WO2021068289A1 - 一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法 - Google Patents

一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法 Download PDF

Info

Publication number
WO2021068289A1
WO2021068289A1 PCT/CN2019/112832 CN2019112832W WO2021068289A1 WO 2021068289 A1 WO2021068289 A1 WO 2021068289A1 CN 2019112832 W CN2019112832 W CN 2019112832W WO 2021068289 A1 WO2021068289 A1 WO 2021068289A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
inconel
based alloy
strength
plasticity
Prior art date
Application number
PCT/CN2019/112832
Other languages
English (en)
French (fr)
Inventor
程远
袁玉荣
Original Assignee
南京英尼格玛工业自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京英尼格玛工业自动化技术有限公司 filed Critical 南京英尼格玛工业自动化技术有限公司
Publication of WO2021068289A1 publication Critical patent/WO2021068289A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the invention relates to the technical field of arc additive metal materials, in particular to a high-strength and high-plasticity single-phase Inconel 625 Nickel-based alloy and its preparation method.
  • Nickel-based alloys have excellent comprehensive mechanical properties, good oxidation and corrosion resistance, and are widely used in industrial fields such as aerospace and machinery manufacturing.
  • Inconel 625 The traditional preparation process of nickel-based alloy parts mainly includes isomaterial manufacturing ( Casting, rolling, etc. ) Technology and Subtractive Manufacturing ( Turning, milling, etc. ) Technology, etc., prepared by traditional technology
  • Inconel 625 Nickel-based alloys have relatively excellent comprehensive mechanical properties, but the process is cumbersome and the production efficiency is low. At the same time, it is difficult to process components with complex shapes and high production costs. In recent years, additive manufacturing technology has become a revolutionary breakthrough in the manufacturing industry.
  • the technical problem solved by the present invention is to use arc additive manufacturing technology to prepare a single phase with a columnar crystal structure with a high proportion of small-angle grain boundaries Inconel 625 Nickel-based alloys, not only significantly improved Inconel 625
  • the production efficiency of nickel-based alloys, while preparing Inconel 625 Alloy strength and plasticity are significantly better than traditional as-cast and sheet metal Inconel 625 alloy.
  • a high-strength and high-plasticity single phase proposed according to the present invention Inconel 625 Nickel-based alloy, wherein the Inconel 625
  • the structure of nickel-based alloy is single-phase columnar coarse-grained structure, and its grain size is 45-360m , In terms of mass percentage, the crystal grains have 15-33% Proportion of small-angle grain boundaries.
  • the small-angle grain boundary includes 2-15 °Angular grain boundary, in terms of mass percentage, 2-5o
  • the ratio of the grain boundary of the angle is 3.5-7.0% , 5-15o
  • the ratio of the grain boundary of the angle is 10.0-26.5% .
  • the Inconel 625 The raw material composition of the nickel-based alloy is as follows: Ni:>58.00% , Cr: 20.00-23.00% , Mo: 8.00-10.00% , Nb: 3.15-4.15% , Fe: ⁇ 5.00% , Co: ⁇ 1.00% , Si: ⁇ 0.50% , Mn: ⁇ 0.50% , Ti: ⁇ 0.40% , Al: ⁇ 0.40% , Cu: ⁇ 0.30% , C: ⁇ 0.10% , S: ⁇ 0.02% , P: ⁇ 0.02% , Ta: ⁇ 0.02% .
  • the Inconel 625 The tensile strength of the nickel-based alloy is 720-730MPa , The yield strength is 390-415MPa , The elongation is 54-63% .
  • Inconel 625 The method of nickel-based alloy, wherein the method includes the following steps:
  • the sample size is less than or equal to ⁇ 600 X 600mm , That is Inconel 625 F.
  • the step ( 1 ) The arc described in CMT MIG Process, the wire includes a diameter of 1.2mm of NiCrMo-3(625 F ) Wire.
  • the steps (2) The protective gas is pure argon, and the carbon steel substrate is Q235 Carbon steel substrate.
  • the path includes the first-level path and the second-level path, wherein the first-level path is filled with a straight line after printing the outer contour, and the first-level layer height is 2mm ;
  • the second layer path is the outer contour after printing, with 90 °The angle is filled in a straight line, the height of each layer is 1.8mm , The angle between the filling lines is 90 °.
  • the printing process adopts ArcMan 600 Equipment, the process is direct current CMT ,
  • the arc additive software used is IungoPNT ,
  • the version of the welding expert library used is 1693(NIBAS625) ,
  • the wire feeding speed is 1.9-10.5m/min ,
  • the arc length is corrected to 0 ,
  • the inductance is corrected to 0 .
  • the printing speed is 400-700mm/min .
  • the present invention has the following significant advantages:
  • the present invention uses the arc additive method to rapidly deposit and accumulate layer by layer on a carbon steel substrate according to a set path under the protection of a protective gas to obtain a single-phase columnar crystal with a coarse grain structure.
  • the liquid metal is mainly dissipated through the substrate during the cooling and solidification process, and the heat is mainly lost downwards perpendicular to the substrate, and the direction of heat flow is perpendicular to the interface.
