability 1 or receiving ability 2).
  • the maximum number of received bits of the first terminal device is determined, so that the receiving end device can determine the receiving capacity value corresponding to its corresponding receiving capacity (that is, the maximum number of received bits) under the number of spatial layers.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits.
  • the above-mentioned transmission type level belongs to at least one transmission type level.
  • the same receiving type level corresponds to different maximum received bits.
  • Table 20 shows the maximum number of transmitted bits for two terminal devices with different transmission capabilities under a 20MHz bandwidth.
  • the level of at least one type of reception is, for example, 1/2/3/4.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different receiving type levels when the transmission capability is 1, and the column of D2 indicates the transmission capability of 2, and different received The maximum number of bits sent by the terminal device under various values corresponding to the type level.
  • Type level received D1 D2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the sending end device
  • can follow a predefined way for example, Table 20
  • its supporting capability type for example, sending capability 1 or sending capability 2.
  • the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum number of transmission bits) under the receiving type level.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned bandwidth size belongs to at least one bandwidth size.
  • the maximum number of transmitted bits is strictly or approximately proportional to the bandwidth size.
  • the same bandwidth size corresponds to different maximum transmission bits.
  • Table 21 shows the maximum number of transmitted bits for two terminal devices with different receiving capabilities under a subcarrier spacing of 15 kHz.
  • the at least one bandwidth size is, for example, 20MHz/30MHz/40MHz/50MHz/60MHz/70MHz.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different bandwidth sizes when the transmission capability is 1, and the column of D2 indicates transmission capability 2, which corresponds to different bandwidth sizes. The maximum number of bits sent by the terminal device under various values of.
  • the first terminal device that is, the sending end device
  • the first terminal device can be determined according to the bandwidth size and the type of its support capability (for example, sending capability 1 or sending capability 2) in a predefined manner (for example, Table 21).
  • the maximum number of transmission bits of the first terminal device so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum number of transmission bits) under the bandwidth size.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the number of carriers mentioned above belongs to at least one number of carriers.
  • the maximum number of transmitted bits is strictly or approximately proportional to the number of carriers.
  • the same number of carriers corresponds to different maximum transmission bits.
  • Table 22 shows the maximum number of transmitted bits for two terminal devices with different transmission capabilities under a subcarrier spacing of 15 kHz.
  • the number of at least one carrier is, for example, 2/3/4/5.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values when the number of carriers is different when the transmission capability is 1, and the column where D2 indicates the transmission capability 2, and the number of different carriers corresponds to The maximum number of bits sent by the terminal device under various values of.
  • the first terminal device that is, the sending end device
  • the first terminal device can be determined according to the number of carriers and the type of support capability (for example, sending capability 1 or sending capability 2) in a predefined manner (for example, Table 22).
  • the maximum number of transmission bits of the first terminal device so that the transmitting end device can determine the transmission capacity value corresponding to its corresponding transmission capacity (that is, the maximum number of transmission bits) under the number of carriers.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned carrier combination belongs to at least one carrier combination.
  • the same carrier combination corresponds to different maximum transmission bits.
  • Table 23 shows the maximum number of transmitted bits for two terminal devices with different transmission capabilities under a subcarrier spacing of 15 kHz.
  • at least one carrier combination is, for example, ⁇ 10MHz+10MHz ⁇ , ⁇ 10MHz+20MHz ⁇ , ⁇ 10MHz+30MHz ⁇ , ⁇ 20MHz+20MHz ⁇ , ⁇ 10MHz+40MHz ⁇ , ⁇ 20MHz+40MHz ⁇ , ⁇ 30MHz+30MHz ⁇ , ⁇ 50MHz+10MHz ⁇ , ⁇ 50MHz+20MHz ⁇ , ⁇ 40MHz+30MHz ⁇ .
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different carrier combinations when the transmission capability is 1, and the column of D2 indicates the transmission capability of 2, and the different carrier combinations correspond to each The maximum number of bits sent by the terminal device under this value.
  • the first terminal device that is, the transmitting end device
  • the first terminal device can be determined according to the carrier combination and its supporting capability type (such as transmission capability 1 or transmission capability 2) in a predefined manner (such as Table 23).
  • the maximum number of transmission bits of the first terminal device so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum number of transmission bits) under the carrier combination.
  • the above-mentioned number of space layers belongs to at least one number of space layers.
  • the maximum number of transmitted bits corresponding to the number is greater.
  • the maximum number of transmitted bits is strictly or approximately proportional to the number of spatial layers.
  • the same number of spatial layers corresponds to different maximum transmission bits.
  • Table 24 shows the maximum number of transmitted bits of two terminal devices with different transmission capabilities under a 20MHz bandwidth.
  • the number of at least one space layer is, for example, 1/2/3/4.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values when the transmission capacity is 1, and the column of D2 indicates the transmission capacity of 2, and the number of different spatial layers. The maximum number of bits sent by the terminal device under the corresponding various values.
  • Space layer number D1 D2 1 25456 31704 2 2*25456 2*31704 3 3*25456 3*31704 4 4*25456 4*31704
  • the first terminal device that is, the sending end device, can perform the data in a predefined manner (for example, Table 24) according to the number of spatial layers and the type of support capability (for example, sending capability 1 or sending capability 2).
  • the maximum number of transmission bits of the first terminal device is determined, so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum number of transmission bits) under the space layer number.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the sending capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the first terminal device can determine the receiving capability parameter and/or the sending capability according to the first parameter, and at least one of the type and level of reception, the size of the bandwidth, the number of carriers or the combination of carriers, and the number of spatial layers. Parameters, so that when signals sent from many other terminal devices arrive at the receiver of the first terminal device, it helps to enable the first terminal device to decode all data packets that may reach the receiver of the terminal device, In turn, it helps to reduce as much as possible the loss caused by missing some undetected data packets, and helps to achieve an optimal balance between the cost and performance of the terminal.
  • the first terminal device may determine the number of channels that can be received in the first time interval according to the first parameter and one or more of the following parameters:
  • the number of channels that can be received in the first time interval belongs to at least one number of channels that can be received in the first time interval.
  • the pattern of the demodulation reference signal belongs to at least one pattern of the demodulation reference signal.
  • the number of channels that can be received in the at least one first time interval and the pattern of the at least one demodulation reference signal When there is a one-to-one correspondence, and the pattern of the demodulation reference signal is a pattern with a larger number of symbols, the smaller the number of channels that can be received in the first time interval corresponding to the pattern of the demodulation reference signal.
  • the pattern of the same demodulation reference signal corresponds to the number of channels that can be received in different first time intervals.
  • Table 25 shows the number of channels that can be detected by two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the pattern of the at least one demodulation reference signal is, for example, pattern 1/2/3/4.
  • the column where D1 is located indicates capability 1
  • the number of channels that can be received in the first time interval under various values corresponding to different demodulation reference signal patterns, and where the column where D2 indicates capability 2 it is different
  • the first terminal device that is, the receiving end device
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the above-mentioned maximum number of received bits belongs to at least one type of maximum number of received bits.
  • the number of channels that can be received in the at least one first time interval corresponds to at least one type of maximum number of received bits, and the maximum number of received bits The greater the number of bits, the greater the number of channels that can be received in the first time interval corresponding to the maximum number of received bits.
  • the number of channels that can be received in the first time interval is strictly or approximately proportional to the maximum number of received bits.
  • the same maximum number of received bits corresponds to the number of channels that can be received in different first time intervals.
  • the first terminal device can determine the receiving capability parameter according to the first parameter, the pattern of the demodulation reference signal, and the maximum number of received bits.
  • the signal arrives at the receiver of the first terminal device, it helps to enable the first terminal device to decode all the data packets that may reach the receiver of the terminal device, thereby helping to reduce as much as possible the missing parts.
  • the loss caused by undetected data packets helps to achieve an optimal balance between the cost and performance of the terminal.
  • the first terminal device may determine the maximum number of received bits according to the foregoing first parameter and modulation mode.
  • the maximum number of received bits belongs to at least one maximum number of received bits.
  • the above modulation method belongs to at least one modulation method.
  • the at least one modulation method corresponds to at least one maximum number of received bits, and the higher the modulation method, the maximum number of received bits corresponding to the modulation method Bigger.
  • the same modulation mode corresponds to different maximum received bits.
  • Table 27 shows the maximum number of bits received by two terminal devices with different receiving capabilities under a 20MHz bandwidth.
  • the at least one modulation method is, for example, quadrature phase shift keying (QPSK)/16 quadrature amplitude modulation (QAM)/64QAM/256QAM.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • the column of C1 indicates the maximum number of received bits of the terminal device under various values corresponding to different modulation methods when receiving capability 1
  • the column of C2 indicates receiving capability 2, corresponding to different modulation methods.
  • the maximum number of bits received by the terminal device under various values of.
  • the first terminal device that is, the receiving end device
  • the receiving end device can be determined according to the modulation mode and its supporting capability type (for example, receiving capability 1 or receiving capability 2) in a predefined manner (for example, Table 27).
  • the maximum number of received bits of the first terminal device so that the receiving end device can determine the receiving capability value corresponding to its corresponding receiving capability (that is, the maximum number of received bits) in the modulation mode.
  • the equipment manufacturer it is convenient for the equipment manufacturer to design the corresponding architecture, computing capacity, power consumption equipment cost, etc. according to the receiving capacity value when producing the corresponding equipment, so as to achieve a better balance between cost and performance according to the corresponding capacity.
  • the first terminal device may determine the maximum number of transmitted bits according to the foregoing first parameter and modulation mode.
  • the maximum number of transmitted bits belongs to at least one maximum number of transmitted bits.
  • the above modulation method belongs to at least one modulation method, and the at least one modulation method corresponds to at least one maximum number of transmitted bits one-to-one, and the higher the modulation method, the maximum number of transmitted bits corresponding to the modulation method Bigger.
  • the same modulation mode corresponds to different maximum transmission bits.
  • Table 28 shows the maximum number of transmitted bits of two terminal devices with different transmission capabilities.
  • the at least one modulation method is, for example, QPSK/16QAM/64QAM/256QAM.
  • the column of D1 indicates the maximum number of transmitted bits of the terminal device under various values corresponding to different modulation modes when the transmission capability is 1, and the column of D2 indicates the transmission capability 2, and the corresponding values for different modulation modes. The maximum number of bits sent by the terminal device under this value.
  • the first terminal device that is, the sending end device
  • the maximum number of transmission bits of the first terminal device so that the transmitting end device can determine the transmission capability value corresponding to its corresponding transmission capability (that is, the maximum number of transmission bits) in the modulation mode.
  • a total maximum received bit number and the maximum received bit used for the cellular link may be defined for the first terminal device The combination of the number and the maximum number of received bits of the side link.
  • a total maximum transmission bit number and the maximum transmission bit used for the cellular link may be defined for the first terminal device The combination of the number and the maximum number of transmitted bits on the side link.
  • the maximum number of processes supported by the terminal device, the number of channels that can be received in the first time interval, the maximum number of received bits, or the maximum number of transmitted bits may be defined for unicast and multicast respectively.
  • the number of channels that can be received in the first time interval, the maximum number of received bits, or the maximum number of transmitted bits can be configured for different maximum retransmission times in HARQ transmission. For example, when the maximum number of retransmissions in HARQ transmission is 32 times, the number of channels that can be received in the first time interval is N1, and when the maximum number of retransmissions in HARQ transmission is 16 times, the number of channels that can be received in the first time interval is 16 times.
  • the number of received channels is N2, where N1 and N2 are respectively positive integers, and N2 is greater than N1.
  • S320 The first terminal device performs sidelink transmission according to the foregoing receiving capability parameter and/or the sending capability parameter.
  • the number of channels that can be received in the first time interval is less than or equal to the first The number of channels that can be received in the time interval.
  • the number of bits that can be received is less than or equal to the maximum number of received bits indicated by the receiving capability parameter.
  • the first terminal device transmits the side uplink data according to the maximum number of transmission bits the number of bits that can be transmitted is less than or equal to the maximum number of transmission bits indicated by the transmission capability parameter.
  • the first terminal device can solve as much as possible all possible information that may reach the receiver of the terminal device when signals sent from many other terminal devices arrive at the receiver of the first terminal device. Data packets, thereby reducing as much as possible the loss caused by missing some undetected data packets, and reaching an optimal balance point between the cost and performance of the terminal.
  • the first terminal device may perform any one of the following processes:
  • the first terminal device discards processes or data that are more than a preset distance from the first terminal device or a distance that exceeds the minimum communication distance required by the corresponding data packet;
  • the first terminal device discards the to-be-received blind transmission process or data
  • the first terminal device discards the synchronization signal to be received
  • the first terminal device When the data to be transmitted is transmitted in HARQ mode, the first terminal device discards the data when the number of retransmissions exceeds the preset number of times, or when the data to be received is transmitted in HARQ mode, the first terminal device discards the retransmission Data when the number of times exceeds the preset number;
  • the first terminal device determines to discard the data to be received according to the type of transmission, and the type of transmission includes unicast, multicast, or broadcast.
  • the first terminal device When the buffer of the first terminal device is full and/or when the number of users sent by the first terminal device reaches the maximum number of users, the first terminal device performs any one of the following processes:
  • the first terminal device discards data with a priority lower than a preset priority among the data to be sent;
  • the first terminal device discards processes or data that are more than a preset distance from the first terminal device or a distance that exceeds the minimum communication distance required by the corresponding data packet;
  • the first terminal device discards the to-be-sent blind transmission process or data
  • the first terminal device discards the synchronization signal to be sent
  • the first terminal device When the data to be transmitted is transmitted in HARQ mode, the first terminal device discards the data when the number of retransmissions exceeds the preset number of times, or when the data to be received is transmitted in HARQ mode, the first terminal device discards the retransmission Data when the number of times exceeds the preset number;
  • the first terminal device determines to discard the data to be sent according to the type of transmission, and the type of transmission includes unicast, multicast, or broadcast.
  • the first terminal device may also send first indication information to the second terminal device, where the first indication information is used to indicate the receiving capability parameter and/or the sending capability parameter.
