WO2021068296A1 - 一种基于超临界水氧化技术的启动系统及方法 - Google Patents

一种基于超临界水氧化技术的启动系统及方法 Download PDF

Info

Publication number
WO2021068296A1
WO2021068296A1 PCT/CN2019/113370 CN2019113370W WO2021068296A1 WO 2021068296 A1 WO2021068296 A1 WO 2021068296A1 CN 2019113370 W CN2019113370 W CN 2019113370W WO 2021068296 A1 WO2021068296 A1 WO 2021068296A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
supercritical water
water oxidation
water
outlet
Prior art date
Application number
PCT/CN2019/113370
Other languages
English (en)
French (fr)
Inventor
王树众
李建娜
宋文瀚
李艳辉
张熠姝
杨健乔
徐海涛
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021068296A1 publication Critical patent/WO2021068296A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Definitions

  • the invention belongs to the technical field of chemical industry and environmental protection, and relates to a start-up system and method based on supercritical water oxidation technology.
  • the incineration method is commonly used to treat hazardous waste.
  • the incineration method can reduce the volume and volume of hazardous waste, but the equipment investment is large and the operating cost is high (2000-5000 yuan/ton); in addition, the incineration method may produce SOx, NOx, PM2.5
  • the fly ash generated by secondary pollution such as dioxin, dioxin, etc. needs to be landfilled, resulting in a neighboring avoidance effect. Therefore, the large amount of hazardous waste generated and difficult to deal with has become a prominent contradiction at this stage. Realizing its efficient and thorough harmless treatment is an urgent need to build a good ecological environment and realize sustainable development.
  • Supercritical water oxidation (SCWO) technology is a promising hazardous waste treatment technology.
  • This technology uses the special properties of water in a supercritical state (temperature>374.1°C, pressure>22.1MPa), and uses supercritical water as the reaction medium of organic matter and oxygen to cause a homogeneous and rapid oxidation reaction to completely oxidize organic matter Decomposition, the C, H, and N elements in the organic matter are converted into harmless CO 2 , H 2 O, N 2 , the heterocyclic atoms Cl, S, and P are respectively converted into corresponding inorganic acids or salts, and heavy metals are mineralized into The stable solid phase is present in the residue to achieve stabilization.
  • the insoluble solid particles will change due to the existence of insoluble solid particles during the start-up process or when the system is in normal operation.
  • the low flow rate is continuously deposited in the electric heating tube, which deteriorates the heating efficiency of the electric heater.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a start-up system and method based on supercritical water oxidation technology, which can effectively solve the problem of system start-up when high-salt or inherent organic waste is treated by a supercritical water oxidation system. And problems such as coking, salt deposition and clogging of electric heaters during normal operation can improve the safety and reliability of the system.
  • a start-up system based on supercritical water oxidation technology including:
  • a water supply unit which includes a water storage tank, a start-up water supply pump, a first electric heater, and a water distribution tank connected in sequence;
  • Material pretreatment unit which includes a material mixing tank, a high-pressure material pump, a preheater and a second electric heater connected in sequence; the high-pressure material pump is connected to the second electric heater through the inner tube of the preheater; and water is distributed The outlet of the tank is connected to the inlet of the high-pressure material pump;
  • the inlet of the supercritical water oxidation reactor is connected with the outlet of the second electric heater; the supercritical water oxidation reactor is connected with the inlet of the heat exchange coil in the batching tank through the outer tube of the preheater;
  • the heat exchange coil, the outlet of the heat exchange coil is connected to the pressure reduction unit and the effluent storage tank in turn;
  • the fuel supply unit includes a fuel storage tank and a fuel metering pump connected in sequence, and the outlet of the fuel metering pump is connected with the material pretreatment unit.
  • a mixer is arranged between the high-pressure material pump and the preheater, and the fuel storage tank is connected to the mixer through a fuel metering pump.
  • the mixer mixes the material and fuel into the inner tube of the preheater.
  • a mixer is set between the material mixing tank and the high-pressure material pump, and the fuel storage tank is connected to the mixer through a fuel metering pump.
  • the mixer mixes the material and fuel and sends it to the inner pipe of the preheater through the high-pressure material pump; the water distribution tank A constant pressure device is also connected to it.
  • the oxygen supply unit includes a high-pressure oxygen buffer tank.
  • the outlet of the high-pressure oxygen buffer tank is connected to the inlet of the supercritical water oxidation reactor.
  • the material mixing tank is equipped with a stirrer.
  • the stirrer adopts a frame stirrer, a frame plus impeller stirrer or a ribbon stirrer;
  • the supercritical water oxidation reactor adopts a tubular or tank reactor, and is equipped with several A temperature measurement point;
  • the pressure reduction unit adopts a capillary pressure reducer, a back pressure valve pressure reducer or a multi-stage valve to reduce pressure.
  • the preheater includes a double-pipe heat exchanger, a shell-and-tube heat exchanger or a spiral coil heat exchanger.
  • the first electric heater and the second electric heater include electric heaters, electromagnetic induction heaters, or natural gas furnace heaters.
  • the water storage tank is equipped with tap water, softened water or demineralized water; the fuel in the fuel storage tank is methanol, ethanol or isopropanol.
  • a startup method based on supercritical water oxidation technology including the following steps:
  • Step 1 Load the material in the material mixing tank in advance; load the fuel in the fuel storage tank, and pour water into the water distribution tank;