  • the solidification is directional, which results in the structure of columnar crystals growing from bottom to top. This structure has better plasticity while maintaining higher yield strength and tensile strength.
  • the arc additive method of the present invention rapidly deposits and deposits columnar crystals with coarse grain structure on a carbon steel substrate layer by layer according to a set path under the protection of protective gas, which is different from powder bed adhesive jet printing Inconel 625 Equiaxed crystal structure obtained from nickel-based alloys. Under the premise of fast printing, the alloy has higher yield strength, tensile strength and better plasticity, thereby ensuring Inconel 625 The overall mechanical properties of nickel-based alloys are optimal.
  • the present invention is particularly Inconel 625 Nickel-based alloy and its preparation method effectively solve the existing Inconel 625 Nickel-based alloys have the advantages of low strength and low plasticity. They have many of the above-mentioned advantages and practical values. There is no similar design published or used in similar methods. It is indeed innovative, regardless of the preparation method or function. All have great improvements, great progress in technology, and have produced easy-to-use and practical effects, and are more than the existing ones. Inconel 625 Nickel-based alloy has a number of improved functions, so it is more suitable for practical use, and has a wide range of industrial use value, hereby a novel, progressive, and practical new design.
  • Figure 1 Is an embodiment according to the present invention 1 Prepared in Inconel 625 Electron backscatter diffraction inverse pole pattern of grain structure in nickel-based alloy (IPF Z) ;
  • Figure 2 Is an embodiment according to the present invention 2 Prepared in Inconel 625 Nickel-based alloy passes 1150 °CSolid solution treatment 0.5 Electron backscattered diffraction inverse pole pattern of the mid-grain structure after hours (IPF Z) ;
  • Figure 3 Is an embodiment according to the present invention 1 Prepared in Inconel 625 Nickel-based alloy tensile curves and examples 2 Prepared in Inconel 625 Nickel-based alloy passes 1150 °CSolid solution treatment 0.5 Comparison of stretch curves after hours.
  • the arc additive manufacturing technology described in the present invention (Wire Arc Additive Manufacture,WAAM) It is based on the principle of layer-by-layer cladding, and is welded with extremely inert gas. (MIG) , Tungsten inert gas shielded welding (TIG) And plasma welding power supply (PA) Wait for the arc generated by the welder as the heat source , By adding wire, under the control of the software program, according to the three-dimensional digital model by the line - surface - Body gradually Advanced digital manufacturing technology for forming metal parts.
  • MIG MIG
  • PA plasma welding power supply
  • Said CMT MIG Process refers to DC CMT( Cold metal transition welding technology ) .
  • Said ArcMan 600 Equipment is a 3D Printer, which is based on WAAM Arc additive manufacturing Technology to MIG/MAG
  • the welding power source generates an electric arc as a heat source.
  • IungoPNT Additive software Under the driving control, according to the three-dimensional digital model by the line - surface - Body gradually Advanced digital manufacturing of metal parts.
  • the embodiment of the present invention proposes a single phase with a columnar crystal structure with a high proportion of small-angle grain boundaries Inconel 625 Nickel-based alloy and its preparation method, said columnar crystal single-phase structure has the characteristics of high strength and high plasticity, wherein the tensile strength is 720-730MPa , The yield strength is 390-415MPa , The elongation is 54-63% .
  • the specific preparation steps are as follows: firstly use the electric arc as the heat source to melt the wire, and then under the protection of the protective gas, deposit it layer by layer on the carbon steel substrate according to the set path to form a cylindrical sample, the maximum size is ⁇ 600 X 600mm , That is Inconel 625 F.
  • Arc additive used in the preparation process CMT MIG Process the diameter of the wire is 1.2mm of NiCrMo-3(625 F ) Wire.
  • the shielding gas is pure argon, and the carbon steel substrate is Q235 Carbon steel substrate.
  • the path includes the first-level path and the second-level path.
  • the first-level path is to print the outer contour first and then fill it in a straight line, and the first-level layer height is 2mm ;
  • the second layer path is the outer contour after printing, with 90 °The angle is filled in a straight line, the height of each layer is 1.8mm , The angle between the filling lines is 90 °.
  • the printing process adopts ArcMan 600 Equipment, the process is direct current CMT ,
  • the arc additive software used is IungoPNT .
  • the welding expert library version used in the experiment is 1693 (NIBAS625) ,
  • the wire feeding speed is 1.9-10.5m/min ,
  • the arc length is corrected to 0 ,
  • the inductance is corrected to 0 .
  • the printing speed during printing is 400-700mm/min ,
  • the filling method is straight line filling.
