WO2021070786A1 - 着床式洋上架台、洋上風力発電装置及び洋上風況観測装置 - Google Patents

着床式洋上架台、洋上風力発電装置及び洋上風況観測装置 Download PDF

Info

Publication number
WO2021070786A1
WO2021070786A1 PCT/JP2020/037751 JP2020037751W WO2021070786A1 WO 2021070786 A1 WO2021070786 A1 WO 2021070786A1 JP 2020037751 W JP2020037751 W JP 2020037751W WO 2021070786 A1 WO2021070786 A1 WO 2021070786A1
Authority
WO
WIPO (PCT)
Prior art keywords
landing
type offshore
strut
offshore
pedestal
Prior art date
Application number
PCT/JP2020/037751
Other languages
English (en)
French (fr)
Inventor
博昭 大塚
Original Assignee
株式会社四国Ga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社四国Ga filed Critical 株式会社四国Ga
Priority to JP2021533696A priority Critical patent/JP7072963B2/ja
Publication of WO2021070786A1 publication Critical patent/WO2021070786A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0065Monopile structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention includes a landing-type offshore mount that serves as a base for supporting a wind power generator installed at sea and a wind condition observer that measures weather data such as wind conditions at sea, and this landing-type offshore rack.
  • the present invention relates to an offshore wind power generator equipped with a wind power generator on a table and an offshore wind condition observation device equipped with a wind condition observer.
  • the offshore pedestal installed on the ocean is affected by typhoons, strong winds, and waves, so it is not easy to withstand these and install it stably.
  • the construction is complicated and costly to firmly fix it to the seabed.
  • it will receive a strong resistance force, so even higher rigidity is required.
  • the present invention has been made in view of the above problems, and one of the purposes thereof is a landing type that can be installed inexpensively at sea while realizing stable power generation and wind condition measurement by making the landing type.
  • the purpose is to provide an offshore mount, an offshore wind condition observation device, and an offshore wind power generation device.
  • the landing type offshore pedestal is a gantry for installing a wind power generator for wind power generation or a wind condition observing machine for measuring wind condition data for wind power generation at sea.
  • the lower end is placed on the seabed, the upper end is extended in the vertical direction so as to protrude to the ocean, and the support column where the wind power generator or wind condition observer is installed at the upper end, and the support is installed on the seabed. It is provided with a base portion to which the lower end portions of the support columns are connected.
  • the strut portion is provided with a hollow floating body portion, and the lower end portion is provided with a weight portion for sinking the strut portion, and the buoyancy center of the buoyancy acting on the strut portion is arranged above the center of gravity of the weight portion.
  • the strut portion is held in a vertical position, and the lower end portion of the strut portion is connected to the base portion via a connecting structure that allows the strut portion to swing.
  • the lower end of the support column which is held in a vertical position by the floating body portion and the weight portion, is connected to the base portion installed on the seabed via a connecting structure that allows swinging, so that it is a landing type. While realizing stable power generation and wind condition measurement, it realizes excellent resistance to typhoons, strong winds, and waves, and can be installed stably for a long period of time.
  • the connecting structure is formed from a socket recess having a curved inner surface with a lower opening formed on the lower end surface of the support column, and from the upper surface of the base portion. It is provided with a round head convex portion that protrudes and has a spherical tip portion, and the round head convex portion guided to the socket recess is brought into surface contact with the inner surface of the socket recess so that the support portion is flat with respect to the base portion. It allows swinging in the direction of 360 degrees.
  • the round head convex portion protruding from the upper surface of the base portion is guided to the socket recess formed on the lower end surface of the support portion, and the tip surface of the round head convex portion faces the inner peripheral surface of the socket recess. Since the connecting structure is made to be in contact with each other, the strut portion can be stably supported with respect to the base portion while allowing the swing in the 360-degree plan view direction.
  • the round head convex portion protruding from the upper surface of the base portion is guided to the socket recess of the lower opening provided on the lower end surface of the support portion, so that the contact portion between the socket recess and the round head convex portion It is possible to prevent mud and foreign matter from accumulating in seawater and maintain a good contact state between the socket recess and the round head protrusion. Therefore, the strut portion can be stably swung with respect to the base portion for a long period of time.
  • the landing type offshore pedestal according to the third embodiment of the present invention has a connecting structure in which the inside of the socket recess is filled with a lubricant having a specific gravity smaller than that of seawater.
  • the contact resistance between the socket recess and the round head convex portion is reduced by the lubricant by the lubricant filled inside the socket recess of the lower opening provided on the lower end surface of the strut portion, and the strut portion is formed. It can swing stably with respect to the base part.
  • this lubricant does not flow out from the socket recess and remains inside the socket recess for a long period of time.
  • the contact resistance between the socket recess and the round head protrusion can be reduced. Further, even if the lubricant decreases over time, it can be easily replenished and a good contact state can be maintained.
  • the landing-type offshore pedestal according to the fourth embodiment of the present invention is further provided with an inflow groove for allowing the lubricant to flow into the contact region between the socket recess and the round head convex portion.
  • the lubricant is allowed to flow into the inflow groove provided in the contact area between the socket concave portion and the round head convex portion, and the contact resistance at the contact surface between the socket concave portion and the round head convex portion is reduced to smoothly slide. I can move.
  • the landing-type offshore pedestal according to the fifth embodiment of the present invention further has a connecting structure including a plurality of connecting cords for connecting the lower end portion of the strut portion and the base portion.
  • a connecting structure is formed on a columnar or cone-shaped connecting convex portion protruding downward from the lower end of the strut portion and on the upper surface of the base portion. It includes an insertion portion of an upper opening into which the connecting convex portion is inserted, and a rubber-like elastic body interposed between the insertion portion and the connecting convex portion.
  • the connecting convex portion provided on the strut portion into the insertion portion provided on the base portion, the strut portion and the base portion are connected in a fixed position, and a rubber-like shape is formed between the strut portion and the insertion portion.
  • the rubber-like elastic body absorbs the misalignment between the connecting convex portion and the insertion portion, and the swing of the strut portion can be allowed.
  • the rubber-like elastic body has a tubular shape through which a connecting convex portion can be inserted, and a flange portion is integrally provided at one end thereof. The portion is interposed between the lower surface of the support column portion and the upper surface of the base portion.
  • the rubber-like elastic body is formed into a tubular shape through which the connecting convex portion can be inserted, and the flange portion provided on the upper end edge is provided as a strut portion while the tubular portion is interposed between the connecting convex portion and the insertion portion.
  • the strut portion has a connecting convex portion at the center portion of the lower end surface
  • the base portion has an insertion portion at the center portion of the upper surface.
  • a plurality of elastic bodies are interposed between the outer peripheral portion of the lower end surface of the portion and the upper surface of the base portion.
  • the lower end surface of the strut portion is arranged while the connecting convex portion provided at the central portion of the lower end surface of the strut portion is arranged at the insertion portion provided at the central portion of the upper surface of the base portion via the rubber-like elastic body.
  • the connecting structure has a concave portion of a lower opening formed on the lower end surface of the strut portion and a convex portion protruding from the upper surface of the base portion and guided to the concave portion. It is provided with a portion and a swing mechanism arranged between the concave portion and the convex portion.
  • the swing mechanism includes a cup portion fitted in a concave portion formed on the lower end surface of the strut portion, a cap portion covering a convex portion protruding from the upper surface of the base portion, and an inner surface of the cup portion and an outer surface of the cap portion.
  • the concave portion of the lower opening provided on the lower end surface of the strut portion and the convex portion protruding from the upper surface of the base portion are connected by a swing mechanism, and this swing mechanism is fitted into the concave portion. Since it is provided with a cup portion to be formed, a cap portion covering the convex portion, and a plurality of elastic bodies arranged between them, a strut portion connected to the base portion via the plurality of elastic bodies. Can tolerate swinging.
  • the cup portion that fits into the concave portion of the lower opening provided on the lower end surface of the strut portion is guided to the cup portion that covers the convex portion that protrudes from the upper surface of the base portion.
  • the swing mechanism provides a gap between the inner surface of the cup portion and the outer surface of the cap portion, and this gap is used as an air layer.
  • a gap is provided between the inner surface of the cup portion and the outer surface of the cap portion, and this gap is used as an air layer to prevent the infiltration of seawater. Therefore, the gap between the cup portion and the cap portion is prevented. It is possible to prevent a plurality of elastic bodies arranged in the gap from coming into contact with seawater, and effectively prevent the elastic bodies from deteriorating over time.
  • the swing mechanism provides a gap between the inner surface of the cup portion and the outer surface of the cap portion, and the specific gravity is higher than that of seawater in this gap. Is also filled with a small lubricant.
  • the gap formed between the inner surface of the cup portion and the outer surface of the cap portion is filled with a lubricant having a specific gravity smaller than that of seawater. It can be protected and effectively prevented from deteriorating over time.
  • this lubricant is used as a cup.
  • the elastic body can be protected by remaining in the gap between the cup portion and the cap portion for a long period of time without flowing out from the portion. Moreover, even if the lubricant decreases over time, it can be easily replenished.
  • a plurality of elastic bodies are made of rubber or springs.
  • the first swing shaft and the first swing shaft whose connecting structure is a swing shaft that swings the lower end portion of the support column in the first direction. It is provided with a second swing shaft that is arranged so as to intersect the swing shaft and serves as a swing shaft that swings the lower end portion of the support column in a second direction that intersects the first direction. Allows swinging in the direction of 360 degrees in a plan view with respect to the base portion.
  • the connecting structure allows the strut portion to swing via the first swing shaft and the second coaxial cable that intersect with each other, the strut portion is oriented in the 360-degree plan view with respect to the base portion. Can tolerate swinging to.
  • the base portion is swingable in a second direction via a base portion fixed to the seabed and a second swing shaft on the base portion.
  • the strut portion is oscillatingly connected to the oscillating body in the first direction via the first oscillating shaft, and is oscillatingly connected to the first oscillating shaft and the second oscillating body.
  • the swing axes are arranged in the directions orthogonal to each other.
  • a support column portion is provided with a thick cylinder portion having a portion arranged below the sea surface having an outer diameter larger than that of the other portion.
  • This thick cylinder portion is hollow and is a part of the floating body portion.
  • the landing-type offshore pedestal according to the sixteenth embodiment of the present invention further includes a tubular and hollow sub-floating body portion that is detachably connected to a strut portion, with the sub-floating body portion as a center. It is placed below the sea surface along the pillars to be inserted.
  • the offshore wind power generator according to the seventeenth embodiment of the present invention is an offshore wind power generator provided with any of the above-mentioned landing-type offshore pedestals, and is located on the landing-type offshore pedestal and the upper end of a support column. It is equipped with an installed wind power generator.
  • the wind power generator is provided with a downwind type wind turbine.
  • the wind power generator is equipped with a downwind type wind turbine, stable power generation can be performed without lowering the power generation efficiency even when the support column swings to the leeward side.
  • the offshore wind condition observation device is an offshore wind condition observation device provided with any of the above-mentioned landing-type offshore pedestals, and is a landing-type offshore pedestal and a strut portion. It is equipped with a wind condition observer installed at the upper end, a support column is provided with a platform portion at the upper end, and a wind condition observer is provided at the platform portion.
  • FIG. 7 It is a schematic cross-sectional view which shows the offshore wind power generation device which concerns on one Embodiment of this invention. It is a schematic cross-sectional view which shows the offshore wind condition observation apparatus which concerns on one Embodiment of this invention. It is an enlarged sectional view of the floating body part of the landing type offshore pedestal of the offshore wind power generation apparatus shown in FIG. It is an enlarged sectional view which shows an example of the sub floating body part. It is an exploded sectional view which shows an example of the connection structure. It is a partially enlarged sectional view of the connection structure shown in FIG. It is a partially enlarged sectional view which shows another example of a connected structure. It is a bottom view of the socket recess shown in FIG. 7.
