WO2021068145A1 - 一种信道估计方法及装置 - Google Patents

一种信道估计方法及装置 Download PDF

Info

Publication number
WO2021068145A1
WO2021068145A1 PCT/CN2019/110260 CN2019110260W WO2021068145A1 WO 2021068145 A1 WO2021068145 A1 WO 2021068145A1 CN 2019110260 W CN2019110260 W CN 2019110260W WO 2021068145 A1 WO2021068145 A1 WO 2021068145A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
channel estimation
domain channel
signal
time
Prior art date
Application number
PCT/CN2019/110260
Other languages
English (en)
French (fr)
Inventor
张赢
王伟华
乐春晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/110260 priority Critical patent/WO2021068145A1/zh
Priority to CN201980098703.3A priority patent/CN114145048B/zh
Priority to EP19948500.4A priority patent/EP4030830A4/en
Publication of WO2021068145A1 publication Critical patent/WO2021068145A1/zh
Priority to US17/716,502 priority patent/US11843481B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a channel estimation method and device.
  • Channel estimation is an important process for the receiver to estimate the quality of the transmission channel, and it is a key technology of the wireless communication system.
  • the receiving end mainly uses the pilot signal to estimate the frequency domain response of the transmission channel, and uses the channel estimation result for coherent demodulation.
  • the existing channel estimation algorithm mainly uses noise reduction processing in the frequency domain to obtain the frequency domain channel estimation result.
  • the estimation accuracy of this estimation method is limited, which affects the baseband demodulation performance and causes the receiving end to be unable to accurately recover the signal sent by the transmitting end. Therefore, how to improve the quality of channel estimation is a technical problem that needs to be solved urgently in a wireless communication system.
  • embodiments of the present application provide a channel estimation method and device to further obtain noise reduction gain, improve channel estimation accuracy, and thereby improve baseband demodulation performance.
  • a channel estimation method is provided, the method is applied to a receiving end, the method includes: determining a first time slot and at least one second time slot, the first time slot and the second time slot
  • the slots constitute continuous time slots; the first signal corresponding to the first time slot and the second signal corresponding to the second time slot are respectively acquired, and both the first signal and the second signal include pilot signals; according to the The first signal and the second signal determine a time domain channel estimate of the first time slot. That is, when determining the time domain channel estimation of a certain time slot, by using the correlation of the channel time domain, the signals of multiple time slots are combined for time domain channel estimation to obtain more accurate channel estimation results and improve baseband demodulation. performance.
  • the determining the time domain channel estimation of the first time slot according to the first signal and the second signal includes: The pilot signal in the first signal determines the initial channel estimate for the first time slot, and the pilot signal in the second signal determines the initial channel estimate for the second time slot; according to the first The initial channel estimation of the time slot and the initial channel estimation of the second time slot determine the time domain channel estimation of the first time slot.
  • the first channel estimation is performed before the first signal and the second signal are used to determine the time domain channel estimation of the first time slot, so as to provide a signal with strong time domain correlation for subsequent joint processing.
  • the determining the time domain channel estimation of the first time slot according to the first signal and the second signal includes: The pilot signal of the first signal determines the frequency domain channel estimation of the first time slot, and the frequency domain channel estimation of the second time slot is determined according to the pilot signal of the second signal; The frequency domain channel estimation of the time slot and the frequency domain channel estimation of the second time slot determine the time domain channel estimation of the first time slot.
  • the first signal and the second signal are used to determine the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot respectively, so that the frequency domain channel estimation of the two time slots is used to determine the frequency domain channel estimation. Time-domain channel estimation of the first time slot, thereby improving time-domain noise reduction performance.
  • the method further includes:
  • the received signal corresponding to the first time slot can be demodulated and decoded according to the time domain channel estimation of the first time slot, so as to adjust the number of retransmissions at the transmitting end according to the result of the demodulation and decoding, so as to achieve effective improvement.
  • the user's throughput rate is a measure of the number of retransmissions at the transmitting end according to the result of the demodulation and decoding, so as to achieve effective improvement.
  • the method further includes: determining a frequency domain channel estimate of the first time slot according to a pilot signal in the first signal, and According to the frequency domain channel estimation of the first time slot, demodulate and decode the received signal corresponding to the first time slot to obtain the first check code; The received signal corresponding to the first time slot is demodulated and decoded to obtain a second check code; the first check code and the second check code are decoded corresponding to the check code that meets the preset conditions. The code signal is determined as the actual received signal.
  • the signal obtained by the demodulation and decoding method corresponding to the correct result of the check code in the two decoding results is determined as the actual Receive signals and improve baseband demodulation performance.
  • the determination is made according to the initial channel estimation of the first time slot and the initial channel estimation of the second time slot
  • the time domain channel estimation of the first time slot includes: transforming a signal matrix formed by the initial channel estimation of the first time slot and the initial channel estimation of the second time slot to obtain the first signal matrix;
  • the first signal matrix is multiplied by the windowing matrix to obtain a second signal matrix; and the second signal matrix is inversely transformed to obtain the time domain channel estimation of the first time slot.
  • the time domain channel estimation of the first time slot is obtained by performing windowing and noise reduction in the transform domain.
  • the initial channel estimation according to the first time slot and the initial channel of the second time slot Estimating and determining the time-domain channel estimation of the first time slot includes: multiplying and adding the initial channel estimation of the first time slot and the initial channel estimation of the second time slot by corresponding filter coefficients, respectively, Obtain a time domain channel estimate of the first time slot.
  • filtering and noise reduction are achieved without transformation, and the processing rate is increased.
  • the frequency domain channel estimation according to the first time slot and the frequency of the second time slot Domain channel estimation includes: performing a frequency domain channel estimation matrix formed by the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot. Transform to obtain a first frequency domain channel estimation matrix; multiply the first frequency domain channel estimation matrix by a windowing matrix to obtain a second frequency domain channel estimation matrix; perform inverse transformation on the second frequency domain channel estimation matrix Obtain a time domain channel estimate of the first time slot.
  • the time domain channel estimation of the first time slot is obtained by performing windowing and noise reduction in the transform domain.
  • the frequency domain channel estimation according to the first time slot and the frequency of the second time slot Domain channel estimation includes: multiplying the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot by corresponding filter coefficients. After addition, the time domain channel estimation of the first time slot is obtained. In this embodiment, by performing convolution calculation in the time domain, filtering and noise reduction are achieved without transformation, and the processing rate is increased.
  • the method when the fast Fourier transform is performed, the before the transformation, the method further includes: determining the number of transformation points of the fast Fourier transform; and padded the signal matrix or the frequency domain channel estimation matrix to the number of transformation points.
  • the signal matrix or the frequency domain channel estimation matrix needs to be zero-filled to the preset number of transform points to ensure that the fast Fourier transform can be performed.
  • the method further includes: interpolating the time domain channel estimation of the first time slot to obtain the The time domain channel estimation of the data signal corresponding to the first time slot.
  • the channel estimation of the data signal corresponding to the time slot can be obtained by the interpolation method, thereby completing the channel estimation.
  • the method further includes: determining the frequency domain channel estimate of the first time slot according to the time domain channel estimate of the first time slot .
  • the frequency domain channel estimation of the first time slot can be determined according to the time domain channel estimation of the first time slot. Domain channel estimation to improve the accuracy of frequency domain channel estimation.
  • a channel estimation device which is applied to a receiving end, and the device includes: a first determining unit configured to determine a first time slot and at least one second time slot, the first time slot And the second time slot form a continuous time slot; a first obtaining unit is configured to obtain a first signal corresponding to the first time slot and a second signal corresponding to the second time slot, the first signal Both the second signal and the second signal include a pilot signal; a second determining unit is configured to determine a time domain channel estimate of the first time slot according to the first signal and the second signal.
  • the second determining unit includes: a first determining subunit configured to determine the The initial channel estimation of the first time slot, and the initial channel estimation of the second time slot is determined according to the pilot signal in the second signal; the second determination subunit is used to determine the initial channel estimation of the second time slot according to the initial time of the first time slot The channel estimation and the initial channel estimation of the second time slot determine the time domain channel estimation of the first time slot.
  • the second determining unit includes: a third determining subunit, configured to determine the first signal according to the pilot signal of the first signal
  • the frequency domain channel estimation of a time slot, and the frequency domain channel estimation of the second time slot is determined according to the pilot signal of the second signal;
  • the fourth determining subunit is used to determine the frequency domain channel estimation of the first time slot according to the frequency of the first time slot.
  • the domain channel estimation and the frequency domain channel estimation of the second time slot determine the time domain channel estimation of the first time slot.
  • the device further includes: a demodulation and decoding device, configured to perform a calculation on the first time slot according to the time domain channel estimation of the first time slot.
  • the received signal corresponding to the time slot is demodulated and decoded; the sending unit is used to send error information to the sending end when there is an error in the received signal after demodulation and decoding, so that the sending end is based on the error Information increases the number of retransmissions.
  • the apparatus further includes:
  • the second acquiring unit is configured to determine the frequency domain channel estimate of the first time slot according to the pilot signal in the first signal, and perform a calculation of the frequency domain channel estimate of the first time slot according to the frequency domain channel estimate of the first time slot.
  • the received signal corresponding to the slot is demodulated and decoded to obtain the first check code;
  • the third acquiring unit is configured to decode the received signal corresponding to the first slot according to the time-domain channel estimation of the first slot Decoding to obtain a second check code;
  • a third determining unit configured to determine the decoded signal corresponding to the check code that meets the preset condition among the first check code and the second check code as Actually receive the signal.
  • the second determining subunit is specifically configured to estimate the initial channel of the first time slot and Transform the signal matrix formed by the first channel estimation of the second time slot to obtain a first signal matrix; multiply the first signal matrix and the windowing matrix to obtain a second signal matrix; Perform an inverse transformation to obtain a time domain channel estimate of the first time slot.
  • the second determining subunit is specifically configured to use the initial channel estimation of the first time slot,
  • the initial channel estimates of the second time slot are respectively multiplied by the corresponding filter coefficients and then added to obtain the time domain channel estimates of the first time slot.
  • the fourth determining subunit is specifically configured to estimate the frequency domain channel of the first time slot And the frequency domain channel estimation matrix formed by the frequency domain channel estimation of the second time slot is transformed to obtain the first frequency domain channel estimation matrix; the first frequency domain channel estimation matrix is multiplied by the windowing matrix to obtain the first frequency domain channel estimation matrix Two frequency domain channel estimation matrices; performing inverse transformation on the second frequency domain channel estimation matrix to obtain the time domain channel estimation of the first time slot.
  • the fourth determining subunit is specifically configured to estimate the frequency domain channel of the first time slot .
  • the frequency domain channel estimates of the second time slot are respectively multiplied by the corresponding filter coefficients and then added to obtain the time domain channel estimates of the first time slot.
  • the apparatus when performing fast Fourier transform, the apparatus further includes:
  • the fourth determining unit is used to determine the number of transform points of the fast Fourier transform before performing the fast Fourier transform; the zero padding unit is used to add zero to the signal matrix or the frequency domain channel estimation matrix Change the number of points.
  • the device further includes: a fourth acquiring unit configured to compare the time domain of the first time slot The channel estimation is interpolated to obtain the time domain channel estimation of the data signal corresponding to the first time slot.
  • the device further includes: a fifth determining unit, configured to determine the first time slot according to the time domain channel estimation of the first time slot Frequency domain channel estimation of time slot.
  • the first time slot and at least one second time slot are first determined, where the first time slot and each second time slot constitute continuous time slots. Then, the first signal corresponding to the first time slot and the second signal corresponding to each second time slot are acquired, and the time domain channel estimation of the first time slot is determined according to the first signal and each second signal. That is, in the embodiment of the present application, when determining the time domain channel estimation of a certain time slot, by using the correlation of the channel time domain, the signals of multiple time slots are combined to perform the time domain channel estimation to obtain a more accurate channel estimation result. Improve baseband demodulation performance.
