WO2021068198A1 - 一种基于不确定先验知识的杂波秩估计方法及装置 - Google Patents

一种基于不确定先验知识的杂波秩估计方法及装置 Download PDF

Info

Publication number
WO2021068198A1
WO2021068198A1 PCT/CN2019/110617 CN2019110617W WO2021068198A1 WO 2021068198 A1 WO2021068198 A1 WO 2021068198A1 CN 2019110617 W CN2019110617 W CN 2019110617W WO 2021068198 A1 WO2021068198 A1 WO 2021068198A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
clutter
aperture
signal
equivalent sampling
Prior art date
Application number
PCT/CN2019/110617
Other languages
English (en)
French (fr)
Inventor
阳召成
汪小叶
何凯旋
黄建军
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/110617 priority Critical patent/WO2021068198A1/zh
Publication of WO2021068198A1 publication Critical patent/WO2021068198A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the invention relates to the technical field of radar signal processing, in particular to a clutter rank estimation method and device based on uncertain prior knowledge.
  • Clutter suppression is an important task of airborne radar for effective target detection, and clutter rank is a key parameter required for effective clutter suppression based on clutter subspace or feature analysis filters, because the clutter rank directly affects The clutter suppression performance of the designed filter, so clutter rank estimation has always been one of the core issues of airborne radar.
  • the BT theory gives the clutter rank in the case of continuous aperture and bandwidth.
  • the clutter rank given by the BT theory is BT+1, where B Is the signal bandwidth, and T is the aperture of the sampling array;
  • the extended BT (EBT) theorem is developed for sparse apertures, and the estimated clutter rank is expressed as Where T k is the continuous aperture of the k-th sub-aperture, and the entire sparse aperture is divided into k sub-apertures; in addition, for the coprime array structure, based on EBT, a front-view coprime array airborne radar clutter is proposed Rank estimation method C-EBT.
  • the above-mentioned BT theory is derived from the front-view array radar, which requires accurate prior knowledge, such as platform speed, yaw angle, etc.
  • accurate prior knowledge such as platform speed, yaw angle, etc.
  • these accurate radars Prior knowledge is often difficult to obtain. Therefore, the obtained prior knowledge has errors, the estimated clutter rank has large errors, and the clutter suppression performance is poor.
  • the main purpose of the embodiments of the present invention is to provide a clutter rank estimation method and device based on uncertain prior knowledge, which can at least solve the problem of estimation of clutter rank based on prior knowledge with errors in related technologies.
  • the problem of large wave rank error and poor clutter suppression performance of the filter is to provide a clutter rank estimation method and device based on uncertain prior knowledge, which can at least solve the problem of estimation of clutter rank based on prior knowledge with errors in related technologies.
  • the first aspect of the embodiments of the present invention provides a clutter rank estimation method based on uncertain prior knowledge.
  • the method includes:
  • the clutter rank of the preset clutter plate direction angle of the array radar is estimated.
  • a clutter rank estimation device based on uncertain prior knowledge the device including:
  • the position determination module is used to determine the element position of the equivalent sampling array according to the uncertain prior knowledge
  • the bandwidth calculation module is used to calculate the corresponding signal bandwidth according to the spatial frequency of the signal
  • Aperture calculation module for calculating the array aperture of the equivalent sampling array corresponding to the position of the array element
  • the clutter rank estimation module is used to estimate the clutter rank of the preset clutter plate direction angle of the array radar based on the signal bandwidth and the array aperture of the equivalent sampling array.
  • the position of the elements of the equivalent sampling array is first determined according to the uncertain prior knowledge, and the corresponding signal is calculated according to the spatial frequency of the signal. Signal bandwidth, and then calculate the array aperture of the equivalent sampling array corresponding to the position of the array element; finally, based on the signal bandwidth and the array aperture of the equivalent sampling array, estimate the clutter rank of the preset clutter plate direction angle of the array radar.
  • the robustness of the clutter rank estimation can be effectively improved, thereby ensuring the clutter suppression performance of the filter, and can be well applied to both front-view and non-front-view airborne radars.
  • FIG. 1 is a schematic diagram of the basic flow of the clutter rank estimation method provided by the first embodiment of the present invention
  • Fig. 2-1 is a schematic diagram of the clutter rank estimation result of ULA radar in an ideal environment provided by the second embodiment of the present invention
  • Figure 2-3 is a schematic diagram of the clutter rank estimation result of the ULA radar with prior knowledge error provided by the second embodiment of the present invention
  • Figures 2-4 are schematic diagrams of the clutter rank estimation results of the CPA radar with prior knowledge errors provided by the second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a clutter rank estimation apparatus provided by a third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by a fourth embodiment of the present invention.
  • this embodiment proposes a method based on The clutter rank estimation method without prior knowledge is shown in FIG. 1 as a schematic diagram of the basic flow of the clutter rank estimation method provided in this embodiment.
  • the clutter rank estimation method proposed in this embodiment specifically includes the following steps:
  • Step 101 Determine the element position of the equivalent sampling array according to the uncertain prior knowledge.
  • step 101 the specific implementation manner of step 101 can be expressed as follows:
  • the space-time steering vector component model corresponding to the nth array element and the mth pulse echo of the array radar; the space-time steering vector component model is expressed as:
  • f s (q) is the spatial frequency of the signal from the q-th azimuth angle
  • d 0 , ⁇ 0 , T r , ⁇ , ⁇ represent the half-wavelength spacing, signal wavelength, minimum pulse repetition frequency, pitch angle, and azimuth angle, respectively
  • v′ p and ⁇ ′ represent the measured speed and deviation of the airborne platform.
  • Air angle, ⁇ m and uncertainty ⁇ v pm respectively represent a priori knowledge of the airborne platform and a yaw angle velocity, m e q of a signal from the azimuth of the total number of the Doppler frequency, d (n- 1) is the relative position of the nth element of the equivalent sampling array with respect to the first element, the unit is d 0 , t (m-1) is the emission time of the mth pulse relative to the first pulse, units of T r;
  • Step 102 Calculate the corresponding signal bandwidth according to the spatial frequency of the signal.
  • the signal bandwidth calculation formula in the process of deriving the clutter rank Indicates the signal bandwidth of the q-th spatial frequency signal, which is determined by f s (q) , so the signal bandwidth calculation formula can be expressed as:
  • Q is the total number of sequences.
  • Step 103 Calculate the array aperture of the equivalent sampling array corresponding to the position of the array element.
  • the calculation corresponding to each array is calculated according to the preset first equivalent aperture calculation formula.
  • the array aperture of the equivalent sampling array at the element position; the first equivalent aperture calculation formula is expressed as:
  • the equivalent sampling array is a sparse array
  • the sparse array is divided into multiple consecutive sub-arrays to meet the Nyquist sampling condition.
  • the second equivalent aperture calculation formula for calculating the array aperture of the equivalent sampling array corresponding to each element position is expressed as:
  • K is the total number of consecutive sub-arrays divided by the sparse array.
  • Step 104 Estimate the clutter rank of the preset clutter plate direction angle of the array radar based on the signal bandwidth and the array aperture of the equivalent sampling array.
  • the signal bandwidth and the aperture of the uniform linear array are substituted into the preset first clutter rank estimation formula, and the clutter rank of the preset clutter plate direction angle of the array radar is estimated ;
  • the first clutter rank estimation formula is expressed as:
  • I the signal bandwidth of the signal from the qth azimuth angle
  • Q is the total number of azimuth angles
  • Array aperture is calculated using a priori knowledge of M e uncertainty from the q-th azimuthal array equivalent sampling signals each set
  • max ( ⁇ ) is a function of the maximum value.