  • FIG. 11 is an enlarged cross-sectional view of the connecting structure shown in FIG. It is an enlarged sectional view which shows another example of a connected structure. It is a perspective view which shows another example of the connection structure.
  • each element constituting the present invention may be configured such that a plurality of elements are composed of the same member and the plurality of elements are combined with one member, or conversely, the function of one member is performed by the plurality of members. It can also be shared and realized.
  • the landing type offshore pedestal of the present invention is a gantry for installing a wind power generator that generates wind power or a wind condition observer that measures wind condition data for wind power generation on the ocean.
  • This landing type offshore pedestal is mainly used for installing a wind power generator and a wind condition observation aircraft on the ocean in the ocean where the water depth is 20 m to 100 m.
  • the landing type offshore pedestal of the present invention is used not only on the ocean but also as a gantry for arranging a wind power generator and a wind condition observer on the water surface by landing on the bottom of a lake having a predetermined water depth. You can also do it. Therefore, in the present specification, the term "offshore" is used in a broad sense including not only on the ocean but also on the lake.
  • FIG. 1 shows an example of an offshore wind power generator 100 in which a wind power generator 30 is installed on a landing type offshore pedestal 9, and FIG. 2 shows a wind condition observation device 35 on a landing type offshore pedestal 9.
  • An example of the offshore wind condition observation device 200 in which the above is installed is shown.
  • the landing type offshore pedestal 9 shown in these figures has a lower end arranged on the seabed 90 and is extended in the vertical direction so as to project the upper end to the sea, and the wind power generator 30 or the wind condition observer 35 is extended to the upper end. It is provided with a strut portion 1 on which the strut portion 1 is installed, and a base portion 2 which is installed on the seabed 90 and is connected to the lower end portion of the strut portion 1.
  • the strut portion 1 shown in FIGS. 1 and 2 is a columnar shape extending in the vertical direction, and is arranged in the sea in a vertical posture in which the lower end portion is arranged on the seabed 90 and the upper end portion protrudes above the sea surface.
  • the strut portion 1 is provided with a weight portion 3 at the lower end portion for sinking the strut portion 1 to lower the center of gravity G.
  • a floating body portion 4 is provided with the inside of the upper portion hollow, and the floating center F of the floating body portion 4 is arranged at a position higher than the center of gravity G.
  • the strut portion 1 has a total length in which the lower end is arranged on the seabed 90 and the upper end projects offshore.
  • the strut portion 1 extending from the seabed 90 to the sea is arranged in a vertical posture, and the lower end portion of the main body portion 1A arranged in the sea is connected to the base portion 2 installed on the seabed 90.
  • a wind power generator 30 or a wind condition observer 35 is installed at the upper end of the protruding portion 1B protruding above the sea surface.
  • the strut portion 1 is arranged so that the upper end thereof protrudes from the sea surface by 5 m to 10 m. Therefore, the total length of the support column 1 is set to be 5 m to 10 m longer than the water depth of the installation location. For example, in the landing type offshore pedestal 9 installed in a sea area where the water depth is 50 m, the total length of the support column 1 is 55 m to 60 m, and the upper end portion is projected 5 m to 10 m above the sea surface.
  • the strut portion 1 shown in FIGS. 1 and 2 is formed of a cylindrical steel pipe 10 having a predetermined outer diameter as shown in FIG.
  • the strut portion 1 formed of the cylindrical steel pipe 10 is formed by connecting a plurality of steel pipes 10 to a predetermined length.
  • the strut portion 1 shown in FIGS. 1 and 2 has a predetermined total length by connecting a plurality of steel pipes 10 having a length of 10 m to several tens of m.
  • Each steel pipe 10 shown in FIG. 3 is provided with a flange portion 11 projecting outward along the edge edge, and by connecting the opposing flange portions 11 to each other via a connector 12, a plurality of steel pipes 10 can be connected. It is connected in a straight line to have a predetermined total length.
  • the length of the steel pipe 10 to be used and the number of connected steel pipes can be changed in various ways.
  • the structure in which the support column 1 is formed of a plurality of steel pipes 10 has a feature that it can be easily and easily manufactured while reducing the manufacturing cost by using the ready-made steel pipes.
  • the strut portion 1 includes a floating body portion 4 having at least a part hollow in order to arrange the strut portion 1 in a stable posture.
  • the strut portion 1 composed of the cylindrical steel pipe 10 forms a floating body portion 4 by providing a hollow region in the main body portion arranged in the sea.
  • the strut portion 1 formed of a plurality of steel pipes can form a floating body portion by using the entire inside of the steel pipe as one space, but preferably, a partition wall 13 is provided inside to form the floating body portion 4.
  • the unit 14 is divided into a plurality of regions.
  • the floating body portion 4 shown in FIG. 3 is provided with a plurality of partition walls 13 to partition the hollow portion 14 into a plurality of partition chambers 14A.
  • a sandwiching plate 13A is interposed between the steel pipes 10 connected to each other, and the sandwiching plate 13A serves as a partition wall 13.
  • the sandwiching plate 13A arranged between the steel pipes 10 has an outer shape along the flange portion 11 provided at the end edge of the steel pipe 10, and is sandwiched between the opposing flange portions 11 in a close contact state. Therefore, the inside of the adjacent steel pipes 10 is partitioned.
  • Each partition chamber 14A can be closed in a watertight structure by interposing a packing between the sandwiching plate 13A and the flange portion 11 of the steel pipe 10.
  • the support column 1 shown in FIG. 3 is provided with a dividing plate 13B for dividing the internal region of the steel pipe 10 in the intermediate portion of the steel pipe 10 to form a partition wall 13.
  • the split plate 13B shown in the figure has an outer shape that follows the inner shape of the steel pipe 10, and is fixed in a state where the outer peripheral surface is in close contact with the inner peripheral surface of the steel pipe 10, and the inside of the steel pipe 10 is filled with a plurality of partition chambers 14A. It is divided into.
  • the structure in which the hollow portion 14 formed inside the support column 1 is divided into a plurality of partition chambers 14A by the partition wall 13 is flooded by the partition wall 13 even if the inside of the floating body portion 4 is flooded.
  • the expansion of the region can be suppressed, and by partitioning the inside of the floating body portion 4 into a plurality of parts by the partition wall 13, the position of the center of the buoyancy acting on the floating body portion 4 (hereinafter referred to as the floating center F) is stabilized, and the strut portion 1 can be held in a vertical position.
  • the buoyancy P acting on an object in seawater is the volume of the object immersed in seawater multiplied by the specific gravity of seawater. That is, the magnitude of the buoyancy P is proportional to the volume of the object in seawater. Therefore, the floating body portion 4 can obtain a larger buoyancy P by increasing the outer diameter of the strut portion 1. Therefore, the strut portion 1 is adjusted to an optimum outer diameter in consideration of the buoyancy P required for the gantry.
  • the outer diameter of the strut portion 1 is also changed depending on the equipment installed on the strut portion 1 and the water depth in the sea area where the landing type offshore pedestal 9 is installed. For example, as shown in FIG. 1, the buoyancy of the support column 1 that supports the heavy wind power generator 30 can be increased by increasing the outer diameter.
  • the outer diameter of the support column 1 is 5 m to 12 m, preferably 5 m to 12 m. It can be 7 to 10 m.
  • the outer diameter of the support column 1 is 1 m to 4 m. Can be.
  • the strut portion 1 shown in FIGS. 1 and 2 is provided with a thick cylinder portion 1C having a portion arranged below the sea surface having a larger outer diameter than the other portion, and the inside of the thick cylinder portion 1C. Is hollow to form a part of the floating body portion 4. In this way, the buoyancy P acting on the floating body portion 4 can be further increased by providing the thick cylinder portion 1C having an outer diameter larger than that of the main body portion 1A. Further, the strut portion 1 having the thick cylinder portion 1C is provided with the thick cylinder portion 1C having a large surface area near the sea surface, so that when the strut portion 1 swings with the lower end portion as a fulcrum, it is placed on the upper portion of the strut portion 1.
  • the strut portion 1 may also include a sub-floating body portion 40 that is detachably connected to the strut portion 1.
  • the sub-floating body portion 40 shown in the figure has a tubular shape as a whole and a hollow shape inside so that buoyancy is generated in the sea.
  • the sub-floating body portion 40 shown in the figure has a central hole 41 opened so that the strut portion 1 can be inserted inward, and in a state where the strut portion 1 is inserted through the central hole 41, the sub-floating body portion 40 moves up and down along the strut portion 1. I am making it possible to move. Similar to the thick cylinder portion 1C of FIG.
  • the sub-floating body portion 40 is fixed to the strut portion 1 so as to be arranged below the sea surface, so that the buoyancy acting on the strut portion can be increased.
  • the sub-floating body portion 40 shown in the figure can be fixed to the main body portion 1A of the strut portion 1 via the fixing member 42.
  • the load supported by the strut portion 1 can be adjusted.
  • the magnitude of the buoyancy acting on the strut portion 1 can be adjusted by selectively using the sub-floating body portions 40 having different sizes according to the weight of the wind power generator 30 installed on the strut portion 1. .. Further, the sub-buoyancy portion 40 can be filled with ballast water 44, and the ballast water 44 can be taken in and out using a pump 43 or the like to adjust the magnitude of buoyancy.
  • the sub-buoyancy unit 40 is filled with ballast water 44 and the support column installed at a fixed position.
  • the ballast water 44 inside the sub-floating body portion 40 can be drained to generate buoyancy, and the buoyancy supporting the wind power generator 30 can be increased. ..
  • the above-mentioned strut portion 1 has a floating body portion 4 in order to stably hold the strut portion 1 in a vertical posture in a state where the lower end portion is submerged in the sea by its own weight and connected to the base portion 2 provided on the seabed 90.
  • the buoyancy center F of the acting buoyancy is configured to be located above the center of gravity G of the weight portion 3 provided at the lower end portion. That is, in the column portion 1 extending up and down, the buoyancy center F of the buoyancy P acting upward on the floating body portion 4 is arranged above, and the center of gravity G of gravity W acting downward on the weight portion 3 is located below. The low center of gravity keeps it in a vertical position.
  • the strut portion 1 shown in FIGS. 1 and 2 is provided with a weight portion at the lower end portion for sinking the strut portion 1.
  • the center of gravity G in the strut portion 1 can be arranged below.
  • the inside of the steel pipe 10 is filled with concrete 15, and at the lower end, a concrete caisson 16 having an outer diameter larger than that of the main body 1A of the support column 1 is provided.
  • a heavy weight portion 3 is formed to realize a low center of gravity.
  • the concrete caisson 16 of FIG. 5 the lower end portion of the steel pipe 10 is insert-molded, and the concrete 15 filled in the lower end portion of the steel pipe 10 and the concrete caisson 16 are integrally connected.
  • the weight of the weight portion 3 formed at the lower end portion of the strut portion 1 is increased, the center of gravity G of the strut portion 1 is arranged downward, and the strut portion 1 is held in a more stable vertical posture.
  • the weight portion 3 does not necessarily have to have an outer diameter larger than that of the main body portion 1A of the strut portion 1, and may have an outer diameter equal to that of the strut portion 1.
  • the strut portion may form the weight portion 3 by connecting the strut portion and a weight formed of another member to the lower end portion.
  • the strut portion 1 can be smoothly settled on the seabed using the concrete 15 filled in the lower end portion and the weight portion 3 formed by the concrete caisson 16 formed in the lower end portion as a sinker.
  • the base portion 2 is installed on the seabed 90, and the lower end portion of the support column portion 1 is connected to the base portion 2.
  • the base portion 2 shown in FIG. 5 is a concrete caisson 21.
  • the concrete caisson 21 is made of reinforced concrete having a predetermined shape as a whole, and is installed on the seabed 90 in a horizontal posture as shown in the figure. Reinforced concrete has a specific gravity of about 2.4 t / m 3 , can be easily and inexpensively manufactured, and has excellent durability, so that it is the most suitable material for a caisson to be installed on the seabed as a base portion 2.
  • the base portion 2 composed of the concrete caisson 21 has a block shape having a polygonal or circular shape in a plan view, and the bottom surface is widened so that the base portion 2 can be stably installed on the seabed surface.
  • the central portion is formed thicker than the outer peripheral portion to form a pedestal portion 22 that supports the support column portion 1, and the outer peripheral portion 23 is formed wide so that the installation area with respect to the seabed 90 becomes large.
  • the base portion 2 has, for example, an outer diameter of 20 m to 30 m.
  • the base portion 2 in the figure is fixed to the seabed 90 via a pile member 24 penetrating the outer peripheral portion.
  • the thickness of the pedestal portion 22 is several m
  • the thickness of the outer peripheral portion 23 is several tens of cm to several m.
  • a plurality of piles penetrating the outer peripheral portion are driven into the seabed to fix the base portion to the seabed.
  • the life of the landing type offshore pedestal 9 can be extended by making the base portion 2 made of concrete. For this reason, by making the strut portion 1 and the base portion 2 detachable, the durability of the concrete base portion 2 can be extended and used repeatedly, while the metal strut portion 1 and the wind power generator having a short life can be used repeatedly. By replacing only 30, the cost can be reduced while effectively using the base portion 2.