  • the receiving capability parameter and/or the sending capability parameter may be the receiving capability parameter and/or the sending capability parameter of the first terminal device, or the first terminal device may be used from other equipment other than the first terminal device.
  • the received receiving capability parameter and/or sending capability parameter are not limited in the embodiment of the present application.
  • the first terminal device and the second terminal device can perform processing according to the sending capability parameter and/or receiving capability parameter of the opposite terminal device. Communication, so that the first terminal device and the second terminal device can communicate within the corresponding receiving capacity and/or sending capacity, which helps to avoid data loss due to the matching of the receiving capacity and/or sending capacity ratio during data transmission .
  • the first terminal device may include a hardware structure and/or a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the first terminal device may be a network device, a terminal device, a chip applied to a network device or a terminal device, or other combination devices or components having the functions of the above-mentioned network device or terminal device.
  • the transceiver unit may be a receiver and a transmitter, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a baseband chip, etc., where the receiver and transmitter may be It is an integrated transceiver or a separate transceiver, which is not limited in the embodiment of the present application.
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the receiving module may be an input interface of the chip system
  • the processing module may be a processor of the chip system, for example: a central processing unit (CPU), and the sending module may be a chip system Output Interface.
  • CPU central processing unit
  • FIG. 4 shows a schematic structural diagram of a communication device 400.
  • the communication device 400 may be a first terminal device, for example, capable of implementing the function of the first terminal device in the method provided in the embodiment of this application; the communication device 400 may also be capable of supporting the implementation of the corresponding first terminal device in the method provided in the embodiment of this application.
  • the communication device 400 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device 400 may be implemented by a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 400 may include a processing unit 401 and a transceiving unit 402.
  • the processing unit 401 may be used to perform step S310 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the transceiver unit 402 is used for the communication device 400 to communicate with other modules, and it may be a circuit, a device, an interface, a bus, a software module, a transceiver, or any other device that can implement communication.
  • the transceiver unit 402 may be used to perform step S320 in the embodiment shown in FIG. 3, and/or to support other processes of the technology described herein.
  • the communication device 500 may be a first terminal device, which can implement the function of the first terminal device in the method provided in the embodiment of this application; the communication device 500 may also It is a device capable of supporting the realization of the function corresponding to the first terminal device in the method provided in the embodiment of the present application.
  • the communication device 500 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the foregoing transceiver unit 402 may be a transceiver, and the transceiver is integrated in the communication device 500 to form a communication interface 510.
  • the communication device 500 includes at least one processor 520, which is configured to implement or support the communication device 500 to implement the function of the first terminal device in the method provided in the embodiment of the present application.
  • the processor 520 may be configured to determine a receiving capability parameter and/or a sending capability parameter according to a first parameter, where the receiving capability parameter includes the number of channels that can be received in the first time interval, and/or the maximum number of received bits
  • the transmission capability parameter includes the maximum number of transmission bits; the first parameter is pre-configured, or the first parameter is configured by the network device; wherein the first parameter is used for sidelink transmission, and
  • the first parameter includes one or more of the following: the maximum interval between the time slots of the initial transmission and the last retransmission, the subcarrier interval, and the subband size.
  • the communication device 500 may also include at least one memory 530 for storing program instructions and/or data.
  • the memory 530 and the processor 520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 520 may cooperate with the memory 530 to operate.
  • the processor 520 may execute program instructions stored in the memory 530. At least one of the at least one memory may be included in the processor.
  • the communication device 500 may further include a communication interface 510 for communicating with other devices through a transmission medium, so that the device used in the device 500 can communicate with other devices.
  • the processor 520 may use the communication interface 510 to send and receive data.
  • the communication interface 510 may specifically be a transceiver.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 510, the processor 520, and the memory 530.
  • the memory 530, the processor 520, and the communication interface 510 are connected to each other in FIG. 5, and the bus is represented by thick lines in FIG. Not to be limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 520 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 530 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory).
  • a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), etc.
  • a volatile memory volatile memory
  • RAM random-access memory
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be a terminal or a circuit, and may also be a chip applied to a terminal or other combination devices or components with the foregoing terminal functions.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • Fig. 6 shows a schematic structural diagram of a simplified communication device. It is easy to understand and easy to illustrate.
  • the communication device uses a mobile phone as an example.
  • the communication device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the communication device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of communication devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 6 only one memory and processor are shown in FIG. 6. In an actual communication device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the communication device, and the processor with the processing function may be regarded as the processing unit of the communication device.
  • the communication device includes a transceiving unit 610 and a processing unit 620.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 610 can be regarded as the sending unit, that is, the transceiving unit 610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 610 is used to perform the sending operation and the receiving operation on the communication device side in the foregoing method embodiment
  • processing unit 620 is used to perform other operations on the communication device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 610 may be used to perform step S320 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the processing unit 620 is configured to execute step S310 in the embodiment shown in FIG. 3 and/or to support other processes of the technology described herein.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device can perform functions similar to the processing unit 520 in FIG. 5.
  • the device includes a processor 710, a data sending processor 720, and a data receiving processor 630.
  • the processing unit 401 in the foregoing embodiment may be the processor 710 in FIG. 7 and completes corresponding functions.
  • the transceiving unit 402 in the foregoing embodiment may be the sending data processor 720 and/or the receiving data processor 730 in FIG. 7.
  • FIG. 7 shows a channel encoder, a channel decoder, a modulator, a demodulator, etc., it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the terminal device 800 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the first terminal device in this embodiment may serve as the modulation subsystem therein.
  • the modulation subsystem may include a processor 803 and an interface 804.
  • the processor 803 completes the function of the aforementioned processing unit 401
  • the interface 804 completes the function of the aforementioned transceiver unit 402.
  • the modulation subsystem includes a memory 806, a processor 803, and a program stored on the memory 806 and running on the processor.
  • the processor 803 executes the program to implement the first terminal in the above method embodiment.
  • Device or method of the second terminal device can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 800, as long as the memory 806 can be connected to the The processor 803 is sufficient.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the first terminal device in FIG. 3.
  • An embodiment of the present application also provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the first terminal device in FIG. 3.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for realizing the function of the first device in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by the computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (digital video disc, DVD for short)), or semiconductor media (for example, SSD), etc.

Abstract