  • the Inconel 625 The grain size of the nickel-based alloy is 45-360m , The grain has 15-33% (Mass percentage) ratio of small-angle grain boundaries. Small-angle grain boundaries include 2-15 °Angular grain boundary, where, 2-5o The ratio of the total small-angle grain boundaries is 3.5-7.0% , 5-15o The ratio of the small-angle grain boundary to the total is 10.0-26.5% .
  • the chemical elements in the nickel-based alloy are in atomic percentage (at.%) The measurement is as follows: Ni:>58.00% , Cr: 20.00-23.00% , Mo: 8.00-10.00% , Nb: 3.15-4.15% , Fe: ⁇ 5.00% , Co: ⁇ 1.00% , Si: ⁇ 0.50% , Mn: ⁇ 0.50% , Ti: ⁇ 0.40% , Al: ⁇ 0.40% , Cu: ⁇ 0.30% , C: ⁇ 0.10% , S: ⁇ 0.02% , P: ⁇ 0.02% , Ta: ⁇ 0.02% .
  • the arc process parameters are: adopt CMT MIG Process, the wire has a diameter of 1.2mm of NiCrMo-3(625 F ) Wire.
  • Printing adopts ArcMan 600 Equipment, the process is direct current CMT ,
  • the arc additive software used is IungoPNT .
  • the welding expert library version used in the experiment is 1693(NIBAS625) ,
  • the wire feeding speed is 4.6m/min ,
  • the arc length is corrected to 0
  • the inductance is corrected to 0 .
  • the crystal grain size obtained in this embodiment is 175 ⁇ 10m , Income Inconel 625
  • the proportion of small-angle grain boundaries in the grain boundaries of nickel-based alloys is ⁇ 30.0% ,among them, 2-5o Accounted for ⁇ 3.5% , 5-15o Accounted for ⁇ 26.5% .
  • Additively prepared in this example 625 The number of nickel-based alloys is #1 .
  • Figure 1 Is an embodiment according to the present invention 1 Prepared in Inconel 625 Electron backscatter diffraction inverse pole pattern of grain structure in nickel-based alloy (IPF Z) . As shown 1 As shown, the prepared Inconel 625 The tensile strength of the nickel-based alloy is 725 ⁇ 5MPa , The yield strength is 415 ⁇ 12MPa , The elongation is 63 ⁇ 5% . The structure has excellent plasticity while maintaining high strength, and the matching of strength and plasticity is significantly better than that of as-cast and sheet metal 625 F.
  • arc additive technology under the protection of shielding gas, it is quickly deposited layer by layer on the carbon steel substrate according to the set path to obtain a columnar crystal single-phase structure with a high proportion of small-angle grain boundaries
  • Inconel 625 Nickel-based alloy this kind of columnar crystal structure with a high proportion of small angle grain boundaries has the characteristics of high strength and high plasticity.
  • the arc process parameters are: adopt CMT MIG Process, the wire has a diameter of 1.2mm of NiCrMo-3(625 F ) Wire.
  • the printing process adopts ArcMan 600 Equipment, the process is direct current CMT ,
  • the arc additive software used is IungoPNT .
  • the welding expert library version used in the experiment is 1693(NIBAS625) ,
  • the wire feeding speed is 4.6m/min ,
  • the arc length is corrected to 0 ,
  • the inductance is corrected to 0 .
  • the obtained material is subjected to solution treatment, and the solution temperature is 1150 °C, time is 0.5 hour.
  • the crystal grain size obtained in this embodiment is 230 ⁇ 15m , Income Inconel 625
  • the proportion of small-angle grain boundaries in nickel-based alloys is ⁇ 20.0% ,among them 2-5o Accounted for ⁇ 5.5% , 5-15o Accounted for ⁇ 14.5% .
  • the number of the nickel-based alloy in this example is #2 .
  • Figure 2 Is an embodiment according to the present invention 2 Prepared in Inconel 625 Nickel-based alloy passes 1150 °CSolid solution treatment 0.5 Electron backscattered diffraction inverse pole pattern of the mid-grain structure after hours (IPF Z) .
  • the prepared Inconel 625 The tensile strength of the nickel-based alloy is 685 ⁇ 48MPa , The yield strength is 320 ⁇ 8MPa , The elongation is 73 ⁇ 3% .
  • the yield strength and tensile strength of the structure are slightly reduced, but its plasticity has been significantly improved, and its strength and plasticity matching is obviously better than that of as-cast and sheet metal 625 F.
  • the wire material proposed by the present invention uses an electric arc as a heat source to melt the wire, and then under the protection of a protective gas, it is deposited layer by layer on a carbon steel substrate according to a set path to form a cylindrical sample with a maximum size of ⁇ 600 X 600mm , A coarse-grained columnar crystal structure with a high proportion of small-angle grain boundaries is obtained, and the crystal grain size is 45-360m ; The proportion of small-angle grain boundaries is 15-33% ,among them, 2-5o Accounted for 3.5-7.0% , 5-15o Accounted for 10.0-26.5% .
  • the path of the first layer is to print the outer contour first and then fill in a straight line. 2mm
  • the second layer path is the outer contour after printing, with 90 °
  • the angle is filled in a straight line
  • the height of each layer is 1.8mm
  • the angle between the filling lines is 90 °
  • the printing speed is 400-700mm/min
  • the filling method is linear filling
  • its tensile strength is 720-730MPa
  • the yield strength is 390-415MPa
  • the elongation is 54-63% .
  • Nickel-based alloys have excellent strength and plasticity matching.

