WO2021072682A1 - 光学成像系统、取像装置及电子设备 - Google Patents

光学成像系统、取像装置及电子设备 Download PDF

Info

Publication number
WO2021072682A1
WO2021072682A1 PCT/CN2019/111499 CN2019111499W WO2021072682A1 WO 2021072682 A1 WO2021072682 A1 WO 2021072682A1 CN 2019111499 W CN2019111499 W CN 2019111499W WO 2021072682 A1 WO2021072682 A1 WO 2021072682A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
image side
Prior art date
Application number
PCT/CN2019/111499
Other languages
English (en)
French (fr)
Inventor
谢晗
宋琦
李明
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2019/111499 priority Critical patent/WO2021072682A1/zh
Publication of WO2021072682A1 publication Critical patent/WO2021072682A1/zh
Priority to US17/719,581 priority patent/US20220236528A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • This application relates to optical imaging technology, in particular to an optical imaging system, image capturing device and electronic device.
  • This application uses a four-chip optical imaging system to ensure the miniaturization of the lens. With this small number of lenses, aspheric surfaces are used to achieve different shapes to meet good optical performance, especially for CSP (Chip Scale Package) )
  • CSP Chip Scale Package
  • this application places the filter in the middle to leave a compressed space for the back focus, which is conducive to ultra-thin design; in addition, for some lens spacing
  • the filter can be placed in the middle to reduce the assembly stage difference, thereby improving the yield stability.
  • the present application provides a four-piece optical imaging system, which while ensuring the miniaturization of the optical imaging system, reduces the assembly step difference of each lens of the optical imaging system, and improves the yield of the optical imaging system.
  • An optical imaging system which sequentially includes from the object side to the image side:
  • the optical imaging system further includes:
  • a diaphragm which is located in front of the imaging surface of the optical imaging system.
  • the first infrared filter is located between the first lens and the fourth lens. In this way, the assembly step difference between the lenses of the optical imaging system can be reduced while taking into account the miniaturization design.
  • the object side and the image side of the first lens, the second lens, the third lens and the fourth lens are all aspherical, and at least one of the object side and the image side of the fourth lens is provided with at least one recurve point.
  • the aspheric lens can be easily manufactured into a shape other than the spherical surface to obtain more control variables, which is beneficial to reduce aberrations, and obtain the advantages of good imaging with a smaller number of lenses; thereby reducing the number of lenses to meet the miniaturization.
  • At least one inflection point is provided on at least one of the object side surface and the image side surface of the fourth lens, and the inflection point can be used to correct the aberration of the off-axis field of view, suppress the incident angle of light to the imaging surface, and improve Accurately match the photosensitive element.
  • the object side surface of the first lens is convex near the optical axis and the circumference.
  • the object side of the first lens is a convex surface near the optical axis, which can enhance the positive refractive power of the first lens, which undertakes the main imaging function of the optical imaging system, and is conducive to ultra-thinning.
  • the image side surface of the second lens is concave near the optical axis and the circumference.
  • the concave image side surface of the second lens can better correct spherical aberration.
  • the circumference of the object side surface of the third lens is a concave surface
  • the circumference of the image side surface of the third lens is a convex surface.
  • the third lens L3 can effectively reduce the field curvature and distortion of the system and improve the imaging quality.
  • the object side surface of the fourth lens is a convex surface near the optical axis; the image side surface of the fourth lens is a concave surface near the optical axis, and the circumference is a convex surface.
  • the image side surface of the fourth lens is concave near the optical axis, which is beneficial to adjust the back focus.
  • the image side surface of the fourth lens is set to have a changing trend of curvature radius from concave to convex in order to better correct the aberration of the off-axis field of view. The incident angle of light to the imaging surface is suppressed, and the photosensitive element can be matched more accurately.
  • the optical imaging system further includes a protective glass or a second infrared filter, and the protective glass or the second infrared filter is located between the fourth lens and the imaging surface.
  • the protective glass is used to protect the photosensitive element on the imaging surface to achieve a dust-proof effect.
  • the second infrared filter is placed between the fourth lens and the imaging surface, which can filter out the light in the infrared band, reduce part of the ghost and stray light, and can also protect the photosensitive element to a certain extent.
  • the optical imaging system further includes a third infrared filter, and the third infrared filter is located in front of the first lens.
  • the third infrared filter can cut off infrared light and reduce the adverse effects of infrared light on imaging.
  • the third infrared filter is placed in front of the first lens to match different lens barrel structures and a new lens stacking form At present, there is an assembly form where the first lens is finally assembled. The object side of the first lens protrudes out of the lens barrel, and an infrared cut filter is placed at the front end of the first lens to protect the front end of the lens group.
  • the first infrared filter is at least one piece.
  • optical imaging system satisfies the following conditional formula:
  • FNO is the aperture number of the optical imaging system.
  • the optical imaging system is mostly a high-end camera product, which has higher requirements for imaging quality, and the optical imaging system is mostly a closely matched multi-chip structure, it is difficult to install the infrared filter.
  • this application can be applied to other products with FNO ⁇ 2.0, especially for products of CSP process method. It is more conducive to put the infrared filter in the middle to compress the total length of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • BF is the shortest distance from the image side surface of the fourth lens to the imaging surface of the optical imaging system in a direction parallel to the optical axis
  • TTL is the distance from the object side surface of the first lens to the imaging surface on the optical axis.
  • the image side of the last lens of the optical imaging system (for example, the fourth lens in this application) is also provided with a filter and a CMOS photosensitive chip in sequence.
  • the filter When the light hits the photosensitive chip, it is first filtered by the filter, so the filter It has a certain protective effect on the photosensitive chip, but also filters a part of the light, and reduces stray light and light spots, so that the image color is bright and sharp, and it has good color reproduction.
  • the few-chip optical imaging system has low pixels, and for some specifications that do not require high imaging, you can choose the infrared filter center structure.
  • the front end of the photosensitive chip of the CSP process product is packaged with protective glass, and the infrared filter can be installed in the center. The back focus leaves a compressible space, which is conducive to the ultra-thin and miniaturization of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • T12 is the distance from the image side of the first lens to the object side of the second lens on the optical axis
  • T23 is the distance from the image side of the second lens to the object side of the third lens on the optical axis
  • T34 is the third The distance from the image side of the lens to the object side of the fourth lens on the optical axis
  • MAX (T12:T23:T34) is the maximum of T12, T23, and T34.
  • the distance between the lenses of the optical imaging system is far, the assembly stage difference is large, mass production assembly is easy to be unstable, and the yield rate is poor. If the infrared filter is placed between the lenses with a large gap, it can be reduced.
  • the small assembly stage difference improves the yield rate and saves space for the mechanical rear focus of the lens, which is conducive to compressing the height of the lens.
  • optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • f1 is the effective focal length of the first lens
  • the first lens L1 shares most of the positive refractive power, a reasonable allocation of the positive refractive power of the first lens L1 is more conducive to shortening the optical imaging system and can effectively correct the field curvature of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • R1 is the radius of curvature of the object side surface of the first lens
  • f is the total effective focal length of the optical imaging system.
  • the object side of the first lens L1 is convex near the optical axis, which can enhance the positive refractive power of the first lens L1 that undertakes the main imaging function of the optical imaging system 100, which is conducive to ultra-thinning; if it is lower than the lower limit, the positive light of the first lens L1 The power is too strong relative to the entire optical imaging system, and aberration correction becomes difficult.
  • optical imaging system satisfies the following conditional formula:
  • D is the optical effective diameter of the image side surface of the fourth lens
  • CT4 is the distance on the optical axis from the object side surface of the fourth lens to the image side surface.
  • the fourth lens can be easily injection molded, so that the plastic injected into the single-side gate can easily reach the opposite side, and then Reduce lens eccentricity and improve the yield of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • R7 is the radius of curvature of the object side surface of the fourth lens
  • R8 is the radius of curvature of the image side surface of the fourth lens
  • At least one of the second lens, the third lens and the fourth lens has negative refractive power. At least one of the second lens, the third lens and the fourth lens has a negative refractive power, which is used to correct the spherical aberration generated by the positive refractive power of the first lens, and cooperate with other lenses to ensure a higher resolution of the optical imaging system. .
  • the total optical length for imaging can be effectively shortened, thereby meeting the demand for miniaturization and effectively improving the resolution of the optical imaging system.
  • the application also provides an image capturing device, which includes:
  • the photosensitive element is located on the imaging surface of the optical imaging system.
  • This application also provides an electronic device, which includes:
  • the main body of the equipment and;
  • the image capturing device is installed on the main body of the device.
  • the present application adopts a four-piece optical imaging system to arrange the first infrared filter between the first lens and the fourth lens. While miniaturizing the optical imaging system, the assembly of the optical imaging system is reduced. The level difference improves the stability of the optical imaging system assembly, thereby improving the yield of the optical imaging system and reducing the production cost.
  • Figure 1-1 is a schematic structural diagram of an optical imaging system according to the first embodiment of the present application.
  • Figure 1-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the first embodiment of the present application from left to right.
  • Figure 2-1 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present application.
  • Fig. 2-2 shows the spherical aberration, astigmatism and distortion curves of the optical imaging system according to the second embodiment of the present application, from left to right.
  • Fig. 3-1 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present application.
  • Fig. 3-2 shows the spherical aberration, astigmatism, and distortion curves of the optical imaging system according to the third embodiment of the present application, from left to right.
  • Fig. 4-1 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present application.
  • Fig. 4-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the fourth embodiment of the present application, from left to right.
  • FIG. 5-1 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present application.
  • Fig. 5-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the fifth embodiment of the present application, from left to right.
  • Fig. 6-1 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present application.
  • Fig. 6-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the sixth embodiment of the present application, from left to right.
  • FIG. 7 is a schematic structural diagram of an embodiment of an imaging device in the second aspect of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of an electronic device in the third aspect of the present application.