  • Step 2 Turn on and start the water feed pump to fill water, where the water flow at startup is half of the material flow during normal operation, and the water filling is completed when the liquid level increase is detected in the outlet water storage tank;
  • Step 3 Use the pressure reduction unit to gradually increase the pressure, so that the pressure after the supercritical water oxidation reactor can be maintained in a supercritical state, and the pressure increase is completed;
  • Step 4 Carry out step-by-step heating; start the first electric heater, and make the temperature rise rate of the outlet temperature TIC 1 of the water distribution tank at 20-30°C/h, until the outlet temperature TIC 1 of the water distribution tank is maintained at the normal operation of the material mixing tank The outlet temperature of the medium material after being preheated by the heat exchange coil;
  • Step 5 Start the second electric heater to make the wall temperature TIC 2 of the supercritical water oxidation reactor rise at a rate of 50-60°C/h until the wall temperature TIC 2 of the supercritical water oxidation reactor is maintained at normal operation The reaction temperature;
  • Step 6 During the heating process of the system, if the material in the material mixing tank is preheated by the hot fluid at the outlet of the supercritical water oxidation reactor and reaches the outlet temperature after the heat exchange coil is preheated, then the hot fluid is bypassed ;
  • Step 7 When the outlet temperature TIC 1 of the water distribution tank and the wall temperature TIC 2 of the supercritical water oxidation reactor both reach the preset temperature, the temperature rise is completed and the material switching is performed; the specific method of material switching is as follows:
  • Step 8 Inject oxygen into the system through the high-pressure oxygen buffer tank, and maintain the operation for 20-30 minutes;
  • Step 9 Gradually increase the flow rate of the start-up feedwater pump, fuel metering pump, and high-pressure material pump to normal flow rate, maintain normal operation for 20-30 minutes, and bypass the second electric heater after the wall temperature of the second electric heater decreases.
  • the fuel enters the inlet of the supercritical water oxidation reactor through the bypass;
  • Step 10 Open the outlet valve of the material mixing tank, turn off the first electric heater, stop starting the feed water pump, close the outlet valve of the start feed water pump, and gradually switch the materials to be processed according to the normal operating flow, and the system startup is completed.
  • Step 3 Use the pressure reducing unit to gradually increase the pressure, so that the pressure after the supercritical water oxidation reactor can be maintained in the supercritical state, and the pressure increase is completed; then the pressure of the water distribution tank is constant through the constant pressure device.
  • the present invention has the following beneficial effects:
  • the present invention uses half the flow of materials during normal operation to fill and raise the temperature of the entire supercritical water oxidation system. Because there is a large specific heat zone near the critical point of water, the enthalpy of the water varies with temperature. If the system is heated by the normal operating flow rate, the power of the electric heater required is very large, resulting in high operating costs when the system is started. Therefore, the startup method uses a small flow rate for heating, which not only saves the power loss during the system heating process, and reduces the operating cost of the system. At the same time, the small flow rate also reduces the system startup time and improves efficiency.
  • the present invention first uses the alcohol fuel with the same concentration as the material to switch the material, so that the system reaches a state of normal and stable operation, and avoids high-salt wastewater during the material switching process.
  • the organic waste or sludge directly passes through the heating tube in the electric heater, avoiding coking, carbon deposition, salt crystallization and deposition in the electric heater, solid particle deposition and other problems that will eventually cause the electric heating tube to block.
  • the inside of the reactor The reaction temperature is adjusted not by the power of the electric heater, but by the amount of alcohol fuel added.
  • the supercritical water oxidation reaction follows the free radical reaction mechanism.
  • the addition of alcohol fuel can enhance the generation of free radicals, and the degradation of organic waste can be enhanced by co-oxidation with organic waste.
  • the reaction temperature can be controlled by the addition of alcohol.
  • FIG. 1 is a schematic diagram of the system structure of Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the system structure of Embodiment 2 of the present invention.
  • a layer/element when referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located "under” the other layer/element when the orientation is reversed.
  • this embodiment takes the treatment of industrial sludge by supercritical water oxidation technology as an example to describe in detail the startup scheme of the supercritical water oxidation system:
  • the start-up system of the present invention based on supercritical water oxidation technology includes a material pretreatment unit, an oxygen supply unit, a water supply unit, a fuel supply unit, a supercritical water oxidation reaction and a post-processing unit.
  • the connection method of each device is as follows:
  • the outlet of the material mixing tank 5 is connected with the inlet of the high-pressure material pump 6, the outlet of the high-pressure material pump 6 is connected with the inlet of the inner pipe of the preheater 7, and the outlet of the inner pipe of the preheater 7 is connected with the inlet of the second electric heater 8. , The outlet of the second electric heater 8 is connected to the inlet of the supercritical water oxidation reactor 9.
  • the oxygen supply unit includes a high-pressure oxygen buffer tank 16.
  • the outlet of the high-pressure oxygen buffer tank 16 is connected to the inlet of the supercritical water oxidation reactor 9, and the outlet of the supercritical water oxidation reactor 9 is connected to the outer pipe inlet of the preheater 7.