Abstract

一种高强度高塑性单相Inconel 625镍基合金及其制备方法。所述的Inconel 625镍基合金的组织结构为单相柱状粗晶结构,其晶粒尺寸为45-360μm,按照质量百分比计,所述晶粒具有15-33%比例的小角晶界。该Inconel 625镍基合金通过电弧增材制造方法制备,得到的Inconel 625镍基合金抗拉强度为720-730MPa,屈服强度为390-415MPa,均匀延伸率为54-63%,相对于传统铸态625镍基合金,显著提高了625镍基合金的强度与塑性。

Description

一种高强度高塑性单相Inconel 625镍基合金及其制备方法 技术领域
本发明涉及电弧增材金属材料技术领域,具体涉及一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法。
背景技术
镍基合金具有优异的综合力学性能,良好的抗氧化和耐腐蚀性能,广泛应用于航空航天和机械制造等工业领域。 Inconel 625 镍基合金部件的传统制备工艺主要包括等材制造 ( 铸造、轧制等 ) 技术和减材制造 ( 车削、铣削等 ) 技术等,传统工艺制备的 Inconel 625 镍基合金具有较为优异的综合力学性能,但是工序繁琐,生产效率低,同时对于复杂形状构件来说加工难度大,生产成本高。近年来,增材制造技术成为制造业的一个革命性突破,利用计算机对制造过程的控制,将制造过程细化到零件的任何一个位置的任何一个点,可以有效减少工序,缩短产品生产周期,对于形状复杂、原材料价值较高的产品,增材制造技术加工效率高和节省材料的生产加工特点具有十分明显的优势。
文献 Rivera, O. G., Allison, P. G., Jordon, J. B., et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing [J]. Materials Science & Engineering, A. Structural Materials: Properties, Microstructure and Processing, 2017, 694: 1-9 中利用摩擦搅拌增材制造的 Inconel 625 镍基合金屈服强度及抗拉强度高于铸造态 625 镍基合金的,但其塑性较低,电弧增材 Inconel 625 镍基合金具有较高强度的同时具有较好的塑性。
文献 Mostafaei Amir, Behnamian Yashar, Krimer Yuval L., et al. Effect of solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625 [J]. Materials & design, 2016, 111: 482-491 中利用 M-Flex ExOne 粉床粘合剂 喷射印刷 Inconel 625 镍基合金。该方法制备 Inconel 625 镍基合金在一定程度上具有较高的效率,但是制备的 Inconel 625 镍基合金强度较低。
因此亟需发明新的增材制造工艺,在保证生产效率,加工成本的前提下,使增材制造 625 镍基合金的材料性能达到或者优于传统铸造或者轧制态材料的力学性能。
技术问题
本发明所解决的技术问题在于利用电弧增材制造技术,制备具有高比例小角晶界的柱状晶结构的单相 Inconel 625 镍基合金,不仅显著提高 Inconel 625 镍基合金的生产效率,同时制备得到的 Inconel 625 合金强度和塑性明显优于传统铸态和板材 Inconel 625 合金。
技术解决方案
本发明的目的及解决其技术问题采用以下的技术方案来实现:
依据本发明提出的一种高强度高塑性单相 Inconel 625 镍基合金,其中,所述 Inconel 625 镍基合金的组织结构为单相柱状粗晶结构,其晶粒尺寸为 45-360m ,按照质量百分比计,所述晶粒具有 15-33% 比例的小角晶界。
优选地,所述小角晶界包括 2-15 °角晶界,按照质量百分比计, 2-5o 角的晶界占比为 3.5-7.0% 5-15o 角的晶界占比为 10.0-26.5%
优选地,按照原子百分比计,所述 Inconel 625 镍基合金的原料成分组成如下: Ni:>58.00% Cr:20.00-23.00% Mo:8.00-10.00% Nb:3.15-4.15% Fe: 5.00% Co: 1.00% Si: 0.50% Mn: 0.50% Ti: 0.40% Al: 0.40% Cu: 0.30% C: 0.10% S: 0.02% P: 0.02% Ta: 0.02%
优选地,所述 Inconel 625 镍基合金抗拉强度为 720-730MPa ,屈服强度为 390-415MPa ,延伸率为 54-63%
本发明的目的及解决其技术问题还采用以下的技术方案来实现:
依据本发明提出的一种制备如上所述的高强度高塑性单相 Inconel 625 镍基合金的方法,其中,该方法包括以下步骤:
1 )以电弧作为热源熔化丝材;
2 )在保护气体保护下按设定路径在碳钢基板上逐层熔敷堆积成圆柱体样品,所述样品尺寸≤Φ 600 × 600mm ,即得 Inconel 625 镍基合金。
优选地,所述步骤( 1 )中所述电弧采用 CMT MIG 工艺,所述丝材包括直径为 1.2mm NiCrMo-3(625 镍基合金 ) 丝材。