本申请提供一种通信方法及装置,能够有助于以合理的方式控制因为漏检数据包带来的损失,有利于在终端的成本和检测性能之间达到一个最佳的平衡点。该方法包括:第一终端装置根据第一参数确定接收能力参数和/或发送能力参数,该接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;该发送能力参数包括最大发送比特数;该第一参数是预配置的,或该第一参数是网络设备配置的。其中,第一参数用于侧行链路传输,且该第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小;该第一终端装置根据所述接收能力参数和/或所述发送能力参数进行侧行链路传输。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体的,涉及通信领域中的通信方法和通信装置。
背景技术
车联网作为未来智能交通运输系统(intelligent transport system,ITS)的关键技术,近来受到了越来越多的关注。其中车与任何设备(vehicle-to-everything,V2X)的系统是车联网中的一个关键技术。V2X其包括了车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互。除V2N车辆和网络通信使用上下行链路,其余V2V/V2I/V2P数据通信均使用侧行链路(sidelink,SL)进行通信。
在V2X系统中,对于一个终端设备而言,会有来自很多其他终端设备发送的信号到达此终端设备的接收机。此时,理想的情况是终端设备需要解出所有可能地到达该终端设备的接收机的数据包。但是,出于终端设备的实现复杂度的、成本以及功率消耗的约束,终端设备不能保证解调出所有潜在到达的数据包。
因此,亟需一种方案,能够在这种情况下尽可能地减少漏检数据包的数量,降低漏检带来的损失。
发明内容
本申请提供一种通信方法及装置,能够使得第一终端装置在相应参数值下确定出相应的接收能力值/发送能力值,有助于以合理的方式控制因为漏检数据包带来的损失,有利于在终端的成本和检测性能之间达到一个最佳的平衡点。
第一方面,提供了一种通信方法,该方法包括:第一终端装置根据第一参数确定接收能力参数和/或发送能力参数,所述接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;所述发送能力参数包括最大发送比特数;所述第一参数是预配置的,或所述第一参数是网络设备配置的。其中,所述第一参数用于侧行链路传输,且所述第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小;该第一终端装置根据所述接收能力参数和/或所述发送能力参数进行侧行链路传输。
其中,第一终端装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统或通信设备中的通信模块。示例性地,所述通信设备可以为终端设备,或者为网络设备。
在本申请实施例中,第一终端装置能够根据初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小中的至少一种来确定接收能力参数,能够使得第一终端装置在 相应参数值下确定出相应的接收能力值,从而在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置能够解出所有可能地到达该终端设备的接收机的数据包,进而有助于尽可能地减少因为不合理的限制,漏掉部分未检测数据包带来的损失,有利于在终端的成本和性能之间达到一个最佳的平衡点。和/或,
在本申请实施例中,第一终端装置能够根据初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小中的至少一种来确定发送能力参数,能够使得第一终端装置在相应参数值下确定出相应的发送能力值,从而在有大量数据包待发送,且来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置合理地确定传输数据包的数量和大小,进而有助于尽可能地减少因为不合理的发送缓存大小而丢弃掉待发送的数据包。
在一些实施例中,第一时间间隔内能够接收的信道数量还可以理解为,该第一时间间隔内能够接收的用户数量。
在一些实施例中,第一时间间隔内能够接收的信道例如为物理侧行链路控制信道(physical sidelink control channel,PSCCH)。
在一些实施例中,接收能力参数还可以包括第一时间间隔内能够接收的信道数量以及该信道数量对应的能够检测到的资源块(resource block,RB)数量,也可以称为第一时间间隔内能够接收的信道数量对应的RB数量。
结合第一方面,在第一方面的某些实现方式中,所述第一时间间隔内能够接收的信道数量包括:
所述第一时间间隔内能够接收的控制信道的数量和/或能够接收的数据信道的数量;或者所述第一时间间隔内能够接收的第一级控制信道的数量和/或第二级控制信道的数量。
结合第一方面,在第一方面的某些实现方式中,所述接收能力参数还包括:
所述第一时间间隔内能够接收的控制信道的数量对应的能够检测到的RB数,和/或能够接收的数据信道的数量对应的能够检测到的RB数;或者
所述第一时间间隔内能够接收的第一级控制信道的数量对应的能够检测到的RB数,和/或第一时间间隔内能够接收的第二级控制信道的数量对应的能够检测到的RB数。
因此,在本申请实施例中,第一终端装置能够根据初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小中的至少一种来确定第一时间间隔内能够接收的信道数量以及该信道数量对应RB数量,从而在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置能够解出所有可能地到达该终端设备的接收机的数据包,进而有助于尽可能地减少因为不合理的限制,漏掉部分未检测数据包带来的损失,有利于在终端的成本和性能之间达到一个最佳的平衡点。
结合第一方面,在第一方面的某些实现方式中,所述第一时间间隔为一个时隙或为小于或等于一个数据包的初传和最后一次重传之间的间隔。
结合第一方面,在第一方面的某些实现方式中,所述初传和所述重传为基于盲重传的初传和重传,或者所述初传和所述重传为基于混合自动请求重传HARQ的初传和重传。
因此,本申请实施例能够在支持盲重传或基于HARQ重传的通信系统中,根据第一参数来确定接收能力参数,和/或发送能力参数,进而有助于以合理的方式控制因为漏检数据包带来的损失,有利于在终端的成本和检测性能之间达到一个最佳的平衡点。
结合第一方面,在第一方面的某些实现方式中,所述信道数量小于或等于所述第一时间间隔中每个时隙上接收的信道数量与所述第一时间间隔中的时隙个数的乘积。因此,根据第一时间间隔上每个时隙上能够接收的信道数量和第一时间间隔中的时隙个数,可以确定第一时间间隔内能够接收的信道数量的取值范围。
一些可能的实现方式中,最大接收比特数包括以下至少一种:
一个时隙上的数据信道的传输块上的最大接收比特数、一个时隙上的一个数据信道的传输快的最大接收比特数、总的最大接收比特数,即终端设备能够支持的最大的接收比特数。
一些可能的实现方式中,最大发送比特数包括以下至少一种:
一个时隙上的数据信道的传输块上的最大发送比特数、一个时隙上的一个数据信道的传输快的最大发送比特数、总的最大发送比特数,即终端设备能够支持的最大的发送比特数。
结合第一方面,在第一方面的某些实现方式中,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
所述子载波间隔属于至少一种子载波间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述第一时间间隔内能够接收的信道数量越小;和/或
所述初传和最后一次重传的时隙之间的间隔属于至少一种初传和最后一次重传的时隙之间的间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种初传和最后一次重传的时隙之间的间隔一一对应,且所述初传和最后一次重传的时隙之间的间隔越大,所述初传和最后一次重传的时隙之间的间隔对应的所述第一时间间隔内能够接收的信道数量越大;和/或
所述子带大小属于至少一种子带大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述第一时间间隔内能够接收的信道数量越小。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据SCS的数值、初传和最后一次重传的时隙之间的间隔,以及子带大小中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该第一参数下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述最大接收比特数属于至少一种最大接收比特数;
所述子载波间隔属于至少一种子载波间隔,所述至少一种最大接收比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大接收比特数越小;和/或
所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大接收比特数和所述至少一种初传和最后一次重 传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大接收比特数越大;和/或
所述子带大小属于至少一种子带大小,所述至少一种最大接收比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大接收比特数越小。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据SCS的数值、初传和最后一次重传的时隙之间的间隔,以及子带大小中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该第一参数下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述最大发送比特数属于至少一种最大发送比特数;
所述子载波间隔属于至少一种子载波间隔,所述至少一种最大发送比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大发送比特数越小;和/或
所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大发送比特数和所述至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大发送比特数越大;和/或
所述子带大小属于至少一种子带大小,所述至少一种最大发送比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大发送比特数越小。
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据SCS的数值、初传和最后一次重传的时隙之间的间隔,以及子带大小中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置支持的最大发送比特数,以便于接收端设备在该第一参数下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述第一参数还包括以下中的一种或多种:
接收的类型等级、带宽大小、载波数量或载波组合、空间层数。
结合第一方面,在第一方面的某些实现方式中,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
所述接收的类型等级属于至少一种接收的类型等级,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的第一时间间隔内能够接收的信道数量越大;和/或
所述带宽大小属于至少一种带宽大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的 第一时间间隔内能够接收的信道数量越大;和/或
所述载波数量属于至少一种载波数量,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的第一时间间隔内能够接收的信道数量越大;和/或
所述载波组合属于至少一种载波组合,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的第一时间间隔内能够接收的信道数量越大;和/或
所述空间层数属于至少一种空间层数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的第一时间间隔内能够接收的信道数量越大。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据接收的类型等级、带宽大小、载波数量或载波组合、空间层数中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该第一参数下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述最大接收比特数属于至少一种最大接收比特数;
所述接收的类型等级属于至少一种接收的类型等级,所述至少一种最大接收比特数和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的所述最大接收比特数越大;和/或
所述带宽大小属于至少一种带宽大小,所述至少一种最大接收比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的第一时间间隔内能够接收的最大接收比特数越大;和/或
所述载波数量属于至少一种载波数量,所述至少一种最大接收比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大接收比特数越大;和/或
所述载波组合属于至少一种载波组合,所述至少一种最大接收比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大接收比特数越大;和/或
所述空间层数属于至少一种空间层数,所述至少一种最大接收比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大接收比特数越大。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据接收的类型等级、带宽大小、载波数量或载波组合、空间层数中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该第一参数下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设 备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述最大发送比特数属于至少一种最大发送比特数;
所述发送的类型等级属于至少一种发送的类型等级,所述至少一种最大发送比特数和所述至少一种发送的类型等级之间一一对应,且所述发送的类型等级越高,所述发送的类型等级对应的所述最大发送比特数越大;和/或
所述带宽大小属于至少一种带宽大小,所述至少一种最大发送比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的所述最大发送比特数越大;和/或
所述载波数量属于至少一种载波数量,所述至少一种最大发送比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大发送比特数越大;和/或
所述载波组合属于至少一种载波组合,所述至少一种最大发送比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大发送比特数越大;和/或
所述空间层数属于至少一种空间层数,所述至少一种最大发送比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大发送比特数越大。
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据接收的类型等级、带宽大小、载波数量或载波组合、空间层数中的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置支持的最大发送比特数,以便于接收端设备在该第一参数下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述第一终端装置根据第一参数确定接收能力参数和/或发送能力参数,包括:
所述第一终端装置根据所述第一参数,和/或以下参数中的一种或多种,确定所述信道数量:
解调参考信号的图样;
所述最大接收比特数。
结合第一方面,在第一方面的某些实现方式中,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
所述解调参考信号的图样属于至少一种解调参考信号的图样,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种解调参考信号的图样之间一一对应,且所述解调参考信号的图样为占用符号数更多的图样时,所述解调参考信号的图样对应的所述第一时间间隔内能够接收的信道数量越小;和/或
所述最大接收比特数属于至少一种最大接收比特数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种最大接收比特数一一对应,且所述最大接收比特数越大,所述最大接收比特数对应的所述第一时间间隔内能够接收的信道数量越大。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据解调参考信号的图样、最大接收比特数的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该第一参数下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述第一终端装置根据第一参数确定接收能力参数,包括:
所述第一终端装置根据所述第一参数和/或调制方式,确定所述最大接收比特数。
结合第一方面,在第一方面的某些实现方式中,所述最大接收比特数属于至少一种最大接收比特数;
所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大接收比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大接收比特数越大。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据第一参数、调制方式的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该第一参数和/或调制方式下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,所述第一终端装置根据第一参数确定接收能力参数,包括:
所述第一终端装置根据所述第一参数和/或调制方式,确定所述最大发送比特数。
结合第一方面,在第一方面的某些实现方式中,所述最大发送比特数属于至少一种最大发送比特数;
所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大发送比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大发送比特数越大。
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据第一参数、调制方式的至少一种和其支持能力类型,按照预定义的方式(比如表格)来确定该第一终端装置的最大发送比特数,以便于接收端设备在该第一参数和/或调制方式下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
结合第一方面,在第一方面的某些实现方式中,还包括:
当所述第一终端装置的缓存用满和/或当所述第一终端装置接收信道数达到最大值时,所述第一终端装置进行以下处理中的任意一种:
所述第一终端装置丢弃接收数据中控制信息中指示优先级低于预设优先级的进程或所述控制信息对应的数据;
所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数 据包要求的最小通信距离的进程或数据;
所述第一终端装置丢弃待接收的盲传的进程或数据;
所述第一终端装置丢弃待接收的同步信号。
因此,本申请实施例中,当第一终端装置在第一时间间隔内接收信道数量对应的数据大于该第一终端装置的最大的缓存时,可以按照上述规则丢弃某种或某些类型的数据,从而可以减少系统性能的损失。
当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
所述第一终端装置根据传输的类型,确定要丢掉待接收的数据,所述传输的类型包括单播、组播或广播;
当所述第一终端装置的缓存用满和/或当所述第一终端装置发送用户数达到最大用户数时,所述第一终端装置进行以下处理中的任意一种:
所述第一终端装置丢弃待发送的数据中优先级低于预设优先级的数据;
所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
所述第一终端装置丢弃待发送的盲传的进程或数据;
所述第一终端装置丢弃待发送同步信号;
当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
所述第一终端装置根据传输的类型,确定要丢掉待发送的数据,所述传输的类型包括单播、组播或广播。
因此,本申请实施例中,当第一终端装置在第一时间间隔内发送信道数量对应的数据大于该第一终端装置的最大的缓存时,可以按照上述规则丢弃某种或某些类型的数据,从而可以减少系统性能的损失。
结合第一方面,在第一方面的某些实现方式中,还包括:
所述第一终端装置向第二终端装置发送第一指示信息,所述第一指示信息用于指示接收能力参数和/或发送能力参数。
本申请实施例通过向第二终端装置发送该接收能力参数和/或发送能力参数,能够使得第一终端装置与第二终端装置可以根据对端设备的发送能力参数,和/或接收能力参数进行通信,以便于实现第一终端装置和第二终端装置在相应的接收能力和/或发送能力之内进行通信,有助于避免传输数据时因为接收能力和/或发送能力比匹配而导致数据丢失。
第二方面,提供一种通信装置,该通信装置包括处理器,用于实现上述第一方面中第一通信装置所执行的方法。该通信装置还可以包括存储器,用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面中第一终端装置所执行的任意一种方法。该通信装置还可以包括收发器,该收发器用于该通信装置与其它设备进行通信。
第三方面,本申请实施例提供一种通信装置,包括:处理单元,用于根据第一参数 确定接收能力参数和/或发送能力参数,所述接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;所述发送能力参数包括最大发送比特数;所述第一参数是预配置的,或所述第一参数是网络设备配置的。其中,所述第一参数用于侧行链路传输,且所述第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小;收发单元,用于在处理单元的控制下,根据所述接收能力参数和/或所述发送能力参数进行侧行链路传输。
此外,第三方面所提供的通信装置可用于执行第一方面中第一设备对应的方法,第三方面所提供的通信装置中未详尽描述的实现方式可参见前述实施例,此处不再赘述。
第四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中由第一终端装置执行的方法。
第五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中第一终端装置的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由第一终端装置执行的方法。