  • Figure 1 is a schematic diagram of a traditional frequency domain channel estimation method
  • FIG. 2 is a schematic diagram of a channel estimation application provided by an embodiment of this application.
  • Figure 3 is a schematic diagram of another channel estimation application provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another application scenario provided by an embodiment of the application.
  • FIG. 6 is a flowchart of a channel estimation method provided by an embodiment of the application.
  • FIG. 7 is a flowchart of another channel estimation method provided by an embodiment of the application.
  • FIG. 8 is a flowchart of another channel estimation method provided by an embodiment of this application.
  • FIG. 9 is a structural diagram of subframe composition provided by an embodiment of the application.
  • FIG. 10 is a flowchart of another channel estimation method provided by an embodiment of this application.
  • FIG. 11 is a structural diagram of a channel estimation apparatus provided by an embodiment of this application.
  • the LTE uplink channel estimation is taken as an example for description, as shown in Figure 1.
  • the demodulation reference signal DMRS in the received PUSCH signal When estimating the LTE uplink channel, first use the demodulation reference signal DMRS in the received PUSCH signal to perform LS channel estimation, then use the LS channel estimation result for DMRS frequency domain channel estimation, and then use the DMRS frequency domain channel estimation result Perform the time domain channel estimation of the data symbol, and then perform demodulation and decoding according to the data symbol time domain channel estimation result to obtain the actual received signal.
  • this application provides a channel estimation method.
  • the first time slot is first determined and can be combined with the first time slot.
  • At least one second time slot of the consecutive time slots is to ensure that the consecutive time slots are used for subsequent time-domain channel estimation.
  • the signal in the first time slot is subjected to noise reduction processing to obtain the time-domain channel estimation of the first time slot, thereby improving the quality of the channel estimation and further improving the baseband demodulation performance.
  • the channel estimation method provided in this application can either add a time-domain channel estimation method to the original frequency-domain channel estimation method to achieve two demodulation and decoding, as shown in FIG. 2;
  • the time-domain channel estimation provided replaces the original frequency-domain channel estimation, and a demodulation and decoding is performed, as shown in Figure 3.
  • the channel estimation method provided in this application can be located before frequency domain channel estimation, and use the time domain channel estimation result as the reference signal used in frequency domain channel estimation; or After frequency domain channel estimation, the frequency domain channel estimation result is used as the reference signal used for time domain channel estimation, that is, the first signal. That is, through two channel estimation operations, the channel estimation result with higher channel estimation quality is used as the baseband demodulation reference signal, thereby improving the baseband demodulation performance.
  • the DMRS time-domain channel estimation method provided in the embodiments of the present application can be located between the LS channel estimation and the DMRS frequency domain channel estimation, or after the DMRS frequency domain channel estimation.
  • the time domain channel estimation method provided in this embodiment is before the DMRS frequency domain channel estimation, as shown in FIG. 4.
  • the DMRS time domain channel estimation of the first time slot determined by this application is used as the input of the DMRS frequency domain channel estimation, and the DMRS frequency domain channel estimation of the first time slot is determined according to the DMRS time domain channel estimation of the first time slot.
  • the DMRS frequency domain channel estimation of one time slot determines the time domain channel estimation of the data symbol corresponding to the first time slot, and performs demodulation and decoding.
  • the DMRS frequency domain channel estimation result of the first time slot and the DMRS frequency domain channel estimation result of the second time slot are used. Determine the DMRS time domain channel of the first time slot, and then use the DMRS time domain channel estimation result to obtain the time domain channel estimation of the data symbol, and perform demodulation and decoding.
  • the channel estimation method provided in the embodiments of the present application can be applied to various communication systems, such as: LTE system, global interconnection microwave access communication system, eMTC communication system, fifth-generation new radio (NR) communication system, And future communication systems, such as 6G systems.
  • the channel estimation method provided in this application can estimate the uplink transmission channel of each communication system mentioned above, and can also estimate the downlink transmission channel, which is not limited in this application.
  • Time slot scheduling mode to ensure that the signal sent by the transmitter is continuous in the time domain and the resource block RB position occupied by the pilot signal in the received signal corresponding to the first time slot is occupied by the pilot signal in the received signal corresponding to each second time slot.
  • the positions of the resource blocks RB are the same, and the number of resource blocks RB in the first slot is the same as the number of resource blocks RB in the second slot.
  • FIG. 6 is a flowchart of a channel estimation method according to an embodiment of the application. As shown in FIG. 6, the method is applied to the receiving end, and the method includes:
  • S601 Determine a first time slot and at least one second time slot, where the first time slot and each second time slot form a continuous time slot.
  • first obtain the current time slot to be processed that is, the first time slot
  • determine at least one continuous time slot corresponding to the first time slot that is, the second time slot.
  • multiple second time slots can be determined.
  • the specific determination method can be set according to actual application conditions, which is not limited in this embodiment.
  • S602 Obtain the first signal corresponding to the first time slot and the second signal corresponding to the second time slot respectively.
  • S603 Determine a time domain channel estimate of the first time slot according to the first signal and the second signal.
  • the first signal corresponding to the first time slot and the second signal corresponding to each second time slot are acquired. Then, the first signal and each second signal are jointly processed to obtain the time domain channel estimation of the first time slot. That is, the correlation between multiple time slots is used to combine the received signals of multiple time slots to perform time-domain channel estimation on the current time slot to be processed, thereby improving the quality of channel estimation and providing a more accurate reference basis for baseband demodulation.
  • both the first signal and the second signal include pilot signals.
  • this embodiment provides two implementation methods for determining the time-domain channel estimation of the first time slot based on the first signal and the second signal.
  • One is to use the pilot signal in the first signal to obtain the first The initial channel estimation of the time slot, and the use of the pilot signal in the second signal to obtain the initial channel estimation of the second time slot; then the first time is determined according to the initial channel estimation of the first time slot and the initial channel estimation of the second time slot Time domain channel estimation of the slot.
  • the reason why the first channel estimation is performed before the time domain channel estimation of the first time slot is determined based on the first signal and the second signal is that the signal received by the receiving end through the antenna has weak correlation in the time domain.
  • the first channel estimation is performed first, so as to provide a signal with strong time-domain correlation for subsequent joint processing.
  • the initial channel estimation may be LS channel estimation or other channel estimation, which is not limited in this embodiment.
  • the other is to first determine the frequency domain channel estimation of the first time slot according to the pilot signal in the first signal, and determine the frequency domain channel estimation of the second time slot according to the pilot signal in the second signal; then according to the first signal
  • the frequency domain channel estimation for one time slot and the frequency domain channel estimation for the second time slot determine the time domain channel estimation for the first time slot. That is, the first signal and the second signal are used for frequency domain channel estimation, and then the result of frequency domain channel estimation is used for time domain channel estimation.
  • the specific implementation of determining the frequency domain channel estimation of the first time slot according to the pilot signal in the first signal and determining the frequency domain channel estimation of the second time slot according to the pilot signal in the second signal can refer to the traditional channel estimation. The method is not described in detail in this embodiment.
  • the pilot signal in the first signal may also be used to determine the first time slot.
  • the pilot signal in the second signal is used to determine the initial channel estimation of the second time slot, and then the initial channel estimation of the first time slot is used to determine the frequency domain channel estimation of the first time slot.
  • the initial channel estimation of the second time slot determines the frequency domain channel estimation of the second time slot, and then the time domain channel estimation of the first time slot is determined according to the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot.
  • the second signal corresponding to the second time slot located after the first time slot needs to be received.
  • the time domain channel estimation of one time slot therefore, there will be processing delay.
  • the first time slot and at least one second time slot are first determined, wherein the first time slot and each second time slot constitute a continuous Time slot. Then, the first signal corresponding to the first time slot and the second signal corresponding to each second time slot are acquired, and the time domain channel estimation of the first time slot is determined according to the first signal and each second signal. That is, in the embodiment of the present application, when determining the time domain channel estimation, the time domain channel estimation is performed by using the correlation of the channel time domain to combine the signals of multiple time slots to obtain a more accurate channel estimation result and improve the baseband demodulation performance. .
  • the received signal corresponding to the first time slot may be demodulated and decoded according to the time domain channel estimation of the first time slot, so as to Adjust the number of retransmissions at the transmitting end according to the demodulation and decoding results.
  • the received signal corresponding to the first time slot is demodulated and decoded according to the time domain channel estimation of the first time slot; when there is an error in the received signal after demodulation and decoding, the error information is sent to the transmitting end , So that the sender increases the number of retransmissions according to the error information.
  • resource blocks RB are used for continuous scheduling, thereby improving channel estimation quality and effectively improving user throughput. If the transmitted data is not enough to ensure continuous RB scheduling, a padding method can be used to ensure that the resource block RB is continuous.
  • the error information is used to indicate that an error occurs in the demodulation and decoding at the transmitting end and the signal needs to be retransmitted.
  • the receiving end can also perform two demodulation and decoding, and compare the two demodulation and decoding results.
  • the demodulated and decoded received signal with a better demodulation and decoding result is used as the actual received signal.
  • the frequency domain channel estimation of the first time slot is determined according to the pilot signal in the first signal, and the received signal corresponding to the first time slot is demodulated and decoded according to the frequency domain channel estimation of the first time slot to obtain The first check code; demodulate and decode the received signal corresponding to the first time slot according to the time domain channel estimation of the first time slot to obtain the second check code; combine the first check code and the second check code
  • the decoded signal corresponding to the check code that meets the preset condition is determined as the actual received signal. That is, by comparing the check codes of the signals obtained after two demodulation and decoding, the signal obtained by the demodulation and decoding mode corresponding to the correct result of the check code in the two decoding results is determined as the actual received signal.
  • the CRC check method can be used to verify the demodulation and decoding result to obtain the corresponding check code.
  • this application provides two joint processing methods, one is transform domain windowing and noise reduction; the other is time domain filtering.
  • transform domain windowing and noise reduction the two processing methods will be described below with reference to the accompanying drawings.
  • FIG. 7 is a flowchart of a method for obtaining time domain channel estimation according to an embodiment of the application, as shown in FIG. As shown in 7, the method can include:
  • S701 Transform the signal matrix formed by the initial channel estimation of the first time slot and the initial channel estimation of the second time slot to obtain a first signal matrix.
  • this embodiment transforms the signal matrix formed by the initial channel estimation of the first time slot and the initial channel estimation of each second time slot into the transform domain to obtain the first signal matrix. Specifically, the signal matrix and the transformation matrix are multiplied to obtain the first signal matrix corresponding to the transformation domain.
  • the determined second time slot is the first N prev time slots and the last N post time slots. If n represents the index of the first time slot, the signal used for noise reduction should start from nN prev to n+N post ends, where the signal matrix composed of the initial channel estimation of the first time slot and the initial channel estimation of each second time slot can be expressed as:
  • N FFT represents the number of fast Fourier transform points
  • ceil() represents an integer upwards
  • N total represents the total number of time slots for joint processing
  • N total N prev + N post +1.
  • T() is the transformation function
  • the signal matrix Perform the transformation to obtain the first signal matrix
  • S702 Multiply the first signal matrix and the windowing matrix to obtain a second signal matrix.
  • the first signal matrix corresponding to the transform domain is obtained, the first signal matrix is multiplied by the windowing matrix to obtain the second signal matrix. That is, the second signal matrix is obtained by windowing the first signal matrix to reduce noise.
  • the windowing matrix includes windowing coefficients, and the windowing coefficients can be determined according to the Doppler spread and the frequency offset value.
  • the signal of the first signal matrix and the windowing coefficient of the windowing matrix are dot-multiplied to obtain the second signal matrix, which can be implemented by the following formula:
  • w is a windowing matrix, which may include multiple windowing coefficients.
  • S703 Perform inverse transformation on the second signal matrix to obtain a time domain channel estimate of the first time slot.
  • IT() is the inverse transform function, used to inversely transform the second signal matrix, so as to obtain the time domain channel estimation of the first time slot as:
  • Is the time domain channel estimation corresponding to the first time slot Represents the signal whose index is N prev in the inverse transformation matrix