  • the optical imaging system 100 further includes a diaphragm 10 and a first infrared filter 31.
  • the diaphragm 10 is located in front of the imaging surface of the optical imaging system 100.
  • the first infrared filter 31 is located between the first lens L1 and the fourth lens L4.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2. Both the object side surface S1 and the image side surface S2 are aspherical surfaces.
  • the object side S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 may be convex or concave near the optical axis; the image side surface S2 may be convex or concave at the circumference.
  • the first lens L1 adopts an aspheric lens, which is conducive to light convergence and imaging. It can be easily made into a shape other than a spherical surface, to obtain more control variables, and to obtain the advantages of good imaging with a smaller number of lenses; thereby reducing the number of lenses to meet the miniaturization.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4. Both the object side surface S3 and the image side surface S4 are aspherical surfaces.
  • the object side surface S3 may be a convex surface or a concave surface near the optical axis, and the circumference of the object side surface S3 may be a convex surface or a concave surface.
  • the image side S4 near the optical axis and the circumference are both concave.
  • the second lens L2 may have positive refractive power or negative refractive power.
  • the second lens L2 adopts an aspherical lens, which can be easily made into a shape other than a spherical surface to obtain more control variables, which is beneficial to reduce aberrations, and obtain the advantages of good imaging with a smaller number of lenses; thereby reducing the number of lenses to meet the requirements of compactness ⁇ .
  • the second lens L2 has a concave image side surface S4, which can better correct spherical aberration.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6. Both the object side surface S5 and the image side surface S6 are aspherical surfaces.
  • the object side surface S5 can be convex or concave near the optical axis, and the circumference is concave.
  • the image side surface S6 can be convex or concave near the optical axis, and the circumference is convex.
  • the third lens L3 may have positive refractive power or negative refractive power. The third lens L3 can effectively reduce the field curvature and distortion of the system and improve the imaging quality.
  • the third lens adopts an aspherical lens, which can be easily made into a shape other than a spherical surface to obtain more control variables, which is beneficial to reduce aberrations, and obtain good imaging advantages with a smaller number of lenses; thereby reducing the number of lenses to meet the miniaturization .
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8. Both the object side surface S7 and the image side surface S8 are aspherical surfaces.
  • the object side surface S7 is convex near the optical axis, and the circumference can be concave or convex.
  • the image side surface S8 near the optical axis is concave, and the circumference is convex.
  • the fourth lens L4 may have positive refractive power or negative refractive power.
  • the image side surface of the fourth lens is concave near the optical axis, which is beneficial to adjust the back focus.
  • the image side surface of the fourth lens is set to have a changing trend of curvature radius from concave to convex in order to better correct the aberration of the off-axis field of view.
  • the incident angle of light to the imaging surface is suppressed, and the photosensitive element can be matched more accurately.
  • At least one of the second lens L2, the third lens L3, and the fourth lens L4 has negative refractive power. At least one of the second lens L2, the third lens L3, and the fourth lens L4 has a negative refractive power to correct the spherical aberration generated by the positive refractive power of the first lens, and cooperate with other lenses to ensure a higher resolution of the optical imaging system.
  • the diaphragm 10 may be located at any position of the optical imaging system 100, which may be located on the object side of the first lens L1; or between the second lens L2 and the third lens L3; or located between the third lens L3 and the third lens L3. Between the four lenses L4 and so on.
  • the first infrared filter 31 is made of glass and has an object side surface S9 and an image side surface S10. Both the object side surface S9 and the image side surface S10 are spherical surfaces.
  • the first infrared filter 31 may be located at any position between the first lens L1 and the second lens L4. More specifically, as shown in FIG. 5-1, the first infrared filter 31 is located between the first lens and the second lens; or as shown in FIGS. 1-1, 3-1, 4-1, and 6-1 , The first infrared filter 31 is located between the second lens and the third lens; or as shown in FIG. 2-1, the first infrared filter 31 is located between the third lens and the fourth lens.
  • the first infrared filter 31 is at least one piece, more specifically, it can be one piece (as shown in Figures 1-1, 2-1, 3-1, 4-1 and 5-1) or two pieces (as shown in Figure 6- 1) or three pieces.
  • the infrared filter is usually set at the front end of the photosensitive element to filter out light in other wavelength bands other than visible light and reduce the unfavorable factors such as ghost and stray light.
  • This application changes the rear infrared filter to a central structure , It saves space for the mechanical back focus of the lens, which is conducive to compressing the total length of the lens and realizing a miniaturized design; placing the filter in a position with a larger air gap of the lens, so that the parts of the lens are tightly assembled together, and the supporting step is reduced , The actual production yield is more stable.
  • parts in this application refers to the lens, lens barrel, shading sheet, gasket, or other parts of the lens that make up the lens.
  • the term "ghost image” in this application refers to the additional image generated near the focal plane of the optical system due to the reflection of the lens surface, the brightness of which is generally darker and is offset from the original image.
  • the present application uses a four-piece optical imaging system 100 to arrange the first infrared filter 30 between the first lens L1 and the fourth lens L4, which reduces the size of the optical imaging system while miniaturizing the optical imaging system 100.
  • the step difference in the assembly of 100 improves the stability of the assembly of the optical imaging system 100, thereby improving the yield of the optical imaging system 100 and reducing the production cost.
  • At least one inflection point is provided on at least one of the object side surface S7 and the image side surface S8.
  • “Inflection point” refers to the point of inflection where the radius of curvature changes from positive to negative or from negative to positive. The inflection point can be used to correct the aberration of the off-axis field of view, suppress the incident angle of light to the imaging surface, and match the photosensitive element more accurately.
  • the optical imaging system 100 of the present application further includes a protective glass 50 or a second infrared filter 33 located between the fourth lens L4 and the imaging surface 60.
  • the protective glass 50 is used to protect the photosensitive element on the imaging surface 60 to achieve a dust-proof effect.
  • the cover glass 50 has an object side 51 and an image side 53.
  • the second infrared filter 33 has an object side surface S11 and an image side surface S12. The second infrared filter 33 can filter out the light in the infrared band, reduce part of the ghost and stray light, and can also protect the photosensitive element to a certain extent.
  • the optical imaging system 100 of the present application further includes a third infrared filter 35.
  • the third infrared filter 35 is located in front of the first lens L1.
  • the third infrared filter 35 has an object side surface S13 and an image side surface S14.
  • the third infrared filter can cut off infrared light and reduce the adverse effects of infrared light on imaging.
  • the third infrared filter is placed in front of the first lens to match different lens barrel structures and a new lens stacking form At present, there is an assembly form where the first lens is finally assembled.
  • the object side of the first lens protrudes out of the lens barrel, and an infrared cut filter is placed at the front end of the first lens to protect the front end of the lens group.
  • the optical imaging system 100 satisfies the following conditional formula:
  • FNO is the number of aperture of the optical imaging system 100.
  • FNO can be any value greater than 2.0, for example, the value of FNO is 2.0, 2.5, 3.0, 4.0, etc.
  • the optical imaging system 100 is mostly a high-end camera product, which has higher requirements for imaging quality, and the optical imaging system 100 is mostly a closely-fitting multi-chip structure, then there is a certain amount in the infrared filter. Difficulty. However, it does not rule out the possibility that the application can be applied to other products with FNO ⁇ 2.0, especially for products of the CSP process method.
  • the placement of the infrared filter in the middle is more conducive to compressing the total length of the optical imaging system 100.
  • the optical imaging system 100 satisfies the following conditional formula:
  • BF is the shortest distance from the image side of the fourth lens to the imaging surface of the optical imaging system in the direction parallel to the optical axis
  • TTL is the total length of the optical imaging system, that is, the object side of the first lens L1 to the imaging surface is on the optical axis On the distance.
  • BF/TTL can be any value between 0 and 0.21, such as 0.1, 0.15, 0.18, 0.2, etc.
  • the image side of the last lens of the optical imaging system (for example, the fourth lens L4 in this application) is also provided with a filter and a CMOS photosensitive chip in sequence.
  • a filter When light hits the photosensitive chip, it is first filtered by the filter, so the light is filtered
  • the film has a certain protective effect on the photosensitive chip, but also filters a part of the light, and reduces stray light and light spots, so that the image color is bright and sharp, and it has good color reproduction.
  • the few-chip optical imaging system has low pixels, and for some specifications that do not require high imaging, you can choose the infrared filter center structure.
  • the front end of the photosensitive chip of the CSP process product is packaged with protective glass, and the infrared filter can be installed in the center.
  • the back focus leaves a compressible space, which is beneficial to the ultra-thin and miniaturization of the optical imaging system.
  • the optical imaging system 100 satisfies the following conditional formula:
  • T12 is the air gap between the first lens L1 and the second lens L2, that is, the distance from the image side of the first lens L1 to the object side of the second lens L2 on the optical axis
  • T23 is the distance from the second lens L2 to the third lens L3.
  • the air gap is the distance from the image side of the second lens L2 to the object side of the third lens L3 on the optical axis
  • T34 is the air gap from the third lens L3 to the fourth lens L4, that is, the image side of the third lens L3 to the fourth lens
  • MAX (T12:T23:T34) is the maximum value of T12, T23, and T34.
  • MAX(T12:T23:T34) can be any value greater than 0.4, such as 0.5, 0.8, 1.0, 1.5, 1.8, and so on.
  • the distance between the lenses of the optical imaging system 100 is far, the assembly stage difference is large, mass production assembly is easy to be unstable, and the yield rate is poor. If the infrared filter is placed between the lenses with a large gap, it can be Reduce the assembly stage difference, improve the yield, and save space for the lens mechanical back focus, which is conducive to compressing the lens height.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • f1 is the effective focal length of the first lens
  • f1/f can be any value between 0.5 and 1.3, such as 0.6, 0.8, 1.0, 1.1, 1.2, and so on.
  • the first lens L1 shares most of the positive refractive power, a reasonable allocation of the positive refractive power of the first lens L1 is more conducive to shortening the optical imaging system 100 and can effectively correct the field curvature of the optical imaging system.
  • the optical imaging system 100 satisfies the following conditional formula:
  • R1 is the radius of curvature of the object side surface of the first lens
  • f is the total effective focal length of the optical imaging system.
  • R1/f can be any value greater than 0.4, such as 0.5, 0.8, 1.0, 1.5, 1.8, and so on.
  • the object side surface of the first lens L1 is convex near the optical axis, which can enhance the positive refractive power of the first lens L1 that undertakes the main imaging function of the optical imaging system 100, which is conducive to ultra-thinning; if it is lower than the lower limit, the positive light of the first lens L1 The power is too strong relative to the entire optical imaging system 100, and aberration correction becomes difficult.
  • the optical imaging system 100 satisfies the following conditional formula:
  • D is the optical effective diameter of the image side surface of the fourth lens L4
  • CT4 is the center thickness of the fourth lens L4, that is, the distance on the optical axis from the object side surface of the fourth lens L4 to the image side surface.
  • D/CT4 can be any value between 3 and 15, such as 4, 5, 6, 7, 8, 10, 12, 15 and so on.
  • the fourth lens L4 can be easily injection molded, so that the plastic injected into the single-side gate can easily reach the opposite side. In turn, the eccentricity of the lens is reduced, and the yield of the optical imaging system is improved.
  • the optical imaging system 100 satisfies the following conditional formula:
  • R7 is the radius of curvature of the object side surface of the fourth lens
  • R8 is the radius of curvature of the image side surface of the fourth lens
  • can be any value between 0.12 and 0.51, such as 0.15, 0.18, 0.2, 0.3, 0.4, 0.5, etc.
  • the total optical length for imaging can be effectively shortened, thereby meeting the requirements for miniaturization, and effectively improving the resolution of the optical imaging system 100.
  • optical imaging system 100 of the present application will be described in further detail below in conjunction with specific embodiments.
  • Fig. 1-1 is a schematic structural diagram of the optical imaging system 100 of the first embodiment
  • Fig. 1-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a first infrared filter from the object side to the image side. 31.
  • the optical imaging system further includes a diaphragm 10, which is located on the object side of the first lens L1.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 is convex near the optical axis and the circumference; the image side S2 is convex near the optical axis and the circumference.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 is convex near the optical axis and the circumference is concave; the image side S4 is concave near the optical axis and the circumference.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 near the optical axis and the circumference are both concave; the image side S6 near the optical axis and the circumference are both convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side S7 near the optical axis and the circumference are both convex; the image side S8 near the optical axis is concave, and the circumference is convex.
  • FNO is 2.09. BF is 0.7, TTL is 4.072, and BF/TTL is 0.172.
  • MAX (T12:T23:T34) is 0.509. f1 is 3.141, f is 3.875, and f1/f is 0.811. R1 is 1.902, and R1/f is 0.491.
  • D is 4.526, CT4 is 0.459, and D/CT4 is 9.861. R7 is 1.87, R8 is 0.705, and
  • the optical imaging system 100 satisfies the conditions of Table 1 and Table 2 below.
  • Table 2 is the aspheric surface data of the first embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • FIGS. 1-2 It can be seen from FIGS. 1-2 that the aberration of the optical imaging system 100 of the present application is still controlled within a reasonable range while meeting the requirements of ultra-thin and miniaturization, thereby ensuring the imaging quality.
  • FIG. 2-1 is a schematic structural diagram of the optical imaging system 100 of the second embodiment
  • FIG. 2-2 shows the spherical aberration and the spherical aberration of the second embodiment of the present application from left to right.
  • Graphs of astigmatism and distortion It can be seen from FIG. 2-1 that the optical imaging system 100 of this embodiment includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • the optical imaging system further includes a diaphragm 10, which is located on the object side of the first lens L1.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 near the optical axis and the circumference are both convex; the image side S2 near the optical axis is concave, and the circumference is convex.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 near the optical axis and the circumference are both convex; the image side S4 near the optical axis and the circumference are both concave.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 near the optical axis and the circumference are both concave; the image side S6 near the optical axis and the circumference are both convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side S7 is convex near the optical axis and the circumference is concave; the image side S8 is concave near the optical axis, and the circumference is convex.
  • FNO is 2.09. BF is 0.7, TTL is 3.687, and BF/TTL is 0.190.
  • MAX (T12:T23:T34) is 0.451.
  • f1 is 3.394, f is 2.73, and f1/f is 1.243.
  • R1 is 1.696, and R1/f is 0.621.
  • D is 4.296, CT4 is 0.298, and D/CT4 is 14.416.
  • R7 is 1.404, R8 is 0.7, and
  • the optical imaging system 100 satisfies the conditions in Table 3 and Table 4 below.
  • Table 4 is the aspheric surface data of the second embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • Fig. 3-1 is a schematic structural diagram of the optical imaging system 100 of the third embodiment
  • Fig. 3-2 shows the spherical aberration and the spherical aberration of the third embodiment of the present application from left to right.
  • Graphs of astigmatism and distortion It can be seen from FIG. 3-1 that the optical imaging system 100 of this embodiment includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a diaphragm 10, and a first lens L1 with a positive refractive power from the object side to the image side.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 is convex near the optical axis and the circumference; the image side S2 is convex near the optical axis and the circumference.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 near the optical axis and the circumference are both concave; the image side S4 near the optical axis and the circumference are both concave.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 is convex near the optical axis and the circumference is concave; the image side S6 is concave near the optical axis, and the circumference is convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side S7 near the optical axis and the circumference are both convex; the image side S8 near the optical axis is concave, and the circumference is convex.
  • FNO is 2.50.
  • BF is 0.939, TTL is 5.662, and BF/TTL is 0.166.
  • MAX (T12:T23:T34) is 1.906.
  • f1 is 2.162, f is 4.177, and f1/f is 0.518.
  • R1 is 1.669 and R1/f is 0.400.
  • D is 3.298, CT4 is 0.952, and D/CT4 is 3.464.
  • R7 is 3.364, R8 is 4.345, and
  • the optical imaging system 100 satisfies the conditions in Table 5 and Table 6 below.
  • Table 6 is the aspheric surface data of the third embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • Fig. 4-1 is a schematic structural diagram of the optical imaging system 100 of the fourth embodiment
  • Fig. 4-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a third infrared filter 35, a first lens L1 with a positive refractive power, and a second lens with a negative refractive power in order from the object side to the image side.
  • L2, stop 10 first infrared filter 31, third lens L3 with negative refractive power, fourth lens L4 with negative refractive power, protective glass 50 and imaging surface 60.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 is convex near the optical axis and the circumference; the image side S2 is convex near the optical axis and the circumference.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 near the optical axis and the circumference are both concave; the image side S4 near the optical axis and the circumference are both concave.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 is convex near the optical axis and the circumference is concave; the image side S6 is concave near the optical axis, and the circumference is convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is a convex surface near the optical axis, and the circumference is a concave surface;
  • the image side surface S8 is a concave surface near the optical axis, and the circumference is a convex surface.
  • FNO is 2.50.
  • BF is 0.842, TTL is 5.2, and BF/TTL is 0.162.
  • MAX (T12:T23:T34) is 1.693.
  • f1 is 2.147, f is 3.746, and f1/f is 0.573.
  • R1 is 1.515, and R1/f is 0.404.
  • D is 3.602, CT4 is 0.4, and D/CT4 is 9.005.
  • R7 is 2.421, R8 is 2.084, and
  • the optical imaging system 100 satisfies the conditions in Table 7 and Table 8 below.
  • Table 8 is the aspheric surface data of the fourth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • FIG. 5-1 is a schematic structural diagram of the optical imaging system 100 of the fifth embodiment
  • FIG. 5-2 shows the spherical aberration, Graphs of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes an aperture 10, a first lens L1 with a positive refractive power, a first infrared filter 31, and a negative refractive power in sequence from the object side to the image side.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 is convex near the optical axis and the circumference; the image side S2 is convex near the optical axis and the circumference.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 is convex near the optical axis and the circumference is concave; the image side S4 is concave near the optical axis and the circumference.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 near the optical axis and the circumference are both concave; the image side S6 near the optical axis and the circumference are both convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is a convex surface near the optical axis, and the circumference is a concave surface;
  • the image side surface S8 is a concave surface near the optical axis, and the circumference is a convex surface.
  • FNO is 2.40.
  • BF is 0.8, TTL is 3.946, and BF/TTL is 0.203.
  • MAX(T12:T23:T34) is 0.41.
  • f1 is 3.153, f is 2.941, and f1/f is 1.072.
  • R1 is 1.911 and R1/f is 0.650.
  • D is 3.976, CT4 is 0.431, and D/CT4 is 9.225.
  • R7 is 2.116, R8 is 0.695, and
  • the optical imaging system 100 satisfies the conditions of Table 9 and Table 10 below.
  • Table 10 is the aspheric surface data of the fifth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • FIG. 6-1 is a schematic structural diagram of the optical imaging system 100 of the sixth embodiment
  • FIG. 6-2 shows the spherical aberration and the spherical aberration of the sixth embodiment of the present application from left to right.
  • Graphs of astigmatism and distortion It can be seen from FIG. 6-1 that the optical imaging system 100 of this embodiment includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a first infrared filter. 31.
  • the optical imaging system further includes a diaphragm 10, which is located on the object side of the first lens L1.
  • the first lens L1 is made of plastic material, and the object side surface S1 and the image side surface S2 are both aspherical.
  • the object side S1 near the optical axis and the circumference are both convex; the image side S2 near the optical axis and the circumference are both concave.
  • the second lens L2 is made of plastic material, and the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side S3 is convex near the optical axis and the circumference is concave; the image side S4 is concave near the optical axis and the circumference.
  • the third lens L3 is made of plastic material, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side S5 near the optical axis and the circumference are both concave; the image side S6 near the optical axis and the circumference are both convex.
  • the fourth lens L4 is made of plastic material, and the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side S7 near the optical axis and the circumference are both convex; the image side S8 near the optical axis is concave, and the circumference is convex.
  • FNO is 2.20.
  • BF is 0.8, TTL is 4.669, and BF/TTL is 0.171.
  • MAX (T12:T23:T34) is 0.986.
  • f1 is 3.814, f is 3.945, and f1/f is 0.967.
  • R1 is 1.422, and R1/f is 0.360.
  • D is 5.306, CT4 is 0.424, and D/CT4 is 12.514.
  • R7 is 1.376, R8 is 0.994, and
  • the optical imaging system 100 satisfies the conditions in Table 11 and Table 12 below.
  • Table 12 is the aspheric surface data of the sixth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the imaging device 200 provided in the second aspect of the present application includes the optical imaging system 100 and the photosensitive element 210 of the first aspect of the present application.
  • the photosensitive element 210 is located on the imaging surface 60 of the optical imaging system 100.
  • the photosensitive element 210 of the present application may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor).
  • CCD Charge Coupled Device
  • CMOS sensor Complementary Metal-Oxide Semiconductor Sensor
  • a third aspect of the present application provides an electronic device 300, which includes a device main body 310 and the image capturing device 200 of the second aspect of the present application.
  • the orientation device 200 is installed on the device main body 310.
  • the electronic device 300 of this application includes, but is not limited to, computers, laptops, tablet computers, mobile phones, cameras, smart bracelets, smart watches, smart glasses, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统(100),由物侧到像侧依次包括:具有正光焦度的第一透镜(L1)、具有光焦度的第二透镜(L2)、具有光焦度的第三透镜(L3)及具有光焦度的第四透镜(L4);光学成像系统(100)还包括:光阑(10),光阑(10)位于光学成像系统(100)的成像面之前;及第一红外滤光片(31),第一红外滤光片(31)位于第一透镜(L1)与第四透镜(L4)之间。光学成像系统(100)将滤光片中置,为后焦距留出压缩的空间,有利于超薄化的设计,在实现光学成像系统(100)小型化的同时,减小了光学成像系统(100)组装的段差,提高了光学成像系统(100)组装的稳定性,从而提高了光学成像系统(100)的良率,降低了生产成本。还提供了一种取像装置(200)和电子设备(300)。