上述第二方面至第六方面及其实现方式的有益效果可以参考对第一方面的方法及其实现方式的有益效果的描述。
附图说明
图1是本申请实施例提供的V2X示意图;
图2为本申请实施例提供的一种网络架构示意图;
图3为本申请实施例提供的通信方法的流程图;
图4为本申请实施例提供的通信装置的示意图;
图5为本申请实施例提供的通信装置的示意图;
图6为本申请实施例提供的通信装置的示意图;
图7为本申请实施例提供的通信装置的示意图;
图8为本申请实施例提供的通信装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到 设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、飞行器(如无人机、热气球、民航客机等)或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)V2X,是未来智能交通运输系统的关键技术。它使得车与车、车与基站、基站与基 站之间能够通信。从而获得实时路况、道路信息、行人信息等一系列交通信息,从而提高驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
在版本(Rel)-14/15/16中,V2X作为设备到设备(device-to-device,D2D)技术的一个主要应用顺利立项。V2X将在已有的D2D技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例提供的技术方案可以应用于5G系统,或者应用于未来的通信系统或其他类似的通信系统。另外,本申请实施例提供的技术方案可以应用于蜂窝链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路,也可以称为sidelink,其中侧行链路也可以称为边链路或副链路等。对于D2D链路,包括3GPP的版本(Rel)-12/13定义的D2D链路,也包括3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15。还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。在本申请实施例中,上述的设备间链路都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是指通信的双方都是终端设备,也可以是指通信的双方都是基站设备,还可以是指通信的双方都是中继节设备等,本申请实施例对此不做限定。
下面介绍本申请实施例所应用的网络架构。请参考图2,为本申请实施例所应用的一种网络架构。
可参考图2,为一种V2X的网络架构示意图。图2中包括三个终端设备和四个网络设备,其中,三个终端设备分别为UE1、UE2和UE3,四个网络设备分别为两个基站,一个RUS和一个全球导航卫星系统(global navigation satellite system,GNSS)。基站在不同的 系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的gNB。V2X终端设备,也可以称为车载设备,车载设备之间可以相互通信,实现信息交流与信息共享,如包括车辆位置、行驶速度等车联状态信息,可用于判断道路车流状况。RSU可以与各个车载设备和/或基站设备通信,进可用于检测道路路面状况,引导车辆选择最佳行驶路径。基站与各个车载设备和/或RSU通信,GNSS可以为其他的网元提供定位授时的信息。此外,该车联网中车载设备还可以与人通信,具体的用户可以通过WiFi、蓝牙、蜂窝等无线通信手段与车辆进行信息沟通,使用户能通过对应的移动终端设备监测并控制车辆。这三个UE和RUS均可以在两个基站覆盖下,每一个基站都可以与这三个UE和RUS进行通信。图2中的基站是可选的,如果有基站,则是有网络覆盖的场景;如果无基站设备则是属于无网络覆盖的场景。
需要说明的是,图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。图2中的终端设备可以是V2X终端设备,例如为车载终端设备或车辆为例,但本申请实施例中的终端设备不限于此。
上述各设备之间都可以通过侧行链路和上下行链路进行相互通信,通信时可以使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱或者6GHz以上的高频段上的频谱。各设备相互通信的技术可以基于通信网络协议(如LTE协议)进行增强,可以基于D2D技术进行增强。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种通信方法,请参见图3,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由第一终端装置执行,这个终端装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。
为了便于介绍,在下文中,以该方法由第一终端装置执行为例。例如,下文中第一终端装置可以是图2中的终端设备中的任意一个终端设备,例如车载设备等,或者网络设备。需要说明的是,本申请实施例只是以通过第一终端装置执行为例,并不限制于这种场景。同理,第二终端设备可以是可以是图2中的终端设备中的任意一个终端设备,例如车载设备等,或者网络设备。但是本申请实施例并不限于此。
具体地,请参见图3,为该方法的流程图该方法的流程描述如下。
S310,第一终端装置根据第一参数确定接收能力参数和/或发送能力参数。示例性的,接收能力参数用于表示该第一终端装置的接收能力,发送能力参数用于表示该第一终端装置的发送能力。
本申请实施例中,第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔(subcarrier spacing,SCS),子带大小。其中,第一参数是预配置的,或该第一参数是网络设备配置的,本申请实施例对此不做限定。另外,该第一参数可以用于侧行链路传输,或蜂窝链路,本申请实施例对此不做限定。
作为示例,接收能力参数可以为V2X高接收能力(V2X high reception capability),或者中等接收能力,或者较低的接收能力,或者V2X缺省接收能力(V2X default reception capability),但是本申请并不限于此。
本申请实施例中,接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最 大接收比特数。
示例性的,第一参数(比如初传和最后一次重传的时隙之间的最大间隔,SCS,子带大小中的至少一种)的取值能够影响到第一时间间隔上最大可并行接收的信道数量,和/或,最大接收比特数,从而使得第一终端装置具有该取值对应的接收能力值(接收能力参数的示例)。例如,SCS越大,在固定带宽值下,第一终端装置能够承载的并行接收的信道数量会越小。又例如,子带大小越大,在固定带宽值下,第一终端装置能够承载的并行接收的信道数量会越小。又例如,第一时间间隔的大小,能够影响第一终端装置需要接收的时隙的数量。示例性的,第一时间间隔越大,第一终端装置需要接收的时隙的数量越多,对应的接收能力参数越大。
因此,在本申请实施例中,第一终端装置能够根据初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小中的至少一种确定接收能力参数,能够使得第一终端装置在相应参数值下确定出相应的接收能力值,从而在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置能够解出所有可能地到达该终端设备的接收机的数据包,进而有助于尽可能地减少因为不合理的限制,漏掉部分未检测数据包带来的损失,有利于在终端的成本和性能之间达到一个最佳的平衡点。
这里,第一时间间隔内能够接收的信道数量还可以理解为,该第一时间间隔内能够接收的用户数量。一些可选的实施例中,接收能力参数还可以包括第一时间间隔内能够接收的信道数量以及该第一时间间隔内能够接收的信道数量对应的能够检测到的资源块(resource block,RB)数量(也可以称为第一时间间隔内能够接收的信道数量对应的RB数量)。
作为示例,第一时间间隔内能够接收的信道例如为物理侧行链路控制信道(physical sidelink control channel,PSCCH),但是本申请实施例并不限于此。
在一些可选的实施例中,能够接收的信道数量包括能够接收到的控制信道的数量和/或控制信道对应的数据信道的数量。
在一些可选的实施例中,接收能力参数可以包括在第一时间间隔能够接收的控制信道的数量和对应的能够接收的RB数量,和/或数据信道的数量和对应的能够接收的RB的数量。
可选的,时隙中出现的PSCCH还包括第一级PSCCH和/或第二级PSCCH。也就是说,可选的,在第一时间间隔能够接收的PSCCH的数量可以包括第一级PSCCH的数量和/或第二级PSCCH的数量。
在一些可选的实施例中,接收能力参数可以包括在第一时间间隔能够接收的第一级PSCCH的数量和其对应的能够接收的RB数量,和/或第二级PSCCH的数量和其对应的能够接收的RB的数量。
在一些可选的实施例中,上述第一时间间隔为一个时隙,或为小于或等于一个数据包的初传和最后一次重传之间的间隔,或者为其他信令配置或预定义的时长。
一种可能的情况,一个数据包的初传和重传为基于盲重传的初传和重传。盲重传指的是发送端在向接收端发送数据包时,每个数据包的发送次数为信令指示的、或配置的、或预先定义的、或预配置的,并且接收端不需要向发送端反馈数据包的是否成功接收的状态或结果。也就是说,在基于盲重传的数据传输过程中,发送端只需要相应的发送次数向接 收端发送数据包,并不需要获知接收端是否接收到该数据包。比如发送端可以向接收端连续发送4次相同的数据包,接收端在接收到该数据包时,不需要向发送端发送确认(ACK),或者接收端在预设时间内没有接收到该数据包时,不需要向发送端发送非确认(NACK)。
另一种可能的情况,上述初传和重传为基于混合自动请求重传(hybrid automatic repeat request,HARQ)的初传和重传。HARQ传输指的是发送端在向接收端发送数据包时,接收端需要向发送端反馈数据包的是否成功接收的状态或结果。也就是说,在基于HARQ传输的过程中,发送端在向接收端发送一个数据包之后,如果接收到了来自接收端的NACK指示,则继续发送该数据包。如果发送端接收到了来自接收端的ACK指示,则停止发送该数据包。
一些可能的实现方式中,在基于HARQ的数据传输中,可以预先定义一个数据包的最大重传次数。例如,在NR系统中,同一个数据包支持最大32次的重传。在实际通信过程中,基于HARQ的传输的重传次数可以在最大重传次数之内进行配置或指示。
一些可选的实施例,可以分别为盲重传和HARQ重传定义支持的最大进程数。
一个示例,盲重传支持的最大进程数可以为4,8或16,或者其他,本申请实施例对此不做限定。
一个示例,在基于HARQ的数据传输中,终端设备需要检测多个通信装置的数据,因此需要定义终端设备支持的最大的HARQ进程个数。例如,在NR系统中,支持最大16个HARQ的进程数。其中,每个HARQ进程可以对应从其他通信装置接收的数据,或向其他通信装置发送的数据。
可选的,终端设备支持的总的最大HARQ进程的个数与终端设备能够接收的总的信道数量相同。换句话说,可选的,当终端设备支持多个HARQ进程,且该终端设备能够接收多个信道时,该多个HARQ进程与该多个信道数量一一对应。
或者,可选的,终端设备支持的最大HARQ进程的个数与终端设备能够支持的接收用户数量相同。换句话说,当终端设备支持多个HARQ进程,且该终端设备能够支持多个接收用户时,该多个HARQ进程与该多个接收用户一一对应。
在本申请实施例以下的描述中,在第一时间间隔上定义终端设备的检测能力时,按终端设备支持的最大控制信道数来描述。可选的,当用于D2D链路时,控制信道可以为PSCCH。在本申请实施例中,终端设备支持的最大控制信道数也可以用来代指终端设备支持的最大的HARQ进程个数,或代指终端设备能够支持的接收用户数量。
本申请实施例中,初传和最后一次重传之间的间隔可以为一个时隙,或者多个时隙,本申请实施例对此不做限定。
一些可能的实现方式,第一时间间隔内能够接收的信道数量小于或等于第一时间间隔中每个时隙上接收的信道数量与第一时间间隔中的时隙个数的乘积。此时,每个时隙上接收的信道数量可以相同,也可以不同的。
在一些实施例中,每个时隙上能够接收的信道总数量可以是相同的,但每个时隙实际接收的信道数量可以是相同的或不同的。作为示例,从终端设备的接收机来看,在每个时隙上,到达每个终端设备上的信道的数量本身就可能是相同或不同的。
作为示例,当终端设备在第一时间间隔中的每个时隙的所有信道都接收数据包时,终端设备在该第一时间间隔内能够接收的信道数量等于该第一时间间隔中每个时隙上接收 的信道数量与第一时间间隔中的时隙个数的乘积。
一个具体的例子,假设终端设备在一个时隙中接收信道数量为M,初传和最后一次重传之间的间隔包括K个时隙,假设所有接收数据的初传和重传(包括HARQ的重传和盲重传)全部译码错误,则终端设备需要为B个信道数量的数据进行缓存(buffer),其中,B=M×K,B、M、K均为正整数。
一个示例,对于15kHz的子载波间隔而言,K、M、B的取值可以如下:K=15,M=10,B=M×K=150。
也就是说,终端设备支持的第一时间间隔内最大能够检测出的总的PSCCH数量为N,其中,N≤B,N为正整数。
一些可能的实现方式中,当第一时间间隔中的多个时隙上接收的信道数量不同时,第一时间间隔内能够接收的信道数量小于或等于第一时间间隔中具有最大或最小接收的信道数量的时隙上的接收信道数量与第一时间间隔中的时隙个数的乘积。示例性的,当第一时间间隔中包括3个时隙,这3个时隙分别对应的接收信道数量为M1=8、M2=10、M3=11,则此时B=11×3=33,或者B=8×3=24。所以当B=33时,N值可以取33或小于33的整数,当B=24时,N值可以取24或小于24的整数。
一些可能的实现方式中,最大接收比特数包括以下至少一种:
一个时隙上的数据信道的传输块上的最大接收比特数(maximum number of bits of a SCH transport block transmitted within a slot);
一个时隙上的一个数据信道的传输快的最大接收比特数(maximum number of SCH transport block bits transmitted within a slot);
总的最大接收比特数,即终端设备能够支持的最大的接收比特数。
本申请实施例中,发送能力参数包括最大发送比特数。一些可能的实现方式中,最大发送比特数包括以下至少一种:
一个时隙上的数据信道的传输块上的最大发送比特数(maximum number of bits of a SCH transport block transmitted within a slot);
一个时隙上的一个数据信道的传输快的最大发送比特数(maximum number of SCH transport block bits transmitted within a slot);
总的最大发送比特数,即终端设备能够支持的最大的发送比特数。
需要说明的是,本申请实施例中,最大发送比特数/最大接收比特数,主要能够影响第一终端装置设备的缓存大小、数据的处理时间和速度,从而能够影响到第一终端装置的成本、处理时间和功率消耗。
本申请实施例中,第一参数(比如初传和最后一次重传的时隙之间的最大间隔,SCS,子带大小中的至少一种)的取值能够影响到第一时间间隔上最大可并行发送的信道数量,和/或,最大发送比特数,从而使得第一终端装置具有该取值对应的发送能力值(发送能力参数的示例)。例如,SCS越大,在固定带宽值下,第一终端装置能够承载的并行发送的信道数量会越小。又例如,子带大小越大,在固定带宽值下,第一终端装置能够承载的并行发送的信道数量会越小。又例如,第一时间间隔的大小,能够影响第一终端装置需要发送的时隙的数量。示例性的,第一时间间隔越大,第一终端装置需要接收的时隙的数量越多,对应的发送能力参数越大。
因此,本申请实施例中,第一终端装置能够根据初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小中的至少一种来确定发送能力参数,能够使得第一终端装置在相应参数值下确定出相应的发送能力值,从而在有大量数据包待发送时,来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置合理地确定传输数据包的数量和大小,进而有助于尽可能地减少因为不合理的发送缓存大小而丢弃掉待发送的数据包。
一些可能的实现方式中,第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量。
一些可能的情况,上述子载波间隔属于至少一种子载波间隔,此时上述至少一种第一时间间隔内能够接收的信道数量和该至少一种子载波间隔之间一一对应。且子载波间隔越大,该子载波间隔对应的第一时间间隔内能够接收的信道数量越小。
示例性的,协议中可以定义具有不同的终端设备的接收能力的终端设备,比如两种不同接收能力的终端设备。对于不同接收能力的终端设备而言,相同子载波间隔对应不同的第一时间间隔内能够接收的信道数量。
可选的,第一时间间隔中能够接收的信道数量与SCS的大小严格或近似成反比。和/或,可选的,第一时间间隔内能够接收的信道数量对应的RB数量与SCS的大小严格或近似成反比。
一个示例,表1示出了20MHz带宽下,至少一种SCS对应的两种不同接收能力的终端设备能够检测的信道数量。如表1所示,至少一种SCS例如为15kHz/30kHz/60kHz/120kHz,其中两种能力分别为接收能力1和接收能力2。其中,在表1中,B1所在的列表示接收能力1时,不同的SCS值时对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同的SCS值时对应的各种值下第一时间间隔内能够接收的信道数量。
表1
SCS(kHz) B1 B2 N_RB 1 N_RB2
15 10 20 100 136
30 6 12 50 68
60 2 6 25 34
120 1 3 12 17
在一些实施例中,B1所在的列还可以表示接收能力1时,第一时间间隔内能够接收的第一级控制信道的数量和/或第二级控制信道的数量,B2所在的列还可以表示接收能力2时,第一时间间隔内能够接收的第一级控制信道的数量和/或第二级控制信道的数量。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据SCS的数值和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表1)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该SCS数值下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
可选的,当接收能力参数还包括第一时间间隔内能够接收的信道数量对应的能够检测 到的RB数量时,第一时间间隔能够接收的信道数量对应的RB数量属于至少一个第一时间间隔能够接收的信道数量对应的RB数量,此时该至少一个第一时间间隔能够接收的信道数量对应的RB数量与至少一个SCS一一对应。且SCS越大,该SCS对应的第一时间间隔内能够接收的信道数量对应的RB数量越小。并且,对于协议中定义的不同接收能力的终端设备而言,相同SCS对应不同的第一时间间隔内能够接收的信道数量对应的RB数量。
如上表1所示,N_RB1所在的列表示接收能力1时,不同SCS下的第一时间间隔内能够接收的信道数量对应的RB数量,N_RB2所在的列表示接收能力2时,不同SCS下的第一时间间隔内能够接收的信道数量对应的RB数量。
需要说明的是,本申请实施例以20MHz带宽为例进行描述,但本申请实施例并不限于此。比如,带宽还可以为10MHz,或者30MHz,或者其他。
另一个示例,表1a示出了10MHz带宽下,B1、B2、N_RB_1以及N_RB_1相应的取值。在表1a中,不同的SCS值对应两种不同的检测信道的数量B1、B2以及不同的RB数量N_RB1、N_RB2。例如,在表1a的第一列中,当SCS的值为15kHz时,对于接收能力1,检测信道的数量为10,检测的RB数量为50;对于接收能力2,检测信道的数量为20,检测的RB数量为68。又如,在表1a的第一列中,当SCS的值为30kHz时,对于接收能力1,检测信道的数量为6,检测的RB数量为25;对于接收能力2,检测信道的数量为12,检测的RB数量为34。
表1a
SCS(kHz) B1 B2 N_RB 1 N_RB2
15 10 20 50 68
30 6 12 25 34
60 2 6 12 17
120 1 3 6 8
需要说明的是,本申请实施例仅以协议中可以定义2种不同的终端设备的接收能力为例进行描述,但是本申请实施例并不限于此,例如协议中还可以定义1种、3种或更多种不同的终端设备的接收能力,都在本申请实施例的保护范围之内。
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据SCS的数值和其支持的能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表1a)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量对应的RB数量,以便于接收端设备在该SCS数值下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量对应的RB数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述初传和最后一次重传的时隙之间的间隔属于至少一种初传和最后一次重传的时隙之间的间隔,此时上述至少一种第一时间间隔内能够接收的信道数量和至少一种初传和最后一次重传的时隙之间的间隔一一对应,且初传和最后一次重传的时隙之间的间隔越大,该初传和最后一次重传的时隙之间的间隔对应的第一时间间隔内能够接收的信道数量越大。
可选的,第一时间间隔中能够接收的信道数量与至少一种初传和最后一次重传的时隙之间的间隔中包括的时隙数严格或近似成正比。
示例性的,对于盲传,初传和最后一次重传之间的间隔可以为16个时隙。对于基于HARQ的重传,初重和最后一次重传之间的间隔可以是最大重传次数乘上每次HARQ的往返时间。例如,每次HARQ的往返时间为4个时隙,最大重传次数为32,则初重和最后一次重传之间的间隔为128个时隙。
可选的,至少一个第一时间内能够接收的信道数量对应的RB数量与至少一个初传和最后一次重传的时隙之间的间隔一一对应,且初传和最后一次重传的时隙之间的间隔越大,该初传和最后一次重传的时隙之间的间隔对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同初传和最后一次重传的时隙之间的间隔对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
一个示例,表2示出了20MHz带宽下,两种不同接收能力的终端设备能够检测的信道数量。如表2所示,至少一种初传和最后一次重传的时隙之间的间隔中包括的时隙数K例如为1/2/3/4。其中,在表2中,B1所在的列表示接收能力1时,不同初传和最后一次重传的时隙之间的间隔对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同初传和最后一次重传的时隙之间的间隔对应的各种值下第一时间间隔内能够接收的信道数量。
表2
K B1 B2
1 10 20
2 20 40
3 30 60
4 40 80