  • the signal matrix can be expressed as:
  • the time domain channel estimation of the first time slot n is:
  • the foregoing embodiment illustrates that the time domain channel estimation of the first time slot is determined by the transform domain windowing and noise reduction method, and another method of determining the time domain channel estimation of the first time slot by time domain filtering specifically includes: The initial channel estimation of the time slot and the initial channel estimation of the second time slot respectively corresponding to the filter coefficients are multiplied and added to obtain the time domain channel estimation of the first time slot. That is, by performing convolution calculations in the time domain, filtering and noise reduction are achieved without transformation, and the processing rate is increased.
  • the value range of l is [nN prev , n+N post ]
  • N represents the total number of consecutively scheduled time slots
  • ⁇ s represents the filter coefficient
  • s represents the filter coefficient index
  • s 0,...,N total -1, in actual calculation, the value of s is:
  • the time domain filtering method provided by the above formula can determine the time domain channel estimation of the first time slot according to the initial channel estimation corresponding to the first time slot and the initial channel estimation corresponding to each second time slot.
  • the receiving end can determine the initial channel estimation of the first time slot and the initial channel estimation of the second time slot respectively according to the pilot signal of the first signal and the pilot signal of the second signal, and according to the first
  • the initial channel estimation of the time slot and the initial channel estimation of the second time slot determine the time domain channel estimation of the first time slot.
  • the receiving end may first determine the frequency domain channel estimation of the first time slot according to the pilot signal of the first signal and determine the frequency domain channel of the second time slot according to the pilot signal of the second signal. Estimate, and then determine the time domain channel estimation of the first time slot according to the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot. That is, on the basis of frequency domain channel estimation, time domain channel estimation is performed.
  • the receiving end determines the time domain channel estimation of the first time slot according to the frequency domain channel estimation, it can also be implemented in two ways. One is to perform windowing and noise reduction on the frequency domain channel estimation in the transform domain. Obtain the time domain channel estimation of the first time slot; the other is to filter the frequency domain channel estimation in the time domain to obtain the time domain channel estimation of the first time slot. For the above two different implementation manners, for ease of understanding, the following will describe them separately.
  • FIG. 8 is a flowchart of another channel estimation method provided by an embodiment of the application. As shown in FIG. 8, the method is applied to the receiving end and may include:
  • S801 Transform the frequency domain channel estimation matrix formed by the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot to obtain the first frequency domain channel estimation matrix.
  • the frequency domain channel estimation matrix formed by the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of each second time slot is converted to the transform domain to obtain the first frequency domain channel estimation matrix.
  • the frequency domain channel estimation matrix can be multiplied by the transformation matrix to obtain the first frequency domain channel estimation matrix corresponding to the transformation domain.
  • the expression form of the frequency domain channel estimation matrix can be referred to formula (1), and the realization of transforming the frequency domain channel estimation matrix can be referred to formula (4).
  • S802 Multiply the first frequency domain channel estimation matrix and the windowing matrix to obtain a second frequency domain channel estimation matrix.
  • the first frequency domain channel estimation matrix and the windowing matrix are multiplied to obtain the second frequency domain channel estimation matrix. That is, the first frequency domain channel estimation matrix is obtained by windowing and noise reduction on the first frequency domain channel estimation matrix.
  • the windowing matrix includes windowing coefficients, and the windowing coefficients can be determined according to the Doppler spread and the frequency offset value. Specifically, the signal of the first signal matrix and the windowing coefficient of the windowing matrix are dot-multiplied to obtain the second signal matrix, as shown in formula (5).
  • S803 Perform inverse transformation on the second frequency domain channel estimation matrix to obtain the time domain channel estimation of the first time slot.
  • the matrix is inversely transformed to obtain the time domain channel estimation of the first time slot.
  • the frequency domain channel estimation of the first time slot can be obtained by referring to formula (6) and formula (7).
  • the foregoing embodiment illustrates that the time domain channel estimation of the first time slot is obtained by transform domain windowing and noise reduction, and another method for determining the time domain channel estimation of the first time slot through time domain filtering is:
  • the frequency domain channel estimation of the second time slot and the frequency domain channel estimation of the second time slot are respectively multiplied by the corresponding filter coefficients and then added to obtain the time domain channel estimation of the first time slot. That is, the receiving end directly performs convolution calculations in the time domain to achieve filtering and noise reduction without transformation and increase the processing rate.
  • filtering and noise reduction in the time domain refer to formulas (14) and (15), which will not be repeated in this embodiment.
  • a wireless frame is composed of multiple subframes of equal length.
  • Each subframe TTI may include 2 time slots, and each time slot corresponds to a pilot signal.
  • one subframe is 1ms, each time slot is 0.5ms, and there are 14 symbols in the time domain, denoted as 0-13, of which symbol 3 and symbol 10-bit pilot signal, and the rest are data symbols.
  • Figure 9 In order to facilitate the understanding of the specific implementation manner using the subframe as the processing object, the implementation manner using the subframe as the processing object will be described below with reference to the accompanying drawings.
  • FIG. 10 is another channel estimation method provided by an embodiment of this application. As shown in FIG. 10, the method can be applied to the receiving end and includes:
  • S1001 Determine a first subframe and at least one second subframe, where the first subframe and each second subframe constitute continuous subframes.
  • the first subframe to be processed and the second subframe forming a continuous subframe with the first subframe are determined, so as to determine the time domain channel estimation of each time slot in the first subframe according to the multiple continuous subframes.
  • the first subframe can be used as a reference object, and several second subframes can be determined forward, or several second subframes can be determined backward, or several second subframes can be determined forward and backward at the same time.
  • the specific determination method can be set according to actual needs.
  • S1002 Obtain signals respectively corresponding to each time slot in the first subframe and signals respectively corresponding to each time slot in the second subframe.
  • S1003 Determine a time domain channel estimate of each time slot in the first subframe according to the signal corresponding to each time slot in the first subframe and the signal corresponding to each time slot in the second subframe.
  • the signal corresponding to each time slot in each subframe is acquired, so as to determine each time in the first subframe according to the signal corresponding to each time slot.
  • the signal corresponding to the time slot may be the initial channel estimation or the frequency domain channel estimation, which is not limited in this embodiment.
  • the receiving end may also adopt a transform domain windowing and noise reduction method and a time domain filtering method to determine the time domain channel estimation of each time slot in the first subframe.
  • the signals corresponding to each of the 2*N total time slots to form a signal matrix, as shown in the following formula:
  • the signal matrix is filled with zeros to the number of FFT points, and the signal matrix after zero-filling is:
  • time domain channel estimates corresponding to the two time slots in the first subframe are:
  • time domain channel estimation of time slot 1 in the first subframe TTI n is:
  • the signal matrix formed by the signals corresponding to the respective time slots of the first subframe and the second subframe is:
  • the DMRS time domain channel estimation corresponding to time slot 0 in the first subframe TTI n is:
  • the DMRS time domain channel estimation corresponding to time slot 1 in the first subframe TTI n is:
  • the time domain channel estimates corresponding to two time slots in a subframe can be obtained, so as to use the time domain channel estimation of the time slot for subsequent processing.
  • the present application also provides a channel estimation device, which will be described below with reference to the accompanying drawings.
  • FIG. 11 is a structural diagram of a channel estimation device provided by an embodiment of the application. As shown in FIG. 11, the device is applied to the receiving end and may include:
  • the first determining unit 1101 is configured to determine a first time slot and at least one second time slot, where the first time slot and the second time slot constitute a continuous time slot;
  • the first obtaining unit 1102 is configured to obtain a first signal corresponding to the first time slot and a second signal corresponding to the second time slot, respectively, where both the first signal and the second signal include pilot signals;
  • the second determining unit 1103 is configured to determine a time domain channel estimate of the first time slot according to the first signal and the second signal.
  • the second determining unit includes:
  • the first determining subunit is configured to determine the initial channel estimation of the first time slot according to the pilot signal in the first signal, and determine the second time slot according to the pilot signal in the second signal The initial channel estimation;
  • the second determining subunit is configured to determine the time domain channel estimation of the first time slot according to the initial channel estimation of the first time slot and the initial channel estimation of the second time slot.
  • the second determining unit includes:
  • the third determining subunit is configured to determine the frequency domain channel estimation of the first time slot according to the pilot signal of the first signal, and determine the frequency domain channel estimation of the second time slot according to the pilot signal of the second signal Frequency domain channel estimation;
  • the fourth determining subunit is configured to determine the time domain channel estimation of the first time slot according to the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot.
  • the device further includes:
  • a demodulation and decoding device configured to demodulate and decode the received signal corresponding to the first time slot according to the time domain channel estimation of the first time slot;
  • the sending unit is configured to send error information to the sending end when there is an error in the received signal after demodulation and decoding, so that the sending end increases the number of retransmissions according to the error information.
  • the device further includes:
  • the second acquiring unit is configured to determine the frequency domain channel estimation of the first time slot according to the pilot signal in the first signal, and to perform the calculation of the frequency domain channel estimation of the first time slot according to the frequency domain channel estimation
  • the received signal corresponding to the slot is demodulated and decoded to obtain the first check code
  • a third acquiring unit configured to demodulate and decode the received signal corresponding to the first time slot according to the time domain channel estimation of the first time slot to obtain a second check code
  • the third determining unit is configured to determine the decoded signal corresponding to the check code that meets the preset condition in the first check code and the second check code as the actual received signal.
  • the second determining subunit is specifically configured to transform the signal matrix formed by the initial channel estimation of the first time slot and the initial channel estimation of the second time slot to obtain A first signal matrix; multiply the first signal matrix and a windowing matrix to obtain a second signal matrix; perform an inverse transformation on the second signal matrix to obtain a time domain channel estimate of the first time slot.
  • the second determining subunit is specifically configured to multiply the initial channel estimation of the first time slot and the initial channel estimation of the second time slot by corresponding filter coefficients. After addition, the time domain channel estimation of the first time slot is obtained.
  • the fourth determining subunit is specifically configured to form a frequency domain channel estimation of the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot
  • the matrix is transformed to obtain a first frequency domain channel estimation matrix; the first frequency domain channel estimation matrix is multiplied by a windowing matrix to obtain a second frequency domain channel estimation matrix; the second frequency domain channel estimation matrix is performed
  • the inverse transform obtains the time domain channel estimation of the first time slot.
  • the fourth determining subunit is specifically configured to associate the frequency domain channel estimation of the first time slot and the frequency domain channel estimation of the second time slot with corresponding filter coefficients. After multiplying and adding, the time domain channel estimation of the first time slot is obtained.
  • the device when performing fast Fourier transform, the device further includes:
  • the fourth determining unit is used to determine the number of transform points of the fast Fourier transform before performing the fast Fourier transform
  • the zero padding unit is used to pad the signal matrix or the frequency domain channel estimation matrix to the number of transformation points.
  • the device further includes:
  • the fourth acquiring unit is configured to interpolate the time domain channel estimation of the first time slot to obtain the time domain channel estimation of the data signal corresponding to the first time slot.
  • the device further includes:
  • the fifth determining unit is configured to determine the frequency domain channel estimation of the first time slot according to the time domain channel estimation of the first time slot.
  • the first time slot and at least one second time slot are first determined, wherein the first time slot and each second time slot constitute continuous time slots. Then, the first signal corresponding to the first time slot and the second signal corresponding to each second time slot are acquired, and the time domain channel estimation of the first time slot is determined according to the first signal and each second signal. That is, in the embodiment of the present application, when determining the time domain channel estimation, the time domain channel estimation is performed by using the correlation of the channel time domain to combine the signals of multiple time slots to obtain a more accurate channel estimation result and improve the baseband demodulation performance. .
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the steps of the method or algorithm described in combination with the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种信道估计方法及装置,具体地,在对第一时隙进行时域信道估计时,首先确定第一时隙和至少一个第二时隙,其中,第一时隙和各个第二时隙构成连续时隙。然后,获取第一时隙对应的第一信号以及各个第二时隙对应的第二信号,并根据第一信号以及各个第二信号确定第一时隙的时域信道估计。即,本申请实施例在确定某个时隙的时域信道估计时,通过利用信道时域的相关性,联合多个时隙的信号进行时域信道估计,以获得更精确的信道估计结果,提升基带解调性能。