  • the lower end portion of the support column 1 arranged from the seabed 90 to the sea surface is connected to the base portion 2 installed on the seabed 90 and arranged in a self-supporting posture.
  • the support column 1 may be tilted from a vertical posture when the wind power generator 30 installed at the upper end or the upper end near the sea surface receives strong wind or waves due to a typhoon or the like.
  • the lower end of the strut portion 1 and the base portion 2 are firmly fixed, a large stress acts on the connecting portion with the base portion 2 due to the load received from the inclined strut portion 1, and the connecting portion is damaged. There is a risk.
  • the lower end portion of the strut portion 1 is connected to the strut portion 1 via a connecting structure 5 that allows the strut portion 1 to swing.
  • the lower end portion is connected to the base portion 2.
  • the connecting structure 5 of the support column portion and the base portion 2 will be described in detail.
  • the connecting structure 5 shown in FIGS. 5 and 6 is formed so as to protrude from the upper surface of the base portion 2 and the socket recess 51 having a curved inner surface with a lower opening formed on the lower end surface of the support column 1.
  • a round head convex portion 52 having a spherical tip portion is provided.
  • the socket recess 51 is a recess having a lower opening formed on the lower end surface of the support column 1, and the support column 1 shown in the figure is provided with a weight portion 3 made of a concrete caisson 16 at the lower end portion of the weight portion 3.
  • the lower end surface is formed into a concave shape at the center to provide the socket recess 51.
  • the socket recess 51 has a curved inner surface so as to make surface contact with a spherical surface formed at the tip of a round head convex portion 52 formed on the base portion 2.
  • the central portion of the socket recess 51 is preferably a curved surface having a radius of curvature R1 slightly larger than the radius of curvature R2 of the tip surface of the round head convex portion 52, and a tapered surface or a tapered surface below the curved surface. It has a rotating paraboloid shape. As a result, the inner surface of the socket recess 51 is moved along the tip surface of the round head convex portion 52 in a surface contact state so that the support column 1 can swing.
  • connection structure 5 the round head convex portion 52 guided by the socket recess 51 is brought into surface contact with the inner surface of the socket recess 51, and the contact position between the inner surface of the socket recess 51 and the surface of the round head convex portion 52 is adjusted.
  • the strut portion 1 can be freely swung with respect to the base portion 2.
  • this connecting structure it is possible to allow the strut portion 1 to swing in the direction of 360 degrees in a plan view with respect to the base portion 2.
  • the connecting structure 5 guides the round head convex portion 52 protruding from the upper surface of the base portion 2 to the socket recess 51 of the lower opening provided on the lower end surface of the support column portion 1, the socket recess 51 and the round head convex portion It is possible to eliminate the accumulation of mud and foreign matter in seawater on the contact portion of the portion 52. This is because the socket recess 51 has a lower opening. Therefore, the contact portion between the socket concave portion 51 and the round head convex portion 52 can be kept in a clean state for a long period of time, and a good contact state can be maintained.
  • the inside of the socket recess 51 is filled with a lubricant 53 having a specific gravity smaller than that of seawater.
  • a lubricant 53 a liquid lubricating oil, a semi-solid grease, or the like can be used.
  • the lubricant 53 filled in the socket recess 51 of the lower opening has a specific gravity smaller than that of seawater, so that the lubricant 53 does not flow out from the socket recess 51 into seawater and is maintained in a state of remaining in the socket recess 51. ..
  • the socket recess 51 may be provided with an inflow groove 55 in the contact region with the round head convex portion 52, and the lubricant 53 may flow into the inflow groove 55. Also in this structure, the lubricant 53 can be effectively flowed between the inner surface of the socket recess 51 and the outer surface of the round head convex portion 52 to realize smooth contact.
  • the inflow groove may be provided on the surface of the round head convex portion.
  • the connecting structure 5 composed of the socket recess 51 formed at the lower end of the support column 1 and the round head convex portion 52 formed at the base portion 2 can be the structure shown in FIG. 7.
  • the connecting structure 5 shown in FIG. 7 has a structure in which the upper end surface 52a of the round head convex portion 52 and the inner surface of the socket recess 51 are brought into contact with each other over a wider area.
  • the socket recess 51 shown in FIG. 7 has a hemispherical inner surface shape.
  • the round head convex portion 52 has an upper end surface 52a having a curved surface shape along the inner surface of the socket recess 51.
  • the radius of curvature R2 of the upper end surface 52a is made equal to or slightly smaller than the radius of curvature R1 of the inner surface of the socket recess 51.
  • the upper end surface 52A of the round head convex portion 52 and the inner surface of the socket recess 51 are supported in a wider area in surface contact.
  • the round head convex portion 52 shown in the figure has a structure in which the upper end surface 52a facing the socket recess 51 is brought into contact with the inner surface of the socket recess 51, and the radius of curvature R3 of the outer peripheral portion 52b is set from the radius of curvature R2 of the upper end surface 52a.
  • connection structure 5 there is a feature that the area for supporting the load of the support column 1 can be widened to prevent a large load from being locally applied to the contact portion between the round head convex portion 52 and the socket concave portion 51.
  • the area of the upper end surface 52a which is the contact surface with the socket recess 51, is made substantially equal to or slightly larger than the area of the cross section of the main body portion 1A of the strut portion 1.
  • the support column 1 can be supported more stably.
  • the area of the upper end surface 52a of the round head convex portion 52 in contact with the socket concave portion 51 may be smaller than the area of the cross section of the main body portion 1A of the column portion 1.
  • the inside of the socket recess 51 is filled with a lubricant 53 having a specific gravity smaller than that of seawater. Since the connecting structure 5 in the figure has a wide contact area between the round head convex portion 52 and the socket concave portion 51, it is round in order to supply the lubricant 53 filled inside the socket concave portion 51 to the entire contact surface.
  • An inflow groove 55 is provided in the contact area between the convex portion 52 and the concave portion 51 of the socket.
  • the support column 1 shown in FIG. 8 forms a plurality of inflow grooves 55 intersecting each other on the inner surface of the socket recess 51.
  • the inflow groove 55 in the figure is provided with a plurality of radial grooves 55a extending radially from the center of the socket recess 51 and a plurality of concentric ring-shaped grooves 55b in the bottom view, and the radial groove 55a and the ring-shaped groove 55b are provided. Are crossing each other. Further, a sub-radial groove 55c for connecting a plurality of ring-shaped grooves is provided between the adjacent radial grooves 55a. By forming the inflow groove 55 so that the plurality of grooves intersect with each other, the lubricant 53 can be efficiently supplied to the entire contact surface.
  • the inflow groove 55 can have a groove width of several mm to several cm and a depth of several mm to several cm.
  • the structure in which the inflow groove 55 is provided in the contact region between the round head convex portion 52 and the socket concave portion 51 effectively supplies the lubricant 53 to the entire contact surface between the socket concave portion 51 and the round head convex portion 52. Therefore, smooth contact can be achieved.
  • the inflow groove 55 having the above shape lubricates the entire contact surface between the socket recess 51 and the round head convex portion 52 by flowing the lubricant 53 flowing into the radial groove 55a and the sub-radial groove 55c into the ring-shaped groove 55b. It has the characteristic that the agent 53 can be effectively supplied.
  • the inflow groove is not limited to the above shape, for example, a shape that intersects in a matrix shape or a honeycomb shape, a shape that extends radially from the center of the contact surface, or a spider web from the center of the contact surface. It can have a shape that spreads out like a shape.
  • the inflow groove 55 in the figure is provided on the inner surface of the socket recess 51
  • the inflow groove can be provided on the surface of the round head convex portion 52, or both the inner surface of the socket recess 51 and the surface of the round head convex portion 52. It can also be provided in.
  • the lower end portion of the strut portion 1 and the base portion 2 are connected via a plurality of connecting cords 80.
  • the strut portion 1 is connected to the base portion 2 via, for example, a plurality of connecting cords 80 extending radially from the lower end portion.
  • the strut portion 1 is provided with a plurality of connecting portions 81 projecting from the outer peripheral surface of the lower end portion at equal intervals along the outer peripheral circle.
  • the base portion 2 is provided with a plurality of fixing portions 82 projecting from the pedestal portion 22 at equal intervals facing the plurality of connecting portions 81 provided at the lower end portions of the strut portion 1.
  • the plurality of cords 5 radially arranged from the support column 1 are 3 to 16, preferably 4 to 8, and the support column 1 can be reliably held at a fixed position of the base portion 2.
  • the connection mechanism 5 described above can prevent the strut portion 1 from rotating in a horizontal plane while allowing the strut portion 1 to swing with respect to the base portion 2, and the socket recess 51 of the strut portion 1 It is possible to prevent the base portion 2 from falling off from the round head convex portion 52.
  • the strut portion 1 can be held in place even in the event of a disaster such as an earthquake or tsunami.
  • a wire such as a wire, a chain, a chain, or the like can be used for the connecting cord 80.
  • These connecting cords 80 have a length and strength that allow the strut portion 1 to swing, but prevent the socket recess 51 of the strut portion 1 from falling off from the round head convex portion 52 of the base portion 2.
  • one end is connected to the lower end of the support column 1 and the other end is connected to the base 2, but the other end of the connecting cord is via a fixing member such as an anchor. It can also be fixed to the seabed.
  • the connecting structure 5 may have the structure shown in FIGS. 9 and 10.
  • the connecting structure 5 shown in these figures has a columnar connecting convex portion 56 protruding downward from the lower end of the column portion 1 and an upper opening formed on the upper surface of the base portion 2 into which the connecting convex portion 56 is inserted.
  • a rubber-like elastic body 58 interposed between the insertion portion 57 and the connecting convex portion 56 is provided with the portion 57.
  • the strut portion 1 shown in FIG. 9 is provided with a concrete caisson 16 at the lower end portion to form a weight portion 3, and is provided with a connecting convex portion 56 protruding downward from the lower end portion.
  • the connecting convex portion 56 shown in the figure is a cylindrical steel pipe 56A, and has an outer diameter smaller than that of the cylindrical steel pipe 10 constituting the strut portion 1.
  • the weight portion 3 is formed by filling the steel pipe 56A with the concrete 15 to be filled inside the steel pipe 10 forming the strut portion 1 to form the connecting convex portion 56.
  • the connecting convex portion 56 is inserted into the insertion portion 57 formed on the upper surface of the base portion 2, and the lower end of the strut portion 1 is connected to the base portion 2.
  • the base portion 2 shown in the figure is provided with a through hole in the central portion of the pedestal portion 22 to serve as an insertion portion 57.
  • the insertion portion may be a recess of the upper opening.
  • the rubber-like elastic body 58 shown in FIGS. 9 and 10 has a tubular shape through which the connecting convex portion 56 can be inserted.
  • the tubular rubber-like elastic body 58 is interposed between the connecting convex portion 56 and the inserting portion 57, suppresses the relative movement between the connecting convex portion 56 and the inserting portion 57, and inserts the connecting convex portion 56 into the connecting convex portion 56. Both parts 57 are protected.
  • the rubber-like elastic body 58 shown in the figure is integrally provided with a flange portion 58B protruding in the outer peripheral direction at one end of the tubular main body portion 58A, and the flange portion 58B is formed with the lower surface of the support column portion 1.
  • the rubber-like elastic body 58 having the above shape is formed by molding elastic rubber into a tubular shape having a predetermined thickness to form a tubular portion 58A and integrally molding a flange portion 58B at one end. Ru.
  • the rubber-like elastic body 58 described above has a tubular shape as a whole, and has a flange portion 58B provided at one end thereof as a base with the lower surface of the strut portion 1 while the tubular portion 58A is interposed between the connecting convex portion 56 and the insertion portion 57.
  • the landing type offshore pedestal 9 shown in FIG. 2 has the structure shown in FIG. 10, and the support column portion 1 and the base portion 2 are connected via a rubber-like elastic body 58.
  • the strut portion 1 is connected to the insertion portion 57 of the base portion 2 with the connecting convex portion 56 as an axis, and the strut portion 1 is swung with a simple structure by the elasticity of the rubber-like elastic body 58. acceptable.
  • the connecting structure 5 shown in FIG. 9 shows an example of a structure that supports the strut portion 1 having a large outer diameter at the lower end portion.
  • the support column 1 is provided with a connecting convex portion 56 at the center of the lower end surface
  • the base portion 2 is provided with an insertion portion 57 at the center of the upper surface of the pedestal portion 22.
  • a plurality of elastic bodies 59 are interposed between the outer peripheral portion of the lower end surface of the strut portion 1 and the upper surface of the base portion 2.
  • the elastic body 59 shown in the figure is a coil spring. However, rubber can also be used for the elastic body.
  • the central portion of the lower surface of the support portion 1 having a large outer shape is connected while being positioned via the connecting convex portion 56 and the inserting portion 57, and the tubular rubber-like elastic body 58 is connected to the connecting convex portion 56.