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据初传和最后一次重传的时隙之间的间隔和其支持的能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表2)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该初传和最后一次重传的时隙之间的间隔下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述子带大小属于至少一种子带大小,此时上述至少一种第一时间间隔内能够接收的信道数量和至少一种子带大小一一对应,且子带大小越大,该子带大小对应的第一时间间隔内能够接收的信道数量越小。
可选的,第一时间间隔中能够接收的信道数量与子带大小严格或近似成反比。
可选地,至少一个第一时间间隔内能够接收的信道数量对应的RB数量与至少一种子带大小一一对应,且子带大小越大,该子带大小对应的第一时间间隔内能够接收的信道数量对应的RB数量越小。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同子带大小对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
一个示例,表3示出了20MHz带宽上两种不同接收能力的终端设备能够检测的信道数量。如表3所示,至少一种子带大小例如为4/5/6/10个物理资源块PRB。其中,在表3中,B1所在的列表示接收能力1时,不同子带大小对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同子带大小对应的各种值下第一时间间隔内能够接收的信道数量。
表3
子带中包括的PRB数量 B1 B2
4 25 30
5 20 25
6 15 20
10 10 15
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据子带大小和其支持的能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表3)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该子带大小下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的实现方式中,所述最大接收比特数属于至少一种最大接收比特数。
一些可能的情况,上述子载波间隔属于至少一种子载波间隔,此时该至少一种最大接收比特数和至少一种子载波间隔之间一一对应,且子载波间隔越大,所述子载波间隔对应的所述最大接收比特数越小。
可选的,终端设备的最大接收比特数与SCS的大小严格或近似成反比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同SCS对应不同的最大接收比特数。
一个示例,表4示出了20MHz的带宽下,两种不同接收能力的终端设备的最大接收比特数。如表4所示,至少一种SCS例如为15kHz/30kHz/60kHz/120kHz,其中两种接收能力分别为能力1和能力2。其中,在表4中,C1所在的列表示接收能力1时,不同SCS值时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同SCS值时对应的各种值下终端设备的最大接收比特数。
表4
SCS(kHz) C1 C2
15 25456 31704
30 12728 15852
60 6364 7926
120 3182 3963
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据SCS的数值和其支 持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表4)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该SCS数值下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述初传和最后一次重传的时隙之间的间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,此时该至少一种最大接收比特数和至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且初传和最后一次重传的时隙之间的最大间隔越大,该初传和最后一次重传的时隙之间的最大间隔对应的最大接收比特数越大。
可选的,最大接收比特数与初传和最后一次重传的时隙之间的最大间隔严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同初传和最后一次重传的时隙之间的间隔对应不同的最大接收比特数。
一个示例,表5示出了15kHz的子载波间隔下,两种不同接收能力的终端设备的最大接收比特数。如表5所示,至少一种初传和最后一次重传的时隙之间的间隔中包括的时隙数K例如为1/2/3/4。其中,在表5中,C1所在的列表示接收能力1时,不同初传和最后一次重传的时隙之间的间隔时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同初传和最后一次重传的时隙之间的间隔时对应的各种值下终端设备的最大接收比特数。
表5
K C1 C2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据初传和最后一次重传的时隙之间的间隔和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表5)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该初传和最后一次重传的时隙之间的间隔下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述子带大小属于至少一种子带大小,对于一种特定的子载波间隔,该至少一种最大接收比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大接收比特数越小。
可选的,最大接收比特数与初传和子带大小严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同子带大小对应不同的最大接收比特数。
一个示例,表6示出了15kHz的子载波间隔下,两种不同接收能力的终端设备的最大 接收比特数。如表6所示,至少一种子带大小例如为4/5/6/10个物理资源块PRB。其中,在表6中,C1所在的列表示接收能力1时,不同子带大小时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同子带大小时对应的各种值下终端设备的最大接收比特数。
表6
子带中包括的PRB数量 C1 C2
4 25456 31704
5 floor(25456/2) floor(31704/2)
6 floor(25456/3) floor(31704/3)
10 floor(25456/4) floor(31704/4)
其中,floor()表示向下取整操作。
因此,本申请实施例中,第一终端装置,即接收端设备,可以子带大小和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表6)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该子带大小下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的实现方式中,所述最大发送比特数属于至少一种最大发送比特数。
一种可能的情况,上述子载波间隔属于至少一种子载波间隔,此时该至少一种最大发送比特数和至少一种子载波间隔之间一一对应,且子载波间隔越大,该子载波间隔对应的最大发送比特数越小。
可选的,终端设备的最大发送比特数与SCS的大小严格或近似成反比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同SCS对应不同的最大发送比特数。
一个示例,表7示出了20MHz带宽上两种不同发送能力的终端设备的最大发送比特数。如表7所示,至少一种SCS例如为15kHz/30kHz/60kHz/120kHz,其中两种能力分别为发送能力1和发送能力2。。其中,在表7中,D1所在的列表示发送能力1时,不同的SCS值时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的SCS值时对应的各种值下终端设备的最大发送比特数。
表7
SCS(kHz) D1 D2
15 25456 31704
30 12728 15852
60 6364 7926
120 3182 3963
需要说明的是,本申请实施例仅以协议中可以定义2种不同的终端设备的发送能力为例进行描述,但是本申请实施例并不限于此,例如协议中还可以定义1种、3种或更多种不同的终端设备的发送能力,都在本申请实施例的保护范围之内。
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据SCS的数值和其支 持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表7)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该SCS数值下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一种可能的情况,上述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,此时该至少一种最大发送比特数和至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且初传和最后一次重传的时隙之间的最大间隔越大,该初传和最后一次重传的时隙之间的最大间隔对应的所述最大发送比特数越大。
可选的,终端设备的最大发送比特数与初传和最后一次重传的时隙之间的最大间隔严格或近似成正比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同初传和最后一次重传的时隙之间的间隔对应不同的最大发送比特数。
一个示例,表8示出了15kHz的子载波间隔下,两种不同发送能力的终端设备的最大发送比特数。如表8所示,至少一种初传和最后一次重传的时隙之间的间隔中包括的时隙数K例如为1/2/3/4。在表8中,D1所在的列表示发送能力1时,不同的初传和最后一次重传的时隙之间的间隔时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的初传和最后一次重传的时隙之间的间隔时对应的各种值下终端设备的最大发送比特数。
表8
K D1 D2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据初传和最后一次重传的时隙之间的间隔和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表8)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该初传和最后一次重传的时隙之间的间隔下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一种可能的情况,上述子带大小属于至少一种子带大小,对于一种特定的子载波间隔,该至少一种最大发送比特数和所述至少一种子带大小一一对应,且该子带大小越大,该子带大小对应的所述最大发送比特数越小。
可选的,终端设备的最大发送比特数与初传和子带大小严格或近似成反比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同子带大小对应不同的最大发送比特数。
一个示例,表9示出了15kHz的子载波间隔下,两种不同发送能力的终端设备的最大发送比特数。如表9所示,至少一种子带大小例如为4/5/6/10个物理资源块PRB。在表9中,D1所在的列表示发送能力1时,不同的子带大小时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的子带大小时对应的各种值下终端设备的最大发送比特数。
表9
子带中包括的PRB数量 D1 D2
4 25456 31704
5 12728 15852
6 6364 7926
10 3182 3963
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据子带大小和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表9)来确定该第一终端装置的最大发送比特数,以便于发送端设备在子带大小下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
可选的,一些可能的实现方式中,上述第一参数还可以包括以下中的一种或多种:
接收的类型等级、带宽大小、载波数量或载波组合、空间层数。
作为示例,带宽可以是信道带宽,载波带宽,或者是BWP的带宽,本申请实施例对此不作限定。
一些可能的实现方式中,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量。
一些可能的情况,上述接收的类型等级属于至少一种接收的类型等级,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种接收的类型等级之间一一对应,且接收的类型等级越高,该接收的类型等级对应的第一时间间隔内能够接收的信道数量越大。
可选的,至少一个第一时间内能够接收的信道数量对应的RB数量与至少一种接收的类型等级一一对应,且接收的类型等级越高,该接收的类型等级对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的接收的类型等级对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
一个示例,表10示出了20MHz带宽下,两种不同接收能力的终端设备能够检测的信道数量。如表10所示,至少一种接收的类型等级例如为1/2/3/4。在表10中,B1所在的列表示接收能力1时,不同的接收的类型等级时对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同的接收的类型等级时对应的各种值下第一时间间隔内能够接收的信道数量。
表10
接收的类型等级 B1 B2
1 10 20
2 15 25
3 20 30
4 25 35
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据接收的类型等级和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表10)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该接收的类型等级下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述带宽大小属于至少一种带宽大小,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种带宽大小之间一一对应,且带宽大小越大,该带宽大小对应的第一时间间隔内能够接收的信道数量越大。
可选地,至少一个第一时间间隔内能够接收的信道数量对应的RB数量与至少一种带宽大小一一对应,且带宽大小越大,该带宽大小对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
可选的,第一时间间隔中能够接收的信道数量与带宽大小严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同带宽大小对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
一个示例,表11示出了15kHz的子载波间隔下,两种不同接收能力的终端设备能够检测的信道数量。如表11所示,至少一种带宽大小例如为20MHz/30MHz/40MHz/50MHz/60MHz/70MHz。在表11中,B1所在的列表示接收能力1时,不同的带宽大小时对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同的带宽大小时对应的各种值下第一时间间隔内能够接收的信道数量。
表11
带宽大小(MHz) B1 B2
20 10 20
30 15 30
40 20 40
50 25 50
60 30 60
70 35 70
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据带宽大小和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表11)来确定该第 一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该带宽大小下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述载波数量属于至少一种载波数量,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种载波数量之间一一对应,且载波数量越多,该载波数量对应的第一时间间隔内能够接收的信道数量越大。
可选的,至少一个第一时间内能够接收的信道数量对应的RB数量与至少一种载波数量一一对应,且载波数量约多,该载波数量对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
可选的,第一时间间隔中能够接收的信道数量与载波数量严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的载波数量对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
一个示例,表12示出了15kHz的子载波间隔下,两种不同接收能力的终端设备能够检测的信道数量。如表12所示,至少一种载波数量例如为2/3/4/5。在表12中,B1所在的列表示接收能力1时,不同的载波数量时对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同的载波数量时对应的各种值下第一时间间隔内能够接收的信道数量。
表12
载波数量 B1 B2
2 10 20
3 15 30
4 20 40
5 25 50
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据载波数量和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表12)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该载波数量下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述所述载波组合属于至少一种载波组合,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种载波组合之间一一对应,且载波组合的总带宽越大,该载波组合对应的第一时间间隔内能够接收的信道数量越大。
可选的,至少一个第一时间内能够接收的信道数量对应的RB数量与至少一种载波组合一一对应,且载波组合的总带宽越大,该载波组合对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的载波组合对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量 对应的RB数量。
示例性的,表13示出了15kHz的子载波间隔下,两种不同接收能力的终端设备能够检测的信道数量。如表13所示,至少一种载波组合例如为{10MHz+10MHz},{10MHz+20MHz},{10MHz+30MHz},{20MHz+20MHz},{10MHz+40MHz},{20MHz+40MHz},{30MHz+30MHz},{50MHz+10MHz},{50MHz+20MHz},{40MHz+30MHz}。在表13中,B1所在的列表示接收能力1时,不同的载波组合时对应的各种值下第一时间间隔内能够接收的信道数量,B2所在的列表示接收能力2时,不同的载波组合时对应的各种值下第一时间间隔内能够接收的信道数量。
表13
载波组合 B1 B2
{10MHz+10MHz} 20 40
{10MHz+20MHz} 25 50
{10MHz+30MHz} 40 80
{20MHz+20MHz} 40 80
{10MHz+40MHz} 50 100
{20MHz+40MHz} 60 120
{30MHz+30MHz} 60 120
{50MHz+10MHz} 60 120
{50MHz+20MHz} 70 140
{40MHz+30MHz} 70 140
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据载波组合和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表13)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在载波组合下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述空间层数属于至少一种空间层数,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种空间层数之间一一对应,且空间层数越多,该空间层数对应的第一时间间隔内能够接收的信道数量越大。
可选的,至少一个第一时间内能够接收的信道数量对应的RB数量与至少一种空间层数一一对应,且空间层数越多,该空间层数对应的第一时间间隔内能够接收的信道数量对应的RB数量越大。
可选的,第一时间间隔中能够接收的信道数量与空间层数严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的空间层数对应不同的第一时间间隔内能够接收的信道数量,或不同的第一时间间隔内能够接收的信道数量对应的RB数量。
示例性的,表14示出了20MHz带宽下,两种不同接收能力的终端设备能够检测的信道数量。如表14所示,至少一种空间层数例如为1/2/3/4。在表14中,B1所在的列表示接收能力1时,不同的空间层数时对应的各种值下第一时间间隔内能够接收的信道数量, B2所在的列表示接收能力2时,不同的空间层数时对应的各种值下第一时间间隔内能够接收的信道数量。
表14
空间层数 B1 B2
1 10 20
2 6 12
3 2 6
4 1 3
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据空间层数和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表1)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该空间层数下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的实现方式中,最大接收比特数属于至少一种最大接收比特数。
一些可能的情况,上述接收的类型等级属于至少一种接收的类型等级,此时该至少一种最大接收比特数和至少一种接收的类型等级之间一一对应,且接收的类型等级越高,该接收的类型等级对应的所述最大接收比特数越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的接收的类型等级对应不同的最大接收比特数。