优选地,所述步骤 (2) 中所述保护气体为纯氩气,所述碳钢基板为 Q235 碳钢基板。
优选地,所述步骤 (2) 中所述路径包括第一层路径和第二层路径,其中所述第一层路径为先打印外轮廓后直线填充,首层层高为 2mm ;所述第二层路径为外轮廓打印后,以 90 °夹角直线填充,每层层高为 1.8mm ,填充线层间夹角为 90 °。
优选地,所述打印过程采用 ArcMan 600 设备,其工艺为直流 CMT ,所采用的电弧增材软件为 IungoPNT ,所采用的焊接专家库版本为 1693(NIBAS625) ,送丝速度为 1.9-10.5m/min ,弧长修正为 0 ,电感修正为 0
优选地,所述打印速度为 400-700mm/min
有益效果
本发明与现有技术相比,其显著优点如下:
1 )本发明利用电弧增材的方法在保护气体保护下按设定路径迅速在碳钢基板上逐层熔敷堆积得到粗大晶粒结构的单相柱状晶。液态金属在冷却凝固过程中主要通过基板散热,热量主要沿着垂直于基板向下散失,热流方向垂直于界面,凝固具有方向性,因此造成组织呈现自下而上生长的柱状晶形式。这种结构在保持较高的屈服强度与抗拉强度的同时具有更好的塑性。
2 )通过利用电弧增材的方法在保护气体保护下按设定路径迅速在碳钢基板上逐层熔敷堆积得到指定形状材料。对于打印过程,易于控制工艺参数,故结合基材的特点并优化打印过程中各种参数等,可以控制各个打印层的厚度与打印方向,使得在快速制造 625 镍基合金材料时,仍能精确控制其形状。
3 )本发明中电弧增材方法,在保护气体保护下按设定路径迅速在碳钢基板上逐层熔敷堆积得到粗晶粒结构的柱状晶,不同于粉床粘合剂喷射印刷 Inconel 625 镍基合金得到的等轴晶结构。本发明在快速打印的前提下,合金具有更高的屈服强度、抗拉强度和更为优异的塑性,从而保证 Inconel 625 镍基合金综合力学性能达到最优。
综上所述,本发明特殊的 Inconel 625 镍基合金及其制备方法,有效的解决了现有的 Inconel 625 镍基合金强度小、塑性低等问题,其具有上述诸多的优点及实用价值,并在同类方法中未见有类似的设计公开发表或使用而确属创新,其不论在制备方法上或功能上皆有较大的改进,在技术上有较大的进步,并产生了好用及实用的效果,且较现有的 Inconel 625 镍基合金具有增进的多项功效,从而更加适于实用,而具有产业的广泛利用价值,诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
本发明的具体高强度高塑性单相 Inconel 625 镍基合金制备方法及其结构由以下实施例及其附图详细给出。
附图说明
1 为根据本发明的实施例 1 中制备的 Inconel 625 镍基合金中晶粒结构的电子背散射衍射反极图 (IPF Z)
2 为根据本发明的实施例 2 中制备的 Inconel 625 镍基合金经过 1150 ℃固溶处理 0.5 小时后中晶粒结构的电子背散射衍射反极图 (IPF Z)
3 为根据本发明的实施例 1 中制备的 Inconel 625 镍基合金拉伸曲线与实施例 2 中制备的 Inconel 625 镍基合金经过 1150 ℃固溶处理 0.5 小时后拉伸曲线比较。
本发明的实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效 , 以下结合附图及较佳实施例,对依据本发明提出的一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法其具体实施方式及其性能,详细说明如后。
需要说明的是,本发明中所述的电弧增材制造技术 (Wire Arc Additive Manufacture,WAAM) 是一种基于逐层熔覆原理,以熔化极惰性气体保护焊接 (MIG) 、钨极惰性气体保护焊接 (TIG) 以及等离子体焊接电源 (PA) 等焊机产生的电弧为热源 , 通过添加丝材,在软件程序的控制下,根据三维数字模型由线 - - 体逐渐 成形出金属零件的先进数字化制造技术。
所述的 CMT MIG 工艺是指直流 CMT( 冷金属过渡焊接技术 )
所述的 ArcMan 600 设备是一种 3D 打印机,即为基于 WAAM 电弧增材制造 技术,以 MIG/MAG 焊接电源产生电弧作为热源,通过添丝材,在 IungoPNT 增材软件 的驱动控制下,根据三维数字模型由线 - - 体逐渐 成形出金属零件的先进数字化制造。
本发明的实施方式提出了一种具有高比例小角度晶界的柱状晶结构的单相 Inconel 625 镍基合金及其制备方法,所述的柱状晶单相结构具有高强度高塑性的特征,其中,抗拉强度为 720-730MPa ,屈服强度为 390-415MPa ,延伸率为 54-63%
具体制备步骤为:首先以电弧作为热源熔化丝材,然后在保护气体保护下按设定路径在碳钢基板上逐层熔敷堆积成圆柱体样品,尺寸最大为Φ 600 × 600mm ,即得 Inconel 625 镍基合金。
制备过程中电弧增材采用 CMT MIG 工艺,丝材采用直径为 1.2mm NiCrMo-3(625 镍基合金 ) 丝材。保护气体为纯氩气,碳钢基板为 Q235 碳钢基板。路径包括第一层路径和第二层路径,其中第一层路径为先打印外轮廓后直线填充,首层层高为 2mm ;第二层路径为外轮廓打印后,以 90 °夹角直线填充,每层层高为 1.8mm ,填充线层间夹角为 90 °。打印过程采用 ArcMan 600 设备,其工艺为直流 CMT ,所采用的电弧增材软件为 IungoPNT 。实验所采用的焊接专家库版本为 1693 (NIBAS625) ,送丝速度为 1.9-10.5m/min ,弧长修正为 0 ,电感修正为 0 。打印过程中打印速度为 400-700mm/min ,填充方式为直线填充。