  • the signal bandwidth and the aperture of the sparse array are substituted into the preset second clutter rank estimation formula to estimate the clutter rank of the preset clutter plate direction angle of the array radar;
  • the second clutter rank estimation formula is expressed as :
  • Q is the total number of azimuth angles
  • the position of the elements of the equivalent sampling array is determined according to the uncertain prior knowledge, and the corresponding signal bandwidth is calculated according to the spatial frequency of the signal. , And then calculate the array aperture of the equivalent sampling array corresponding to the position of the array element; finally, based on the signal bandwidth and the array aperture of the equivalent sampling array, estimate the clutter rank of the preset clutter plate direction angle of the array radar.
  • the robustness of the clutter rank estimation can be effectively improved, thereby ensuring the clutter suppression performance of the filter, and can be well applied to both front-view and non-front-view airborne radars.
  • this embodiment uses a specific example to explain the effect of the present invention.
  • simulation data is used to illustrate the beneficial effects of the present invention in clutter rank estimation.
  • the clutter within a given range is divided into 361 clutter plate blocks and assuming that each clutter plate obeys the same distribution, at a given clutter-to-noise ratio CNR (in decibels), each clutter obeys the mean value of 0,
  • the variance is 10 10/(361CNR) complex Gaussian process.
  • the thermal noise of the receiver obeys the mean value of 0, and the variance Complex Gaussian process.
  • all results are calculated from the average of 500 Monte Carlo experiment results.
  • Figure 2-1 to Figure 2-4 show the clutter rank estimation results under different methods given in this embodiment.
  • the clutter rank estimation result of the method of the present invention is marked with a solid line
  • the clutter rank of the BT method is The wave rank estimation result is marked with "o”
  • the clutter rank estimation result of the C-EBT method is marked with " ⁇ ”.
  • Figure 2-1 shows the clutter rank estimation result of ULA radar in an ideal environment
  • Figure 2-2 shows a schematic diagram of the clutter rank estimation results of CPA radar in an ideal environment
  • Figure 2-3 shows a schematic diagram of the clutter rank estimation results of ULA radar with prior knowledge errors
  • Figure 2-4 Shown as a schematic diagram of the clutter rank estimation result of CPA radar with prior knowledge error.
  • this embodiment shows a method based on
  • the clutter rank estimation device in this embodiment includes:
  • the position determining module 301 is used to determine the position of the element of the equivalent sampling array according to the uncertain prior knowledge
  • the bandwidth calculation module 302 is configured to calculate the corresponding signal bandwidth according to the spatial frequency of the signal
  • the aperture calculation module 303 is used to calculate the array aperture of the equivalent sampling array corresponding to the position of the array element;
  • the clutter rank estimation module 304 is configured to estimate the clutter rank of the preset clutter plate direction angle of the array radar based on the signal bandwidth and the array aperture of the equivalent sampling array.
  • the position determining module 301 is specifically configured to: first obtain the space-time steering vector component model corresponding to the nth array unit and the mth pulse echo of the array radar;
  • the vector component model is expressed as:
  • f s (q) is the spatial frequency of the signal from the q-th azimuth angle
  • d 0 , ⁇ 0 , T r , ⁇ , ⁇ represent the half-wavelength spacing, signal wavelength, minimum pulse repetition frequency, pitch angle, and azimuth angle, respectively
  • v′ p and ⁇ ′ represent the measured speed and deviation of the airborne platform.
  • Air angle, ⁇ m and uncertainty ⁇ v pm respectively represent a priori knowledge of the airborne platform and a yaw angle velocity, m e q of a signal from the azimuth of the total number of the Doppler frequency, d (n- 1) is the relative position of the nth element of the equivalent sampling array with respect to the first element, the unit is d 0 , t (m-1) is the emission time of the mth pulse relative to the first pulse, units of T r;
  • the bandwidth calculation module 302 is specifically configured to: substitute the spatial frequency of the signal into a preset signal bandwidth calculation formula to calculate the signal bandwidth of the signal from the qth azimuth;
  • the bandwidth calculation formula is expressed as:
  • the aperture calculation module 303 is specifically configured to: according to the preset first equivalent aperture calculation formula, calculate the corresponding array element The array aperture of the equivalent sampling array of the position; the first equivalent aperture calculation formula is expressed as:
  • the clutter rank estimation module 304 is specifically used for:
  • the signal bandwidth and the array aperture of the equivalent array are substituted into the preset first clutter rank estimation formula to estimate the clutter rank of the preset clutter plate direction angle of the array radar;
  • the first clutter rank estimation formula is expressed as:
  • the aperture calculation module is specifically configured to: calculate the value corresponding to the position of the array element according to the preset second equivalent aperture calculation formula
  • the array aperture of the equivalent sampling array; the second equivalent aperture calculation formula is expressed as:
  • K is the total number of consecutive sub-arrays divided by the sparse array
  • the clutter rank estimation module 304 is specifically used for:
  • the signal bandwidth and the array aperture of the equivalent sampling array are substituted into the preset second clutter rank estimation formula to estimate the clutter rank of the preset clutter plate direction angle of the array radar;
  • the second clutter rank estimation formula is expressed as:
  • Q is the total number of azimuth angles
  • the array aperture set composed of the equivalent sampling array of the signal from the qth azimuth angle is the signal bandwidth.
  • the clutter rank estimation method based on uncertain prior knowledge in the foregoing embodiments can be implemented based on the clutter rank estimation device based on uncertain prior knowledge provided in this embodiment, and those of ordinary skill in the art It can be clearly understood that, for the convenience and conciseness of the description, the specific working process of the clutter rank estimation apparatus described in this embodiment can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.
  • the position of the elements of each equivalent sampling array and the spatial frequency corresponding to each equivalent sampling array are determined first, and then calculated according to each spatial frequency The signal bandwidth of each spatial frequency signal; then calculate the aperture of the equivalent sampling array at each element position; finally, based on the signal bandwidth and the aperture of the equivalent sampling array, perform the clutter rank of the preset clutter plate direction angle of the array radar estimate.
  • the robustness of the clutter rank estimation can be effectively improved, thereby ensuring the clutter suppression performance of the filter, and can be well applied to both front-view and non-front-view airborne radars.
  • This embodiment provides an electronic device, as shown in FIG. 4, which includes a processor 401, a memory 402, and a communication bus 403, where: the communication bus 403 is used to implement connection and communication between the processor 401 and the memory 402; processing The processor 401 is configured to execute one or more computer programs stored in the memory 402 to implement at least one step in the clutter rank estimation method based on uncertain prior knowledge in the first embodiment.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and that can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement at least one step of the method in the first embodiment.
  • This embodiment also provides a computer program, which can be distributed on a computer-readable medium and executed by a computable device to implement at least one step of the method in the first embodiment; and in some cases At least one of the steps shown or described can be performed in a different order from that described in the foregoing embodiment.
  • This embodiment also provides a computer program product, including a computer readable device, and the computer readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于不确定先验知识的杂波秩估计方法及装置,根据不确定先验知识确定等效采样阵列的阵元位置(101),根据信号的空域频率计算对应的信号带宽(102);计算对应于阵元位置的等效采样阵列的阵列孔径(103);基于信号带宽以及等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计(104)。通过本方法和装置可以有效提高杂波秩估计的鲁棒性,从而保障了滤波器的杂波抑制性能,并且在正侧视及非正侧视机载雷达上均能良好应用。