Description

光学成像系统、取像装置及电子设备 技术领域
本申请涉及光学成像技术,特别涉及一种光学成像系统、取像装置及电子装置。
背景技术
随着智能手机、可穿戴设备等便携式移动电子产品的大量普及,人们对于这类移动电子产品的小型化、轻薄化的要求越来越高,因此,对搭载于其上的摄像装置乃至摄像透镜也提出了更小、更薄的要求。随着芯片的尺寸越来越小,像素越来越高,同时对摄像镜头的解析力要求也逐渐攀升,因此,需要一种超薄小型化的镜头,同时又兼具较好的光学性能。
本申请采用四片式光学成像系统,保证镜头的小型化设计,以这种较少枚数透镜运用非球面达到不同的形状来满足良好的光学性能,特别是针对CSP(Chip Scale Package,芯片级封装)制程方式的镜头来说,因感光芯片前端通常封装一片保护玻璃,本申请将滤光片中置,为后焦距留出压缩的空间,有利于超薄化的设计;另外,对于一些透镜间距较大的光学成像系统来讲,可以将滤光片中置减小组装段差,从而提升良率稳定性。
申请内容
有鉴于此,本申请提供一种四片式的光学成像系统,其在保证光学成像系统小型化的同时,减小了光学成像系统各透镜的组装段差,提高光学成像系统的良率。
还有必要提供一种使用上述光学成像系统的取像装置。
此外,还有必要提供一种使用上述取向装置的电子设备。
一种光学成像系统,其由物侧到像侧依次包括:
具有正光焦度的第一透镜、具有光焦度的第二透镜、具有光焦度的第三透镜及具有光焦度的第四透镜;
所述光学成像系统还包括:
光阑,所述光阑位于光学成像系统的成像面之前;及
第一红外滤光片,所述第一红外滤光片位于第一透镜与第四透镜之间。这样可以减小光学成像系统透镜间的组装段差,同时兼顾小型化设计。
其中,所述第一透镜、第二透镜、第三透镜及第四透镜的物侧面及像侧面均为非球面,所述第四透镜的物侧面及像侧面中至少一面设置有至少一个反曲点。采用非球面透镜,可以容易制作成球面以外的形状,获得更多的控制变数,有利于消减像差,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。在所述第四透镜的物侧面及像侧面中至少一面设置有至少一个反曲点,该反曲点处可用来修正离轴视场的像差,抑制光线到成像面的入射角度,能更精准地匹配感光元件。
其中,所述第一透镜的物侧面近光轴处及圆周处均为凸面。第一透镜物侧面于光轴附近为凸面,能够加强承担光学成像系统主要成像功能的第一透镜的正光焦度,有利于超薄化。
其中,所述第二透镜的像侧面近光轴处及圆周处均为凹面。第二透镜像侧面为凹面可以更好的矫正球差。
其中,所述第三透镜的物侧面圆周处为凹面,所述第三透镜的像侧面圆周处为凸面。第三透镜L3可以有效减小系统场曲和畸变,提高成像品质。
其中,所述第四透镜的物侧面近光轴处为凸面;所述第四透镜的像侧面近光轴处为凹面,圆周处为凸面。所述第四透镜像侧面近光轴处为凹面,有利于调节后焦距,第四透镜像侧面设置成曲率半径由凹变凸的变化趋势是为了更好地修正离轴视场的像差,抑制光线到成像面的入射角度,能更精准地匹配感光元件。
其中,所述光学成像系统还包括保护玻璃或第二红外滤光片,所述保护玻璃或第二红外滤光片位于所述第四透镜与成像面之间。保护玻璃用于保护成像面上的感光元件,以达到防尘的效果。第二红外滤光片置于第四透镜与成像面之间,可过滤掉红外波段的光,消减部分鬼像杂光,也可对感光元件起到一定的保护作用。
其中,所述光学成像系统还包括第三红外滤光片,所述第三红外滤光片位于所述第一透镜之前。第三红外滤光片能截止红外光线,消减红外波段的光线 对成像产生不利的影响,将第三红外滤光片放置在第一透镜前是为了配合不同镜筒结构一种新的透镜堆叠形式,目前有出现最后组装第一透镜的组装形式,第一透镜物侧面突出在镜筒外,在第一透镜前端放置一枚红外截止滤光片,可保护透镜组前端。
其中,所述第一红外滤光片为至少一片。
其中,所述光学成像系统满足以下条件式:
FNO>2.0;
其中,FNO为光学成像系统光圈数。
若FNO<2.0,光学成像系统多为高阶摄像产品,对成像品质有更高的要求,且光学成像系统多为紧密配合的多片式结构,则红外滤光片中置有一定的难度。但也不排除本申请应用在FNO<2.0的其他产品的可能性,特别是针对CSP制程方式的产品,将红外滤光片中置更利于压缩光学成像系统的总长。
其中,所述光学成像系统满足以下条件式:
BF/TTL<0.21;
其中,BF为所述第四透镜像侧面到所述光学成像系统的成像面在平行于光轴方向上的最短距离,TTL为所述第一透镜物侧面到成像面于光轴上的距离。
通常光学成像系统最后一片透镜(例如本申请中的第四透镜)的像侧面还依次设有滤光片和CMOS感光芯片,光线射向感光芯片时,先由滤光片过滤,因此滤光片对感光芯片有一定的保护作用,同时也过滤一部分光线,以及减少杂光和光斑等,使图像色彩亮丽和锐利的同时具有良好的色彩还原性。一般少片式光学成像系统像素较低,对部分成像要求不高的规格,可以选择红外滤光片中置结构,另外CSP制程产品感光芯片前端封装保护玻璃,将红外滤光片中置可以为后焦留出可压缩的空间,有利于光学成像系统超薄小型化。
其中,所述光学成像系统满足以下条件式:
MAX(T12:T23:T34)>0.4;
其中,T12为所述第一透镜像侧面到第二透镜物侧面于光轴上的距离,T23为所述第二透镜像侧面到第三透镜物侧面于光轴上的距离,T34为第三透镜像侧面到第四透镜物侧面于光轴上的距离,MAX(T12:T23:T34)为T12、T23、T34中取最大值。
当满足上述关系式时,光学成像系统各透镜之间间隔较远,组装段差大,量产组装易不稳定,良率较差,若在间隙较大的透镜间放置红外滤光片,可减小组装段差,提升良率,且为透镜机械后焦节省空间,有利于压缩镜头高度。
其中,所述光学成像系统满足以下条件式:
0.5<f1/f<1.3;
其中f为所述光学成像系统的有效焦距,f1为所述第一透镜的有效焦距。
由于第一透镜L1分担大部分正光焦度,合理分配第一透镜L1正光焦度的大小,更利于实现光学成像系统的缩短化,并且可以有效修正光学成像系统的场曲。
其中,所述光学成像系统满足以下条件式:
R1/f>0.4;
其中,R1为所述第一透镜物侧面的曲率半径,f为所述光学成像系统的总有效焦距。
第一透镜L1物侧面于光轴附近为凸面,能够加强承担光学成像系统100主要成像功能的第一透镜L1的正光焦度,有利于超薄化;若低于下限,第一透镜L1的正光焦度相对于整个光学成像系统过强,像差校正变得困难。
其中,所述光学成像系统满足以下条件式:
3<D/CT4<15;
其中,D为所述第四透镜像侧面光学有效直径,CT4为所述第四透镜的物侧面到像侧面于光轴上的距离。
当透镜厚度薄且外径大时成型难均匀,易产生接合线,当满足上述关系式,可以保证第四透镜易于射出成型,使得单边浇口注入的塑胶可以容易到达对向一侧,进而降低透镜偏芯,提升光学成像系统的良率。
其中,所述光学成像系统满足以下条件式:
0.12<|(R7-R8)/(R7+R8)|<0.51;
其中,R7为所述第四透镜物侧面的曲率半径,R8为所述第四透镜像侧表面曲率半径。
其中,至少一片所述第二透镜、第三透镜和第四透镜具有负光焦度。第二透镜、第三透镜和第四透镜至少一片具有负光焦度,用以修正第一透镜正光焦 度产生的球差,配合其他透镜保证光学成像系统较高的分辨率。。
通过合理配置第四透镜物侧面和像侧面的曲率半径,可以有效缩短成像用光学总长,进而满足小型化需求,并有效提升光学成像系统的分辨率。
本申请还提供一种取像装置,其包括:
上述的光学成像系统;及
感光元件,其位于所述光学成像系统的成像面。
本申请还提供一种电子设备,其包括:
设备主体及;
上述的取像装置,所述取像装置安装在设备主体上。
由此,本申请采用四片式的光学成像系统将第一红外滤光片设于第一透镜和第四透镜之间,在实现光学成像系统小型化的同时,减小了光学成像系统组装的段差,提高了光学成像系统组装的稳定性,从而提高了光学成像系统的良率,降低了生产成本。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1-1是本申请第一实施例光学成像系统的结构示意图。
图1-2由左到右依次是本申请第一实施例光学成像系统的球差、像散以及畸变曲线图。
图2-1是本申请第二实施例的光学成像系统的结构示意图。
图2-2由左到右依次是本申请第二实施例光学成像系统的球差、像散以及畸变曲线图。
图3-1是本申请第三实施例的光学成像系统的结构示意图。
图3-2由左到右依次是本申请第三实施例光学成像系统的球差、像散以及畸变曲线图。
图4-1是本申请第四实施例的光学成像系统的结构示意图。
图4-2由左到右依次是本申请第四实施例光学成像系统的球差、像散以及畸变曲线图。
图5-1是本申请第五实施例的光学成像系统的结构示意图。
图5-2由左到右依次是本申请第五实施例光学成像系统的球差、像散以及畸变曲线图。
图6-1是本申请第六实施例的光学成像系统的结构示意图。
图6-2由左到右依次是本申请第六实施例光学成像系统的球差、像散以及畸变曲线图。
图7本申请第二方面取像装置一实施例的结构示意图。
图8本申请第三方面电子设备一实施例的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
请参阅图1-1、图2-1、图3-1、图4-1、图5-1及图6-1,本申请第一方面的光学成像系统100应用于镜头,其由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有光焦度的第二透镜L2、具有光焦度的第三透镜L3及具有光焦度的第四透镜L4。该光学成像系统100还包括光阑10及第一红外滤光片31。该光阑10位于光学成像系统100的成像面之前。第一红外滤光片31位于第一透镜L1与第四透镜L4之间。
可选地,第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面。像侧面S2近光轴处可以为凸面,也可以为凹面;像侧面S2圆周处可以为凸面,也可以为凹面。第一透镜L1采用非球面透镜,有利于汇聚光线和成像。可以容易制作成球面以外的形状,获得更多的控制变数,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。