一个示例,表15示出了20MHz带宽下,两种不同接收能力的终端设备的最大接收比特数。如表15所示,至少一种接收的类型等级例如为1/2/3/4。在表15中,C1所在的列表示接收能力1时,不同接收的类型等级时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同接收的类型等级时对应的各种值下终端设备的最大接收比特数。
表15
接收的类型等级 C1 C2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据接收的类型等级和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表15)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该接收的类型等级下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述带宽大小属于至少一种带宽大小,此时该至少一种最大接收比特数和至少一种带宽大小之间一一对应,且带宽大小越大,该带宽大小对应的第一时间间 隔内能够接收的最大接收比特数越大。
可选的,最大接收比特数与带宽大小严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同带宽大小对应不同的最大接收比特数。
一个示例,表16示出了15kHz的子载波间隔下,两种不同接收能力的终端设备的最大接收比特数。如表16所示,至少一种带宽大小例如为10MHz/20MHz/30MHz/40MHz/50MHz/60MHz/70MHz。在表16中,C1所在的列表示能力1时,不同带宽大小时对应的各种值下终端设备的最大接收比特数,C2所在的列表示能力2时,不同带宽大小时对应的各种值下终端设备的最大接收比特数。
表16
带宽大小(MHz) C1 C2
10 25456 31704
20 2*25456 2*31704
30 3*25456 3*31704
40 4*25456 4*31704
50 5*25456 5*31704
60 6*25456 6*31704
70 7*25456 7*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据带宽大小和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表16)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该带宽大小下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述载波数量属于至少一种载波数量,此时该至少一种最大接收比特数和至少一种载波数量之间一一对应,且载波数量越多,该载波数量对应的所述最大接收比特数越大。
可选的,最大接收比特数与载波数量严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的载波数量对应不同的最大接收比特数。
一个示例,表17示出了15kHz的子载波间隔下,两种不同接收能力的终端设备的最大接收比特数。如表17所示,至少一种载波数量例如为2/3/4/5。在表17中,C1所在的列表示接收能力1时,不同载波数量时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同载波数量时对应的各种值下终端设备的最大接收比特数。
表17
载波数量 C1 C2
2 25456 31704
3 12728 15852
4 6364 7926
5 3182 3963
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据载波数量和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表17)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该载波数量下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一种可能的情况,上述载波组合属于至少一种载波组合,该至少一种最大接收比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大接收比特数越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的载波组合对应不同的最大接收比特数。
一个示例,表18示出了15kHz的子载波间隔下,两种不同接收能力的终端设备最大接收比特数。如表18所示,至少一种载波组合例如为{10MHz+10MHz},{10MHz+20MHz},{10MHz+30MHz},{20MHz+20MHz},{10MHz+40MHz},{20MHz+40MHz},{30MHz+30MHz},{50MHz+10MHz},{50MHz+20MHz},{40MHz+30MHz}。在表18中,C1所在的列表示接收能力1时,不同载波组合时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同载波组合时对应的各种值下终端设备的最大接收比特数。
表18
载波组合 C1 C2
{10MHz+10MHz} 2*25456 2*31704
{10MHz+20MHz} 3*25456 3*31704
{20MHz+10MHz}, 3*25456 3*31704
{30MHz+10MHz} 4*25456 4*31704
{20MHz+20MHz} 4*25456 4*31704
{40MHz+10MHz} 5*25456 5*31704
{40MHz+20MHz} 6*25456 6*31704
{30MHz+30MHz} 6*25456 6*31704
{50MHz+10MHz} 6*25456 6*31704
{50MHz+20MHz} 7*25456 7*31704
{40MHz+30MHz} 7*25456 7*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据载波组合和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表18)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该载波组合下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述空间层数属于至少一种空间层数,此时该至少一种最大接收比特数和至少一种空间层数之间一一对应,且空间层数越多,该空间层数对应的所述最大接收比特数越大。
可选的,最大接收比特数与空间层数严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同的空间层数对应不同的最大接收比特数。
示例性的,表19示出了20MHz带宽下,两种不同接收能力的终端设备的最大接收比特数。如表19所示,至少一种空间层数例如为1/2/3/4。在表19中,C1所在的列表示接收能力1时,不同空间层数时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同空间层数时对应的各种值下终端设备的最大接收比特数。
表19
空间层数 C1 C2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据空间层数和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表19)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该空间层数下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的实现方式中,最大发送比特数属于至少一种最大发送比特数。
一些可能的情况,上述发送的类型等级属于至少一种发送的类型等级,此时该至少一种最大发送比特数和至少一种发送的类型等级之间一一对应,且发送的类型等级越高,该发送的类型等级对应的所述最大发送比特数越大。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同的接收的类型等级对应不同的最大接收比特数。
一个示例,表20示出了20MHz带宽下,两种不同发送能力的终端设备的最大发送比特数。如表20所示,至少一种接收的类型等级例如为1/2/3/4。在表20中,D1所在的列表示发送能力1时,不同的接收的类型等级时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的接收的类型等级时对应的各种值下终端设备的最大发送比特数。
表20
接收的类型等级 D1 D2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据接收的类型等级和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表20)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该接收的类型等级下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述带宽大小属于至少一种带宽大小,此时该至少一种最大发送比特数和至少一种带宽大小之间一一对应,且带宽大小越大,该带宽大小对应的最大发送比特数越大。
可选的,最大发送比特数与带宽大小严格或近似成正比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同带宽大小对应不同的最大发送比特数。
一个示例,表21示出了15kHz的子载波间隔下,两种不同接收能力的终端设备的最大发送比特数。如表21所示,至少一种带宽大小例如为20MHz/30MHz/40MHz/50MHz/60MHz/70MHz。在表21中,D1所在的列表示发送能力1时,不同的带宽大小时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的带宽大小时对应的各种值下终端设备的最大发送比特数。
表21
带宽大小(MHz) D1 D2
20 2*25456 2*31704
30 3*25456 3*31704
40 4*25456 4*31704
50 5*25456 5*31704
60 6*25456 6*31704
70 7*25456 7*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据带宽大小和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表21)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该带宽大小下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述载波数量属于至少一种载波数量,此时该至少一种最大发送比特数和至少一种载波数量之间一一对应,且载波数量越多,该载波数量对应的所述最大发送比特数越大。
可选的,最大发送比特数与载波数量严格或近似成正比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同的载波数量对应不同的最大发送比特数。
一个示例,表22示出了15kHz的子载波间隔下,两种不同发送能力的终端设备的最大发送比特数。如表22所示,至少一种载波数量例如为2/3/4/5。在表22中,D1所在的 列表示发送能力1时,不同的载波数量时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的载波数量时对应的各种值下终端设备的最大发送比特数。
表22
载波数量 D1 D2
2 25456 31704
3 2*25456 2*31704
4 3*25456 3*31704
5 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据载波数量和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表22)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该载波数量下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述载波组合属于至少一种载波组合,此时该至少一种最大发送比特数和至少一种载波组合之间一一对应,且载波组合中总带宽越大,该载波组合对应的所述最大发送比特数越大。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同的载波组合对应不同的最大发送比特数。
一个示例,表23示出了15kHz的子载波间隔下,两种不同发送能力的终端设备最大发送比特数。如表23所示,至少一种载波组合例如为{10MHz+10MHz},{10MHz+20MHz},{10MHz+30MHz},{20MHz+20MHz},{10MHz+40MHz},{20MHz+40MHz},{30MHz+30MHz},{50MHz+10MHz},{50MHz+20MHz},{40MHz+30MHz}。在表23中,D1所在的列表示发送能力1时,不同的载波组合对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同的载波组合对应的各种值下终端设备的最大发送比特数。
表23
载波组合 D1 D2
{10MHz+10MHz} 2*25456 2*31704
{10MHz+20MHz} 3*25456 3*31704
{20MHz+10MHz}, 3*25456 3*31704
{30MHz+10MHz} 4*25456 4*31704
{20MHz+20MHz} 4*25456 4*31704
{40MHz+10MHz} 5*25456 5*31704
{40MHz+20MHz} 6*25456 6*31704
{30MHz+30MHz} 6*25456 6*31704
{50MHz+10MHz} 6*25456 6*31704
{50MHz+20MHz} 7*25456 7*31704
{40MHz+30MHz} 7*25456 7*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据载波组合和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表23)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该载波组合下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述空间层数属于至少一种空间层数,此时该至少一种最大发送比特数和至少一种空间层数之间一一对应,且空间层数越多,该空间层数对应的所述最大发送比特数越大。
可选的,最大发送比特数与空间层数严格或近似成正比。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同的空间层数对应不同的最大发送比特数。
示例性的,表24示出了20MHz带宽下,两种不同发送能力的终端设备的最大发送比特数。如表24所示,至少一种空间层数例如为1/2/3/4。在表24中,D1所在的列表示发送能力1时,不同的空间层数时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同空间层数时对应的各种值下终端设备的最大发送比特数。
表24
空间层数 D1 D2
1 25456 31704
2 2*25456 2*31704
3 3*25456 3*31704
4 4*25456 4*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据空间层数和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表24)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该空间层数下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
在本申请实施例中,第一终端装置能够根据第一参数,以及接收的类型等级、带宽大小、载波数量或载波组合、空间层数中的至少一种来确定接收能力参数和/或发送能力参数,从而在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置能够解出所有可能地到达该终端设备的接收机的数据包,进而有助于尽可能地减少因为漏掉部分未检测数据包带来的损失,有利于在终端的成本和性能之间达到一个最佳的平衡点。
一些可能的实现方式中,第一终端装置可以根据上述第一参数,和以下参数中的一种或多种,确定上述第一时间间隔内能够接收的信道数量:
解调参考信号的图样;
所述最大接收比特数。
一些可能的实现方式,该第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量。
一些可能的情况,上述解调参考信号的图样属于至少一种解调参考信号的图样,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种解调参考信号的图样之间一一对应,且解调参考信号的图样为占用符号数更多的图样时,该解调参考信号的图样对应的第一时间间隔内能够接收的信道数量越小。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同解调参考信号的图样对应不同的第一时间间隔内能够接收的信道数量。
一个示例,表25示出了20MHz带宽下,两种不同接收能力的终端设备能够检测的信道数量。如表25所示,至少一种解调参考信号的图样例如为图样1/2/3/4。在表25中,D1所在的列表示能力1时,不同的解调参考信号的图样时对应的各种值下第一时间间隔内能够接收的信道数量,D2所在的列表示能力2时,不同的解调参考信号的图样时对应的各种值下第一时间间隔内能够接收的信道数量。
表25
解调参考信号的图样 B1 B2
图样1 10 20
图样2 6 12
图样3 6 12
图样4 6 12
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据接收的解调参考信号的图样和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表25)来确定该第一终端装置支持的在第一时间间隔内能够接收的信道数量,以便于接收端设备在该解调参考信号的图样下确定与其相应接收能力对应接收能力值(即第一时间间隔内能够接收的信道数量)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的情况,上述最大接收比特数属于至少一种最大接收比特数,此时该至少一种第一时间间隔内能够接收的信道数量和至少一种最大接收比特数一一对应,且最大接收比特数越大,该最大接收比特数对应的所述第一时间间隔内能够接收的信道数量越大。
可选的,第一时间间隔内能够接收的信道数量与最大接收比特数严格或近似成正比。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同最大接收比特数对应不同的第一时间间隔内能够接收的信道数量。
在本申请实施例中,第一终端装置能够根据第一参数,以及解调参考信号的图样、最大接收比特数中的至少一种来确定接收能力参数,从而在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,有助于使得该第一终端装置能够解出所有可能地到达该终端设备的接收机的数据包,进而有助于尽可能地减少因为漏掉部分未检测数据包带来的损失,有利于在终端的成本和性能之间达到一个最佳的平衡点。
一些可能的实现方式中,第一终端装置可以根据上述第一参数和调制方式,确定所述最大接收比特数。
一些可能的实现方式中,最大接收比特数属于至少一种最大接收比特数。
一些可能的情况,上述调制方式属于至少一种调制方式,此时该至少一种调制方式和至少一种最大接收比特数一一对应,且调制方式越高,该调制方式对应的最大接收比特数越大。
示例性的,对于协议中定义的不同接收能力的终端设备而言,相同调制方式对应不同的最大接收比特数。
示例性的,表27示出了20MHz带宽下,两种不同接收能力的终端设备最大接收比特数。如表27所示,至少一种调制方式例如为正交相移键控(quadrature phase shift keying,QPSK)/16正交振幅调制(quadrature amplitude modulation,QAM)/64QAM/256QAM。在表27中,C1所在的列表示接收能力1时,不同接收的调制方式时对应的各种值下终端设备的最大接收比特数,C2所在的列表示接收能力2时,不同调制方式时对应的各种值下终端设备的最大接收比特数。
表27
调制方式 C1 C2
QPSK 25456 31704
16QAM 2*25456 2*31704
64QAM 4*25456 4*31704
256QAM 8*25456 8*31704
因此,本申请实施例中,第一终端装置,即接收端设备,可以根据调制方式和其支持能力类型(比如接收能力1或接收能力2),按照预定义的方式(比如表27)来确定该第一终端装置的最大接收比特数,以便于接收端设备在该调制方式下确定与其相应接收能力对应接收能力值(即最大接收比特数)。这样,便于设备厂商在生产相应的设备时,能够按照接收能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可能的实现方式中,第一终端装置可以根据上述第一参数和调制方式,确定所述最大发送比特数。
一些可能的实现方式中,最大发送比特数属于至少一种最大发送比特数。
一些可能的情况,上述调制方式属于至少一种调制方式,该至少一种调制方式和至少一种最大发送比特数一一对应,且调制方式越高,该调制方式对应的所述最大发送比特数越大。
示例性的,对于协议中定义的不同发送能力的终端设备而言,相同的调制方式对应不同的最大发送比特数。
示例性的,表28示出了两种不同发送能力的终端设备最大发送比特数。如表28所示,至少一种调制方式例如为QPSK/16QAM/64QAM/256QAM。在表28中,D1所在的列表示发送能力1时,不同调制方式时对应的各种值下终端设备的最大发送比特数,D2所在的列表示发送能力2时,不同调制方式时对应的各种值下终端设备的最大发送比特数。
表28
调制方式 D1 D2
QPSK 25456 31704
16QAM 2*25456 2*31704
64QAM 4*25456 4*31704
256QAM 8*25456 8*31704
因此,本申请实施例中,第一终端装置,即发送端设备,可以根据调制方式和其支持能力类型(比如发送能力1或发送能力2),按照预定义的方式(比如表28)来确定该第一终端装置的最大发送比特数,以便于发送端设备在该调制方式下确定与其相应发送能力对应发送能力值(即最大发送比特数)。这样,便于设备厂商在生产相应的设备时,能够按照发送能力值设计相应的架构、计算能力、功率消耗设备成本等,从而在成本与性能之间按相应的能力达到一个较好的平衡。
一些可选的实施例,当第一终端装置同时支持蜂窝链路和侧行链路时,可以为该第一终端装置定义一个总的最大接收比特数,以及用于蜂窝链路的最大接收比特数和侧行链路的最大接收比特数的组合。