  • the plurality of elastic bodies 9 arranged between the outer peripheral portion of the lower end surface of the strut portion 1 and the upper surface of the base portion 2 increase the load capacity while shaking the strut portion 1. Movement is acceptable. In particular, even a strut portion 1 having a large bottom area can stably allow swinging with respect to the base portion 2.
  • the connecting convex portion 56 in FIG. 9 is formed into a columnar shape by using the steel pipe 56A, but the connecting convex portion may be formed into a polygonal columnar shape, or a conical shape, a pyramid shape, or a truncated cone shape that gradually becomes thinner toward the tip. , Can also be in the shape of a truncated cone. Further, the tubular rubber-like elastic body into which the connecting convex portion having these shapes is inserted and the insertion portion can also have a shape that follows the outer shape of the connecting convex portion.
  • the connecting structure 5 shown in FIGS. 11 to 13 is formed into a recess 61 having a lower opening formed on the lower end surface of the support column 1 and a shape protruding from the upper surface of the base portion 2 and guided to the recess 61. It includes a convex portion 62 and a swing mechanism 60 arranged between the concave portion 61 and the convex portion 62.
  • the support column 1 shown in the figure is provided with a weight portion 3 made of a concrete caisson 16 at the lower end portion, and a recess 61 is provided by recessing the central portion of the lower end surface of the weight portion 3 into a columnar shape.
  • the base portion 2 is provided with a convex portion 62 by projecting the central portion of the pedestal portion 22 into a columnar shape.
  • the support column portion 1 and the base portion 2 shown in the figure have a columnar shape of the concave portion 61 and the convex portion 62.
  • the concave portion 61 and the convex portion 62 may have a polygonal columnar shape.
  • the swing mechanism 60 includes a cup portion 63 fitted in a concave portion 61 formed on the lower end surface of the strut portion 1, a cap portion 64 covering a convex portion 62 protruding from the upper surface of the base portion 2, and a cup portion 63.
  • the swing mechanism 60 has a shape and size in which the outer shape of the cup portion 63 is fitted into the recess 61 formed on the lower end surface of the support column portion 1. Further, the swing mechanism 60 has an internal shape of the cap portion 63 having a shape and size into which the convex portion 62 formed on the base portion 2 can be fitted.
  • These cup portions 63 and cap portions 64 are preferably formed by processing a metal plate.
  • the swing mechanism 60 is provided with a gap 66 at a predetermined interval between the inner surface of the cup portion 63 and the outer surface of the cap portion 64, and a plurality of elastic bodies 65 are arranged in the gap 66 to arrange the cup portion 63.
  • the inner surface of the cap portion and the outer surface of the cap portion are connected via an elastic body 65.
  • the cup portion 63 and the cap portion 64 shown in the figure have a cylindrical outer shape.
  • a plurality of elastic bodies 65 that absorb a load in the vertical direction are arranged at equal intervals in a gap 66 between the bottom surface of the cup portion 63 and the top surface of the cap portion 64, and the strut portion 1 It has a structure that supports the vertical load of.
  • a plurality of elastic bodies 65 for absorbing a load in the horizontal direction are provided at equal intervals radially in a plan view. ..
  • the elastic body 65 shown in the figure is a coil spring.
  • the rocking mechanism 60 relatively moves the cup portion 63 and the cap portion 64 via the plurality of elastic bodies 65, and swings the strut portion 1 with respect to the base portion 2 in the direction of 360 degrees in a plan view. Allows movement.
  • the cup portion 63 arranged at the lower end of the support column 1 is arranged in a downward opening posture, so that seawater fills the gap 66 formed between the cup portion 63 and the cap portion 64. It can be a space that does not invade. Therefore, by using this space as an air layer, it is possible to prevent the elastic body arranged in this gap from coming into contact with seawater and effectively prevent deterioration and corrosion.
  • the gap 66 formed between the cup portion 63 and the cap portion 64 is filled with a lubricant 67 having a specific gravity smaller than that of seawater.
  • the lubricant 67 the above-mentioned lubricating oil or grease can be used.
  • the lubricant 67 filled in the gap 66 can cover the elastic body 65 for a long period of time without flowing out into the seawater and can protect it from corrosion and deterioration.
  • the elastic body 65 is a coil spring made of an elastic metal, it is possible to realize a feature that the elastic force can be maintained for a long period of time by effectively preventing corrosion and deterioration of the metal.
  • the outer shapes of the concave portion 61 and the convex portion 62 are cylindrical, and the outer shapes of the cup portion 63 and the cap portion 64 of the swing mechanism 60 arranged between them are also cylindrical.
  • the outer shapes of the concave portion 61 and the convex portion 62 have a truncated cone shape, and the outer shapes of the cup portion 63 and the cap portion 64 of the swing mechanism 60 arranged between them also have a truncated cone shape. ..
  • a plurality of elastic bodies 65 that absorb a load in the vertical direction are arranged at equal intervals in a gap 66 between the bottom surface of the cup portion 63 and the top surface of the cap portion 64, and the strut portion 1 It has a structure that supports the vertical load of.
  • the outer peripheral surface is a tapered surface with a wide hem
  • the inner peripheral surface of the cup portion 63 is a tapered surface that gradually widens downward.
  • the pressing direction is the normal direction of the tapered surface. Therefore, the elastic force of the elastic body 65 can be effectively applied to the force received from the strut portion 1 swinging in the lateral direction, and the load in the inclined direction can be effectively absorbed.
  • the swing mechanism 60 shown in FIG. 13 has a plurality of elastic bodies 65 as rubber-like elastic bodies. Further, in the swing mechanism 60 shown in FIG. 13, the gap 66 formed between the cup portion 63 and the cap portion 64 is an air layer 68. As a result, the invasion of seawater into the gap 66 is prevented, and the deterioration of the elastic body 65 with time due to seawater is effectively prevented.
  • the first swing shaft 71 which is the swing shaft 70 that swings the lower end portion of the support column 1 in the first direction (indicated by the arrow A in the figure), and the first swing shaft 71.
  • a second swing shaft 70 that is arranged so as to intersect the swing shaft 71 and swings the lower end portion of the support column 1 in a second direction (indicated by an arrow A in the figure) that intersects the first direction. It includes a swing shaft 72.
  • the strut portion 1 is connected to the base portion 2 via two swing shafts 70 that intersect each other, so that the strut portion 1 is swung in the direction of 360 degrees in a plan view with respect to the base portion 2. The movement is allowed.
  • the base portion 2 shown in FIG. 14 includes a base portion 25 fixed to the seabed 90 and a rocking body 26 oscillatingly connected to the base portion 25 via a second swing shaft 72 in a second direction. It has.
  • the strut portion 1 is oscillatingly connected to the oscillating body 26 in the first direction via the first oscillating shaft 71.
  • the support column 1 in the figure includes a first swing shaft 71 projecting from the side surface of the lower end portion in the radial direction, and the first swing shaft 71 can be rotated to the swing body 26 via the first bearing 73. It is connected to.
  • the rocking body 70 includes a second rocking shaft 72 projecting in a direction intersecting the first rocking shaft 71, and the second rocking shaft 72 is attached to the base portion 25 via the second bearing 74. It is rotatably connected.
  • the first swing shaft 71 and the second swing shaft 72 are arranged in a horizontal posture and in a direction orthogonal to each other, and the support column portion 1 is smooth with respect to the base portion 25. It is possible to swing in the direction of 360 degrees.
  • the connecting structure 5 shown in FIG. 14 has a structure in which the first swing shaft 71 and the second swing shaft 72 are arranged outside the support column 1.
  • the first swing shaft 71 and the second swing shaft 72 can be easily and easily connected to a predetermined position.
  • the connecting mechanism may be provided with a recess having a lower opening on the lower surface of the strut portion, and inside the recess, the connecting mechanism may be connected to the base portion via the first swing shaft and the second swing shaft. it can.
  • This structure is particularly suitable for connecting a strut portion having a large outer diameter to a base portion via two swing shafts.
  • first swing shaft and the second swing shaft can be arranged inside the recess of the lower opening provided on the lower surface of the support column, the structure is such that the first swing shaft and the second swing shaft do not come into contact with seawater. As a result, deterioration of the swing shaft and bearing can be suppressed.
  • the landing type offshore pedestal 9 shown in FIGS. 1 and 2 includes a plurality of cords 17 for fixing the support column 1 to the seabed 90.
  • the cord 17 is a wire rod such as a wire, a chain, a chain, or the like, and has a strength capable of stably holding the strut portion 1 when the strut portion 1 is subjected to a strong wind or a rough wave due to the influence of a typhoon or the like. ing.
  • the plurality of cords 17 are radially stretched from the intermediate portion of the support column 1 and fixed to the seabed 90.
  • One end of the cord 17 is an intermediate portion of the strut portion 1, and is fixed to a connecting portion 18 provided in the main body portion 1A arranged in the sea, and the other end thereof is attached to the seabed 90 via the anchor 19. It is fixed.
  • the cord 17 is stretched between the support column 1 and the anchor 19 so that its length and the fixing position by the anchor are determined so as to receive a predetermined tensile force and a predetermined tension is obtained.
  • the plurality of cords 5 radially arranged from the support column 1 are preferably 3 to 6, and the gantry can be stably held.
  • the above-mentioned landing type offshore mount 9 is used as an offshore wind power generator 100 with a wind power generator 30 installed at the upper end of a support column 1, and as shown in FIG. It is used as an offshore wind condition observation device 200 with the wind condition observation machine 35 installed at the upper end of the support column 1.
  • the wind power generator 30 houses a wind turbine 31 that receives wind power and rotates, a generator 32 that converts the kinetic energy of the rotating wind turbine 31 into electrical energy, and a nacelle that houses the generator 32.
  • a 33 and a tower 34 for arranging the nacelle 33 at a predetermined height are provided.
  • the wind turbine 31 includes a plurality of blades 31A, and the plurality of blades 31A are fixed to a hub 31B provided at the center at equal intervals.
  • the base of the tower 34 is fixed to the upper end of the support column 1, and the wind power generator 30 is installed on the landing type offshore pedestal 9.
  • the offshore wind power generation device 100 shown in the figure is a base portion of the tower 34, and a platform portion 36 for work is provided along the outer circumference of the upper end of the support column portion 1.
  • the wind power generator 30 shown in FIG. 1 is a downwind type wind turbine 31. Further, in the wind power generator 30, the nacelle 33 is fixed to the upper end of the tower 34 at a predetermined angle, so that the tower 34 extended from the support column 1 swings to the leeward side of the wind turbine 31.
  • the axis of rotation is set to be in the horizontal direction.
  • the wind power generator 30 is arranged so that the rotation axis of the wind turbine 31 has a predetermined elevation angle with respect to the horizontal plane orthogonal to the axis of the tower 34 in the traveling direction of the down window.
  • the wind turbine 31 of the wind power generator 30 is a downwind type, and the rotation axis of the wind turbine 31 is arranged at a predetermined elevation angle. Can generate electricity in a stable manner without reducing the amount of electricity.
  • Wind condition observation aircraft 35 In the landing type offshore pedestal 9 shown in FIG. 2, a platform portion 36 is provided in a horizontal posture at the upper end of a strut portion 1 arranged so that the upper end portion protrudes offshore, and wind conditions are observed on the platform portion 36.
  • the machine 35 is installed.
  • the various wind condition observation aircraft 35 for observing the wind condition for wind power generation are an anemometer, an anemometer, an anemometer, and the like. These wind condition observation aircraft 35 detect the wind direction, the air volume, and the wind speed at the observation point to observe the wind condition.
  • wind condition data measured by a floating wind condition observation device is not treated as formal wind condition data. Therefore, reliable wind condition measurement can be realized by using such a landing type offshore pedestal 9.
  • the landing type offshore pedestal 9 can be equipped with various monitoring devices and various observing devices. Examples of such a device include a bird radar, a surveillance camera, a weather radar for meteorological observation, and the like.
  • the landing type offshore pedestal of the present invention can be suitably used as a gantry for supporting an offshore wind power generator or a wind condition observation aircraft that measures meteorological data such as wind conditions at sea.
  • Offshore wind power generator 200 ... Offshore wind condition observation device 1 ... Strut part 1A ... Main body part 1B ... Protruding part 1C ... Thick cylinder part 2 ... Base part 3 ... Weight part 4 ... Floating body part 5 ... Connecting structure 9 ... Landing Type offshore mount 10 ... Steel pipe 11 ... Flange part 12 ... Connecting tool 13 ... Partition 13A ... Sanding plate 13B ... Divided plate 14 ... Hollow part 14A ... Section chamber 15 ... Concrete 16 ... Concrete caisson 17 ... Cable 18 ... Connecting part 19 ... Anchor 21 ... Concrete caisson 22 ... Pedestal 23 ... Outer circumference 24 ... Pile member 25 ... Base 26 ... Shaking body 30 ...
  • Wind power generator 31 ... Wind turbine 31A ... Blade 31B ... Hub 32 ... Generator 33 ... Nasser 34 ... Tower 35 ... Wind condition observer 36 ... Platform part 40 ... Sub floating body part 41 ... Central hole 42 ... Fixed member 43 ... Pump 44 ... Ballast water 51 ... Socket recess 52 ... Round head convex part 52a ... Upper end surface 52b ... Outer peripheral part 53 ... Lubricant 54 ... Adjacent gap 55 ... Inflow groove 55a ... Radial groove 55b ... Ring-shaped groove 55c ... Sub-radial groove 56 ... Connecting convex portion 56A ... Steel pipe 57 ... Insertion portion 58 ... Rubber-like elastic body 58A ...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