可选地,第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处可以为凸面,也可以为凹面,物侧面S3的圆周处可以为凸面,也可以为凹面。像侧面S4近光轴处及圆周处 均为凹面。第二透镜L2可以具有正光焦度,也可以具有负光焦度。第二透镜L2采用非球面透镜,可以容易制作成球面以外的形状,获得更多的控制变数,有利于消减像差,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。第二透镜L2像侧面S4为凹面可以更好的矫正球差。
可选地,第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处可以为凸面或凹面,圆周处为凹面。像侧面S6近光轴处可以为凸面或凹面,圆周处为凸面。第三透镜L3可以具有正光焦度,也可以具有负光焦度。第三透镜L3可以有效减小系统场曲和畸变,提高成像品质。第三透镜采用非球面透镜,可以容易制作成球面以外的形状,获得更多的控制变数,有利于消减像差,以较少枚数的透镜获得良好成像的优点;进而减少透镜数量,满足小型化。
可选地,第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处为凸面,圆周处可以为凹面或凸面。像侧面S8近光轴处为凹面,圆周处为凸面。第四透镜L4可以具有正光焦度,也可以具有负光焦度。所述第四透镜像侧面近光轴处为凹面,有利于调节后焦距,第四透镜像侧面设置成曲率半径由凹变凸的变化趋势是为了更好地修正离轴视场的像差,抑制光线到成像面的入射角度,能更精准地匹配感光元件。
可选地,第二透镜L2、第三透镜L3及第四透镜L4至少有一片具有负光焦度。第二透镜L2、第三透镜L3及第四透镜L4至少一片具有负光焦度,用以修正第一透镜正光焦度产生的球差,配合其他透镜保证光学成像系统较高的分辨率。
可选地,光阑10可以位于光学成像系统100的任何位置,其可以位于第一透镜L1的物侧面;或者位于第二透镜L2与第三透镜L3之间;或者位于第三透镜L3与第四透镜L4之间等。
可选地,第一红外滤光片31为玻璃材质,具有物侧面S9及像侧面S10。物侧面S9及像侧面S10均为球面。第一红外滤光片31可以位于第一透镜L1与第二透镜L4之间的任意位置。更具体地,如图5-1所示,第一红外滤光片31位于第一透镜和第二透镜之间;或者如图1-1、3-1、4-1和6-1所示,第一 红外滤光片31位于第二透镜和第三透镜之间;或者如图2-1所示,第一红外滤光片31位于第三透镜和第四透镜之间。第一红外滤光片31至少为一片,更具体的可以为一片(如图1-1、2-1、3-1、4-1及5-1所示)、两片(如图6-1所示)或三片。红外滤光片通常设置在感光元件的前端,用以过滤掉可见光以外的其它波段的光,消减鬼像杂光等对影像不利的因素,本申请将后置红外滤光片变为中置结构,为镜头的机械后焦节省了空间,有利于压缩镜头总长,实现小型化设计;将滤光片放置在透镜空气间隙较大的位置,使镜头各部品紧密组装在一起,减小承靠段差,实际生产良率更稳定。
本申请的术语“部品”指的是组成镜头的透镜,镜筒,遮光片,垫圈或者其他镜头产品的零部品。
本申请的术语“鬼像”是指由于透镜表面反射而在光学系统焦面附近产生的附加像,其亮度一般较暗,且与原像错开。
本申请采用四片式的光学成像系统100将第一红外滤光片30设于第一透镜L1和第四透镜L4之间,在实现光学成像系统100小型化的同时,减小了光学成像系统100组装的段差,提高了光学成像系统100组装的稳定性,从而提高了光学成像系统100的良率,降低了生产成本。
在一些实施例中,物侧面S7及像侧面S8中的至少一面上设置有至少一个反曲点。“反曲点”指的是曲率半径由正变负或者由负变正的拐点处。该反曲点处可用来修正离轴视场的像差,抑制光线到成像面的入射角度,能更精准地匹配感光元件。
在一些实施例中,本申请的光学成像系统100还包括保护玻璃50或第二红外滤光片33,其位于第四透镜L4和成像面60之间。保护玻璃50用于保护成像面60上的感光元件,以达到防尘的效果。保护玻璃50具有物侧面51和像侧面53。第二红外滤光片33具有物侧面S11和像侧面S12。第二红外滤光片33可过滤掉红外波段的光,消减部分鬼像杂光,也可对感光元件起到一定的保护作用。
在一些实施例中,本申请的光学成像系统100还包括第三红外滤光片35。第三红外滤光片35位于所述第一透镜L1之前。第三红外滤光片35具有物侧面S13和像侧面S14。第三红外滤光片能截止红外光线,消减红外波段的光线 对成像产生不利的影响,将第三红外滤光片放置在第一透镜前是为了配合不同镜筒结构一种新的透镜堆叠形式,目前有出现最后组装第一透镜的组装形式,第一透镜物侧面突出在镜筒外,在第一透镜前端放置一枚红外截止滤光片,可保护透镜组前端。
在一些实施例中,光学成像系统100满足以下条件式:
FNO>2.0;
其中,FNO为光学成像系统100光圈数。
也就是说,FNO可以为大于2.0任意数值,例如FNO的取值为2.0、2.5、3.0、4.0……等。
若FNO<2.0,光学成像系统100多为高阶摄像产品,对成像品质有更高的要求,且光学成像系统100多为紧密配合的多片式结构,则红外滤光片中置有一定的难度。但也不排除本申请应用在FNO<2.0的其他产品的可能性,特别是针对CSP制程方式的产品,将红外滤光片中置更利于压缩光学成像系统100的总长。
在一些实施例中,光学成像系统100满足以下条件式:
BF/TTL<0.21;
其中,BF为第四透镜像侧面到所述光学成像系统的成像面在平行于光轴方向上的最短距离,TTL为光学成像系统的总长,即第一透镜L1物侧面到成像面于光轴上的距离。
也就是说,BF/TTL可以为0和0.21之间的任意数值,例如0.1、0.15、0.18、0.2等。
通常光学成像系统最后一片透镜(例如本申请中的第四透镜L4)的像侧面还依次设有滤光片和CMOS感光芯片,光线射向感光芯片时,先由滤光片过滤,因此滤光片对感光芯片有一定的保护作用,同时也过滤一部分光线,以及减少杂光和光斑等,使图像色彩亮丽和锐利的同时具有良好的色彩还原性。一般少片式光学成像系统像素较低,对部分成像要求不高的规格,可以选择红外滤光片中置结构,另外CSP制程产品感光芯片前端封装保护玻璃,将红外滤光片中置可以为后焦留出可压缩的空间,有利于光学成像系统超薄小型化。
在一些实施例中,光学成像系统100满足以下条件式:
MAX(T12:T23:T34)>0.4;
其中,T12为第一透镜L1到第二透镜L2的空气间隔,即第一透镜L1像侧面到第二透镜L2物侧面于光轴上的距离,T23为第二透镜L2到第三透镜L3的空气间隔,即第二透镜L2像侧面到第三透镜L3物侧面于光轴上的距离,T34为第三透镜L3到第四透镜L4的空气间隔,即第三透镜L3像侧面到第四透镜L4物侧面于光轴上的距离,MAX(T12:T23:T34)为T12、T23、T34中取最大值。
也就是说,MAX(T12:T23:T34)可以为大于0.4的任意数值,例如0.5、0.8、1.0、1.5、1.8等。
当满足上述关系式时,光学成像系统100各透镜之间间隔较远,组装段差大,量产组装易不稳定,良率较差,若在间隙较大的透镜间放置红外滤光片,可减小组装段差,提升良率,且为透镜机械后焦节省空间,有利于压缩镜头高度。
在一些实施例中,光学成像系统100满足以下条件式:
0.5<f1/f<1.3;
其中f为所述光学成像系统的有效焦距,f1为所述第一透镜的有效焦距。
也就是说,f1/f可以为0.5和1.3之间的任意数值,例如0.6、0.8、1.0、1.1、1.2等。
由于第一透镜L1分担大部分正光焦度,合理分配第一透镜L1正光焦度的大小,更利于实现光学成像系统100的缩短化,并且可以有效修正光学成像系统的场曲。
在一些实施例中,光学成像系统100满足以下条件式:
R1/f>0.4;
其中,R1为所述第一透镜物侧面的曲率半径,f为所述光学成像系统的总有效焦距。
也就是说,R1/f可以为大于0.4的任意数值,例如0.5、0.8、1.0、1.5、1.8等。
第一透镜L1物侧面于光轴附近为凸面,能够加强承担光学成像系统100主要成像功能的第一透镜L1的正光焦度,有利于超薄化;若低于下限,第一 透镜L1的正光焦度相对于整个光学成像系统100过强,像差校正变得困难。
在一些实施例中,光学成像系统100满足以下条件式:
3<D/CT4<15;
其中,D为第四透镜L4像侧面光学有效直径,CT4为第四透镜L4的中心厚度,即第四透镜L4的物侧面到像侧面于光轴上的距离。
也就是说,D/CT4可以为3和15之间的任意数值,例如4、5、6、7、8、10、12、15等。
当透镜厚度薄且外径大时成型难均匀,易产生接合线,当满足上述关系式,可以保证第四透镜L4易于射出成型,使得单边浇口注入的塑胶可以容易到达对向一侧,进而降低透镜偏芯,提升光学成像系统的良率。
在一些实施例中,光学成像系统100满足以下条件式:
0.12<|(R7-R8)/(R7+R8)|<0.51;
其中,R7为所述第四透镜物侧面的曲率半径,R8为所述第四透镜像侧表面曲率半径。
也就是说,|(R7-R8)/(R7+R8)|可以为0.12和0.51之间的任意数值,例如0.15、0.18、0.2、0.3、0.4、0.5等。
通过合理配置第四透镜L4物侧面和像侧面的曲率半径,可以有效缩短成像用光学总长,进而满足小型化需求,并有效提升光学成像系统100的分辨率。
以下结合具体实施例对本申请的光学成像系统100做进一步详细描述。
第一实施例
