WO2023098329A1 - 光学镜头、摄像头模组、电子设备 - Google Patents

光学镜头、摄像头模组、电子设备 Download PDF

Info

Publication number
WO2023098329A1
WO2023098329A1 PCT/CN2022/126250 CN2022126250W WO2023098329A1 WO 2023098329 A1 WO2023098329 A1 WO 2023098329A1 CN 2022126250 W CN2022126250 W CN 2022126250W WO 2023098329 A1 WO2023098329 A1 WO 2023098329A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
object side
optical axis
image side
Prior art date
Application number
PCT/CN2022/126250
Other languages
English (en)
French (fr)
Inventor
顿雄
彭祎帆
王锐
李海峰
陈嘉伟
张海裕
李响
韦怡
王文涛
Original Assignee
Oppo广东移动通信有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, 浙江大学 filed Critical Oppo广东移动通信有限公司
Publication of WO2023098329A1 publication Critical patent/WO2023098329A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the application belongs to the technical field of optical lenses, and specifically relates to optical lenses, camera modules, and electronic equipment.
  • the camera function has become a very important function in electronic equipment, and the camera function can be used to take pictures, video, video calls, verification, mobile payment and so on. Therefore, the camera module is one of the core components of electronic equipment.
  • the total optical length of the optical lens in the current camera module is relatively large, so that the thickness of the complete electronic device is usually limited by the thickness of the optical lens, thereby increasing the thickness of the complete electronic device.
  • the first aspect of the present application provides an optical lens, which includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens along the optical axis from the object side to the image side;
  • the system focal length f of the lens satisfies the following relationship: 6mm ⁇ f ⁇ 7mm, and the total optical length TTL of the optical lens and the system focal length f of the optical lens satisfy the following relationship: 0 ⁇ TTL-f ⁇ 0.2mm.
  • the second aspect of the present application provides a camera module, including an image sensor and the optical lens provided in the first aspect of the present application, the image sensor is located on the image side of the optical lens.
  • the third aspect of the present application provides an electronic device, including a casing, a processor, and the camera module as provided in the second aspect of the application, the casing has an accommodation space, the processor and at least part of the camera The module is arranged in the containing space, and the processor is electrically connected to the image sensor.
  • FIG. 1 is a schematic diagram of an optical lens in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical lens in another embodiment of the present application.
  • FIG. 3 is an optical path diagram of an optical lens with an imaging aperture close to the diffraction limit in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optical lens in another embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optical path of an optical lens in an embodiment of the present application.
  • FIG. 6 is a full-aperture modulation transfer function (MTF) graph of the optical lens in an embodiment of the present application.
  • MTF full-aperture modulation transfer function
  • FIG. 7 is a schematic diagram of a distortion curve of an optical lens in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 9 is a top view of an electronic device in an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view along the A-A direction in FIG. 9 .
  • Optical lens-1 optical axis-L, imaging surface-S, inflection point-O, camera module-2, electronic equipment-3, first lens-10, object side of the first lens-S1, first lens The image side of the second lens-S2, the second lens-20, the object side of the second lens-S3, the image side of the second lens-S4, the third lens-30, the object side of the third lens-S5, the image of the third lens Side-S6, fourth lens-40, object side of the fourth lens-S7, image side of the fourth lens-S8, fifth lens-50, object side of the fifth lens-S9, image side of the fifth lens- S10, filter-60, object side of the filter S11, image side of the filter-S12, aperture-70, image sensor-80, housing-90, storage space-91, processor-92.
  • This embodiment provides an optical lens, which includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens along the optical axis from the object side to the image side; the system focal length f of the optical lens is The following relationship is satisfied: 6mm ⁇ f ⁇ 7mm, and the total optical length TTL of the optical lens and the system focal length f of the optical lens satisfy the following relationship: 0 ⁇ TTL-f ⁇ 0.2mm.
  • any field of view has 20%-30% energy to achieve diffraction-limited focusing.
  • system focal length f of the optical lens and the effective diameter aperture D of the optical lens satisfy the following relationship: 1.5 ⁇ f/D ⁇ 2.
  • the actual clear aperture D' of the field of view and the effective diameter aperture D of the optical lens satisfy the following relationship: 0.45 ⁇ D'/D ⁇ 0.55.
  • the maximum field of view FOV max of the optical lens and the system focal length f of the optical lens satisfy the following relationship: 7.4 ⁇ FOV max /arctan(1/f) ⁇ 9.84.
  • the wavelength ⁇ that can be detected by the optical lens satisfies the following relationship: 400nm ⁇ 700nm.
  • the dominant wavelength ⁇ main of the optical lens satisfies the following relationship: 580nm ⁇ ⁇ main ⁇ 595nm.
  • the optical lens further includes an aperture, and the aperture is located between the image side of the second lens and the object side of the third lens.
  • the optical lens satisfies at least one of the following conditions:
  • the first lens has positive power; the second lens has negative power; the third lens has positive power; the fourth lens has positive power; the fifth lens has negative power Spend.
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface at a position of height r along the optical axis direction; c is the radius of curvature of the vertex; k is the conic coefficient of the quadric surface; r is the radius ray coordinates in the direction; N is the number of items of the high-degree polynomial; ⁇ i is the i-th order aspheric coefficient of the side of the object or the side of the image.
  • the object side of the first lens is a convex surface, and the image side of the first lens is a concave surface;
  • the object side of the third lens is convex, and the image side of the third lens is concave;
  • the object side of the fourth lens is concave, and the image side of the fourth lens is convex.
  • the object side of the second lens is concave at the near optical axis and convex at the circumference, and the image side of the second lens is concave;
  • the object side of the fifth lens is concave, and the image side of the fifth lens is concave at the near optical axis and convex at the circumference.
  • At least one of the object side and image side of the second lens and the object side and image side of the fifth lens is provided with at least one inflection point on the section .
  • the central thickness CT1 of the first lens on the optical axis, the central thickness CT2 of the second lens on the optical axis, the central thickness CT3 of the third lens on the optical axis, The central thickness CT4 of the fourth lens on the optical axis, the central thickness CT5 of the fifth lens on the optical axis, and the total optical length TTL of the optical lens satisfy the following relationship: 0.24 ⁇ (CT1+ CT2+CT3+CT4+CT5)/TTL ⁇ 0.48.
  • the distance T12 between the image side of the first lens and the object side of the second lens on the optical axis, the distance T12 between the image side of the second lens and the object side of the third lens on the optical axis satisfy the following relationship: 0.13 ⁇ (T12+T23)/ (CT1+CT2) ⁇ 0.92.
  • the distance T23 between the image side of the second lens and the object side of the third lens on the optical axis, the distance T23 between the image side of the third lens and the object side of the fourth lens on the optical axis satisfy the following relationship: 0.75 ⁇ (T23+T34)/ (CT2+CT3) ⁇ 2.21.
  • the distance T34 between the image side of the third lens and the object side of the fourth lens on the optical axis, the distance T34 between the image side of the fourth lens and the object side of the fifth lens on the optical axis satisfy the following relationship: 1 ⁇ (T34+T45)/ (CT3+CT4) ⁇ 2.25.
  • the Abbe number Vd1 of the first lens, the Abbe number Vd2 of the second lens, the Abbe number Vd3 of the third lens, the Abbe number Vd4 of the fourth lens, and the Abbe number Vd4 of the first lens The Abbe number Vd5 of the five lenses satisfies the following relationship: 53 ⁇ Vd1 ⁇ 59; 18 ⁇ Vd2 ⁇ 25; 53 ⁇ Vd3 ⁇ 59; 53 ⁇ Vd4 ⁇ 59; 53 ⁇ Vd5 ⁇ 59.
  • This embodiment also provides a camera module, including an image sensor and the optical lens provided in the above embodiments of the present application, the image sensor is located on the image side of the optical lens.
  • This embodiment also provides an electronic device, including a housing, a processor, and the camera module as provided in the above embodiments of the present application, the housing has an accommodation space, and the processor and at least part of the camera module Assembled in the receiving space, the processor is electrically connected to the image sensor.
  • a camera module is a core component for realizing a camera function.
  • the camera module usually includes an optical lens.
  • the total optical length of the optical lens is relatively large. Inconsistencies in the results will produce aberrations.
  • camera modules mostly use the traditional optical design concept, that is, aberration correction is performed based on the optical lens itself. This therefore results in a larger overall optical length of the optical lens.
  • the total optical length of the optical lens in the camera module is usually 1 to 2 mm longer than the focal length of the system. This makes the total thickness of the electronic device generally limited by the thickness of the camera module, and even some camera modules will protrude from the housing of the electronic device, which will make the camera module easy to contact with external objects, thereby making it easy to use The camera module is damaged, which reduces the service life of the camera module.
  • FIG. 1 is a schematic diagram of an optical lens in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical lens in another embodiment of the present application.
  • This embodiment provides an optical lens 1, specifically, along the optical axis L from the object side to the image side, including a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, and a fifth lens 50; the system focal length f of the optical lens 1 satisfies the following relationship: 6mm ⁇ f ⁇ 7mm, and the total optical length TTL of the optical lens 1 and the system focal length f of the optical lens 1 satisfy the following relationship: 0 ⁇ TTL-f ⁇ 0.2mm.
  • the optical lens 1 provided in this embodiment is a part of the camera module 2, and is mainly used in various electronic devices 3 so that the electronic devices 3 have a camera function.
  • the electronic devices 3 include but are not limited to cameras, mobile phones, tablets, Laptop, Pocket PC, Personal Computer (PC), Personal Digital Assistant (PDA), Portable Media Player (PMP), Navigation Device, Wearable Device, Smart Watch, Pedometer devices and other mobile terminals.
  • the total optical length of the optical lens 1 in the camera module 2 in the related art is usually 1 to 2 mm longer than the focal length of the system, resulting in a larger total optical length (Total Track Length, TTL) of the optical lens 1.
  • TTL refers to the distance on the optical axis L from the object side S1 of the first lens 10 to the imaging surface S in the optical lens 1 .
  • this embodiment needs to reduce the size of the total optical length TTL, but this embodiment does not adopt the traditional method of reducing the total optical length TTL.
  • the system The focal length f is usually also reduced together.
  • the focal length f of the system may be only about 5 mm, or even about 4 mm. In this way, the focal length f of the system will be too small to meet the use requirements of the optical lens 1 .
  • the focal length f of the system is set to be 6mm ⁇ f ⁇ 7mm.
  • the focal length f of the system is 6-7mm, it can meet the use requirements of the optical lens and meet the daily shooting needs of most users.
  • this embodiment can also make the total optical length TTL and the system focal length f satisfy 0 ⁇ TTL-f ⁇ 0.2mm, so that on the basis of the system focal length f being 6-7mm, compared with the related art, the total optical length TTL is usually higher than the system focal length If f is greater than 1 mm to more than 2 mm, this embodiment can achieve the purpose of reducing the total optical length of the optical lens 1 .
  • the optical lens 1 when the optical lens 1 is applied to the electronic device 3, not only the thickness of the electronic device 3 can be reduced, but also the optical lens 1 can be prevented from protruding from the housing 90 of the electronic device 3, thereby effectively protecting the optical lens 1 , improve the service life of the optical lens 1.
  • the range of the total optical length TTL can be obtained.
  • the focal length f of the system satisfies 6mm ⁇ f ⁇ 7mm
  • the total optical length TTL satisfies the following relationship: 6mm ⁇ TTL ⁇ 7.2mm.
  • the system focal length f satisfies 6.3mm ⁇ f ⁇ 6.7mm
  • the total optical length TTL and the system focal length f satisfy 0.05mm ⁇ TTL-f ⁇ 0.15mm
  • the total optical length TTL satisfies 6.35mm ⁇ TTL ⁇ 6.85mm.
  • the focal length f of the system may be 6.4 mm, 6.5 mm, or 6.6 mm.
  • the difference between the total optical length TTL and the system focal length f is 0.1 mm.
  • the total optical length TTL is 6.5mm, 6.6mm, and 6.7mm.
  • the optical lens 1 includes a plurality of lenses, and the specific size of the total optical length TTL and the system focal length f is related to the relevant parameters of the plurality of lenses.