  • the outlet of the outer tube of the heat exchanger 7 is connected with the inlet of the heat exchange coil 10
  • the outlet of the heat exchange coil 10 is connected with the inlet of the pressure reducing unit 14, and the outlet of the pressure reducing unit 14 is connected with the inlet of the outlet water storage tank 15.
  • the outlet of the water storage tank 1 is connected with the inlet of the starting feedwater pump 2, the outlet of the starting feedwater pump 2 is connected with the inlet of the first electric heater 3, and the outlet of the first electric heater 3 is connected with the inlet of the water distribution tank 4.
  • the outlet of 4 is connected with the inlet of the high-pressure material pump 6.
  • the outlet of the fuel storage tank 11 is connected with the inlet of the fuel metering pump 12, the outlet of the fuel metering pump 12 is connected with the inlet of the mixer 13, and the outlet of the mixer 13 is connected with the inlet of the preheater 7.
  • the material mixing tank 5 is provided with a stirrer, and the form of the stirrer is a frame stirrer plus an impeller type, and the form of the stirrer can also be a ribbon stirrer.
  • the preheater 7 includes, but is not limited to, a tube heat exchanger, and can also be a shell-and-tube heat exchanger or a spiral coil heat exchanger.
  • the first electric heater 3 and the second electric heater 8 include but are not limited to electric heaters, and electromagnetic induction heaters and natural gas stove heaters can also be used.
  • the supercritical water oxidation reactor 9 includes, but is not limited to, a tubular reactor or a tank reactor, in which a number of temperature measurement points are provided on the tubular reactor.
  • the pressure reducing unit 14 includes, but is not limited to, a capillary pressure reducer, a back pressure valve pressure reducer, and a multi-stage valve to reduce pressure.
  • the water storage tank 1 includes, but is not limited to, tap water, softened water, demineralized water, and the like.
  • the fuel in the fuel storage tank 11 includes, but is not limited to, alcohol fuels such as methanol, ethanol, and isopropanol.
  • the outlet temperature TIC 1 of the water distribution tank 4 is interlocked with the power of the first electric heater 3.
  • the wall temperature TIC 2 of the supercritical water oxidation reactor 9 is interlocked with the power of the second electric heater 8 and the methanol injection amount.
  • the materials processed by the supercritical water oxidation system include, but are not limited to, various organic industrial hazardous wastes, high-concentration organic wastewater, urban sludge, industrial sludge, various organic model compounds, etc.
  • the pressure reduction unit 14 is used to gradually increase the pressure of the entire system.
  • the system can be gradually increased according to the pressure increase gradient of 5MPa, 10MPa, 15MPa, 25MPa, and finally maintain the supercritical water oxidation reactor 9.
  • the pressure can be stably maintained at 25MPa ⁇ 0.5MPa.
  • the system does not enter oxygen, and the methanol solution is maintained in the system to run normally for 5-20 minutes, thereby reducing the reactor inlet temperature and avoiding the rapid over-temperature of the reactor during subsequent reactions.
  • the second electric heater 8 is turned off.
  • the alcohol flow rate is linked with the temperature of the wall temperature TIC 2 of the supercritical water oxidation reactor 9, and the injection amount of methanol is used to adjust the reaction temperature of the system and control the wall temperature of the reactor.
  • the reactor inlet temperature is reduced by 50-60°C
  • oxygen is injected into the system through the high-pressure oxygen buffer tank 16.
  • the pressure in the high-pressure oxygen buffer tank 16 is at least 0.5 MPa higher than the pressure in the reactor.
  • the system is the supercritical water oxidation reaction of methanol solution and oxygen with the same concentration as the sludge to be treated. Maintain the system to operate normally for 20-30 minutes, and control the reactor wall temperature TIC2 by adjusting the methanol injection volume to maintain The system temperature is stable within a certain range.
  • the startup system of this embodiment based on supercritical water oxidation technology includes a material pretreatment unit, an oxygen supply unit, a water supply unit, a fuel supply unit, a supercritical water oxidation reaction and a post-processing unit.
  • the fuel supply unit includes a fuel storage tank 11, a fuel metering pump 12, and a mixer 13.
  • the outlet of the fuel storage tank 11 is connected with the inlet of the fuel metering pump 12, the outlet of the fuel metering pump 12 is connected with the inlet of the mixer 13, and the outlet of the mixer 13 is connected with the inlet of the high-pressure material pump 6.
  • the water supply unit includes a water storage tank 1, a starting feed water pump 2, a first electric heater 3, a water distribution tank 4, and a constant pressure device 17.
  • the outlet of the water storage tank 1 is connected with the inlet of the starting feedwater pump 2, the outlet of the starting feedwater pump 2 is connected with the inlet of the first electric heater 3, and the outlet of the first electric heater 3 is connected with the inlet of the water distribution tank 4.
  • the outlet of 4 is connected with the inlet of the high-pressure material pump 6, and the outlet of the constant pressure device 17 is connected with the inlet of the water distribution tank 4.
  • the constant pressure device 17 includes, but is not limited to, a constant pressure of nitrogen and a constant pressure of air.
  • This embodiment is based on the start-up method of supercritical water oxidation technology. The difference from embodiment 1 is:
  • step 2) after the system's gradual increase in pressure is completed and stabilized at 25 MPa ⁇ 0.5 MPa, the constant pressure device 17 is used to perform constant pressure on the water distribution tank 4 to ensure that the outlet water temperature of the water distribution tank 4 is T1.
  • the solution does not vaporize after being mixed with water in the mixer 13.
  • the rest of the steps are the same as in Example 1.

Abstract

一种基于超临界水氧化技术的启动系统,其包括物料预处理单元、氧气供应单元、供水单元、供燃料单元、超临界水氧化反应及后处理单元。还公开了一种基于超临界水氧化技术的启动方法,通过在超临界水氧化系统启动过程中采用小流量启动,降低了系统升温过程所需的电加热器的功率。同时在系统启动过程中,首先切换与正常运行时物料浓度相同的醇类燃料,使系统达到稳定运行状态,并旁路电加热器,然后切换待处理物料,使其通过旁路,并通过调节添加醇类燃料的浓度控制反应温度。

Description

一种基于超临界水氧化技术的启动系统及方法 【技术领域】
本发明属于化工及环保技术领域,涉及一种基于超临界水氧化技术的启动系统及方法。
【背景技术】
目前高污染的化工行业产生的危险废物具有腐蚀性、毒性、易燃性、反应性或感染性,据不完全统计,2016年,危废产量高达5347万吨,仍有1153万吨处于贮存状态,实际上,企业为逃避高额的危废处理费用瞒报产量,实际危废产量超8000万吨,而危废企业实际处理比例仅为25%。由环境中危废引起的废水及污泥含有难以降解的卤素、硫和氮、重金属和脂肪族及芳香族污染物等,若得不到高效处理,将成为引发水源、土壤、海洋污染等突出环境问题的重要因素,严重威胁人民的健康与安全。
目前常用焚烧法处理危废,焚烧法可使危废减容减量,但设备投资额大,运营费用高(2000~5000元/吨);此外,焚烧法可能产生SOx、NOx、PM2.5、二噁英等二次污染,产生的飞灰需填埋,造成邻避效应。因此,危废的大量产生与难以处理已成为现阶段突出矛盾,实现其高效、彻底无害化处理是建设良好生态环境、实现可持续发展的迫切需求。
超临界水氧化(supercritical water oxidation,SCWO)技术是一种极具前景的危废处理技术。该技术利用水在超临界状态(温度>374.1℃,压力>22.1MPa)的特殊性质,将超临界水作为有机物和氧气的反应媒介,使其发生均相、快速的氧化反应,彻底将有机物氧化分解,有机物中的C、H和N元素分别转化成无害 化的CO 2、H 2O、N 2,杂环原子Cl、S和P等分别转化成相应的无机酸或盐,重金属矿化成稳定固相存在残渣中,实现稳定化。
但利用超临界水氧化技术处理高盐或含固有机废物时,还存在一些问题:
(1)若利用超临界水氧化系统处理高盐有机废物,由于超临界水具有低介电常数的特殊性质,因此在超临界状态下,水变为非极性溶剂,无机物在超临界水中的溶解度急剧下降。而在超临界水氧化系统中,通常使用电加热器对整个系统进行预热升温,在系统启动过程中切换物料或系统正常运行时,若高盐有机废物直接通过电加热器,在加热过程中,无机盐会在电加热器内不断结晶析出,最终沉积并堵塞电加热器内的加热管道,影响整个系统的正常启动,造成系统故障。
(2)若利用超临界水氧化系统处理含有不溶性惰性固体颗粒的有机废物,在启动过程中切换物料或系统正常运行时,由于不溶性固体颗粒的存在,有机废物通过电加热时,不溶性固体颗粒会由于低流速不断沉积在电加热管中,恶化电加热器的加热效率。
(3)若利用超临界水氧化系统处理城市/工业污泥,在启动过程中切换物料时,由于城市/工业污泥的高粘性,其通过电加热器时,加热过程中污泥流程性差,易堵塞在电加热管道中,此外,由于污泥中含有大量的蛋白质,污泥在不断加热过程中易发生结焦,生成焦炭积聚在电加热内管壁,恶化加热效率,严重时会堵塞管道。
【发明内容】
本发明的目的在于克服上述现有技术的缺点,提供一种基于超临界水氧化技术的启动系统及方法,可有效解决高盐或含固有机废物在采用超临界水氧化系统处理时,系统启动及正常运行过程中出现的电加热器结焦、盐沉积及堵塞等问题, 可以提高系统的安全性及可靠性。
为达到上述目的,本发明采用以下技术方案予以实现:
一种基于超临界水氧化技术的启动系统,包括:
供水单元,供水单元包括依次连接的储水罐、启动给水泵、第一电加热器以及配水罐;
物料预处理单元,物料预处理单元包括依次连接的物料调配罐、高压物料泵、预热器以及第二电加热器;高压物料泵通过预热器的内管与第二电加热器相连;配水罐的出口连接至高压物料泵的入口处;
超临界水氧化反应器,超临界水氧化反应器入口与第二电加热器出口相连;超临界水氧化反应器通过预热器的外管与配料罐内的换热盘管的入口相连;
换热盘管,换热盘管的出口依次连接降压单元和出水储罐;
以及供燃料单元,供燃料单元包括依次连接的燃料储罐与燃料计量泵,燃料计量泵的出口与物料预处理单元相连。
本发明进一步的改进在于:
高压物料泵与预热器之间设置有混合器,燃料储罐通过燃料计量泵与混合器相连,混合器将物料和燃料混合后送入预热器的内管中。
物料调配罐与高压物料泵之间设置有混合器,燃料储罐通过燃料计量泵与混合器相连,混合器将物料和燃料混合后通过高压物料泵送入预热器的内管中;配水罐上还连接有定压装置。
还包括氧气供应单元,氧气供应单元包括高压氧气缓冲罐,高压氧气缓冲罐的出口与超临界水氧化反应器的进口相连。
物料调配罐中设置有搅拌器,搅拌器采用框式搅拌器、框式加叶轮式搅拌器 或螺带式搅拌器;超临界水氧化反应器采用管式或釜式反应器,并设有若干个测温点;降压单元采用毛细管降压器、背压阀降压器或多级阀门降压。
预热器包括套管式换热器、管壳式换热器或螺旋盘管式换热器。
第一电加热器和第二电加热器包括电加热器、电磁感应加热器或天然气炉加热器。
储水罐中设有自来水、软化水或除盐水;燃料储罐中的燃料为甲醇、乙醇或异丙醇。
一种基于超临界水氧化技术的启动方法,包括以下步骤:
步骤1:预先将物料调配罐中装入物料;将燃料储罐中装入燃料,将配水罐中注入水;