请参见图1-1及图1-2,其中图1-1为第一实施例的光学成像系统100的结构示意图,图1-2由左到右依次是本申请第一实施例球差、像散以及畸变曲线图。由图1-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、第一红外滤光片31、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4、保护玻璃50及成像面60。光学成像系统还包括光阑10,其位于第一透镜L1的物侧。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处及圆周处均为凸面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面 S3近光轴处为凸面,圆周处为凹面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处及圆周处均为凹面;像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处及圆周处均为凸面;像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,FNO为2.09。BF为0.7,TTL为4.072,BF/TTL为0.172。MAX(T12:T23:T34)为0.509。f1为3.141,f为3.875,f1/f为0.811。R1为1.902,R1/f为0.491。D为4.526,CT4为0.459,D/CT4为9.861。R7为1.87,R8为0.705,|(R7-R8)/(R7+R8)|为0.452。
在本实施例中,光学成像系统100满足以下表1及表2的条件。
Figure PCTCN2019111499-appb-000001
Figure PCTCN2019111499-appb-000002
Figure PCTCN2019111499-appb-000003
表2为第一实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图1-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
第二实施例
请参见图2-1及图2-2,其中图2-1为第二实施例的光学成像系统100的结构示意图,图2-2由左到右依次是本申请第二实施例球差、像散以及畸变曲线图。由图2-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、第一红外滤光片31、具有负光焦度的第四透镜L4、保护玻璃50及成像面60。光学成像系统还包括光阑10,其位于第一透镜L1的物侧。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处和圆周处均为凸面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处及圆周处均为凹面;像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处为凸面,圆周处为凹面;像侧面S8近光轴处为凹面,圆周处为凸 面。
在本实施例中,FNO为2.09。BF为0.7,TTL为3.687,BF/TTL为0.190。MAX(T12:T23:T34)为0.451。f1为3.394,f为2.73,f1/f为1.243。R1为1.696,R1/f为0.621。D为4.296,CT4为0.298,D/CT4为14.416。R7为1.404,R8为0.7,|(R7-R8)/(R7+R8)|为0.335。
在本实施例中,光学成像系统100满足以下表3及表4的条件。
Figure PCTCN2019111499-appb-000004
Figure PCTCN2019111499-appb-000005
Figure PCTCN2019111499-appb-000006
表4为第二实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图2-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
第三实施例
请参见图3-1及图3-2,其中图3-1为第三实施例的光学成像系统100的结构示意图,图3-2由左到右依次是本申请第三实施例球差、像散以及畸变曲线图。由图3-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、光阑10、第一红外滤光片31、具有负光焦度的第三透镜L3、具有正光焦度的第四透镜L4、保护玻璃50及成像面60。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处及圆周处均为凸面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处和圆周处均为凹面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处为凸面,圆周处为凹面;像侧面S6近光轴处为凹面,圆周处为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处及圆周处均为凸面;像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,FNO为2.50。BF为0.939,TTL为5.662,BF/TTL为0.166。MAX(T12:T23:T34)为1.906。f1为2.162,f为4.177,f1/f为0.518。R1为1.669,R1/f为0.400。D为3.298,CT4为0.952,D/CT4为3.464。R7 为3.364,R8为4.345,|(R7-R8)/(R7+R8)|为0.127。
在本实施例中,光学成像系统100满足以下表5及表6的条件。
Figure PCTCN2019111499-appb-000007
Figure PCTCN2019111499-appb-000008
Figure PCTCN2019111499-appb-000009
表6为第三实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图3-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
第四实施例
请参见图4-1及图4-2,其中图4-1为第四实施例的光学成像系统100的结构示意图,图4-2由左到右依次是本申请第四实施例球差、像散以及畸变曲线图。由图4-1可知,本实施例的光学成像系统100由物侧到像侧依次包括第三红外滤光片35、具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、光阑10、第一红外滤光片31、具有负光焦度的第三透镜L3、具有负光焦度的第四透镜L4、保护玻璃50及成像面60。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处及圆周处均为凸面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处和圆周处均为凹面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处为凸面,圆周处为凹面;像侧面S6近光轴处为凹面,圆周处为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处为凸面,圆周处为凹面;像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,FNO为2.50。BF为0.842,TTL为5.2,BF/TTL为0.162。MAX(T12:T23:T34)为1.693。f1为2.147,f为3.746,f1/f为0.573。R1为1.515,R1/f为0.404。D为3.602,CT4为0.4,D/CT4为9.005。R7为2.421,R8为2.084,|(R7-R8)/(R7+R8)|为0.075。
在本实施例中,光学成像系统100满足以下表7及表8的条件。
Figure PCTCN2019111499-appb-000010
Figure PCTCN2019111499-appb-000011
Figure PCTCN2019111499-appb-000012
表8为第四实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图4-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
第五实施例
请参见图5-1及图5-2,其中图5-1为第五实施例的光学成像系统100的结构示意图,图5-2由左到右依次是本申请第五实施例球差、像散以及畸变曲线图。由图5-1可知,本实施例的光学成像系统100由物侧到像侧依次包括光阑10、具有正光焦度的第一透镜L1、第一红外滤光片31、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4、第二红外滤光片33及成像面60。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处及圆周处均为凸面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处为凸面,圆周处为凹面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处和圆周处均为凹面;像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处为凸面,圆周处为凹面;像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,FNO为2.40。BF为0.8,TTL为3.946,BF/TTL为0.203。MAX(T12:T23:T34)为0.41。f1为3.153,f为2.941,f1/f为1.072。R1为1.911,R1/f为0.650。D为3.976,CT4为0.431,D/CT4为9.225。R7为2.116,R8为0.695,|(R7-R8)/(R7+R8)|为0.506。