  • five lenses can be used, namely the first lens 10, the second lens 20, The distance between the third lens 30 , the fourth lens 40 , and the fifth lens 50 are designed, as well as the relevant parameters of each lens, so that the total optical length TTL and the system focal length f satisfy the above relationship.
  • this application will be introduced one by one below.
  • the optical lens 1 may also include a filter 60 in addition to the lens.
  • the optical filter 60 may be an infrared optical filter 60, which is used to filter out light in other wavelength bands other than infrared light, so as to reduce ghost image stray light and other unfavorable factors for imaging.
  • ghost image refers to the additional image generated near the focal plane of the optical imaging system due to the reflection of the lens surface. Its brightness is generally dark and staggered from the original image, which will reduce the imaging quality.
  • the filter 60 in this embodiment is located between the image side S10 and the imaging surface S of the fifth lens 50 .
  • FIG. 3 is an optical path diagram of an optical lens with an imaging aperture close to the diffraction limit in an embodiment of the present application.
  • any field of view has 20%-30% energy to achieve diffraction-limited focusing.
  • this embodiment can reduce the total optical length of the optical lens 1 .
  • this embodiment can reduce the total optical length TTL by sacrificing other performances of the optical lens 1 .
  • this embodiment adopts a method of reducing the amount of aberration correction to reduce the total optical length.
  • the angle of view FOV of the optical lens 1 can be understood as the horizontal angle of view FOV of the optical lens 1, horizontal , vertical
  • the field of view FOV is vertical , or the maximum field of view FOV is the largest .
  • the maximum field of view FOV is taken as the maximum field of view FOV for schematic illustration.
  • the maximum field of view FOV refers to the range that the optical lens 1 can cover. When the object exceeds this range, it will not be collected in the lens.
  • the field of view FOV has multiple fields of view.
  • the field of view FOV is 90°
  • the optical lens 1 can cover objects in the range of 90°; and objects in the range of less than 90° can be covered by the lens. cover.
  • other angles such as 10°, 20°, 30°, 40°, 50°, 60°, etc. are included in the range less than 90°.
  • Each angle can be regarded as a field of view, so the field of view FOV has multiple fields of view field.
  • 20%-30% of the energy in any field of view can achieve diffraction-limited focusing.
  • the light When light enters the optical lens 1, the light itself carries energy.
  • the light rays achieve diffraction-limited focusing on the imaging surface S, the light rays form a point on the imaging surface S, that is, a light spot.
  • the light When the light finally forms a spot, it can be understood that there is no aberration, in other words, the aberration of the light has been corrected. Therefore, this embodiment enables each field of view to have 20%-30% of the energy to achieve diffraction-limited focusing. It can also be understood that the aberrations of 20%-30% of the light rays in each field of view are corrected.
  • this embodiment reduces the ability of the optical lens 1 itself to correct the aberration, and reduces the ratio of correcting the aberration, only needing to correct 20%-30%, which can greatly reduce the design difficulty of the optical lens 1, such as reducing the lens The number of lenses, the distance between lenses, the thickness of the lens itself, etc., so as to finally achieve the purpose of reducing the total length of the optical system and simplify the structure of the optical lens 1.
  • the remaining 70%-80% of the energy in each field of view cannot achieve diffraction-limited focusing, that is, what the light rays form on the imaging surface S is not a spot but a discrete spot, so there will be 70%-80% of the energy Aberrations cannot be corrected.
  • the present application can transfer this part of the aberration correction requirement to the subsequent image processing algorithm for correction, that is, the subsequent image information is sent to the processor 92, and the processor 92 is used to correct this 70%-80% of aberrations are corrected. In this way, not only can the total optical length of the optical lens 1 be reduced, but also the optical lens 1 with a large viewing angle and a large receiving aperture can be realized, the imaging quality can be improved, and a high-quality imaging system can be realized.
  • each of said fields of view has 24%-26% of the energy available for diffraction limited focusing.
  • 25% of the energy in each of said fields of view is available for diffraction limited focusing.
  • this embodiment adopts a design concept different from traditional lenses.
  • the difficulty of calibration reduces the difficulty of design, and the total length of the optical system is compressed, so that for an optical system with a large field of view and a large receiving aperture, the total length is basically equivalent to its focal length, only 0-0.2mm long.
  • FIG. 4 is a schematic diagram of an optical lens in another embodiment of the present application.
  • the optical lens 1 further includes an aperture 70 located between the image side S4 of the second lens 20 and the object side S5 of the third lens 30 .
  • the optical lens 1 also includes an aperture 70, which is used to control the amount of incoming light, that is, to control the amount of light entering the lens.
  • the aperture 70 is larger, the amount of light that can enter the aperture 70 is larger; when the aperture 70 is smaller, the amount of light that can enter the aperture 70 is less.
  • the number of light rays can be adjusted by setting the aperture 70 so as to adjust the energy range that can achieve diffraction-limited focusing for each field of view.
  • the aperture 70 can be arranged in the middle of a plurality of lenses, for example, it can be located between the image side S4 of the second lens 20 and the object side S5 of the third lens 30, so that the lens can be dirt-proof and dust-proof. And the size of the aperture 70 is reduced, material is saved, and the size of the optical lens 1 is further reduced.
  • the aperture 70 can also be located at other positions in the optical lens 1, such as at the object side S1 of the first lens 10, or at the object side S3 of the second lens 20, or at the image of the fifth lens 50. Side S10 and more.
  • the aperture 70 is located on the image side S4 of the second lens 20; or, the aperture 70 is located on the object side S5 of the third lens 30; or, the aperture 70 is located on the image side of the second lens 20 The area between S4 and the object side surface S5 of the third lens 30 .
  • the system focal length f of the optical lens 1 and the effective diameter aperture D of the optical lens 1 satisfy the following relationship: 1.5 ⁇ f/D ⁇ 2.
  • the above-mentioned effective diameter aperture D can be understood as the maximum diameter of the aperture 70. At this time, the blades of the aperture 70 are not stretched out, and the aperture 70 can allow the most light to enter.
  • the effective diameter of the aperture can also be called the effective aperture diameter. The two are the same concept, and both represent the diameter of the maximum light passing through the aperture 70 . It can be seen from the above relationship that the system focal length f is proportional to the effective diameter aperture D, and the effective diameter aperture D increases when the system focal length f increases.
  • the ratio of the focal length f of the system to the effective diameter aperture D is not in the above range, for example, less than 1.5 or greater than 2, it will increase the difficulty of designing the optical lens 1, for example, it cannot be realized by 5 lenses, or the thickness of the lens is thick or the lens The distance between them increases, so that the purpose of reducing the total optical length cannot be achieved.
  • the ratio of the system focal length f to the effective diameter aperture D can also be called the F number.
  • the range of the effective diameter aperture D can be obtained by controlling the focal length f of the system to 6-7mm, that is, 3.5mm ⁇ D ⁇ 4mm.
  • the ratio (f/D) of the system focal length f to the effective diameter aperture D is 1.8, and when the focal length is 6.6 mm, the effective diameter aperture D is 3.67 mm.
  • the actual clear apertures D' of the multiple fields of view and the effective diameter aperture D of the optical lens 1 satisfy the following relationship: 0.45 ⁇ D'/D ⁇ 0.55.
  • the optical lens 1 When the optical lens 1 is shooting, it will adjust the blades of the aperture 70 to adjust the size of the actual aperture D' of the aperture 70, thereby adjusting the amount of light that actually enters the aperture 70.
  • the amount of light will affect the amount of energy that can achieve diffraction-limited focusing for each field of view.
  • the actual clear aperture D' of the field of view is related to the amount of energy that can achieve diffraction-limited focusing for each field of view.
  • the square of the ratio of the actual clear aperture D' to the effective diameter aperture D can be roughly understood as the amount of energy that can achieve diffraction-limited focusing for each field of view.
  • the actual clear aperture D' and the effective diameter aperture D are proportional to each other.
  • the effective diameter aperture D also increases.
  • the ratio of the actual clear aperture D' to the effective diameter of the aperture D is not within the above range, for example, less than 0.45 or greater than 0.55, the actual clear aperture D' will be too large or too small, thereby affecting the amount of light that actually enters the aperture 70, Therefore, it is impossible to achieve diffraction-limited focusing with 20%-30% of the energy in each of the fields of view.
  • the ratio (D'/D) of the actual clear aperture D' to the effective diameter of the aperture D in this embodiment can be 0.5, That is, the light aperture of each field of view is 1/2 of the design requirement value. Therefore, when the effective diameter aperture D is 3.67mm, the actual clear aperture D' of multiple fields of view is 1.835mm.
  • the size of the actual clear aperture D' of each field of view can be adjusted so that the ratio of the actual clear aperture D' to the effective diameter aperture D is 0.45-0.55, so that Making each of the fields of view within the field of view FOV have 20%-30% of the energy can achieve diffraction-limited focusing, reducing the difficulty of designing the optical lens 1 .
  • the maximum field of view FOVmax of the optical lens 1 and the system focal length f of the optical lens 1 satisfy the following relationship: 7.4 ⁇ FOVmax /arctan(1/f) ⁇ 9.84.
  • the maximum field of view FOV is controlled by controlling the ratio relationship between the maximum field of view FOV and the system focal length f, and the maximum field of view FOV will also affect the design of the optical lens 1 . It can be seen from the above relationship that the maximum field of view FOV of the optical lens 1 is inversely proportional to the system focal length f of the optical lens 1, and the maximum field of view FOV decreases when the system focal length f increases.
  • the ratio of the maximum field of view FOV to the system focal length f is not within the above range, such as less than 7.4, or greater than 9.84, it will increase the difficulty of designing the optical lens 1, for example, it cannot be realized by 5 lenses, or the thickness of the lens Or the distance between the lenses increases, so that the purpose of reducing the total optical length cannot be achieved.
  • the maximum field of view FOV can be obtained by controlling the system focal length f to be 6-7 mm.
  • the maximum field of view FOV range satisfies the following relationship: 70° ⁇ FOV maximum ⁇ 80°.
  • the maximum field of view FOV may be 75°.
  • the detectable wavelength ⁇ of the optical lens 1 satisfies the following relationship: 400nm ⁇ 700nm.
  • the light detectable by the optical lens 1 of this embodiment is visible light, specifically visible light with a wavelength of 400-700 nm.
  • the detectable light wavelength will also affect the design of the optical lens 1 .
  • the detectable wavelength does not meet the above range, such as less than 400nm, or greater than 700nm, it will increase the difficulty of designing the optical lens 1, for example, it cannot be realized by five lenses, or the thickness of the lens or the distance between the lenses increases, so that it cannot be realized The purpose of reducing the total optical length.
  • the detectable wavelength is 400-700 nm, which can further reduce the design difficulty of the optical lens 1 .
  • the detectable wavelength ⁇ of the optical lens 1 satisfies 500nm ⁇ 600nm. Further optionally, the detectable wavelength ⁇ of the optical lens 1 satisfies 550nm ⁇ 600nm.
  • the dominant wavelength ⁇ main of the optical lens 1 satisfies the following relationship: 580nm ⁇ ⁇ main ⁇ 595nm.
  • the main wavelength ⁇ can be made to be 580-595 nm.
  • the dominant wavelength ⁇ is mainly 580-595nm, the imaging quality can be improved.
  • the dominant wavelength ⁇ main of the optical lens 1 satisfies 585nm ⁇ ⁇ main ⁇ 590nm.
  • the dominant wavelength ⁇ of the optical lens 1 is 586.7 nm.
  • this application comprehensively limits the design parameters of the optical lens 1 through conditions such as focal length, total length, diffraction-limited focusing energy for each field of view, F-number, field angle, and detectable wavelength.
  • the design difficulty of the optical lens 1 can be further reduced, and finally the above-mentioned limited conditions can be met by using five lenses, and the purpose of reducing the total optical length of the optical lens 1 can be achieved.
  • the optical lens 1 satisfies at least one of the following conditions: the first lens 10 has a positive refractive power; the second lens 20 has a negative refractive power; the The third lens 30 has positive power; the fourth lens 40 has positive power; and the fifth lens 50 has negative power.
  • the specific design of the optical lens 1 can be carried out through the limitation of the above-mentioned multiple conditions. In this embodiment, the total optical length of the optical lens 1 is reduced by making different lenses have different optical powers.