着床式とすることで安定した発電や風況計測を実現しながら、洋上において安価に設置可能な着床式洋上架台を提供する。 着床式洋上架台は、風力発電機30又は風況観測機35を洋上に設置するための架台であって、下端を海底90に配置して、上端を洋上に突出させるように上下方向に延長されて、上端に風力発電機30又は風況観測機35が設置される支柱部1と、海底90に設置されて、支柱部1の下端部が連結されるベース部2とを備えている。支柱部1は、中空状の浮体部4を備えると共に、下端部には、支柱部1を沈降させる重り部3を備えており、浮体部4に働く浮力の浮心Fを、重り部3の重心Gよりも上方に配置して、支柱部1を鉛直姿勢に保持するようにしており、さらに、支柱部1の下端部は、支柱部1の揺動を許容する連結構造5を介してベース部2と連結している。

Description

着床式洋上架台、洋上風力発電装置及び洋上風況観測装置
 本発明は、洋上に設置される風力発電機や洋上で風況などの気象データの計測を行う風況観測機を支持する基台となる着床式洋上架台と、この着床式洋上架台に風力発電機を設けた洋上風力発電装置、及び風況観測機を設けた洋上風況観測装置に関する。
 近年の石油資源の枯渇に伴い、太陽エネルギーに代表される再生可能エネルギーが注目されている。しかしながら、太陽光発電は、天気による変動が大きく、また、夜間には発電できないため、これに代わる再生可能エネルギーとして風力発電が注目されている。風力発電は、民家近くでは低周波騒音などの問題が指摘されているため、これを回避するため、洋上に風力発電設備を設置することに注目されている。洋上風力発電機を設置するには、洋上に発電機を設置するための架台(プラットフォーム)が必要となる。また、洋上風力発電機を設置するに際して、その設置環境の選定や発電能力試算のため、予め設置候補の洋上にて風向、風量、風速などの風況観測を行う必要がある。
 しかしながら、洋上に設置する洋上架台は、台風や強風、波浪の影響を受けるため、これらに耐えて安定的に設置することが容易でない。特に、強固に海底に固定するには施工が複雑で高コストとなる。また一方で、強固に海底に固定すると、却って強い抵抗力を受けることとなるため、さらに高い剛性が求められる。
特開2017-161392号公報 特許3951631号公報
 本発明は上記の問題に鑑みてなされたものであり、その目的の一は、着床式とすることで安定した発電や風況計測を実現しながら、洋上において安価に設置可能な着床式洋上架台、洋上風況観測装置及び洋上風力発電装置を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の第1の実施形態に係る着床式洋上架台は、風力発電を行う風力発電機又は風力発電用の風況データの計測を行う風況観測機を洋上に設置するための架台であって、下端を海底に配置して、上端を洋上に突出させるように上下方向に延長されて、上端に風力発電機又は風況観測機が設置される支柱部と、海底に設置されて、支柱部の下端部が連結されるベース部とを備えている。支柱部は、中空状の浮体部を備えると共に、下端部には、支柱部を沈降させる重り部を備えており、浮体部に働く浮力の浮心を、重り部の重心よりも上方に配置して、支柱部を鉛直姿勢に保持するようにしており、さらに、支柱部の下端部は、支柱部の揺動を許容する連結構造を介してベース部と連結している。
 上記構成によると、浮体部と重り部により鉛直姿勢に保持される支柱部の下端部を、揺動を許容する連結構造を介して、海底に設置されたベース部に連結するので、着床式として安定した発電や風況計測を実現しながら、台風や強風、波浪に対して優れた耐性を実現して、長期間にわたって安定的に設置できる。
 本発明の第2の実施形態に係る着床式洋上架台は、連結構造が、支柱部の下端面に形成された下方開口で内面を湾曲面状とするソケット凹部と、ベース部の上面から突出して、先端部を球面状とする丸頭凸部とを備え、ソケット凹部に案内される丸頭凸部をソケット凹部の内側面に面接触させて、支柱部をベース部に対して、平面視360度方向への揺動を許容している。
 上記構成によると、支柱部の下端面に形成されたソケット凹部に、ベース部の上面から突出する丸頭凸部を案内して、丸頭凸部の先端面をソケット凹部の内周面に面接触させる連結構造とするので、支柱部をベース部に対して、平面視360度方向への揺動を許容しながら安定して支持できる。とくに、この連結構造は、支柱部の下端面に設けた下方開口のソケット凹部に、ベース部の上面から突出する丸頭凸部を案内するので、ソケット凹部と丸頭凸部の接触部に対して海水中の泥や異物が堆積するのを皆無にして、ソケット凹部と丸頭凸部との接触状態を良好な状態に保持できる。このため、長期間にわたって支柱部をベース部に対して安定して揺動できる。
 本発明の第3の実施形態に係る着床式洋上架台は、連結構造が、ソケット凹部の内側に、海水よりも比重が小さい潤滑剤を充填している。
 上記構成によると、支柱部の下端面に設けた下方開口のソケット凹部の内側に充填される潤滑剤により、ソケット凹部と丸頭凸部との接触抵抗を潤滑剤で低減させて、支柱部をベース部に対して安定して揺動できる。とくに、海中において、下方開口のソケット凹部の内側に、海水よりも比重が小さい潤滑剤を充填するので、この潤滑剤はソケット凹部から流出することなく、長期間にわたってソケット凹部の内側に残存してソケット凹部と丸頭凸部との接触抵抗を低減できる。また、経時的に潤滑剤が減少しても、簡単に補充することができ、良好な接触状態を維持できる。
 本発明の第4の実施形態に係る着床式洋上架台は、さらに、ソケット凹部と丸頭凸部との接触領域に、潤滑剤を流入させるための流入溝を備えている。上記構成によると、ソケット凹部と丸頭凸部との接触領域に設けた流入溝に潤滑剤を流入させて、ソケット凹部と丸頭凸部との接触面における接触抵抗を低減して滑らかに摺動できる。
 本発明の第5の実施形態に係る着床式洋上架台は、さらに、連結構造が、支柱部の下端部とベース部とを連結する複数の連結索体を備えている。上記構成によると、ベース部に対して支柱部が揺動するのを許容しながら、支柱部が水平面内で回転するのを防止できると共に、支柱部のソケット凹部がベース部の丸頭凸部から脱落するのを防止できる。
 本発明の第6の実施形態に係る着床式洋上架台は、連結構造が、支柱部の下端から下方に突出する柱状ないし錐状の連結凸部と、ベース部の上面に形成されて、連結凸部が挿入される上方開口の挿入部と、挿入部と連結凸部の間に介在されるゴム状弾性体とを備えている。
 上記構成によると、支柱部に設けた連結凸部をベース部に設けた挿入部に挿入することで支柱部とベース部とを定位置に連結しながら、支柱部と挿入部の間にゴム状弾性体を介在させることで、連結凸部と挿入部との位置ずれをゴム状弾性体で吸収して、支柱部の揺動を許容できる。
 本発明の第7の実施形態に係る着床式洋上架台は、ゴム状弾性体が、連結凸部を挿通可能な筒状であって、一端にフランジ部を一体的に備えており、フランジ部を、支柱部の下面と、ベース部の上面との間に介在させている。
 上記構成によると、ゴム状弾性体を、連結凸部を挿通可能な筒状として、連結凸部と挿入部との間に筒部を介在させながら、上端縁に設けたフランジ部を、支柱部の下面とベース部の上面との間に介在されることで、支柱部をベース部に対して、より安定的に揺動できる。
 本発明の第8の実施形態に係る着床式洋上架台は、支柱部が下端面の中央部に連結凸部を備えると共に、ベース部が上面の中央部に挿入部を備えており、支柱部の下端面の外周部とベース部の上面との間に、複数の弾性体を介在させている。
 上記構成によると、支柱部の下端面の中央部に設けた連結凸部を、ベース部の上面の中央部に設けた挿入部にゴム状弾性体を介して配置しながら、支柱部の下端面の外周部とベース部の上面との間に、複数の弾性体を介在させることにより、底面積の広い支柱部であっても、ベース部に対して安定的に揺動を許容できる。
 本発明の第9の実施形態に係る着床式洋上架台は、連結構造が、支柱部の下端面に形成された下方開口の凹部と、ベース部の上面から突出して凹部に案内される凸部と、凹部と凸部の間に配置される揺動機構とを備えている。揺動機構は、支柱部の下端面に形成された凹部に嵌合されるカップ部と、ベース部の上面から突出する凸部を被覆するキャップ部と、カップ部の内面とキャップ部の外面との間に配置された複数の弾性体とを備えており、複数の弾性体を介してカップ部とキャップ部とを相対的に移動させて、支柱部をベース部に対して、平面視360度方向への揺動を許容している。
 上記構成によれば、支柱部の下端面に設けた下方開口の凹部と、ベース部の上面から突出する凸部とを揺動機構で連結しており、この揺動機構が、凹部に嵌合されるカップ部と、凸部を被覆するキャップ部と、これらの間に配置される複数の弾性体とを備えているので、ベース部に対して複数の弾性体を介して連結される支柱部の揺動を許容できる。とくに、この連結構造は、支柱部の下端面に設けた下方開口の凹部に嵌合するカップ部に、ベース部の上面から突出する凸部を被覆するキャップ部を案内する状態で、カップ部とキャップ部の間に複数の弾性体を配置するので、弾性体が配置されるカップ部とキャップ部の間に、海水中の泥や異物が侵入するのを有効に防止して、長期間にわたって支柱部をベース部に対して安定して揺動できる。
 本発明の第10の実施形態に係る着床式洋上架台は、揺動機構が、カップ部の内面とキャップ部の外面との間に隙間を設けており、この隙間を空気層としている。
 以上の構成によれば、カップ部の内面とキャップ部の外面との間に隙間を設けており、この隙間を空気層として海水の浸水を阻止しているので、カップ部とキャップ部の間の隙間に配置される複数の弾性体が海水に接触するのを防止して、弾性体の経時的な劣化を有効に防止できる。
 本発明の第11の実施形態に係る着床式洋上架台は、揺動機構が、カップ部の内面とキャップ部の外面との間に隙間を設けており、この隙間に、比重が海水よりも小さい潤滑剤を充填している。
 以上の構成によれば、カップ部の内面とキャップ部の外面との間に形成される隙間に、比重が海水よりも小さい潤滑剤を充填するので、隙間に配置される弾性体を潤滑剤で保護して、経時的な劣化を有効に防止できる。とくに、下方開口のカップ部の内側であって、このカップ部に案内されるキャップ部との間の形成される隙間に、比重が海水よりも小さい潤滑剤を充填するので、この潤滑剤はカップ部から流出することなく、長期間にわたっってカップ部とキャップ部の隙間に残存して弾性体を保護できる。また、経時的に潤滑剤が減少しても、簡単に補充することができる。
 本発明の第12の実施形態に係る着床式洋上架台は、複数の弾性体を、ゴムまたはバネとしている。
 本発明の第13の実施形態に係る着床式洋上架台は、連結構造が、支柱部の下端部を第一の方向に揺動させる揺動軸となる第一揺動軸と、第一揺動軸と交差して配置されて、支柱部の下端部を第一の方向と交差する第二の方向に揺動させる揺動軸となる第二揺動軸とを備えており、支柱部をベース部に対して、平面視360度方向へ揺動を許容している。
 上記構成によると、連結構造が、互いに交差する第一揺動軸と第二用同軸とを介して支柱部の揺動を許容するので、支柱部をベース部に対して、平面視360度方向への揺動を許容できる。
 本発明の第14の実施形態に係る着床式洋上架台は、ベース部が、海底に固定される土台部と、土台部に第二揺動軸を介して第二の方向に揺動自在に連結された揺動体とを備えており、支柱部は、揺動体に、第一揺動軸を介して第一の方向に揺動自在に連結されており、第一揺動軸と第二揺動軸とを互いに直交する方向に配置している。
 本発明の第15の実施形態に係る着床式洋上架台は、支柱部が、海面下に配置される一部を他の部分よりも外径を大きくして太筒部を設けており、この太筒部を中空状として浮体部の一部としている。
 本発明の第16の実施形態に係る着床式洋上架台は、さらに、支柱部に脱着自在に連結される、筒状で中空のサブ浮体部を備えており、サブ浮体部を、中心に挿通される支柱部に沿って海面下に配置している。
 本発明の第17の実施形態に係る洋上風力発電装置は、上記のいずれかの着床式洋上架台を備える洋上風力発電装置であって、着床式洋上架台と、支柱部の上端に設置された風力発電機とを備えている。
 本発明の第18の実施形態に係る洋上風力発電装置は、風力発電機が、ダウンウインド型の風車を備えている。
 上記構成によると、風力発電機がダウンウインド型の風車を備えているので、支柱部が風下側に揺動する状態においても、発電効率を低下させることなく安定して発電できる。
 本発明の第19の実施形態に係る洋上風況観測装置は、上記のいずれかの着床式洋上架台を備える洋上風況観測装置であって、着床式洋上架台と、支柱部の上端に設置された風況観測機とを備えており、支柱部が上端部にプラットホーム部を備え、プラットホーム部に風況観測機を設けている。
本発明の一実施形態に係る洋上風力発電装置を示す模式断面図である。 本発明の一実施形態に係る洋上風況観測装置を示す模式断面図である。 図1に示す洋上風力発電装置の着床式洋上架台の浮体部の拡大断面図である。 サブ浮体部の一例を示す拡大断面図である。 連結構造の一例を示す分解断面図である。 図5に示す連結構造の一部拡大断面図である。 連結構造の他の一例を示す一部拡大断面図である。 図7に示すソケット凹部の底面図である。 連結構造の他の一例を示す拡大断面図である。 連結構造の他の一例を示す拡大断面図である。 連結構造の他の一例を示す分解断面図である。 図11に示す連結構造の拡大断面図である。 連結構造の他の一例を示す拡大断面図である。 連結構造の他の一例を示す斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部品を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
 本発明の着床式洋上架台は、風力発電を行う風力発電機又は風力発電用の風況データの計測を行う風況観測機を洋上に設置するための架台である。この着床式洋上架台は、主として、水深を20m~100mとする海洋において、風力発電機や風況観測機を洋上に設置するために使用される。ただ、本発明の着床式洋上架台は、海洋上のみならず、所定の水深を有する湖の湖底に着床させて水面上に風力発電機や風況観測機を配置する架台として使用することもできる。したがって、本明細書において、洋上とは、海洋上だけでなく、湖上も含む広い意味で使用する。
(着床式洋上架台9)
 図1は、着床式洋上架台9の上に風力発電機30を設置した洋上風力発電装置100の一例を示し、図2は、着床式洋上架台9の上に風況観測機35を設置した洋上風況観測装置200の一例を示している。これらの図に示す着床式洋上架台9は、下端を海底90に配置して、上端を洋上に突出させるように上下方向に延長されて、上端に風力発電機30又は風況観測機35が設置される支柱部1と、海底90に設置されて、支柱部1の下端部が連結されるベース部2とを備えている。
(支柱部1)
 図1及び図2に示す支柱部1は、上下方向に延長された柱状であって、下端部を海底90に配置して上端を海面上に突出させる鉛直姿勢で海中に配置している。海底90から海面上に向かって上下方向に伸びる支柱部1を鉛直姿勢で配置するために、支柱部1は、下端部に支柱部1を沈降させる重り部3を設けて重心Gを低くすると共に、上部の内部を中空状として浮体部4を設けて、この浮体部4の浮心Fを重心Gよりも高い位置に配置している。これにより、上下方向に配置される支柱部1を鉛直姿勢に保持できるようにしている。
 支柱部1は、下端が海底90に配置されると共に、上端が洋上に突出する全長を有している。海底90から海洋上に延長して配置される支柱部1は、鉛直姿勢で配置されており、海中に配置される本体部1Aの下端部を海底90に設置されるベース部2に連結し、海面上に突出する突出部1Bの上端に風力発電機30又は風況観測機35を設置している。支柱部1は、上端を海面から5m~10m突出させる姿勢で配置している。したがって、支柱部1の全長は、設置場所の水深よりも5m~10m長くなるようにしている。例えば、水深を50mとする海域に設置される着床式洋上架台9においては、支柱部1の全長を55m~60mとして、上端部を海面上に5m~10m突出させる。
 図1及び図2に示す支柱部1は、図3に示すように所定の外径を有する円筒状の鋼管10で形成されている。円筒状の鋼管10で形成される支柱部1は、複数本の鋼管10を連結して所定の長さに形成される。図1及び図2に示す支柱部1は、長さを10m~数十mとする鋼管10を複数本連結して、所定の全長としている。図3に示す各々の鋼管10は、端縁に沿って外側に突出するフランジ部11を設けており、対向するフランジ部11同士を連結具12を介して連結することで、複数の鋼管10を直線状に連結して所定の全長としている。ただ、使用する鋼管10の長さや連結する本数は、種々に設計変更することができる。このように、支柱部1を複数の鋼管10で形成する構造は、既成の鋼管を使用することで、製造コストを低減しながら、簡単かつ容易に製造できる特長がある。