Description

一种信道估计方法及装置 技术领域
本申请涉及无线通信技术领域,具体涉及一种信道估计方法及装置。
背景技术
信道估计是接收端估计传输信道质量的重要过程,是无线通信系统的一项关键技术。接收端主要利用导频信号估计传输信道的频域响应,并将信道估计结果用于相干解调。
然而,现有的信道估计算法主要利用在频域上进行降噪处理,获得频域信道估计结果。而该种估计方法的估计精度有限,影响基带解调性能,导致接收端无法准确的恢复发射端发送的信号。因此,如何提升信道估计质量是无线通信系统中亟需解决的技术问题。
发明内容
有鉴于此,本申请实施例提供一种信道估计方法及装置,以进一步获取降噪增益,提升信道估计精度,进而提高基带解调性能。
为解决上述问题,本申请实施例提供的技术方案如下:
第一方面,提供了一种信道估计方法,所述方法应用于接收端,所述方法包括:确定第一时隙和至少一个第二时隙,所述第一时隙和所述第二时隙构成连续时隙;分别获取所述第一时隙对应的第一信号以及所述第二时隙对应的第二信号,所述第一信号和第二信号均包括导频信号;根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计。即,在确定某个时隙的时域信道估计时,通过利用信道时域的相关性,联合多个时隙的信号进行时域信道估计,以获得更精确的信道估计结果,提升基带解调性能。
结合第一方面,在第一方面的第一种可能的实现方式中,所述根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计,包括:根据所述第一信号中的导频信号确定所述第一时隙的初次信道估计,以及根据所述第二信号中的导频信号确定所述第二时隙的初次信道估计;根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计。在该实施方式中,在利用第一信号和第二信号确定第一时隙的时域信道估计之前,先进行初次信道估计,以便为后续联合处理提供时域上相关性较强的信号。
结合第一方面,在第一方面的第二种可能的实现方式中,所述根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计,包括:根据所述第一信号的导频信号确定所述第一时隙的频域信道估计,以及根据所述第二信号的导频信号确定所述第二时隙的频域信道估计;根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计。在该实施方式中,先利用第一信号和第二信号分别确定第 一时隙的频域信道估计以及第二时隙的频域信道估计,以分别利用两个时隙的频域信道估计确定第一时隙的时域信道估计,从而提高时域降噪性能。
结合第一方面,在第一方面的第三种可能的实现方式中,所述方法还包括:
根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码;当解调译码后的接收信号存在误码时,向发送端发送误码信息,以使得所述发送端根据所述误码信息增大重传次数。在该实施方式中,可以根据第一时隙的时域信道估计对第一时隙对应的接收信号进行解调译码,以根据解调译码的结果调整发送端的重传次数,实现有效提升用户的吞吐率。
结合第一方面,在第一方面的第四种可能的实现方式中,所述方法还包括:根据所述第一信号中的导频信号确定所述第一时隙的频域信道估计,并根据所述第一时隙的频域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第一校验码;根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第二校验码;将所述第一校验码和所述第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。在该实施方式中,通过比较两次解调译码后获得的信号的校验码,将两次译码结果中校验码为正确结果所对应的解调译码方式获取的信号确定为实际接收信号,提高基带解调性能。
结合第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述根据所述第一时隙的初次信道估计以及第二时隙的初次信道估计确定所述第一时隙的时域信道估计,包括:将所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵;将所述第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;对所述第二信号矩阵进行反变换获得所述第一时隙的时域信道估计。在该实施方式中,通过在变换域进行加窗降噪获得第一时隙的时域信道估计。
结合第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计,包括:将所述第一时隙的初次信道估计、所述第二时隙的初次信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。在该实施方式中,通过在时域进行卷积计算,实现滤波降噪,无需进行变换,提高处理速率。
结合第一方面的第二种可能的实现方式,在第一方面的第七种可能的实现方式中,所述根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计,包括:将所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵;将所述第一频域信道估计矩阵于加窗矩阵相乘,获得第二频域信道估计矩阵;对所述第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。在该实施方式中,通过在变换域进行加窗降噪获得第一时隙的时域信道估计。
结合第一方面的第二种可能的实现方式,在第一方面的第八种可能的实现方式中,所述根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计,包括:将所述第一时隙的频域信道估计、所述第二时隙的频域信道估计 分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。在该实施方式中,通过在时域进行卷积计算,实现滤波降噪,无需进行变换,提高处理速率。
结合第一方面的第五种可能的实现方式或第七种可能的实现方式,在第一方面的第九种可能的实现方式中,当进行快速傅里叶变换时,在进行快速傅里叶变换之前,所述方法还包括:确定快速傅里叶变换的变换点数;将所述信号矩阵或所述频域信道估计矩阵补零至所述变换点数。在该实施方式中,当进行快速傅里叶变换时,需将信号矩阵或频域信道估计矩阵补零至预设的变换点数,以保证可以进行快速傅里叶变换。
结合第一方面的第五种可能的实现方式,在第一方面的第十种可能的实现方式中,所述方法还包括:对所述第一时隙的时域信道估计进行插值,获得所述第一时隙对应的数据信号的时域信道估计。在该实施方式中,当获得第一时隙的时域信道估计后,可以通过插值方法得到该时隙对应的数据信号的信道估计,从而完成信道估计。
结合第一方面,在第一方面的第十一种可能的实现方式中,所述方法还包括:根据所述第一时隙的时域信道估计确定所述第一时隙的频域信道估计。在该实施方式中,当本实施例所提供的时域信道估计方法位于确定第一时隙的频域信道估计之前时,可以根据第一时隙的时域信道估计确定第一时隙的频域信道估计,以提高频域信道估计精度。
第二方面,提供了一种信道估计装置,该装置应用于接收端,所述装置包括:第一确定单元,用于确定第一时隙和至少一个第二时隙,所述第一时隙和所述第二时隙构成连续时隙;第一获取单元,用于分别获取所述第一时隙对应的第一信号以及所述第二时隙对应的第二信号,所述第一信号和第二信号均包括导频信号;第二确定单元,用于根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第二确定单元,包括:第一确定子单元,用于根据所述第一信号中的导频信号确定所述第一时隙的初次信道估计,以及根据所述第二信号中的导频信号确定所述第二时隙的初次信道估计;第二确定子单元,用于根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计。
结合第二方面,在第二方面的第二种可能的实现方式中,所述第二确定单元,包括:第三确定子单元,用于根据所述第一信号的导频信号确定所述第一时隙的频域信道估计,以及根据所述第二信号的导频信号确定所述第二时隙的频域信道估计;第四确定子单元,用于根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计。
结合第二方面,在第二方面的第三种可能的实现方式中,所述装置还包括:解调译码装置,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码;发送单元,用于当解调译码后的接收信号存在误码时,向发送端发送误码信息,以使得所述发送端根据所述误码信息增大重传次数。
结合第二方面,在第二方面的第四种可能的实现方式中,所述装置还包括:
第二获取单元,用于根据所述第一信号中的导频信号确定所述第一时隙的频域信道估计,并根据所述第一时隙的频域信道估计对所述第一时隙对应的接收信号进行解调译码,获得 第一校验码;第三获取单元,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第二校验码;第三确定单元,用于将所述第一校验码和所述第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。
结合第二方面的第一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵;将所述第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;对所述第二信号矩阵进行反变换获得所述第一时隙的时域信道估计。
结合第二方面的第一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计、所述第二时隙的初次信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
结合第二方面的第二种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵;将所述第一频域信道估计矩阵于加窗矩阵相乘,获得第二频域信道估计矩阵;对所述第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。
结合第二方面的第二种可能的实现方式,在第二方面的第八种可能的实现方式中,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计、所述第二时隙的频域信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
结合第二方面的第五种可能的实现方式或第七种可能的实现方式,在第二方面的第九种可能的实现方式中,当进行快速傅里叶变换时,所述装置还包括:
第四确定单元,用于在进行快速傅里叶变换之前,确定快速傅里叶变换的变换点数;补零单元,用于将所述信号矩阵或所述频域信道估计矩阵补零至所述变换点数。
结合第二方面的第五种可能的实现方式,在第二方面的第十种可能的实现方式中,所述装置还包括:第四获取单元,用于对所述第一时隙的时域信道估计进行插值,获得所述第一时隙对应的数据信号的时域信道估计。
结合第二方面,在第二方面的第十一种可能的实现方式中,所述装置还包括:第五确定单元,用于根据所述第一时隙的时域信道估计确定所述第一时隙的频域信道估计。
由此可见,本申请实施例具有如下有益效果:
本申请实施例在对第一时隙进行时域信道估计时,首先确定第一时隙和至少一个第二时隙,其中,第一时隙和各个第二时隙构成连续时隙。然后,获取第一时隙对应的第一信号以及各个第二时隙对应的第二信号,并根据第一信号以及各个第二信号确定第一时隙的时域信道估计。即,本申请实施例在确定某个时隙的时域信道估计时,通过利用信道时域的相关性,联合多个时隙的信号进行时域信道估计,以获得更精确的信道估计结果,提升基带解调性能。
附图说明
图1为传统的频域信道估计方法示意图;
图2为本申请实施例提供的一种信道估计应用示意图;
图3为本申请实施例提供的另一种信道估计应用计示意图;
图4为本申请实施例提供的一种应用场景示意图;
图5为本申请实施例提供的另一种应用场景示意图;
图6为本申请实施例提供的一种信道估计方法的流程图;
图7为本申请实施例提供的另一种信道估计方法的流程图;
图8为本申请实施例提供的又一种信道估计方法的流程图;
图9为本申请实施例提供的子帧组成结构图;
图10为本申请实施例提供的又一种信道估计方法的流程图;
图11为本申请实施例提供的一种信道估计装置结构图。
具体实施方式
以下为本申请实施例中所使用到的英文缩写的全称和相关解释:
DMRS      DeModulation Reference Signal         解调参考信号
LS        Least Squares                         最小二乘法
PUSCH     Physical Uplink Shared CHannel        物理上行共享信道
CRC       Cyclical Redundancy Check             循环冗余码校验
TTI       Transmission Time Interval            发送时间间隔
FFT       Fast Fourier Transform                快速傅里叶变换
DFT       Discrete Fourier Transform            离散傅立叶变换
DCT       Discrete Cosine Transform             离散余弦变换
DPSS      Discrete Prolate Spheroidal Sequence  离散长球序列
SVD       Singular Value Decomposition          奇异值分解
IFFT      Inverse Fast Fourier Transform        快速傅里叶反变换
RB        Resource Block                        资源块
eMTC      enhanced Machine Type Communication   增强型机器类通信
LTE       Long Terms Evolution                  长期演进计划