  • each lens can have at least one aspheric surface on the object side and the image side, specifically, the object side S1 and the image side S2 of the first lens 10, the object side of the second lens 20 S3 and the image side S4, the object side S5 and the image side S6 of the third lens 30, the object side S7 and the image side S8 of the fourth lens 40, and the object side S9 and the image side of the fifth lens 50 S10 has at least one aspherical surface.
  • "aspheric surface” refers to a lens with at least one aspherical surface.
  • the aspherical lens is beneficial to correct the aberration of the optical imaging system and improve the imaging quality of the optical imaging system. It can be easily made into a shape other than a spherical surface to obtain more control variables and obtain the advantage of good imaging with a small number of lenses, thereby reducing the number of lenses and meeting miniaturization.
  • the object side and the image side of each lens are aspheric.
  • the object side and the image side of each lens are even-order aspheric surfaces, so that the lens is symmetrical, and the rotationally symmetrical surface shape reduces the processing difficulty of the lens on the basis of increasing the optimization variables, making the lens easy to process .
  • the even-order aspheric surface is used in the design of the optical system, which increases the degree of freedom in optimization compared with the spherical optical system, so that aberrations can be corrected better.
  • the first expression represents the similarity of the quadric surface
  • the second expression is the sum of the series of even-degree polynomial power levels.
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface at a position of height r along the direction of the optical axis L
  • c is the radius of curvature of the vertex
  • k is the conic coefficient of the quadric surface
  • r Radial ray coordinates
  • N is the number of items of the high-degree polynomial
  • ⁇ i is the ith-order aspheric coefficient of the object side or image side.
  • N is 10.
  • the object side S1 of the first lens 10 is a convex surface
  • the image side S2 of the first lens 10 is a concave surface
  • the object side S3 of the second lens 20 is concave at the near optical axis and convex at the circumference, and the image side S4 of the second lens 20 is concave.
  • the object side surface S5 of the third lens 30 is a convex surface
  • the image side surface S6 of the third lens 30 is a concave surface
  • the object side surface S7 of the fourth lens 40 is a concave surface
  • the image side surface S8 of the fourth lens 40 is a convex surface
  • the object side S9 of the fifth lens 50 is concave
  • the image side S10 of the fifth lens 50 is concave at the near optical axis L and convex at the circumference.
  • the near optical axis mentioned above refers to the area close to the optical axis L
  • the circumference refers to the area away from the optical axis L and the edge of the lens.
  • the object side and the image side of the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, and the fifth lens 50 can be designed in the above-mentioned manner, so that the first lens 10 can be realized. has positive power, the second lens 20 has negative power, the third lens 30 has positive power, the fourth lens 40 has positive power, and the fifth lens 50 has negative power, so that the focal length, total length, The energy, F-number, angle of view, and detectable wavelength that can achieve diffraction-limited focusing for each field of view are within the above-mentioned ranges, and finally achieve the purpose of reducing the total optical length of the optical lens 1 .
  • the optical path can be transmitted according to the preset direction and finally reach the imaging surface S for imaging.
  • the object side and image side of the first lens 10 , the second lens 20 , the third lens 30 , the fourth lens 40 , and the fifth lens 50 not only have concave or convex surfaces, but also have flat surfaces.
  • the plane is the non-optical region of each lens, that is, the region through which light rays for imaging do not pass. Therefore, the plane of the non-optical region will not be processed during lens design and processing, so that the plane of this region remains flat, further reducing the difficulty of lens processing.
  • the object side S3 and the image side S4 of the second lens 20, and the object side S9 and the image side 10 of the fifth lens 50 are on the There is at least one inflection point O on the section.
  • the inflection point O can be used to correct the aberration of the off-axis field of view, suppress the incident angle of the light to the imaging surface S, match the photosensitive element more accurately, and improve the imaging quality.
  • two inflection points O are provided on each of the object side S3 of the second lens 20 and the image side S10 of the fifth lens 50 .
  • the central thickness CT1 of the first lens 10 on the optical axis L the central thickness CT2 of the second lens 20 on the optical axis L, the third lens 30 on the The central thickness CT3 on the optical axis L, the central thickness CT4 of the fourth lens 40 on the optical axis L, the central thickness CT5 of the fifth lens 50 on the optical axis L, and the optical lens
  • the total optical length TTL of 1 satisfies the following relationship: 0.24 ⁇ (CT1+CT2+CT3+CT4+CT5)/TTL ⁇ 0.48.
  • the thickness of each lens can be further designed.
  • the central thickness here refers to the distance between the object side and the intersection point of the image side and the optical axis L of each lens.
  • the total thickness of the five lenses and the total optical length TTL can satisfy the above relationship.
  • the Abbe number Vd1 of the first lens 10 satisfies the following relationship: 53 ⁇ Vd1 ⁇ 59; 18 ⁇ Vd2 ⁇ 25; 53 ⁇ Vd3 ⁇ 59; 53 ⁇ Vd4 ⁇ 59; 53 ⁇ Vd5 ⁇ 59.
  • the present application also defines the Abbe number of each lens. As described above, when the Abbe numbers of the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, and the fifth lens 50 satisfy the above relationship, it is beneficial for the optical lens 1 to obtain a higher The modulation transfer function improves the imaging quality of the optical lens 1 .
  • the specific parameters of each lens may include: the material of the first lens 10 is optical plastic, its refractive index is 1.5-1.6, its A multiple is 53-59, and its central thickness is 0.4-0.7mm.
  • the material of the second lens 20 is optical plastic with a refractive index of 1.55-1.7, an Abbe number of 18-25, and a central thickness of 0.2-0.5 mm.
  • the material of the third lens 30 is optical plastic with a refractive index of 1.5-1.6, an Abbe number of 53-59, and a central thickness of 0.5-0.7 mm.
  • the fourth lens 40 is made of optical plastic with a refractive index of 1.5-1.6, an Abbe number of 53-59, and a central thickness of 0.3-0.5 mm.
  • the fifth lens 50 is made of optical plastic with a refractive index of 1.5-1.6, an Abbe number of 53-59, and a central thickness of 0.3-0.5 mm.
  • the material of the optical filter 60 is glass or plastic, the refractive index of the optical filter 60 is 1.5-1.6, the Abbe number is 61-67, and the central thickness is 0.15-0.3 mm.
  • the material of each lens may also be glass.
  • the material of each lens, parameters such as refractive index, Abbe number, and central thickness can be further optimized through the above-mentioned limited conditions. By changing each lens, the center thickness can be reduced on the basis of meeting the above conditions, so as to achieve the purpose of reducing the total optical length and improve the imaging quality of the optical lens 1 .
  • the material of the first lens 10 is optical plastic, its refractive index is 1.544, its A multiple is 55.93, and its central thickness is 0.586 mm;
  • the material of the second lens 20 is optical plastic, its refractive index is 1.642, The Abbe number is 22.456, and the central thickness is 0.3mm;
  • the material of the third lens 30 is optical plastic, its refractive index is 1.544, the Abbe number is 55.93, and the central thickness is 0.613mm;
  • the material of the fourth lens 40 It is an optical plastic with a refractive index of 1.544, an Abbe number of 55.93, and a central thickness of 0.4mm;
  • the material of the fifth lens 50 is optical plastic, with a refractive index of 1.544, an Abbe number of 55.93, and a central thickness of 0.45 mm;
  • the refractive index of the filter 60 is 1.517, the Abbe number is 64.2, and the central thickness is 0.21 mm.
  • the distance between the lenses can be further designed in this embodiment.
  • the distance T12 between the image side S2 of the first lens 10 and the object side S3 of the second lens 20 on the optical axis L the distance between the image side S4 of the second lens 20 and the The distance T23 of the object side surface S5 of the third lens 30 on the optical axis L, the central thickness CT1 of the first lens 10 on the optical axis L, and the distance T23 of the second lens 20 on the optical axis L
  • the central thickness CT2 above satisfies the following relationship: 0.13 ⁇ (T12+T23)/(CT1+CT2) ⁇ 0.92.
  • the distance T23 between the image side S4 of the second lens 20 and the object side S5 of the third lens 30 on the optical axis L, the distance between the image side S6 of the third lens 30 and the The distance T34 of the object side surface S7 of the fourth lens 40 on the optical axis L, the central thickness CT2 of the second lens 20 on the optical axis L, and the distance T34 of the third lens 30 on the optical axis L The central thickness CT3 above satisfies the following relationship: 0.75 ⁇ (T23+T34)/(CT2+CT3) ⁇ 2.21.
  • the distance T34 between the image side S6 of the third lens 30 and the object side S7 of the fourth lens 40 on the optical axis L, the distance between the image side S8 of the fourth lens 40 and the The distance T45 of the object side surface S9 of the fifth lens 50 on the optical axis L, the central thickness CT3 of the third lens 30 on the optical axis L, and the distance T45 of the fourth lens 40 on the optical axis L The central thickness CT4 above satisfies the following relationship: 1 ⁇ (T34+T45)/(CT3+CT4) ⁇ 2.25.
  • T12 is the air gap between the first lens 10 and the second lens 20 on the optical axis L.
  • T23 is the air gap between the second lens 20 and the third lens 30 on the optical axis L.
  • T34 is the air gap between the third lens 30 and the fourth lens 40 on the optical axis L.
  • T45 is the air gap between the fourth lens 40 and the fifth lens 50 on the optical axis L.
  • the air space between the lenses and the central thickness of the lens satisfy the above relationship, the air space between the lenses can be reduced, thereby further reducing the total optical length of the optical lens 1 . And it can also reduce the deflection angle of light passing through the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, and the fifth lens 50, reduce the first lens 10, the second lens 20, the third lens
  • the sensitivity of the lens 30, the fourth lens 40, and the fifth lens 50 to forming and assembly tolerances improves the yield rate of the mass production of the optical lens 1, and reduces the number of the first lens 10, the second lens 20, and the third lens 30 during assembly. , the stress of the fourth lens 40, and the fifth lens 50, so as to avoid excessive deformation of the lenses.
  • the air space between the first lens 10 and the second lens 20 is 0.05-0.2mm
  • the air space between the second lens 20 and the third lens 30 is 0.1-0.35mm
  • the third lens 30 The air space between the fourth lens 40 and the fourth lens 40 is 0.8-1.2mm
  • the air space between the fourth lens 40 and the fifth lens 50 is 1.5-1.9mm
  • the air space between the fifth lens 50 and the optical filter 60 The air gap between the filter 60 and the imaging surface S is 0.5-0.7mm.
  • the air gap here refers to the distance between the image side S12 of the previous lens or filter 60 and the intersection of the object side and the optical axis L of the rear lens or filter 60 .
  • the distance between each lens, the optical filter 60 and the imaging surface S can be further optimized through the above-mentioned limited conditions, so as to reduce the air gap and finally achieve the purpose of reducing the total optical length.
  • the air gap between the first lens 10 and the second lens 20 is 0.1 mm
  • the air gap between the second lens 20 and the third lens 30 is 0.25 mm
  • the third lens 30 and the fourth lens 40 The air interval between them is 0.927mm
  • the air interval between the fourth lens 40 and the fifth lens 50 is 1.764mm
  • the air interval between the fifth lens 50 and the optical filter 60 is 0.5mm
  • the optical filter 60 and The air space between the imaging planes S is 0.6 mm.
  • the above content is a detailed introduction of the optical lens 1 . According to the above content, the present application will introduce a specific embodiment to further describe the optical lens 1 and the performance of the optical lens 1 of the present application in detail.
  • FIG. 5 is a schematic diagram of an optical path of an optical lens in an embodiment of the present application.
  • Table 1 shows the basic parameters of the optical lens 1
  • Table 2 shows the coefficients of the 4th to 20th powers of the even-degree polynomial in the surface equation.
  • the optical lens 1 includes: a first lens 10, a second lens 20, an aperture 70, a third lens 30, a fourth lens lens 40 , fifth lens 50 , and optical filter 60 .
  • the light path of the optical lens 1 is shown in Figure 5. The light passes through the first lens 10, the second lens 20, the aperture 70, the third lens 30, the fourth lens 40, the fifth lens 50, and the optical filter 60 in sequence before forming an image. Imaging on surface S.
  • the first lens 10 has an object side S1 and an image side S2.
  • the second lens 20 has an object side S3 and an image side S4.
  • the third lens 30 has an object side S5 and an image side S6.
  • the fourth lens 40 has an object side S7 and an image side S8 .