在本实施例中,光学成像系统100满足以下表9及表10的条件。
Figure PCTCN2019111499-appb-000013
Figure PCTCN2019111499-appb-000014
Figure PCTCN2019111499-appb-000015
表10为第五实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图5-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
第六实施例
请参见图6-1及图6-2,其中图6-1为第六实施例的光学成像系统100的结构示意图,图6-2由左到右依次是本申请第六实施例球差、像散以及畸变曲线图。由图6-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有负光焦度的第二透镜L2、第一红外滤光片31、具有正光焦度的第三透镜L3、第一红外滤光片31、具有负光焦度的第四透镜L4、第二红外滤光片33及成像面60。该光学成像系统还包括光阑10,光阑10位于第一透镜L1的物侧。
第一透镜L1为塑料材质,其物侧面S1及像侧面S2均为非球面。物侧面S1近光轴处及圆周处均为凸面;像侧面S2近光轴处及圆周处均为凹面。
第二透镜L2为塑料材质,其物侧面S3及像侧面S4均为非球面。物侧面S3近光轴处为凸面,圆周处为凹面;像侧面S4近光轴处及圆周处均为凹面。
第三透镜L3为塑料材质,其物侧面S5及像侧面S6均为非球面。物侧面S5近光轴处和圆周处均为凹面;像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,其物侧面S7及像侧面S8均为非球面。物侧面S7近光轴处和圆周处均为凸面;像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,FNO为2.20。BF为0.8,TTL为4.669,BF/TTL为0.171。MAX(T12:T23:T34)为0.986。f1为3.814,f为3.945,f1/f为0.967。R1为1.422,R1/f为0.360。D为5.306,CT4为0.424,D/CT4为12.514。R7为1.376,R8为0.994,|(R7-R8)/(R7+R8)|为0.161。
在本实施例中,光学成像系统100满足以下表11及表12的条件。
Figure PCTCN2019111499-appb-000016
Figure PCTCN2019111499-appb-000017
Figure PCTCN2019111499-appb-000018
表12为第六实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图6-2可知,本申请光学成像系统100的像差在满足超薄小型化的情况下仍被控制在合理范围内,从而保证了成像品质。
如图7所示,本申请第二方面提供取像装置200包括本申请第一方面的光学成像系统100及感光元件210。感光元件210位于光学成像系统100的成像 面60。
本申请的感光元件210可以为感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS sensor)。
该取像装置200的其他特征描述请参考本申请第一方面,在此不再赘述。
如图8所示,本申请第三方面提供一种电子设备300,其包括设备主体310及本申请第二方面的取像装置200。所述取向装置200安装在所述设备主体310上。
本申请的电子设备300包括但不限于电脑、笔记本电脑、平板电脑、手机、相机、智能手环、智能手表、智能眼镜等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种光学成像系统,其特征在于,其由物侧到像侧依次包括:
    具有正光焦度的第一透镜、具有光焦度的第二透镜、具有光焦度的第三透镜及具有光焦度的第四透镜;
    所述光学成像系统还包括:
    光阑,所述光阑位于光学成像系统的成像面之前;及
    第一红外滤光片,所述第一红外滤光片位于第一透镜与第四透镜之间。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜、第二透镜、第三透镜及第四透镜的物侧面及像侧面均为非球面,所述第四透镜的物侧面及像侧面中至少一面设置有至少一个反曲点。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面近光轴处及圆周处均为凸面。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的像侧面近光轴处及圆周处均为凹面。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜的物侧面圆周处为凹面,所述第三透镜的像侧面圆周处为凸面。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜的物侧面近光轴处为凸面;所述第四透镜的像侧面近光轴处为凹面,圆周处为凸面。
  7. 根据权利要求1-6任一项所述的光学成像系统,其特征在于,所述光学成像系统还包括保护玻璃或第二红外滤光片,所述保护玻璃或第二红外滤光片位于所述第四透镜与成像面之间。
  8. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统还包括第三红外滤光片,所述第三红外滤光片位于所述第一透镜之前。
  9. 根据权利要求7所述的光学成像系统,其特征在于,所述第一红外滤光片为至少一片。
  10. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    FNO>2.0;
    其中,FNO为光学成像系统光圈数。
  11. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    BF/TTL<0.21;
    其中,BF为所述第四透镜像侧面到所述光学成像系统的成像面在平行于光轴方向上的最短距离,TTL为所述第一透镜物侧面到成像面于光轴上的距离。
  12. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    MAX(T12:T23:T34)>0.4;
    其中,T12为所述第一透镜像侧面到第二透镜物侧面于光轴上的距离,T23为所述第二透镜像侧面到第三透镜物侧面于光轴上的距离,T34为第三透镜像侧面到第四透镜物侧面于光轴上的距离,MAX(T12:T23:T34)为T12、T23、T34中取最大值。
  13. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.5<f1/f<1.3;
    其中f为所述光学成像系统的有效焦距,f1为所述第一透镜的有效焦距。
  14. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    R1/f>0.4;
    其中,R1为所述第一透镜物侧面的曲率半径,f为所述光学成像系统的总有效焦距。
  15. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    3<D/CT4<15;
    其中,D为所述第四透镜像侧面光学有效直径,CT4为所述第四透镜的物侧面到像侧面于光轴上的距离。
  16. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系 统满足以下条件式:
    0.12<|(R7-R8)/(R7+R8)|<0.51;
    其中,R7为所述第四透镜物侧面的曲率半径,R8为所述第四透镜像侧表面曲率半径。
  17. 根据权利要求1所述的光学成像系统,其特征在于,至少一片所述第二透镜、第三透镜和第四透镜具有负光焦度。
  18. 一种取像装置,其特征在于,包括:
    权利要求1-17任一项所述的光学成像系统;及
    感光元件,其位于所述光学成像系统的成像面。
  19. 一种电子设备,其特征在于,包括:
    设备主体及;
    权利要求18所述的取像装置,所述取像装置安装在设备主体上。
PCT/CN2019/111499 2019-10-16 2019-10-16 光学成像系统、取像装置及电子设备 WO2021072682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/111499 WO2021072682A1 (zh) 2019-10-16 2019-10-16 光学成像系统、取像装置及电子设备
US17/719,581 US20220236528A1 (en) 2019-10-16 2022-04-13 Optical imaging system, image capturing apparatus, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111499 WO2021072682A1 (zh) 2019-10-16 2019-10-16 光学成像系统、取像装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/719,581 Continuation US20220236528A1 (en) 2019-10-16 2022-04-13 Optical imaging system, image capturing apparatus, and electronic device