步骤2:开启启动给水泵进行充水,其中启动时充水的流量为正常运行时物料流量的一半,当出水储罐中检测到液位增加时,充水完成;
步骤3:利用降压单元进行逐步升压,使超临界水氧化反应器后的压力能维持在超临界状态,升压完成;
步骤4:进行逐级升温;启动第一电加热器,使配水罐的出口温度TIC 1的升温速率在20~30℃/h,直至配水罐的出口温度TIC 1维持在正常运行时物料调配罐中物料经换热盘管预热后的出口温度;
步骤5:启动第二电加热器,使超临界水氧化反应器的壁温TIC 2的升温速率在50~60℃/h,直至超临界水氧化反应器的壁温TIC 2维持在正常运行时的反应温度;
步骤6:在系统升温过程中,若物料调配罐中物料经超临界水氧化反应器的出口的热流体预热后达到换热盘管预热后的出口温度后,则旁路该股热流体;
步骤7:当配水罐的出口温度TIC 1与超临界水氧化反应器的壁温TIC 2都达到预设温度后,升温完成,并进行物料切换;物料切换的具体方法如下:
关闭物料调配罐的出口阀门,关闭第二电加热器;通过燃料计量泵注入燃料,使混合器13中燃料与水的混合浓度与系统正常运行时的物料浓度一致,维持运行5~20min,使得超临界水氧化反应器入口温度降低;
步骤8:通过高压氧气缓冲罐对系统注入氧气,维持运行20~30min;
步骤9:逐步提高启动给水泵、燃料计量泵以及高压物料泵的流量至正常流量,维持正常运行20~30min,同时待第二电加热器的壁温降低后,旁路第二电加热器,燃料通过旁路进入超临界水氧化反应器的入口;
步骤10:打开物料调配罐的出口阀门,关闭第一电加热器,停止启动给水泵,关闭启动给水泵的出口阀门,按照正常运行流量逐渐切换待处理的物料,系统启动完成。
其进一步改进在于:
将所述步骤3替换为:
步骤3:利用降压单元进行逐步升压,使超临界水氧化反应器后的压力能维持在超临界状态,升压完成;再通过定压装置对配水罐进行定压。
与现有技术相比,本发明具有以下有益效果:
本发明在系统启动过程中采用正常运行时物料的一半流量对整个超临界水氧化系统进行充水及升温,由于在水的临界点附近存在大比热区,此时,水的焓值随温度的轻微变化而发生急剧的增加,若采用正常运行流量对系统进行升温,则所需电加热器的功率很大,导致系统启动时的运行费用高。因此,该启动方法采用小流量升温,不仅节约了系统升温过程中的功率损耗,降低了系统的运行费 用,同时小流量启动也减小了系统的启动时间,提高了效率。
进一步地,本发明在超临界水氧化系统启动过程中物料切换时,首先采用与物料相同浓度的醇类燃料进行物料的切换,使系统达到正常稳定运行的状态,避免了物料切换过程中高盐废水、含固有机废物或污泥直接通过电加热器中的加热管,避免了电加热器内发生结焦、积碳、盐结晶及沉积、固体颗粒沉积等最终导致电加热管堵塞的问题。
进一步地,本发明在超临界水氧化系统正常运行过程中,高盐废水、含固有机废物或污泥不通过电加热器内部,而是通过电加热器的旁路,正常运行时反应器内反应温度的调节不是通过电加热器的功率,而是通过醇类燃料的添加量。一方面,超临界水氧化反应遵循自由基反应机理,醇类燃料的添加可以增强自由基的产生,通过与有机废物共氧化强化有机废物的降解,另一方面,通过醇类的添加控制反应温度,可以在系统正常运行时完全脱离开电加热器,保证整个系统在启动及运行过程中都不会有物料直接通过电加热器,避免了电加热器内发生盐结晶及沉积、固体颗粒沉积等造成电加热器堵塞的问题。
【附图说明】
图1是本发明实施例1的系统结构示意图;
图2是本发明实施例2的系统结构示意图。
其中:1-储水罐;2-启动给水泵;3-第一电加热器;4-配水罐;5-物料调配罐;6-高压物料泵;7-预热器;8-第二电加热器;9-超临界水氧化反应器;10-换热盘管;11-燃料储罐;12-燃料计量泵;13-混合器;14-降压单元;15-出水储罐;16-高压氧气缓冲罐;17-定压装置。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元, 而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
实施例1:
参见图1,本实施例以超临界水氧化技术处理工业污泥为例,对超临界水氧化系统的启动方案作详细说明:
本发明基于超临界水氧化技术的启动系统,包括物料预处理单元、氧气供应单元、供水单元、供燃料单元、超临界水氧化反应及后处理单元。各设备的连接方式如下:
物料调配罐5的出口与高压物料泵6的入口相连,高压物料泵6的出口与预热器7的内管进口相连,预热器7的内管出口与第二电加热器8的进口相连,第二电加热器8的出口与超临界水氧化反应器9的进口相连。
氧气供应单元包括高压氧气缓冲罐16,高压氧气缓冲罐16的出口与超临界水氧化反应器9的进口相连,超临界水氧化反应器9的出口与预热器7的外管进口相连,预热器7的外管出口与换热盘管10的进口相连,换热盘管10的出口与降压单元14的进口相连,降压单元14的出口与出水储罐15的进口相连。
储水罐1的出口与启动给水泵2的进口相连,启动给水泵2的出口与第一电加热器3的进口相连,第一电加热器3的出口与配水罐4的进口相连,配水罐4的出口与高压物料泵6的进口相连。
燃料储罐11的出口与燃料计量泵12的进口相连,燃料计量泵12的出口与混合器13的进口相连,混合器13的出口与预热器7的进口相连。
上述方案中,所述物料调配罐5中设有搅拌器,搅拌器的形式为框式搅拌器 加叶轮式,搅拌器形式也可为螺带式搅拌器。预热器7包括但不限于套管式换热器,也可为管壳式换热器、螺旋盘管式换热器。第一电加热器3、第二电加热器8包括但不限于电加热器,也可采用电磁感应加热器、天然气炉加热器。超临界水氧化反应器9包括但不限于管式或釜式反应器,其中管式反应器上设有若干个测温点。降压单元14包括但不限于毛细管降压器、背压阀降压器、多级阀门降压。