  • the fifth lens 50 has an object side S9 and an image side S10 .
  • the 0.586 mm of the object side S1 of the first lens 10 refers to the distance between the apex of the object side S1 of the first lens 10 and the apex of the image side S2 of the first lens 10 on the optical axis L.
  • distance. 0.1 mm of the image side S2 of the first lens 10 refers to the distance between the apex of the image side S2 of the first lens 10 and the apex of the object side S3 of the second lens 20 on the optical axis L.
  • the 0.3 mm of the object side S3 of the second lens 20 refers to the distance between the apex of the object side S3 of the second lens 20 and the apex of the image side S4 of the second lens 20 on the optical axis L.
  • the 0.25 mm of the image side S4 of the second lens 20 refers to the distance between the apex of the image side S4 of the second lens 20 and the apex of the object side S5 of the third lens 30 on the optical axis L.
  • the 0.613 mm of the object side S5 of the third lens 30 refers to the distance between the apex of the object side S5 of the third lens 30 and the apex of the image side S6 of the third lens 30 on the optical axis L.
  • the 0.927 mm of the image side S6 of the third lens 30 refers to the distance between the apex of the image side S6 of the third lens 30 and the apex of the object side S7 of the fourth lens 40 on the optical axis L.
  • the 0.4 mm of the object side S7 of the fourth lens 40 refers to the distance between the apex of the object side S7 of the fourth lens 40 and the apex of the image side S8 of the fourth lens 40 on the optical axis L.
  • the 1.764 mm of the image side S8 of the fourth lens 40 refers to the distance between the apex of the image side S8 of the fourth lens 40 and the apex of the object side S9 of the fifth lens 50 on the optical axis L.
  • the 0.45 mm of the object side S9 of the fifth lens 50 refers to the distance between the apex of the object side S9 of the fifth lens 50 and the apex of the image side S10 of the fifth lens 50 on the optical axis L.
  • the 0.5 mm of the image side S10 of the fifth lens 50 refers to the distance between the apex of the image side S10 of the fifth lens 50 and the apex of the object side S11 of the filter 60 on the optical axis L.
  • the 0.21 mm of the object side S11 of the filter 60 refers to the distance between the apex of the object side S11 of the filter 60 and the apex of the image side S12 of the filter 60 on the optical axis L.
  • the 0.6 mm of the image side S12 of the filter 60 refers to the distance between the apex of the image side S12 of the filter 60 and the imaging plane S on the optical axis L.
  • the optical lens 1 of the present embodiment has an angle of view of 75°, a system focal length of 6.6mm, a total length of 6.7mm, and an F number of 1.8, which can detect
  • the wavelength range is 400nm-700nm, and the dominant wavelength is 586.7nm.
  • FIG. 6 is a full-aperture modulation transfer function (MTF) graph of the optical lens in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a distortion curve of an optical lens in an embodiment of the present application.
  • MTF full-aperture modulation transfer function
  • the optical lens 1 provided by this embodiment has less distortion, and the distortion is not more than 3.5% in the entire field of view, which can greatly reduce the influence of distortion on imaging quality and improve imaging quality.
  • This embodiment simplifies the lens structure with large aperture, large field of view, and long focal length. It is designed to meet the needs of computational imaging image processing, ensuring that 1/4 of each field of view can be focused close to the diffraction limit, and finally combined with computational imaging image processing algorithms High image quality can be obtained.
  • FIG. 8 is a schematic diagram of a camera module according to an embodiment of the present application.
  • This embodiment provides a camera module 2 , including an image sensor 80 and the optical lens 1 provided in the above embodiments of the present application, and the image sensor 80 is located on the image side of the optical lens 1 .
  • Image sensor 80 can be CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) or CCD (Charged Coupled Device, charge-coupled device), also can be the image sensor 80 of other types except CMOS or CCD, for example CID sensor (Charge Injection Device, charge injection device). It can be understood that, for CMOS, DSP can be integrated in CMOS. CMOS has the advantages of high integration, low power consumption, and low cost, and is more suitable for mobile phones with limited installation space. In addition, the imaging plane S mentioned above is the object side of the image sensor 80 .
  • the camera module 2 may also include a flexible circuit board.
  • the imaging light of the subject enters the optical lens 1, and then reaches the image sensor 80.
  • the photons in the imaging light hit the image sensor 80 to generate mobile charges. This is the internal photoelectric effect. Signal.
  • the image sensor 80 and the circuit board of the electronic device 3 are electrically connected using a flexible circuit board.
  • the circuit board is provided with an A/D converter (analog-to-digital converter) and a DSP (Digital Signal Processor, digital signal processor 92), the A/D converter converts the electrical signal into a digital signal, and the digital signal is processed by the DSP.
  • the image is transmitted to the display screen of the electronic device 3 to display the image, that is, the shooting of the subject is realized.
  • the camera module 2 provided in this embodiment can reduce the thickness of the camera module 2 and improve the imaging quality by adopting the optical lens 1 provided in the above embodiments of the present application.
  • the image sensor 80 is close to the image side S12 of the filter 60 .
  • FIG. 9 is a top view of an electronic device in an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view along the A-A direction in FIG. 9 .
  • This embodiment provides an electronic device 3, including a housing 90, a processor 92, and the camera module 2 provided in the above embodiments of the present application, the housing 90 has a receiving space 91, and the processor 92 and At least part of the camera module 2 is disposed in the receiving space 91 , and the processor 92 is electrically connected to the image sensor 80 .