LTE-A     LTE-Advanced                          增强型长期演进计划
NR        New Radio                             新空口
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于理解本申请所提供的技术方案,先对本申请所涉及的背景技术进行说明。
发明人在对传统的信道估计方法研究中发现,传统的信道估计算法主要利用信道在频域进行降噪处理,由于频域信道估计精度有限,导致利用频域信道估计结果进行后续解调 译码时,影响译码性能,造成无法对接收信号进行准确恢复。为便于理解,以LTE上行信道估计为例进行说明,如图1所示。在对LTE上行信道进行估计时,首先利用接收的PUSCH信号中的解调参考信号DMRS进行LS信道估计,然后将LS信道估计结果用于DMRS频域信道估计,再利用DMRS频域信道估计的结果进行数据符号的时域信道估计,进而根据数据符号时域信道估计结果进行解调译码获取实际接收信号。
为解决上述频域信道估计质量受限影响基带解调性能的问题,本申请提供了一种信道估计方法,在接收端进行信道估计时,首先确定第一时隙以及可以与第一时隙构成连续时隙的至少一个第二时隙,即确保利用连续时隙进行后续的时域信道估计。然后,获取第一时隙对应的第一信号以及各个第二时隙对应的第二信号,利用第一信号以及各个第二信号确定第一时隙的时域信道估计,即联合多个时隙的信号进行降噪处理获得第一时隙的时域信道估计,从而提高信道估计质量,进而提升基带解调性能。
需要说明的是,本申请提供的信道估计方法既可以在原来频域信道估计方法的基础上增加时域信道估计方法,实现两次解调译码,如图2所示;也可以将本申请提供的时域信道估计替换原有的频域信道估计,进行一次解调译码,如图3所示。进一步地,当进行两次解调译码时,本申请提供的信道估计方法既可以位于频域信道估计之前,将时域信道估计结果作为频域信道估计时所使用的参考信号;也可以位于频域信道估计之后,将频域信道估计结果作为时域信道估计使用的参考信号,即第一信号。即,通过两次信道估计操作,将其中信道估计质量较高的信道估计结果作为基带解调的参考信号,从而提高基带解调性能。
以LTE为例的话,本申请实施例提供DMRS时域信道估计方法既可以位于LS信道估计与DMRS频域信道估计之间,也可以位于DMRS频域信道估计之后。当本实施例提供的时域信道估计方法位于DMRS频域信道估计之前时,如图4所示。将本申请确定的第一时隙的DMRS时域信道估计作为DMRS频域信道估计的输入,根据第一时隙的DMRS时域信道估计确定第一时隙的DMRS频域信道估计,再根据第一时隙的DMRS频域信道估计确定第一时隙对应的数据符号的时域信道估计,并进行解调译码。当本实施例提供的DMRS时域信道估计位于DMRS频域信道估计之后时,如图5所示,利用第一时隙的DMRS频域信道估计结果以及第二时隙的DMRS频域信道估计结果确定第一时隙的DMRS时域信道,然后利用DMRS时域信道估计结果获得数据符号的时域信道估计,并进行解调译码。
另外,本申请实施例提供的信道估计方法能够应用到各种通信系统,例如:LTE系统,全球互联微波接入通信系统,eMTC通信系统、第五代新空口(new radio,NR)通信系统,以及未来的通信系统,如6G系统等。此外,本申请提供的信道估计方法既可以对上述各个通信系统的上行传输信道进行估计,也可以对下行传输信道进行估计,本申请在此不进行限定。
为便于理解本申请提供的信道估计方法,下面将结合附图对具体实现过程进行说明。
需要说明的是,由于本申请是利用多时隙之间的关联性,联合多时隙确定某个时隙的时域信道估计,为保证多个时隙之间的强关联性,可以在发送端修改时隙调度方式,确保发送端发送的信号在时域上连续以及第一时隙对应的接收信号中导频信号占据的资源块 RB位置与各个第二时隙对应的接收信号中导频信号占据的资源块RB位置相同,且第一时隙中资源块RB数量与第二时隙中的资源块RB数量相同。
方法实施例一
参见图6,该图为本申请实施例提供的一种信道估计方法的流程图,如图6所示,所述方法应用于接收端,所述方法包括:
S601:确定第一时隙和至少一个第二时隙,其中,第一时隙和各个第二时隙构成连续时隙。
本实施例中,首先获取当前待处理时隙即第一时隙,并确定该第一时隙对应的至少一个连续时隙,即第二时隙。在实际应用中,为实现联合多个第二时隙进行时域信道估计,提高第一时隙的时域信道估计的精度,通常情况下,可以确定多个第二时隙。
在具体实现时,在确定第二时隙时,可以以第一时隙为参考对象,向前确定多个第二时隙;或者向后确定多个第二时隙;再或者同时向前和向后确定多个第二时隙,具体确定方式可以根据实际应用情况进行设置,本实施例在此不做限定。
S602:分别获取第一时隙对应的第一信号以及第二时隙对应的第二信号。
S603:根据第一信号以及第二信号确定第一时隙的时域信道估计。
本实施例中,当确定了多个第二时隙后,获取第一时隙对应的第一信号以及每个第二时隙对应的第二信号。然后,将第一信号和各个第二信号进行联合处理,获得第一时隙的时域信道估计。即,利用多个时隙之间的关联性联合多个时隙的接收信号对当前待处理时隙进行时域信道估计,从而提高信道估计质量,为基带解调提供更准确的参考依据。其中,第一信号和第二信号均包括导频信号。
在具体实现时,本实施例提供了两种根据第一信号和第二信号确定第一时隙的时域信道估计的实现方式,一种是,利用第一信号中的导频信号获取第一时隙的初次信道估计,以及利用第二信号中的导频信号获取第二时隙的初次信道估计;再根据第一时隙的初次信道估计以及第二时隙的初次信道估计确定第一时隙的时域信道估计。之所以在根据第一信号和第二信号确定第一时隙的时域信道估计之前,先进行初次信道估计的原因在于,接收端通过天线所接收的信号在时域上的关联性较弱,为便于后续利用信道时域强相关性进行联合降噪,提高信道估计质量,先进行初次信道估计,以便为后续联合处理提供时域上相关性较强的信号。在具体实现时,初次信道估计可以为LS信道估计,也可以为其它信道估计,本实施例在此不做限定。
另一种是,首先根据第一信号中的导频信号确定第一时隙的频域信道估计,以及根据第二信号中的导频信号确定第二时隙的频域信道估计;然后根据第一时隙的频域信道估计以及第二时隙的频域信道估计确定第一时隙的时域信道估计。即,先利用第一信号和第二信号进行频域信道估计,再利用频域信道估计的结果进行时域信道估计。其中,根据第一信号中的导频信号确定第一时隙的频域信道估计以及根据第二信号中的导频信号确定第二时隙的频域信道估计的具体实现可以参见传统的信道估计方法,本实施例不再赘述。
需要说明的是,在利用第一信号中的导频信号以及第二信号中的导频信号确定第一时隙的频域信道估计之前,还可以先利用第一信号中的导频信号确定第一时隙的初次信道估 计,利用第二信号中的导频信号确定第二时隙的初次信道估计,然后利用第一时隙的初次信道估计确定第一时隙的频域信道估计,利用第二时隙的初次信道估计确定第二时隙的频域信道估计,再根据第一时隙的频域信道估计以及第二时隙的频域信道估计确定第一时隙的时域信道估计。
可以理解的是,当确定的第二时隙中包括位于第一时隙之后的时隙时,由于需要接收到位于第一时隙之后的第二时隙对应的第二信号时才开始进行第一时隙的时域信道估计,因此,会存在处理时延。
通过上述描述可知,本申请实施例在对第一时隙进行时域信道估计时,首先确定第一时隙和至少一个第二时隙,其中,第一时隙和各个第二时隙构成连续时隙。然后,获取第一时隙对应的第一信号以及各个第二时隙对应的第二信号,并根据第一信号以及各个第二信号确定第一时隙的时域信道估计。即,本申请实施例在确定时域信道估计时,通过利用信道时域的相关性,联合多个时隙的信号进行时域信道估计,以获得更精确的信道估计结果,提升基带解调性能。
在一种可能的实现方式中,当获取第一时隙的时域信道估计后,还可以根据第一时隙的时域信道估计对第一时隙对应的接收信号进行解调译码,以根据解调译码的结果调整发送端的重传次数。具体为,根据第一时隙的时域信道估计对第一时隙对应的接收信号进行解调译码;当解调译码后的接收信号中存在误码时,向发送端发送误码信息,以使得发送端根据误码信息增大重传次数。即,通过增大重传次数减少高层重传,同时增加物理层的调度次数,对于弱覆盖用户来讲,有利用资源块RB连续调度,进而提高信道估计质量,实现有效提升用户的吞吐率。如果传输的数据不足以保证RB连续调度,可以采用填充的方式确保资源块RB连续。其中,误码信息用于指示发送端此次解调译码出现误码,需重新发送信号。
在一种可能的实现方式中,当本申请提供的信道估计方法是在频域信道估计基础上进行时,接收端还可以进行两次解调译码,并比较两次解调译码结果,将解调译码结果较好的解调译码后的接收信号作为实际接收信号。具体为,根据第一信号中的导频信号确定第一时隙的频域信道估计,并根据第一时隙的频域信道估计对第一时隙对应的接收信号进行解调译码,获得第一校验码;根据第一时隙的时域信道估计对第一时隙对应的接收信号进行解调译码,获得第二校验码;将第一校验码和第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。即,通过比较两次解调译码后获得的信号的校验码,将两次译码结果中校验码为正确结果所对应的解调译码方式获取的信号确定为实际接收信号。在具体实现时,可以利用CRC校验方式对解调译码结果进行验证,以获得对应的校验码。
在实际应用中,本申请提供了两种联合处理的方式,一种是变换域加窗降噪;另一种是时域滤波。为便于理解每种处理方式的具体实现过程,下面将结合附图对两种处理方式进行说明。
方法实施例二
本实施例将介绍通过变换域加窗降噪获得第一时隙的时域信道估计,参见图7,该图为本申请实施例提供的一种获取时域信道估计方法的流程图,如图7所示,该方法可以包括:
S701:将第一时隙的初次信道估计以及第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵。
本实施例中,本实施例将第一时隙的初次信道估计与各个第二时隙的初次信道估计构成的信号矩阵转换至变换域,获得第一信号矩阵。具体地,将信号矩阵与变换矩阵相乘,获得变换域对应的第一信号矩阵。
为便于理解,以确定的第二时隙为前N prev个时隙和后N post个时隙,如果以n表示第一时隙的索引,那么用于降噪的信号应该从n-N prev开始到n+N post结束,其中,第一时隙的初次信道估计与各个第二时隙的初次信道估计组成的信号矩阵可以表示:
Figure PCTCN2019110260-appb-000001
其中,
Figure PCTCN2019110260-appb-000002
表示信号矩阵,
Figure PCTCN2019110260-appb-000003
表示索引为n-N prev的时隙对应的初次信道估计,
Figure PCTCN2019110260-appb-000004
表示索引为n+N ppost的时隙对应的初次信道估计。
在实际应用中,可以对信号矩阵进行不同类型的转换,例如,FFT、DFT、DCT、SVD以及DPSS等等。相应地,不同的变换方式对应的变换矩阵是各不相同的。需要说明的是,当对信号矩阵进行快速傅里叶变换时,在将信号矩阵与傅里叶变换矩阵相乘之前,还需确定快速傅里叶变换的点数,将信号矩阵中的信号通过补零方式补充至预设的变换点数后,再与快速傅里叶变换矩阵相乘,获得第一信号矩阵。其中,确定快速傅里叶变换的点数可以通过以下公式实现:
Figure PCTCN2019110260-appb-000005
其中,N FFT表示快速傅里叶变换点数,ceil()表示向上取整数,N total表示联合处理的时隙总数,N total=N prev+N post+1。当通过公式(2)确定出快速傅里叶变换点数后,将信号矩阵通过补零方式填充至快速傅里叶变换点数,补充后的信号矩阵为:
Figure PCTCN2019110260-appb-000006
将上述信号矩阵进行变换以将其转换至变换域,获得第一信号矩阵:
Figure PCTCN2019110260-appb-000007
其中,
Figure PCTCN2019110260-appb-000008
表示第一信号矩阵,T()为变换函数,利用该变换函数对信号矩阵
Figure PCTCN2019110260-appb-000009
进行变换,获得第一信号矩阵。
S702:将第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵。
本实施例中,当获得变换域对应的第一信号矩阵后,将第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵。即,通过对第一信号矩阵加窗降噪,获得第二信号矩阵。其中,加窗矩阵中包括加窗系数,该加窗系数可以根据多普勒扩展和频偏值确定。具体地,将第一信号矩阵的信号与加窗矩阵的加窗系数进行点乘,获得第二信号矩阵,可以通过以下公式实现:
Figure PCTCN2019110260-appb-000010
其中,w为加窗矩阵,其可以包括多个加窗系数。
S703:对第二信号矩阵进行反变换获得第一时隙的时域信道估计。
当获得降噪后的第二信号矩阵后,对其进行反变换从而获得第一时隙的时域信道估计,如下述公式所示:
Figure PCTCN2019110260-appb-000011
其中,IT()为反变换函数,用于对第二信号矩阵进行反变换,从而获得第一时隙的时域信道估计为:
Figure PCTCN2019110260-appb-000012
其中,
Figure PCTCN2019110260-appb-000013
为第一时隙对应的时域信道估计,
Figure PCTCN2019110260-appb-000014
表示反变换矩阵中索引为N prev对应的信号。
为便于理解,以LTE上行信道估计且进行FFT变换为例进行说明,信号矩阵可以表示为:
Figure PCTCN2019110260-appb-000015
当进行FFT变换时,首先将信号矩阵补充至变换点数:
Figure PCTCN2019110260-appb-000016
对信号矩阵进行转换,获得第一信号矩阵:
Figure PCTCN2019110260-appb-000017
将第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵:
Figure PCTCN2019110260-appb-000018
对第二信号矩阵进行反变换,获得第一时隙的时域信道估计:
Figure PCTCN2019110260-appb-000019
其中,第一时隙n的时域信道估计为:
Figure PCTCN2019110260-appb-000020
上述实施例说明了通过变换域加窗降噪方法确定第一时隙的时域信道估计,而另一种通过时域滤波确定第一时隙的时域信道估计的方法具体包括:将第一时隙的初次信道估计与第二时隙的初次信道估计分别对应的滤波系数相乘后相加,获得第一时隙的时域信道估计。即,通过在时域进行卷积计算,实现滤波降噪,无需进行变换,提高处理速率。为便于理解,仍以向前确定N prev个第二时隙,向后确定N post个第二时隙,N total=N prev+N post+1,具体可以通过以下公式实现:
Figure PCTCN2019110260-appb-000021
其中,
Figure PCTCN2019110260-appb-000022
表示时隙n对应的时域信道估计,
Figure PCTCN2019110260-appb-000023
表示索引为l的时隙对应的初次信道估计,l的取值范围为[n-N prev,n+N post],N表示连续调度的时隙总数,α s表示滤波系数,s表示滤波系数索引,s=0,…,N total-1,在实际计算时,s的取值为:
s=(l-n)mod(N post+N prev+1)   (15)
通过上述公式提供的时域滤波方法可以根据第一时隙对应的初次信道估计以及各个第二时隙对应的初次信道估计确定第一时隙的时域信道估计。
上述实施例说明了接收端可以根据第一信号的导频信号以及第二信号的导频信号分别确定第一时隙的初次信道估计以及第二时隙的初次信道估计,并根据所述第一时隙的初次信道估计以及第二时隙的初次信道估计确定第一时隙的时域信道估计。在一种可能的实现方式中,接收端也可以先根据第一信号的导频信号确定第一时隙的频域信道估计以及根据第二信号的导频信号确定第二时隙的频域信道估计,然后根据第一时隙的频域信道估计以及第二时隙的频域信道估计确定第一时隙的时域信道估计。即,在进行频域信道估计的基础上,再进行时域信道估计。
需要说明的是,当接收端根据频域信道估计确定第一时隙的时域信道估计时,也可以采用两种方式进行实现,一种是在变换域对频域信道估计进行加窗降噪获得第一时隙的时域信道估计;另一种是在时域对频域信道估计进行滤波获得第一时隙的时域信道估计。针对上述两种不同的实现方式,为便于理解,下面将分别进行说明。
方法实施例三
参见图8,该图为本申请实施例提供的另一种信道估计方法的流程图,如图8所示,该方法应用于接收端,可以包括:
S801:将第一时隙的频域信道估计以及第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵。
本实施例中,将第一时隙的频域信道估计以及各个第二时隙的频域信道估计形成的频域信道估计矩阵,转换至变换域获得第一频域信道估计矩阵。具体地,可以将频域信道估计矩阵与变换矩阵相乘,获得变换域对应的第一频域信道估计矩阵。其中,频域信道估计矩阵的表现形式可以参见公式(1),对频域信道估计矩阵进行变换的实现可以参见公式(4)。
需要说明的是,当对频域信道估计矩阵进行快速傅里叶FFT变换时,在变换之前,先确定FFT变换点数,将频域信道估计矩阵通过补零方式补充至变换点数,然后再进行FFT变换操作。其中,确定变换点数的实现方式可以参见公式(2)。
S802:将第一频域信道估计矩阵与加窗矩阵相乘,获得第二频域信道估计矩阵。
当获得变换域对应的第一频域信道估计矩阵后,将第一频域信道估计矩阵与加窗矩阵相乘,获得第二频域信道估计矩阵。即,通过对第一频域信道估计矩阵加窗降噪,获得第一频域信道估计矩阵。其中,加窗矩阵中包括加窗系数,该加窗系数可以根据多普勒扩展和频偏值确定。具体地,将第一信号矩阵的信号与加窗矩阵的加窗系数进行点乘,获得第二信号矩阵,如公式(5)所示。
S803:对第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。
在获取降噪后的第二频域信道估计矩阵后,对该矩阵进行反变换以获得第一时隙的时域信道估计。具体地,可以参见公式(6)和公式(7)获得第一时隙的频域信道估计。
上述实施例说明了通过变换域加窗降噪获得第一时隙的时域信道估计,而另一种通过时域滤波确定第一时隙的时域信道估计的方法为:将第一时隙的频域信道估计、第二时隙 的频域信道估计分别与对应的滤波系数相乘后相加,获得第一时隙的时域信道估计。即,接收端直接在时域进行卷积计算,实现滤波降噪,无需进行变换,提高处理速率。其中,关于在时域进行滤波降噪的实现方式可以参见公式(14)和(15),本实施例在此不做赘述。
另外,本领域技术人员可以理解,在实际处理时,也可以以一个子帧为处理对象实现本申请提供的信道估计方法。在无线通信系统中,一个无线帧由等长度多个子帧组成,每个子帧TTI可以包括2个时隙,每个时隙对应一个导频信号。如LTE系统中一个子帧为1ms,每个时隙为0.5ms,时域上共包括14个符号,分别记为0~13,其中符号3和符号10位导频信号,其余为数据符号,如图9所示。为便于理解以子帧为处理对象的具体实现方式,下面将结合附图对以子帧为处理对象的实现方式进行说明。
方法实施例四
参见图10,该图为本申请实施例提供的另一种信道估计方法,如图10所示,该方法可以应用于接收端,包括:
S1001:确定第一子帧以及至少一个第二子帧,其中,第一子帧与各个第二子帧构成连续子帧。
即,确定待处理的第一子帧以及与第一子帧构成连续子帧的第二子帧,以便根据多个连续子帧确定第一子帧中各个时隙的时域信道估计。在具体实现时,可以以第一子帧为参考对象,向前确定数个第二子帧,或者向后确定数个第二子帧,或者同时向前和向后确定数个第二子帧,具体确定方式可以根据实际需求进行设定。
S1002:分别获取第一子帧中各个时隙分别对应的信号以及第二子帧中各个时隙分别对应的信号。
S1003:根据第一子帧中各个时隙对应的信号以及第二子帧中各个时隙对应的信号确定第一子帧中各个时隙的时域信道估计。
在确定出第一子帧以及该第一子帧对应的第二子帧时,获取每个子帧中各个时隙分别对应的信号,以根据各个时隙对应的信号确定第一子帧中各个时隙的时域信道估计。其中,时隙对应的信号可以为初次信道估计,也可以为频域信道估计,本实施例中在此不做限定。
在具体实现时,接收端也可以采用变换域加窗降噪的方式以及时域滤波的方法确定第一子帧中各个时隙的时域信道估计。为便于理解,对于待处理的第一子帧TTI n,对该TTI前N prev个第二子帧TTI和后N post个第二子帧TTI(共N total=N prev+N post+1个连续子帧)进行联合处理。首先,获取2*N total个时隙各自对应的信号形成信号矩阵,如以下公式所示:
Figure PCTCN2019110260-appb-000024
如果对信号矩阵进行FFT时,还需确定FFT变换点数,具体可以利用以下公式确定:
Figure PCTCN2019110260-appb-000025
将信号矩阵通过补零至FFT点数,补零后的信号矩阵为:
Figure PCTCN2019110260-appb-000026
对信号矩阵进行变换,获得第一信号矩阵:
Figure PCTCN2019110260-appb-000027
将第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;
Figure PCTCN2019110260-appb-000028
对第二信号矩阵进行反变换,获得第一子帧中各个时隙的时域信道估计:
Figure PCTCN2019110260-appb-000029
则第一子帧中两个时隙分别对应的时域信道估计为:
Figure PCTCN2019110260-appb-000030
其中,
Figure PCTCN2019110260-appb-000031
Figure PCTCN2019110260-appb-000032
分别表示第一子帧TTI n时隙0和时隙1的时域信道估计结果。
当进行时域滤波,可以通过以下公式实现:
Figure PCTCN2019110260-appb-000033
其中,
Figure PCTCN2019110260-appb-000034
表示索引为l的时隙对应的信号,
Figure PCTCN2019110260-appb-000035
表示第一子帧TTI n中时隙0的时域信道估计,s=0,…,2*N total-1,在上述公式中,s的取值为:
s=(l-2n)mod 2(N post+N prev+1)  (24)
则第一子帧TTI n中时隙1的时域信道估计为:
Figure PCTCN2019110260-appb-000036
其中,s=0,…,2*N total-1,在上述公式中,s的取值为:
s=(l-2n-1)mod 2(N post+N prev+1)  (26)
在实际应用时,当应用于LTE上行DMRS信道估计时,以进行FFT变换为例,上述实现过程可以表示为:
第一子帧和第二子帧各自时隙分别对应的信号形成的信号矩阵为:
Figure PCTCN2019110260-appb-000037
对2*Ntotal个信号补零至FFT变换点数,补零后的信号矩阵为:
Figure PCTCN2019110260-appb-000038
对信号矩阵进行FFT,获得第一信号矩阵:
Figure PCTCN2019110260-appb-000039
将第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵:
Figure PCTCN2019110260-appb-000040
对第二信号矩阵进行傅里叶反变换,以获得第一子帧TTI n中两个时隙分别对应的时域信号估计:
Figure PCTCN2019110260-appb-000041
其中,第一子帧TTI n中时隙0对应的DMRS时域信道估计为:
Figure PCTCN2019110260-appb-000042
第一子帧TTI n中时隙1对应的DMRS时域信道估计为:
Figure PCTCN2019110260-appb-000043
通过上述公式可以获取一个子帧中两个时隙分别对应的时域信道估计,以利用该时隙的时域信道估计进行后续处理。
基于上述方法实施例,本申请还提供了一种信道估计装置,下面将结合附图对该装置进行说明。
装置实施例
参见图11,该图为本申请实施例提供的一种信道估计装置结构图,如图11所示,该装置应用于接收端,可以包括:
第一确定单元1101,用于确定第一时隙和至少一个第二时隙,所述第一时隙和所述第二时隙构成连续时隙;
第一获取单元1102,用于分别获取所述第一时隙对应的第一信号以及所述第二时隙对应的第二信号,所述第一信号和第二信号均包括导频信号;
第二确定单元1103,用于根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述第二确定单元,包括:
第一确定子单元,用于根据所述第一信号中的导频信号确定所述第一时隙的初次信道估计,以及根据所述第二信号中的导频信号确定所述第二时隙的初次信道估计;
第二确定子单元,用于根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述第二确定单元,包括:
第三确定子单元,用于根据所述第一信号的导频信号确定所述第一时隙的频域信道估计,以及根据所述第二信号的导频信号确定所述第二时隙的频域信道估计;
第四确定子单元,用于根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述装置还包括:
解调译码装置,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码;
发送单元,用于当解调译码后的接收信号存在误码时,向发送端发送误码信息,以使得所述发送端根据所述误码信息增大重传次数。
在一种可能的实现方式中,所述装置还包括:
第二获取单元,用于根据所述第一信号中的导频信号确定所述第一时隙的频域信道估计,并根据所述第一时隙的频域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第一校验码;
第三获取单元,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第二校验码;
第三确定单元,用于将所述第一校验码和所述第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。
在一种可能的实现方式中,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵;将所述第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;对所述第二信号矩阵进行反变换获得所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计、所述第二时隙的初次信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵;将所述第一频域信道估计矩阵于加窗矩阵相乘,获得第二频域信道估计矩阵;对所述第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。
在一种可能的实现方式中,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计、所述第二时隙的频域信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
在一种可能的实现方式中,当进行快速傅里叶变换时,所述装置还包括:
第四确定单元,用于在进行快速傅里叶变换之前,确定快速傅里叶变换的变换点数;
补零单元,用于将所述信号矩阵或所述频域信道估计矩阵补零至所述变换点数。
在一种可能的实现方式中,所述装置还包括:
第四获取单元,用于对所述第一时隙的时域信道估计进行插值,获得所述第一时隙对应的数据信号的时域信道估计。
在一种可能的实现方式中,所述装置还包括:
第五确定单元,用于根据所述第一时隙的时域信道估计确定所述第一时隙的频域信道估计。
需要说明的是,本实施例中各个单元的实现可以参见上述方法实施例,本实施例在此不再赘述。
通过上述实施例可知,在对第一时隙进行时域信道估计时,首先确定第一时隙和至少一个第二时隙,其中,第一时隙和各个第二时隙构成连续时隙。然后,获取第一时隙对应的第一信号以及各个第二时隙对应的第二信号,并根据第一信号以及各个第二信号确定第一时隙的时域信道估计。即,本申请实施例在确定时域信道估计时,通过利用信道时域的相关性,联合多个时隙的信号进行时域信道估计,以获得更精确的信道估计结果,提升基带解调性能。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域 的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (24)

  1. 一种信道估计方法,其特征在于,所述方法应用于接收端,所述方法包括:
    确定第一时隙和至少一个第二时隙,所述第一时隙和所述第二时隙构成连续时隙;
    分别获取所述第一时隙对应的第一信号以及所述第二时隙对应的第二信号,所述第一信号和第二信号均包括导频信号;
    根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计,包括:
    根据所述第一信号中的导频信号确定所述第一时隙的初次信道估计,以及根据所述第二信号中的导频信号确定所述第二时隙的初次信道估计;
    根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计,包括:
    根据所述第一信号的导频信号确定所述第一时隙的频域信道估计,以及根据所述第二信号的导频信号确定所述第二时隙的频域信道估计;
    根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码;
    当解调译码后的接收信号存在误码时,向发送端发送误码信息,以使得所述发送端根据所述误码信息增大重传次数。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一信号中的导频信号确定所述第一时隙的频域信道估计,并根据所述第一时隙的频域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第一校验码;
    根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第二校验码;
    将所述第一校验码和所述第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。
  6. 根据权利要求2所述的方法,其特征在于,所述根据所述第一时隙的初次信道估计以及第二时隙的初次信道估计确定所述第一时隙的时域信道估计,包括:
    将所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵;
    将所述第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;
    对所述第二信号矩阵进行反变换获得所述第一时隙的时域信道估计。
  7. 根据权利要求2所述的方法,其特征在于,所述根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计,包括:
    将所述第一时隙的初次信道估计、所述第二时隙的初次信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
  8. 根据权利要求3所述的方法,其特征在于,所述根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计,包括:
    将所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵;
    将所述第一频域信道估计矩阵于加窗矩阵相乘,获得第二频域信道估计矩阵;
    对所述第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。
  9. 根据权利要求3所述的方法,其特征在于,所述根据所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计确定所述第一时隙的时域信道估计,包括:
    将所述第一时隙的频域信道估计、所述第二时隙的频域信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
  10. 根据权利要求6或8所述的方法,其特征在于,当进行快速傅里叶变换时,在进行快速傅里叶变换之前,所述方法还包括:
    确定快速傅里叶变换的变换点数;
    将所述信号矩阵或所述频域信道估计矩阵补零至所述变换点数。
  11. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    对所述第一时隙的时域信道估计进行插值,获得所述第一时隙对应的数据信号的时域信道估计。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一时隙的时域信道估计确定所述第一时隙的频域信道估计。
  13. 一种信道估计装置,其特征在于,所述装置应用于接收端,所述装置包括:
    第一确定单元,用于确定第一时隙和至少一个第二时隙,所述第一时隙和所述第二时隙构成连续时隙;
    第一获取单元,用于分别获取所述第一时隙对应的第一信号以及所述第二时隙对应的第二信号,所述第一信号和第二信号均包括导频信号;
    第二确定单元,用于根据所述第一信号以及所述第二信号确定所述第一时隙的时域信道估计。
  14. 根据权利要求13所述的装置,其特征在于,所述第二确定单元,包括:
    第一确定子单元,用于根据所述第一信号中的导频信号确定所述第一时隙的初次信道估计,以及根据所述第二信号中的导频信号确定所述第二时隙的初次信道估计;
    第二确定子单元,用于根据所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计确定所述第一时隙的时域信道估计。
  15. 根据权利要求13所述的装置,其特征在于,所述第二确定单元,包括:
    第三确定子单元,用于根据所述第一信号的导频信号确定所述第一时隙的频域信道估计,以及根据所述第二信号的导频信号确定所述第二时隙的频域信道估计;
    第四确定子单元,用于根据所述第一时隙的频域信道估计以及所述第二时隙的频域信 道估计确定所述第一时隙的时域信道估计。
  16. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    解调译码装置,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码;
    发送单元,用于当解调译码后的接收信号存在误码时,向发送端发送误码信息,以使得所述发送端根据所述误码信息增大重传次数。
  17. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    第二获取单元,用于根据所述第一信号中的导频信号确定所述第一时隙的频域信道估计,并根据所述第一时隙的频域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第一校验码;
    第三获取单元,用于根据所述第一时隙的时域信道估计对所述第一时隙对应的接收信号进行解调译码,获得第二校验码;
    第三确定单元,用于将所述第一校验码和所述第二校验码中符合预设条件的校验码对应的译码信号确定为实际接收信号。
  18. 根据权利要求14所述的装置,其特征在于,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计以及所述第二时隙的初次信道估计形成的信号矩阵进行变换,获得第一信号矩阵;将所述第一信号矩阵与加窗矩阵相乘,获得第二信号矩阵;对所述第二信号矩阵进行反变换获得所述第一时隙的时域信道估计。
  19. 根据权利要求14所述的装置,其特征在于,所述第二确定子单元,具体用于将所述第一时隙的初次信道估计、所述第二时隙的初次信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
  20. 根据权利要求15所述的装置,其特征在于,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计以及所述第二时隙的频域信道估计形成的频域信道估计矩阵进行变换,获得第一频域信道估计矩阵;将所述第一频域信道估计矩阵于加窗矩阵相乘,获得第二频域信道估计矩阵;对所述第二频域信道估计矩阵进行反变换获得所述第一时隙的时域信道估计。
  21. 根据权利要求15所述的装置,其特征在于,所述第四确定子单元,具体用于将所述第一时隙的频域信道估计、所述第二时隙的频域信道估计分别与对应的滤波系数相乘后相加,获得所述第一时隙的时域信道估计。
  22. 根据权利要求18或20所述的装置,其特征在于,当进行快速傅里叶变换时,所述装置还包括:
    第四确定单元,用于在进行快速傅里叶变换之前,确定快速傅里叶变换的变换点数;
    补零单元,用于将所述信号矩阵或所述频域信道估计矩阵补零至所述变换点数。
  23. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    第四获取单元,用于对所述第一时隙的时域信道估计进行插值,获得所述第一时隙对应的数据信号的时域信道估计。
  24. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    第五确定单元,用于根据所述第一时隙的时域信道估计确定所述第一时隙的频域信道估计。
PCT/CN2019/110260 2019-10-10 2019-10-10 一种信道估计方法及装置 WO2021068145A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/110260 WO2021068145A1 (zh) 2019-10-10 2019-10-10 一种信道估计方法及装置
CN201980098703.3A CN114145048B (zh) 2019-10-10 2019-10-10 一种信道估计方法及装置
EP19948500.4A EP4030830A4 (en) 2019-10-10 2019-10-10 CHANNEL ESTIMATION METHOD AND APPARATUS
US17/716,502 US11843481B2 (en) 2019-10-10 2022-04-08 Channel estimation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110260 WO2021068145A1 (zh) 2019-10-10 2019-10-10 一种信道估计方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/716,502 Continuation US11843481B2 (en) 2019-10-10 2022-04-08 Channel estimation method and apparatus

Publications (1)

Publication Number Publication Date
WO2021068145A1 true WO2021068145A1 (zh) 2021-04-15

Family

ID=75436916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110260 WO2021068145A1 (zh) 2019-10-10 2019-10-10 一种信道估计方法及装置

Country Status (4)

Country Link
US (1) US11843481B2 (zh)
EP (1) EP4030830A4 (zh)
CN (1) CN114145048B (zh)
WO (1) WO2021068145A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392365A (zh) * 2011-03-01 2013-11-13 瑞典爱立信有限公司 无线通信系统中的信道估计
WO2015197110A1 (en) * 2014-06-24 2015-12-30 Huawei Technologies Co., Ltd. Method and apparatus for multiple access in a wireless communication system
US20170187502A1 (en) * 2015-12-29 2017-06-29 Industrial Technology Research Institute Method for scheduling pilot signal, control node and wireless device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975069B2 (ja) * 2001-10-25 2007-09-12 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び無線通信制御方法
EP2005674B1 (en) * 2006-04-12 2016-09-28 TQ Delta, LLC Packet retransmission and memory sharing
US9288026B2 (en) * 2009-06-22 2016-03-15 Qualcomm Incorporated Transmission of reference signal on non-contiguous clusters of resources
CN102075220B (zh) 2009-11-23 2013-10-16 中兴通讯股份有限公司 一种基于时域降噪的信道估计装置及方法
WO2016119209A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Ue feedback for point-to-multipoint transmissions
US10389500B2 (en) * 2016-03-11 2019-08-20 Qualcomm Incorporated Demodulation reference signal configuration in a multi-input multi-output wireless communication system
US20190158206A1 (en) * 2016-05-13 2019-05-23 Intel IP Corporation Multi-user multiple input multiple ouput systems
CN109787664A (zh) * 2017-11-15 2019-05-21 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质
US11101950B2 (en) * 2018-01-12 2021-08-24 Qualcomm Incorporated Demodulation reference signal (DMRS) bundling in slot aggregation and slot format considerations for new radio
US11812450B2 (en) * 2019-09-27 2023-11-07 Qualcomm Incorporated Physical downlink shared channel resources for reduced capability user equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392365A (zh) * 2011-03-01 2013-11-13 瑞典爱立信有限公司 无线通信系统中的信道估计
WO2015197110A1 (en) * 2014-06-24 2015-12-30 Huawei Technologies Co., Ltd. Method and apparatus for multiple access in a wireless communication system
US20170187502A1 (en) * 2015-12-29 2017-06-29 Industrial Technology Research Institute Method for scheduling pilot signal, control node and wireless device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Remaining issues of UL IFDMA DMRS", 3GPP TSG RAN WG1 MEETING #87 R1- 1611280, 18 November 2016 (2016-11-18), XP051189059 *
See also references of EP4030830A4 *

Also Published As

Publication number Publication date
EP4030830A4 (en) 2022-12-07
EP4030830A1 (en) 2022-07-20
CN114145048B (zh) 2024-04-12
US20220231887A1 (en) 2022-07-21
US11843481B2 (en) 2023-12-12
CN114145048A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
JP4823307B2 (ja) 時間および周波数チャネル推定
JP5583652B2 (ja) ダイバーシチ結合および対数尤度スケーリングのための無線通信における雑音分散推定
US7889799B2 (en) Method and apparatus for OFDM channel estimation
TWI353147B (en) Pilot transmission and channel estimation for an o
JP2012075144A5 (zh)
TW200805956A (en) Delay-doppler channel response demodulation method and apparatus
EP2547015A1 (en) Receiving device, receiving method, receiving program, and processor
JP2009081535A (ja) 通信装置及び希望波伝送路特性算出方法
WO2015010607A1 (zh) 一种用于大规模天线的信道测量方法和用户终端
WO2011147205A1 (zh) 正交频分复用系统频偏补偿和均衡的方法和装置
CN107171984A (zh) 一种异步多载波系统频域信道估计方法
CN113243135A (zh) 获取下行信道信息的方法和装置
Dziwoki et al. Iterative identification of sparse mobile channels for TDS-OFDM systems
WO2008151518A1 (fr) Procédé et dispositif de détection d'information dans un système ofdm
CN111555991B (zh) 接收设备、终端、均衡处理方法、装置及存储介质
CN103475605A (zh) 一种3gpplte-a下行系统中基于用户专用参考信号的信道估计方法
TWI300657B (zh)
WO2021068145A1 (zh) 一种信道估计方法及装置
WO2017148189A1 (zh) 生成ofdm时域信号的方法和装置
US20050073946A1 (en) Transmitter and receiver for use with an orthogonal frequency division multiplexing system
TW201008184A (en) Channel estimation
TWI710235B (zh) 傳輸數據的方法、信道估計的方法和裝置
US10516449B2 (en) Multi-user MIMO-OFDM system
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
US8416674B2 (en) Method and apparatus for receiving minimum mean-squared-error in single-carrier frequency division multiple access system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019948500

Country of ref document: EP

Effective date: 20220414