最终得到一种具有高比例小角晶界的粗大柱状晶组织,该结构在保持较高强度的同时具有优异的塑性。该 Inconel 625 镍基合金的晶粒尺寸为 45-360m ,晶粒具有 15-33% (质量百分比)比例的小角晶界。小角晶界包括 2-15 °角晶界,其中, 2-5o 占总小角晶界的比为 3.5-7.0% 5-15o 占总小角晶界比为 10.0-26.5%
实施例 1
利用电弧增材的方法在保护气体保护下按设定路径迅速在碳钢基板上逐层熔敷堆积得到具有粗晶柱状晶结构的单相 Inconel 625 镍基合金,这种粗大晶粒结构的柱状晶结构具有高强度高塑性。所述镍基合金中化学元素按原子百分比 (at.%) 计量如下: Ni:>58.00% Cr:20.00-23.00% Mo:8.00-10.00% Nb:3.15-4.15% Fe: 5.00% Co: 1.00% Si: 0.50% Mn: 0.50% Ti: 0.40% Al: 0.40% Cu: 0.30% C: 0.10% S: 0.02% P: 0.02% Ta: 0.02%
所述电弧工艺参数为:采用 CMT MIG 工艺,所述丝材为直径为 1.2mm NiCrMo-3(625 镍基合金 ) 丝材。打印采用 ArcMan 600 设备,其工艺为直流 CMT ,所采用的电弧增材软件为 IungoPNT 。实验所采用的焊接专家库版本为 1693(NIBAS625) ,送丝速度为 4.6m/min ,弧长修正为 0 ,电感修正为 0
本实施例中所得晶粒尺寸为 175 ± 10m ,所得 Inconel 625 镍基合金晶界中小角晶界占比为 ~30.0% ,其中, 2-5o 占比为 ~3.5% 5-15o 占比为 ~26.5% 。本实施例增材制备的 625 镍基合金的编号为 #1
1 为根据本发明的实施例 1 中制备的 Inconel 625 镍基合金中晶粒结构的电子背散射衍射反极图 (IPF Z) 。如图 1 所示,所制备得到的 Inconel 625 镍基合金抗拉强度为 725 ± 5MPa ,屈服强度为 415 ± 12MPa ,延伸率为 63 ± 5% 。该结构在保持高强度的同时具有优异的塑性,强度和塑性匹配明显优于铸态和板材 625 镍基合金。
实施例 2
与实施例 1 不同之处在于:
利用电弧增材技术在保护气体保护下按设定路径迅速在碳钢基板上逐层熔敷堆积得到具有高比例小角度晶界的柱状晶单相结构 Inconel 625 镍基合金,这种高比例小角度晶界的柱状晶结构具有高强度高塑性的特点。所述电弧工艺参数为:采用 CMT MIG 工艺,所述丝材为直径为 1.2mm NiCrMo-3(625 镍基合金 ) 丝材。打印过程采用 ArcMan 600 设备,其工艺为直流 CMT ,所采用的电弧增材软件为 IungoPNT 。实验所采用的焊接专家库版本为 1693(NIBAS625) ,送丝速度为 4.6m/min ,弧长修正为 0 ,电感修正为 0 。而后将所得材料进行固溶处理,固溶温度为 1150 ℃,时间为 0.5 小时。
本实施例中所得晶粒尺寸为 230 ± 15m ,所得 Inconel 625 镍基合金中小角晶界占比为 ~20.0% ,其中 2-5o 占比为 ~5.5% 5-15o 占比为 ~14.5% 。本实施例镍基合金的编号为 #2
2 为根据本发明的实施例 2 中制备的 Inconel 625 镍基合金经过 1150 ℃固溶处理 0.5 小时后中晶粒结构的电子背散射衍射反极图 (IPF Z) 。如图 2 所示,所制备得到的 Inconel 625 镍基合金抗拉强度为 685 ± 48MPa ,屈服强度为 320 ± 8MPa ,延伸率为 73 ± 3% 。该结构的屈服强度及抗拉强度略有下降,但其塑性得到显著提高,其强度和塑性匹配明显优于铸态和板材 625 镍基合金。
对比实施例 1
文献 Mostafaei Amir, Behnamian Yashar, Krimer Yuval L., et al. Effect of solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625 [J]. Materials & design, 2016, 111: 482-491 中提到用 M-Flex ExOne 粉床粘合剂 喷射印刷 Inconel 625 镍基合金,抗拉强度为 612MPa ,屈服强度为 327MPa ,延伸率为 41% 。该方法制备 Inconel 625 镍基合金一定程度提高了材料制备效率,但是所制备的 625 镍基合金强度与延伸率均较低。
对比实施例 2
文献 G.L. Erickson, Polycrystalline Cast Superalloys, ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys, vol. 1, 2004 中提到,传统铸造态 Inconel 625 镍基合金抗拉强度为 710MPa ,屈服强度为 350MPa ,延伸率为 48% 。传统铸造态 Inconel 625 镍基合金的强度和塑性均不及本发明技术制备的 Inconel 625 镍基合金。