储水罐1中包括但不限于自来水、软化水、除盐水等。燃料储罐11中的燃料包括但不限于甲醇、乙醇、异丙醇等醇类燃料。
配水罐4的出口温度TIC 1与第一电加热器3的功率连锁。超临界水氧化反应器9的壁温TIC 2与第二电加热器8的功率、甲醇注入量连锁。
超临界水氧化系统所处理的物料包括但不限于各种有机工业危废、高浓有机废水、城市污泥、工业污泥、各类有机模型化合物等。
本实施例基于超临界水氧化技术的启动方法,包括以下步骤:
1)系统启动前,首先将已经调配到一定含水率、一定浓度的工业污泥装入到物料调配罐5中,使其保持正常液位,为避免污泥在污泥调配罐中沉降,启动搅拌器对污泥进行搅拌;将燃料储罐11中装入99wt.%纯度的工业甲醇,使其维持正常液位;将配水罐4中注入正常液位的自来水。然后利用储水罐1中的自来水,通过启动给水泵2以系统正常运行时物料流量的一半对整个系统进行充水,当出水储罐15中检测到液位不断增加时,系统充水完成,系统充水完成后,使其运行5~10min,检查系统中是否有泄漏点,同时对整个系统进行排气。
2)系统启动前,利用降压单元14对整个系统进行逐步升压,可以按照5MPa、10MPa、15MPa、25MPa的压力升高梯度对系统进行逐步升压,最终维持超临 界水氧化反应器9后的压力能稳定维持25MPa±0.5MPa。
3)待系统充水、排气、升压完成后,通过电加热对系统进行逐级升温。启动第一电加热器3,投入配水罐4的出口温度TIC 1与第一电加热器3功率的连锁,控制TIC 1升温速率在20~30℃/h,直至配水罐4的出口温度TIC 1维持在T1,其中T1为系统正常运行时物料调配罐5中物料经换热盘管10预热后的出口温度T1’。
4)同时启动第二电加热器8,投入超临界水氧化反应器9壁温TIC 2与第二电加热器8功率的连锁,控制TIC 2升温速率在50~60℃/h,直至超临界水氧化反应器9壁温TIC 2维持在T2,其中T2为系统正常运行时的反应温度T2’,也可略低于反应温度T2’。
5)同时在系统升温过程中,若物料调配罐5中物料经超临界水氧化反应器9的出口的热流体预热后达到T1’后,则旁路该股热流体,让其进入后续单元进行降温,避免物料温度的持续升高。
6)当系统中的测温点TIC 1达到预设温度T1,TIC 2达到预设温度T2后,系统升温完成,此时进行物料切换。首先切换与正常运行时物料浓度相同的甲醇溶液,此时关闭物料调配罐5的出口阀门V2。此时系统仍然以一半正常流量运行,通过燃料计量泵12注入确定量的甲醇,保证混合器13中甲醇与水的COD与系统正常运行时的污泥COD一致,从而保证反应过程中的放热量相等。但此时系统不进氧,维持甲醇溶液在系统中正常运行5~20min,从而降低反应器入口温度,避免后续反应时反应器急剧超温,同时关闭第二电加热器8,此时投入注入醇类流量与超临界水氧化反应器9壁温TIC 2的温度连锁,用甲醇的注入量来调节系统的反应温度,并控制反应器的壁温。
7)待反应器入口温度降低50~60℃后,通过高压氧气缓冲罐16对系统注入氧气,高压氧气缓冲罐16内的压力要比反应器内的压力高至少0.5MPa。此时系统发生的是与待处理污泥相同浓度的甲醇溶液与氧气的超临界水氧化反应,维持系统正常运行20~30min,并通过调节甲醇的注入量控制反应器的壁温TIC 2,维持系统温度稳定在一定的范围内。
8)上述系统正常运行后,逐步提高启动给水泵2、燃料计量泵12、高压物料泵6的流量到正常流量,维持系统正常运行20~30min,同时待第二电加热器8的壁温降低到适宜温度后,旁路第二电加热器8,甲醇溶液通过旁路进入超临界水氧化反应器9的入口。
9)上述系统按照正常流量运行稳定后,打开物料调配罐5的出口阀门V2,关闭第一电加热器3,停止启动给水泵2,关闭启动给水泵2的出口阀门V1,按照正常运行流量逐渐切换待处理的污泥,此时,系统正常启动完成。
实施例2
如图2所示,本实施例基于超临界水氧化技术的启动系统,包括物料预处理单元、氧气供应单元、供水单元、供燃料单元、超临界水氧化反应及后处理单元。
与实施例1的不同之处在于:
供燃料单元包括燃料储罐11、燃料计量泵12、混合器13。燃料储罐11的出口与燃料计量泵12的进口相连,燃料计量泵12的出口与混合器13的进口相连,混合器13的出口与高压物料泵6的进口相连。
供水单元包括储水罐1、启动给水泵2、第一电加热器3、配水罐4、定压装置17。储水罐1的出口与启动给水泵2的进口相连,启动给水泵2的出口与第一电加热器3的进口相连,第一电加热器3的出口与配水罐4的进口相连,配水罐 4的出口与高压物料泵6的进口相连,定压装置17出口与配水罐4的进口相连。
所述定压装置17包括但不限于氮气定压、空气定压。
其余装置及其连接方式与实施例1所描述的系统相同。
本实施例基于超临界水氧化技术的启动方法,与实施例1的不同之处在于:
在步骤2)中,待系统逐步升压完成并稳定在25MPa±0.5MPa后,再通过定压装置17对配水罐4进行定压,保证在配水罐4的出口水温度为T1下,醇类溶液在混合器13中与水混合后不发生气化。其余步骤与实施例1步骤相同。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种基于超临界水氧化技术的启动系统,其特征在于,包括:
    供水单元,供水单元包括依次连接的储水罐(1)、启动给水泵(2)、第一电加热器(3)以及配水罐(4);