一些可选的实施例,当第一终端装置同时支持蜂窝链路和侧行链路时,可以为该第一终端装置定义一个总的最大发送比特数,以及用于蜂窝链路的最大发送比特数和侧行链路的最大发送比特数的组合。
一些可选的实施例,可以为单播和组播分别定义终端设备支持的最大进程数、第一时间间隔内能够接收的信道数量、最大接收比特数或最大发送比特数。
一些可选的实施例,可以为基于HARQ传输中的不同的最大重传次数配置不同的第一时间间隔内能够接收的信道数量、最大接收比特数或最大发送比特数。例如,当HARQ传输中最大的重传次数为32次时,第一时间间隔内能够接收的信道数量为N1个,当HARQ传输中最大的重传次数为16次时,第一时间间隔内能够接收的信道数量为N2个,其中,N1、N2分别为正整数,且N2大于N1。
S320,第一终端装置根据上述接收能力参数和/或所述发送能力参数进行侧行链路传输。
示例性的,在第一终端装置根据第一时间间隔内能够接收的信道数量接收侧行链路数据时,在第一时间间隔内能够接收的信道数量小于或等于接收能力参数所指示的第一时间间隔内能够接收的信道数量。或者,在第一终端装置根据最大接收比特数接收侧行链路数据时,能够接收的比特数小于或等于接收能力参数所指示的最大接收比特数。或者,在第一终端装置根据最大发送比特数发送侧行链路数据时,能够发送的比特数小于或等于发送能力参数所指示的最大发送比特数。
因此,在本申请实施例中,第一终端装置能够在有来自很多其他终端设备发送的信号到达该第一终端装置的接收机时,尽可能解出所有可能地到达该终端设备的接收机的数据包,进而尽可能地减少因为漏掉部分未检测数据包带来的损失,在终端的成本和性能之间达到一个最佳的平衡点。
当所述第一终端装置的缓存用满和/或当所述第一终端装置接收信道数达到最大值时,所述第一终端装置可以进行以下处理中的任意一种:
所述第一终端装置丢弃接收数据中控制信息中指示优先级低于预设优先级的进程或 所述控制信息对应的数据;
所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
所述第一终端装置丢弃待接收的盲传的进程或数据;
所述第一终端装置丢弃待接收的同步信号;
当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
所述第一终端装置根据传输的类型,确定要丢掉待接收的数据,所述传输的类型包括单播、组播或广播。
因此,本申请实施例中,当第一终端装置在第一时间间隔内接收信道数量对应的数据大于该第一终端装置的最大的缓存时,可以按照上述规则丢弃某种或某些类型的数据,从而可以减少系统性能的损失。
当所述第一终端装置的缓存用满和/或当所述第一终端装置发送用户数达到最大用户数时,所述第一终端装置进行以下处理中的任意一种:
所述第一终端装置丢弃待发送的数据中优先级低于预设优先级的数据;
所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
所述第一终端装置丢弃待发送的盲传的进程或数据;
所述第一终端装置丢弃待发送同步信号;
当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
所述第一终端装置根据传输的类型,确定要丢掉待发送的数据,所述传输的类型包括单播、组播或广播。
因此,本申请实施例中,当第一终端装置在第一时间间隔内发送信道数量对应的数据大于该第一终端装置的最大的缓存时,可以按照上述规则丢弃某种或某些类型的数据,从而可以减少系统性能的损失。
可选的,本申请实施例中,第一终端装置还可以向第二终端装置发送第一指示信息,该第一指示信息用于指示接收能力参数和/或发送能力参数。
作为示例,该接收能力参数和/或发送能力参数,可以为第一终端装置的接收能力参数和/或发送能力参数,或者为该第一终端装置从除该第一终端装置之外的其他设备接收到的接收能力参数和/或发送能力参数,本申请实施例对此不作限定。
本申请实施例通过向第二终端装置发送该接收能力参数和/或发送能力参数,能够使得第一终端装置与第二终端装置可以根据对端设备的发送能力参数,和/或接收能力参数进行通信,以便于实现第一终端装置和第二终端装置在相应的接收能力和/或发送能力之内进行通信,有助于避免传输数据时因为接收能力和/或发送能力比匹配而导致数据丢失。
上述本申请提供的实施例中,对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一终端装置可以包括硬件结构和/或软件模 块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
第一终端装置可以是网络设备,也可以是终端设备,也可以是应用于网络设备或终端设备中的芯片,或者其他具有上述网络设备或终端设备功能的组合器件、部件等。
当第一终端装置是网络设备或终端设备时,收发单元可以是接收器和发射器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等,其中接收器和发射器可以是整合的收发器,或者分立的收发器,本申请实施例对此不做限定。
当第一终端装置是具有上述网络设备或终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。
当第一终端装置是芯片系统时,接收模块可以是芯片系统的输入接口、处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU),发送模块可以是芯片系统的输出接口。
图4示出了一种通信装置400的结构示意图。其中,通信装置400可以是第一终端装置,例如能够实现本申请实施例提供的方法中第一终端装置的功能;通信装置400也可以是能够支持实现本申请实施例提供的方法中对应的第一终端装置的功能的装置。通信装置400可以是硬件结构、软件模块、或硬件结构加软件模块。通信装置400可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置400可以包括处理单元401和收发单元402。
处理单元401可以用于执行图3所示的实施例中的步骤S310,和/或用于支持本文所描述的技术的其它过程。
收发单元402用于通信装置400和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
收发单元402可以用于执行图3所示的实施例中的步骤S320,和/或用于支持本文所描述的技术的其它过程。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图5所示为本申请实施例提供的通信装置500,其中,通信装置500可以是第一终端装置,能够实现本申请实施例提供的方法中第一终端装置的功能;通信装置500也可以是能够支持实现本申请实施例提供的方法中第一终端装置对应的功能的装置。其中,该通信装置500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发单元402可以为收发器,收发器集成在通信装置500中构成通信接口510。
通信装置500包括至少一个处理器520,用于实现或用于支持通信装置500实现本申请实施例提供的方法中第一终端装置的功能。示例性地,处理器520可以用于根据第一参数确定接收能力参数和/或发送能力参数,所述接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;所述发送能力参数包括最大发送比特 数;所述第一参数是预配置的,或所述第一参数是网络设备配置的;其中,所述第一参数用于侧行链路传输,且所述第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小。具体参见方法示例中的详细描述,此处不做赘述。
通信装置500还可以包括至少一个存储器530,用于存储程序指令和/或数据。存储器530和处理器520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器520可能和存储器530协同操作。处理器520可能执行存储器530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置500还可以包括通信接口510,用于通过传输介质和其它设备进行通信,从而用于装置500中的装置可以和其它设备进行通信。
处理器520可以利用通信接口510收发数据。通信接口510具体可以是收发器。
本申请实施例中不限定上述通信接口510、处理器520以及存储器530之间的具体连接介质。本申请实施例在图5中以存储器530、处理器520以及通信接口510之间相互连接,总线在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当装置是终端时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述终端功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
图6示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图6中,通信装置以手机作为例子。如图6所示,通信装置包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对通信装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和 数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的通信装置可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图6中仅示出了一个存储器和处理器。在实际的通信装置产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为通信装置的收发单元,将具有处理功能的处理器视为通信装置的处理单元。如图6所示,通信装置包括收发单元610和处理单元620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元610中用于实现接收功能的器件视为接收单元,将收发单元610中用于实现发送功能的器件视为发送单元,即收发单元610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元610用于执行上述方法实施例中通信装置侧的发送操作和接收操作,处理单元620用于执行上述方法实施例中通信装置上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元610可以用于执行图3所示的实施例中的步骤S320,和/或用于支持本文所描述的技术的其它过程。处理单元620,用于执行图3所示的实施例中的步骤S310,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图7所示的设备。作为一个例子,该设备可以完成类似于图5中处理单元520的功能。在图7中,该设备包括处理器710,发送数据处理器720,接收数据处理器630。上述实施例中的处理单元401可以是图7中的该处理器710,并完成相应的功能。上述实施例中的收发单元402可以是图7中的发送数据处理器720,和/或接收数据处理器730。虽然图7中示出了信道编码器、信道解码器、调制器、解调器等,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图8示出本实施例的另一种形式。终端装置800中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的第一终端装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器803,接口804。其中处理器803完成上述处理单元401的功能,接口804完成上述收发单元402的功能。作为另一种变形,该调制子系统 包括存储器806、处理器803及存储在存储器806上并可在处理器上运行的程序,该处理器803执行该程序时实现上述方法实施例中第一终端装置或第二终端装置的方法。需要注意的是,所述存储器806可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置800中,只要该存储器806可以连接到所述处理器803即可。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图3中第一终端装置执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图3中第一终端装置执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    第一终端装置根据第一参数确定接收能力参数和/或发送能力参数,所述接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;所述发送能力参数包括最大发送比特数;所述第一参数是预配置的,或所述第一参数是网络设备配置的;
    其中,所述第一参数用于侧行链路传输,且所述第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小;
    所述第一终端装置根据所述接收能力参数和/或所述发送能力参数进行侧行链路传输。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间间隔内能够接收的信道数量包括:
    所述第一时间间隔内能够接收的控制信道的数量和/或能够接收的数据信道的数量;或者
    所述第一时间间隔内能够接收的第一级控制信道的数量和/或第二级控制信道的数量。
  3. 如权利要求2所述的方法,其特征在于,所述接收能力参数还包括:
    所述第一时间间隔内能够接收的控制信道的数量对应的能够检测到的RB数,和/或能够接收的数据信道的数量对应的能够检测到的RB数;或者
    所述第一时间间隔内能够接收的第一级控制信道的数量对应的能够检测到的RB数,和/或第一时间间隔内能够接收的第二级控制信道的数量对应的能够检测到的RB数。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一时间间隔为一个时隙或为小于或等于一个数据包的初传和最后一次重传之间的间隔。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述初传和所述重传为基于盲重传的初传和重传,或者所述初传和所述重传为基于混合自动请求重传HARQ的初传和重传。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述信道数量小于或等于所述第一时间间隔中每个时隙上接收的信道数量与所述第一时间间隔中的时隙个数的乘积。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述第一时间间隔内能够接收的信道数量越小;和/或
    所述初传和最后一次重传的时隙之间的间隔属于至少一种初传和最后一次重传的时隙之间的间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种初传和最后一次重传的时隙之间的间隔一一对应,且所述初传和最后一次重传的时隙之间的间隔越大,所述初传和最后一次重传的时隙之间的间隔对应的所述第一时间间隔内能够接收的信道数量越大;和/或
    所述子带大小属于至少一种子带大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述 第一时间间隔内能够接收的信道数量越小。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种最大接收比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大接收比特数越小;和/或
    所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大接收比特数和所述至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大接收比特数越大;和/或
    所述子带大小属于至少一种子带大小,所述至少一种最大接收比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大接收比特数越小。
  9. 如权利要求1-6任一项所述的方法,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种最大发送比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大发送比特数越小;和/或
    所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大发送比特数和所述至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大发送比特数越大;和/或
    所述子带大小属于至少一种子带大小,所述至少一种最大发送比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大发送比特数越小。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一参数还包括以下中的一种或多种:
    接收的类型等级、带宽大小、载波数量或载波组合、空间层数。
  11. 如权利要求10所述的方法,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述接收的类型等级属于至少一种接收的类型等级,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的第一时间间隔内能够接收的信道数量越大。
  12. 如权利要求10所述的方法,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述接收的类型等级属于至少一种接收的类型等级,所述至少一种最大接收比特数和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的所述最大接收比特数越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种最大接收比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的第一时间间隔内能够接收的最大接收比特数越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种最大接收比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大接收比特数越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种最大接收比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大接收比特数越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种最大接收比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大接收比特数越大。
  13. 如权利要求10所述的方法,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述发送的类型等级属于至少一种发送的类型等级,所述至少一种最大发送比特数和所述至少一种发送的类型等级之间一一对应,且所述发送的类型等级越高,所述发送的类型等级对应的所述最大发送比特数越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种最大发送比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的所述最大发送比特数越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种最大发送比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大发送比特数越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种最大发送比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大发送比特数越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种最大发送比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大发送比特数 越大。
  14. 如权利要求1-13任一项所述的方法,其特征在于,所述第一终端装置根据第一参数确定接收能力参数和/或发送能力参数,包括:
    所述第一终端装置根据所述第一参数,和/或以下参数中的一种或多种,确定所述信道数量:
    解调参考信号的图样;
    所述最大接收比特数。
  15. 如权利要求14所述的方法,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述解调参考信号的图样属于至少一种解调参考信号的图样,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种解调参考信号的图样之间一一对应,且所述解调参考信号的图样为占用符号数更多的图样时,所述解调参考信号的图样对应的所述第一时间间隔内能够接收的信道数量越小;和/或
    所述最大接收比特数属于至少一种最大接收比特数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种最大接收比特数一一对应,且所述最大接收比特数越大,所述最大接收比特数对应的所述第一时间间隔内能够接收的信道数量越大。
  16. 如权利要求1-13任一项所述的方法,其特征在于,所述第一终端装置根据第一参数确定接收能力参数,包括:
    所述第一终端装置根据所述第一参数和/或调制方式,确定所述最大接收比特数。
  17. 如权利要求16所述的方法,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大接收比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大接收比特数越大。
  18. 如权利要求1-13任一项所述的方法,其特征在于,所述第一终端装置根据第一参数确定接收能力参数,包括:
    所述第一终端装置根据所述第一参数和/或调制方式,确定所述最大发送比特数。
  19. 如权利要求18所述的方法,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大发送比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大发送比特数越大。
  20. 如权利要求1-19任一项所述的方法,其特征在于,还包括:
    当所述第一终端装置的缓存用满和/或当所述第一终端装置接收信道数达到最大值时,所述第一终端装置进行以下处理中的任意一种:
    所述第一终端装置丢弃接收数据中控制信息中指示优先级低于预设优先级的进程或所述控制信息对应的数据;