对比实施例 3
美国机械工程师协会制定的 ASME SB 443 板材常温力学性能标准中提到,板材的抗拉强度为 690MPa ,屈服强度为 276MPa ,延伸率为 30% 。这种板材 625 镍基合金相比传统铸态 625 镍基合金,强度有所提高。本发明技术制备的 Inconel 625 镍基合金常温力学性能明显优于 ASME SB 443 板材常温力学性能,而且本发明技术工序简单,生产效率高,适用于复杂形状构件生产。
结果表明,本发明提出的通过以电弧作为热源熔化丝材,然后在保护气体保护下按设定路径在碳钢基板上逐层熔敷堆积成圆柱体样品,尺寸最大为Φ 600 × 600mm ,得到具有高比例小角晶界的粗晶柱状晶结构,其中晶粒尺寸为 45-360m ;小角晶界占比为 15-33% ,其中, 2-5o 占比为 3.5-7.0% 5-15o 占比为 10.0-26.5% 。本发明制备的 625 镍基合金打印过程中首层路径为先打印外轮廓后直线填充,首层层高为 2mm ,第二层路径为外轮廓打印后,以 90 °夹角直线填充,每层层高为 1.8mm ,填充线层间夹角为 90 °,打印速度为 400-700mm/min ,填充方式为直线填充,其抗拉伸强度为 720-730MPa ,屈服强度为 390-415MPa ,延伸率为 54-63% 。本发明技术制备的 625 镍基合金具有优异的强度和塑性匹配。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明 , 任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种高强度高塑性单相Inconel 625镍基合金,其中,所述Inconel 625镍基合金的组织结构为单相柱状粗晶结构,其晶粒尺寸为45-360m,按照质量百分比计,所述晶粒具有15-33%比例的小角晶界。
  2. 根据权利要求1所述的高强度高塑性单相Inconel 625镍基合金,其中,所述小角晶界包括2-15°角晶界,按照质量百分比计,2-5°角的晶界占比为3.5-7.0%,5-15°角的晶界占比为10.0-26.5%。
  3. 根据权利要求1所述的高强度高塑性单相Inconel 625镍基合金,其中,按照原子百分比计,所述Inconel 625镍基合金的原料成分组成如下:Ni:>58.00%,Cr:20.00-23.00%,Mo:8.00-10.00%,Nb:3.15-4.15%,Fe:≤5.00%,Co:≤1.00%,Si:≤0.50%,Mn:≤0.50%,Ti:≤0.40%,Al:≤0.40%,Cu:≤0.30%,C:≤0.10%,S:≤0.02%,P:≤0.02%,Ta:≤0.02%。
  4. 根据权利要求1-3任一项所述的高强度高塑性单相Inconel 625镍基合金,其中,所述Inconel 625镍基合金抗拉强度为720-730MPa,屈服强度为390-415MPa,延伸率为54-63%。
  5. 一种制备权利要求1-4任一项所述的高强度高塑性单相Inconel 625镍基合金的方法,其中,该方法包括以下步骤:
    (1)以电弧作为热源熔化丝材;
    (2)在保护气体保护下按设定路径在碳钢基板上逐层熔敷堆积成圆柱体样品,所述样品尺寸≤Φ600×600mm,即得Inconel 625镍基合金。
  6. 根据权利要求5所述的方法,其中,所述步骤(1)中所述电弧采用CMT MIG工艺,所述丝材包括直径为1.2mm的NiCrMo-3(625镍基合金)丝材。
  7. 根据权利要求5所述的方法,其中,所述步骤(2)中所述保护气体为纯氩气,所述碳钢基板为Q235碳钢基板。
  8. 根据权利要求5所述的方法,其中,所述步骤(2)中所述路径包括第一层路径和第二层路径,其中所述第一层路径为先打印外轮廓后直线填充,首层层高为2mm;所述第二层路径为外轮廓打印后,以90°夹角直线填充,每层层高为1.8mm,填充线层间夹角为90°。
  9. 根据权利要求8所述的方法,其中,所述打印过程采用ArcMan 600设备,其工艺为直流CMT,所采用的电弧增材软件为IungoPNT,所采用的焊接专家库版本为1693(NIBAS625),送丝速度为1.9-10.5m/min,弧长修正为0,电感修正为0。
  10. 根据权利要求8所述的方法,其中,所述打印速度为400-700mm/min。
PCT/CN2019/112832 2019-10-11 2019-10-23 一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法 WO2021068289A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910962806 2019-10-11
CN201910968654.6 2019-10-12
CN201910968654.6A CN111206169B (zh) 2019-10-11 2019-10-12 一种高强度高塑性单相Inconel 625镍基合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2021068289A1 true WO2021068289A1 (zh) 2021-04-15