Description

一种基于不确定先验知识的杂波秩估计方法及装置 技术领域
本发明涉及雷达信号处理技术领域,尤其涉及一种基于不确定先验知识的杂波秩估计方法及装置。
背景技术
杂波抑制是机载雷达进行有效目标检测的一项重要任务,而杂波秩是基于杂波子空间或基于特征分析的滤波器进行有效杂波抑制所需的关键参数,因杂波秩直接影响所设计的滤波器杂波抑制的性能,因此杂波秩估计一直以来是机载雷达所关注的核心问题之一。
相关技术中,研究者通常使用基于带宽孔径积BT理论及其扩展BT理论进行杂波秩估计。其中,BT理论给出了连续孔径和带宽情况下的杂波秩,对于满足奈奎斯特采样条件下的正侧视机载雷达,BT理论给出的杂波秩为BT+1,其中B为信号带宽,T为采样阵列的孔径;扩展BT(EBT)定理是针对稀疏孔径而开发的,其估计的杂波秩表示为
Figure PCTCN2019110617-appb-000001
其中T k是第k个子孔径的连续孔径,整个稀疏孔径划分为k个子孔径;另外,针对互质阵列结构,在EBT的基础上,提出了一种正侧视互质阵列机载雷达杂波秩估计方法C-EBT。然而,上述BT理论都是在正侧视阵列雷达下推导出来的,需要准确的先验知识,如平台速度、偏航角等,而实际雷达由于气候变化和机载操纵的影响,这些准确的先验知识通常很难获得。因此获得的先验知识存在误差,估计出的杂波秩存在较大误差,杂波抑制性能较差。
技术问题
本发明实施例的主要目的在于提供一种基于不确定先验知识的杂波秩估计方法及装置,至少能够解决相关技术中在基于存在误差的先验知识估计杂波秩时,所估计的杂波秩误差较大、滤波器的杂波抑制性能较差的问题。
技术解决方案
为实现上述目的,本发明实施例第一方面提供了一种基于不确定先验知识的杂波秩估计方法,该方法包括:
根据不确定先验知识确定等效采样阵列的阵元位置;
根据信号的空域频率计算对应的信号带宽;
计算对应于所述阵元位置的等效采样阵列的阵列孔径;
基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。
为实现上述目的,本发明实施例第二方面提供了一种基于不确定先验知识的杂波秩估计装置,该装置包括:
位置确定模块,用于根据不确定先验知识确定等效采样阵列的阵元位置;
带宽计算模块,用于根据信号的空域频率计算对应的信号带宽;
孔径计算模块,用于计算对应于所述阵元位置的等效采样阵列的阵列孔径;
杂波秩估计模块,用于基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。
有益效果
根据本发明实施例公开的一种基于不确定先验知识的杂波秩估计方法及装置,首先根据不确定先验知识确定等效采样阵列的阵元位置,并根据信号的空域频率计算对应的信号带宽,然后计算对应于阵元位置的等效采样阵列的阵列孔径;最后基于信号带宽以及等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。通过本发明的实施,可以有效提高杂波秩估计的鲁棒性,从而保障了滤波器的杂波抑制性能,并且在正侧视及非正侧视机载雷达上均能良好应用。
本发明其他特征和相应的效果在说明书的后面部分进行阐述说明,且应当理解,至少部分效果从本发明说明书中的记载变的显而易见。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的杂波秩估计方法的基本流程示意图;
图2-1为本发明第二实施例提供的理想环境下ULA雷达的杂波秩估计结果示意图;
图2-2为本发明第二实施例提供的理想环境下CPA雷达的杂波秩估计结果示意图;
图2-3为本发明第二实施例提供的具有先验知识误差的ULA雷达的杂波秩估计结果示意图;
图2-4为本发明第二实施例提供的具有先验知识误差的CPA雷达的杂波秩估计结果示意图;
图3为本发明第三实施例提供的杂波秩估计装置的结构示意图;
图4为本发明第四实施例提供的电子装置的结构示意图。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例:
为了解决相关技术中在基于存在误差的先验知识估计杂波秩时,所估计的杂波秩误差较大、滤波器的杂波抑制性能较差的技术问题,本实施例提出了一种基于不确定先验知识的杂波秩估计方法,如图1所示为本实施例提供的杂波秩估计方法的基本流程示意图,本实施例提出的杂波秩估计方法具体包括以下的步骤:
步骤101、根据不确定先验知识确定等效采样阵列的阵元位置。
在本实施例一种可选的实施方式中,步骤101的具体实现方式可以表示如下:
获取对应于阵列雷达第n个阵列单元和第m个脉冲回波的空时导向矢量分量模型;空时导向矢量分量模型表示为:
Figure PCTCN2019110617-appb-000002
其中,比值
Figure PCTCN2019110617-appb-000003
i=1,…,M e
Figure PCTCN2019110617-appb-000004
为利用不确定先验知识确定的来自第q个方位角的信号的第i个多普勒频率,f s (q)为来自第q个方位角的信号的空域频率,且
Figure PCTCN2019110617-appb-000005
表示为:
Figure PCTCN2019110617-appb-000006
Figure PCTCN2019110617-appb-000007
Figure PCTCN2019110617-appb-000008
以及f s (q)表示为:
Figure PCTCN2019110617-appb-000009
并且,d 0,λ 0,T r,θ,φ分别表示半波长间距、信号波长、最小脉冲重复频率、俯仰角、方位角,v′ p和ψ′分别表示测量的机载平台速度和偏航角,Δψ m和Δv pm分别表示机载平台速度和偏航角的不确定性先验知识,M e为来自第q个方位角的信号的多普勒频率总个数,d (n-1)为等效采样阵列的第n个阵元相对于第一个阵元的相对位置,单位为d 0,t (m-1)为第m个脉冲相对于第一个脉冲的发射时刻,单位为T r
然后分别基于空时导向矢量分量模型
Figure PCTCN2019110617-appb-000010
确定各等效采样阵列的阵元位置;阵元位置与等效采样数组相关,表示为:
Figure PCTCN2019110617-appb-000011
n=1,…,N,m=1,…,M,
步骤102、根据信号的空域频率计算对应的信号带宽。
在本实施例一种可选的实施方式中,在杂波秩的求导过程中
Figure PCTCN2019110617-appb-000012
表示第q个空域频率信号的信号带宽,由f s (q)决定,从而信号带宽计算公式可以表示为:
Figure PCTCN2019110617-appb-000013
进而可以通过空域频率信号集合
Figure PCTCN2019110617-appb-000014
求解得到对应的信号带宽集合
Figure PCTCN2019110617-appb-000015
其中,Q为序列的总数。
步骤103、计算对应于阵元位置的等效采样阵列的阵列孔径。
在本实施例一种可选的实施方式中,当采用满足Nyquist采样条件的均匀线性阵列(ULA)和固定脉冲间隔结构时,根据预设的第一等效孔径计算公式,计算对应于各阵元位置的等效采样阵列的阵列孔径;第一等效孔径计算公式表示为:
Figure PCTCN2019110617-appb-000016
其中
Figure PCTCN2019110617-appb-000017
为阵元位置为
Figure PCTCN2019110617-appb-000018
n=1,…,N,m=1,…,M的第i个等效采样阵列的阵列孔径。
而在本实施例另一种可选的实施方式中,在等效采样阵列为稀疏阵列时,,通过将稀疏阵列分为多个连续子阵列去满足奈奎斯特采样条件,在这种情况下,计算对应于各阵元位置的等效采样阵列的阵列孔径的第二等效孔径计算公式表示为:
Figure PCTCN2019110617-appb-000019
其中,K为稀疏阵列所划分出的连续子阵列的总数。
步骤104、基于信号带宽以及等效采样阵列的阵列孔径,对阵列雷达预设 杂波片方向角的杂波秩进行估计。
在本实施例中,相对应的,一方面,将信号带宽以及均匀线性阵列的孔径代入预设的第一杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;第一杂波秩估计公式表示为:
Figure PCTCN2019110617-appb-000020
其中,
Figure PCTCN2019110617-appb-000021
为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
Figure PCTCN2019110617-appb-000022
为利用不确定先验知识计算的来自第q个方位角信号的M e每个等效采样阵列的阵列孔径集合,max(·)为最大值函数。
另一方面,将信号带宽以及稀疏阵列的孔径代入预设的第二杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;第二杂波秩估计公式表示为:
Figure PCTCN2019110617-appb-000023
其中,
Figure PCTCN2019110617-appb-000024
为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
Figure PCTCN2019110617-appb-000025
为来自第q个方位角的信号的最大阵列孔径的等效采样阵列的第k个子阵列的阵列孔径,且
Figure PCTCN2019110617-appb-000026
为来自第q个方位角的信号的等效采样阵列的阵列孔径所组成的阵列孔径集合。
根据本发明实施例公开的一种基于不确定先验知识的杂波秩估计方法,首先根据不确定先验知识确定等效采样阵列的阵元位置,并根据信号的空域频率计算对应的信号带宽,然后计算对应于阵元位置的等效采样阵列的阵列孔径;最后基于信号带宽以及等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。通过本发明的实施,可以有效提高杂波秩估计的鲁棒性,从而保障了滤波器的杂波抑制性能,并且在正侧视及非正侧视机载雷达上均能良好应用。
第二实施例:
为了对本发明的内容进行更好的说明,本实施例以一个具体的例子对本发明的效果进行解释。
在本实施例中,通过仿真数据来说明本发明在杂波秩估计方面的有益效果。假设雷达参数h p=125m/s,v p=4000m,T r=1/4000s以及d 0=0.0625m,其中,h p为机载平台高度,v p为机载速度,T r为脉冲重复间隔,d 0为阵列单元间隔。给定范围内的杂波被划分为361个杂波片块并且假设每个杂波片服从相同分布,在给定的杂噪比CNR(单位为分贝),每个杂波服从均值为0,方差为 10 10/(361CNR)复高斯过程。接收机的热噪声服从均值为0,方差
Figure PCTCN2019110617-appb-000027
复高斯过程。在本实施例的仿真实验中,除非另有说明,所有的结果都是500个蒙特卡罗实验结果的平均值计算得到。
下面利用具体的仿真实验来验证本实施例的杂波秩估计方法在各种场景下的精度。实验场景中假定杂噪比为40dB,两种具有均匀重复脉冲的均匀线性阵列雷达(ULA)和均匀脉冲重复互质阵列雷达(CPA),对每种雷达考虑4种情况ψ=0°,β=0.6,1和ψ=90°,β=0.6,1。对于ULA雷达,阵元数量N=10,在一个相干处理间隔(CPI)中脉冲数量M=10;对于CPA雷达,阵元数量也为10,互质因子N 1=3和N 2=5,在一个CPI中脉冲数量也为M=10。
作为对比,如图2-1至图2-4为本实施例给出的不同方法下的杂波秩估计结果,其中,本发明方法的杂波秩估计结果用实线标记,BT方法的杂波秩估计结果用“o”标记,而C-EBT方法的杂波秩估计结果用“×”标记,应当说明的是,图2-1所示为理想环境下ULA雷达的杂波秩估计结果示意图,图2-2所示为理想环境下CPA雷达的杂波秩估计结果示意图,图2-3所示为具有先验知识误差的ULA雷达的杂波秩估计结果示意图,图2-4所示为具有先验知识误差的CPA雷达的杂波秩估计结果示意图。
根据上述杂波秩估计结果分析可知,本发明所提出的杂波秩估计方法可应用于0°≤ψ≤90°的正侧视雷达和非正侧视雷达,而BT定理和C-EBT方法只能应用于ψ=0°的正侧视情况。可以看出,在理想情况下(即没有先验知识误差,Δu ψm=0和Δψ m=0°),对于具有ψ=0°的正侧视情况,本发明所提出的方法的结果与用于ULA雷达的BT定理的结果和用于CPA雷达的C-EBT方法的结果相同。同样,通过对各种先验知识误差(未示出)的大量仿真,还可以发现当先验知识存在误差时(假设Δu pm=5m/s,Δu′ pm=0.5Δu pm,Δψ m=4°和Δψ′ m=0.5Δψ m),BT定理和C-EBT方法在ψ=0°的正侧视雷达场景下不能准确地估计出杂波秩。而本发明所提出的方法在ψ=0°°的正侧视情况给出了较好的杂波秩估计,因为在本发明所提出的方法中考虑了平台速度和偏航角误差的先验知识。此外,对于非正侧视情况(即0°≤ψ≤90°),BT定理和C-EBT方法均不适用,这是因为偏航角是非零的。然而,从图2-1至图2-4中可以看出,本发明所提出的方法在非正侧视情况仍然适用并且能够提供令人满意的杂波秩估计。这些结果表明,本发明所提出的方法不仅可以为正侧视和非正侧视雷达提供良好的结果,而且也能在存在先验知识误差条件下也能提供良好的结 果,从而相对于BT定理和C-EBT方法更加行之有效。