(浮体部4)
 支柱部1は、安定した姿勢で配置するために、少なくとも一部を中空とする浮体部4を備えている。円筒状の鋼管10で構成される支柱部1は、海中に配置される本体部分において、内部を中空とする領域を設けて浮体部4を形成している。浮体部4は、内部を中空状とすることで、浮力に対する重量を少なくして、実質的に浮力を大きくしている。
 複数の鋼管で形成される支柱部1は、鋼管の内部全体を一つの空間として、浮体部を構成することもできるが、好ましくは、内部に隔壁13を設けて、浮体部4を形成する中空部14を複数の領域に分割する。図3に示す浮体部4は、複数の隔壁13を設けて、中空部14を複数の区画室14Aに区画している。図3に示す支柱部1は、互いに連結される鋼管10同士の間に挟着プレート13Aを介在させて、この挟着プレート13Aを隔壁13としている。鋼管10同士の間に配置される挟着プレート13Aは、鋼管10の端縁に設けたフランジ部11に沿う外形を有しており、対向するフランジ部11同士の間に密着状態で挟着されて、隣接する鋼管10同士の内部を区画している。この挟着プレート13Aは、鋼管10のフランジ部11との間にパッキンを介在させることで、各々の区画室14Aを水密構造に閉塞できる。
 さらに、図3に示す支柱部1は、鋼管10の中間部分において、鋼管10の内部領域を分割する分割プレート13Bを設けて隔壁13としている。図に示す分割プレート13Bは、鋼管10の内形に沿う外形を有しており、外周面を鋼管10の内周面に密着させる状態で固定されて、鋼管10の内部を複数の区画室14Aに分割している。
 以上のように、支柱部1の内部に形成される中空部14を、隔壁13によって複数の区画室14Aに分割する構造は、浮体部4の内部に浸水することがあっても隔壁13によって浸水領域の拡大を抑制できると共に、浮体部4の内部を隔壁13で複数に区画することで、浮体部4にはたらく浮力の中心(以後、浮心Fと呼ぶ)の位置を安定させて、支柱部1を鉛直姿勢に保持できる。
 ここで、海水中の物体にはたらく浮力Pは、海水中に浸かっている物体の体積に、海水の比重を乗じたものとなる。すなわち、浮力Pの大きさは、海水中の物体の体積に比例する。このため、浮体部4は、支柱部1の外径を大きくすることで、より大きな浮力Pが得られることになる。したがって、支柱部1は、架台に要求される浮力Pを考慮して最適な外径に調整される。支柱部1の外径は、支柱部1の上に設置する機器や、着床式洋上架台9を設置する海域の水深によっても変更される。例えば、図1に示すように、重量の大きな風力発電機30を支持する支柱部1は、外径を大きくすることで浮力を大きくすることができる。図1に示すように、水深40m~100mの海域に設置されて、上端に風力発電機30を設置する着床式洋上架台9においては、支柱部1の外径を5m~12m、好ましくは7~10mとすることができる。また、図2に示すように、水深20m~50mの海域に設置されて、上端に風況観測機35を配置する着床式洋上架台9においては、支柱部1の外径を1m~4mとすることができる。
 さらに、図1及び図2に示す支柱部1は、海面下に配置される一部を他の部分よりも外径を大きくして太筒部1Cを設けており、この太筒部1Cの内部を中空状として浮体部4の一部を構成している。このように、本体部1Aよりも外径の大きな太筒部1Cを設けることで浮体部4に働く浮力Pをさらに大きくすることができる。また、この太筒部1Cを有する支柱部1は、海面近くにおいて表面積の大きな太筒部1Cを備えることで、支柱部1が下端部を支点として揺動する際に、支柱部1の上部に作用する水の抵抗を大きくして、揺動を抑制する効果もある。このような太筒部1Cは、例えば、その外径を、本体部1の外径の1.5~2倍の大きさとすることで、この領域に作用する浮力の大きさを2~4倍に大きくできる。
(サブ浮体部40)
 さらに、支柱部1は、図4に示すように、支柱部1に脱着自在に連結されるサブ浮体部40を備えることもできる。図に示すサブ浮体部40は、全体を筒状としており、内部を中空状として海中において浮力が生じるようにしている。図に示すサブ浮体部40は、支柱部1を内側に挿通できるように中心孔41を開口しており、この中心孔41に支柱部1を挿通する状態で、支柱部1に沿って上下に移動できるようにしている。このサブ浮体部40は、図1の太筒部1Cと同様に、海面下に配置されるように支柱部1に固定することで、支柱部に働く浮力を大きくできる。図に示すサブ浮体部40は、固定部材42を介して支柱部1の本体部1Aに固定できるようにしている。
 このサブ浮体部40は、例えば、支柱部1の上に設置される風力発電機30の荷重に応じて使用することで、支柱部1が支持する荷重を調整できる。言い換えると、支柱部1の上に設置される風力発電機30の重量によって、大きさの異なるサブ浮体部40を選択的に使用することで、支柱部1に作用する浮力の大きさを調整できる。さらに、サブ浮体部40は、内部にバラスト水44を充填し、このバラスト水44をポンプ43等を使用して出し入れすることで、浮力の大きさを調整することもできる。着床式洋上架台9は、例えば、サブ浮体部40を備える支柱部1を海中に設置する際には、サブ浮体部40にバラスト水44を充填しておき、定位置に設置された支柱部1の上端に風力発電機30を設置する際には、サブ浮体部40の内部のバラスト水44を排水して浮力を発生させて、風力発電機30を支持する浮力を大きくすることができる。このように、バラスト水44を出し入れ自在とするサブ浮体部40を備える着床式洋上架台9は、支柱部1に作用する浮力を調整しながら、洋上風力発電装置100の設置作業を能率よくできる。
 以上の支柱部1は、下端部を自重で海中に沈降させて海底90に設けたベース部2に連結させた状態で、支柱部1を安定して鉛直姿勢に保持するために、浮体部4にはたらく浮力の浮心Fが、下端部に設けた重り部3の重心Gよりも上方に位置するように構成される。すなわち、上下に延長される支柱部1は、浮体部4に上向きに作用する浮力Pの浮心Fを上方に配置し、重り部3に下向きに作用する重力Wの重心Gが下方に位置する低重心とすることで鉛直姿勢に保持される。
(重り部3)
 さらに、図1及び図2に示す支柱部1は、下端部に、支柱部1を沈降させる重り部を備えている。重り部3は、支柱部1の下端部を中実として形成することにより、支柱部1における重心Gを下方に配置することができる。図3に示す支柱部1は、下端部において、鋼管10の内部にコンクリート15を充填すると共に、下端部には支柱部1の本体部1Aよりも外径の大きなコンクリートケーソン16を設けることで、重量の大きな重り部3を形成して低重心を実現している。図5のコンクリートケーソン16は、鋼管10の下端部をインサート成形しており、鋼管10の下端部に充填されるコンクリート15とコンクリートケーソン16とを一体的に連結している。
 この構造によると、支柱部1の下端部に形成される重り部3の重量を大きくして、支柱部1の重心Gを下方に配置して、支柱部1をより安定して鉛直姿勢に保持できる。ただ、重り部3は、必ずしも支柱部1の本体部1Aよりも大きな外径とする必要はなく、支柱部1と等しい外径とすることもできる。さらに、図示しないが、支柱部は、下端部に支柱部と別部材からなる錘を連結して重り部3を構成することもできる。以上の支柱部1は、下端部に充填するコンクリート15、及び下端部に形成されるコンクリートケーソン16により形成される重り部3をシンカーとしてスムーズに海底に沈降できる。
(ベース部2)
 ベース部2は、海底90に設置されて、支柱部1の下端部が連結される。図5に示すベース部2は、コンクリートケーソン21としている。コンクリートケーソン21は、全体を所定の形状に形成した鉄筋コンクリート製で、図に示すように、海底90に水平姿勢で設置している。鉄筋コンクリートは、比重が約2.4t/mであって、簡単かつ安価に製造できると共に、耐久性にも優れているので、ベース部2として海底に設置されるケーソンの材料として最適である。
 コンクリートケーソン21で構成されるベース部2は、平面視を多角形状または円形状とするブロック状であって、底面を広くすることで海底面に対して安定して設置できるようにしている。ブロック状のベース部2は、中央部を外周部よりも厚く形成して、支柱部1を支持する台座部22とすると共に、海底90に対する設置面積が大きくなるように、外周部23を広く形成している。ベース部2は、例えば、外径を20m~30mとしている。図のベース部2は、外周部を貫通するパイル部材24を介して海底90に固定されている。コンクリートケーソン21からなるベース部2は、例えば、台座部22の厚さを数m、外周部23の厚さを数十cm~数mとしている。図のベース部2は、外周部を貫通する複数本のパイルを海底に打ち込んで、ベース部を海底に固定している。
 以上のように、着床式洋上架台9は、ベース部2をコンクリート製とすることで、寿命を長くすることができる。このため、支柱部1とベース部2とを着脱自在とすることで、コンクリート製のベース部2の耐久年数を長くして繰り返し使用しながら、寿命の短い金属製の支柱部1や風力発電機30のみを交換することで、ベース部2を有効に利用しながらコストを低減できる。
 以上の着床式洋上架台9は、海底90から海面上にかけて配置される支柱部1の下端部が、海底90に設置されるベース部2に連結されて自立姿勢で配置されるが、この支柱部1は、海面近くの上端部や上端に設置される風力発電機30が台風等により強風や波浪を受けることで鉛直姿勢から傾斜することがある。このとき、支柱部1の下端とベース部2が強固に固定されていると、傾斜する支柱部1から受ける負荷によりベース部2との連結部分に大きな応力が作用して連結部が損傷を受けるおそれがある。このような問題点を解決するために、本発明の着床式洋上架台9は、支柱部1の下端部を、支柱部1の揺動を許容する連結構造5を介して支柱部1の下端部をベース部2に連結している。以下、支柱部とベース部2の連結構造5について詳述する。
(連結構造5)
 図5と図6に示す連結構造5は、支柱部1の下端面に形成された下方開口で内面を湾曲面状とするソケット凹部51と、ベース部2の上面から突出するように形成されて、先端部を球面状とする丸頭凸部52とを備えている。ソケット凹部51は、支柱部1の下端面に形成された下方開口の凹部で、図に示す支柱部1は、下端部にコンクリートケーソン16からなる重り部3を備えており、この重り部3の下端面を中央凹となる形状に形成してソケット凹部51を設けている。ソケット凹部51は、ベース部2に形成される丸頭凸部52の先端に形成された球状面と面接触するように、内面を湾曲面状としている。このソケット凹部51は、その中央部分を、好ましくは丸頭凸部52の先端面の曲率半径R2よりも、やや大きな曲率半径R1の湾曲面状としており、この湾曲面よりも下方をテーパー面あるいは回転放物面形状としている。これにより、ソケット凹部51の内面を丸頭凸部52の先端面に沿って面接触状態で移動させて、支柱部1を揺動できるようにしている。
 以上の連結構造5は、ソケット凹部51に案内される丸頭凸部52をソケット凹部51の内側面に面接触させながら、ソケット凹部51の内面と丸頭凸部52の表面との接触位置を変えることで、支柱部1をベース部2に対して自由に揺動できる。とくに、この連結構造によると、支柱部1をベース部2に対して平面視360度方向への揺動を許容することができる。
 さらに、この連結構造5は、支柱部1の下端面に設けた下方開口のソケット凹部51に、ベース部2の上面から突出する丸頭凸部52を案内するので、ソケット凹部51と丸頭凸部52の接触部に対して海水中の泥や異物が堆積するのを皆無にできる。ソケット凹部51が下方開口となっているからである。このため、ソケット凹部51と丸頭凸部52の接触部を長期間にわたってクリーンな状態に保持でき、良好な接触状態を維持できる。
 さらに、図6に示す連結構造5は、ソケット凹部51の内側に、海水よりも比重が小さい潤滑剤53を充填している。このような潤滑剤53として、液体の潤滑油や半固体のグリース等が使用できる。このように、下方開口のソケット凹部51に充填される潤滑剤53は、海水よりも比重が小さいので、ソケット凹部51から海水中に流出することなく、ソケット凹部51に残存する状態に保持される。したがって、長期間にわたってソケット凹部51と丸頭凸部52との摩擦抵抗を低減しながら良好な接触状態を保持できる。とくに、図6に示すようにソケット凹部51の曲率半径R1を丸頭凸部52の曲率半径R2よりも大きくすることで、面接触する領域の近傍には、曲率半径の差により隣接隙間54が形成されるので、この隣接隙間54に流入する潤滑剤により、ソケット凹部51の内面と丸頭凸部52の外面との接触位置が移動する際に、接触面同士の間に潤滑剤53が介在されることで摩擦を低減して滑らかな接触を実現できる。このため、ソケット凹部51と丸頭凸部52の接触部の劣化を有効に防止しながら長期間にわたって良好な接触状態を維持できる。
 さらに、ソケット凹部51は、図6の鎖線で示すように、丸頭凸部52との接触領域に流入溝55を設けて、この流入溝55に潤滑剤53を流入させることもできる。この構造も、ソケット凹部51の内面と丸頭凸部52の外面との間に潤滑剤53を効果的に流入させて、滑らかな接触を実現できる。流入溝は、丸頭凸部の表面に設けてもよい。
 さらに、支柱部1の下端に形成されたソケット凹部51と、ベース部2に形成された丸頭凸部52とで構成される連結構造5は、図7に示す構造とすることもできる。図7に示す連結構造5は、丸頭凸部52の上端面52aとソケット凹部51の内面とをより広い面積で接触させる構造としている。図7に示すソケット凹部51は、内面形状を半球状としている。丸頭凸部52は、上端面52aの形状をソケット凹部51の内面に沿う曲面形状としている。丸頭凸部52は、上端面52aの曲率半径R2をソケット凹部51の内面の曲率半径R1と等しくし、あるいはやや小さくしている。これにより、丸頭凸部52の上端面52Aとソケット凹部51の内面とをより広い面積で面接触させた状態で支持するようにしている。また、図に示す丸頭凸部52は、ソケット凹部51と対向する上端面52aをソケット凹部51の内面に接触させる構造としながら、外周部52bの曲率半径R3を上端面52aの曲率半径R2よりも小さくすることで、丸頭凸部52の上端面52aに対してソケット凹部51の内面をスムーズに摺動できるようにしている。
 以上の連結構造5によると、支柱部1の荷重を支持する面積を広くして丸頭凸部52とソケット凹部51との接触部に局部的に大きな荷重がかかるのを抑制できる特長がある。とくに、図7に示す丸頭凸部52は、ソケット凹部51との接触面である上端面52aの面積を支柱部1の本体部1Aの横断面の面積とほぼ等しくし、あるいはやや大きくしており、支柱部1をより安定して支持できるようにしている。ただ、丸頭凸部52は、ソケット凹部51と接触する上端面52aの面積を支柱部1の本体部1Aの横断面の面積より小さくしてもよい。
 さらに、図7に示す連結構造5も、ソケット凹部51の内側に、海水よりも比重が小さい潤滑剤53を充填している。図の連結構造5は、丸頭凸部52とソケット凹部51との接触面積を広くしているので、ソケット凹部51の内側に充填される潤滑剤53を接触面全体に供給するために、丸頭凸部52とソケット凹部51との接触領域に流入溝55を設けている。図8に示す支柱部1は、ソケット凹部51の内面に、互いに交差する複数の流入溝55を形成している。図の流入溝55は、底面視においてソケット凹部51の中心を起点として放射状に延びる複数の放射状溝55aと、複数の同心円状のリング状溝55bを設けており、放射状溝55aとリング状溝55bとを互いに交差させている。さらに、隣接する放射状溝55aの間には、複数のリング状溝を連結するサブ放射状溝55cを設けている。この流入溝55は、複数の溝を互いに交差させる形状とすることで、効率よく接触面全体に潤滑剤53を供給できる。流入溝55は、溝幅を数mm~数cmとし、深さを数mm~数cmとすることができる。このように、丸頭凸部52とソケット凹部51との接触領域に流入溝55を設ける構造は、ソケット凹部51と丸頭凸部52との接触面全体に潤滑剤53を効果的に供給して、滑らかな接触を実現できる。
 以上の形状の流入溝55は、放射状溝55aやサブ放射状溝55cに流入する潤滑剤53をリング状溝55bに流動させることで、ソケット凹部51と丸頭凸部52との接触面全体に潤滑剤53を効果的に供給できる特徴がある。ただ、流入溝は、以上の形状に限定せず、例えば、マトリクス状に交差する形状やハニカム形状とし、あるいは接触面の中心から放射状に延びる形状とし、あるいはまた、接触面の中心から蜘蛛の巣状に広がる形状とすることができる。また、図の流入溝55は、ソケット凹部51の内面に設けているが、流入溝は丸頭凸部52の表面に設けることも、ソケット凹部51の内面と丸頭凸部52の表面の両方に設けることもできる。