Family

ID=70784064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112832 WO2021068289A1 (zh) 2019-10-11 2019-10-23 一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法

Country Status (2)

Country Link
CN (1) CN111206169B (zh)
WO (1) WO2021068289A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695228B (zh) * 2020-12-10 2021-12-03 蜂巢蔚领动力科技(江苏)有限公司 一种耐1050℃的增压器喷嘴环叶片镍基合金材料及其制造方法
CN114293067B (zh) * 2021-12-27 2023-03-31 上海康晟航材科技股份有限公司 一种用于电子烟花推杆的高温合金及其制备工艺及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130326877A1 (en) * 2012-06-08 2013-12-12 United Technologies Corporation Method of working an airfoil using elevated temperature cmt welding
CN105149603A (zh) * 2015-08-26 2015-12-16 上海材料研究所 高球形度Inconel625合金粉末及其制备方法与应用
CN105798299A (zh) * 2016-03-29 2016-07-27 上海大学 非接触控制增材制造金属零件凝固组织的方法及磁控金属3d打印装置
CN107127343A (zh) * 2017-05-05 2017-09-05 桂林电子科技大学 一种镍基合金结构件的电子束增材制造方法
CN108588498A (zh) * 2018-05-30 2018-09-28 哈尔滨理工大学 一种镍基梯度材料及选区激光熔化法制备镍基梯度材料的方法
CN109680184A (zh) * 2017-10-19 2019-04-26 丹阳宏图激光科技有限公司 一种镍基合金粉末材料及该材料的3d打印成型方法
CN109797316A (zh) * 2019-01-25 2019-05-24 瑞安市石化机械厂 Incone625合金泵轴加工材料及Incone625合金泵轴的加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470619A (zh) * 2017-07-12 2017-12-15 北京煜鼎增材制造研究院有限公司 一种金属零件的增材制造方法
US20190160595A1 (en) * 2017-11-29 2019-05-30 Lincoln Global, Inc. Methods and compositions for making a near net shape article
CN108723549A (zh) * 2018-05-28 2018-11-02 河海大学常州校区 一种电弧增材制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130326877A1 (en) * 2012-06-08 2013-12-12 United Technologies Corporation Method of working an airfoil using elevated temperature cmt welding
CN105149603A (zh) * 2015-08-26 2015-12-16 上海材料研究所 高球形度Inconel625合金粉末及其制备方法与应用
CN105798299A (zh) * 2016-03-29 2016-07-27 上海大学 非接触控制增材制造金属零件凝固组织的方法及磁控金属3d打印装置
CN107127343A (zh) * 2017-05-05 2017-09-05 桂林电子科技大学 一种镍基合金结构件的电子束增材制造方法
CN109680184A (zh) * 2017-10-19 2019-04-26 丹阳宏图激光科技有限公司 一种镍基合金粉末材料及该材料的3d打印成型方法
CN108588498A (zh) * 2018-05-30 2018-09-28 哈尔滨理工大学 一种镍基梯度材料及选区激光熔化法制备镍基梯度材料的方法
CN109797316A (zh) * 2019-01-25 2019-05-24 瑞安市石化机械厂 Incone625合金泵轴加工材料及Incone625合金泵轴的加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG YANGFAN ET AL.: "Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing", SURFACE & COATINGS TECHNOLOGY, vol. 374, 29 May 2019 (2019-05-29), XP085792388, DOI: 10.1016/j.surfcoat.2019.05.079 *

Also Published As

Publication number Publication date
CN111206169B (zh) 2021-05-28
CN111206169A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
Shen et al. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties
CN108326427B (zh) 一种高熵合金双电弧熔丝协同增材制造的方法
Yangfan et al. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing
Wang et al. In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon
CN107747019B (zh) 一种Ni-Co-Cr-Al-W-Ta-Mo系高熵高温合金及其制备方法
US11072841B2 (en) High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof
CN112916870B (zh) 一种中高熵合金材料的制备方法
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN113020598B (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
WO2021068289A1 (zh) 一种高强度高塑性单相 Inconel 625 镍基合金及其制备方法
CN114107827B (zh) 一种3d打印用双相不锈钢粉末及其制备和打印方法
CN114606413B (zh) 一种增材制造用高温合金及其用途
CN111607749A (zh) 一种立方形态b2纳米粒子共格析出的高温700℃用铁基超合金
CN110819817B (zh) 用于含铝钛镍基高温合金的基础渣系及电渣重熔方法
EP4048463A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
Yu et al. Effect of composition gradient design on microstructure and mechanical properties of dual-wire plasma arc additively manufactured 316L/IN625 functionally graded materials
CN113652591A (zh) 兼具高比强度、高塑性和高韧性的富Ti高熵合金及其制备
TWI437114B (zh) Manufacture of cobalt - cobalt alloy target
CN114807646B (zh) 镍基合金板坯及其制备方法
CN113996970B (zh) 一种AlCrCuFe2.5NiTix耐蚀高熵堆焊合金及其制备方法
Zhao et al. Structural characterization of Ni-based superalloy manufactured by plasma transferred arc-assisted deposition
CN115287501B (zh) 激光增材制造用gh3536高温合金粉末及其制备方法
TWI786980B (zh) 具高溫強度高熵合金
Zhang et al. Study on Grain Refinement of Nickel-Based Filler Metal 52M Microstructure by Pulse TIG Welding
CN114351004A (zh) 一种电弧增材用低成本钛合金丝材及其结构件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948653

Country of ref document: EP

Kind code of ref document: A1