    物料预处理单元,物料预处理单元包括依次连接的物料调配罐(5)、高压物料泵(6)、预热器(7)以及第二电加热器(8);高压物料泵(6)通过预热器(7)的内管与第二电加热器(8)相连;配水罐(4)的出口连接至高压物料泵(6)的入口处;
    超临界水氧化反应器(9),超临界水氧化反应器(9)入口与第二电加热器(8)出口相连;超临界水氧化反应器(9)通过预热器(7)的外管与配料罐(5)内的换热盘管(10)的入口相连;
    换热盘管(10),换热盘管(10)的出口依次连接降压单元(14)和出水储罐(15);
    以及供燃料单元,供燃料单元包括依次连接的燃料储罐(11)与燃料计量泵(12),燃料计量泵(12)的出口与物料预处理单元相连。
  2. 根据权利要求1所述的基于超临界水氧化技术的启动系统,其特征在于,高压物料泵(6)与预热器(7)之间设置有混合器(13),燃料储罐(11)通过燃料计量泵(12)与混合器(13)相连,混合器(13)将物料和燃料混合后送入预热器(7)的内管中。
  3. 根据权利要求1所述的基于超临界水氧化技术的启动系统,其特征在于,物料调配罐(5)与高压物料泵(6)之间设置有混合器(13),燃料储罐(11)通过燃料计量泵(12)与混合器(13)相连,混合器(13)将物料和燃料混合后通过高压物料泵(6)送入预热器(7)的内管中;配水罐(4)上还连接有定压 装置(17)。
  4. 根据权利要求2或3所述的基于超临界水氧化技术的启动系统,其特征在于,还包括氧气供应单元,氧气供应单元包括高压氧气缓冲罐(16),高压氧气缓冲罐(16)的出口与超临界水氧化反应器(9)的进口相连。
  5. 根据权利要求2或3所述的基于超临界水氧化技术的启动系统,其特征在于,物料调配罐(5)中设置有搅拌器,搅拌器采用框式搅拌器、框式加叶轮式搅拌器或螺带式搅拌器;超临界水氧化反应器(9)采用管式或釜式反应器,并设有若干个测温点;降压单元(14)采用毛细管降压器、背压阀降压器或多级阀门降压。
  6. 根据权利要求2或3所述的基于超临界水氧化技术的启动系统,其特征在于,预热器(7)包括套管式换热器、管壳式换热器或螺旋盘管式换热器。
  7. 根据权利要求2或3所述的基于超临界水氧化技术的启动系统,其特征在于,第一电加热器(3)和第二电加热器(8)包括电加热器、电磁感应加热器或天然气炉加热器。
  8. 根据权利要求2或3所述的基于超临界水氧化技术的启动系统,其特征在于,储水罐(1)中设有自来水、软化水或除盐水;燃料储罐(11)中的燃料为甲醇、乙醇或异丙醇。
  9. 一种采用权利要求1-3任意一项所述启动系统的基于超临界水氧化技术的启动方法,其特征在于,包括以下步骤:
    步骤1:预先将物料调配罐(5)中装入物料;将燃料储罐(11)中装入燃料,将配水罐(4)中注入水;
    步骤2:开启启动给水泵(2)进行充水,其中启动时充水的流量为正常运行 时物料流量的一半,当出水储罐(15)中检测到液位增加时,充水完成;
    步骤3:利用降压单元(14)进行逐步升压,使超临界水氧化反应器(9)后的压力能维持在超临界状态,升压完成;
    步骤4:进行逐级升温;启动第一电加热器(3),使配水罐(4)的出口温度TIC 1的升温速率在20~30℃/h,直至配水罐(4)的出口温度TIC 1维持在正常运行时物料调配罐(5)中物料经换热盘管(10)预热后的出口温度;
    步骤5:启动第二电加热器(8),使超临界水氧化反应器(9)的壁温TIC 2的升温速率在50~60℃/h,直至超临界水氧化反应器(9)的壁温TIC 2维持在正常运行时的反应温度;
    步骤6:在系统升温过程中,若物料调配罐(5)中物料经超临界水氧化反应器(9)的出口的热流体预热后达到换热盘管(10)预热后的出口温度后,则旁路该股热流体;
    步骤7:当配水罐(4)的出口温度TIC 1与超临界水氧化反应器(9)的壁温TIC 2都达到预设温度后,升温完成,并进行物料切换;物料切换的具体方法如下:
    关闭物料调配罐(5)的出口阀门,关闭第二电加热器(8);通过燃料计量泵(12)注入燃料,使混合器13中燃料与水的混合浓度与系统正常运行时的物料浓度一致,维持运行5~20min,使得超临界水氧化反应器(9)入口温度降低;
    步骤8:通过高压氧气缓冲罐(16)对系统注入氧气,维持运行20~30min;
    步骤9:逐步提高启动给水泵(2)、燃料计量泵(12)以及高压物料泵(6)的流量至正常流量,维持正常运行20~30min,同时待第二电加热器(8)的壁温降低后,旁路第二电加热器(8),燃料通过旁路进入超临界水氧化反应器(9) 的入口;
    步骤10:打开物料调配罐(5)的出口阀门,关闭第一电加热器(3),停止启动给水泵(2),关闭启动给水泵(2)的出口阀门,按照正常运行流量逐渐切换待处理的物料,系统启动完成。
  10. 根据权利要求9所述的启动系统的基于超临界水氧化技术的启动方法,其特征在于,将所述步骤3替换为:
    步骤3:利用降压单元(14)进行逐步升压,使超临界水氧化反应器(9)后的压力能维持在超临界状态,升压完成;再通过定压装置(17)对配水罐(4)进行定压。
PCT/CN2019/113370 2019-10-12 2019-10-25 一种基于超临界水氧化技术的启动系统及方法 WO2021068296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910969357.3 2019-10-12
CN201910969357.3A CN110803753B (zh) 2019-10-12 2019-10-12 一种基于超临界水氧化技术的启动系统及方法