    所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
    所述第一终端装置丢弃待接收的盲传的进程或数据;
    所述第一终端装置丢弃待接收的同步信号;
    当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
    所述第一终端装置根据传输的类型,确定要丢掉待接收的数据,所述传输的类型包括单播、组播或广播;
    当所述第一终端装置的缓存用满和/或当所述第一终端装置发送用户数达到最大用户数时,所述第一终端装置进行以下处理中的任意一种:
    所述第一终端装置丢弃待发送的数据中优先级低于预设优先级的数据;
    所述第一终端装置丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
    所述第一终端装置丢弃待发送的盲传的进程或数据;
    所述第一终端装置丢弃待发送同步信号;
    当待传输的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,所述第一终端装置丢弃重传次数超过预设次数时的数据;
    所述第一终端装置根据传输的类型,确定要丢掉待发送的数据,所述传输的类型包括单播、组播或广播。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,还包括:
    所述第一终端装置向第二终端装置发送第一指示信息,所述第一指示信息用于指示接收能力参数和/或发送能力参数。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一参数确定接收能力参数和/或发送能力参数,所述接收能力参数包括第一时间间隔内能够接收的信道数量,和/或,最大接收比特数;所述发送能力参数包括最大发送比特数;所述第一参数是预配置的,或所述第一参数是网络设备配置的;
    其中,所述第一参数用于侧行链路传输,且所述第一参数包括以下中的一种或多种:初传和最后一次重传的时隙之间的最大间隔,子载波间隔,子带大小;
    收发单元,用于根据所述接收能力参数和/或所述发送能力参数进行侧行链路传输。
  23. 如权利要求22所述的装置,其特征在于,所述第一时间间隔内能够接收的信道数量包括:
    所述第一时间间隔内能够接收的控制信道的数量和/或能够接收的数据信道的数量;或者
    所述第一时间间隔内能够接收的第一级控制信道的数量和/或第二级控制信道的数量。
  24. 如权利要求23所述的装置,其特征在于,所述接收能力参数还包括:
    所述第一时间间隔内能够接收的控制信道的数量对应的能够检测到的RB数,和/或能够接收的数据信道的数量对应的能够检测到的RB数;或者
    所述第一时间间隔内能够接收的第一级控制信道的数量对应的能够检测到的RB数,和/或第一时间间隔内能够接收的第二级控制信道的数量对应的能够检测到的RB数。
  25. 如权利要求22-24任一项所述的装置,其特征在于,所述第一时间间隔为一个时隙或为小于或等于一个数据包的初传和最后一次重传之间的间隔。
  26. 如权利要求22-25任一项所述的装置,其特征在于,所述初传和所述重传为基于盲重传的初传和重传,或者所述初传和所述重传为基于混合自动请求重传HARQ的初传和重传。
  27. 如权利要求22-26任一项所述的装置,其特征在于,所述信道数量小于或等于所述第一时间间隔中每个时隙上接收的信道数量与所述第一时间间隔中的时隙个数的乘积。
  28. 如权利要求22-27任一项所述的装置,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述第一时间间隔内能够接收的信道数量越小;和/或
    所述初传和最后一次重传的时隙之间的间隔属于至少一种初传和最后一次重传的时隙之间的间隔,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种初传和最后一次重传的时隙之间的间隔一一对应,且所述初传和最后一次重传的时隙之间的间隔越大,所述初传和最后一次重传的时隙之间的间隔对应的所述第一时间间隔内能够接收的信道数量越大;和/或
    所述子带大小属于至少一种子带大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述第一时间间隔内能够接收的信道数量越小。
  29. 如权利要求22-27任一项所述的装置,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种最大接收比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大接收比特数越小;和/或
    所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大接收比特数和所述至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大接收比特数越大;和/或
    所述子带大小属于至少一种子带大小,所述至少一种最大接收比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大接收比特数越小。
  30. 如权利要求22-27任一项所述的装置,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述子载波间隔属于至少一种子载波间隔,所述至少一种最大发送比特数和所述至少一种子载波间隔之间一一对应,且所述子载波间隔越大,所述子载波间隔对应的所述最大发送比特数越小;和/或
    所述初传和最后一次重传的时隙之间的最大间隔属于至少一种初传和最后一次重传的时隙之间的最大间隔,所述至少一种最大发送比特数和所述至少一种初传和最后一次重传的时隙之间的最大间隔一一对应,且所述初传和最后一次重传的时隙之间的最大间隔越大,所述初传和最后一次重传的时隙之间的最大间隔对应的所述最大发送比特数越大;和 /或
    所述子带大小属于至少一种子带大小,所述至少一种最大发送比特数和所述至少一种子带大小一一对应,且所述子带大小越大,所述子带大小对应的所述最大发送比特数越小。
  31. 根据权利要求22-30任一项所述的装置,其特征在于,所述第一参数还包括以下中的一种或多种:
    接收的类型等级、带宽大小、载波数量或载波组合、空间层数。
  32. 如权利要求31所述的装置,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述接收的类型等级属于至少一种接收的类型等级,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的第一时间间隔内能够接收的信道数量越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的第一时间间隔内能够接收的信道数量越大。
  33. 如权利要求31所述的装置,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述接收的类型等级属于至少一种接收的类型等级,所述至少一种最大接收比特数和所述至少一种接收的类型等级之间一一对应,且所述接收的类型等级越高,所述接收的类型等级对应的所述最大接收比特数越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种最大接收比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的第一时间间隔内能够接收的最大接收比特数越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种最大接收比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大接收比特数越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种最大接收比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大接收比特数越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种最大接收比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大接收比特数 越大。
  34. 如权利要求31所述的装置,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述发送的类型等级属于至少一种发送的类型等级,所述至少一种最大发送比特数和所述至少一种发送的类型等级之间一一对应,且所述发送的类型等级越高,所述发送的类型等级对应的所述最大发送比特数越大;和/或
    所述带宽大小属于至少一种带宽大小,所述至少一种最大发送比特数和所述至少一种带宽大小之间一一对应,且所述带宽大小越大,所述带宽大小对应的所述最大发送比特数越大;和/或
    所述载波数量属于至少一种载波数量,所述至少一种最大发送比特数和所述至少一种载波数量之间一一对应,且所述载波数量越多,所述载波数量对应的所述最大发送比特数越大;和/或
    所述载波组合属于至少一种载波组合,所述至少一种最大发送比特数和所述至少一种载波组合之间一一对应,且所述载波组合中总带宽越大,所述载波组合对应的所述最大发送比特数越大;和/或
    所述空间层数属于至少一种空间层数,所述至少一种最大发送比特数和所述至少一种空间层数之间一一对应,且所述空间层数越多,所述空间层数对应的所述最大发送比特数越大。
  35. 如权利要求22-34任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一参数,和/或以下参数中的一种或多种,确定所述信道数量:
    解调参考信号的图样;
    所述最大接收比特数。
  36. 如权利要求35所述的装置,其特征在于,所述第一时间间隔内能够接收的信道数量属于至少一种第一时间间隔内能够接收的信道数量;
    所述解调参考信号的图样属于至少一种解调参考信号的图样,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种解调参考信号的图样之间一一对应,且所述解调参考信号的图样为占用符号数更多的图样时,所述解调参考信号的图样对应的所述第一时间间隔内能够接收的信道数量越小;和/或
    所述最大接收比特数属于至少一种最大接收比特数,所述至少一种第一时间间隔内能够接收的信道数量和所述至少一种最大接收比特数一一对应,且所述最大接收比特数越大,所述最大接收比特数对应的所述第一时间间隔内能够接收的信道数量越大。
  37. 如权利要求22-35任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一参数和/或调制方式,确定所述最大接收比特数。
  38. 如权利要求37所述的装置,其特征在于,所述最大接收比特数属于至少一种最大接收比特数;
    所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大接收比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大接收比特数越大。
  39. 如权利要求22-35任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一参数和/或调制方式,确定所述最大发送比特数。
  40. 如权利要求39所述的装置,其特征在于,所述最大发送比特数属于至少一种最大发送比特数;
    所述调制方式属于至少一种调制方式,所述至少一种调制方式和所述至少一种最大发送比特数一一对应,且所述调制方式越高,所述调制方式对应的所述最大发送比特数越大。
  41. 如权利要求22-40任一项所述的装置,其特征在于,所述处理单元还用于:
    当所述装置的缓存用满和/或当所述装置接收信道数达到最大值时,所述处理单元进行以下处理中的任意一种:
    丢弃接收数据中控制信息中指示优先级低于预设优先级的进程或所述控制信息对应的数据;
    丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
    丢弃待接收的盲传的进程或数据;
    丢弃待接收的同步信号;
    当待传输的数据以HARQ方式传输时,丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,丢弃重传次数超过预设次数时的数据;
    根据传输的类型,确定要丢掉待接收的数据,所述传输的类型包括单播、组播或广播;
    当所述装置的缓存用满和/或当所述装置发送用户数达到最大用户数时,所述处理单元进行以下处理中的任意一种:
    丢弃待发送的数据中优先级低于预设优先级的数据;
    丢弃距离所述第一终端装置距离大于预设距离或距离超过相应数据包要求的最小通信距离的进程或数据;
    丢弃待发送的盲传的进程或数据;
    丢弃待发送同步信号;
    当待传输的数据以HARQ方式传输时,丢弃重传次数超过预设次数时的数据,或当待接收的数据以HARQ方式传输时,丢弃重传次数超过预设次数时的数据;
    根据传输的类型,确定要丢掉待发送的数据,所述传输的类型包括单播、组播或广播。
  42. 根据权利要求22-41任一项所述的装置,其特征在于,所述收发单元还用于:
    向第二终端装置发送第一指示信息,所述第一指示信息用于指示接收能力参数和/或发送能力参数。
PCT/CN2019/111751 2019-10-17 2019-10-17 通信方法和通信装置 WO2021072714A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/111751 WO2021072714A1 (zh) 2019-10-17 2019-10-17 通信方法和通信装置
EP19948954.3A EP4037400A4 (en) 2019-10-17 2019-10-17 COMMUNICATION METHOD AND COMMUNICATION DEVICE
CN201980100377.5A CN114391291A (zh) 2019-10-17 2019-10-17 通信方法和通信装置
US17/721,120 US20220248240A1 (en) 2019-10-17 2022-04-14 Communication Method and Communication Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111751 WO2021072714A1 (zh) 2019-10-17 2019-10-17 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/721,120 Continuation US20220248240A1 (en) 2019-10-17 2022-04-14 Communication Method and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2021072714A1 true WO2021072714A1 (zh) 2021-04-22

Family

ID=75538223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111751 WO2021072714A1 (zh) 2019-10-17 2019-10-17 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220248240A1 (zh)
EP (1) EP4037400A4 (zh)
CN (1) CN114391291A (zh)
WO (1) WO2021072714A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158901A (zh) * 2011-02-16 2011-08-17 大唐移动通信设备有限公司 网络侧进行终端操作配置的方法及网络侧装置
CN105246025A (zh) * 2015-09-08 2016-01-13 宇龙计算机通信科技(深圳)有限公司 一种控制v2x业务传输的方法及装置
US20180124656A1 (en) * 2016-10-27 2018-05-03 Ofinno Technologies, Llc Handover for UE with V2X Service
WO2019013973A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated DISCOVERING USER EQUIPMENT CAPACITY IN DISTRIBUTED WIRELESS NETWORKS
US20190222985A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Enhanced physical layer performance by inter-service information

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390345B2 (en) * 2014-04-30 2019-08-20 Lg Electronics Inc. Method for transmitting and receiving signal for device-to-device communication in wireless communication system and apparatus for same
CN107484251B (zh) * 2016-06-08 2021-05-25 中国移动通信有限公司研究院 终端能力信息的上报方法、获取方法、终端及网络侧设备
WO2018014306A1 (zh) * 2016-07-21 2018-01-25 广东欧珀移动通信有限公司 传输信号的方法、终端设备和网络设备
CN107734674B (zh) * 2016-08-11 2023-09-01 华为技术有限公司 数据传输的方法和系统
KR102570005B1 (ko) * 2016-08-22 2023-08-23 삼성전자주식회사 무선 통신 시스템에서 전송 기법에 관련한 제어 정보의 시그널링 장치 및 방법
DE112018000957T5 (de) * 2017-03-24 2019-12-12 Intel IP Corporation Teil-PRB Ressourcenzuordnung für Pusch in noch weiter verbesserter MTC
US11902866B2 (en) * 2017-11-17 2024-02-13 Innovative Technology Lab Co., Ltd. Apparatus and method for performing wireless communication in wireless communication system supporting vehicle communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158901A (zh) * 2011-02-16 2011-08-17 大唐移动通信设备有限公司 网络侧进行终端操作配置的方法及网络侧装置
CN105246025A (zh) * 2015-09-08 2016-01-13 宇龙计算机通信科技(深圳)有限公司 一种控制v2x业务传输的方法及装置
US20180124656A1 (en) * 2016-10-27 2018-05-03 Ofinno Technologies, Llc Handover for UE with V2X Service
WO2019013973A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated DISCOVERING USER EQUIPMENT CAPACITY IN DISTRIBUTED WIRELESS NETWORKS
US20190222985A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Enhanced physical layer performance by inter-service information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037400A4 *

Also Published As

Publication number Publication date
US20220248240A1 (en) 2022-08-04
EP4037400A1 (en) 2022-08-03
CN114391291A (zh) 2022-04-22
EP4037400A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021027575A1 (zh) 一种通信方法及装置
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
EP3890408A1 (en) Signal sending method and device, and priority configuration method and device
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
WO2021204094A1 (zh) 一种通信方法、装置及系统
CN114731690A (zh) 数据传输方法、装置及设备
WO2021197270A1 (zh) 信息传输方法、装置及系统
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2022022433A1 (zh) 一种侧行链路通信方法及装置
WO2020164134A1 (zh) 通信方法、装置及系统
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021168635A1 (zh) 反馈资源的确定方法和装置
US20190182858A1 (en) Device and method
WO2022057568A1 (zh) 数据传输方法和装置
WO2021072714A1 (zh) 通信方法和通信装置
WO2022027613A1 (zh) 一种通信方法及装置
WO2021062855A1 (zh) 一种通信方法及装置
WO2021134448A1 (zh) 一种侧行数据传输的方法、装置和系统
CN111543113B (zh) 数据传输的方法和设备
WO2021007809A1 (zh) 信道质量上报方法、装置及系统
WO2023029976A1 (zh) 一种通信方法及装置
US20240040573A1 (en) Information transmission method, apparatus, and system
WO2020156339A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019948954

Country of ref document: EP

Effective date: 20220428