Publications (1)

Publication Number Publication Date
WO2021072682A1 true WO2021072682A1 (zh) 2021-04-22

Family

ID=75537507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111499 WO2021072682A1 (zh) 2019-10-16 2019-10-16 光学成像系统、取像装置及电子设备

Country Status (2)

Country Link
US (1) US20220236528A1 (zh)
WO (1) WO2021072682A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833165A (zh) * 2009-03-13 2010-09-15 大立光电股份有限公司 成像光学透镜组及其自动对焦操作方法
US20160195701A1 (en) * 2009-07-14 2016-07-07 Largan Precision Co., Ltd. Imaging lens system
CN108594404A (zh) * 2018-06-11 2018-09-28 嘉兴中润光学科技有限公司 视力检测用高清红外光学镜头
CN108802967A (zh) * 2018-04-18 2018-11-13 南昌欧菲精密光学制品有限公司 光学成像系统及电子装置
CN208156286U (zh) * 2018-05-25 2018-11-27 南昌欧菲精密光学制品有限公司 成像光学系统及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833165A (zh) * 2009-03-13 2010-09-15 大立光电股份有限公司 成像光学透镜组及其自动对焦操作方法
US20160195701A1 (en) * 2009-07-14 2016-07-07 Largan Precision Co., Ltd. Imaging lens system
CN108802967A (zh) * 2018-04-18 2018-11-13 南昌欧菲精密光学制品有限公司 光学成像系统及电子装置
CN208156286U (zh) * 2018-05-25 2018-11-27 南昌欧菲精密光学制品有限公司 成像光学系统及电子装置
CN108594404A (zh) * 2018-06-11 2018-09-28 嘉兴中润光学科技有限公司 视力检测用高清红外光学镜头

Also Published As

Publication number Publication date
US20220236528A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
CN107505686B (zh) 光学影像拾取系统以及取像装置
TWI452332B (zh) 光學攝影鏡片系統
TWI438478B (zh) 取像光學鏡片系統
WO2021128564A1 (zh) 光学镜头及成像设备
CN109324398B (zh) 光学成像镜头及成像设备
WO2021093542A1 (zh) 光学镜头及成像设备
CN109270663B (zh) 一种光学成像镜头及应用该光学成像镜头的摄像装置
CN112748511A (zh) 光学成像系统、取像装置及电子设备
CN211263921U (zh) 光学成像系统、取像装置及电子设备
US11892601B2 (en) Camera optical lens
WO2021223598A1 (zh) 光学镜头及成像设备
WO2022199465A1 (zh) 光学镜头及成像设备
CN210401818U (zh) 光学成像系统、取像装置及电子设备
TWI418840B (zh) 薄型化取像鏡頭
CN113391430A (zh) 光学系统、镜头模组和电子设备
CN109270664B (zh) 一种光学成像镜头及应用该光学成像镜头的摄像装置
US20220066159A1 (en) Camera optical lens
WO2022061676A1 (zh) 光学镜头、取像模组及电子装置
CN211478744U (zh) 光学系统、镜头模组和电子设备
CN210626771U (zh) 光学成像系统、取像装置及电子设备
WO2023098329A1 (zh) 光学镜头、摄像头模组、电子设备
WO2021072682A1 (zh) 光学成像系统、取像装置及电子设备
CN212989754U (zh) 光学镜头、摄像模组及电子设备
CN114740604A (zh) 光学系统、摄像模组和电子设备
CN210626770U (zh) 光学成像系统、取像装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949168

Country of ref document: EP

Kind code of ref document: A1