 さらに、図7に示す連結機構5は、支柱部1の下端部とベース部2とを複数の連結索体80を介して連結している。支柱部1は、例えば、下端部から放射状に延びる複数の連結索体80を介してベース部2に連結される。支柱部1は、下端部の外周面から突出する複数の連結部81を、外周円に沿って等間隔で設けている。ベース部2は、台座部22から突出する複数の固定部82を、支柱部1の下端部に設けた複数の連結部81に対向して等間隔で設けている。支柱部1から放射状に配置される複数の索体5は、3~16本、好ましくは4~8本として、支柱部1を確実にベース部2の定位置に保持できる。以上の連結機構5は、ベース部2に対して支柱部1が揺動するのを許容しながら、支柱部1が水平面内で回転するのを防止でき、また、支柱部1のソケット凹部51がベース部2の丸頭凸部52から脱落するのを防止できる。特に、地震や津波等の災害時においても、支柱部1を定位置に保持することができる。
 連結索体80には、ワイヤー等の線材、あるいは鎖やチェーン等が使用できる。これらの連結索体80は、支柱部1の揺動は許容するが、支柱部1のソケット凹部51がベース部2の丸頭凸部52から脱落するのを防止できる長さと強度としている。図に示す連結索体80は、一端を支柱部1の下端部に連結して、他端をベース部2に連結しているが、連結索体の他端は、アンカー等の固定部材を介して海底に固定することもできる。
(他の連結構造)
 さらに、連結構造5は、図9と図10に示す構造とすることもできる。これらの図に示す連結構造5は、支柱部1の下端から下方に突出する柱状の連結凸部56と、ベース部2の上面に形成されて、連結凸部56が挿入される上方開口の挿入部57と、挿入部57と連結凸部56の間に介在されるゴム状弾性体58とを備えている。図9に示す支柱部1は、下端部にコンクリートケーソン16を設けて重り部3を形成すると共に、下端から下方に突出する連結凸部56を設けている。図に示す連結凸部56は、円筒状の鋼管56Aであって、支柱部1を構成する円筒状の鋼管10よりも外径を小さくしている。重り部3は、支柱部1を形成する鋼管10の内部に充填するコンクリート15を鋼管56Aにも充填して連結凸部56を成形している。連結凸部56は、図9と図10に示すように、ベース部2の上面に形成された挿入部57に挿入されて、支柱部1の下端がベース部2に連結される。図に示すベース部2は、台座部22の中央部に貫通孔を設けて挿入部57としている。ただ、挿入部は、上方開口の凹部とすることもできる。
 図9と図10に示すゴム状弾性体58は、連結凸部56を挿通可能な筒状としている。筒状のゴム状弾性体58は、連結凸部56と挿入部57との間に介在されて、連結凸部56と挿入部57との相対的な移動を抑制して連結凸部56と挿入部57の両方を保護している。さらに、図に示すゴム状弾性体58は、筒状の本体部58Aの一端に、外周方向の突出するフランジ部58Bを一体的に設けており、フランジ部58Bを、支柱部1の下面と、ベース部2の上面との間に介在させている。以上の形状のゴム状弾性体58は、弾性を有するゴムを所定の厚さを有する筒状に成形して筒部58Aを形成すると共に、一端にフランジ部58Bが一体的に成形して形成される。以上のゴム状弾性体58は、全体を筒状として、連結凸部56と挿入部57の間に筒部58Aを介在させながら、一端に設けたフランジ部58Bを、支柱部1の下面とベース部2の上面との間に介在させることで、支柱部1をベース部2に対して、より安定的に揺動できる。
 ここで、図2に示す着床式洋上架台9は、図10に示す構造で、ゴム状弾性体58を介して、支柱部1とベース部2とを連結している。この連結構造5は、連結凸部56を軸として、ベース部2の挿入部57に支柱部1を連結しながら、ゴム状弾性体58の弾性により、簡単な構造で支柱部1の揺動を許容できる。
 また、図9に示す連結構造5は、下端部の外径が大きい支柱部1を支持する構造の一例を示している。図に示す連結構造5は、支柱部1が下端面の中央部に連結凸部56を備えると共に、ベース部2が台座部22の上面の中央部に挿入部57を備えている。さらに、図9の連結構造5は、支柱部1の下端面の外周部とベース部2の上面との間に、複数の弾性体59を介在している。図に示す弾性体59は、コイルバネとしている。ただ、弾性体にはゴムも使用できる。この連結構造5は、外形の大きな支柱部1の下面の中央部を連結凸部56と挿入部57を介して位置決めしながら連結して、筒状のゴム状弾性体58で連結凸部56と挿入部57とを保護すると共に、支柱部1の下端面の外周部とベース部2の上面との間に配置される複数の弾性体9により、耐荷重を大きくしながら、支柱部1の揺動を許容できる。とくに、底面積の広い支柱部1であっても、ベース部2に対して安定的に揺動を許容できる。
 図9の連結凸部56は、鋼管56Aを使用することで円柱状とするが、連結凸部は、多角柱状とすることも、先端に向かって次第に細くなる円錐状、角錐状、円錐台状、角錐台状とすることもできる。また、これらの形状の連結凸部が挿入される筒状のゴム状弾性体や挿入部も、連結凸部の外形に沿う形状とすることができる。
(他の連結構造)
 さらに、図11~図13に示す連結構造5は、支柱部1の下端面に形成された下方開口の凹部61と、ベース部2の上面から突出する形状に形成されて凹部61に案内される凸部62と、凹部61と凸部62の間に配置される揺動機構60とを備えている。図に示す支柱部1は、下端部にコンクリートケーソン16からなる重り部3を備えており、この重り部3の下端面の中央部を柱状に窪ませて凹部61を設けている。ベース部2は、台座部22の中央部を柱状に突出させて凸部62を設けている。図に示す支柱部1とベース部2は、凹部61と凸部62の形状を円柱状としている。ただ、凹部61と凸部62は、多角柱状とすることもできる。
 揺動機構60は、支柱部1の下端面に形成された凹部61に嵌合されるカップ部63と、ベース部2の上面から突出する凸部62を被覆するキャップ部64と、カップ部63の内面とキャップ部64の外面との間に配置された複数の弾性体65とを備えている。揺動機構60は、カップ部63の外形を、支柱部1の下端面に形成された凹部61に嵌合される形状と大きさとしている。また、揺動機構60は、キャップ部63の内形を、ベース部2に形成された凸部62を嵌入できる形状と大きさとしている。これらのカップ部63とキャップ部64は、好ましくは金属板を加工して形成される。
 さらに、揺動機構60は、カップ部63の内面とキャップ部64の外面との間に所定の間隔の隙間66を設けており、この隙間66に複数の弾性体65を配置してカップ部63の内面とキャップ部の外面とを弾性体65を介して連結している。図に示すカップ部63とキャップ部64は、外形を円柱状としている。この揺動機構60は、カップ部63の底面とキャップ部64の天面との間の隙間66に、垂直方向の荷重を吸収する複数の弾性体65を等間隔で配置して、支柱部1の垂直荷重を支持する構造としている。また、カップ部63の内周面とキャップ部64の外周面との間の隙間66には、水平方向の荷重を吸収する複数の弾性体65を、平面視において放射状に等間隔で設けている。図に示す弾性体65はコイルバネとしている。この揺動機構60は、複数の弾性体65を介してカップ部63とキャップ部64とを相対的に移動させて、支柱部1をベース部2に対して、平面視360度方向への揺動を許容している。
 この形状の揺動機構60は、支柱部1の下端部に配置されるカップ部63を下方開口の姿勢で配置するので、カップ部63とキャップ部64の間に形成される隙間66を海水が浸入しない空間とすることができる。このため、この空間を空気層とすることで、この隙間に配置される弾性体が海水に接触するのを防止して劣化や腐食を有効に防止できる。図11に示す揺動機構60は、カップ部63とキャップ部64の間に形成される隙間66に、海水よりも比重が小さい潤滑剤67を充填している。この潤滑剤67には、前述の潤滑油やグリースが使用できる。このように、隙間66に充填される潤滑剤67は、海水中に流出することがなく長期間にわたって、弾性体65を被覆して腐食や劣化から保護できる。とくに、弾性体65を弾性金属からなるコイルバネとする構造においては、金属の腐食や劣化を有効に防止して長期間にわたって弾性力を保持できる特徴が実現できる。
 図11に示す連結構造5は、凹部61と凸部62の外形を円柱状とし、これらの間に配置される揺動機構60のカップ部63及びキャップ部64の外形も円柱状としている。図13に示す連結構造5は、凹部61と凸部62の外形を円錐台形状とし、これらの間に配置される揺動機構60のカップ部63とキャップ部64の外形も円錐台形状としている。この揺動機構60は、カップ部63の底面とキャップ部64の天面との間の隙間66に、垂直方向の荷重を吸収する複数の弾性体65を等間隔で配置して、支柱部1の垂直荷重を支持する構造としている。また、キャップ部64は、外周面を裾広がりのテーパー面とすると共に、カップ部63の内周面を下方に向かって次第に広くなるテーパー面として、対向するテーパー面に配置される弾性体65の押圧方向をテーパー面の法線方向としている。このため、横方向に揺動する支柱部1から受ける力に対して、弾性体65の弾性力を効果的に作用させて傾斜方向の荷重を効果的に吸収できる。
 図13に示す揺動機構60は、複数の弾性体65をゴム状弾性体としている。さらに、図13に示す揺動機構60は、カップ部63とキャップ部64の間に形成される隙間66を空気層68としている。これにより、この隙間66への海水の侵入を防止して、海水による弾性体65の経時的な劣化を有効に防止している。
(他の連結構造5)
 さらに、図14に示す連結構造5は、支柱部1の下端部を第一の方向(図において矢印Aで表示)に揺動させる揺動軸70となる第一揺動軸71と、第一揺動軸71と交差して配置されて、支柱部1の下端部を第一の方向と交差する第二の方向(図において矢印Aで表示)に揺動させる揺動軸70となる第二揺動軸72とを備えている。この連結構造5は、互いに交差する二つの揺動軸70を介して支柱部1をベース部2に連結することで、支柱部1をベース部2に対して、平面視360度方向への揺動を許容できるようにしている。
 図14に示すベース部2は、海底90に固定される土台部25と、この土台部25に第二揺動軸72を介して第二の方向に揺動自在に連結された揺動体26とを備えている。支柱部1は、揺動体26に、第一揺動軸71を介して第一の方向に揺動自在に連結されている。図の支柱部1は、下端部の側面から直径方向に突出する第一揺動軸71を備えており、この第一揺動軸71を第一軸受け73を介して揺動体26に回動自在に連結している。また、揺動体70は、第一揺動軸71と交差する方向に突出する第二揺動軸72を備えており、この第二揺動軸72を第二軸受け74を介して土台部25に回動自在に連結している。図に示す連結構造5は、第一揺動軸71と第二揺動軸72とを、水平姿勢であって互いに直交する方向に配置しており、支柱部1を土台部25に対してスムーズに360度方向へ揺動可能としている。
 図14に示す連結構造5は、第一揺動軸71と第二揺動軸72を支柱部1の外側に配置する構造としている。この構造は、第一揺動軸71と第二揺動軸72とを簡単かつ容易に所定の位置に連結できる。ただ、連結機構は、図示しないが、支柱部の下面に下方開口の凹部を設けて、この凹部の内部において、第一揺動軸と第二揺動軸を介してベース部に連結することもできる。この構造は、とくに、外径が大きな支柱部を二つの揺動軸を介してベース部に連結する場合に適している。また、支柱部の下面に設けた下方開口の凹部の内側に第一揺動軸と第二揺動軸を配置できるので、第一揺動軸と第二揺動軸とが海水に接触しない構造として、揺動軸や軸受けの劣化を抑制することもできる。
(索体17)
 さらに、図1及び図2に示す着床式洋上架台9は、支柱部1を海底90に固定するための複数の索体17を備えている。索体17は、ワイヤー等の線材、あるいは鎖やチェーン等であって、支柱部1が台風等の影響で強風や荒波を受けた際に、支柱部1を安定して保持できる強度を有している。複数の索体17は、支柱部1の中間部から放射状に張設されて海底90に固定されている。索体17は、その一端が、支柱部1の中間部であって、海中に配置される本体部1Aに設けた連結部18に固定されると共に、他端がアンカー19を介して海底90に固定されている。索体17は、支柱部1とアンカー19との間において、所定の引張り力を受けるように、その長さとアンカーによる固定位置が決定されて所定のテンションとなるように張設される。支柱部1から放射状に配置される複数の索体5は、好ましくは3~6本として、架台を安定して保持できる。
 以上の着床式洋上架台9は、図1に示すように、支柱部1の上端に風力発電機30が設置される状態で洋上風力発電装置100として使用され、図2に示すように、支柱部1の上端に風況観測機35が設置される状態で洋上風況観測装置200として使用される。
(風力発電機30)
 風力発電機30は、図1に示すように、風力を受けて回転する風車31と、回転する風車31の運動エネルギーを電気エネルギーに変換する発電機32と、発電機32を収納しているナセル33と、ナセル33を所定の高さに配置するためのタワー34とを備えている。風車31は、複数のブレード31Aを備えており、中心に設けたハブ31Bに複数のブレード31Aを等間隔で固定している。風力発電機30は、タワー34の基部が支柱部1の上端に固定されて、着床式洋上架台9の上に設置される。図に示す洋上風力発電装置100は、タワー34の基部であって、支柱部1の上端の外周に沿って作業用のプラットホーム部36を設けている。
 図1に示す風力発電機30は、ダウンウインド型の風車31としている。さらに、この風力発電機30は、タワー34の上端に対してナセル33を所定の角度で固定することにより、支柱部1から延長されたタワー34が風下側に揺動する状態において、風車31の回転軸が水平方向となるようにしている。この風力発電機30は、ダウンウインドの進行方向において、タワー34の軸と直交する水平面に対して、風車31の回転軸が所定の仰角となるように配置している。この洋上風力発電装置100は、風力発電機30の風車31をダウンウインド型として風車31の回転軸を所定の仰角で配置するので、支柱部1が風下側に揺動する状態においても、発電効率を低下させることなく安定して発電できる。
(風況観測機35)
 図2に示す着床式洋上架台9は、上端部が洋上に突出するように配置された支柱部1の上端にプラットホーム部36を水平姿勢で設けており、このプラットホーム部36に風況観測機35を設置している。風力発電用の風況を観測する各種風況観測機35は、図2に示すように、風向計、風量計、風力計等である。これらの風況観測機35は、観測地点における風向き、風量、風速を検出して風況を観測する。とくに、現状では浮体式の風況観測装置で測定された風況データは、正式な風況データとして扱われないようになっている。したがって、このような着床式洋上架台9を使用することで信頼性のある風況測定が実現できる。
 さらに、着床式洋上架台9は、風力発電機30や風況観測機35に加えて、各種監視装置や各種観測装置を設置することもできる。このような装置として、例えば、バードレーダーや監視カメラ、気象観測用の気象レーダ等が挙げられる。
 本発明の着床式洋上架台は、洋上風力発電機や洋上で風況などの気象データの計測を行う風況観測機を支持する架台として好適に使用できる。
100…洋上風力発電装置
200…洋上風況観測装置
1…支柱部
1A…本体部
1B…突出部
1C…太筒部
2…ベース部
3…重り部
4…浮体部
5…連結構造
9…着床式洋上架台
10…鋼管
11…フランジ部
12…連結具
13…隔壁
13A…挟着プレート
13B…分割プレート
14…中空部
14A…区画室
15…コンクリート
16…コンクリートケーソン
17…索体
18…連結部
19…アンカー
21…コンクリートケーソン
22…台座部
23…外周部
24…パイル部材
25…土台部
26…揺動体
30…風力発電機
31…風車
31A…ブレード
31B…ハブ
32…発電機
33…ナセル
34…タワー
35…風況観測機
36…プラットホーム部
40…サブ浮体部
41…中心孔
42…固定部材
43…ポンプ
44…バラスト水
51…ソケット凹部
52…丸頭凸部
52a…上端面
52b…外周部
53…潤滑剤
54…隣接隙間
55…流入溝
55a…放射状溝
55b…リング状溝
55c…サブ放射状溝
56…連結凸部
56A…鋼管
57…挿入部
58…ゴム状弾性体
58A…筒部
58B…フランジ部
59…弾性体
60…揺動機構
61…凹部
62…凸部
63…カップ部
64…キャップ部
65…弾性体
66…隙間
67…潤滑剤
68…空気層
70…揺動軸
71…第一揺動軸
72…第二揺動軸
73…第一軸受け
74…第二軸受け
80…連結索体
81…連結部
82…固定部
90…海底