  • Electronic equipment 3 in this embodiment includes but not limited to camera, mobile phone, tablet, notebook computer, palmtop computer, personal computer (Personal Computer, PC), personal digital assistant (Personal Digital Assistant, PDA), portable media player (Portable Media Player, PMP), navigation devices, wearable devices, smart watches, pedometers and other mobile terminals.
  • PC Personal Computer
  • PDA Personal Digital Assistant
  • PMP portable media player
  • navigation devices wearable devices, smart watches, pedometers and other mobile terminals.
  • the electronic device 3 provided in this embodiment can reduce the thickness of the camera module 2 by using the camera module 2 provided in the above embodiments of the present application, thereby reducing the thickness of the electronic device 3 as a whole.
  • the camera module 2 can also be prevented from protruding from the casing 90 of the electronic device 3 , thereby effectively protecting the camera module 2 and improving the service life of the camera module 2 .
  • the processor 92 is used to process the image information sent by the image sensor 80, the image information has aberrations, and the processor 92 can perform aberration for 70%-80% of the aberrations. Correction.
  • the optical lens 1 of the present application can make 20%-30% of the energy available in each field of view through the design of the lens. Realize diffraction-limited focusing, that is, 20%-30% of aberrations can be corrected through the lens, and the remaining 70%-80% of aberrations can be corrected by the processor 92 provided in this embodiment, thereby reducing the optical lens 1
  • the optical total length can also realize the optical lens 1 with a large viewing angle and a large receiving aperture, thereby improving the imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(1)、摄像头模组(2)、电子设备(3),光学镜头(1)中沿着光轴由物侧至像侧包括第一透镜(10)、第二透镜(20)、第三透镜(30)、第四透镜(40)、及第五透镜(50);光学镜头(1)的系统焦距f满足如下关系:6mm<f<7mm,且光学镜头(1)的光学总长TTL与光学镜头(1)的系统焦距f满足如下关系:0<TTL-f<0.2mm。该光学镜头(1)可校正20-30%的像差,而剩下的70-80%的像差则可由处理器(92)进行校正,达到缩减光学镜头(1)的光学总长的目的。

Description

光学镜头、摄像头模组、电子设备 技术领域
本申请属于光学镜头技术领域,具体涉及光学镜头、摄像头模组、电子设备。
背景技术
摄像功能已成为电子设备中非常重要的功能,利用摄像功能可进行拍照、摄像、视频通话、验证、移动支付等等。因此摄像头模组是电子设备的核心部件之一。但目前摄像头模组中光学镜头的光学总长较大,使得电子设备整机的厚度通常受限于光学镜头的厚度,从而增加电子设备整机的厚度。
发明内容
鉴于此,本申请第一方面提供了一种光学镜头,沿着光轴由物侧至像侧包括第一透镜、第二透镜、第三透镜、第四透镜、及第五透镜;所述光学镜头的系统焦距f满足如下关系:6mm<f<7mm,且所述光学镜头的光学总长TTL与所述光学镜头的系统焦距f满足如下关系:0<TTL-f<0.2mm。
本申请第二方面提供了一种摄像头模组,包括图像传感器、及如本申请第一方面提供的光学镜头,所述图像传感器位于所述光学镜头的像侧。
本申请第三方面提供了一种电子设备,包括壳体、处理器、及如本申请第二方面提供的摄像头模组,所述壳体具有收容空间,所述处理器与至少部分所述摄像头模组设于所述收容空间内,所述处理器电连接所述图像传感器。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对本申请实施方式中所需要使用的附图进行说明。
图1为本申请一实施方式中光学镜头的示意图。
图2为本申请另一实施方式中光学镜头的示意图。
图3为本申请一实施方式中光学镜头具备接近衍射极限成像口径的光路图。
图4为本申请又一实施方式中光学镜头的示意图。
图5为本申请一实施方式中光学镜头的光学路径示意图。
图6为本申请一实施方式中光学镜头的全口径调制传递函数(MTF)曲线图。
图7为本申请一实施方式中光学镜头的畸变曲线示意图。
图8为本申请一实施方式种摄像头模组的示意图。
图9为本申请一实施方式中电子设备的俯视图。
图10为图9中沿A-A方向的截面示意图。
标号说明:
光学镜头-1,光轴-L,成像面-S,反曲点-O,摄像头模组-2,电子设备-3,第一透镜-10,第一透镜的物侧面-S1,第一透镜的像侧面-S2,第二透镜-20,第二透镜的物侧面-S3,第二透镜的像侧面-S4,第三透镜-30,第三透镜的物侧面-S5,第三透镜的像侧面-S6,第四透镜-40,第四透镜的物侧面-S7,第四透镜的像侧面-S8,第五透镜-50,第五透镜的物侧面-S9,第五透镜的像侧面-S10,滤光片-60,滤光片的物侧面S11,滤光片的像侧面-S12,光圈-70,图像传感器-80,壳体-90,收容空间-91,处理器-92。
具体实施方式
以下是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
本实施方式提供了一种光学镜头,沿着光轴由物侧至像侧包括第一透镜、第二透镜、第三透镜、第四透镜、及第五透镜;所述光学镜头的系统焦距f满足如下关系:6mm<f<7mm,且所述光学镜头的光学总长TTL与所述光学镜头的系统焦距f满足如下关系:0<TTL-f<0.2mm。
其中,在所述光学镜头的视场角FOV的范围内,任意视场均具有20%-30%的能量可实现衍射极限聚焦。
其中,所述光学镜头的系统焦距f与所述光学镜头的有效直径光圈D满足如下关系:1.5<f/D<2。
其中,所述视场的实际通光孔径D’与所述光学镜头的有效直径光圈D满足如下关系:0.45<D’/D<0.55。
其中,所述光学镜头的最大视场角FOV 最大与所述光学镜头的系统焦距f满足如下关系:7.4<FOV 最大/arctan(1/f)<9.84。
其中,所述光学镜头能够探测的波长λ满足如下关系:400nm<λ<700nm。
其中,所述光学镜头的主波长λ 满足如下关系:580nm<λ <595nm。
其中,所述光学镜头还包括光圈,所述光圈位于所述第二透镜的像侧面与所述第三透镜的物侧面之间。
其中,所述光学镜头满足以下情况中的至少一种:
所述第一透镜具有正光焦度;所述第二透镜具有负光焦度;所述第三透镜具有正光焦度;所述第四透镜具有正光焦度;所述第五透镜具有负光焦度。
其中,所述第一透镜的物侧面和像侧面、所述第二透镜的物侧面和像侧面、所述第三透镜的物侧面和像侧面、所述第四透镜的物侧面和像侧面、及所述第五透镜的物侧面和像侧面中具有至少一个非球面,且所述非球面的面型z满足如下关系:
Figure PCTCN2022126250-appb-000001
其中,z为所述非球面沿所述光轴方向在高度为r的位置时,距所述非球面顶点的距离矢高;c为顶点的曲率半径;k为二次曲面圆锥系数;r为径向的光线坐标;N为高次多项式的项数;α i为该物侧面或像侧面第i阶非球面系数。
其中,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面;
所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面。
其中,所述第二透镜的物侧面在近光轴处为凹面,在圆周处为凸面,所述第二透镜的像侧面为凹面;
所述第五透镜的物侧面为凹面,所述第五透镜的像侧面在近光轴处为凹面,在圆周处为凸面。
其中,以光轴所在的平面为截面,所述第二透镜的物侧面和像侧面、及所述第五透镜的物侧面和像侧面中至少一面在所述截面上设有至少一个反曲点。
其中,所述第一透镜于所述光轴上的中心厚度CT1、所述第二透镜于所述光轴上的中 心厚度CT2、所述第三透镜于所述光轴上的中心厚度CT3、所述第四透镜于所述光轴上的中心厚度CT4、所述第五透镜于所述光轴上的中心厚度CT5、及所述光学镜头的光学总长TTL满足如下关系:0.24<(CT1+CT2+CT3+CT4+CT5)/TTL<0.48。
其中,所述第一透镜的像侧面与所述第二透镜的物侧面于所述光轴上的距离T12、所述第二透镜的像侧面与所述第三透镜的物侧面于所述光轴上的距离T23、所述第一透镜于所述光轴上的中心厚度CT1、及所述第二透镜于所述光轴上的中心厚度CT2满足如下关系:0.13<(T12+T23)/(CT1+CT2)<0.92。
其中,所述第二透镜的像侧面与所述第三透镜的物侧面于所述光轴上的距离T23、所述第三透镜的像侧面与所述第四透镜的物侧面于所述光轴上的距离T34、所述第二透镜于所述光轴上的中心厚度CT2、及所述第三透镜于所述光轴上的中心厚度CT3满足如下关系:0.75<(T23+T34)/(CT2+CT3)<2.21。
其中,所述第三透镜的像侧面与所述第四透镜的物侧面于所述光轴上的距离T34、所述第四透镜的像侧面与所述第五透镜的物侧面于所述光轴上的距离T45、所述第三透镜于所述光轴上的中心厚度CT3、及所述第四透镜于所述光轴上的中心厚度CT4满足如下关系:1<(T34+T45)/(CT3+CT4)<2.25。
其中,所述第一透镜的阿贝数Vd1、所述第二透镜的阿贝数Vd2、所述第三透镜的阿贝数Vd3、所述第四透镜的阿贝数Vd4、及所述第五透镜的阿贝数Vd5满足如下关系:53<Vd1<59;18<Vd2<25;53<Vd3<59;53<Vd4<59;53<Vd5<59。
本实施方式还提供了一种摄像头模组,包括图像传感器、及如本申请上述实施方式提供的光学镜头,所述图像传感器位于所述光学镜头的像侧。
本实施方式还提供了一种电子设备,包括壳体、处理器、及如本申请上述实施方式提供的摄像头模组,所述壳体具有收容空间,所述处理器与至少部分所述摄像头模组设于所述收容空间内,所述处理器电连接所述图像传感器。
在介绍本申请的技术方案之前,再详细介绍下相关技术中的技术问题。
随着电子设备的不断发展,由于电子设备的便携性、以及丰富多样的操作性,给用户的生活带来诸多便利,已成为用户生活不可或缺的一部分。例如大部分电子设备具有摄像功能,摄像功能已成为电子设备中非常重要的功能,利用摄像功能可进行拍照、摄像、视频通话、验证、移动支付等等。而在电子设备中摄像头模组是实现摄像功能的核心部件。
摄像头模组通常包括光学镜头,目前光学镜头由于各种各样的原因导致光学镜头的光学总长较大,例如在光学系统中,由于非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致会产生像差。而目前摄像头模组多利用传统的光学设计理念,即基于光学镜头本身进行像差校正。因此这就导致光学镜头的光学总长较大。目前摄像头模组中光学镜头的光学总长通常都比系统焦距大1到2mm以上。这使得电子设备整机的总厚度通常受限于摄像头模组的厚度,甚至,部分摄像头模组会凸出于电子设备的壳体,这样会使得摄像头模组易与外界物体接触,从而易使摄像头模组损坏,降低了摄像头模组的使用寿命。
鉴于此,为了解决上述问题,本申请提供了一种光学镜头。请一并参考图1-图2,图1为本申请一实施方式中光学镜头的示意图。图2为本申请另一实施方式中光学镜头的示意图。本实施方式提供了一种光学镜头1,具体地,沿着光轴L由物侧至像侧包括第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50;所述光学镜头1的系统焦距f满足如下关系:6mm<f<7mm,且所述光学镜头1的光学总长TTL与所述光学镜头1的系统焦距f满足如下关系:0<TTL-f<0.2mm。
本实施方式提供的光学镜头1是摄像头模组2的一部分,主要应用于各种各样的电子设备3中从而使电子设备3具备摄像功能,电子设备3包括但不限于照相机、手机、平板、 笔记本电脑、掌上电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、便携式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手表、计步器等移动终端。
从上述内容可知,相关技术中摄像头模组2中光学镜头1的光学总长通常都比系统焦距大1到2mm以上,导致光学镜头1的光学总长(Total Track Length,TTL)较大。其中,光学总长TTL指的是光学镜头1中从第一透镜10的物侧面S1到成像面S于光轴L上的距离。
因此,本实施方式需要缩减光学总长TTL的大小,但是本实施方式并未采用传统的缩减光学总长TTL的方式,在现有的缩减光学总长TTL的方式方法中,当光学总长TTL减小时,系统焦距f通常也会一并减小。例如现有光学镜头1的光学总长TTL从7mm减小到6mm时,此时系统焦距f可能仅为5mm左右,甚至4mm左右。这样系统焦距f就会过小,无法满足光学镜头1的使用需求。