第三实施例:
为了解决相关技术中在基于存在误差的先验知识估计杂波秩时,所估计的杂波秩误差较大、滤波器的杂波抑制性能较差的技术问题,本实施例示出了一种基于不确定先验知识的杂波秩估计装置,具体请参见图3,本实施例的杂波秩估计装置包括:
位置确定模块301,用于根据不确定先验知识确定等效采样阵列的阵元位置;
带宽计算模块302,用于根据信号的空域频率计算对应的信号带宽;
孔径计算模块303,用于计算对应于阵元位置的等效采样阵列的阵列孔径;
杂波秩估计模块304,用于基于信号带宽以及等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。
进一步地,在本实施例的一些实施方式中,位置确定模块301具体用于:首先获取对应于阵列雷达第n个阵列单元和第m个脉冲回波的空时导向矢量分量模型;空时导向矢量分量模型表示为:
Figure PCTCN2019110617-appb-000028
其中,比值
Figure PCTCN2019110617-appb-000029
i=1,…,M e
Figure PCTCN2019110617-appb-000030
为利用不确定先验知识确定的来自第q个方位角的信号的第i个多普勒频率,f s (q)为来自第q个方位角的信号的空域频率,且
Figure PCTCN2019110617-appb-000031
表示为:
Figure PCTCN2019110617-appb-000032
Figure PCTCN2019110617-appb-000033
Figure PCTCN2019110617-appb-000034
以及f s (q)表示为:
Figure PCTCN2019110617-appb-000035
并且,d 0,λ 0,T r,θ,φ分别表示半波长间距、信号波长、最小脉冲重复频率、俯仰角、方位角,v′ p和ψ′分别表示测量的机载平台速度和偏航角,Δψ m和Δv pm分别表示机载平台速度和偏航角的不确定性先验知识,M e为来自第q个方位角的信号的多普勒频率总个数,d (n-1)为等效采样阵列的第n个阵元相对于第 一个阵元的相对位置,单位为d 0,t (m-1)为第m个脉冲相对于第一个脉冲的发射时刻,单位为T r
然后基于空时导向矢量分量模型
Figure PCTCN2019110617-appb-000036
确定等效采样阵列的阵元位置;阵元位置表示为:
Figure PCTCN2019110617-appb-000037
n=1,…,N,m=1,…,M,
更进一步地,在本实施例的一些实施方式中,带宽计算模块302具体用于:将信号的空域频率代入预设的信号带宽计算公式,计算来自第q个方位角的信号的信号带宽;信号带宽计算公式表示为:
Figure PCTCN2019110617-appb-000038
更进一步地,在本实施例的一些实施方式中,在等效采样阵列为均匀线性阵列时,孔径计算模块303具体用于:根据预设的第一等效孔径计算公式,计算对应于阵元位置的等效采样阵列的阵列孔径;第一等效孔径计算公式表示为:
Figure PCTCN2019110617-appb-000039
其中
Figure PCTCN2019110617-appb-000040
为阵元位置为
Figure PCTCN2019110617-appb-000041
n=1,…,N,m=1,…,M的第i个等效采样阵列的阵列孔径。
相对应的,杂波秩估计模块304具体用于:
将信号带宽以及等效阵列的阵列孔径代入预设的第一杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;第一杂波秩估计公式表示为:
Figure PCTCN2019110617-appb-000042
其中,
Figure PCTCN2019110617-appb-000043
为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
Figure PCTCN2019110617-appb-000044
为利用不确定先验知识计算的来自第q个方位角信号的M e个等效采样阵列的阵列孔径集合,max(·)为最大值函数。
另外,在本实施例的一些实施方式中,在等效采样阵列为均匀线性阵列时,孔径计算模块具体用于:根据预设的第二等效孔径计算公式,计计算对应于阵元位置的等效采样阵列的阵列孔径;第二等效孔径计算公式表示为:
Figure PCTCN2019110617-appb-000045
其中,K为稀疏阵列所划分出的连续子阵列的总数;
相对应的,杂波秩估计模块304具体用于:
将信号带宽以及等效采样阵列的阵列孔径代入预设的第二杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;第二杂波秩估计公式表示为:
Figure PCTCN2019110617-appb-000046
其中,
Figure PCTCN2019110617-appb-000047
为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
Figure PCTCN2019110617-appb-000048
为来自第q个方位角的信号的最大阵列孔径的等效采样阵列的第k个子阵列的阵列孔径,且
Figure PCTCN2019110617-appb-000049
为来自第q个方位角的信号的等效采样阵列的阵列孔径所组成的阵列孔径集合为信号带宽,。
应当说明的是,前述实施例中的基于不确定先验知识的杂波秩估计方法均可基于本实施例提供的基于不确定先验知识的杂波秩估计装置实现,所属领域的普通技术人员可以清楚的了解到,为描述的方便和简洁,本实施例中所描述的杂波秩估计装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
采用本实施例提供的基于不确定先验知识的杂波秩估计装置,先分别确定各等效采样阵列的阵元位置,以及对应于各等效采样阵列的空域频率;再根据各空域频率计算各空域频率信号的信号带宽;然后计算各阵元位置的等效采样阵列的孔径;最后再基于信号带宽以及等效采样阵列的孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。通过本发明的实施,可以有效提高杂波秩估计的鲁棒性,从而保障了滤波器的杂波抑制性能,并且在正侧视及非正侧视机载雷达上均能良好应用。
第四实施例:
本实施例提供了一种电子装置,参见图4所示,其包括处理器401、存储器402及通信总线403,其中:通信总线403用于实现处理器401和存储器402之间的连接通信;处理器401用于执行存储器402中存储的一个或者多个计算机程序,以实现上述实施例一中的基于不确定先验知识的杂波秩估计方法中的至少一个步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一中的方法的至少一个步骤。
本实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一中的方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种基于不确定先验知识的杂波秩估计方法,其特征在于,包括:
    根据不确定先验知识确定等效采样阵列的阵元位置;
    根据信号的空域频率计算对应的信号带宽;
    计算对应于所述阵元位置的等效采样阵列的阵列孔径;
    基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。
  2. 如权利要求1所述的杂波秩估计方法,其特征在于,所述根据不确定先验知识确定等效采样阵列的阵元位置包括:
    获取对应于所述阵列雷达第n个阵列单元和第m个脉冲回波的空时导向矢量分量模型;所述空时导向矢量分量模型表示为:
    Figure PCTCN2019110617-appb-100001
    其中,比值
    Figure PCTCN2019110617-appb-100002
    为所述利用不确定先验知识确定的来自第q个方位角的信号的第i个多普勒频率,f s (q)为来自第q个方位角的信号的空域频率,且
    Figure PCTCN2019110617-appb-100003
    表示为:
    Figure PCTCN2019110617-appb-100004
    Figure PCTCN2019110617-appb-100005
    Figure PCTCN2019110617-appb-100006
    以及f s (q)表示为:
    Figure PCTCN2019110617-appb-100007
    并且,d 0,λ 0,T r,θ,φ分别表示半波长间距、信号波长、最小脉冲重复频率、俯仰角、方位角,v′ p和ψ′分别表示测量的机载平台速度和偏航角,Δψ m和Δv pm分别表示机载平台速度和偏航角的不确定性先验知识,M e为来自第q个方位角的信号的多普勒频率总个数,d (n-1)为等效采样阵列的第n个阵元相对于第一个阵元的相对位置,单位为d 0,t (m-1)为第m个脉冲相对于第一个脉冲的发射时刻,单位为T r
    基于所述空时导向矢量分量模型
    Figure PCTCN2019110617-appb-100008
    确定等效采样阵列的阵元位置;所述等效采样阵列的阵元位置表示为:
    Figure PCTCN2019110617-appb-100009
  3. 如权利要求2所述的杂波秩估计方法,其特征在于,所述根据信号的空 域频率计算对应的信号带宽包括:
    将信号的空域频率代入预设的信号带宽计算公式,计算来自第q个方位角的信号的信号带宽;所述信号带宽计算公式表示为:
    Figure PCTCN2019110617-appb-100010
  4. 如权利要求2所述的杂波秩估计方法,其特征在于,在等效采样阵列为均匀线性阵列时,所述计算对应于所述阵元位置的等效采样阵列的阵列孔径包括:
    根据预设的第一等效孔径计算公式,计算对应于所述阵元位置的等效采样阵列的阵列孔径;所述第一等效孔径计算公式表示为:
    Figure PCTCN2019110617-appb-100011
    其中,
    Figure PCTCN2019110617-appb-100012
    为阵元位置为
    Figure PCTCN2019110617-appb-100013
    Figure PCTCN2019110617-appb-100014
    的第i个等效采样阵列的阵列孔径;
    所述基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计包括:
    将所述信号带宽以及所述等效采样阵列的阵列孔径代入预设的第一杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;所述第一杂波秩估计公式表示为:
    Figure PCTCN2019110617-appb-100015
    其中,
    Figure PCTCN2019110617-appb-100016
    为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
    Figure PCTCN2019110617-appb-100017
    为利用不确定先验知识计算的来自第q个方位角信号的M e个等效采样阵列的阵列孔径集合,max(·)为最大值函数。
  5. 如权利要求2所述的杂波秩估计方法,其特征在于,当等效采样阵列为稀疏阵列时,所述计算对应于所述阵元位置的等效采样阵列的阵列孔径包括:
    根据预设的第二等效孔径计算公式,计算对应于所述阵元位置的等效采样阵列的阵列孔径;所述第二等效孔径计算公式表示为:
    Figure PCTCN2019110617-appb-100018
    其中,K为所述稀疏阵列所划分出的连续子阵列的总数;
    所述基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计包括:
    将所述信号带宽以及所述等效采样阵列的阵列孔径代入预设的第二杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;所述第二杂波秩 估计公式表示为:
    Figure PCTCN2019110617-appb-100019
    其中,
    Figure PCTCN2019110617-appb-100020
    为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
    Figure PCTCN2019110617-appb-100021