Claims (19)

  1.  風力発電を行う風力発電機又は風力発電用の風況データの計測を行う風況観測機を
    洋上に設置するための架台であって、
     下端を海底に配置して、上端を洋上に突出させるように上下方向に延長されて、上端に前記風力発電機又は前記風況観測機が設置される支柱部と、
     海底に設置されて、前記支柱部の下端部が連結されるベース部と、
    を備え、
     前記支柱部は、
      中空状の浮体部を備えると共に、下端部には該支柱部を沈降させる重り部を備えており、
      前記浮体部に働く浮力の浮心を、前記重り部の重心よりも上方に配置して、該支柱部を鉛直姿勢に保持するようにしてなり、さらに、
     前記支柱部の下端部は、該支柱部の揺動を許容する連結構造を介して前記ベース部と連結されてなることを特徴とする着床式洋上架台。
  2.  請求項1に記載の着床式洋上架台であって、
     前記連結構造が、
      前記支柱部の下端面に形成された下方開口で内面を湾曲面状とするソケット凹部と、
      前記ベース部の上面から突出して、先端部を球面状とする丸頭凸部とを備え、
     前記ソケット凹部に案内される前記丸頭凸部を該ソケット凹部の内側面に面接触させて、前記支柱部を前記ベース部に対して、平面視360度方向への揺動を許容することを特徴とする着床式洋上架台。
  3.  請求項2に記載の着床式洋上架台であって、
     前記連結構造が、
      前記ソケット凹部の内側に、海水よりも比重が小さい潤滑剤を充填してなることを特徴とする着床式洋上架台。
  4.  請求項3に記載の着床式洋上架台であって、さらに、
     前記ソケット凹部と前記丸頭凸部との接触領域に、前記潤滑剤を流入させるための流入溝を備える着床式洋上架台。
  5.  請求項2ないし4のいずれかに記載の着床式洋上架台であって、さらに、
     前記連結構造が、
      前記支柱部の下端部と前記ベース部とを連結する複数の連結索体を備えることを特徴とする着床式洋上架台。
  6.  請求項1に記載の着床式洋上架台であって、
     前記連結構造が
      前記支柱部の下端から下方に突出する柱状ないし錐状の連結凸部と、
      前記ベース部の上面に形成されて、前記連結凸部が挿入される上方開口の挿入部と、
      前記挿入部と前記連結凸部の間に介在されるゴム状弾性体とを備えることを特徴とする着床式洋上架台。
  7.  請求項6に記載の着床式洋上架台であって、
     前記ゴム状弾性体は、前記連結凸部を挿通可能な筒状であって、一端にフランジ部を一体的に設けており、
     前記フランジ部が、前記支柱部の下面と、前記ベース部の上面との間に介在されてなる着床式洋上架台。
  8.  請求項6又は7に記載の着床式洋上架台であって、
     前記支柱部が下端面の中央部に前記連結凸部を備えると共に、前記ベース部が上面の中央部に前記挿入部を備えており、
     前記支柱部の下端面の外周部と前記ベース部の上面との間に、複数の弾性体を介在させてなる着床式洋上架台。
  9.  請求項1に記載の着床式洋上架台であって、
     前記連結構造が、
      前記支柱部の下端面に形成された下方開口の凹部と、
      前記ベース部の上面から突出して前記凹部に案内される凸部と、
      前記凹部と前記凸部の間に配置される揺動機構とを備えており、
     前記揺動機構は、
      前記支柱部の下端面に形成された前記凹部に嵌合されるカップ部と、
      前記ベース部の上面から突出する前記凸部を被覆するキャップ部と、
      前記カップ部の内面と前記キャップ部の外面との間に配置された複数の弾性体とを備えており、
     前記複数の弾性体を介して前記カップ部と前記キャップ部とを相対的に移動させて、前記支柱部を前記ベース部に対して、平面視360度方向への揺動を許容することを特徴とする着床式洋上架台。
  10.  請求項9に記載の着床式洋上架台であって、
     前記揺動機構は、前記カップ部の内面と前記キャップ部の外面との間に隙間を設けており、
     前記隙間を空気層とすることを特徴とする着床式洋上架台。
  11.  請求項9に記載の着床式洋上架台であって、
     前記揺動機構は、前記カップ部の内面と前記キャップ部の外面との間に隙間を設けており、
     前記隙間に、海水よりも比重が小さい潤滑剤を充填してなることを特徴とする着床式洋上架台。
  12.  請求項9ないし11のいずれかに記載の着床式洋上架台であって、
     複数の前記弾性体がゴムまたはバネであることを特徴とする着床式洋上架台。
  13.  請求項1に記載の着床式洋上架台であって、
     前記連結構造が、
      前記支柱部の下端部を第一の方向に揺動させる揺動軸となる第一揺動軸と、
      前記第一揺動軸と交差して配置されて、前記支柱部の下端部を第一の方向と交差する第二の方向に揺動させる揺動軸となる第二揺動軸とを備え、
     前記支柱部を前記ベース部に対して、平面視360度方向への揺動を許容することを特徴とする着床式洋上架台。
  14.  請求項13に記載の着床式洋上架台であって、
     前記ベース部は、
      海底に固定される土台部と、
      前記土台部に、前記第二揺動軸を介して第二の方向に揺動自在に連結された揺動体とを備えており、
     前記支柱部は、
      前記揺動体に、前記第一揺動軸を介して第一の方向に揺動自在に連結されており、
     前記第一揺動軸と前記第二揺動軸が互いに直交する方向に配置されてなる着床式洋上架台。
  15.  請求項1ないし14のいずれかに記載の着床式洋上架台であって、
     前記支柱部が、海面下に配置される一部を他の部分よりも外径を大きくして太筒部を設けており、前記太筒部を中空状として前記浮体部の一部としてなることを特徴とする着床式洋上架台。
  16.  請求項1ないし14のいずれかに記載の着床式洋上架台であって、さらに、
     前記支柱部に脱着自在に連結される、筒状で中空のサブ浮体部を備えており、
     前記サブ浮体部が、中心に挿通される前記支柱部に沿って、海面下に配置されてなることを特徴とする着床式洋上架台。
  17.  請求項1ないし16のいずれかに記載する着床式洋上架台を備える洋上風力発電装置であって、
     前記着床式洋上架台と
     前記支柱部の上端に設置された風力発電機と
    を備える洋上風力発電装置。
  18.  請求項17に記載する洋上風力発電装置であって、
     前記風力発電機が、ダウンウインド型の風車を備えることを特徴とする洋上風力発電装置。
  19.  請求項1ないし16のいずれかに記載する着床式洋上架台を備える洋上風況観測装置であって、
     前記着床式洋上架台と
     前記支柱部の上端に設置された風況観測機と
    を備えており、
     前記支柱部が上端部にプラットホーム部を備え、前記プラットホーム部に前記風況観測機を設けてなることを特徴とする洋上風況観測装置。
PCT/JP2020/037751 2019-10-12 2020-10-05 着床式洋上架台、洋上風力発電装置及び洋上風況観測装置 WO2021070786A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533696A JP7072963B2 (ja) 2019-10-12 2020-10-05 着床式洋上架台、洋上風力発電装置及び洋上風況観測装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-188252 2019-10-12
JP2019188252 2019-10-12

Publications (1)

Publication Number Publication Date
WO2021070786A1 true WO2021070786A1 (ja) 2021-04-15

Family

ID=75436823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037751 WO2021070786A1 (ja) 2019-10-12 2020-10-05 着床式洋上架台、洋上風力発電装置及び洋上風況観測装置

Country Status (3)

Country Link
JP (1) JP7072963B2 (ja)
TW (1) TW202122682A (ja)
WO (1) WO2021070786A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464373A (zh) * 2021-07-22 2021-10-01 徐诚 一种风力发电机保护底壳
CN114198255A (zh) * 2021-12-17 2022-03-18 新疆大学 一种风光互补发电并储能的设备
JP7118473B1 (ja) 2021-09-28 2022-08-16 株式会社四国Ga 着床式洋上架台の構築方法、着床式洋上架台、及び洋上風力発電装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093589A1 (en) * 2010-10-18 2012-04-19 Peter Broughton Foundation support system for an offshore wind energy convertor, corresponding to an offshore wind power generating facility
JP2013148058A (ja) * 2012-01-23 2013-08-01 Mitsubishi Heavy Ind Ltd 風力発電装置及びその運転制御方法
JP2016205163A (ja) * 2015-04-16 2016-12-08 鹿島建設株式会社 ケーブル引込構造、ケーブル引込方法、鞘管ユニット
JP2019508622A (ja) * 2016-02-24 2019-03-28 エフエム・エネルギー・ゲーエムベーハー・ウント・コンパニー・カーゲー 弾性ボール/振り子軸受を有する風力発電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093589A1 (en) * 2010-10-18 2012-04-19 Peter Broughton Foundation support system for an offshore wind energy convertor, corresponding to an offshore wind power generating facility
JP2013148058A (ja) * 2012-01-23 2013-08-01 Mitsubishi Heavy Ind Ltd 風力発電装置及びその運転制御方法
JP2016205163A (ja) * 2015-04-16 2016-12-08 鹿島建設株式会社 ケーブル引込構造、ケーブル引込方法、鞘管ユニット
JP2019508622A (ja) * 2016-02-24 2019-03-28 エフエム・エネルギー・ゲーエムベーハー・ウント・コンパニー・カーゲー 弾性ボール/振り子軸受を有する風力発電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464373A (zh) * 2021-07-22 2021-10-01 徐诚 一种风力发电机保护底壳
CN113464373B (zh) * 2021-07-22 2022-06-28 宁夏鲁禹综合能源服务有限公司 一种风力发电机保护底壳
JP7118473B1 (ja) 2021-09-28 2022-08-16 株式会社四国Ga 着床式洋上架台の構築方法、着床式洋上架台、及び洋上風力発電装置
JP2023048916A (ja) * 2021-09-28 2023-04-07 株式会社四国Ga 着床式洋上架台の構築方法、着床式洋上架台、及び洋上風力発電装置
CN114198255A (zh) * 2021-12-17 2022-03-18 新疆大学 一种风光互补发电并储能的设备

Also Published As

Publication number Publication date
JP7072963B2 (ja) 2022-05-23
TW202122682A (zh) 2021-06-16
JPWO2021070786A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2021070786A1 (ja) 着床式洋上架台、洋上風力発電装置及び洋上風況観測装置
KR101170589B1 (ko) 부유식 풍력 터빈 장치
JP3944445B2 (ja) 洋上風力発電設備
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
JP4123936B2 (ja) 浮体式洋上風力発電設備
KR101621806B1 (ko) 스파형 부체 구조물
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
KR101242064B1 (ko) 해상 풍력발전 시스템의 항력 저감장치
JP5893408B2 (ja) 海底設置基礎又は離岸風力タービンパイルからなる海洋構造物の周辺の海底の侵食を抑制又は低減するための方法及びシステム
ES2951389T3 (es) Dispositivo de amortiguación para turbinas eólicas en tierra y en alta mar
WO2003072428A1 (fr) Structure de base de type flottant pour la generation d'energie eolienne sur l'ocean
CN110316321B (zh) 自平衡式浮标装置
JP2021511250A (ja) テンションレグ装置を備えた浮体式風力発電プラットフォーム
RU2675349C1 (ru) Плавающая платформа для использования энергии ветра
KR20080017337A (ko) 부유식 풍력 발전기 설비용 앵커 장치
JP2020507516A (ja) 浮体式設備のためのフレーム構造体
JP2017513763A (ja) 海上風力タービンまたは他のデバイスのための浮動可能支持構造
JP2020101182A (ja) 風力タービンの支持用海上プラットホームおよび付随する海上設備
TWI780059B (zh) 包含浮子之浮動支撐結構及具有一排孔之起伏板
KR101202156B1 (ko) 수상 부유 풍력 발전기
KR20150031795A (ko) 부유식 해상풍력발전기 하부구조물의 진동 안정화 장치
KR101406677B1 (ko) 수중에 설치되는 수동형 상하동요 및 회전동요 감쇠장치가 구비된 부유식 풍력 발전기 및 부유식 풍력 발전기용 수동형 상하동요 및 회전동요 감쇠장치
KR20160044241A (ko) 부유식 풍력발전장치의 하부구조물
KR102389699B1 (ko) 부유체 유닛을 구비한 수상 플랫폼
JP2021008730A (ja) 着床式洋上架台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874690

Country of ref document: EP

Kind code of ref document: A1