Publications (1)

Publication Number Publication Date
WO2021068296A1 true WO2021068296A1 (zh) 2021-04-15

Family

ID=69488331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113370 WO2021068296A1 (zh) 2019-10-12 2019-10-25 一种基于超临界水氧化技术的启动系统及方法

Country Status (2)

Country Link
CN (1) CN110803753B (zh)
WO (1) WO2021068296A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835235A (zh) * 2022-04-29 2022-08-02 西安交通大学 一种适用于超临界水氧化技术的强化氧化反应装置
CN114835282A (zh) * 2022-03-25 2022-08-02 石家庄新奥环保科技有限公司 超临界水氧化处理废水控制系统
CN115180707A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种快速启动的超临界水氧化系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762866A (zh) * 2020-06-26 2020-10-13 西安交通大学 用于难降解含氮及高盐有机污染物的多功能型超临界水强化氧化系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325772A (ja) * 1999-05-24 2000-11-28 Shinko Pantec Co Ltd 有機性被処理液の酸化処理方法及び装置
CN102190362A (zh) * 2011-05-12 2011-09-21 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应系统
CN105254146A (zh) * 2015-10-10 2016-01-20 西安交通大学 印染污泥的超临界水氧化处理系统及工艺
CN206334638U (zh) * 2016-12-29 2017-07-18 新奥科技发展有限公司 超临界水反应系统
CN107500462A (zh) * 2017-09-08 2017-12-22 广州中国科学院先进技术研究所 一种超临界水氧化系统及其启动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543190A (en) * 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
JP2004174298A (ja) * 2002-11-25 2004-06-24 Japan Organo Co Ltd 水熱反応装置及びその運転方法
CN204490582U (zh) * 2015-03-23 2015-07-22 王冰 一种超临界水氧化小型反应系统
CN105731744A (zh) * 2016-03-22 2016-07-06 新奥科技发展有限公司 污泥的处理方法和系统
CN109305722B (zh) * 2018-10-26 2020-10-27 西安交通大学 一种分级注氧的超临界水氧化系统及基于该系统的废水和/或污泥处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325772A (ja) * 1999-05-24 2000-11-28 Shinko Pantec Co Ltd 有機性被処理液の酸化処理方法及び装置
CN102190362A (zh) * 2011-05-12 2011-09-21 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应系统
CN105254146A (zh) * 2015-10-10 2016-01-20 西安交通大学 印染污泥的超临界水氧化处理系统及工艺
CN206334638U (zh) * 2016-12-29 2017-07-18 新奥科技发展有限公司 超临界水反应系统
CN107500462A (zh) * 2017-09-08 2017-12-22 广州中国科学院先进技术研究所 一种超临界水氧化系统及其启动方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835282A (zh) * 2022-03-25 2022-08-02 石家庄新奥环保科技有限公司 超临界水氧化处理废水控制系统
CN114835235A (zh) * 2022-04-29 2022-08-02 西安交通大学 一种适用于超临界水氧化技术的强化氧化反应装置
CN115180707A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种快速启动的超临界水氧化系统及方法
CN115180707B (zh) * 2022-07-06 2023-07-21 深圳市华尔信环保科技有限公司 一种快速启动的超临界水氧化系统及方法

Also Published As

Publication number Publication date
CN110803753B (zh) 2021-02-02
CN110803753A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2021068296A1 (zh) 一种基于超临界水氧化技术的启动系统及方法
CN105254146B (zh) 印染污泥的超临界水氧化处理系统及工艺
CN106630287B (zh) 采油废液的超临界水热燃烧处理、注汽系统
WO2012151795A1 (zh) 利用辅助燃料补给热量的超临界水氧化反应系统
CN107500462B (zh) 一种超临界水氧化系统及其启动方法
CN108622993A (zh) 一种含氮有机废水的超临界水氧化处理装置
WO2022116632A1 (zh) 一种有机固废热水解处理系统及其处理工艺
CN101928080A (zh) 一种高浓度有机废水的超临界水氧化处理方法
WO2012051875A1 (zh) 高含盐量有机废水的超临界水处理系统
CN110510726A (zh) 一种以煤、有机物为原料的废水、污泥处理系统及方法
CN103626364B (zh) 高含固率城市污泥的超临界水氧化处理及发电系统
CN105601017A (zh) 一种高浓度有机废水及污泥的近零排放处理系统及方法
CN110802077B (zh) 一种基于超临界水氧化技术的在线清洗系统及方法
CN103482835A (zh) 一种污泥水解装置及工艺
CN103951004B (zh) 基于超临界水热反应的含酚废水处理系统及方法
CN113739137B (zh) 一种可实现控温控压的超临界水热燃烧装置
CN205500882U (zh) 一种过热近临界水氧化偏二甲肼废液的系统
CN206334638U (zh) 超临界水反应系统
CN1186273C (zh) 超临界水氧化法流动式污水处理的方法及装置
CN106673403A (zh) 一种油泥的处理方法
CN108751653B (zh) 一种城市污泥超临界水氧化分段氧化处理系统及工艺
CN114838369A (zh) 基于超临界水热燃烧处理的无机盐在线脱排系统及方法
CN102502943B (zh) 蓄热式燃烧超临界水气化氧化装置
US11459260B2 (en) System and method for treating high-salt high-organic wastewater and recovering energy
CN112979040A (zh) 一种有机氯农药污染土壤催化氧化修复用废水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948341

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19948341

Country of ref document: EP

Kind code of ref document: A1