在本实施方式中使系统焦距f满足6mm<f<7mm,当系统焦距f为6-7mm时可满足光学镜头的使用需求,满足大部分用户的日常拍摄需求。并且本实施方式还可使光学总长TTL与系统焦距f满足0<TTL-f<0.2mm,这样在系统焦距f为6-7mm的基础上,相较于相关技术中光学总长TTL通常比系统焦距f大1mm到2mm以上,此时本实施方式便可达到缩减光学镜头1的光学总长的目的。
另外,当光学镜头1应用于电子设备3中时,不仅可减小电子设备3整机的厚度,还可避免光学镜头1凸出于电子设备3的壳体90,从而有效地保护光学镜头1,提高光学镜头1的使用寿命。
其次,在本实施方式中,由于0<TTL-f<0.2mm,即光学总长TTL的大小与系统焦距f的大小有关,因此控制系统焦距f的大小,以及光学总长TTL与系统焦距f的关系,便可得到光学总长TTL的范围。可选地,当系统焦距f满足6mm<f<7mm时,此时光学总长TTL满足如下关系:6mm<TTL<7.2mm。
进一步可选地,系统焦距f满足6.3mm<f<6.7mm,光学总长TTL与系统焦距f满足0.05mm<TTL-f<0.15mm,光学总长TTL满足6.35mm<TTL<6.85mm。具体地,系统焦距f可以为6.4mm,6.5mm,6.6mm。光学总长TTL与系统焦距f的差值为0.1mm。此时光学总长TTL为6.5mm,6.6mm,6.7mm。
另外,光学镜头1中包括多个透镜,光学总长TTL与系统焦距f的具体大小与多个透镜的相关参数有关,本实施方式可采用5个透镜,即第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50,对这5个透镜之间的距离,以及每个透镜的相关参数进行设计,从而实现光学总长TTL与系统焦距f满足上述关系。至于具体如何设计,以及设计出来的5个透镜的参数为多少本申请将在下文逐一介绍。
另外,如图2所示,光学镜头1除了包括透镜外,还可包括滤光片60。其中滤光片60可以为红外滤光片60,用于过滤掉红外光以外的其它波段的光,以消减鬼像杂光等对成像不利的因素。鬼像是指由于透镜表面反射而在光学成像系统焦面附近产生的附加像,其亮度一般较暗,且与原像错开,会降低成像质量。本实施方式中的滤光片60位于第五透镜50的像侧面S10与成像面S之间。
请一并参考图3,图3为本申请一实施方式中光学镜头具备接近衍射极限成像口径的光路图。在本实施方式中,在所述光学镜头1的视场角FOV的范围内,任意视场均具有20%-30%的能量可实现衍射极限聚焦。
从上述内容可知,本申请可缩减光学镜头1的光学总长。在实际设计中,本实施方式可采用牺牲光学镜头1其他性能的方法来降低光学总长TTL。例如本实施方式采用降低像 差校正数量的方法来降低光学总长。具体地,在所述光学镜头1的视场角FOV的范围内有多个视场;在这里,光学镜头1的视场角FOV可以理解为光学镜头1的水平视场角FOV 、垂直视场角FOV 垂直、或者最大视场角FOV 最大。可选地,本实施方式以视场角FOV为最大视场角FOV 最大进行示意说明。最大视场角FOV 最大是指光学镜头1所能覆盖的范围,当物体超过这个范围后就不会被收在镜头里。
其次,视场角FOV具有多个视场可以理解为,例如当视场角FOV为90°时,代表光学镜头1可覆盖90°范围的物体;而小于90°范围的物体均可被镜头所覆盖。例如在小于90°的范围内包含10°,20°,30°,40°,50°,60°等其他角度,每个角度均可视为一个视场,所以视场角FOV具有多个视场。
本实施方式可使任意视场均有20%-30%的能量可实现衍射极限聚焦。当光线射入光学镜头1中,光线本身携带着能量。光线在成像面S上实现衍射极限聚焦时,即为光线在成像面S上形成一个点即光点。当光线最终形成光点时便可以理解为不存在像差,换句话说该光线的像差已经进行了校正。因此本实施方式使每个视场均有20%-30%的能量可实现衍射极限聚焦。也可以理解为,每个视场均有20%-30%的光线的像差进行了校正。所以本实施方式降低了光学镜头1本身校正像差的能力,及降低了校正像差的比例,只需校正20%-30%,这样可极大地降低光学镜头1的设计难度,例如减小透镜的数量,透镜与透镜之间的距离,透镜本身的厚度等等,从而最终达到缩减光学系统总长的目的,简化了光学镜头1的结构。
可选地,每个视场还剩70%-80%的能量不能实现衍射极限聚焦,即光线在成像面S上形成的不是光点而是离散斑,因此就会有70%-80%的像差无法被校正。对于这70%-80%的像差,本申请可将这部分像差校正需求转移到后续的图像处理算法来进行校正,即后续将图像信息发送给处理器92,利用处理器92来对这70%-80%的像差进行校正。这样不仅可降低光学镜头1的光学总长,还可实现具有大视场角,大接收孔径的光学镜头1,提高成像质量,实现高质量的成像系统。
可选地,每个所述视场均有22%-28%的能量可实现衍射极限聚焦。进一步可选地,每个所述视场均有24%-26%的能量可实现衍射极限聚焦。具体地,每个所述视场均有25%的能量可实现衍射极限聚焦。
综上,本实施方式采取了不同于传统镜头的设计理念,在校正像差的过程中,只保证每个视场20%-30%的能量的光线实现理想聚焦,从而能够降低光学系统像差校正的难度,降低设计难度,压缩光学系统的总长,使得对于大视场角,大接收孔径的光学系统,其总长与其焦距基本相当,仅长0-0.2mm。
请一并参考图4,图4为本申请又一实施方式中光学镜头的示意图。本实施方式中,所述光学镜头1还包括光圈70,所述光圈70位于所述第二透镜20的像侧面S4与所述第三透镜30的物侧面S5之间。
在光学镜头1中除了透镜之外,还包括光圈70,光圈70用于控制进光量的大小,即控制光线进入透镜的数量。当光圈70较大时,可进入光圈70的光线数量较多;当光圈70较小时,可进入光圈70的光线数量较少。本实施方式可通过设置光圈70来调节光线的数量从而调节每个视场可实现衍射极限聚焦的能量范围。
本实施方式可使光圈70设在多个透镜中间,例如可位于所述第二透镜20的像侧面S4与所述第三透镜30的物侧面S5之间,这样可使透镜抗污防尘,并且减小光圈70的尺寸,节省用料,进一步减小光学镜头1的尺寸。当然了,在其他实施方式中,光圈70也可位于光学镜头1中的其他位置,例如位于第一透镜10的物侧面S1,或者第二透镜20的物侧面S3,或者第五透镜50的像侧面S10等等。
可选地,光圈70位于所述第二透镜20的像侧面S4上;或者,光圈70位于所述第三透镜30的物侧面S5上;或者,光圈70位于所述第二透镜20的像侧面S4与所述第三透镜30的物侧面S5中间的区域。
本实施方式中,所述光学镜头1的系统焦距f与所述光学镜头1的有效直径光圈D满足如下关系:1.5<f/D<2。
上述提及的有效直径光圈D可以理解为光圈70的最大直径,此时光圈70的扇叶并未伸出,光圈70可使最多光线进入。当然有效直径光圈亦可称之为有效光圈直径,这两者为同一概念,都代表了光圈70可通过的最大通光量时的直径。从上述关系式可以看出,系统焦距f与有效直径光圈D成正比例关系,当系统焦距f增加时有效直径光圈D也同时增加。当系统焦距f与有效直径光圈D的比值不在上述范围时,例如小于1.5或者大于2时,会增加光学镜头1的设计难度,例如无法通过5个透镜来实现,或者透镜的厚度较厚或者透镜间的距离增加,从而无法实现光学总长减小的目的。
也可以理解为,光圈70过大或者过小时,会使得设计出来的光圈70无法实现每个所述视场均有20%-30%的能量可实现衍射极限聚焦。因此本实施方式可更好地实现每个视场均有20%-30%的能量可实现衍射极限聚焦。另外,系统焦距f与有效直径光圈D的比值也可称为F数。
当本实施方式控制系统焦距f与有效直径光圈D的比值为1.5-2时,再通过控制系统焦距f为6-7mm,便可得到有效直径光圈D的范围,即3.5mm<D<4mm。可选地,1.6<f/D<1.9。进一步可选地,1.7<f/D<1.9。具体地,系统焦距f与有效直径光圈D的比值(f/D)为1.8,当焦距为6.6mm时,此时有效直径光圈D为3.67mm。
本实施方式中,所述多个视场的实际通光孔径D’与所述光学镜头1的有效直径光圈D满足如下关系:0.45<D’/D<0.55。
光学镜头1在拍摄时,会调整光圈70的扇叶来调整光圈70实际的实际通光孔径D’的大小,从而调整光线实际进入光圈70的数量。光线的数量会影响到每个视场可实现衍射极限聚焦的能量的多少,换句话说,视场的实际通光孔径D’与每个视场可实现衍射极限聚焦的能量大小有关。具体地,实际通光孔径D’有效直径光圈D比值的平方即可大致理解为每个视场可实现衍射极限聚焦的能量的大小。
从上述关系式可以看出实际通光孔径D’有效直径光圈D成正比例关系,当实际通光孔径D’增加时有效直径光圈D也同时增加。当实际通光孔径D’有效直径光圈D的比值不在上述范围时,例如小于0.45或者大于0.55时,会使得实际通光孔径D’过大或过小,从而影响光线实际进入光圈70的数量,从而无法实现每个所述视场均有20%-30%的能量可实现衍射极限聚焦。
可选地,为了使每个所述视场均有25%的能量可实现衍射极限聚焦,本实施方式可使实际通光孔径D’有效直径光圈D的比值(D’/D)为0.5,即各视场的通光口径为设计要求值的1/2。因此当有效直径光圈D为3.67mm时,多个视场的实际通光孔径D’为1.835mm。
综上,本实施方式为了减少光学镜头1的光学总长TTL,可通过调节各视场实际通光孔径D’的大小,使实际通光孔径D’与有效直径光圈D比值为0.45-0.55,从而使视场角FOV内的每个所述视场均有20%-30%的能量可实现衍射极限聚焦,降低光学镜头1的设计难度。
本实施方式中,所述光学镜头1的最大视场角FOV 最大与所述光学镜头1的系统焦距f满足如下关系:7.4<FOV 最大/arctan(1/f)<9.84。
本实施方式通过控制最大视场角FOV 最大与系统焦距f的比值关系,从而得到最大视场角FOV 最大的大小,而最大视场角FOV 最大同样也会影响光学镜头1的设计。从上述关系式可以看出,光学镜头1的最大视场角FOV 最大与光学镜头1的系统焦距f成反比例关系,当 系统焦距f增加时最大视场角FOV 最大减小。当最大视场角FOV 最大与系统焦距f的比值不在上述范围内时,例如小于7.4,或者大于9.84时,会增加光学镜头1的设计难度,例如无法通过5个透镜来实现,或者透镜的厚度或者透镜间的距离增加,从而无法实现光学总长减小的目的。
也可以理解为最大视场角FOV 最大过大或过小,会使得无法实现最大视场角FOV 最大内每个所述视场均有20%-30%的能量可实现衍射极限聚焦。因此本实施方式可更好地实现每个所述视场均有20%-30%的能量可实现衍射极限聚焦。
当本实施方式控制最大视场角FOV 最大与系统焦距f的比值为7.4-9.84之间时,再通过控制系统焦距f为6-7mm,便可得到最大视场角FOV 最大。可选地,最大视场角FOV 最大的范围满足如下关系:70°<FOV 最大<80°。进一步可选地,72°<FOV 最大<78°具体地,最大视场角FOV 最大可以为75°。当最大视场角FOV 最大为75°时,可使得任意视场均有20%-30%的能量可实现衍射极限聚焦,且进一步降低光学镜头1的设计难度。
本实施方式中,所述光学镜头1可探测的波长λ满足如下关系:400nm<λ<700nm。本实施方式光学镜头1可探测的光线为可见光,具体为波长400-700nm的可见光。可探测的光线波长同样也会影响到光学镜头1的设计。当可探测的波长不满足上述范围,例如小于400nm,或者大于700nm,会增加光学镜头1的设计难度,例如无法通过5个透镜来实现,或者透镜的厚度或者透镜间的距离增加,从而无法实现光学总长减小的目的。
因此本实施方式使可探测的波长为400-700nm可进一步降低光学镜头1的设计难度。可选地,光学镜头1可探测的波长λ满足500nm<λ<600nm。进一步可选地,光学镜头1可探测的波长λ满足550nm<λ<600nm。
另外,光学镜头1的主波长λ 满足如下关系:580nm<λ <595nm。本实施方式在可探测波长400-700nm的范围内可使主波长λ 为580-595nm。当主波长λ 为580-595nm时,可提高成像品质。可选地,光学镜头1的主波长λ 满足585nm<λ <590nm。具体地,光学镜头1的主波长λ 为586.7nm。
综上,本申请通过焦距、总长、每个视场可实现衍射极限聚焦的能量、F数、视场角、可探测的波长等条件来综合限制了光学镜头1的设计参数,利用上述限定条件可进一步降低光学镜头1的设计难度,最终利用5个透镜便可满足上述限定条件,实现减小光学镜头1的光学总长的目的。当然了,在其他实施方式中,也存在着其他条件来影响光学镜头1的设计。
请再次参考图1,本实施方式中,所述光学镜头1满足以下情况中的至少一种:所述第一透镜10具有正光焦度;所述第二透镜20具有负光焦度;所述第三透镜30具有正光焦度;所述第四透镜40具有正光焦度;及所述第五透镜50具有负光焦度。通过上述多个条件的限定,便可对光学镜头1进行具体的设计,本实施方式通过使不同的透镜具有不同的光焦度来从而减少光学镜头1的光学总长。
并且,本实施方式可使每个透镜的物侧面与像侧面中具有至少一个非球面,具体地,所述第一透镜10的物侧面S1和像侧面S2、所述第二透镜20的物侧面S3和像侧面S4、所述第三透镜30的物侧面S5和像侧面S6、所述第四透镜40的物侧面S7和像侧面S8、及所述第五透镜50的物侧面S9和像侧面S10中具有至少一个非球面。其中,“非球面”指至少一面为非球面的透镜。非球面透镜有利于校正光学成像系统的像差,提高光学成像系统的成像品质。可以容易制作成球面以外的形状,获得更多的控制变数,以较少枚数的透镜获得良好成像的优点,进而减少透镜数量,满足小型化。
可选地,每个透镜的物侧面与像侧面均为非球面。进一步可选地,每个透镜的物侧面与像侧面均为偶次非球面,从而使透镜对称,旋转对称的面型在增加了优化变量的基础上, 降低透镜的加工难度,使透镜便于加工。另外,将偶次非球面用与光学系统设计,这样相比于球面光学系统增加了优化自由度,从而能够更好的校正像差。
另外,所述非球面的面型z满足如下关系:
Figure PCTCN2022126250-appb-000002
上式中,第一项表达式为表征二次曲面面型相似,第二项表达式为偶次多项式幂级次的级数和。其中,z为所述非球面沿所述光轴L方向在高度为r的位置时,距所述非球面顶点的距离矢高;c为顶点的曲率半径;k为二次曲面圆锥系数;r为径向的光线坐标;N为高次多项式的项数;α i为该物侧面或像侧面第i阶非球面系数。本实施方式可采用上述的面型方程进行面型设计,并且本实施方式在第二项的偶次多项式幂级次的级数和中,从i=2开始计算,即从r的4次方开始计算。将r的2次方剔除这样可提高收敛性优化的效果,使优化出来的光学镜头1更符合上述的限定条件,实现缩减光学总长的目的。可选地,N为10。
具体地,本实施方式中,所述第一透镜10的所述物侧面S1为凸面,所述第一透镜10的所述像侧面S2为凹面。
具体地,本实施方式中,所述第二透镜20的物侧面S3在近光轴处为凹面,在圆周处为凸面,所述第二透镜20的像侧面S4为凹面。
具体地,本实施方式中,所述第三透镜30的所述物侧面S5为凸面,所述第三透镜30的所述像侧面S6为凹面。