    为来自第q个方位角的信号的最大阵列孔径的等效采样阵列的第k个子阵列的阵列孔径,且
    Figure PCTCN2019110617-appb-100022
    为来自第q个方位角的信号的等效采样阵列的阵列孔径所组成的阵列孔径集合。
  6. 一种基于不确定先验知识的杂波秩估计装置,其特征在于,包括:
    位置确定模块,用于根据不确定先验知识确定等效采样阵列的阵元位置;
    带宽计算模块,用于根据信号的空域频率计算对应的信号带宽;
    孔径计算模块,用于计算对应于所述阵元位置的等效采样阵列的阵列孔径;
    杂波秩估计模块,用于基于所述信号带宽以及所述等效采样阵列的阵列孔径,对阵列雷达预设杂波片方向角的杂波秩进行估计。
  7. 如权利要求6所述的杂波秩估计装置,其特征在于,所述位置确定模块具体用于:
    获取对应于所述阵列雷达第n个阵列单元和第m个脉冲回波的空时导向矢量分量模型;所述空时导向矢量分量模型表示为:
    Figure PCTCN2019110617-appb-100023
    其中,比值
    Figure PCTCN2019110617-appb-100024
    为所述利用不确定先验知识确定的来自第q个方位角的信号的第i个多普勒频率,f s (q)为来自第q个方位角的信号的空域频率,且
    Figure PCTCN2019110617-appb-100025
    表示为:
    Figure PCTCN2019110617-appb-100026
    Figure PCTCN2019110617-appb-100027
    Figure PCTCN2019110617-appb-100028
    以及f s (q)表示为:
    Figure PCTCN2019110617-appb-100029
    并且,d 0,λ 0,T r,θ,φ分别表示半波长间距、信号波长、最小脉冲重复频率、俯仰角、方位角,v′ p和ψ′分别表示测量的机载平台速度和偏航角,Δψ m和Δv pm分别表示机载平台速度和偏航角的不确定性先验知识,M e为来自第q个方位角的信号的多普勒频率总个数,d (n-1)为等效采样阵列的第n个阵元相对于第一个阵元的相对位置,单位为d 0,t (m-1)为第m个脉冲相对于第一个脉冲的发 射时刻,单位为T r
    基于所述空时导向矢量分量模型
    Figure PCTCN2019110617-appb-100030
    确定等效采样阵列的阵元位置;所述阵元位置表示为:
    Figure PCTCN2019110617-appb-100031
  8. 如权利要求7所述的杂波秩估计装置,其特征在于,所述带宽计算模块具体用于:
    将信号的空域频率代入预设的信号带宽计算公式,计算来自第q个方位角的信号的信号带宽;所述信号带宽计算公式表示为:
    Figure PCTCN2019110617-appb-100032
  9. 如权利要求7所述的杂波秩估计装置,其特征在于,在等效采样阵列为均匀线性阵列时,孔径计算模块具体用于:
    根据预设的第一等效孔径计算公式,计算对应于所述阵元位置的等效采样阵列的阵列孔径;所述第一等效孔径计算公式表示为:
    Figure PCTCN2019110617-appb-100033
    其中,
    Figure PCTCN2019110617-appb-100034
    为阵元位置为
    Figure PCTCN2019110617-appb-100035
    Figure PCTCN2019110617-appb-100036
    的第i个等效采样阵列的阵列孔径。
    杂波秩估计模块具体用于:
    将所述信号带宽以及所述等效采样阵列的阵列孔径代入预设的第一杂波秩估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;所述第一杂波秩估计公式表示为:
    Figure PCTCN2019110617-appb-100037
    其中,
    Figure PCTCN2019110617-appb-100038
    为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
    Figure PCTCN2019110617-appb-100039
    为利用不确定先验知识计算的来自第q个方位角信号的M e个等效采样阵列的阵列孔径集合,max(·)为最大值函数。
  10. 如权利要求7所述的杂波秩估计装置,其特征在于,在等效采样阵列为均匀线性阵列时,孔径计算模块具体用于:
    根据预设的第二等效孔径计算公式,计算对应于所述阵元位置的等效采样阵列的阵列孔径;所述第二等效孔径计算公式表示为:
    Figure PCTCN2019110617-appb-100040
    其中,K为所述稀疏阵列所划分出的连续子阵列的总数;
    杂波秩估计模块具体用于:
    将所述信号带宽以及所述等效采样阵列的阵列孔径代入预设的第二杂波秩 估计公式,对阵列雷达预设杂波片方向角的杂波秩进行估计;所述第二杂波秩估计公式表示为:
    Figure PCTCN2019110617-appb-100041
    其中,
    Figure PCTCN2019110617-appb-100042
    为来自第q个方位角的信号的信号带宽,Q为方位角的总数量,
    Figure PCTCN2019110617-appb-100043
    为来自第q个方位角的信号的最大阵列孔径的等效采样阵列的第k个子阵列的阵列孔径,且
    Figure PCTCN2019110617-appb-100044
    为来自第q个方位角的信号的等效采样阵列的阵列孔径所组成的阵列孔径集合。
PCT/CN2019/110617 2019-10-11 2019-10-11 一种基于不确定先验知识的杂波秩估计方法及装置 WO2021068198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110617 WO2021068198A1 (zh) 2019-10-11 2019-10-11 一种基于不确定先验知识的杂波秩估计方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110617 WO2021068198A1 (zh) 2019-10-11 2019-10-11 一种基于不确定先验知识的杂波秩估计方法及装置

Publications (1)

Publication Number Publication Date
WO2021068198A1 true WO2021068198A1 (zh) 2021-04-15

Family

ID=75437630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110617 WO2021068198A1 (zh) 2019-10-11 2019-10-11 一种基于不确定先验知识的杂波秩估计方法及装置

Country Status (1)

Country Link
WO (1) WO2021068198A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358239B2 (en) * 2010-04-01 2013-01-22 Massachusetts Institute Of Technology Iterative clutter calibration with phased array antennas
CN106383342A (zh) * 2016-09-09 2017-02-08 深圳大学 一种基于存在测量误差的阵列流形先验知识的稳健stap方法
CN106546964A (zh) * 2016-10-26 2017-03-29 深圳大学 一种机载雷达杂波秩估计方法及其系统
CN106772304A (zh) * 2016-12-23 2017-05-31 西北大学 基于空域多级分解的机载mimo雷达后多普勒自适应处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358239B2 (en) * 2010-04-01 2013-01-22 Massachusetts Institute Of Technology Iterative clutter calibration with phased array antennas
CN106383342A (zh) * 2016-09-09 2017-02-08 深圳大学 一种基于存在测量误差的阵列流形先验知识的稳健stap方法
CN106546964A (zh) * 2016-10-26 2017-03-29 深圳大学 一种机载雷达杂波秩估计方法及其系统
CN106772304A (zh) * 2016-12-23 2017-05-31 西北大学 基于空域多级分解的机载mimo雷达后多普勒自适应处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG ZHAO-CHENG, LI XIANG, WANG HONG-QIANG: "An Overview of Space-Time Adaptive Processing Technology Based on Sparsity of Space-Time Power Spectrum", ACTA ELECTRONICA SINICA, vol. 42, no. 6, 1 June 2014 (2014-06-01), pages 1194 - 1204, XP055801004, DOI: 10.3969 /j.issn.0372-2112.2014.06.024 *
YONG WU, JUN TANG, YINGNING PENG: "Clutter characteristics of linear sparse array radar", JOURNAL OF TSINGHUA UNIVERSITY (SCIENCE AND TECHNOLOGY), vol. 48, no. 1, 1 January 2008 (2008-01-01), pages 51 - 54, XP055801008, DOI: 10.16511/j.cnki.qhdxxb.2008.01.019 *

Similar Documents

Publication Publication Date Title
CN109116311B (zh) 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
CN107976660B (zh) 弹载多通道雷达超低空目标分析与多径回波建模方法
CN108107430B (zh) 一种基于分数阶傅立叶变换的舰船目标isar成像方法
CN108710103B (zh) 基于稀疏阵列的强弱多目标超分辨测向与信源数估计方法
CN114270216A (zh) 一种强杂波下fmcw阵列雷达运动多目标弱信号检测方法、装置、计算机设备及存储介质
CN108387884B (zh) 基于知识辅助稀疏渐进最小方差的机载雷达杂波抑制方法
CN110376582B (zh) 自适应gm-phd的机动目标跟踪方法
CN111045002A (zh) 基于TRT和SNuFFT的机动目标相参积累方法
CN113917423B (zh) 多普勒模糊度的计算方法、测量目标速度的方法及装置
CN110658517B (zh) 一种基于不确定先验知识的降维稀疏stap方法及装置
Ding et al. An improved parametric translational motion compensation algorithm for targets with complex motion under low signal-to-noise ratios
WO2021068198A1 (zh) 一种基于不确定先验知识的杂波秩估计方法及装置
CN111796288B (zh) 一种基于杂波频谱补偿技术的三坐标雷达动目标处理方法
CN109490859B (zh) 部分均匀环境中对方位扰动和多普勒扰动稳健的检测器
CN110646768B (zh) 一种基于不确定先验知识的杂波秩估计方法及装置
CN114879174A (zh) 基于雷达的多目标测距方法以及形变监测方法
US11774574B2 (en) Methods and system for determining an angle of a detection
CN107450058B (zh) 基于FrFT和HT的雷达信号时频参数估计方法
CN105572631A (zh) 基于多波位联合处理的最大似然目标doa估计方法
CN113625265B (zh) 基于波束空间的方位超分辨方法
KR102371275B1 (ko) 물리 광학 기반 효율적 시영역 신호 생성 알고리즘 및 시나리오 기반 자율 주행 차량 레이더 모의 실험 방법 및 장치
CN110907930B (zh) 一种基于角度估计的车载雷达目标检测估计方法及装置
CN109212492B (zh) 基于知识辅助的时域重构机载雷达杂波抑制方法
CN110231590B (zh) 一种基于dft变换的阵列目标角度测量方法
WO2021068197A1 (zh) 一种基于不确定先验知识的降维稀疏stap方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19948412

Country of ref document: EP

Kind code of ref document: A1