具体地,本实施方式中,所述第四透镜40的所述物侧面S7为凹面,所述第四透镜40的所述像侧面S8为凸面。
具体地,本实施方式中,所述第五透镜50的所述物侧面S9为凹面,所述第五透镜50的所述像侧面S10在近光轴L处为凹面,在圆周处为凸面。
其中,上述所提及的近光轴处指的是靠近光轴L的区域,圆周处指的是远离光轴L、透镜边缘的区域。
本实施方式可通过将第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50的物侧面与像侧面采用上述方式进行设计,便可实现第一透镜10具有正光焦度,第二透镜20具有负光焦度,第三透镜30具有正光焦度,第四透镜40具有正光焦度,及第五透镜50具有负光焦度,从而使焦距、总长、每个视场可实现衍射极限聚焦的能量、F数、视场角、可探测的波长在上述范围内,最终实现减少光学镜头1的光学总长的目的。并且通过上述透镜面型的设计可使光路按照预设的方向传输最终到达成像面S上进行成像。
另外,第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50的物侧面与像侧面除了具有凹面或凸面,还具有平面。平面为各个透镜的非光学区域,即用于成像的光线不会通过的区域。因此在透镜设计与加工时不会对非光学区域的平面进行加工,从而使得该区域的平面仍为平面,进一步降低透镜的加工难度。
本实施方式中,以光轴L所在的平面为截面,所述第二透镜20的物侧面S3和像侧面S4、及所述第五透镜50的物侧面S9和像侧面10中至少一面在所述截面上设有至少一个反曲点O。该反曲点O可用来修正离轴视场的像差,抑制光线到成像面S的入射角度,能更精准地匹配感光元件,提高成像质量。
可选地,所述第二透镜20的物侧面S3、及所述第五透镜50的像侧面S10中每个面均设有两个反曲点O。
本实施方式中,所述第一透镜10于所述光轴L上的中心厚度CT1、所述第二透镜20于所述光轴L上的中心厚度CT2、所述第三透镜30于所述光轴L上的中心厚度CT3、所述第四透镜40于所述光轴L上的中心厚度CT4、所述第五透镜50于所述光轴L上的中心厚度CT5、及所述光学镜头1的光学总长TTL满足如下关系:0.24<(CT1+CT2+CT3+CT4+CT5)/TTL<0.48。
在设计完光学镜头1的光焦度与面型之后,还可继续设计每个透镜的厚度。这里的中心厚度指的是各个透镜的物侧面与像侧面和光轴L交点之间的距离。本实施方式可使5个透镜的总厚度与光学总长TTL满足上述关系。当0.24<(CT1+CT2+CT3+CT4+CT5)/TTL<0.48时,可降低第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50的成型难度,增加量产的可行性。同时,有利于光学镜头1的轻薄化,通过减小第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50自身的厚度来减小光学镜头1的光学总长TTL。
本实施方式中,所述第一透镜10的阿贝数Vd1、所述第二透镜的阿贝数Vd2、所述第三透镜的阿贝数Vd3、所述第四透镜的阿贝数Vd4、及所述第五透镜的阿贝数Vd5满足如下关系:53<Vd1<59;18<Vd2<25;53<Vd3<59;53<Vd4<59;53<Vd5<59。
对于每个透镜具体的参数而言,本申请除了设计每个透镜的光焦度、面型、中心厚度之外,还对每个透镜的阿贝数进行限定。如上述内容所述,当第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50的阿贝数满足上述关系时,有利于光学镜头1获得更高的调制传递函数,提高光学镜头1的成像品质。
可选地,在本实施方式中,每个透镜的具体的参数可包括:所述第一透镜10的材料为光学塑料,其折射率为1.5-1.6,阿倍数为53-59,中心厚度为0.4-0.7mm。所述第二透镜20的材料为光学塑料,其折射率为1.55-1.7,阿贝数为18-25,中心厚度为0.2-0.5mm。所述第三透镜30的材料为光学塑料,其折射率为1.5-1.6,阿贝数为53-59,中心厚度为0.5-0.7mm。所述第四透镜40的材料为光学塑料,其折射率为1.5-1.6,阿贝数为53-59,中心厚度为0.3-0.5mm。所述第五透镜50的材料为光学塑料,其折射率为1.5-1.6,阿贝数为53-59,中心厚度为0.3-0.5mm。所述滤光片60的材料为玻璃或者塑料,所述滤光片60的折射率为1.5-1.6,阿贝数为61-67,中心厚度为0.15-0.3mm。
在其他实施方式中,各个透镜的材料也可以为玻璃。通过上述限定条件可进一步优化出每个透镜的材料,折射率、阿贝数、中心厚度等参数。通过各个镜头的改变在满足上述条件的基础上可减小中心厚度,从而实现减小光学总长的目的,并且提高光学镜头1的成像品质。
具体地,所述第一透镜10的材料为光学塑料,其折射率为1.544,阿倍数为55.93,中心厚度为0.586mm;所述第二透镜20的材料为光学塑料,其折射率为1.642,阿贝数为22.456,中心厚度为0.3mm;所述第三透镜30的材料为光学塑料,其折射率为1.544,阿贝数为55.93,中心厚度为0.613mm;所述第四透镜40的材料为光学塑料,其折射率为1.544,阿贝数为55.93,中心厚度为0.4mm;所述第五透镜50的材料为光学塑料,其折射率为1.544,阿贝数为55.93,中心厚度为0.45mm;所述滤光片60的折射率为1.517,阿贝数为64.2,中心厚度为0.21mm。
在对每个透镜自身的参数设计完成之后,本实施方式还可对透镜与透镜之间的距离进行进一步设计。本实施方式中,所述第一透镜10的像侧面S2与所述第二透镜20的物侧面S3于所述光轴L上的距离T12、所述第二透镜20的像侧面S4与所述第三透镜30的物侧面S5于所述光轴L上的距离T23、所述第一透镜10于所述光轴L上的中心厚度CT1、及所述第二透镜20于所述光轴L上的中心厚度CT2满足如下关系:0.13<(T12+T23)/ (CT1+CT2)<0.92。
本实施方式中,所述第二透镜20的像侧面S4与所述第三透镜30的物侧面S5于所述光轴L上的距离T23、所述第三透镜30的像侧面S6与所述第四透镜40的物侧面S7于所述光轴L上的距离T34、所述第二透镜20于所述光轴L上的中心厚度CT2、及所述第三透镜30于所述光轴L上的中心厚度CT3满足如下关系:0.75<(T23+T34)/(CT2+CT3)<2.21。
本实施方式中,所述第三透镜30的像侧面S6与所述第四透镜40的物侧面S7于所述光轴L上的距离T34、所述第四透镜40的像侧面S8与所述第五透镜50的物侧面S9于所述光轴L上的距离T45、所述第三透镜30于所述光轴L上的中心厚度CT3、及所述第四透镜40于所述光轴L上的中心厚度CT4满足如下关系:1<(T34+T45)/(CT3+CT4)<2.25。
对于上述内容提及的透镜与透镜之间的距离也可以理解为,透镜与透镜于光轴上的空气间隔。因此T12即为第一透镜10与第二透镜20于光轴L上的空气间隔。T23即为第二透镜20与第三透镜30于光轴L上的空气间隔。T34即为第三透镜30与第四透镜40于光轴L上的空气间隔。T45即为第四透镜40与第五透镜50于光轴L上的空气间隔。
当透镜与透镜之间的空气间隔和透镜的中心厚度满足上述关系式时,可减小透镜与透镜之间的空气间隔,从而进一步减小光学镜头1的光学总长。并且还可降低光线在经过第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50中的偏折角,降低第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50对成形和组装公差的敏感性,提高光学镜头1量产的良率,减小组装时第一透镜10、第二透镜20、第三透镜30、第四透镜40、及第五透镜50的应力,避免透镜的形变量过大。
可选地,所述第一透镜10和第二透镜20之间的空气间隔为0.05-0.2mm,第二透镜20和第三透镜30之间的空气间隔为0.1-0.35mm,第三透镜30和第四透镜40之间的空气间隔为0.8-1.2mm,第四透镜40和第五透镜50之间的空气间隔为1.5-1.9mm,第五透镜50和滤光片60之间的空气间隔为0.4-0.6mm,滤光片60和成像面S之间的空气间隔为0.5-0.7mm。其中,这里的空气间隔指的是前一个透镜或者滤光片60的像侧面S12与后一个透镜或者滤光片60的物侧面和光轴L交点之间的距离。通过上述限定条件可进一步优化出各个透镜、滤光片60、及成像面S之间的距离,从而减小空气间隔,最终实现减小光学总长的目的。
具体地,所述第一透镜10和第二透镜20之间的空气间隔为0.1mm,第二透镜20和第三透镜30之间的空气间隔为0.25mm,第三透镜30和第四透镜40之间的空气间隔为0.927mm,第四透镜40和第五透镜50之间的空气间隔为1.764mm,第五透镜50和滤光片60之间的空气间隔为0.5mm,滤光片60和成像面S之间的空气间隔为0.6mm。
上述内容便为光学镜头1的详细介绍,根据上述的内容,本申请将介绍一种具体的实施例来对本申请的光学镜头1及光学镜头1的性能做进一步地详细描述。
实施例
请一并参考图5,表1-表2。图5为本申请一实施方式中光学镜头的光学路径示意图。表1为光学镜头1的基本参数,表2为面型方程中偶次多项式的第4到20次幂的各项系数。
表1光学镜头1的基本参数
Figure PCTCN2022126250-appb-000003
Figure PCTCN2022126250-appb-000004
从图5可以看出,在本实施例中,沿着光轴L由物侧到像侧,光学镜头1包括:第一透镜10、第二透镜20、光圈70、第三透镜30、第四透镜40、第五透镜50、滤光片60。光学镜头1的光线路径如图5所示,光线依次经过第一透镜10、第二透镜20、光圈70、第三透镜30、第四透镜40、第五透镜50、滤光片60后在成像面S上成像。
并且,第一透镜10具有物侧面S1与像侧面S2。第二透镜20具有物侧面S3与像侧面S4。第三透镜30具有物侧面S5与像侧面S6。第四透镜40具有物侧面S7与像侧面S8。第五透镜50具有物侧面S9与像侧面S10。
从表1可以看出,第一透镜10的物侧面S1的0.586mm指的是在光轴L上第一透镜10的物侧面S1的顶点与第一透镜10的像侧面S2的顶点之间的距离。第一透镜10的像侧面S2的0.1mm指的是在光轴L上第一透镜10的像侧面S2的顶点与第二透镜20的物侧面S3的顶点之间的距离。第二透镜20的物侧面S3的0.3mm指的是在光轴L上第二透镜20的物侧面S3的顶点与第二透镜20的像侧面S4的顶点之间的距离。第二透镜20的像侧面S4的0.25mm指的是在光轴L上第二透镜20的像侧面S4的顶点与第三透镜30的物侧面S5的顶点之间的距离。第三透镜30的物侧面S5的0.613mm指的是在光轴L上第三透镜30的物侧面S5的顶点与第三透镜30的像侧面S6的顶点之间的距离。第三透镜30的像侧面S6的0.927mm指的是在光轴L上第三透镜30的像侧面S6的顶点与第四透镜40的物侧面S7的顶点之间的距离。第四透镜40的物侧面S7的0.4mm指的是在光轴L上第四透镜40的物侧面S7的顶点与第四透镜40的像侧面S8的顶点之间的距离。第四透镜40的像侧面S8的1.764mm指的是在光轴L上第四透镜40的像侧面S8的顶点与第五透镜50的物侧面S9的顶点之间的距离。第五透镜50的物侧面S9的0.45mm指的是在光轴L上第五透镜50的物侧面S9的顶点与第五透镜50的像侧面S10的顶点之间的距离。第五透镜50的像侧面S10的0.5mm指的是在光轴L上第五透镜50的像侧面S10的顶点与滤光片60的物侧面S11的顶点之间的距离。滤光片60的物侧面S11的0.21mm指的是在光轴L上滤光片60的物侧面S11的顶点与滤光片60的像侧面S12的顶点之间的距离。滤光片60的像侧面S12的0.6mm指的是在光轴L上滤光片60像侧面的顶点与成像面S之间的距离。
表2面型方程中偶次多项式的第4到20次幂的各项系数
Figure PCTCN2022126250-appb-000005
Figure PCTCN2022126250-appb-000006
Figure PCTCN2022126250-appb-000007
基于图5,表1以及表2可以得出,基于前述设计,本实施例的光学镜头1的视场角为75°,系统焦距为6.6mm,总长为6.7mm,F数为1.8,可探测的波长范围为400nm-700nm,主波长为586.7nm。
上述表1和表2仅仅作为一个示例,光学镜头1的基本参数和各项系数的参数在满足本申请要求保护的范围内可以适当变化。
本实施例还对上述光学镜头1的各种光学性能进行了测试。请一并参考图6-图7,图6为本申请一实施方式中光学镜头的全口径调制传递函数(MTF)曲线图。图7为本申请一实施方式中光学镜头的畸变曲线示意图。
从上述测试图可以看出,如图6所示,全视场75度在300lp/mm的空间频率内MTF都没有零频点,只要了没有零频点,便可将MTF乘以合适的修正系数从而修正像差,因此本实施例适用于后续计算成像图像处理算法恢复。
如图7所示,本实施例提供的光学镜头1畸变较小,其中全视场范围内畸变不大于3.5%,可大大降低畸变对成像质量影响,提高成像品质。
本实施例简化了大孔径、大视场、长焦距镜头结构,专为符合计算成像图像处理需求,确保了各视场1/4的能力都能够接近衍射极限聚焦,最终结合计算成像图像处理算法可获得高成像质量。
本申请除了提供光学镜头1外,还提供了一种采用上述光学镜头1装配的摄像头模组2。请一并参考图8,图8为本申请一实施方式种摄像头模组的示意图。本实施方式提供了一种摄像头模组2,包括图像传感器80、及如本申请上述实施方式提供的光学镜头1,所述图像传感器80位于所述光学镜头1的像侧。
图像传感器80可以为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)或CCD(Charged Coupled Device,电荷耦合器件),也可以是CMOS或CCD以外的其他类型的图像传感器80,例如CID传感器(Charge Injection Device,电荷注入器件)。可以理解的是,对于CMOS,可以将DSP集成在CMOS内。CMOS具有集成度高、 功耗低、成本低等优点,比较适合安装空间受限的手机。另外,上文所提及成像面S即为图像传感器80的物侧面。
另外,摄像头模组2还可包括柔性电路板。在拍摄过程中,被拍摄物的成像光线进入光学镜头1,然后到达图像传感器80,成像光线中的光子打到图像传感器80上产生可移动电荷,这是内光电效应,可移动电荷汇集形成电信号。利用柔性电路板电连接图像传感器80和电子设备3的电路板。电路板上设置有A/D转换器(模数转换器)和DSP(Digital Signal Processor,数字信号处理器92),A/D转换器将电信号转换成数字信号,数字信号经过DSP处理后。最终传输到电子设备3的显示屏上显示图像,即实现了对被拍摄物的拍摄。本实施方式提供的摄像头模组2,通过采用本申请上述实施方式提供的光学镜头1,可减小摄像头模组2的厚度,提高成像质量。可选地,图像传感器80靠近滤光片60的像侧面S12。
请参考图9-图10,图9为本申请一实施方式中电子设备的俯视图。图10为图9中沿A-A方向的截面示意图。本实施方式提供了一种电子设备3,包括壳体90、处理器92、及如本申请上述实施方式提供的摄像头模组2,所述壳体90具有收容空间91,所述处理器92与至少部分所述摄像头模组2设于所述收容空间91内,所述处理器92电连接所述图像传感器80。
本实施方式中的电子设备3包括但不限于照相机、手机、平板、笔记本电脑、掌上电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、便携式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手表、计步器等移动终端。
当光线进入光学镜头1后,最终被图像传感器80所接收,图像传感器80将接收到的图像信息传输给处理器92,处理器92可对该图像信息进行进一步地处理。本实施方式提供的电子设备3,通过采用本申请上述实施方式提供的摄像头模组2,可减小摄像头模组2的厚度,从而减小电子设备3整机的厚度。另外,还可避免摄像头模组2凸出于电子设备3的壳体90,从而有效地保护摄像头模组2,提高摄像头模组2的使用寿命。
本实施方式中,所述处理器92用于处理所述图像传感器80发送的图像信息,所述图像信息中具有像差,所述处理器92可对70%-80%的所述像差进行校正。
从上述内容可知,当光线进入光学镜头1后不可避免地会存在像差,而本申请的光学镜头1通过镜头的设计,可使每个所述视场均有20%-30%的能量可实现衍射极限聚焦,即通过镜头可校正20%-30%的像差,而剩下的70%-80%的像差则可由本实施方式提供的处理器92来进行校正,从而降低光学镜头1的光学总长,还可实现具有大视场角,大接收孔径的光学镜头1,提高成像质量。
以上对本申请实施方式所提供的内容进行了详细介绍,本文对本申请的原理及实施方式进行了阐述与说明,以上说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种光学镜头,其特征在于,沿着光轴由物侧至像侧包括第一透镜、第二透镜、第三透镜、第四透镜、及第五透镜;所述光学镜头的系统焦距f满足如下关系:6mm<f<7mm,且所述光学镜头的光学总长TTL与所述光学镜头的系统焦距f满足如下关系:0<TTL-f<0.2mm。
  2. 如权利要求1所述的光学镜头,其特征在于,在所述光学镜头的视场角FOV的范围内,任意视场均具有20%-30%的能量可实现衍射极限聚焦。
  3. 如权利要求2所述的光学镜头,其特征在于,所述光学镜头的系统焦距f与所述光学镜头的有效直径光圈D满足如下关系:1.5<f/D<2。
  4. 如权利要求2所述的光学镜头,其特征在于,所述视场的实际通光孔径D’与所述光学镜头的有效直径光圈D满足如下关系:0.45<D’/D<0.55。
  5. 如权利要求1所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV 最大与所述光学镜头的系统焦距f满足如下关系:7.4<FOV 最大/arctan(1/f)<9.84。
  6. 如权利要求1所述的光学镜头,其特征在于,所述光学镜头能够探测的波长λ满足如下关系:400nm<λ<700nm。
  7. 如权利要求6所述的光学镜头,其特征在于,所述光学镜头的主波长λ 满足如下关系:580nm<λ <595nm。
  8. 如权利要求1所述的光学镜头,其特征在于,所述光学镜头还包括光圈,所述光圈位于所述第二透镜的像侧面与所述第三透镜的物侧面之间。
  9. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述光学镜头满足以下情况中的至少一种:
    所述第一透镜具有正光焦度;所述第二透镜具有负光焦度;所述第三透镜具有正光焦度;所述第四透镜具有正光焦度;所述第五透镜具有负光焦度。
  10. 如权利要求9所述的光学镜头,其特征在于,所述第一透镜的物侧面和像侧面、所述第二透镜的物侧面和像侧面、所述第三透镜的物侧面和像侧面、所述第四透镜的物侧面和像侧面、及所述第五透镜的物侧面和像侧面中具有至少一个非球面,且所述非球面的面型z满足如下关系:
    Figure PCTCN2022126250-appb-100001
    其中,z为所述非球面沿所述光轴方向在高度为r的位置时,距所述非球面顶点的距离矢高;c为顶点的曲率半径;k为二次曲面圆锥系数;r为径向的光线坐标;N为高次多项式的项数;α i为该物侧面或像侧面第i阶非球面系数。
  11. 如权利要求10所述的光学镜头,其特征在于,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面;
    所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面。
  12. 如权利要求10所述的光学镜头,其特征在于,所述第二透镜的物侧面在近光轴处为凹面,在圆周处为凸面,所述第二透镜的像侧面为凹面;
    所述第五透镜的物侧面为凹面,所述第五透镜的像侧面在近光轴处为凹面,在圆周处为凸面。
  13. 如权利要求12所述的光学镜头,其特征在于,以光轴所在的平面为截面,所述第二透镜的物侧面和像侧面、及所述第五透镜的物侧面和像侧面中至少一面在所述截面上设有至少一个反曲点。
  14. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1、所述第二透镜于所述光轴上的中心厚度CT2、所述第三透镜于所述光轴上的中心厚度CT3、所述第四透镜于所述光轴上的中心厚度CT4、所述第五透镜于所述光轴上的中心厚度CT5、及所述光学镜头的光学总长TTL满足如下关系:0.24<(CT1+CT2+CT3+CT4+CT5)/TTL<0.48。
  15. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述第一透镜的像侧面与所述第二透镜的物侧面于所述光轴上的距离T12、所述第二透镜的像侧面与所述第三透镜的物侧面于所述光轴上的距离T23、所述第一透镜于所述光轴上的中心厚度CT1、及所述第二透镜于所述光轴上的中心厚度CT2满足如下关系:0.13<(T12+T23)/(CT1+CT2)<0.92。
  16. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述第二透镜的像侧面与所述第三透镜的物侧面于所述光轴上的距离T23、所述第三透镜的像侧面与所述第四透镜的物侧面于所述光轴上的距离T34、所述第二透镜于所述光轴上的中心厚度CT2、及所述第三透镜于所述光轴上的中心厚度CT3满足如下关系:0.75<(T23+T34)/(CT2+CT3)<2.21。
  17. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述第三透镜的像侧面与所述第四透镜的物侧面于所述光轴上的距离T34、所述第四透镜的像侧面与所述第五透镜的物侧面于所述光轴上的距离T45、所述第三透镜于所述光轴上的中心厚度CT3、及所述第四透镜于所述光轴上的中心厚度CT4满足如下关系:1<(T34+T45)/(CT3+CT4)<2.25。
  18. 如权利要求1-8任一项所述的光学镜头,其特征在于,所述第一透镜的阿贝数Vd1、所述第二透镜的阿贝数Vd2、所述第三透镜的阿贝数Vd3、所述第四透镜的阿贝数Vd4、及所述第五透镜的阿贝数Vd5满足如下关系:53<Vd1<59;18<Vd2<25;53<Vd3<59;53<Vd4<59;53<Vd5<59。
  19. 一种摄像头模组,其特征在于,包括图像传感器、及如权利要求1-18任一项所述的光学镜头,所述图像传感器位于所述光学镜头的像侧。
  20. 一种电子设备,其特征在于,包括壳体、处理器、及如权利要求19所述的摄像头模组,所述壳体具有收容空间,所述处理器与至少部分所述摄像头模组设于所述收容空间内,所述处理器电连接所述图像传感器。
PCT/CN2022/126250 2021-12-02 2022-10-19 光学镜头、摄像头模组、电子设备 WO2023098329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111472951.5 2021-12-02
CN202111472951.5A CN114137700A (zh) 2021-12-02 2021-12-02 光学镜头、摄像头模组、电子设备

Publications (1)

Publication Number Publication Date
WO2023098329A1 true WO2023098329A1 (zh) 2023-06-08

Family

ID=80388101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126250 WO2023098329A1 (zh) 2021-12-02 2022-10-19 光学镜头、摄像头模组、电子设备

Country Status (2)

Country Link
CN (1) CN114137700A (zh)
WO (1) WO2023098329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137700A (zh) * 2021-12-02 2022-03-04 Oppo广东移动通信有限公司 光学镜头、摄像头模组、电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737965A1 (de) * 1976-08-26 1978-03-02 Asahi Optical Co Ltd Miniaturisierte telephoto-kameralinseneinheit
CN101387741A (zh) * 2007-01-15 2009-03-18 索尼株式会社 图像拾取装置和缩放镜头
WO2014155465A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN108363191A (zh) * 2017-01-26 2018-08-03 株式会社腾龙 成像光学系统及摄像装置
CN109683287A (zh) * 2019-02-13 2019-04-26 浙江舜宇光学有限公司 光学成像镜头
CN110320652A (zh) * 2018-03-30 2019-10-11 株式会社腾龙 变焦镜头及摄像装置
CN110609375A (zh) * 2019-09-25 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
CN113640966A (zh) * 2019-06-20 2021-11-12 康达智株式会社 摄像镜头
CN114137700A (zh) * 2021-12-02 2022-03-04 Oppo广东移动通信有限公司 光学镜头、摄像头模组、电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737965A1 (de) * 1976-08-26 1978-03-02 Asahi Optical Co Ltd Miniaturisierte telephoto-kameralinseneinheit
CN101387741A (zh) * 2007-01-15 2009-03-18 索尼株式会社 图像拾取装置和缩放镜头
WO2014155465A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN108363191A (zh) * 2017-01-26 2018-08-03 株式会社腾龙 成像光学系统及摄像装置
CN110320652A (zh) * 2018-03-30 2019-10-11 株式会社腾龙 变焦镜头及摄像装置
CN109683287A (zh) * 2019-02-13 2019-04-26 浙江舜宇光学有限公司 光学成像镜头
CN113640966A (zh) * 2019-06-20 2021-11-12 康达智株式会社 摄像镜头
CN110609375A (zh) * 2019-09-25 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
CN114137700A (zh) * 2021-12-02 2022-03-04 Oppo广东移动通信有限公司 光学镜头、摄像头模组、电子设备

Also Published As

Publication number Publication date
CN114137700A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN111045188B (zh) 光学透镜组、取像模组和电子装置
CN109270664B (zh) 一种光学成像镜头及应用该光学成像镜头的摄像装置
CN112684594B (zh) 光学镜头及成像设备
CN211741691U (zh) 光学系统、摄像模组及电子装置
CN213600973U (zh) 光学成像系统、取像模组及电子装置
CN113741006A (zh) 光学镜头、摄像模组及电子设备
CN110967805B (zh) 光学摄像镜头组、取像模组及电子装置
CN212540863U (zh) 光学成像系统、取像模组和电子装置
CN112433340A (zh) 光学系统、镜头模组和电子设备
CN113391430A (zh) 光学系统、镜头模组和电子设备
CN211826697U (zh) 光学成像系统、取像模组和电子装置
CN211478744U (zh) 光学系统、镜头模组和电子设备
CN210401818U (zh) 光学成像系统、取像装置及电子设备
WO2023098329A1 (zh) 光学镜头、摄像头模组、电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
TWI418870B (zh) 薄型化攝像鏡頭
CN117192750B (zh) 一种光学镜头组、摄像模组及电子设备
CN212540864U (zh) 光学成像系统、取像模组和电子装置
CN111983786A (zh) 光学成像系统、取像模组和电子装置
CN109143551B (zh) 一种光学成像镜片组及应用该光学成像镜片组的摄像装置
CN114509862B (zh) 光学系统、摄像模组和电子设备
CN114460723B (zh) 光学系统、摄像模组及电子设备
CN114326022B (zh) 光学系统、摄像模组及电子设备
CN112327457B (zh) 成像镜头、摄像模组及电子设备
CN113433652B (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE