WO2021065101A1 - 積層体製造装置、及び、積層体の製造方法 - Google Patents

積層体製造装置、及び、積層体の製造方法 Download PDF

Info

Publication number
WO2021065101A1
WO2021065101A1 PCT/JP2020/024005 JP2020024005W WO2021065101A1 WO 2021065101 A1 WO2021065101 A1 WO 2021065101A1 JP 2020024005 W JP2020024005 W JP 2020024005W WO 2021065101 A1 WO2021065101 A1 WO 2021065101A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
heat
resistant polymer
coupling agent
silane coupling
Prior art date
Application number
PCT/JP2020/024005
Other languages
English (en)
French (fr)
Inventor
奥山 哲雄
桂也 ▲徳▼田
量之 應矢
渡辺 直樹
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021550328A priority Critical patent/JP7205706B2/ja
Priority to US17/632,159 priority patent/US20220274314A1/en
Priority to EP20872017.7A priority patent/EP4039447A4/en
Priority to KR1020227013449A priority patent/KR20220066376A/ko
Priority to CN202080066032.5A priority patent/CN114423612A/zh
Publication of WO2021065101A1 publication Critical patent/WO2021065101A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/024Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material the sheet or web-like material being supported by a moving carriage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/522Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive by spraying, e.g. by flame spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • B29C65/7894Means for handling of moving sheets or webs of continuously moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0222Mechanical pre-treatments, e.g. reshaping without removal of material, e.g. cleaning by air blowing or using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0038Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving application of liquid to the layers prior to lamination, e.g. wet laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/162Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • B29C2071/0045Washing using non-reactive liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives

Definitions

  • the present invention relates to a laminate manufacturing apparatus and a method for manufacturing a laminate.
  • the polymer film is made of a rigid support made of an inorganic substance such as a glass plate, a ceramic plate, a silicon wafer, or a metal plate (for example,).
  • a process is used in which a desired element is formed on an inorganic substrate, a metal foil, etc., and then peeled off from the support.
  • the laminated body is often exposed to a high temperature.
  • a process in a temperature range of about 200 ° C. to 600 ° C. is required.
  • a temperature of about 200 to 300 ° C. may be applied to the film, and further, in order to heat and dehydrogenate the amorphous silicon to obtain low temperature polysilicon, the temperature is about 450 ° C. to 600 ° C. Heating may be required.
  • the polymer film constituting the laminate is required to have heat resistance, but as a practical matter, the polymer film that can withstand practical use in such a high temperature range is limited.
  • Adhesive it is generally conceivable to use an adhesive or an adhesive for bonding the polymer film to the support, but at that time, the bonding surface between the polymer film and the support (that is, the adhesive for bonding) Adhesive) is also required to have heat resistance.
  • ordinary adhesives and adhesives for bonding do not have sufficient heat resistance, bonding with an adhesive or adhesive cannot be applied when the formation temperature of the functional element is high.
  • silane coupling agents have been widely used to improve the wettability and adhesiveness of both inorganic materials such as glass and polymer resins at the interface.
  • Silane coupling agents have a strong adsorptive power to inorganic materials and at the same time tend to cause a self-condensation reaction. Therefore, particles of the condensate are often formed in the treatment liquid and the coating liquid, and these particles often cause foreign matter defects on the coated surface and the treated surface.
  • Patent Document 4 discloses a technique of applying a silane coupling agent to a substrate in a vapor phase state. According to such a method, it is possible to realize an extremely thin silane coupling agent layer with low defects.
  • a layer containing a silane coupling agent is interposed between the support and the heat-resistant polymer film before or after device formation. It is intended to prevent the support from being peeled off from the polyimide film inside, and to easily peel off the support from the polyimide film after the device is formed.
  • a large-area laminate it is extremely difficult to control the adhesive strength to be uniform throughout the laminate.
  • the low-defect silane coupling agent coating layer obtained by the method described in Patent Document 4 is extremely thin, when a foreign substance is sandwiched between the coated surfaces, silane even if it is minute. It may interfere with the reaction of the coupling agent coated surface.
  • an object of the present invention is to bond a first sheet (for example, an inorganic substrate, a metal leaf, a first heat-resistant polymer film, etc.) and a second sheet (for example, a second heat-resistant polymer film, etc.).
  • a first sheet for example, an inorganic substrate, a metal leaf, a first heat-resistant polymer film, etc.
  • a second sheet for example, a second heat-resistant polymer film, etc.
  • An object of the present invention is to provide a laminate manufacturing apparatus capable of uniformly controlling the strength.
  • Another object of the present invention is to provide a method for producing a laminated body capable of uniformly controlling the adhesive strength between the first sheet and the second sheet.
  • the present inventors have adopted a laminate manufacturing apparatus and a laminate capable of uniformly controlling the adhesive strength even in a large area by adopting the following configuration.
  • the present invention has been completed by finding out the manufacturing method of the above.
  • the laminate manufacturing apparatus is The first sheet transporting device for transporting the first sheet and A water supply device that supplies an aqueous medium to the surface of the first sheet coated with the silane coupling agent and / or the surface of the second sheet coated with the silane coupling agent. It is characterized by comprising a laminating device for laminating the first sheet and the second sheet after the aqueous medium is supplied.
  • a laminate of a first sheet (for example, an inorganic substrate, a metal foil, a first heat-resistant polymer film, etc.) and a second sheet (for example, a second heat-resistant polymer film, etc.) is particularly large.
  • a first sheet for example, an inorganic substrate, a metal foil, a first heat-resistant polymer film, etc.
  • a second sheet for example, a second heat-resistant polymer film, etc.
  • the aqueous medium is supplied to the surface of the first sheet coated with the silane coupling agent and / or the surface of the second sheet coated with the silane coupling agent. , The first sheet and the second sheet can be bonded together.
  • the silane coupling agent layer can be flattened immediately before bonding. More specifically, at the time of bonding, the aqueous medium can be laminated while being extruded from the adhesive surface, so that excess silane coupling agent between the first sheet and the second sheet can be removed.
  • the amount of the silane coupling agent is controlled to the minimum necessary amount coordinated with at least one surface of the first sheet and the second sheet by affinity. As a result, the adhesive strength can be uniformly controlled. Further, since the bonding can be performed in a state where at least a part of the silane coupling agent is dissolved in the aqueous medium, the adhesive strength can be improved.
  • the silane coupling agent can be coated on the first sheet.
  • a first substrate cleaning device for cleaning the first sheet before the aqueous medium is supplied.
  • the first cleaning device If the first cleaning device is provided, the first sheet before the aqueous medium is supplied can be cleaned. As a result, it is possible to obtain a laminated body with less foreign matter mixed.
  • a second cleaning device for cleaning the second sheet before the aqueous medium is supplied.
  • the second cleaning device it is possible to clean the second sheet before the aqueous medium is supplied. As a result, it is possible to obtain a laminated body with less foreign matter mixed.
  • the method for producing a laminate according to the present invention is as follows.
  • the aqueous medium is supplied to the surface of the first sheet coated with the silane coupling agent and / or the surface of the second sheet coated with the silane coupling agent.
  • the first sheet and the second sheet are pasted together.
  • an aqueous medium is supplied to the surface of the first sheet coated with the silane coupling agent and / or the surface of the second sheet coated with the silane coupling agent, at least a part of the silane coupling agent. Is dissolved in an aqueous medium. Therefore, the silane coupling agent layer can be flattened immediately before bonding.
  • the aqueous medium can be laminated while being extruded from the adhesive surface, so that excess silane coupling agent between the first sheet and the second sheet can be removed.
  • the amount of the silane coupling agent is controlled to the minimum necessary amount coordinated with at least one surface of the first sheet and the second sheet by affinity.
  • the adhesive strength can be uniformly controlled.
  • the bonding can be performed in a state where at least a part of the silane coupling agent is dissolved in the aqueous medium, the adhesive strength can be improved.
  • step X-1 for applying the silane coupling agent to the first sheet before the step A.
  • the silane coupling agent can be applied to the first sheet.
  • step X-2 for washing the first sheet before the step A.
  • step X-2 it is possible to wash the first sheet before the aqueous medium is supplied. As a result, it is possible to obtain a laminated body with less foreign matter mixed.
  • step X-3 for washing the second sheet before the step A.
  • step X-3 it is possible to wash the second sheet before the aqueous medium is supplied. As a result, it is possible to obtain a laminated body with less foreign matter mixed.
  • step B it is preferable to have a step X-4 for inspecting the appearance of the laminated body of the first sheet and the second sheet bonded together.
  • step X-4 it is possible to confirm the presence or absence of foreign matter mixed in the laminated body.
  • the present invention it is possible to provide a laminate manufacturing apparatus capable of uniformly controlling the adhesive strength between the first sheet and the second sheet. Further, according to the present invention, it is possible to provide a method for producing a laminated body capable of uniformly controlling the adhesive strength between the first sheet and the second sheet.
  • the laminate manufacturing apparatus is The first sheet transporting device for transporting the first sheet and A water supply device that supplies an aqueous medium to the surface of the first sheet coated with the silane coupling agent and / or the surface of the second sheet coated with the silane coupling agent.
  • a laminating device for laminating the first sheet and the second sheet after the aqueous medium is supplied is provided.
  • the manufacturing method of the laminated body which concerns on this embodiment is A method for manufacturing a laminate having a first sheet and a second sheet.
  • the laminate manufacturing apparatus includes the laminate manufacturing apparatus according to the first to third embodiments described below.
  • the method for producing the laminate according to the present embodiment includes the method for producing the laminate according to the first to third embodiments described below.
  • the laminate manufacturing apparatus has the following configurations.
  • An inorganic substrate transfer device that conveys an inorganic substrate,
  • a water supply device that supplies an aqueous medium to the surface of the inorganic substrate coated with the silane coupling agent and / or the surface of the heat-resistant polymer film coated with the silane coupling agent.
  • a laminate manufacturing apparatus including a laminating apparatus for laminating an inorganic substrate and a heat-resistant polymer film after being supplied with an aqueous medium.
  • the laminate manufacturing apparatus according to (1) comprising a coating apparatus for applying a silane coupling agent to an inorganic substrate.
  • the laminate manufacturing apparatus according to (1) or (2) comprising an inorganic substrate cleaning apparatus for cleaning the inorganic substrate before the aqueous medium is supplied.
  • the laminate manufacturing apparatus according to any one of (1) to (3) comprising a film cleaning apparatus for cleaning the heat-resistant polymer film before the aqueous medium is supplied.
  • the laminate manufacturing apparatus according to any one of (1) to (4) comprising an appearance inspection apparatus for inspecting the appearance of the laminate of the inorganic substrate bonded by the laminating apparatus and the heat-resistant polymer film. .. (6)
  • the laminate manufacturing apparatus according to (5) comprising a peeling apparatus for peeling a heat-resistant polymer film from a laminate determined to have a poor appearance by the appearance inspection apparatus.
  • the method for producing a laminated body according to the first embodiment has the following configurations. (10) A method for producing a laminate having an inorganic substrate and a heat-resistant polymer film in this order.
  • a method for producing a laminate having. (11) Step X-1 of applying a silane coupling agent to an inorganic substrate before the step A. The method for producing a laminate according to (10). (12) Step X-2 for cleaning the inorganic substrate before the step A and the step X-1. The method for producing a laminate according to (11). (13) Step X-3 for cleaning the heat-resistant polymer film before the step A.
  • Step X-5 for peeling the heat-resistant polymer film from the laminate determined to have a poor appearance by the step X-4.
  • the "inorganic substrate” corresponds to the “first sheet” in the present embodiment
  • the “inorganic substrate transporting device” corresponds to the “first sheet transporting device” in the present embodiment
  • the “heat-resistant polymer film” corresponds to the “second sheet” in the present embodiment
  • the “inorganic substrate cleaning device” corresponds to the "first cleaning device” in the present embodiment
  • the “film cleaning device” corresponds to the book. Corresponds to the "second cleaning device” in the embodiment.
  • FIG. 1 is a schematic diagram for explaining the laminate manufacturing apparatus according to the first embodiment.
  • the laminate manufacturing apparatus 10 includes an inorganic substrate transporting apparatus 20, an inorganic substrate cleaning apparatus 30, a coating apparatus 40, a water supply apparatus 50, and a film cleaning apparatus 60.
  • a laminating device 70 and a visual inspection device 80 are provided.
  • the laminate manufacturing apparatus in the present invention may include at least a first sheet transport device (inorganic substrate transport device), a water supply device, and a laminating device.
  • the inorganic substrate transfer device 20 conveys the inorganic substrate 100 and moves between the devices included in the laminate manufacturing device 10.
  • the inorganic substrate transfer device 20 is not particularly limited as long as it can convey the inorganic substrate 100, but is preferably an electrically driven roller conveyor.
  • the inorganic substrate transfer device 20 is an electrically driven roller conveyor, it is possible to automate the production of the laminate, which can produce the laminate while sequentially moving the inorganic substrates.
  • the inorganic substrate cleaning device 30 includes a cleaning liquid injection nozzle 32, an air knife (not shown), and the like.
  • the inorganic substrate cleaning device 30 can dry the surface of the inorganic substrate 100 by injecting the cleaning liquid 34 onto the inorganic substrate 100 and then blowing air with the air knife.
  • the first cleaning device (inorganic substrate cleaning device) according to the present invention is the above-mentioned inorganic device as long as it can clean the first sheet (inorganic substrate) before the aqueous medium is supplied.
  • the device is not limited to the substrate cleaning device 30, and conventionally known devices can be adopted.
  • the coating device 40 includes a silane coupling agent supply pipe 42 and the like provided with a plurality of small holes.
  • the coating device 40 can coat the silane coupling agent 44 on the inorganic substrate 100 from the silane coupling agent supply pipe 42.
  • the coating device according to the present invention is not limited to the above-mentioned coating device 40 as long as it can coat the silane coupling agent on the inorganic substrate, and conventionally known ones can be adopted.
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the inorganic substrate 100 coated with the silane coupling agent.
  • the structure of the water supply device 50 is not particularly limited as long as it is possible to supply the aqueous medium 52 to the surface of the inorganic substrate 100 coated with the silane coupling agent, and conventionally known ones may be adopted. it can.
  • the amount of the aqueous medium 52 supplied is not particularly limited, but is preferably about 0.1 to 50 g / 100 cm 2 from the viewpoint of reducing air bubbles and foreign substances.
  • the film cleaning device 60 can clean the surface of the heat-resistant polymer film 102 by injecting the cleaning liquid 64 onto the heat-resistant polymer film 102 supplied from the roll 101 and then blowing air with an air knife (not shown).
  • the second cleaning device (film cleaning device) according to the present invention is described above as long as it can clean the second sheet (heat-resistant polymer film) before the aqueous medium is supplied.
  • the film cleaning device 60 is not limited to the film cleaning device 60, and conventionally known devices can be used.
  • the laminating device 70 includes a laminating roller 72 and the like.
  • the laminating device 70 attaches the inorganic substrate 100 and the heat-resistant polymer film 102 after the aqueous medium 52 is supplied by pressing the laminating roller 72.
  • the pressing pressure at the time of bonding is preferably 0.5 MPa or less.
  • the laminate manufacturing apparatus 10 since at least a part of the silane coupling agent 44 can be bonded in a state of being dissolved in the aqueous medium 52, the pressing pressure at the time of lamination can be reduced.
  • the laminating device according to the present invention is not limited to the laminating device 70 described above as long as it can bond the inorganic substrate and the heat-resistant polymer film after the aqueous medium is supplied, and is conventionally known. Can be adopted.
  • the pressing pressure of the laminating device 70 is preferably 0.5 MPa or less. Since the bonding can be performed in a state where at least a part of the silane coupling agent is dissolved in the aqueous medium, the pressing pressure at the time of laminating can be reduced. When the pressing pressure is 0.5 MPa or less, damage to the inorganic substrate can be suppressed.
  • the lower limit of the pressing pressure is not particularly limited, but is preferably 0.1 MPa or more. When it is 0.1 MPa or more, it is possible to prevent a portion that does not adhere to each other and insufficient adhesion.
  • the temperature at the time of pressurization is preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 40 ° C.
  • the aqueous solution may vaporize to generate bubbles, which may damage the polymer film, and if the temperature is too low, the adhesion tends to be weakened. There is no problem even if it is carried out at room temperature (near room temperature) where the temperature is not particularly controlled.
  • high temperature treatment high temperature treatment without pressurization
  • high temperature pressurization high temperature pressurization
  • the pressing pressure at the time of high temperature pressurization is preferably 0.5 MPa or less.
  • the temperature during the high temperature treatment and high temperature pressurization is, for example, 80 ° C. or higher, more preferably 100 to 250 ° C., still more preferably 120 to 220 ° C., and particularly preferably 90 ° C. to 140 ° C.
  • the pressurization treatment can be performed in an atmospheric pressure atmosphere, but it may be possible to obtain uniform adhesive force by performing the pressure treatment in a vacuum.
  • the degree of vacuum the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
  • a device that can be used for pressure heat treatment for example, "11FD” manufactured by Imoto Seisakusho can be used for pressing in a vacuum, and a roll-type film laminator in a vacuum or a vacuum is used.
  • vacuum laminating such as a film laminator that applies pressure to the entire surface of the glass at once with a thin rubber film, for example, "MVLP" manufactured by Meiki Co., Ltd. can be used.
  • the appearance inspection device 80 inspects the appearance of the laminate 104 of the inorganic substrate 100 bonded by the laminating device 70 and the heat-resistant polymer film 102.
  • an automatic optical inspection device AOI: Automated Optical Inspection
  • the visual inspection device 80 is based on an image obtained by the CCD camera (an image of the heat-resistant polymer film 102 surface side of the laminated body 104) and preset (quantified) data, and the foreign matter is formed on the laminated body 104. It is judged whether or not there is any contamination, and whether or not there is uneven sticking.
  • the appearance inspection device according to the present invention is not limited to the above-mentioned appearance inspection device 80 as long as it can inspect the appearance of a laminate of an inorganic substrate and a heat-resistant polymer film, and is conventionally known. Things can be adopted.
  • the laminate manufacturing apparatus 10 includes a peeling apparatus (not shown).
  • the peeling device peels the heat-resistant polymer film 102 from the laminated body 104 determined by the appearance inspection device 80 to have a poor appearance.
  • As the peeling device a conventionally known one can be adopted. Since the peeling device is provided, the heat-resistant polymer film 102 can be peeled from the laminated body 104 determined to have a poor appearance. As a result, the inorganic substrate 100 can be reused immediately.
  • the coating device 40 for applying the silane coupling agent to the inorganic substrate is provided, but the present invention is not limited to this example, and the silane coupling agent is applied to the first sheet (inorganic substrate).
  • a device for coating the silane coupling agent on the second sheet may be provided.
  • a coating device 40 for applying the silane coupling agent to the first sheet (inorganic substrate) may be provided, and a device for applying the silane coupling agent to the second sheet (heat-resistant polymer film) may be provided. ..
  • the coating device 40 for applying the silane coupling agent to the inorganic substrate has been described, but in the present invention, the coating device for applying the silane coupling agent to the first sheet (inorganic substrate). It is not necessary to provide. In this case, for example, a first sheet (inorganic substrate) coated with a silane coupling agent in advance may be used.
  • the laminate manufacturing apparatus 10 according to the first embodiment has been described above.
  • the method for manufacturing the laminated body according to the first embodiment will be described.
  • a method for manufacturing a laminated body when the laminated body manufacturing apparatus 10 is used will be described, but the present invention is not limited to this example.
  • a worker or the like may carry out the steps carried out by each device.
  • the method for manufacturing the laminate according to the first embodiment is A method for producing a laminate having an inorganic substrate and a heat-resistant polymer film in this order. Step A of supplying an aqueous medium to the surface of the inorganic substrate coated with the silane coupling agent, and Step B of bonding the inorganic substrate and the heat-resistant polymer film after the water-based medium is supplied. Have at least.
  • Step X-2 for cleaning the inorganic substrate Step X-1 in which the silane coupling agent is applied to the inorganic substrate after step X-2.
  • Step of cleaning the heat-resistant polymer film X-3 After the step B, the steps X-4 for inspecting the appearance of the laminated body of the bonded inorganic substrate and the heat-resistant polymer film, and the step X-4, It is preferable to have the step X-5 of peeling the heat-resistant polymer film from the laminate determined to have a poor appearance by the step X-4.
  • the inorganic substrate 100 is moved in the direction of the inorganic substrate cleaning device 30 by the inorganic substrate transport device 20, and the inorganic substrate is cleaned by the substrate cleaning device 30 (step X-2).
  • the inorganic substrate 100 is moved in the direction of the coating device 40 by the inorganic substrate transport device 20, and the silane coupling agent is coated on the inorganic substrate by the coating device 40 (step X-1).
  • the film cleaning device 60 sprays the cleaning liquid 64 onto the heat-resistant polymer film 102 supplied from the roll 101, and then blows air with an air knife (not shown) to clean the surface of the heat-resistant polymer film 102 (step). X-3).
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the inorganic substrate 100 coated with the silane coupling agent (step A).
  • step B the inorganic substrate 100 and the heat-resistant polymer film 102 after the aqueous medium 52 is supplied are bonded together by the laminating device 70 (step B).
  • step X-4 the appearance of the laminate 104 of the bonded inorganic substrate 100 and the heat-resistant polymer film 102 is inspected by the appearance inspection device 80 (step X-4).
  • the heat-resistant polymer film 102 is peeled from the laminate 104 determined to have a poor appearance by the step X-4 by the peeling device (step X-5).
  • the silane coupling agent is applied to the inorganic substrate
  • the present invention is not limited to this example, and instead of applying the silane coupling agent to the first sheet (inorganic substrate), ,
  • the silane coupling agent may be applied to the second sheet (heat resistant polymer film).
  • the silane coupling agent may be applied to the first sheet (inorganic substrate) and the silane coupling agent may be applied to the second sheet (heat-resistant polymer film).
  • the silane coupling agent is applied to the inorganic substrate has been described, but the present invention does not have to include the step of applying the silane coupling agent to the first sheet (inorganic substrate). ..
  • a first sheet (inorganic substrate) coated with a silane coupling agent in advance may be used.
  • the heat-resistant polymer preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and the upper limit of the melting point is not particularly limited and is the same as the decomposition temperature of the heat-resistant polymer. It doesn't matter if there is.
  • the glass transition temperature is preferably 250 ° C. or higher, more preferably 320 ° C. or higher, further preferably 380 ° C. or higher, preferably 500 ° C. or lower, and more preferably 450 ° C. or lower. Is. Hereinafter, it is also simply referred to as a polymer in order to avoid complication.
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • the heat-resistant polymer film includes polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin, alicyclic).
  • polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin, alicyclic).
  • Group polyimide resin Copolymerized polyesters such as polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate (for example, fully aromatic polyester, semi-aromatic polyester); copolymers typified by polymethylmethacrylate.
  • a film using a so-called super engineering plastic is preferable, and more specifically, an aromatic polyimide film, an aromatic polyamide film, an aromatic polyamideimide film, an aromatic polybenzoxazole film, and the like.
  • aromatic polybenzothiazole film examples thereof include aromatic polybenzothiazole film and aromatic polybenzoimidazole film.
  • a polyimide-based resin film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • polyamic acid film It is also referred to as “polyamic acid film”), and is obtained by subjecting a green film to a high-temperature heat treatment to carry out a dehydration ring-closing reaction on a support for producing a polyimide film or in a state of being peeled off from the support.
  • the application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, slit die coating and the like. Means can be used as appropriate.
  • the diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable. When aromatic diamines having a benzoxazole structure are used, it is possible to develop high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance.
  • the diamines may be used alone or in combination of two or more.
  • the aromatic diamines having a benzoxazole structure are not particularly limited, and are, for example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5 -Amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2,2' -P-Phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazole) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4-diaminodiphenyl) benzo [1,2-d: 4,5
  • aromatic diamines other than the above-mentioned aromatic diamines having a benzoxazole structure examples include 2,2'-dimethyl-4,4'-diaminobiphenyl and 1,4-bis [2- (4-aminophenyl).
  • a part or all of hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxyl group, or a cyano group, and further, the carbon number of carbon atoms may be substituted.
  • a part or all of the hydrogen atoms of the alkyl group or the alkoxyl group of 1 to 3 may be substituted with halogen atoms.
  • the aromatic diamines may be used alone or in combination of two or more.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminootan and the like.
  • alicyclic diamines examples include 1,4-diaminocyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • the total amount of diamines other than aromatic diamines (aliphatic diamines and alicyclic diamines) is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less of all diamines. Is. In other words, the aromatic diamines are preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all diamines.
  • tetracarboxylic acids constituting the polyamic acid examples include aromatic tetracarboxylic acids (including the acid anhydride thereof), aliphatic tetracarboxylic acids (including the acid anhydride), and alicyclic tetracarboxylic acids usually used for polyimide synthesis. Acids (including its acid anhydride) can be used. Among them, aromatic tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides are preferable, aromatic tetracarboxylic dianhydrides are more preferable from the viewpoint of heat resistance, and alicyclics are more preferable from the viewpoint of light transmission. Group tetracarboxylic acids are more preferred.
  • the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. Good.
  • the tetracarboxylic acids may be used alone or in combination of two or more.
  • Examples of the alicyclic tetracarboxylic dians include cyclobutanetetracarboxylic dians, 1,2,4,5-cyclohexanetetracarboxylic dians, 3,3', 4,4'-bicyclohexyltetracarboxylic dians and the like.
  • Examples include carboxylic acids and their acid anhydrides.
  • dianhydrides having two anhydride structures for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3', 4,4 '-Bicyclohexyltetracarboxylic dianhydride, etc. is suitable.
  • the alicyclic tetracarboxylic acids may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic acids are, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all tetracarboxylic acids.
  • aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably an acid anhydride thereof.
  • aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic acid dianhydride, and 3 , 3', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis [4- (3,4-di) Carboxylic phenoxy) phenyl] propanoic acid anhydride, 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid dianhydride and the like can be mentioned.
  • heat resistance is important
  • the polyimide resin may be preferably transparent depending on the application.
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, 1,2,4, as acid components used in the synthesis of the precursor 5-Cyclohexanetetracarboxylic dianhydride, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2,2,2] octane-2,3,5 , 6-Tetracarboxylic dianhydride, 3,3', 4,4'-bicyclohexyltetracarboxylic dianhydride, 1,2,4-cyclohexanetricarboxylic dianhydride and the like are exemplified, but are particularly preferable.
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3', 4,4'-bicyclohexyltetracarboxylic dianhydride It is a thing.
  • These alicyclic carboxylic acids may be used alone or in combination of two or more.
  • those containing unsaturated bonds such as bicyclo [2,2,2] octo-7-ene-2,3,5,6-tetracarboxylic dianhydride are colored during heat treatment to improve the optical properties of the film. It is not preferable from the viewpoint of transparency because it tends to decrease.
  • diamine component used for the synthesis of the transparent polyimide resin or its precursor examples include 1,3-phenylenediamine, 1,4-phenylenediamine, 2,4-diaminotoluene, and 2,6-diaminotoluene.
  • p-phenylenediamine 2,2'-dimethylbiphenyl-4,4'-diamine, 2,2'-bis (trifluoromethyl) benzidine, 2,2'-bis (trifluoro).
  • Methyl) -4,4'-diaminodiphenyl ether 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 1,4-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4' -Methylenebis (2-methylcyclohexylamine), 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • the above amine components may be used alone or in combination of two or more.
  • the thickness of the polymer film is preferably 3 ⁇ m or more, more preferably 11 ⁇ m or more, further preferably 24 ⁇ m or more, and even more preferably 45 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but it is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 90 ⁇ m or less for use as a flexible electronic device.
  • the average CTE of the polymer film between 30 ° C. and 300 ° C. is preferably ⁇ 5 ppm / ° C. to + 20 ppm / ° C., more preferably -3 ppm / ° C. to + 15 ppm / ° C., and even more preferably ⁇ . It is 1 ppm / ° C to + 10 ppm / ° C.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the polymer film and the inorganic substrate are peeled off even when subjected to a heat application process. It can be avoided.
  • CTE is a factor representing reversible expansion and contraction with respect to temperature.
  • the CTE of the polymer film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the polymer film.
  • the method for measuring CTE of the polymer film is the method described in Examples.
  • the heat-resistant polymer film is subjected to a surface activation treatment.
  • the surface activation treatment is a dry or wet surface treatment.
  • a treatment of irradiating the surface with active energy rays such as ultraviolet rays, electron beams, and X-rays, a corona treatment, a vacuum plasma treatment, a normal pressure plasma treatment, a flame treatment, an itro treatment, and the like can be used.
  • the wet treatment a treatment in which the film surface is brought into contact with an acid or alkaline solution can be exemplified.
  • the surface activation treatment preferably used is a plasma treatment, which is a combination of a plasma treatment and a wet acid treatment.
  • the plasma treatment is not particularly limited, but includes RF plasma treatment in vacuum, microwave plasma treatment, microwave ECR plasma treatment, atmospheric pressure plasma treatment, corona treatment, and gas treatment containing fluorine and ions. It also includes ion implantation treatment using a source, treatment using the PBII method, flame treatment exposed to thermal plasma, and itro treatment. Among these, RF plasma treatment in vacuum, microwave plasma treatment, and atmospheric pressure plasma treatment are preferable.
  • Suitable conditions for plasma treatment include oxygen plasma, plasma containing fluorine such as CF 4 , C 2 F 6 , and other plasmas known to have a high chemical etching effect, or Ne, Ar, Kr, Xe, and plasma. As described above, it is desirable to perform treatment with plasma, which has a high effect of physically etching by applying physical energy to the surface of the polymer. It is also preferable to add plasma such as CO 2 , CO, H 2 , N 2 , NH 4 , CH 4 and a mixed gas thereof, and further water vapor.
  • OH, N 2 , N, CO, CO 2 , H, H 2 , O 2 , NH, NH 2 , NH 3 , COOH, NO, NO 2 , He, Ne, Ar, Kr, Xe, CH At least selected from the group consisting of 2 O, Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , C 3 H 7 Si (OCH 3 ) 3 , and C 3 H 7 Si (OC 2 H 5 ) 3. It is preferable to prepare a plasma containing one or more components as a gas or as a decomposition product in plasma.
  • Such surface activation treatment cleans the polymer surface and produces more active functional groups.
  • the generated functional group is bonded to the coupling agent layer by a hydrogen bond or a chemical reaction, and the heat-resistant polymer film layer and the coupling agent layer can be firmly adhered to each other.
  • the plasma treatment the effect of etching the surface of the heat-resistant polymer film can also be obtained.
  • protrusions due to the lubricant may hinder the adhesion between the films.
  • it is possible to remove the lubricant particles near the film surface by thinly etching the surface of the heat-resistant polymer film by plasma treatment to expose some of the lubricant particles and then treating with hydrofluoric acid. is there.
  • the heat shrinkage rate of the polymer film between 30 ° C. and 500 ° C. is preferably ⁇ 0.9%, more preferably ⁇ 0.6%.
  • the heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
  • the tensile breaking strength of the polymer film is preferably 60 MPa or more, more preferably 120 MPa or more, and further preferably 240 MPa or more.
  • the upper limit of the tensile breaking strength is not particularly limited, but is practically less than about 1000 MPa.
  • the tensile breaking strength of the polymer film refers to the average value of the tensile breaking strength in the flow direction (MD direction) and the tensile breaking strength in the width direction (TD direction) of the polymer film.
  • the method for measuring the tensile breaking strength of the polymer film is as described in Examples.
  • the tensile elongation at break of the polymer film is preferably 1% or more, more preferably 5% or more, and further preferably 20% or more. When the tensile elongation at break is 1% or more, the handleability is excellent.
  • the tensile elongation at break of the polymer film refers to the average value of the elongation at break in the flow direction (MD direction) and the elongation at break in the width direction (TD direction) of the polymer film.
  • the method for measuring the tensile elongation at break of the polymer film is the method described in Examples.
  • the tensile elastic modulus of the polymer film is preferably 3 GPa or more, more preferably 6 GPa or more, and further preferably 8 GPa or more.
  • the tensile elastic modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and further preferably 10 GPa or less.
  • the polymer film can be used as a flexible film.
  • the tensile elastic modulus of the polymer film refers to the average value of the tensile elastic modulus in the flow direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the polymer film.
  • the method for measuring the tensile elastic modulus of the polymer film is as described in Examples.
  • the thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. If the thickness spots exceed 20%, it tends to be difficult to apply to narrow areas.
  • the polymer film is preferably obtained in the form of being wound as a long polymer film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and has a roll-like height wound around a winding core.
  • the one in the form of a molecular film is more preferable.
  • the polymer film When the polymer film is wound in a roll shape, it can be easily transported in the form of a heat-resistant polymer film wound in a roll shape.
  • both ends of the polymer film may or may not be slit. Slitting is preferable, and the width of the polymer film at the time of slitting is preferably 90 mm or more.
  • a lubricant (particle) having a particle size of about 10 to 1000 nm is added / contained in the polymer film in an amount of about 0.03 to 3% by mass. Therefore, it is preferable to impart fine irregularities to the surface of the polymer film to ensure slipperiness.
  • the polymer film is rectangular, has an area of 0.65 m 2 or more, and can be manufactured with a side of at least 700 mm or more.
  • the upper limit of the length of one side is not particularly limited, and examples thereof include 3000 mm or less and 2000 mm or less.
  • the heat-resistant polymer film can be bonded in a state where at least a part of the silane coupling agent is dissolved in an aqueous medium, so that the heat-resistant polymer film is large (rectangular and has an area of 0.65 m). Even if it is 2 or more and one side is at least 700 mm or more), the adhesive strength can be made uniform.
  • the surface activation treatment described in the first embodiment may be applied to the first heat-resistant polymer film or the second heat-resistant polymer film. Further, it may be applied to only one side of each heat-resistant polymer film, or may be applied to both sides.
  • plasma treatment is performed on one side, the heat-resistant polymer film is placed in contact with the electrode on one side in the plasma treatment with the parallel plate type electrode, so that the plasma treatment is performed only on the side of the heat-resistant polymer film that is not in contact with the electrode. Can be applied.
  • the heat-resistant polymer film is placed in a state where it is electrically floated in the space between the two electrodes, plasma treatment can be performed on both sides.
  • single-sided treatment is possible by performing plasma treatment with a protective film attached to one side of the heat-resistant polymer film.
  • a protective film a PET film with an adhesive, an olefin film, or the like can be used.
  • the inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance.
  • a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramics are used.
  • the composite of a plate, a semiconductor wafer, and a metal include those in which these are laminated, those in which these are dispersed, and those in which these fibers are contained.
  • a nitrogen-free inorganic substrate is preferably used as a constituent element.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pylex (registered trademark)), borosilicate glass (non-alkali), and the like. Borosilicate glass (microsheet), aluminosilicate glass and the like are included.
  • the semiconductor wafer is not particularly limited, but is limited to silicon wafer, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphosphide-antimony, SiC, InP (indium phosphorus), InGaAs, GaInNAs, and the like. Wafers such as LT, LN, ZnO (zinc oxide), CdTe (cadmium telluride), and ZnSe (zinc selenide) can be mentioned. Among them, the wafer preferably used is a silicon wafer, and particularly preferably a mirror-polished silicon wafer having a size of 8 inches or more.
  • the metal includes single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, mnemonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to the polymer film, no diffusion, and good chemical resistance and heat resistance. Although not, Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
  • the flat portion of the inorganic substrate is sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is coarser than this, the adhesive strength between the polymer film layer and the inorganic substrate may be insufficient.
  • the thickness of the inorganic substrate is not particularly limited, but from the viewpoint of handleability, a thickness of 10 mm or less is preferable, 3 mm or less is more preferable, and 1.3 mm or less is further preferable.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.05 mm or more, more preferably 0.3 mm or more, still more preferably 0.5 mm or more.
  • the silane coupling agent physically or chemically intervenes between the inorganic substrate and the polymer film, and has an action of adhering the inorganic substrate and the polymer film.
  • the silane coupling agent used in the present embodiment is not particularly limited, but preferably contains a coupling agent having an amino group.
  • Preferred specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2-.
  • a silane coupling agent having one silicon atom in one molecule is particularly preferable, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- 2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Examples thereof include triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, aminophenyltrimethoxysilane, aminophenyl trimethoxysilane, aminophenylaminomethylphenetyl trimethoxysilane and the like. When particularly high heat resistance is required in the process, it is desirable to connect Si and an amino group with an amino group with an amino group with an
  • Another coupling agent can be used together with the silane coupling agent.
  • the coupling agent include 11-amino-1-undecenothiol and the like.
  • diamine can be used as the reactive liquid together with the silane coupling agent.
  • the diamine compound can be used alone or in a combination of a plurality of types. It can also be used as a solution of alcohol, water and various solvents. Further, the diamine in solution may be mixed with a reactive liquid other than diamine.
  • Examples of the diamine that can be used in the present embodiment include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, and 1,9.
  • -Nonan diamine, 1,10-decane diamine, 1,2-hexane diamine, 1,3-hexane diamine, 1,4-hexane diamine, 1,5-hexane diamine, 1,2-pentane diamine, 1,3-pentane Examples include diamine and 1,4-pentanediamine.
  • a method for applying the silane coupling agent (method for forming the silane coupling agent layer)
  • a method for applying the silane coupling agent solution to the inorganic substrate, a vapor deposition method, or the like can be used.
  • the silane coupling agent layer may be formed on the surface of the heat-resistant polymer film.
  • the application of the silane coupling agent can be performed using the application device 40.
  • a spin coating method As a method of applying the silane coupling agent solution, a spin coating method, a curtain coating method, a dip coating method, a slit die coating method, a gravure coating method, a bar, using a solution obtained by diluting the silane coupling agent with a solvent such as alcohol.
  • Conventionally known solution coating means such as a coating method, a comma coating method, an applicator method, a screen printing method, and a spray coating method can be appropriately used.
  • the silane coupling agent layer can also be formed by a vapor deposition method.
  • the inorganic substrate is formed by exposing the inorganic substrate to the vapor of the silane coupling agent, that is, the silane coupling agent in a substantially gaseous state. ..
  • the vapor of the silane coupling agent can be obtained by heating the liquid silane coupling agent to a temperature from 40 ° C. to about the boiling point of the silane coupling agent.
  • the boiling point of the silane coupling agent varies depending on the chemical structure, but is generally in the range of 100 to 250 ° C. However, heating at 200 ° C. or higher is not preferable because it may cause a side reaction on the organic group side of the silane coupling agent.
  • the environment for heating the silane coupling agent may be any of pressure, normal pressure, and reduced pressure, but in the case of promoting vaporization of the silane coupling agent, normal pressure or reduced pressure is preferable. Since many silane coupling agents are flammable liquids, it is preferable to carry out the vaporization work in a closed container, preferably after replacing the inside of the container with an inert gas.
  • the time for exposing the inorganic substrate to the silane coupling agent is not particularly limited, but is preferably 20 hours or less, more preferably 60 minutes or less, still more preferably 15 minutes or less, and most preferably 1 minute or less.
  • the temperature of the inorganic substrate during exposure of the inorganic substrate to the silane coupling agent is an appropriate temperature between -50 ° C and 200 ° C depending on the type of the silane coupling agent and the desired thickness of the silane coupling agent layer. It is preferable to control the temperature.
  • the film thickness of the silane coupling agent layer is extremely thin compared to inorganic substrates, polymer films, etc., and is negligible from the viewpoint of mechanical design.
  • a thickness on the order of the molecular layer is sufficient. Generally, it is less than 20 nm, preferably 15 nm or less, more preferably 10 nm or less, more preferably 7 nm or less, still more preferably 5 nm or less in practical use. However, in the calculated region of 5 nm or less, the silane coupling agent layer may exist in a cluster form rather than as a uniform coating film.
  • the film thickness of the silane coupling agent layer can be obtained by ellipsometry or by calculating from the concentration of the silane coupling agent solution at the time of coating and the coating amount.
  • aqueous medium water or a mixed medium of water and a water-soluble solvent can be used.
  • water-soluble solvent a lower alcohol, a low-molecular-weight ketone, tetrahydrofuran and the like can be used, and preferably used aqueous mediums are pure water, a mixed solvent of water and methanol, a mixed solvent of water and ethanol, water, isopropanol and methyl ethyl ketone. , A mixed solvent of water and tetrahydrofuran, and the like.
  • An aqueous medium particularly preferably used in the present invention is water, a monohydric alcohol, a dihydric alcohol, or a trihydric alcohol that is liquid at room temperature, or a mixture having two or more components thereof. Further, a trace amount of surfactant may be added to the aqueous medium in order to improve the wettability between the aqueous medium and the inorganic substrate or polymer film.
  • the aqueous medium is used to wet the opposing surfaces, that is, the adhesive surfaces during bonding.
  • a method of wetting the adhesive surface of the substrate or film with an aqueous medium existing methods such as dropping with a dropper or a dispenser, discharging from a valve, and spraying in a mist form from a spray nozzle or the like can be applied.
  • Immersing the substrate or film in an aqueous medium is also an effective means for wetting.
  • Examples of the method of wetting the adhesive surface of the substrate or film with an aqueous medium include a method of using the water supply device 50. When a liquid containing water or alcohol is used as the aqueous medium, it also contributes to promoting the reaction of the silane coupling agent.
  • a press method, a roll laminator method, or the like can be applied as a method of bonding the substrate and the film.
  • press, laminating, or roll laminating can be used to pressurize in a planar or linear manner in an atmospheric pressure atmosphere or in a vacuum. The process can also be accelerated by heating during pressurization.
  • press or roll laminating in an air atmosphere is preferable, and a method using rolls (roll laminating or the like) is particularly preferable because the aqueous medium at the bonding interface can be bonded while being sequentially extruded from the bonding surface.
  • a method of bonding the inorganic substrate and the heat-resistant polymer film after the water-based medium is supplied can be performed by using the laminating device 70.
  • a functional element is formed on a surface opposite to the adhesive surface of the heat-resistant polymer film, and after the formation, the polymer film is peeled off from the substrate together with the functional element to create a flexible electronic device.
  • the electronic device refers to a wiring board having a single-sided, double-sided, or multi-layer structure for electrical wiring, an electronic circuit including active elements such as transistors and diodes, and passive devices such as resistors, capacitors, and inductors, and others.
  • Sensor elements that sense pressure, temperature, light, humidity, etc., biosensor elements, light emitting elements, liquid crystal displays, electrophoresis displays, self-luminous displays and other image display elements, wireless and wired communication elements, arithmetic elements, storage elements, It refers to a MEMS element, a solar cell, a thin film, and the like.
  • the polymer film is peeled off from the inorganic substrate.
  • the method of peeling the polymer film on which the electronic device is formed from the inorganic substrate is not particularly limited, but the method of winding from the edge with a tweezers or the like, making a cut in the polymer film, and attaching an adhesive tape to one side of the cut portion.
  • a method of winding from the tape portion after wearing the film, a method of vacuum-adsorbing one side of the cut portion of the polymer film and then winding from that portion, and the like can be adopted. If the notched portion of the polymer film is bent with a small curvature during peeling, stress will be applied to the device at that portion and the device may be destroyed. Therefore, peel it off with the curvature as large as possible. Is desirable.
  • the method of making a cut in the polymer film include a method of cutting the polymer film with a cutting tool such as a cutting tool, a method of cutting the polymer film by relatively scanning a laser and a laminate, and a water jet.
  • a method of cutting the polymer film by relatively scanning the laminate a method of cutting the polymer film while cutting a little to the glass layer with a dicing device of a semiconductor chip, etc., but the method is not particularly limited. Absent.
  • the laminated body roll manufacturing apparatus has the following configuration.
  • a metal leaf transport device that transports metal foil
  • a water supply device that supplies an aqueous medium to the surface of the metal foil coated with the silane coupling agent and / or the surface of the heat-resistant polymer film coated with the silane coupling agent.
  • a laminate roll manufacturing apparatus including a roll laminating apparatus for laminating a metal foil and a heat-resistant polymer film, one or both of which have been supplied with an aqueous medium.
  • the laminate roll manufacturing apparatus according to (1) comprising a coating apparatus for applying a silane coupling agent to a metal foil.
  • the laminated roll manufacturing apparatus according to (1) or (2) comprising a metal foil cleaning apparatus for cleaning the metal foil before the aqueous medium is supplied.
  • the laminated roll manufacturing apparatus according to (1) to (3) comprising a film cleaning apparatus for cleaning the heat-resistant polymer film before the aqueous medium is supplied.
  • the laminated roll manufacturing apparatus according to any one of (1) to (4) wherein the heat-resistant polymer film has a width of 700 mm or more.
  • the method for producing a roll of a laminated body according to the second embodiment has the following configuration.
  • a method for manufacturing a roll of a laminate of a metal foil and a heat-resistant polymer film Step A of supplying an aqueous medium to the surface of the metal foil coated with the silane coupling agent and / or the surface of the heat-resistant polymer film coated with the silane coupling agent, and Step B of bonding the metal foil and the heat-resistant polymer film, one or both of which are after the water-based medium has been supplied.
  • Step X-3 for cleaning the heat-resistant polymer film before the step A.
  • the step X-4 of inspecting the appearance of the laminated roll of the bonded metal foil and the heat-resistant polymer film.
  • Step X-5 for peeling the heat-resistant polymer film from the laminate roll determined to have a poor appearance by the step X-4.
  • (13) The method for producing a laminated body roll according to any one of (7) to (12), wherein the pressing pressure in step B is 0.5 MPa or less.
  • the "metal leaf” corresponds to the "first sheet” in the present embodiment
  • the “metal leaf transfer device” corresponds to the "first sheet transfer device” in the present embodiment
  • the "heat-resistant polymer film” corresponds to the "second sheet” in the present embodiment
  • the “roll laminating device” corresponds to the “laminating device” in the present embodiment
  • the “laminated body roll manufacturing device” corresponds to the present embodiment.
  • the "metal leaf cleaning apparatus” corresponds to the "first cleaning apparatus” in the present embodiment
  • the “film cleaning apparatus” corresponds to the "second cleaning apparatus” in the present embodiment.
  • the laminated body roll manufacturing apparatus and the method for manufacturing the laminated body roll according to the second embodiment will be specifically described.
  • FIG. 2 is a schematic diagram for explaining the laminated body roll manufacturing apparatus according to the second embodiment.
  • the same reference numerals are given to the configurations common to the laminate manufacturing apparatus 10 according to the first embodiment.
  • the laminate roll manufacturing apparatus 1000 includes an apparatus having a function of unwinding and transporting a metal foil from the metal foil 200, a metal foil cleaning apparatus 30, a coating apparatus 40, and the like.
  • a water supply device 50 a device having a function of unwinding and transporting a film from a film roll 300, a film cleaning device 60, a roll laminating device 70, a visual inspection device 80, and finally a laminated body by winding up the laminated body.
  • a winding device for rolling 400 is provided.
  • the laminate manufacturing apparatus in the present invention may include at least an apparatus for transporting the first sheet (metal leaf), a water supply apparatus, and a roll laminating apparatus.
  • the metal foil 100 is unwound from the metal foil 200, transported, and moved between the devices included in the laminated body roll manufacturing device 1000.
  • the metal leaf transfer is not particularly limited as long as the metal leaf 100 can be conveyed, but it is desirable that the metal leaf transfer can automate the production of the laminate.
  • the metal leaf cleaning device 30 includes a cleaning liquid injection nozzle 32, an air knife (not shown), and the like.
  • the metal leaf cleaning device 30 can dry the surface of the metal leaf 100 by injecting the cleaning liquid 34 onto the metal leaf 100 and then blowing air with the air knife.
  • the first cleaning device (metal leaf cleaning device) according to the present invention is a device capable of continuously cleaning the first sheet (metal leaf) before the aqueous medium is supplied. If there is, the present invention is not limited to the metal leaf cleaning apparatus 30 described above, and conventionally known ones can be adopted.
  • the coating device 40 includes a silane coupling agent supply pipe 42 and the like provided with a plurality of small holes.
  • the coating device 40 can coat the silane coupling agent 44 on the metal foil 100 from the silane coupling agent supply pipe 42.
  • the coating device according to the present invention is not limited to the above-mentioned coating device 40 as long as it can coat the silane coupling agent on the metal foil, and conventionally known ones can be adopted.
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the metal foil 100 coated with the silane coupling agent.
  • the structure of the water supply device 50 is not particularly limited as long as it is possible to supply the aqueous medium 52 to the surface of the metal foil 100 coated with the silane coupling agent, and conventionally known ones may be adopted. it can.
  • the amount of the aqueous medium 52 supplied is not particularly limited, but is preferably about 0.1 to 50 g / 100 cm 2 from the viewpoint of reducing air bubbles and foreign substances.
  • the polymer film is unwound from the film roll 300 and guided to the film cleaning device 60.
  • the film cleaning device can clean the surface of the heat-resistant polymer film 102 by injecting the cleaning liquid 64 onto the heat-resistant polymer film 102 supplied from the film roll 300 and then blowing air with an air knife (not shown).
  • the second cleaning device (film cleaning device) according to the present invention is a device capable of continuously cleaning the second sheet (heat-resistant polymer film) before the aqueous medium is supplied. If there is, the present invention is not limited to the film cleaning apparatus 60 described above, and conventionally known ones can be adopted.
  • the roll laminating device 70 includes a laminating roller 72 and the like.
  • the roll laminating device 70 attaches the metal foil 100 and the heat-resistant polymer film 102 after the water-based medium 52 is supplied by pressing the laminating roller 72.
  • the pressing pressure at the time of bonding is preferably 0.5 MPa or less. According to the laminate manufacturing apparatus 1000, since at least a part of the silane coupling agent 44 can be bonded in a state of being dissolved in the aqueous medium 52, the pressing pressure at the time of lamination can be reduced.
  • the laminating device (roll laminating device) according to the present invention can be attached to the above-mentioned roll laminating device 70 as long as it can bond the metal foil and the heat-resistant polymer film after the water-based medium is supplied. Not limited to this, conventionally known ones can be adopted.
  • the pressing pressure of the roll laminating device 70 is preferably 0.5 MPa or less. Since the bonding can be performed in a state where at least a part of the silane coupling agent is dissolved in the aqueous medium, the pressing pressure at the time of laminating can be reduced. When the pressing pressure is 0.5 MPa or less, damage to the metal foil can be suppressed.
  • the lower limit of the pressing pressure is not particularly limited, but is preferably 0.1 MPa or more. When it is 0.1 MPa or more, it is possible to prevent a portion that does not adhere to each other and insufficient adhesion.
  • the temperature at the time of pressurization is preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 40 ° C.
  • the temperature at the time of high-temperature lamination pressurization is preferably 80 ° C. to 250 ° C., more preferably 90 ° C. to 140 ° C.
  • the pressurization treatment can be performed in an atmospheric pressure atmosphere, but it may be possible to obtain uniform adhesive force by performing the pressure treatment in a vacuum.
  • the degree of vacuum the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
  • a device that can be used for pressure heat treatment in order to perform pressing in vacuum, a roll-type film laminator in vacuum or a thin rubber film after vacuuming is used to apply pressure to the entire surface of the glass at once.
  • MVLP manufactured by Meiki Co., Ltd.
  • the pressurization process can be performed separately for the pressurization process and the heating process.
  • the polymer film and the metal foil are pressurized (preferably about 0.05 to 50 MPa) at a relatively low temperature (for example, a temperature of less than 80 ° C., more preferably 10 or more and 60 ° C. or less).
  • relatively high temperature for example, 80 ° C. or higher, more preferably 100 to 250 ° C., still more preferably 120 to 220 ° C.
  • pressure preferably 20 MPa or less, 0.05 MPa or more
  • the appearance inspection device 80 inspects the appearance of the laminate 104 of the metal foil 100 bonded by the roll laminating device 70 and the heat-resistant polymer film 102.
  • the visual inspection device 80 for example, an optical system of an automatic optical inspection device (AOI: Automated Optical Inspection) can be adopted.
  • the visual inspection device 80 is based on an image obtained by the CCD camera (an image of the heat-resistant polymer film 102 surface side of the laminated body 104) and preset (quantified) data, and the foreign matter is formed on the laminated body 104. It is judged whether or not there is any contamination, and whether or not there is uneven sticking.
  • the appearance inspection device according to the present invention is not limited to the above-mentioned appearance inspection device 80 as long as it can inspect the appearance of a laminate of a metal foil and a heat-resistant polymer film, and is conventionally known. Things can be adopted.
  • the laminate manufacturing apparatus 1000 includes a peeling apparatus (not shown).
  • the peeling device peels the heat-resistant polymer film 102 from the laminated body 104 determined by the appearance inspection device 80 to have a poor appearance.
  • As the peeling device a conventionally known one can be adopted. Since the peeling device is provided, the heat-resistant polymer film 102 can be peeled from the laminated body 104 determined to have a poor appearance. As a result, the metal leaf 100 can be reused immediately.
  • the coating device 40 for applying the silane coupling agent to the metal foil is provided, but the present invention is not limited to this example, and the silane coupling agent is applied to the first sheet (metal leaf).
  • a device for coating the silane coupling agent on the second sheet may be provided.
  • a coating device 40 for applying the silane coupling agent to the first sheet (metal foil) may be provided, and a device for applying the silane coupling agent to the second sheet (heat-resistant polymer film) may be provided. ..
  • the coating device 40 for applying the silane coupling agent to the metal foil has been described, but in the present invention, the coating device for applying the silane coupling agent to the first sheet (metal leaf) is provided. It is not necessary to provide. In this case, for example, a first sheet (metal leaf) to which a silane coupling agent has been previously applied may be used.
  • the laminate of the metal foil and the heat-resistant polymer film thus obtained is wound into a laminate roll 400.
  • the laminated roll manufacturing apparatus 1000 according to the present embodiment has been described above.
  • the method for manufacturing the laminated body roll according to the second embodiment will be described.
  • a method for manufacturing a laminated body when the laminated body roll manufacturing apparatus 1000 is used will be described, but the present invention is not limited to this example.
  • a worker or the like may carry out the steps carried out by each device.
  • the method for manufacturing the laminate according to the first embodiment is A method for producing a laminate roll having a metal foil and a heat-resistant polymer film in this order.
  • Step of cleaning the heat-resistant polymer film X-3 After the step B, the steps X-4 for inspecting the appearance of the laminated body of the bonded metal foil and the heat-resistant polymer film, and It is preferable to have the step X-5 of peeling the heat-resistant polymer film from the laminate determined to have a poor appearance by the step X-4.
  • the metal foil 100 is moved in the direction of the metal leaf cleaning device 30, and the metal foil is washed by the metal leaf cleaning device 30 (step X-2).
  • the metal foil 100 is moved in the direction of the coating device 40, and the silane coupling agent is applied to the metal foil by the coating device 40 (step X-1).
  • the film cleaning device 60 sprays the cleaning liquid 64 onto the heat-resistant polymer film 102 supplied from the film roll 300, and then blows air with an air knife (not shown) to clean the surface of the heat-resistant polymer film 102 ( Step X-3).
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the metal foil 100 coated with the silane coupling agent (step A).
  • step B the metal foil 100 and the heat-resistant polymer film 102 after the water-based medium 52 is supplied are bonded to each other by the roll laminating device 70 (step B).
  • step X-4 the appearance of the laminate 104 of the bonded metal foil 100 and the heat-resistant polymer film 102 is inspected by the appearance inspection device 80 (step X-4).
  • the heat-resistant polymer film 102 is peeled from the laminate 104 determined to have a poor appearance by the step X-4 by the peeling device (step X-5).
  • the silane coupling agent is applied to the metal foil
  • the present invention is not limited to this example, and instead of applying the silane coupling agent to the first sheet (metal leaf), ,
  • the silane coupling agent may be applied to the second sheet (heat resistant polymer film).
  • the silane coupling agent may be applied to the first sheet (metal foil) and the silane coupling agent may be applied to the second sheet (heat-resistant polymer film).
  • the case where the silane coupling agent is applied to the metal foil has been described, but the present invention does not have to include the step of applying the silane coupling agent to the first sheet (metal leaf). ..
  • a first sheet (metal leaf) to which a silane coupling agent has been previously applied may be used.
  • the heat-resistant polymer film according to the second embodiment can have the same configuration as the polymer film described in the first embodiment.
  • the average CTE of the polymer film between 30 ° C. and 300 ° C. is preferably ⁇ 5 ppm / ° C. to + 20 ppm / ° C., more preferably -3 ppm / ° C. to + 15 ppm / ° C., and even more preferably ⁇ . It is 1 ppm / ° C to + 10 ppm / ° C.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (metal foil) can be kept small, and the polymer film and the metal foil are peeled off even when subjected to a heat application process. It can be avoided.
  • the polymer film preferably has a width of at least 700 mm or more.
  • the length of the film is preferably at least 10 m, and the upper limit of the length is not particularly limited.
  • the polymer film is preferably supplied in a rolled state.
  • the heat-resistant polymer film can be bonded in a state where at least a part of the silane coupling agent is dissolved in an aqueous medium, so that the heat-resistant polymer film is large (width is at least 700 mm and length is at least 700 mm). Is 10 m or more), the adhesive strength can be made uniform.
  • the metal foil examples include single element metals such as W, Mo, Pt, Fe, Ni, Au, and Cu, Inconel, Monel, mnemonic, carbon copper, Fe—Ni-based Invar alloy, Super Invar alloy, and various stainless steels. Such as alloys are included. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to the polymer film, no diffusion, and good chemical resistance and heat resistance. Although not, Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
  • CTE coefficient of linear expansion
  • the flat surface portion of the metal foil is sufficiently flat.
  • the PV value of the surface roughness is 5 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 0.3 ⁇ m or less. If it is coarser than this, the adhesive strength between the polymer film layer and the metal foil may be insufficient.
  • the thickness of the metal foil is not particularly limited, but from the viewpoint of handleability, a thickness of 1 mm or less is preferable, 0.3 mm or less is more preferable, and 0.08 mm or less is further preferable.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.001 mm or more, more preferably 0.05 mm or more, and further preferably 0.02 mm or more.
  • the silane coupling agent physically or chemically intervenes between the metal foil and the polymer film, and has an action of adhering the metal foil and the polymer film.
  • the silane coupling agent can have the same configuration as the silane coupling agent described in the first embodiment.
  • a method for applying the silane coupling agent (method for forming the silane coupling agent layer)
  • a method of applying a silane coupling agent solution to the metal foil, a vapor deposition method, or the like can be used.
  • the silane coupling agent layer may be formed on the surface of the heat-resistant polymer film.
  • the application of the silane coupling agent can be performed using the application device 40.
  • the aqueous medium may have the same configuration as the aqueous medium described in the first embodiment.
  • the aqueous medium is used to wet the opposing surfaces, that is, the adhesive surfaces, when the polymer film and the metal foil are laminated.
  • the laminated body roll manufacturing apparatus and the method for manufacturing the laminated body roll according to the second embodiment have been described above.
  • the heat-resistant polymer film laminate manufacturing apparatus has the following configuration. (1) A film transport device for transporting the first heat-resistant polymer film, and A water supply device that supplies an aqueous medium to the surface of the first heat-resistant polymer film coated with the silane coupling agent and / or the surface of the second heat-resistant polymer film coated with the silane coupling agent. , After supplying an aqueous medium to one or both of the first heat-resistant polymer film and the second heat-resistant polymer film, the first heat-resistant polymer film and the second heat-resistant polymer film are bonded together. A heat-resistant polymer film laminate manufacturing apparatus including a laminating apparatus.
  • the heat-resistant polymer film laminate manufacturing apparatus comprising a coating device for applying a silane coupling agent to the first heat-resistant polymer film.
  • the heat-resistant polymer film laminate manufacturing apparatus according to (1) or (2) comprising a first heat-resistant polymer film cleaning apparatus for cleaning the first heat-resistant polymer film before the aqueous medium is supplied. ..
  • the heat-resistant polymer film according to any one of (1) to (3) comprising a second heat-resistant polymer film cleaning device for cleaning the second heat-resistant polymer film before the aqueous medium is supplied.
  • Laminate manufacturing equipment (5) The heat-resistant polymer film laminate manufacturing apparatus according to any one of (1) to (4), wherein the second heat-resistant polymer film has a width of 90 mm or more.
  • the heat-resistant polymer film laminate manufacturing apparatus according to any one of (1) to (5), wherein the pressing pressure of the laminating apparatus is 0.2 MPa or more.
  • the method for producing the heat-resistant polymer film laminate according to the third embodiment has the following configurations.
  • Process B A method for producing a heat-resistant polymer film laminate having the above.
  • the "first heat-resistant polymer film” corresponds to the "first sheet” in the present embodiment
  • the “film transfer device” is the “first sheet transfer device” in the present embodiment.
  • the “second heat-resistant polymer film” corresponds to the "second sheet” in the present embodiment
  • the "heat-resistant polymer film laminate manufacturing apparatus” corresponds to the "laminate manufacturing apparatus” in the present embodiment.
  • the "first heat-resistant polymer film cleaning device” corresponds to the “first cleaning device” in the present embodiment
  • the “second heat-resistant polymer film cleaning device” corresponds to the "second heat-resistant polymer film cleaning device” in the present embodiment.
  • cleaning device corresponds to the "cleaning device”.
  • FIG. 3 is a schematic diagram for explaining the heat-resistant polymer film laminate manufacturing apparatus according to the third embodiment.
  • the heat-resistant polymer film laminate manufacturing apparatus is a laminate roll manufacturing apparatus
  • the laminate produced by the heat-resistant polymer film laminate manufacturing apparatus of the third embodiment is laminated. It is not limited to the body roll, and may be a laminated body obtained from a single leaf.
  • the same reference numerals are given to the configurations common to the laminate manufacturing apparatus 10 according to the first embodiment.
  • the laminate roll manufacturing apparatus 2000 includes an apparatus having a function of unwinding and transporting the first heat-resistant polymer film from the first heat-resistant polymer film roll 200, and a third. 1.
  • the laminate manufacturing apparatus in the present invention may include at least a first sheet transporting device (a device for transporting the first heat-resistant polymer film roll), a water supply device, and a roll laminating device.
  • the first heat-resistant polymer film 100 is unwound from the first heat-resistant polymer film roll 200, transported, and moved between the devices included in the laminate roll manufacturing device 2000.
  • the transport of the first heat-resistant polymer film is not particularly limited as long as the first heat-resistant polymer film 100 can be transported, but it is desirable that the production of the laminate can be automated.
  • the first heat-resistant polymer film cleaning device 30 includes a cleaning liquid injection nozzle 32, an air knife (not shown), and the like.
  • the first heat-resistant polymer film cleaning device 30 dries the surface of the first heat-resistant polymer film 100 by injecting the cleaning liquid 34 onto the first heat-resistant polymer film 100 and then blowing air with the air knife. can do.
  • the first cleaning device (first heat-resistant polymer film cleaning device) according to the present invention is preferably continuous with the first sheet (first heat-resistant polymer film) before the aqueous medium is supplied.
  • the device is not limited to the first heat-resistant polymer film cleaning device 30 described above, and a conventionally known device can be used as long as it can be specifically cleaned.
  • the coating device 40 preferably includes a silane coupling agent supply pipe 42 or the like provided with a plurality of small holes.
  • the coating device 40 can coat the silane coupling agent 44 on the first heat-resistant polymer film 100 from the silane coupling agent supply pipe 42.
  • the coating device 40 according to the present invention is not limited to the above-mentioned coating device 40 as long as it can coat the silane coupling agent 44 on the first heat-resistant polymer film 100, and is conventionally known. Things can be adopted.
  • the silane coupling agent 44 may be in a liquid state or in a gaseous state. A gaseous silane coupling agent is preferable because it can be uniformly applied to the first heat-resistant polymer film 100.
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the first heat-resistant polymer film 100 coated with the silane coupling agent.
  • the structure of the water supply device 50 is not particularly limited as long as it can supply the aqueous medium 52 to the surface of the first heat-resistant polymer film 100 coated with the silane coupling agent, and is conventionally known. Can be adopted.
  • the amount of the aqueous medium 52 supplied is not particularly limited, but from the viewpoint of reducing air bubbles and foreign substances, 0.1 to 50 g (0.1 to 50 g / 100 cm) per unit area (100 cm 2) of the first heat-resistant polymer film. 2 ) is preferable, and 1 to 30 g / 100 cm 2 is more preferable.
  • the second heat-resistant polymer film 102 is unwound from the second heat-resistant polymer film roll 300 and guided to the second heat-resistant polymer film cleaning device 60.
  • the second heat-resistant polymer film cleaning device 60 sprays the cleaning liquid 64 onto the second heat-resistant polymer film 102 and then blows air with an air knife (not shown) to clean the surface of the second heat-resistant polymer film 102. Can be washed.
  • the second cleaning device (second film cleaning device) according to the present invention preferably continuously cleans the second sheet (second heat-resistant polymer film) before the aqueous medium is supplied. Any device capable of this is not limited to the above-mentioned second heat-resistant polymer film cleaning device 60, and conventionally known devices can be adopted.
  • the roll laminating device 70 includes a laminating roller 72 and the like.
  • the roll laminating device 70 attaches the first heat-resistant polymer film 100 and the second heat-resistant polymer film 102 after the aqueous medium 52 is supplied by pressing (pressurizing) the laminating roller 72. ..
  • the pressing pressure at the time of bonding is preferably 0.2 MPa or more. According to the laminate manufacturing apparatus 2000, since at least a part of the silane coupling agent 44 can be bonded in a state of being dissolved in the aqueous medium 52, unevenness at the time of lamination can be suppressed.
  • the laminating device (roll laminating device) according to the present invention is a device capable of bonding the first heat-resistant polymer film and the second heat-resistant polymer film after the aqueous medium is supplied.
  • the roll laminating apparatus 70 is not limited to the above-mentioned roll laminating apparatus 70, and conventionally known ones can be adopted.
  • the pressing pressure of the roll laminating device 70 is preferably 0.2 MPa or more. Since the bonding can be performed in a state where at least a part of the silane coupling agent is dissolved in the aqueous medium, unevenness at the time of laminating can be suppressed. When the pressing pressure is 0.2 MPa or more, it is possible to suppress air from being caught between the bonded heat-resistant polymer films.
  • the lower limit of the pressing pressure is not particularly limited, but is preferably 0.5 MPa or more. When it is 0.5 MPa or more, it is possible to prevent a portion that does not adhere to each other and insufficient adhesion.
  • the temperature at the time of pressurization is preferably 10 ° C. to 60 ° C., more preferably 20 ° C.
  • the temperature at the time of high-temperature lamination pressurization is preferably 80 ° C. to 250 ° C., more preferably 90 ° C. to 200 ° C.
  • At least one of the upper and lower rolls 72 used for laminating is a roll made of a flexible material.
  • the roll made of a flexible material referred to here refers to a silicon rubber roll having an elastic modulus of 300 MPa or less. If at least one of the rolls used for laminating is made of a flexible material, a high-quality film laminate with less air bubbles can be produced.
  • the pressurization treatment can be performed in an atmospheric pressure atmosphere, but it may be possible to obtain uniform adhesive force by performing the pressure treatment in a vacuum.
  • the degree of vacuum the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
  • a roll-type film laminator in vacuum can be used for pressing in vacuum.
  • vacuum laminating such as a film laminator that applies pressure to the entire surface of the glass at once with a thin rubber film after vacuuming, for example, "MVLP" manufactured by Meiki Co., Ltd. can be used.
  • the pressurization heat treatment can be performed separately for the pressurization process and the heating process.
  • first, the first heat-resistant polymer film and the second heat-resistant polymer film are pressurized (preferably at a temperature of less than 80 ° C., more preferably 10 ° C. or higher and 60 ° C. or lower) at a relatively low temperature. (About 0.05 to 50 MPa) to ensure close contact between the two, and then at a relatively high temperature (for example, 80 ° C. or higher, more preferably 100 to 100 MPa) under pressure (preferably 0.2 MPa or higher, 20 MPa or lower) or normal pressure.
  • a relatively high temperature for example, 80 ° C. or higher, more preferably 100 to 100 MPa
  • under pressure preferably 0.2 MPa or higher, 20 MPa or lower
  • normal pressure preferably 0.2 MPa or higher, 20 MPa or lower
  • the appearance inspection device 80 inspects the appearance of the laminate 104 of the first heat-resistant polymer film 100 and the second heat-resistant polymer film 102 bonded by the roll laminating device 70.
  • the visual inspection device 80 for example, an optical system of an automatic optical inspection device (AOI: Automated Optical Inspection) can be adopted.
  • the visual inspection device 80 is based on an image obtained by the CCD camera (an image of the second heat-resistant polymer film 102 surface side of the laminated body 104) and preset (quantified) data of the laminated body. It is determined whether or not foreign matter is mixed in 104 and whether or not there is uneven sticking.
  • the appearance inspection device according to the present invention is not limited to the above-mentioned appearance inspection device 80 as long as it can inspect the appearance of the laminate of the first and second heat-resistant polymer films. Conventionally known ones can be adopted.
  • the coating device 40 for applying the silane coupling agent to the first heat-resistant polymer film has been described, but the present invention is not limited to this example, and the silane coupling agent is used as the first heat-resistant polymer film.
  • the coating device 40 for applying the silane coupling agent to the sheet (first heat-resistant polymer film) an apparatus for applying the silane coupling agent to the second sheet (second heat-resistant polymer film) may be provided.
  • the coating device 40 for applying the silane coupling agent to the first sheet (first heat-resistant polymer film) is provided, and the silane coupling agent is applied to the second sheet (second heat-resistant polymer film).
  • the device may be provided.
  • the coating device 40 for applying the silane coupling agent to the first heat-resistant polymer film has been described, but in the present invention, the silane coupling agent is applied to the first sheet (first sheet). It is not necessary to provide a coating device for coating the heat-resistant polymer film). In this case, for example, a first sheet (first heat-resistant polymer film) to which a silane coupling agent has been previously applied may be used. The laminate of the first heat-resistant polymer film and the second heat-resistant polymer film thus obtained is wound into a laminate roll 400.
  • the laminated roll manufacturing apparatus 2000 according to the present embodiment has been described above.
  • the method for manufacturing the laminated body according to the third embodiment will be described.
  • a method for manufacturing a laminated body when the laminated body roll manufacturing apparatus 2000 is used will be described, but the present invention is not limited to this example.
  • a worker or the like may carry out the steps carried out by each device.
  • the method for manufacturing the laminate according to the third embodiment is A method for producing a laminate having a first heat-resistant polymer film and a second heat-resistant polymer film in this order.
  • Step A of supplying an aqueous medium to the surface of the first heat-resistant polymer film coated with the silane coupling agent and / or the surface of the second heat-resistant polymer film coated with the silane coupling agent, and , It has at least a step B of bonding the first heat-resistant polymer film and the second heat-resistant polymer film after the aqueous medium is supplied.
  • Step X-2 for cleaning the first heat-resistant polymer film, Step X-1 in which the silane coupling agent is applied to the first heat-resistant polymer film after step X-2.
  • Step X-3 for cleaning the second heat-resistant polymer film After the step B, it is preferable to have a step X-4 for inspecting the appearance of the laminated body of the first heat-resistant polymer film and the second heat-resistant polymer film bonded together.
  • the first heat-resistant polymer film 100 is moved in the direction of the first heat-resistant polymer film cleaning device 30, and the first heat-resistant polymer film cleaning device 30 first heat-resistant.
  • the polymer film is washed (step X-2).
  • the first heat-resistant polymer film 100 is moved in the direction of the coating device 40, and the silane coupling agent is applied to the first heat-resistant polymer film by the coating device 40 (step X-1).
  • step X-3 After the cleaning liquid 64 is sprayed onto the second heat-resistant polymer film 102 supplied from the second heat-resistant polymer film roll 300 by the second heat-resistant polymer film cleaning device 60, air is blown with an air knife (not shown). The surface of the second heat-resistant polymer film 102 is cleaned by spraying (step X-3).
  • the water supply device 50 supplies the aqueous medium 52 to the surface of the first heat-resistant polymer film 100 coated with the silane coupling agent (step A).
  • step B the first heat-resistant polymer film 100 and the second heat-resistant polymer film 102 after the aqueous medium 52 is supplied are bonded together by the roll laminating device 70 (step B).
  • step B is carried out immediately after the supply of the aqueous medium 52 (step A). At least, it is more preferable to complete the bonding before the aqueous medium 52 dries (evaporates).
  • step X-4 the appearance of the laminate 104 of the first heat-resistant polymer film 100 and the second heat-resistant polymer film 102 bonded together is inspected by the appearance inspection device 80 (step X-4).
  • the manufacturing method is preferably a method for manufacturing a laminated body roll.
  • the silane coupling agent is applied to the first heat-resistant polymer film
  • the silane coupling agent is applied to the first sheet (first sheet).
  • the silane coupling agent may be applied to the second sheet (second heat-resistant polymer film).
  • the silane coupling agent may be applied to the first sheet (first heat-resistant polymer film), and the silane coupling agent may be applied to the second sheet (second heat-resistant polymer film).
  • the silane coupling agent is applied to the first heat-resistant polymer film. It is not necessary to provide a step of applying to. In this case, for example, a first sheet (first heat-resistant polymer film) to which a silane coupling agent has been previously applied may be used.
  • the first heat-resistant polymer film and the second heat-resistant polymer film according to the third embodiment can have the same configuration as the heat-resistant polymer film described in the first embodiment.
  • the first heat-resistant polymer film and the second heat-resistant polymer film may be the same type of resin or different types of resin. Further, in the case of the same type of resin, the same composition may be used, or different compositions may be used. Further, the melting point and the glass transition temperature may be the same or different. It is preferable that the resins are of the same type and have the same composition. Above all, it is preferable that the first heat-resistant polymer film and the second heat-resistant polymer film are both aromatic polyimide films having the same benzoxazole structure.
  • the average CTE of the polymer film between 30 ° C. and 300 ° C. is preferably ⁇ 5 ppm / ° C. to + 20 ppm / ° C., more preferably -3 ppm / ° C., as described in the first embodiment. It is ⁇ + 15 ppm / ° C., more preferably -1 ppm / ° C. to + 10 ppm / ° C.
  • the CTE is within the above range, it is possible to use both the laminate and the metal parts even when subjected to the process of applying heat.
  • the polymer film preferably has a width of at least 90 mm or more.
  • the length of the film is preferably at least 10 m, and the upper limit of the length is not particularly limited.
  • the polymer film is preferably supplied in a rolled state. According to the laminate manufacturing apparatus 10, the heat-resistant polymer film can be bonded in a state where at least a part of the silane coupling agent is dissolved in an aqueous medium, so that the heat-resistant polymer film is large (width is at least 90 mm and has a length). Is 10 m or more), the adhesive strength can be made uniform.
  • the silane coupling agent physically or chemically intervenes between the first heat-resistant polymer film and the second heat-resistant polymer film, and has an action of adhering the heat-resistant polymer films to each other.
  • the silane coupling agent can have the same configuration as the silane coupling agent described in the first embodiment.
  • a method for applying the silane coupling agent (method for forming the silane coupling agent layer)
  • a method for applying the silane coupling agent solution to the first heat-resistant polymer film or the second heat-resistant polymer film, a vapor deposition method, or the like is used.
  • the application of the silane coupling agent can be performed using the application device 40.
  • the aqueous medium may have the same configuration as the aqueous medium described in the first embodiment.
  • the aqueous medium is used to wet the facing surfaces, that is, the adhesive surfaces, when the first heat-resistant polymer film and the second heat-resistant polymer film are bonded to each other.
  • the heat-resistant polymer film laminate manufacturing apparatus and the method for manufacturing the heat-resistant polymer film laminate according to the third embodiment have been described above.
  • the laminate according to the present embodiment has the following configuration.
  • a laminate in which the nitrogen element component ratio of the peeled surface on the inorganic substrate side after peeling the heat-resistant polymer film by 90 ° from the inorganic substrate is 2.5 atomic% or more and 3.5 atomic% or less.
  • (2) The laminate according to (1), wherein the adhesive strength by the 90 degree peeling method when peeling the heat-resistant polymer film from the laminate is 0.05 N / cm or more and 0.25 N / cm or less.
  • the laminate according to the present embodiment relates to the laminate manufacturing apparatus according to the present embodiment (for example, the laminate manufacturing apparatus according to the first embodiment, the laminate roll manufacturing apparatus according to the second embodiment, and the third embodiment. It can be manufactured using a heat-resistant polymer film laminate manufacturing apparatus, etc.). Further, the laminate according to the present embodiment is a method for producing a laminate according to the present embodiment (for example, a method for producing a laminate according to a first embodiment, a method for producing a laminate roll according to a second embodiment, a first method. 3 It can be produced by using the method for producing a heat-resistant polymer film laminate according to the embodiment). However, the laminate according to the present embodiment does not need to be manufactured by the laminate manufacturing apparatus as long as it has the configuration of (1).
  • the heat-resistant polymer film according to the present embodiment can have the same configuration as the polymer film described in the first embodiment.
  • the inorganic substrate according to the present embodiment can have the same configuration as the inorganic substrate described in the first embodiment.
  • the silane coupling agent according to the present embodiment physically or chemically intervenes between the inorganic substrate and the metal-containing layer, and has an action of adhering the inorganic substrate and the polymer film.
  • the silane coupling agent includes a coupling agent having at least an amino group.
  • the amino group is generally highly reactive, and if the film has an imide bond or an amide bond, the reactivity with these is high.
  • the silane coupling agent contains at least a coupling agent having an amino group, it is easy to increase the bond strength between the inorganic substrate and the polymer film.
  • the silane coupling agent according to the present embodiment may have the same configuration as the coupling agent having an amino group among the silane coupling agents described in the first embodiment.
  • the nitrogen element component ratio of the peeled surface on the inorganic substrate side after peeling the heat-resistant polymer film by 90 ° from the inorganic substrate is 2.5 atomic% or more and 3.5 atomic% or less.
  • a silane coupling agent is uniformly applied particularly over a large area.
  • this adhesive strength can be controlled in the range of 0.05 N / cm or more and 0.25 N / cm or less, and further, the blister defect between the heat-resistant polymer film and the inorganic substrate.
  • the laminate according to the present embodiment removes an excess silane coupling agent between the inorganic substrate and the polymer film by adopting the laminate manufacturing apparatus according to the present embodiment and / or the method for manufacturing the laminate.
  • the amount of the silane coupling agent is controlled to the minimum necessary amount, which is arranged with affinity on at least one surface of the substrate or the film. It is presumed that the adhesive strength between the substrate and the polymer film changes over time or after undergoing a high-temperature process because the reaction of the silane coupling agent, which was excessively present and unreacted, proceeds.
  • the laminate manufacturing apparatus and / or the laminate manufacturing method according to the present embodiment such excess unreacted material can be eliminated from the bonding interface between the substrate and the film. You can do it.
  • the N element observed by ESCA on the surface of the inorganic substrate after the film is peeled off is 2.5 atomic% or more.
  • a laminate having 3.5 atomic% or less can be obtained.
  • This N element reflects the presence of an amino group-containing silane coupling agent.
  • the nitrogen element component ratio of the peeled surface on the inorganic substrate side after peeling the heat-resistant polymer film by 90 ° from the inorganic substrate is 2.5 atomic% or more and 3.5 atomic% or less.
  • the silane coupling agent layer is thick enough to have sufficient adhesive strength and there is no extra silane coupling agent, the adhesive strength is not too strong, and the adhesive strength is 0.05 N / cm or more. , 0.25 N / cm or less. This is also clear from the examples.
  • the present inventors have found that many OH groups are present on the surface of the inorganic substrate at the initial stage of depositing the silane coupling agent on the inorganic substrate, so that the OH groups and the silane coupling agent layer are present.
  • a strong silane coupling agent layer is obtained, but when the silane coupling agent deposition time is lengthened, the silane coupling agent layer, which does not necessarily have a strong bond, becomes a heat-resistant polymer. It is presumed that the adhesive strength changes depending on how it easily penetrates into the film and how it is bonded at the point where it penetrates.
  • the adhesive strength between the heat-resistant polymer film and the inorganic substrate by the 90-degree peeling method is preferably 0.05 N / cm or more and 0.25 N / cm or less.
  • the 90-degree adhesive strength is 0.05 N / cm or more, it is possible to preferably prevent the heat-resistant polymer film from peeling off from the inorganic substrate before or during device formation.
  • the 90-degree adhesive strength is 0.25 N / cm or less, the device can be peeled off without damaging the device during mechanical peeling.
  • the number of bubbles between the heat-resistant polymer film and the inorganic substrate is 1 or less per 500 mm ⁇ 500 mm.
  • the number of bubbles is 1 or less per 500 mm ⁇ 500 mm, the possibility of the device being destroyed due to the growth of bubbles can be significantly reduced when the device is manufactured on the heat-resistant polymer film.
  • the laminate obtained by using the laminate manufacturing apparatus according to the present embodiment and / or the laminate obtained by the method for producing the laminate according to the present embodiment preferably has the following characteristics.
  • the initial adhesive strength of the laminated body by the 90-degree peeling method between the heat-resistant polymer film and the inorganic substrate is preferably 0.05 N / cm or more and 0.25 N / cm or less. Further, the blister defect density is preferably 5 or less per square meter.
  • the initial adhesive strength of the heat-resistant polymer film and the inorganic substrate by the 90-degree peeling method is preferably 0.05 N / cm or more, and more preferably 0.09 N / cm or more. , 0.1 N / cm or more is more preferable.
  • the 90-degree initial adhesive strength is preferably 0.25 N / cm or less, and more preferably 0.2 N / cm or less.
  • the 90-degree initial adhesive strength is 0.05 N / cm or more, it is possible to prevent the heat-resistant polymer film from peeling off from the inorganic substrate before or during device formation. Further, when the 90-degree initial adhesive strength is 0.25 N / cm or less, the inorganic substrate and the heat-resistant polymer film are easily peeled off after the device is formed.
  • the 90-degree initial adhesive strength refers to the 90-degree adhesive strength between the inorganic substrate and the heat-resistant polymer film after the laminate is heat-treated at 200 ° C. for 1 hour in an air atmosphere.
  • the laminated body preferably has an adhesive strength of 0.05 N / cm or more, preferably 0.09 N / cm or more, after heat treatment by the 90 degree peeling method between the heat-resistant polymer film and the inorganic substrate. Is more preferable, and 0.1 N / cm or more is further preferable.
  • the adhesive strength after the heat treatment is preferably 0.25 N / cm or less, and more preferably 0.2 N / cm or less.
  • the initial adhesive strength after the heat treatment is determined between the inorganic substrate and the heat-resistant polymer film after the laminate is heat-treated at 200 ° C. for 1 hour in an air atmosphere and further heat-treated at 450 ° C. for 1 hour. 90 degree adhesive strength.
  • adheresive strength means both “initial adhesive strength” and “adhesive strength after heat treatment”. That is, “adhesive strength of 0.05 N / cm or more and 0.25 N / cm or less” means “initial adhesive strength of 0.05 N / cm or more and 0.25 N / cm or less” and “after heat treatment”. It means that the adhesive strength is 0.05 N / cm or more and 0.25 N / cm or less.
  • the measurement conditions for the initial adhesive strength and the adhesive strength after the heat treatment are as follows.
  • the heat-resistant polymer film is peeled off at an angle of 90 degrees with respect to the inorganic substrate. Measure 5 times and use the average value as the measured value. Measurement temperature; room temperature (25 ° C) Peeling speed; 100 mm / min Atmosphere; Atmosphere measurement sample width; 2.5 cm More specifically, the method described in Examples is used.
  • ⁇ Thickness of polymer film> The measurement was performed using a micrometer (Millitron 1245D manufactured by Finereuf).
  • ⁇ Tension elastic modulus, tensile breaking strength, and tensile breaking elongation of polymer film A strip of 100 mm ⁇ 10 mm cut out in each of the flow direction (MD direction) and the width direction (TD direction) of the polymer film was used as a test piece. The test piece was cut out from the central portion in the width direction. Using a tensile tester (manufactured by Shimadzu, Autograph (R), model name AG-5000A), tension is applied in each of the MD and TD directions under the conditions of a temperature of 25 ° C., a tensile speed of 50 mm / min, and a chuck distance of 40 mm. The elastic modulus, tensile breaking strength and tensile breaking elongation were measured.
  • CTE Cost of linear expansion
  • MD direction the flow direction
  • TD direction width direction
  • the expansion and contraction rate is measured under the following conditions, and expansion and contraction at intervals of 15 ° C. such as 30 ° C. to 45 ° C. and 45 ° C. to 60 ° C.
  • the rate / temperature was measured, this measurement was performed up to 300 ° C., and the average value of all the measured values was calculated as CTE.
  • the adhesive strength of the polymer film obtained by producing the laminate by the 90-degree peeling method was determined by the following method.
  • the film is peeled off at a 90 degree angle with respect to the inorganic substrate.
  • Measuring device Shimadzu Autograph AG-IS Measurement temperature; room temperature (25 ° C) Peeling speed; 100 mm / min Atmosphere; Atmosphere measurement sample width; 2.5 cm
  • the measurement was performed on the central portion of the laminated body and a total of 5 points from the square, and the average value was calculated.
  • the measurement was performed immediately after the laminate was obtained (after heat treatment at 200 ° C. for 1 hour) and after the laminate was heat-treated at 450 ° C. for 1 hour (after heat treatment at 200 ° C. for 1 hour, and further after heat treatment at 450 ° C. for 1 hour).
  • the former was defined as the initial adhesive strength, and the latter was defined as the adhesive strength after heat treatment.
  • ⁇ Counting of blister defects In this example, those having a major axis of 300 ⁇ m or more were counted as blisters. Blister is also called a floating defect or a bubble defect, and it is a place where the film floats like a bubble without adhering to the substrate, and it is often caused by the film being lifted like a tent by sandwiching a relatively hard foreign substance. ..
  • the laminated body is magnified and observed by focusing on the adhesive surface between the inorganic substrate and the polymer film, and the number of blister having a major axis of 300 ⁇ m or more is set to at least 4 for a G2 (370 mm ⁇ 470 mm) size laminated body. Two sheets for G4.5 (730 mm ⁇ 920 mm) size laminates One sheet for G5 (1100 mm ⁇ 1250 mm) size laminates was counted and converted into the number per square m.
  • ⁇ Nitrogen element component ratio> The range of the peeled surface of 50 mm ⁇ 50 mm from which the polymer film was peeled by 90 ° from the laminate was analyzed by ESCA, and the ratio of nitrogen elements present on the peeled surface of the inorganic substrate was evaluated.
  • K-Alpha + manufactured by Thermo Fisher Scientific
  • the measurement conditions are as follows. At the time of analysis, the background was removed by the shillley method.
  • the surface composition ratio was the average value of the measurement results at three or more locations.
  • Polyimide film 3 A 25 ⁇ m-thick polyimide film Upilex 25S (registered trademark) manufactured by Ube Industries, Ltd. was used as the polyimide film 3.
  • Example 1 ⁇ Manufacturing of laminated body> (Example 1) First, the polyimide film 1 obtained in Production Example 2 was cut out to a width of 370 mm ⁇ 500 mm. Then, UV / O 3 irradiator (LAN Technical manufactured SKR1102N-03) used as a film surface treatment, was irradiated in UV / O 3 3 min. In this case the distance between the UV / O 3 lamps and the film was 30 mm.
  • UV / O 3 irradiator LAN Technical manufactured SKR1102N-03
  • an amino group-containing silane coupling agent was applied to a G2 size (370 mm ⁇ 470 mm, 0.7 mm thick glass substrate: OA10G manufactured by Nippon Electric Glass Co., Ltd.) via the gas phase. ..
  • the glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N-03 manufactured by LAN Technical) for 1 minute to dry wash.
  • the glass substrate was allowed to stand in the chamber of the device, 130 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) was placed in a chemical tank having a capacity of 1 L, and the steam on the outside was 42. After warming to ° C., the generated silane coupling agent vapor was sent to the chamber together with clean dry air at a gas flow rate of 22 L / min, and the glass substrate was exposed to the silane coupling agent vapor. At this time, the substrate temperature was 21 ° C., the clean dry air temperature was 23 ° C., and the humidity was 1.2% RH. Since the exhaust is connected to the exhaust port of negative pressure, it is confirmed by the differential pressure gauge that the chamber has a negative pressure of about 10 Pa.
  • KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the glass substrate coated with the amino group-containing silane coupling agent in this way is set on a roll laminator equipped with a silicon rubber roller, and first, 100 ml of pure water is used as an aqueous medium on the surface coated with the silane coupling agent using a dropper as an entire substrate. The substrate was wetted by dropping so as to spread.
  • the surface-treated surface of the polyimide film is laminated so as to face the silane coupling agent-coated surface of the glass substrate, that is, the surface wetted with pure water, and the polyimide film and the glass substrate are sequentially rolled from one side of the glass substrate.
  • a temporary laminate was obtained by laminating a glass substrate and a polyimide film under pressure while extruding the pure water between them.
  • the laminator used was a laminator with an effective roll width of 1350 mm manufactured by MCK, and the bonding conditions were air source pressure: 0.5 MPa, laminating speed: 50 mm / sec, roll temperature: 22 ° C, environmental temperature 22 ° C, humidity. It was 55% RH.
  • the obtained temporary laminate was heat-treated in a clean oven at 200 ° C. for 10 minutes to obtain the laminate according to the present invention. The same operation was performed on four glass substrates. Table 2 shows the evaluation results of the obtained laminate.
  • Inorganic substrate size (glass size) G2 size (370 mm x 470 mm) G4.5 size (730 mm x 920 mm) G5 size (1100 mm x 1250 mm) Aqueous medium Pure water: Ultrapure water Pure water + MeOH: Pure water 99 / Methanol 1 (mass ratio) Pure water + EtOH: Pure water 99 / ethanol 1 (mass ratio)
  • a tungsten film (thickness 75 nm) was formed on the polyimide film by the vacuum vapor deposition method by the following steps, and further oxidized as an insulating film without touching the atmosphere.
  • a silicon film (thickness: 150 nm) was laminated and formed.
  • a silicon oxide film (thickness 100 nm) to be a base insulating film was formed by a plasma CVD method, and an amorphous silicon film (thickness 54 nm) was laminated and formed without being exposed to the atmosphere.
  • a polysilicon thin film is patterned to form a silicon region having a predetermined shape, and as appropriate, a gate insulating film is formed, a gate electrode is formed, a source region or a drain region is formed by doping the active region, and an interlayer insulating film is formed. , The source electrode and the drain electrode were formed, and the activation treatment was performed to prepare an array of P-channel TFTs using polysilicon.
  • the polymer film part is burnt off with a UV-YAG laser along the inside of the outer circumference of the TFT array by about 0.5 mm, and peeled off from the end of the cut by using a thin razor-shaped blade to scoop up the flexible A3 size.
  • a TFT array was obtained.
  • the peeling angle at this time is 3 degrees. The peeling was possible with a very small force, and it was possible to peel without damaging the TFT.
  • the obtained flexible TFT array did not show any deterioration in performance even when wound around a 3 mm ⁇ round bar, and maintained good characteristics.
  • Laminated body manufacturing equipment 10
  • Inorganic substrate transfer equipment 30
  • First cleaning device inorganic substrate cleaning device, metal leaf cleaning device, first heat-resistant polymer film cleaning device
  • Coating device 50
  • Water supply device 60
  • Second cleaning device film cleaning device, second heat-resistant polymer film cleaning device
  • Laminating equipment 60
  • Visual inspection device 100
  • First sheet inorganic substrate, metal foil, first heat-resistant polymer film
  • Second sheet heat-resistant polymer film, second heat-resistant polymer film
  • Laminated body 400 Laminated body roll 1000, 2000 Laminated body roll manufacturing equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Capacitors (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

第1のシートを搬送する第1のシート搬送装置と、シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する水供給装置と、水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせるラミネート装置とを備える積層体製造装置。

Description

積層体製造装置、及び、積層体の製造方法
 本発明は、積層体製造装置、及び、積層体の製造方法に関する。
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。
 半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・ツー・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界では、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そこで、既存インフラを利用して機能素子を高分子フィルム上に形成するために、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体(例えば、無機基板、金属箔等)に貼り合わせ、その上に所望の素子を形成した後に支持体から剥離するというプロセスが用いられている。
 ところで、高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の配線や機能素子を形成するプロセスにおいては、該積層体は高温に曝されることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては200℃~600℃程度の温度域での工程が必要である。また、水素化アモルファスシリコン薄膜の作製においては200~300℃程度の温度がフィルムに加わる場合あり、さらにアモルファスシリコンを加熱、脱水素化して低温ポリシリコンとするためには450℃~600℃程度の加熱が必要になる場合がある。したがって、積層体を構成する高分子フィルムには耐熱性が求められるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、支持体への高分子フィルムの貼り合わせには一般に粘着剤や接着剤を用いることが考えられるが、その際の高分子フィルムと支持体との接合面(すなわち貼り合せ用の接着剤や粘着剤)にも耐熱性が求められる。しかし、通常の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していないため、機能素子の形成温度が高い場合には接着剤や粘着剤による貼り合わせは適用できない。
 充分な耐熱性を有する粘着剤や接着剤が存在しないため、従来、上述した用途においては、高分子溶液または高分子の前駆体溶液を支持体上に塗布して支持体上で乾燥・硬化させてフィルム化し、当該用途に使用する技術が採用されていた。しかしながら、かかる手段により得られる高分子フィルムは、脆く裂けやすいため、高分子フィルム表面に形成された機能素子は支持体から剥離する際に破壊してしまう場合が多い。特に支持体から大面積のフィルムを剥離するのは極めて難しく、およそ工業的に成り立つ歩留まりを得ることはできない。
 このような事情に鑑み、フレキシブルな基板上に機能素子を形成した、いわゆるフレキシブル電子デバイスを製造するための、高分子フィルムと支持体との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、シランカップリング剤を介して支持体に貼り合わせた積層体が提案されている(例えば、特許文献1~3参照)。
 また、近年、シランカップリング剤はガラスなどの無機材料や高分子樹脂などの界面において、両者の濡れ性、接着性などを改善するために広く用いられている。シランカップリング剤は無機材料に対する吸着力が強いと同時に、自己縮合反応を生じやすい。そのため、処理液、コート液中ににて縮合物の粒子が形成され、それら粒子が塗布面、処理面での異物欠点となる場合が少なくない。
 かかる問題を解決するために例えば特許文献4にはシランカップリング剤を気相状態で基板に塗布する技術が開示されている。かかる手法によれば極めて薄いシランカップリング剤層を低欠点で実現することが可能となるとされている。
特許第5152104号公報 特許第5304490号公報 特許第5531781号公報 特開2015-178237号公報
 上述した積層体(特許文献1~3に例示されるような積層体)では、支持体と耐熱高分子フィルムとの間にシランカップリング剤を含む層を介在させることにより、デバイス形成前や形成中に支持体がポリイミドフィルムから剥がれてしまうことを防止するとともに、デバイス形成後には、容易に支持体をポリイミドフィルムから剥離することを意図している。
 しかしながら、大面積な積層体を製造する際に、積層体全体において均一な接着強度にコントロールすることは極めて難しい。
 また、特許文献4に記載されたような手法で得られた低欠点のシランカップリング剤塗布層は極めて薄いため、塗布面に異物を挟み込んだ場合、それが微小なものであったとしてもシランカップリング剤塗布面の反応の妨げとなることがある。
 本発明は、上述した課題に鑑みてなされたものである。すなわち、本発明の目的は、第1のシート(例えば、無機基板、金属箔、第1の耐熱高分子フィルム等)と第2のシート(例えば、第2の耐熱高分子フィルム等)との接着強度を均一にコントロールすることが可能な積層体製造装置を提供することにある。また、本発明は、第1のシートと第2のシートとの接着強度を均一にコントロールすることが可能な積層体の製造方法を提供することにある。
 本発明者らはかかる状況に鑑み、鋭意研究を続けた結果、下記構成を採用することにより、大面積においても、接着強度を均一にコントロールすることが可能な積層体製造装置、及び、積層体の製造方法を見出し出し、本発明を完成するに至った。
 すなわち、本発明に係る積層体製造装置は、
 第1のシートを搬送する第1のシート搬送装置と、
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する水供給装置と、
 水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせるラミネート装置と
を備えることを特徴とする。
 従来、第1のシート(例えば、無機基板、金属箔、第1の耐熱高分子フィルム等)と第2のシート(例えば、第2の耐熱高分子フィルム等)との積層体においては、特に大面積において、シランカップリング剤を均質に塗布することが困難であり、結果として第1のシートと第2のシートとの接着強度を均一適正に制御することが困難であった。
 しかしながら、前記構成によれば、シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に水性媒体が供給された状態で、第1のシートと第2のシートとを貼り合わせることができる。
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に水性媒体が供給されると、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態となる。そのため、貼り合わせの直前にシランカップリング剤層を平坦化することができる。より具体的には、貼り合わせの際に、水性媒体を接着面から外に押し出しながらラミネートすることができるため、第1のシートないし第2のシート間の余分なシランカップリング剤を除去することができ、シランカップリング剤の量は、第1のシート、第2のシートの少なくともいずれかの表面に親和力で配位した必要最低限の量にコントロールされる。その結果、接着強度を均一にコントロールすることができる。また、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、接着強度を向上させることができる。
 前記構成においては、シランカップリング剤を第1のシートへ塗布する塗布装置を備えることが好ましい。
 前記塗布装置を備えると、シランカップリング剤を第1のシートへ塗布することができる。
 前記構成においては、水性媒体が供給される前の第1のシートを洗浄する第1の基板洗浄装置を備えることが好ましい。
 前記第1の洗浄装置を備えると、水性媒体が供給される前の第1のシートを洗浄することができる。その結果、異物混入の少ない積層体を得ることができる。
 前記構成においては、水性媒体が供給される前の第2のシートを洗浄する第2の洗浄装置を備えることが好ましい。
 前記第2の洗浄装置を備えると、水性媒体が供給される前の第2のシートを洗浄することができる。その結果、異物混入の少ない積層体を得ることができる。
 また、本発明に係る積層体の製造方法は、
 第1のシートと第2のシートとを有する積層体の製造方法であって、
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせる工程B
を有することを特徴とする。
 前記構成によれば、シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に水性媒体が供給された状態で、第1のシートと第2のシートとを貼り合わせる。
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に水性媒体が供給されると、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態となる。そのため、貼り合わせの直前にシランカップリング剤層を平坦化することができる。より具体的には、貼り合わせの際に、水性媒体を接着面から外に押し出しながらラミネートすることができるため、第1のシートないし第2のシート間の余分なシランカップリング剤を除去することができ、シランカップリング剤の量は、第1のシート、第2のシートの少なくともいずれかの表面に親和力で配位した必要最低限の量にコントロールされる。その結果、接着強度を均一にコントロールすることができる。また、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、接着強度を向上させることができる。
 前記構成においては、前記工程Aの前に、シランカップリング剤を第1のシートへ塗布する工程X-1を有することが好ましい。
 前記工程X-1を有すると、シランカップリング剤を第1のシートへ塗布することができる。
 前記構成においては、前記工程Aの前に、第1のシートを洗浄する工程X-2を有することが好ましい。
 前記工程X-2を有すると、水性媒体が供給される前の第1のシートを洗浄することができる。その結果、異物混入の少ない積層体を得ることができる。
 前記構成においては、前記工程Aの前に、第2のシートを洗浄する工程X-3を有することが好ましい。
 前記工程X-3を有すると、水性媒体が供給される前の第2のシートを洗浄することができる。その結果、異物混入の少ない積層体を得ることができる。
 前記構成においては、前記工程Bの後、貼り合わせられた第1のシートと第2のシートとの積層体の外観を検査する工程X-4を有することが好ましい。
 前記工程X-4を有すると、積層体への異物の混入の有無を確認することができる。
 本発明によれば、第1のシートと第2のシートとの接着強度を均一にコントロールすることが可能な積層体製造装置を提供することができる。また、本発明によれば、第1のシートと第2のシートとの接着強度を均一にコントロールすることが可能な積層体の製造方法を提供することができる。
第1実施形態に係る積層体製造装置を説明するための模式図である。 第2実施形態に係るロール積層体製造装置を説明するための模式図である。 第3実施形態に係る耐熱高分子フィルム積層体製造装置を説明するための模式図である。 ガラス基板にシランカップリング剤を塗布する装置の模式図である。
 以下、本発明の実施形態について説明する。
 本実施形態に係る積層体製造装置は、
 第1のシートを搬送する第1のシート搬送装置と、
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する水供給装置と、
 水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせるラミネート装置とを備える。
 また、本実施形態に係る積層体の製造方法は、
 第1のシートと第2のシートとを有する積層体の製造方法であって、
 シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせる工程B
を有する。
 本実施形態に係る積層体製造装置は、以下に説明する第1実施形態~第3実施形態に係る積層体製造装置を含む。また、本実施形態に係る積層体の製造方法は、以下に説明する第1実施形態~第3実施形態に係る積層体の製造方法を含む。
 [第1実施形態]
 第1実施形態に係る積層体製造装置は、以下の構成を有する。
(1)無機基板を搬送する無機基板搬送装置と、
 シランカップリング剤が塗布された無機基板の表面、及び/又は、シランカップリング剤が塗布された耐熱高分子フィルムの表面に、水性媒体を供給する水供給装置と、
 水性媒体が供給された後の無機基板と耐熱高分子フィルムとを貼り合わせるラミネート装置と
を備える積層体製造装置。
(2)シランカップリング剤を無機基板へ塗布する塗布装置
を備える(1)に記載の積層体製造装置。
(3)水性媒体が供給される前の無機基板を洗浄する無機基板洗浄装置
を備える(1)又は(2)に記載の積層体製造装置。
(4)水性媒体が供給される前の耐熱高分子フィルムを洗浄するフィルム洗浄装置
を備える(1)~(3)のいずれか1に記載の積層体製造装置。
(5)前記ラミネート装置によって貼り合わせられた無機基板と耐熱高分子フィルムとの積層体の外観を検査する外観検査装置
を備える(1)~(4)のいずれか1に記載の積層体製造装置。
(6)前記外観検査装置により外観不良と判定された積層体から耐熱性高分子フィルムを剥離する剥離装置
を備える(5)に記載の積層体製造装置。
(7)前記無機基板搬送装置は、電気駆動式のローラコンベアである(1)~(6)のいずれか1に記載の積層体製造装置。
(8)前記耐熱高分子フィルムは、長方形であり、面積が0.65m以上であり、一辺が少なくとも700mm以上である(1)~(7)のいずれか1に記載の積層体製造装置。
(9)前記ラミネート装置の押し圧力が0.5MPa以下である(1)~(8)のいずれか1に記載の積層体製造装置。
 第1実施形態に係る積層体の製造方法は、以下の構成を有する。
(10)無機基板、及び、耐熱高分子フィルムをこの順で有する積層体の製造方法であって、
 シランカップリング剤が塗布された無機基板の表面、及び/又は、シランカップリング剤が塗布された耐熱高分子フィルムの表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の無機基板と耐熱高分子フィルムとを貼り合わせる工程B
を有する積層体の製造方法。
(11)前記工程Aの前に、シランカップリング剤を無機基板へ塗布する工程X-1
を有する(10)に記載の積層体の製造方法。
(12)前記工程A及び前記工程X-1の前に、無機基板を洗浄する工程X-2
を有する(11)に記載の積層体の製造方法。
(13)前記工程Aの前に、耐熱高分子フィルムを洗浄する工程X-3
を有する(10)~(12)のいずれか1に記載の積層体の製造方法。
(14)前記工程Bの後、貼り合わせられた無機基板と耐熱高分子フィルムとの積層体の外観を検査する工程X-4
を有する(10)~(13)のいずれか1に記載の積層体の製造方法。
(15)前記工程X-4により外観不良と判定された積層体から耐熱性高分子フィルムを剥離する工程X-5
を有する(14)に記載の積層体の製造方法。
(16)前記耐熱高分子フィルムは、長方形であり、面積が0.65m以上であり、一辺が少なくとも700mm以上である(10)~(15)のいずれか1に記載の積層体の製造方法。
(17)工程Bにおける押し圧力が0.5MPa以下である(10)~(16)のいずれか1に記載の積層体の製造方法。
 なお、第1実施形態では、「無機基板」が本実施形態における「第1のシート」に相当し、「無機基板搬送装置」が本実施形態における「第1のシート搬送装置」に相当し、「耐熱高分子フィルム」が本実施形態における「第2のシート」に相当し、「無機基板洗浄装置」が本実施形態における「第1の洗浄装置」に相当し、「フィルム洗浄装置」が本実施形態における「第2の洗浄装置」に相当する。
 以下、第1実施形態に係る積層体製造装置、及び、積層体の製造方法について、具体的に説明する。
 図1は、第1実施形態に係る積層体製造装置を説明するための模式図である。
 図1に示すように、第1実施形態に係る積層体製造装置10は、無機基板搬送装置20と、無機基板洗浄装置30と、塗布装置40と、水供給装置50と、フィルム洗浄装置60と、ラミネート装置70と、外観検査装置80とを備える。ただし、本発明における積層体製造装置は、少なくとも第1のシート搬送装置(無機基板搬送装置)と、水供給装置と、ラミネート装置とを備えていればよい。
 無機基板搬送装置20は、無機基板100を搬送し、積層体製造装置10が備える各装置間を移動させる。無機基板搬送装置20は、無機基板100を搬送することが可能であれば特に限定されないが、電気駆動式のローラコンベアであることが好ましい。無機基板搬送装置20が電気駆動式のローラコンベアであると、無機基板を順次移動させながら積層体を製造することができる、積層体の製造をオートメーション化することができる。
 無機基板洗浄装置30は、洗浄液噴射ノズル32や図示しないエアナイフ等を備える。無機基板洗浄装置30は、無機基板100上に洗浄液34を噴射した後、前記エアナイフで空気を吹き付けることにより、無機基板100の表面を乾燥することができる。なお、本発明に係る第1の洗浄装置(無機基板洗浄装置)は、水性媒体が供給される前の第1のシート(無機基板)を洗浄することが可能な装置であれば、上述した無機基板洗浄装置30に限定されず、従来公知のものを採用することができる。
 塗布装置40は、複数の小孔が設けられたシランカップリング剤供給管42等を備える。塗布装置40は、前記シランカップリング剤供給管42から無機基板100上にシランカップリング剤44を塗布することができる。なお、本発明に係る塗布装置は、シランカップリング剤を無機基板へ塗布することが可能な装置であれば、上述した塗布装置40に限定されず、従来公知のものを採用することができる。
 水供給装置50は、シランカップリング剤が塗布された無機基板100の表面に水性媒体52を供給する。水供給装置50は、シランカップリング剤が塗布された無機基板100の表面に水性媒体52を供給することが可能であれば、特にその構成は限定されず、従来公知のものを採用することができる。水性媒体52の供給量としては、特に限定されないが、気泡、及び、異物低減の観点から、0.1~50g/100cm程度が好ましい。
 フィルム洗浄装置60は、ロール101から供給される耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、耐熱高分子フィルム102の表面を洗浄することができる。なお、本発明に係る第2の洗浄装置(フィルム洗浄装置)は、水性媒体が供給される前の第2のシート(耐熱高分子フィルム)を洗浄することが可能な装置であれば、上述したフィルム洗浄装置60に限定されず、従来公知のものを採用することができる。
 ラミネート装置70は、ラミネートローラー72等を備える。ラミネート装置70は、ラミネートローラー72により押圧することにより、水性媒体52が供給された後の無機基板100と耐熱高分子フィルム102とを貼り合わせる。貼り合わせの際の押し圧力は0.5MPa以下であること好ましい。積層体製造装置10によれば、シランカップリング剤44の少なくとも一部が水性媒体52に溶解した状態で貼り合わせを行うことができるため、ラミネートの際の押し圧力を小さくすることができる。なお、本発明に係るラミネート装置は、水性媒体が供給された後の無機基板と耐熱高分子フィルムとを貼り合わせることが可能な装置であれば、上述したラミネート装置70に限定されず、従来公知のものを採用することができる。
 ラミネート装置70の押し圧力は、0.5MPa以下が好ましい。シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、ラミネートの際の押し圧力を小さくすることができる。前記押し圧力が0.5MPa以下であると、無機基板を破損することを抑制できる。
 前記押し圧力の下限は特に限されないが、0.1MPa以上であることが好ましい。0.1MPa以上であると、密着しない部分が生じることや、接着が不充分になることを防止できる。加圧の際の温度としては、好ましくは10℃~60℃、より好ましくは20℃~40℃である。温度が高すぎると、水性溶液が気化して泡を発生するおそれがあり、高分子フィルムにダメージを与えるおそれがあり、温度が低すぎると、密着力が弱くなる傾向がある。特段に温度コントロールをしない室温(室温付近)で実施することでも問題ない。
 その後、高温処理(無加圧での高温処理)あるいは高温加圧を行う。前記高温加圧時の押し圧力は、0.5MPa以下が好ましい。前記高温処理時、及び、高温加圧時の温度としては、例えば、80℃以上、より好ましくは100~250℃、さらに好ましくは120~220℃、特に好ましくは90℃~140℃である。高温加圧を行うことにより、密着界面の化学反応が促進されて高分子フィルムと無機基板とを積層できる。
 また加圧処理は、大気圧雰囲気中で行うこともできるが、真空下で行ったほうが、接着力の均一性を得ることができる場合がある。真空度としては、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
 外観検査装置80は、ラミネート装置70によって貼り合わせられた無機基板100と耐熱高分子フィルム102との積層体104の外観を検査する。外観検査装置80としては、例えば、自動光学検査装置(AOI:Automated Optical Inspection)を採用することができる。外観検査装置80は、CCDカメラで得られた画像(積層体104の耐熱高分子フィルム102面側の画像)と予め設定(定量化)されたデータとをもとにして、積層体104に異物の混入がないかや、貼り付けムラがないか等を判定する。なお、本発明に係る外観検査装置は、無機基板と耐熱高分子フィルムとの積層体の外観を検査することが可能な装置であれば、上述した外観検査装置80に限定されず、従来公知のものを採用することができる。
 また、積層体製造装置10は、図示しない剥離装置を備える。前記剥離装置は、外観検査装置80により外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離する。前記剥離装置としては、従来公知のものを採用することができる。前記剥離装置を備えるため、外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離することができる。その結果、無機基板100をすぐに再利用することが可能となる。
 上述した実施形態では、シランカップリング剤を無機基板へ塗布する塗布装置40を備える場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(無機基板)へ塗布する塗布装置40の代わりに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。また、シランカップリング剤を第1のシート(無機基板)へ塗布する塗布装置40を備えるとともに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。
 また、上述した実施形態では、シランカップリング剤を無機基板へ塗布する塗布装置40を備える場合について説明したが、本発明ではシランカップリング剤を第1のシート(無機基板)へ塗布する塗布装置を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(無機基板)を用いることとすればよい。
 以上、第1実施形態に係る積層体製造装置10について説明した。
 次に、第1実施形態に係る積層体の製造方法について説明する。以下では、積層体製造装置10を用いた場合の積層体の製造方法について説明するが、本発明ではこの例に限定されない。例えば、各装置で実施される工程を、作業者等が実施することとしてもよい。
 第1実施形態に係る積層体の製造方法は、
 無機基板、及び、耐熱高分子フィルムをこの順で有する積層体の製造方法であって、
 シランカップリング剤が塗布された無機基板の表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の無機基板と耐熱高分子フィルムとを貼り合わせる工程B
を少なくとも有する。
 前記積層体の製造方法は、さらに、
 無機基板を洗浄する工程X-2、
 工程X-2の後にシランカップリング剤を無機基板へ塗布する工程X-1
 耐熱高分子フィルムを洗浄する工程X-3
 前記工程Bの後、貼り合わせられた無機基板と耐熱高分子フィルムとの積層体の外観を検査する工程X-4、及び、
 前記工程X-4により外観不良と判定された積層体から耐熱性高分子フィルムを剥離する工程X-5とを有することが好ましい。
 前記積層体の製造方法では、まず、無機基板搬送装置20により無機基板100を無機基板洗浄装置30の方向に移動させ、基板洗浄装置30により無機基板を洗浄する(工程X-2)。
 次に、無機基板搬送装置20により無機基板100を塗布装置40の方向に移動させ、を塗布装置40によりシランカップリング剤を無機基板へ塗布する(工程X-1)。
 一方、フィルム洗浄装置60により、ロール101から供給される耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、耐熱高分子フィルム102の表面を洗浄する(工程X-3)。
 次に、水供給装置50により、シランカップリング剤が塗布された無機基板100の表面に、水性媒体52を供給する(工程A)。
 次に、ラミネート装置70により、水性媒体52が供給された後の無機基板100と耐熱高分子フィルム102とを貼り合わせる(工程B)。
 次に、貼り合わせられた無機基板100と耐熱高分子フィルム102との積層体104の外観を外観検査装置80により検査する(工程X-4)。
 次に、剥離装置により、前記工程X-4により外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離する(工程X-5)。
 上述した実施形態では、シランカップリング剤を無機基板へ塗布する場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(無機基板)へ塗布する代わりに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布することとしてもよい。また、シランカップリング剤を第1のシート(無機基板)へ塗布するとともに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布することとしてもよい。
 また、上述した実施形態では、シランカップリング剤を無機基板へ塗布する場合について説明したが、本発明ではシランカップリング剤を第1のシート(無機基板)へ塗布する工程を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(無機基板)を用いることとすればよい。
 以上、第1実施形態に係る積層体の製造方法について説明した。
 次に、前記耐熱高分子フィルム、前記無機基板、前記シランカップリング剤、前記水性媒体について説明する。
 本明細書において、耐熱高分子とは、融点が250℃以上であることが好ましく、より好ましくは300℃以上であり、融点の上限は特に限定されず、耐熱性高分子の分解温度と同じであっても構わない。また、ガラス転移温度が250℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上であり、好ましくは500℃以下であり、より好ましくは450℃以下の高分子である。以下、煩雑さを避けるために単に高分子とも称する。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を越える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断して良い。
 前記耐熱高分子フィルム(以下、単に高分子フィルムとも称する。また単にフィルムとも称する)としては、ポリイミド、ポリアミドイミド、ポリエーテルイミド、フッ素化ポリイミドといったポリイミド系樹脂(例えば、芳香族ポリイミド樹脂、脂環族ポリイミド樹脂);ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートといった共重合ポリエステル(例えば、全芳香族ポリエステル、半芳香族ポリエステル);ポリメチルメタクリレートに代表される共重合(メタ)アクリレート;ポリカーボネート;ポリアミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;酢酸セルロース;硝酸セルロース;芳香族ポリアミド;ポリ塩化ビニル;ポリフェノール;ポリアリレート;ポリフェニレンスルフィド;ポリフェニレンオキシド;ポリスチレン;ポリベンゾオキサゾール(芳香族ポリベンゾオキサゾール);ポリベンゾチアゾール(芳香族ポリベンゾチアゾール);ポリベンゾイミダゾール(芳香族ポリベンゾイミダゾール)等のフィルムを例示できる。
 前記高分子フィルムのなかでも好ましくは、所謂スーパーエンジニアリングプラスチックを用いたフィルムであり、より具体的には、芳香族ポリイミドフィルム、芳香族ポリアミドフィルム、芳香族ポリアミドイミドフィルム、芳香族ポリベンゾオキサゾールフィルム、芳香族ポリベンゾチアゾールフィルム、芳香族ポリベンゾイミダゾールフィルム等が挙げられる。
 以下に前記高分子フィルムの一例であるポリイミド系樹脂フィルム(ポリイミドフィルムと称する場合もある)についての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。
 ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。
 ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。前記ベンゾオキサゾール構造を有する芳香族ジアミン類は単独で使用しても良いし、2種以上を組み合わせても良い。
 上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリン)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル等が挙げられる。また、前記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されていても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されていても良い。なお、前記芳香族ジアミン類は単独で使用しても良いし、2種以上を組み合わせても良い。
 前記脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオタン等が挙げられる。
 前記脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。
 芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等が挙げられる。
 芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 前記ポリイミド系樹脂は、用途によっては透明であることが好ましい場合がある。その前駆体の合成に用いられる酸成分として1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、1,2,4-シクロヘキサントリカルボン酸無水物などが例示されるが、特に好ましいのは1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物である。これらの脂環族カルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。一方、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などの不飽和結合を含むものは加熱処理時に着色し、フィルムの光学特性を低下させる傾向があるため、透明性の観点からは好ましくない。
 前記透明ポリイミド系樹脂またはその前駆体の合成に用いられるジアミン成分をジアミン化合物として例示すると、1,3-フェニレンジアミン、1,4-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3,4-ジアミノトルエン、4,5-ジメチル-1,2-フェニレンジアミン、2,5-ジメチル-1,4-フェニレンジアミン、2,6-ジメチル-1,4-フェニレンジアミン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3-アミノベンジルアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノオクタフルオロビフェニル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、4,4’-エチレンジアニリン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、ビス(2-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-アミノフェニル)テレフタレート、2,7-ジアミノフルオレン、9,9-ビス(4-アミノフェニル)フルオレンなどの芳香族ジアミンが挙げられる。また脂環族ジアミンとして1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,1-ビス(4-アミノフェニル)シクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)、4,4’-ジアミノジシクロヘキシルプロパン、ビシクロ[2.2.1]ヘプタン-2,3-ジアミン、ビシクロ[2.2.1]ヘプタン-2,5-ジアミン、ビシクロ[2.2.1]ヘプタン-2,6-ジアミン、ビシクロ[2.2.1]ヘプタン-2,7-ジアミン、2,3-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.0(2,6)]デカンなどが例示される。これらの中で特に好ましいのはp-フェニレンジアミン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、1,4-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)である。上記アミン成分は単独で用いてもよいし、二種以上を併用してもよい。
 前記高分子フィルムの厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは24μm以上であり、より一層好ましくは45μm以上である。前記高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。
 前記高分子フィルムの30℃から300℃の間の平均のCTEは、好ましくは、-5ppm/℃~+20ppm/℃であり、より好ましくは-3ppm/℃~+15ppm/℃であり、さらに好ましくは-1ppm/℃~+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記高分子フィルムのCTEとは、高分子フィルムの流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。
 前記高分子フィルムのCTEの測定方法は、実施例に記載の方法による。
 前記耐熱高分子フィルムには表面活性化処理を行うことが好ましい。該表面活性化処理によって、耐熱高分子フィルム表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、接着剤との親和性が向上する。
 本明細書において、表面活性化処理とは、乾式、ないし湿式の表面処理である。乾式処理としては、紫外線、電子線、X線などの活性エネルギー線を表面に照射する処理、コロナ処理、真空プラズマ処理、常圧プラズマ処理、火炎処理、イトロ処理等を用いることが出来る。湿式処理としては、フィルム表面を酸ないしアルカリ溶液に接触させる処理を例示できる。好ましく用いられる表面活性化処理は、プラズマ処理であり、プラズマ処理と湿式の酸処理の組み合わせである。
 プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、熱プラズマに暴露する火炎処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
 プラズマ処理の適当な条件としては、酸素プラズマ、CF、Cなどフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はNe,Ar、Kr,Xe、プラズマのように物理的なエネルギーを高分子表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO、CO、H、N、NH、CHなどプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。これらに加えてOH、N,N,CO、CO,H、H、O、NH、NH、NH、COOH、NO、NO、He,Ne,Ar,Kr,Xe,CHO,Si(OCH、Si(OC、CSi(OCH、およびCSi(OCからなる群から選ばれる少なくとも1種以上の成分を気体としてあるいはプラズマ中での分解物として含有したプラズマを作ることが好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましいが、表面平滑性を必要とするため、エネルギー密度を高める事には限界がある。酸素プラズマを使った時には、表面酸化が進み、OH基の生成という点ではよいのだが、既にフィルム自体との密着力に乏しい表面ができやすく、かつ表面のあれ(粗さ)が大きくなるため、密着性も悪くなる。
 また、Arガスを使ったプラズマでは純粋に物理的な衝突の影響が表面では起こり、この場合も表面の荒れが大きくなる。これら総合的に考えると、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。
 かかる表面活性化処理は高分子表面を清浄化し、さらに活性な官能基を生成する。生成した官能基は、カップリング剤層と水素結合ないし化学反応により結びつき、耐熱高分子フィルム層とカップリング剤層とを強固に接着することが可能となる。
 プラズマ処理においては耐熱高分子フィルム表面をエッチングする効果も得ることが出来る。特に滑剤粒子を比較的多く含む耐熱高分子フィルムにおいては、滑剤による突起が、フィルム同士の接着を阻害する場合がある。この場合、プラズマ処理によって耐熱高分子フィルム表面を薄くエッチングし、滑剤粒子の一部を露出せしめた上で、フッ酸にて処理を行えば、フィルム表面近傍の滑剤粒子を除去することが可能である。
 前記高分子フィルムの30℃から500℃の間の熱収縮率は、±0.9%であることが好ましく、さらに好ましくは±0.6%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。
 前記高分子フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MP以上であり、さらに好ましくは240MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記高分子フィルムが破断してしまうことを防止することができる。なお、前記高分子フィルムの引張破断強度とは、高分子フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。前記高分子フィルムの引張破断強度の測定方法は、実施例に記載の方法による。
 前記高分子フィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは20%以上である。前記引張破断伸度が、1%以上であると、取り扱い性に優れる。なお、前記高分子フィルムの引張破断伸度とは、高分子フィルムの流れ方向(MD方向)の引張破断伸度及び幅方向(TD方向)の引張破断伸度の平均値を指す。前記高分子フィルムの引張破断伸度の測定方法は、実施例に記載の方法による。
 前記高分子フィルムの引張弾性率は、3GPa以上が好ましく、より好ましくは6GPa以上であり、さらに好ましくは8GPa以上である。前記引張弾性率が、3GPa以上であると、無機基板から剥離する際の前記高分子フィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは12GPa以下であり、さらに好ましくは10GPa以下である。前記引張弾性率が、20GPa以下であると、前記高分子フィルムをフレキシブルなフィルムとして使用できる。なお、前記高分子フィルムの引張弾性率とは、高分子フィルムの流れ方向(MD方向)の引張弾性率及び幅方向(TD方向)の引張弾性率の平均値を指す。前記高分子フィルムの引張弾性率の測定方法は、実施例に記載の方法による。
 前記高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
 前記高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。前記高分子フィルムがロール状に巻かれていると、ロール状に巻かれた耐熱高分子フィルムという形態での輸送が容易となる。なお、前記高分子フィルムはロール状にする際、高分子フィルムの両端をスリットしても良いし、スリットしなくても良い。スリットすることが好ましく、スリットする場合の高分子フィルムの幅は90mm以上であることが好ましい。
 前記高分子フィルムにおいては、ハンドリング性および生産性を確保する為、高分子フィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。
 前記高分子フィルムは、長方形であり、面積が0.65m以上であり、一辺が少なくとも700mm以上での作製を可能とする。一辺の長さの上限は、特に限定されないが、例えば、3000mm以下、2000mm以下等が挙げられる。
 積層体製造装置10によれば、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、耐熱高分子フィルムが大型(長方形であり、面積が0.65m以上であり、一辺が少なくとも700mm以上)であっても、接着強度を均一にすることができる。
 第1実施形態にて説明した表面活性化処理は、第1の耐熱高分子フィルムに施しても良いし、第2の耐熱高分子フィルムに施しても良い。また、各耐熱高分子フィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上に耐熱高分子フィルムを接して置くことにより、耐熱高分子フィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態で耐熱高分子フィルムを置くようにすれば、両面にプラズマ処理が行える。また、耐熱高分子フィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルムやオレフィンフィルムなどが使用できる。
 前記無機基板としては、無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
 本実施形態では構成元素として窒素を含まない無機基板が好ましく用いられる。
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、「OA11」、SCHOTT社製の「AF32」などが望ましい。
 前記半導体ウエハとしては、特に限定されないが、シリコンウエハ、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。なかでも、好ましく用いられるウエハはシリコンウエハであり、特に好ましくは8インチ以上のサイズの鏡面研磨シリコンウエハである。
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高分子フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。
 前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルム層と無機基板との接着強度が不充分となる場合がある。
 前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.05mm以上、より好ましくは0.3mm以上、さらに好ましくは0.5mm以上である。
 前記シランカップリング剤は、無機基板と高分子フィルムとの間に物理的ないし化学的に介在し、無機基板と高分子フィルムとを接着する作用を有する。
 本実施形態で用いられるシランカップリング剤は、特に限定されないが、アミノ基を有するカップリング剤を含むことが好ましい。
 前記シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
 前記シランカップリング剤のなかでも、1つの分子中に1個のケイ素原子を有するシランカップリング剤が特に好ましく、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
 さらに前記シランカップリング剤とともに、他のカップリング剤を使用することができる。前記カップリング剤としては、11-アミノ-1-ウンデセンチオール等が挙げられる。
 本実施形態では、シランカップリング剤とともに反応性液体としてジアミンを用いる事ができる。ジアミン化合物は単独ないし複数種の組み合わせにて用いる事ができる。またアルコール、水、各種溶剤の溶液として用いる事ができる。また、溶液にしたジアミンは、ジアミン以外の反応性液体と混合しても良い。
 本実施形態において用いることのできるジアミンとしては、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,2-ヘキサンジアミン、1,3-ヘキサンジアミン、1,4-ヘキサンジアミン、1,5-ヘキサンジアミン、1,2-ペンタンジアミン、1,3-ペンタンジアミン、1,4-ペンタンジアミンなどが挙げられる。
 シランカップリング剤の塗布方法(シランカップリング剤層の形成方法)としては、シランカップリング剤溶液を前記無機基板に塗布する方法や蒸着法などを用いることができる。なお、シランカップリング剤層の形成は、前記耐熱高分子フィルムの表面に行ってもよい。シランカップリング剤の塗布は、塗布装置40を用いて行うことができる。
 シランカップリング剤溶液を塗布する方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の従来公知の溶液の塗布手段(従来公知の塗布装置)を適宜用いることができる。
 また、シランカップリング剤層を蒸着法によって形成することもでき、具体的には、前記無機基板をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露して形成する。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃~シランカップリング剤の沸点程度までの温度に加温することによって得ることができる。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100~250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基側の副反応を招く恐れがあるため好ましくない。
 シランカップリング剤を加温する環境は、加圧下、常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
 前記無機基板をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内が好ましく、より好ましくは60分以内、さらに好ましくは15分以内、最も好ましくは1分以内である。
 前記無機基板をシランカップリング剤に暴露する間の前記無機基板の温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより-50℃から200℃の間の適正な温度に制御することが好ましい。
 シランカップリング剤層の膜厚は、無機基板、高分子フィルム等と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には20nm未満であり、15nm以下が好ましく、さらに実用上は10nm以下が好ましく、より好ましくは7nm以下、さらに好ましくは5nm以下である。ただし、計算上5nm以下の領域になるとシランカップリング剤層が均一な塗膜としてではなく、クラスター状に存在するおそれがある。なお、シランカップリング剤層の膜厚は、エリプソメトリー法または塗布時のシランカップリング剤溶液の濃度と塗布量から計算して求めることができる。
 前記水性媒体としては、水、水と水溶性溶剤との混合媒体を用いることができる。水溶性溶剤としては低級アルコール、低分子のケトン、あるいはテトラヒドロフランなどを用いることができ、好ましく用いられる水性媒体は純水、水とメタノールの混合溶媒、水とエタノールの混合溶媒、水、イソプロパノール、メチルエチルケトンの混合溶媒、水とテトラヒドロフランの混合溶媒などである。本発明で特に好ましく用いられる水性媒体は水、室温で液体の1価アルコール、2価アルコール、3価アルコール、あるいはこれらのうちの2以上の成分を有する混合物である。また水性媒体と無機基板ないし高分子フィルムとの濡れ性を改善するために水性媒体に微量の界面活性剤を添加してもよい。
 前記水性媒体は、貼り合わせの際に対向する面、すなわち接着面を濡らすために用いられる。水性媒体で基板またはフィルムの接着面を濡らす方法としては、スポイトやディスペンサーによる滴下、バルブからの吐出、スプレーノズルなどからミスト状にして噴射するなど既存の方法が適用できる。また、基板ないしフィルムを水性媒体に浸漬させることも濡らすための有効な手段である。水性媒体で基板またはフィルムの接着面を濡らす方法としては、水供給装置50を用いて行う方法が挙げられる。
 なお、水性媒体として水ないしアルコールを含んだ液体を用いた場合にはシランカップリング剤の反応促進にも寄与する。
 基板とフィルムの張り合わせ方法としてはプレス法、ロールラミネータ法などを適用することができる。例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネートで面状にないし線上に加圧を行うことができる。また加圧の際に加熱することによりプロセスを促進することもできる。本発明では、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が接着界面の水性媒体を順次接着面から押し出しながら貼り合わせが出来るため好ましい。
 水性媒体が供給された後の無機基板と耐熱高分子フィルムとの貼り合わせには、ラミネート装置70を用いて行う方法が挙げられる。
 前記積層体は、耐熱高分子フィルムの接着面とは反対側の面に機能素子を形成し、形成後に機能素子ごと高分子フィルムを基板から剥離することでフレキシブル電子デバイスを作成することができる。
 本明細書において電子デバイスとは、電気配線を担う片面、両面、あるいは多層構造を有する配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、バイオセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどをいう。
 本明細書におけるフレキシブル電子デバイスの製造方法では、上述した方法で作製された積層体の高分子フィルム面上に電子デバイスを形成した後、該高分子フィルムを前記無機基板から剥離する。
 電子デバイスが形成された高分子フィルムを無機基板から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、高分子フィルムに切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、高分子フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、高分子フィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
 前記高分子フィルムに切り込みを入れる方法としては、刃物などの切削具によって高分子フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
 また、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
 以上、第1実施形態に係る積層体製造装置、及び、積層体の製造方法について説明した。
 次に、第2実施形態に係る積層体ロール製造装置、及び、積層体ロールの製造方法について説明する。
 [第2実施形態]
 第2実施形態に係る積層体ロール製造装置は、以下の構成を有する。
(1)金属箔を搬送する金属箔搬送装置と、
 シランカップリング剤が塗布された金属箔の表面、及び/又は、シランカップリング剤が塗布された耐熱高分子フィルムの表面に、水性媒体を供給する水供給装置と、
 一方または双方が水性媒体が供給された後である金属箔と耐熱高分子フィルムとを貼り合わせるロールラミネート装置と
を備える積層体ロール製造装置。
(2)シランカップリング剤を金属箔へ塗布する塗布装置
を備える(1)に記載の積層体ロール製造装置。
(3)水性媒体が供給される前の金属箔を洗浄する金属箔洗浄装置
を備える(1)又は(2)に記載の積層体ロール製造装置。
(4)水性媒体が供給される前の耐熱高分子フィルムを洗浄するフィルム洗浄装置
を備える(1)~(3)に記載の積層体ロール製造装置。
(5)前記耐熱高分子フィルムは、幅が700mm以上である(1)~(4)のいずれか1に記載の積層体ロール製造装置。
(6)前記ロールラミネート装置の押し圧力が0.5MPa以下である(1)~(5)のいずれか1に記載の積層体ロール製造装置。
 第2実施形態に係る積層体のロールの製造方法は、以下の構成を有する。
(7)金属箔と耐熱高分子フィルムとの積層体のロールの製造方法であって、
 シランカップリング剤が塗布された金属箔の表面、及び/又は、シランカップリング剤が塗布された耐熱高分子フィルムの表面に、水性媒体を供給する工程A、及び、
 一方または双方が水性媒体が供給された後である金属箔と耐熱高分子フィルムとを貼り合わせる工程B
を有する積層体ロールの製造方法。
(8)前記工程Aの前に、シランカップリング剤を金属箔へ塗布する工程X-1
を有する(7)に記載の積層体ロールの製造方法。
(9)前記工程Aの前に、金属箔を洗浄する工程X-2
を有する(7)又は(8)に記載の積層体ロールの製造方法。
(10)前記工程Aの前に、耐熱高分子フィルムを洗浄する工程X-3
を有する(7)~(9)のいずれか1に記載の積層体ロールの製造方法。
(11)前記工程Bの後、貼り合わせられた金属箔と耐熱高分子フィルムとの積層体ロールの外観を検査する工程X-4
を有する(7)~(10)のいずれか1に記載の積層体ロールの製造方法。
(12)前記工程X-4により外観不良と判定された積層体ロールから耐熱性高分子フィルムを剥離する工程X-5
を有する(11)に記載の積層体ロールの製造方法。
(13)工程Bにおける押し圧力が0.5MPa以下である(7)~(12)のいずれか1に記載の積層体ロールの製造方法。
 なお、第2実施形態では、「金属箔」が本実施形態における「第1のシート」に相当し、「金属箔搬送装置」が本実施形態における「第1のシート搬送装置」に相当し、「耐熱高分子フィルム」が本実施形態における「第2のシート」に相当し、「ロールラミネート装置」が本実施形態における「ラミネート装置」に相当し、「積層体ロール製造装置」が本実施形態における「積層体製造装置」に相当し、「金属箔洗浄装置」が本実施形態における「第1の洗浄装置」に相当し、「フィルム洗浄装置」が本実施形態における「第2の洗浄装置」に相当する。
 以下、第2実施形態に係る積層体ロール製造装置、及び、積層体ロールの製造方法について、具体的に説明する。
 図2は、第2実施形態に係る積層体ロール製造装置を説明するための模式図である。なお、第1実施形態に係る積層体製造装置10と共通する構成については、同一の符号を付している。
 図2に示すように、第2実施形態に係る積層体ロール製造装置1000は、金属箔を金属箔200から巻き出し搬送する機能を有する装置と、金属箔洗浄装置30と、塗布装置40と、水供給装置50と、フィルムをフィルムロール300から巻き出して搬送する機能を有する装置とフィルム洗浄装置60と、ロールラミネート装置70と、外観検査装置80と、最後に積層体を巻き取って積層体ロール400とする巻き取り装置を備える。ただし、本発明における積層体製造装置は、少なくとも第1のシート(金属箔)を搬送する装置と、水供給装置と、ロールラミネート装置とを備えていればよい。
 金属箔100は金属箔200から巻きだされ、搬送され、積層体ロール製造装置1000が備える各装置間を移動させる。金属箔搬送は、金属箔100を搬送することが可能であれば特に限定されないが、積層体の製造をオートメーション化することができるものが望ましい。
 金属箔洗浄装置30は、洗浄液噴射ノズル32や図示しないエアナイフ等を備える。金属箔洗浄装置30は、金属箔100上に洗浄液34を噴射した後、前記エアナイフで空気を吹き付けることにより、金属箔100の表面を乾燥することができる。なお、本発明に係る第1の洗浄装置(金属箔洗浄装置)は、水性媒体が供給される前の第1のシート(金属箔)を、好ましくは連続的に洗浄することが可能な装置であれば、上述した金属箔洗浄装置30に限定されず、従来公知のものを採用することができる。
 塗布装置40は、複数の小孔が設けられたシランカップリング剤供給管42等を備える。塗布装置40は、前記シランカップリング剤供給管42から金属箔100上にシランカップリング剤44を塗布することができる。なお、本発明に係る塗布装置は、シランカップリング剤を金属箔へ塗布することが可能な装置であれば、上述した塗布装置40に限定されず、従来公知のものを採用することができる。
 水供給装置50は、シランカップリング剤が塗布された金属箔100の表面に水性媒体52を供給する。水供給装置50は、シランカップリング剤が塗布された金属箔100の表面に水性媒体52を供給することが可能であれば、特にその構成は限定されず、従来公知のものを採用することができる。水性媒体52の供給量としては、特に限定されないが、気泡、異物低減の観点から、0.1~50g/100cm程度が好ましい。
 高分子フィルムは、フィルムロール300から巻きだされ、フィルム洗浄装置60に導かれる。フィルム洗浄装置はフィルムロール300から供給される耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、耐熱高分子フィルム102の表面を洗浄することができる。なお、本発明に係る第2の洗浄装置(フィルム洗浄装置)は、水性媒体が供給される前の第2のシート(耐熱高分子フィルム)を好ましくは連続的に洗浄することが可能な装置であれば、上述したフィルム洗浄装置60に限定されず、従来公知のものを採用することができる。
 ロールラミネート装置70は、ラミネートローラー72等を備える。ロールラミネート装置70は、ラミネートローラー72により押圧することにより、水性媒体52が供給された後の金属箔100と耐熱高分子フィルム102とを貼り合わせる。貼り合わせの際の押し圧力は0.5MPa以下であること好ましい。積層体製造装置1000によれば、シランカップリング剤44の少なくとも一部が水性媒体52に溶解した状態で貼り合わせを行うことができるため、ラミネートの際の押し圧力を小さくすることができる。なお、本発明に係るラミネート装置(ロールラミネート装置)は、水性媒体が供給された後の金属箔と耐熱高分子フィルムとを貼り合わせることが可能な装置であれば、上述したロールラミネート装置70に限定されず、従来公知のものを採用することができる。
 ロールラミネート装置70の押し圧力は、0.5MPa以下が好ましい。シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、ラミネートの際の押し圧力を小さくすることができる。前記押し圧力が0.5MPa以下であると、金属箔を破損することを抑制できる。
 前記押し圧力の下限は特に限定されないが、0.1MPa以上であることが好ましい。0.1MPa以上であると、密着しない部分が生じることや、接着が不充分になることを防止できる。加圧の際の温度としては、好ましくは10℃~60℃、より好ましくは20℃~40℃である。温度が高すぎると、水性溶液が気化して泡を発生するおそれがあり、高分子フィルムにダメージを与えるおそれがあり、温度が低すぎると、密着力が弱くなる傾向がある。特にコントロールせず室温付近で実施することで問題ない。その後に、高温のラミネーション加圧の際の温度としては、好ましくは80℃~250℃、より好ましくは90℃~140℃である。
 また加圧処理は、大気圧雰囲気中で行うこともできるが、真空下で行ったほうが、接着力の均一性を得ることができる場合がある。真空度としては、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
 前記加圧処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば80℃未満、より好ましくは10以上、60℃以下の温度)で高分子フィルムと金属箔とを加圧(好ましくは0.05~50MPa程度)して両者の密着確保し、その後、圧力下(好ましくは20MPa以下、0.05MPa以上)もしくは常圧にて比較的高温(例えば80℃以上、より好ましくは100~250℃、さらに好ましくは120~220℃)で加熱することにより、密着界面の化学反応が促進されて高分子フィルムと金属箔とを積層できる。
 外観検査装置80は、ロールラミネート装置70によって貼り合わせられた金属箔100と耐熱高分子フィルム102との積層体104の外観を検査する。外観検査装置80としては、例えば、自動光学検査装置(AOI:Automated Optical Inspection)の光学系を採用することができる。外観検査装置80は、CCDカメラで得られた画像(積層体104の耐熱高分子フィルム102面側の画像)と予め設定(定量化)されたデータとをもとにして、積層体104に異物の混入がないかや、貼り付けムラがないか等を判定する。なお、本発明に係る外観検査装置は、金属箔と耐熱高分子フィルムとの積層体の外観を検査することが可能な装置であれば、上述した外観検査装置80に限定されず、従来公知のものを採用することができる。
 また、積層体製造装置1000は、図示しない剥離装置を備える。前記剥離装置は、外観検査装置80により外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離する。前記剥離装置としては、従来公知のものを採用することができる。前記剥離装置を備えるため、外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離することができる。その結果、金属箔100をすぐに再利用することが可能となる。
 上述した実施形態では、シランカップリング剤を金属箔へ塗布する塗布装置40を備える場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(金属箔)へ塗布する塗布装置40の代わりに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。また、シランカップリング剤を第1のシート(金属箔)へ塗布する塗布装置40を備えるとともに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。
 また、上述した実施形態では、シランカップリング剤を金属箔へ塗布する塗布装置40を備える場合について説明したが、本発明ではシランカップリング剤を第1のシート(金属箔)へ塗布する塗布装置を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(金属箔)を用いることとすればよい。
 このようにして得られた金属箔と耐熱高分子フィルムの積層体は、巻き取られることにより積層体ロール400となる。
 以上、本実施形態に係る積層体ロール製造装置1000について説明した。
 次に、第2実施形態に係る積層体ロールの製造方法について説明する。以下では、積層体ロール製造装置1000を用いた場合の積層体の製造方法について説明するが、本発明ではこの例に限定されない。例えば、各装置で実施される工程を、作業者等が実施することとしてもよい。
 第1実施形態に係る積層体の製造方法は、
 金属箔、及び、耐熱高分子フィルムをこの順で有する積層体ロールの製造方法であって、
 シランカップリング剤が塗布された金属箔の表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の金属箔と耐熱高分子フィルムとを貼り合わせる工程Bを少なくとも有する。
 前記積層体ロールの製造方法は、さらに、
 金属箔を洗浄する工程X-2、
 工程X-2の後にシランカップリング剤を金属箔へ塗布する工程X-1
 耐熱高分子フィルムを洗浄する工程X-3
 前記工程Bの後、貼り合わせられた金属箔と耐熱高分子フィルムとの積層体の外観を検査する工程X-4、及び、
 前記工程X-4により外観不良と判定された積層体から耐熱性高分子フィルムを剥離する工程X-5とを有することが好ましい。
 前記積層体ロールの製造方法では、まず、金属箔100を金属箔洗浄装置30の方向に移動させ、金属箔洗浄装置30により金属箔を洗浄する(工程X-2)。
 次に、金属箔100を塗布装置40の方向に移動させ、を塗布装置40によりシランカップリング剤を金属箔へ塗布する(工程X-1)。
 一方、フィルム洗浄装置60により、フィルムロール300から供給される耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、耐熱高分子フィルム102の表面を洗浄する(工程X-3)。
 次に、水供給装置50により、シランカップリング剤が塗布された金属箔100の表面に、水性媒体52を供給する(工程A)。
 次に、ロールラミネート装置70により、水性媒体52が供給された後の金属箔100と耐熱高分子フィルム102とを貼り合わせる(工程B)。
 次に、貼り合わせられた金属箔100と耐熱高分子フィルム102との積層体104の外観を外観検査装置80により検査する(工程X-4)。
 次に、剥離装置により、前記工程X-4により外観不良と判定された積層体104から耐熱性高分子フィルム102を剥離する(工程X-5)。
 上述した実施形態では、シランカップリング剤を金属箔へ塗布する場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(金属箔)へ塗布する代わりに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布することとしてもよい。また、シランカップリング剤を第1のシート(金属箔)へ塗布するとともに、シランカップリング剤を第2のシート(耐熱高分子フィルム)へ塗布することとしてもよい。
 また、上述した実施形態では、シランカップリング剤を金属箔へ塗布する場合について説明したが、本発明ではシランカップリング剤を第1のシート(金属箔)へ塗布する工程を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(金属箔)を用いることとすればよい。
 以上、第2実施形態に係る積層体の製造方法について説明した。
 次に、前記耐熱高分子フィルム、前記金属箔、前記シランカップリング剤、前記水性媒体について説明する。
 第2実施形態に係る耐熱高分子フィルムは、第1実施形態にて説明した高分子フィルムと同様の構成とすることができる。
 前記高分子フィルムの30℃から300℃の間の平均のCTEは、好ましくは、-5ppm/℃~+20ppm/℃であり、より好ましくは-3ppm/℃~+15ppm/℃であり、さらに好ましくは-1ppm/℃~+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(金属箔)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと金属箔とが剥がれることを回避できる。
 前記高分子フィルムは、好ましくは、幅が少なくとも700mm以上での作製を可能とする。またフィルムの長さは好ましくは、少なくとも10mであり、長さの上限は、特に限定されない。高分子フィルムはロール状に巻いた状態で供給されることが好ましい。
 積層体製造装置1000によれば、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、耐熱高分子フィルムが大型(幅が少なくとも700mm以上で、長さは10m以上)であっても、接着強度を均一にすることができる。
 前記金属箔としては、W、Mo、Pt、Fe、Ni、Au、Cuといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、各種のステンレス鋼といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高分子フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。
 前記金属箔の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が5μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。これより粗いと、高分子フィルム層と金属箔との接着強度が不充分となる場合がある。
 前記金属箔の厚さは特に制限されないが、取り扱い性の観点より1mm以下の厚さが好ましく、0.3mm以下がより好ましく、0.08mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.001mm以上、より好ましくは0.05mm以上、さらに好ましくは0.02mm以上である。
 前記シランカップリング剤は、金属箔と高分子フィルムとの間に物理的ないし化学的に介在し、金属箔と高分子フィルムとを接着する作用を有する。前記シランカップリング剤は、第1実施形態にて説明したシランカップリング剤と同様の構成とすることができる。
 シランカップリング剤の塗布方法(シランカップリング剤層の形成方法)としては、シランカップリング剤溶液を前記金属箔に塗布する方法や蒸着法などを用いることができる。なお、シランカップリング剤層の形成は、前記耐熱高分子フィルムの表面に行ってもよい。シランカップリング剤の塗布は、塗布装置40を用いて行うことができる。
 前記水性媒体としては、第1実施形態にて説明した水性媒体と同様の構成とすることができる。
 かかる水性媒体は高分子フィルムと金属箔の張り合わせの際に対向する面、すなわち接着面を濡らすために用いられる。
 以上、第2実施形態に係る積層体ロール製造装置、及び、積層体ロールの製造方法について説明した。
 次に、第3実施形態に係る耐熱高分子フィルム積層体製造装置、及び、耐熱高分子フィルム積層体の製造方法について説明する。
 [第3実施形態]
 第3実施形態に係る耐熱高分子フィルム積層体製造装置は、以下の構成を有する。
(1)第1の耐熱高分子フィルムを搬送するフィルム搬送装置と、
 シランカップリング剤が塗布された第1の耐熱高分子フィルムの表面、及び/又は、シランカップリング剤が塗布された第2の耐熱高分子フィルムの表面に、水性媒体を供給する水供給装置と、
 前記第1の耐熱高分子フィルム及び前記第2の耐熱高分子フィルムの一方または双方に水性媒体を供給した後、前記第1の耐熱高分子フィルムと前記第2の耐熱高分子フィルムとを貼り合わせるラミネート装置と
を備える耐熱高分子フィルム積層体製造装置。
(2)シランカップリング剤を第1の耐熱高分子フィルムへ塗布する塗布装置を備える(1)に記載の耐熱高分子フィルム積層体製造装置。
(3)水性媒体が供給される前の第1の耐熱高分子フィルムを洗浄する第1の耐熱高分子フィルム洗浄装置を備える(1)又は(2)に記載の耐熱高分子フィルム積層体製造装置。
(4)水性媒体が供給される前の第2の耐熱高分子フィルムを洗浄する第2の耐熱高分子フィルム洗浄装置を備える(1)~(3)のいずれか1に記載の耐熱高分子フィルム積層体製造装置。
(5)前記第2の耐熱高分子フィルムは、幅が90mm以上である(1)~(4)のいずれか1に記載の耐熱高分子フィルム積層体製造装置。
(6)前記ラミネート装置の押し圧力が0.2MPa以上である(1)~(5)のいずれか1に記載の耐熱高分子フィルム積層体製造装置。
 第3実施形態に係る耐熱高分子フィルム積層体の製造方法は、以下の構成を有する。
(7)第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとの耐熱高分子フィルム積層体の製造方法であって、
 シランカップリング剤が塗布された第1の耐熱高分子フィルムの表面、及び/又は、シランカップリング剤が塗布された第2の耐熱高分子フィルムの表面に、水性媒体を供給する工程A、及び、
 前記第1の耐熱高分子フィルム及び前記第2の耐熱高分子フィルムの一方または双方に水性媒体を供給した後、前記第1の耐熱高分子フィルムと前記第2の耐熱高分子フィルムとを貼り合わせる工程B
を有する耐熱高分子フィルム積層体の製造方法。
(8)前記工程Aの前に、シランカップリング剤を第1の耐熱高分子フィルムへ塗布する工程X-1を有する(7)に記載の耐熱高分子フィルム積層体の製造方法。
(9)前記工程Aの前に、第1の耐熱高分子フィルムを洗浄する工程X-2を有する(7)又は(8)に記載の耐熱高分子フィルム積層体の製造方法。
(10)前記工程Aの前に、第2の耐熱高分子フィルムを洗浄する工程X-3を有する(7)~(9)のいずれか1に記載の耐熱高分子フィルム積層体の製造方法。
(11)前記工程Bの後、貼り合わせられた第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとの耐熱高分子フィルム積層体の外観を検査する工程X-4有する(7)~(10)のいずれか1に記載の耐熱高分子フィルム積層体の製造方法。
(11)工程Bにおける押し圧力が0.2MPa以上である(7)~(11)のいずれか1に記載の耐熱高分子フィルム積層体の製造方法。
 なお、第3実施形態では、「第1の耐熱高分子フィルム」が本実施形態における「第1のシート」に相当し、「フィルム搬送装置」が本実施形態における「第1のシート搬送装置」に相当し、「第2の耐熱高分子フィルム」が本実施形態における「第2のシート」に相当し、「耐熱高分子フィルム積層体製造装置」が本実施形態における「積層体製造装置」に相当し、「第1の耐熱高分子フィルム洗浄装置」が本実施形態における「第1の洗浄装置」に相当し、「第2の耐熱高分子フィルム洗浄装置」が本実施形態における「第2の洗浄装置」に相当する。
 以下、第3実施形態に係る耐熱高分子フィルム積層体製造装置、及び、耐熱高分子フィルム積層体の製造方法について、具体的に説明する。
 図3は、第3本実施形態に係る耐熱高分子フィルム積層体製造装置を説明するための模式図である。第3実施形態では、耐熱高分子フィルム積層体製造装置が積層体ロール製造装置である場合について説明するが、第3実施形態の耐熱高分子フィルム積層体製造装置で製造される積層体は、積層体ロールに限定されず、枚葉で得られる積層体であってもよい。なお、第1実施形態に係る積層体製造装置10と共通する構成については、同一の符号を付している。
 図3に示すように、第3実施形態に係る積層体ロール製造装置2000は、第1の耐熱高分子フィルムを第1の耐熱高分子フィルムロール200から巻き出し搬送する機能を有する装置と、第1の耐熱高分子フィルム洗浄装置30と、塗布装置40と、水供給装置50と、第2の耐熱高分子フィルムを第2の耐熱高分子フィルムロール300から巻き出して搬送する機能を有する装置と第2の耐熱高分子フィルム洗浄装置60と、ロールラミネート装置70と、外観検査装置80と、最後に積層体を巻き取って積層体ロール400とする巻き取り装置を備えることが好ましい。ただし、本発明における積層体製造装置は、少なくとも第1のシート搬送装置(第1の耐熱高分子フィルムロールを搬送する装置)と、水供給装置と、ロールラミネート装置とを備えていればよい。
 第1の耐熱高分子フィルム100は第1の耐熱高分子フィルムロール200から巻きだされ、搬送され、積層体ロール製造装置2000が備える各装置間を移動させる。第1の耐熱高分子フィルムの搬送は、第1の耐熱高分子フィルム100を搬送することが可能であれば特に限定されないが、積層体の製造をオートメーション化することができるものが望ましい。
 第1の耐熱高分子フィルム洗浄装置30は、洗浄液噴射ノズル32や図示しないエアナイフ等を備える。第1の耐熱高分子フィルム洗浄装置30は、第1の耐熱高分子フィルム100上に洗浄液34を噴射した後、前記エアナイフで空気を吹き付けることにより、第1の耐熱高分子フィルム100の表面を乾燥することができる。なお、本発明に係る第1の洗浄装置(第1の耐熱高分子フィルム洗浄装置)は、水性媒体が供給される前の第1のシート(第1の耐熱高分子フィルム)を、好ましくは連続的に洗浄することが可能な装置であれば、上述した第1の耐熱高分子フィルム洗浄装置30に限定されず、従来公知のものを採用することができる。
 塗布装置40は、複数の小孔が設けられたシランカップリング剤供給管42等を備えるものであることが好ましい。塗布装置40は、前記シランカップリング剤供給管42から第1の耐熱高分子フィルム100上にシランカップリング剤44を塗布することができる。なお、本発明に係る塗布装置40は、シランカップリング剤44を第1の耐熱高分子フィルム100へ塗布することが可能な装置であれば、上述した塗布装置40に限定されず、従来公知のものを採用することができる。シランカップリング剤44は液体状のものであっても、気体状のものであっても構わない。第1の耐熱高分子フィルム100に均一に塗布できることから、気体状のシランカップリング剤であることが好ましい。
 水供給装置50は、シランカップリング剤が塗布された第1の耐熱高分子フィルム100の表面に水性媒体52を供給する。水供給装置50は、シランカップリング剤が塗布された第1の耐熱高分子フィルム100の表面に水性媒体52を供給することが可能であれば、特にその構成は限定されず、従来公知のものを採用することができる。水性媒体52の供給量としては、特に限定されないが、気泡、異物低減の観点から、第1の耐熱高分子フィルムの単位面積(100cm)あたり0.1~50g(0.1~50g/100cm)程度が好ましく、1~30g/100cmがより好ましい。
 第2の耐熱高分子フィルム102は、第2の耐熱高分子フィルムロール300から巻きだされ、第2の耐熱高分子フィルム洗浄装置60に導かれる。第2の耐熱高分子フィルム洗浄装置60は、第2の耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、第2の耐熱高分子フィルム102の表面を洗浄することができる。なお、本発明に係る第2の洗浄装置(第2のフィルム洗浄装置)は、水性媒体が供給される前の第2のシート(第2の耐熱高分子フィルム)を好ましくは連続的に洗浄することが可能な装置であれば、上述した第2の耐熱高分子フィルム洗浄装置60に限定されず、従来公知のものを採用することができる。
 ロールラミネート装置70は、ラミネートローラー72等を備える。ロールラミネート装置70は、ラミネートローラー72により押圧(加圧処理)することにより、水性媒体52が供給された後の第1の耐熱高分子フィルム100と第2の耐熱高分子フィルム102とを貼り合わせる。貼り合わせの際の押し圧力は0.2MPa以上であること好ましい。積層体製造装置2000によれば、シランカップリング剤44の少なくとも一部が水性媒体52に溶解した状態で貼り合わせを行うことができるため、ラミネートの際のムラを抑制することができる。なお、本発明に係るラミネート装置(ロールラミネート装置)は、水性媒体が供給された後の第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとを貼り合わせることが可能な装置であれば、上述したロールラミネート装置70に限定されず、従来公知のものを採用することができる。
 ロールラミネート装置70の押し圧力は、0.2MPa以上が好ましい。シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、ラミネートの際のムラを抑制することができる。前記押し圧力が0.2MPa以上であると、貼り合わせた耐熱高分子フィルム間への空気の噛み込みを抑制できる。
 前記押し圧力の下限は特に限定されないが、0.5MPa以上であることが好ましい。0.5MPa以上であると、密着しない部分が生じることや、接着が不充分になることを防止できる。加圧の際の温度としては、好ましくは10℃~60℃、より好ましくは20℃~40℃である。温度が高すぎると、水性溶液が気化して泡を発生するおそれがあり、高分子フィルムにダメージを与えるおそれがあり、温度が低すぎると、密着力が弱くなる傾向がある。特にコントロールせず室温付近で実施することで問題ない。その後に、高温のラミネーション加圧の際の温度としては、好ましくは80℃~250℃、より好ましくは90℃~200℃である。
 ロールラミネート装置70において、ラミネートに使用する上下のロール72の内、少なくとも片側は柔軟な素材からなるロールであることが望ましい。ここで言う柔軟な素材からなるロールとは、弾性率が300MPa以下の、シリコンゴムロールなどを指す。ラミネートに使用するロールの少なくとも片方が柔軟な素材であれば、より気泡の噛み込みが少ない高品位なフィルム積層体を作製することができる。
 また加圧処理は、大気圧雰囲気中で行うこともできるが、真空下で行ったほうが、接着力の均一性を得ることができる場合がある。真空度としては、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、真空中でのロール式のフィルムラミネーターを使用することができる。あるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
 前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば80℃未満、より好ましくは10℃以上、60℃以下の温度)で第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとを加圧(好ましくは0.05~50MPa程度)して両者の密着を確保し、その後、圧力下(好ましくは0.2MPa以上、20MPa以下)もしくは常圧にて比較的高温(例えば80℃以上、より好ましくは100~250℃、さらに好ましくは120~220℃)で加熱することにより、密着界面の化学反応が促進されて第1と第2の耐熱高分子フィルムとを積層できる。
 外観検査装置80は、ロールラミネート装置70によって貼り合わせられた第1の耐熱高分子フィルム100と第2の耐熱高分子フィルム102との積層体104の外観を検査する。外観検査装置80としては、例えば、自動光学検査装置(AOI:Automated Optical Inspection)の光学系を採用することができる。外観検査装置80は、CCDカメラで得られた画像(積層体104の第2の耐熱高分子フィルム102面側の画像)と予め設定(定量化)されたデータとをもとにして、積層体104に異物の混入がないかや、貼り付けムラがないか等を判定する。なお、本発明に係る外観検査装置は、第1と第2の耐熱高分子フィルムとの積層体の外観を検査することが可能な装置であれば、上述した外観検査装置80に限定されず、従来公知のものを採用することができる。
 上述した実施形態では、シランカップリング剤を第1の耐熱高分子フィルムへ塗布する塗布装置40を備える場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布する塗布装置40の代わりに、シランカップリング剤を第2のシート(第2の耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。また、シランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布する塗布装置40を備えるとともに、シランカップリング剤を第2のシート(第2の耐熱高分子フィルム)へ塗布する装置を備えることとしてもよい。
 また、上述した実施形態では、シランカップリング剤を第1の耐熱高分子フィルムへ塗布する塗布装置40を備える場合について説明したが、本発明ではシランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布する塗布装置を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(第1の耐熱高分子フィルム)を用いることとすればよい。
 このようにして得られた第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとの積層体は、巻き取られることにより積層体ロール400となる。
 以上、本実施形態に係る積層体ロール製造装置2000について説明した。
 次に、第3実施形態に係る積層体の製造方法について説明する。以下では、積層体ロール製造装置2000を用いた場合の積層体の製造方法について説明するが、本発明ではこの例に限定されない。例えば、各装置で実施される工程を、作業者等が実施することとしてもよい。
 第3実施形態に係る積層体の製造方法は、
 第1の耐熱高分子フィルム、及び、第2の耐熱高分子フィルムをこの順で有する積層体の製造方法であって、
 シランカップリング剤が塗布された第1の耐熱高分子フィルムの表面、及び/又は、シランカップリング剤が塗布された第2の耐熱高分子フィルムの表面に、水性媒体を供給する工程A、及び、
 水性媒体が供給された後の第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとを貼り合わせる工程Bを少なくとも有する。
 前記積層体の製造方法は、さらに、
 第1の耐熱高分子フィルムを洗浄する工程X-2、
 工程X-2の後にシランカップリング剤を第1の耐熱高分子フィルムへ塗布する工程X-1
 第2の耐熱高分子フィルムを洗浄する工程X-3
 前記工程Bの後、貼り合わせられた第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとの積層体の外観を検査する工程X-4を有することが好ましい。
 前記積層体の製造方法では、まず、第1の耐熱高分子フィルム100を第1の耐熱高分子フィルム洗浄装置30の方向に移動させ、第1の耐熱高分子フィルム洗浄装置30により第1の耐熱高分子フィルムを洗浄する(工程X-2)。
 次に、第1の耐熱高分子フィルム100を塗布装置40の方向に移動させ、塗布装置40によりシランカップリング剤を第1の耐熱高分子フィルムへ塗布する(工程X-1)。
 一方、第2の耐熱高分子フィルム洗浄装置60により、第2の耐熱高分子フィルムロール300から供給される第2の耐熱高分子フィルム102上に洗浄液64を噴射した後、図示しないエアナイフで空気を吹き付けることにより、第2の耐熱高分子フィルム102の表面を洗浄する(工程X-3)。
 次に、水供給装置50により、シランカップリング剤が塗布された第1の耐熱高分子フィルム100の表面に、水性媒体52を供給する(工程A)。
 次に、ロールラミネート装置70により、水性媒体52が供給された後の第1の耐熱高分子フィルム100と第2の耐熱高分子フィルム102とを貼り合わせる(工程B)。
 前記貼り合わせ(工程B)は、水性媒体52の供給(工程A)後、速やかに実施することが好ましい。少なくとも、水性媒体52が乾燥(蒸発)する前に、貼り合わせを完了することがより好ましい。
 次に、貼り合わせられた第1の耐熱高分子フィルム100と第2の耐熱高分子フィルム102との積層体104の外観を外観検査装置80により検査する(工程X-4)。
 なお、前記製造方法は、積層体ロールの製造方法であることが好ましい。
 上述した実施形態では、シランカップリング剤を第1の耐熱高分子フィルムへ塗布する場合について説明したが、本発明ではこの例に限定されず、シランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布する代わりに、シランカップリング剤を第2のシート(第2の耐熱高分子フィルム)へ塗布することとしてもよい。また、シランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布するとともに、シランカップリング剤を第2のシート(第2の耐熱高分子フィルム)へ塗布することとしてもよい。
 また、上述した実施形態では、シランカップリング剤を第1の耐熱高分子フィルムへ塗布する場合について説明したが、本発明ではシランカップリング剤を第1のシート(第1の耐熱高分子フィルム)へ塗布する工程を備えなくてもよい。この場合、例えば、予めシランカップリング剤が塗布された第1のシート(第1の耐熱高分子フィルム)を用いることとすればよい。
 以上、第3実施形態に係る積層体の製造方法について説明した。
 次に、前記第1の耐熱高分子フィルム、前記第2の耐熱高分子フィルム、前記シランカップリング剤、前記水性媒体について説明する。
 第3実施形態に係る第1の耐熱高分子フィルム、及び、第2の耐熱高分子フィルムは、第1実施形態にて説明した耐熱高分子フィルムと同様の構成とすることができる。
 第1の耐熱高分子フィルムと第2の耐熱高分子フィルムは、互いに同じ種類の樹脂であっても構わないし、異なる種類の樹脂であっても構わない。また、同じ種類の樹脂の場合、同一組成であっても構わないし、異なる組成であっても構わない。さらに融点及びガラス転移温度も同一であっても構わないし、異なっていても構わない。好ましくは互いに同一種類、及び同一組成の樹脂である。中でも第1の耐熱高分子フィルム及び第2の耐熱高分子フィルムが共に同一のベンゾオキサゾール構造を有する芳香族ポリイミドフィルムであることが好ましい。
 前記高分子フィルムの30℃から300℃の間の平均のCTEは、第1実施形態にて説明したように、好ましくは、-5ppm/℃~+20ppm/℃であり、より好ましくは-3ppm/℃~+15ppm/℃であり、さらに好ましくは-1ppm/℃~+10ppm/℃である。CTEが前記範囲であると、熱を加えるプロセスに供しても積層体と金属部品などとをともに用いることが可能である。
 前記高分子フィルムは、好ましくは、幅が少なくとも90mm以上での作製を可能とする。またフィルムの長さは好ましくは、少なくとも10mであり、長さの上限は、特に限定されない。高分子フィルムはロール状に巻いた状態で供給されることが好ましい。
 積層体製造装置10によれば、シランカップリング剤の少なくとも一部が水性媒体に溶解した状態で貼り合わせを行うことができるため、耐熱高分子フィルムが大型(幅が少なくとも90mm以上で、長さは10m以上)であっても、接着強度を均一にすることができる。
 前記シランカップリング剤は、第1の耐熱高分子フィルムおよび第2の耐熱高分子フィルム間に物理的ないし化学的に介在し、耐熱高分子フィルム同士を接着する作用を有する。前記シランカップリング剤は、第1実施形態にて説明したシランカップリング剤と同様の構成とすることができる。
 シランカップリング剤の塗布方法(シランカップリング剤層の形成方法)としては、シランカップリング剤溶液を第1の耐熱高分子フィルムや第2の耐熱高分子フィルムに塗布する方法や蒸着法などを用いることができる。シランカップリング剤の塗布は、塗布装置40を用いて行うことができる。
 前記水性媒体としては、第1実施形態にて説明した水性媒体と同様の構成とすることができる。
 かかる水性媒体は第1の耐熱高分子フィルムと第2の耐熱高分子フィルムとの貼り合わせの際に対向する面、すなわち接着面を濡らすために用いられる。
 以上、第3実施形態に係る耐熱高分子フィルム積層体製造装置、及び、耐熱高分子フィルム積層体の製造方法について説明した。
 次に、本実施形態に係る積層体について説明する。
 本実施形態に係る積層体は、以下の構成を有する。
(1)無機基板、アミノ基を含んだシランカップリング剤層、耐熱高分子フィルムを、この順で有する積層体であって、
 前記無機基板から前記耐熱高分子フィルムを90°剥離した後の無機基板側の剥離面の窒素元素成分比が2.5原子%以上3.5原子%以下である積層体。
(2)前記積層体から前記耐熱高分子フィルムを剥離する際の90度剥離法による接着強度が、0.05N/cm以上、0.25N/cm以下である(1)に記載の積層体。
(3)前記耐熱高分子フィルムがポリイミドフィルムである(1)又は(2)に記載の積層体。
(4)ブリスター欠点密度が1平方mあたり5か所以下である(1)~(3)のいずれか1に記載の積層体。
(5)前記耐熱高分子フィルムが長方形であり、面積が0.65平方m以上であり、長方形の一辺が少なくとも700mm以上である(1)~(4)のいずれか1に記載の積層体。
 本実施形態に係る積層体は、本実施形態に係る積層体製造装置(例えば、第1実施形態に係る積層体製造装置、第2実施形態に係る積層体ロール製造装置、第3実施形態に係る耐熱高分子フィルム積層体製造装置等)を用いて製造することができる。また、本実施形態に係る積層体は、本実施形態に係る積層体の製造方法(例えば、第1実施形態に係る積層体の製造方法、第2実施形態に係る積層体ロールの製造方法、第3実施形態に係る耐熱高分子フィルム積層体の製造方法等)を用いて製造することができる。
 ただし、本実施形態に係る積層体は、前記(1)の構成を有するのであれば、前記積層体製造装置で製造される必要はない。
 本実施形態に係る耐熱高分子フィルムは、第1実施形態にて説明した高分子フィルムと同様の構成とすることができる。
 本実施形態に係る無機基板は、第1実施形態にて説明した無機基板と同様の構成とすることができる。
 本実施形態に係るシランカップリング剤は、無機基板と金属含有層との間に物理的ないし化学的に介在し、無機基板と高分子フィルムとを接着する作用を有する。前記シランカップリング剤は少なくともアミノ基を有するカップリング剤を含む。アミノ基は一般的に反応性が高く、かつフィルム中にイミド結合やアミド結合がある場合はこれらとの反応性が高くなる。本実施形態では、前記シランカップリング剤が少なくともアミノ基を有するカップリング剤を含むため、無機基板と高分子フィルムとの結合強度を強くしやすい。
 本実施形態に係るシランカップリング剤は、第1実施形態にて説明したシランカップリング剤のうち、アミノ基を有するカップリング剤と同様の構成とすることができる。
 前記無機基板から前記耐熱高分子フィルムを90°剥離した後の無機基板側の剥離面の窒素元素成分比が2.5原子%以上3.5原子%以下である。
 従来技術にて説明した通り、フレキシブル電子デバイスを製造するための耐熱高分子フィルムと、主にガラス板などの無機基板との積層体においては、特に大面積において、シランカップリング剤を均質に塗布することが困難であり、結果として耐熱高分子フィルムと無機基板との接着強度を均一適正に制御することが困難であった。
 しかしながら、本実施形態によれば、この接着強度を、0.05N/cm以上、0.25N/cm以下の範囲に制御可能であり、さらに前記耐熱高分子フィルムと前記無機基板の間のブリスター欠点が生じにくく、面積0.8平方mの長方形で、少なくとも一辺が1m以上ある大面積な積層体を実現でき、さらにこの積層体を用いることにより、大面積のフレキシブル電子デバイスの製造方法を提供することができる。
 本実施形態に係る積層体は、本実施形態に係る積層体製造装置、及び/又は、積層体の製造方法を採用することにより、無機基板ないし高分子フィルム間の余分なシランカップリング剤を除去することができ、シランカップリング剤の量は、基板、フィルムの少なくともいずれかの表面に親和力で配意した必要最低限の量にコントロールされる。
 基板と高分子フィルムとの接着力が経時的に、あるいは、高温プロセスを経た後などに変化するのは、過剰に存在し、未反応だったシランカップリング剤の反応が進むためであると推察されるが、本実施形態に係る積層体製造装置、及び/又は、積層体の製造方法を採用することにより、このような余剰の未反応物を基板とフィルムとの接着界面から排除することができるのである。
 本実施形態に係る積層体製造装置、及び/又は、積層体の製造方法を採用することにより、フィルムを剥離した後の無機基板表面の、ESCAで観察されるN元素が2.5原子%以上3.5原子%以下である積層体を得ることができる。このN元素はアミノ基含有シランカップリング剤の存在を反映するものである。
 さらにこの張り合わせ方法では、過剰なシランカップリング剤を排除するために、シランカップリング剤の縮合による異物が生成しにくくなり、同時に、接着面に混在したゴミ等も押し出されるため、接着界面の粒子径の異物が激減し、結果としたそれら異物が核となるブリスター欠点(気泡、ウキなどとも呼ばれる)数が低減される。
 前記構成、すなわち、前記無機基板から前記耐熱高分子フィルムを90°剥離した後の無機基板側の剥離面の窒素元素成分比が2.5原子%以上3.5原子%以下である構成によれば、シランカップリング剤層が十分な接着強度を持つ厚さであり、かつ余分なシランカップリング剤がないため、接着強度が強すぎることにならず、接着強度が、0.05N/cm以上、0.25N/cm以下の範囲とすることができる。このことは、実施例からも明らかである。この点、本発明者らは、無機基板上にシランカップリング剤を堆積させていく初期では、無機基板の表面にOH基が多く存在していることから、このOH基とシランカップリング剤層とが水素結合や化学反応などにより結びつく結果、強固なシランカップリング剤層が得られるが、シランカップリング剤堆積時間を長くすると、必ずしも結合が強固ではないシランカップリング剤層が、耐熱高分子フィルム中に入り込みやすくこの入り込み方また、入り込んだところでの結合の仕方によって接着強度が変わってくると推察している。
 前記構成においては、前記耐熱高分子フィルムと前記無機基板との90度剥離法による接着強度が、0.05N/cm以上、0.25N/cm以下であることが好ましい。
 前記90度接着強度が0.05N/cm以上であると、デバイス形成前や形成中に耐熱高分子フィルムが無機基板から剥がれてしまうことを好適に防止することができる。
 前記90度接着強度が0.25N/cm以下であると、機械剥離時にデバイスを破壊することなく剥離できる。
 前記構成においては、前記耐熱高分子フィルムと前記無機基板の間の気泡が500mm×500mmあたり、1ケ以下であることが好ましい。
 前記気泡が500mm×500mmあたり、1ケ以下であるであると、耐熱高分子フィルム上にデバイスを作製する際に、気泡の成長によるデバイスの破壊される可能性を著しく低減することができる。 
 本実施形態に係る積層体製造装置を用いて得られる積層体、及び/又は、本実施形態に係る積層体の製造方法により得られる積層体は、好ましくは以下の特性を有する。
 前記積層体は、耐熱高分子フィルムと無機基板との90度剥離法による初期接着強度が、好ましくは0.05N/cm以上、0.25N/cm以下である。また、ブリスター欠点密度が1平方mあたり好ましくは5か所以下である。
 前記積層体は、前記耐熱高分子フィルムと前記無機基板との90度剥離法による初期接着強度が、0.05N/cm以上であることが好ましく、0.09N/cm以上であることがより好ましく、0.1N/cm以上であることがさらに好ましい。また、前記90度初期接着強度は、0.25N/cm以下であることが好ましく、0.2N/cm以下であることがより好ましい。前記90度初期接着強度が0.05N/cm以上であると、デバイス形成前や形成中に耐熱高分子フィルムが無機基板から剥がれてしまうことを防止することができる。また、前記90度初期接着強度が0.25N/cm以下であると、デバイス形成後、無機基板と耐熱高分子フィルムとを剥離しやすい。つまり、前記90度初期接着強度が0.25N/cm以下であると、デバイス形成中に、無機基板と耐熱高分子フィルムとの間の接着強度が多少上昇したとしても、両者を容易に剥離しやすい。
 本明細書において、前記90度初期接着強度は、前記積層体を、大気雰囲気下、200℃1時間熱処理した後の無機基板と耐熱高分子フィルムとの間の90度接着強度をいう。
 また、前記積層体は、前記耐熱高分子フィルムと前記無機基板との90度剥離法による熱処理後接着強度が、0.05N/cm以上であることが好ましく、0.09N/cm以上であることがより好ましく、0.1N/cm以上であることがさらに好ましい。また、前記熱処理後接着強度は、0.25N/cm以下であることが好ましく、0.2N/cm以下であることがより好ましい。
 本明細書において、前記熱処理後初期接着強度は、前記積層体を、大気雰囲気下、200℃1時間熱処理した後、さらに、450℃1時間熱処理した後の無機基板と耐熱高分子フィルムとの間の90度接着強度をいう。
 本明細書において、「接着強度」とは、「初期接着強度」と「熱処理後接着強度」との両方を意味する。つまり、「接着強度が、0.05N/cm以上、0.25N/cm以下」とは、「初期接着強度が、0.05N/cm以上、0.25N/cm以下」、且つ、「熱処理後接着強度が、0.05N/cm以上、0.25N/cm以下」であることを意味する。
 前記初期接着強度、及び、前記熱処理後接着強度の測定条件は、下記の通りである。
 無機基板に対して耐熱高分子フィルムを90度の角度で引き剥がす。
 5回測定を行い、平均値を測定値とする。
測定温度    ; 室温(25℃)
剥離速度    ; 100mm/min
雰囲気     ; 大気
測定サンプル幅 ; 2.5cm
 より詳細には、実施例に記載の方法による。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 なお実施例、比較例における各測定値は、特に断りのない限り以下の方法で測定した。
<高分子フィルムの厚さ>
 マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
<高分子フィルムの引張弾性率、引張破断強度、及び、引張破断伸度>
 高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。試験片は、幅方向中央部分から切り出した。引張試験機(島津製作所製、オートグラフ(R)、機種名AG-5000A)を用い、温度25℃、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度及び引張破断伸度を測定した。
<線膨張係数(CTE)>
 高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)において、下記条件にて伸縮率を測定し、30℃~45℃、45℃~60℃のように15℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出した。
  機器名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
<接着強度の測定>
 積層体の作製で得られた積層体から高分子フィルムを90度剥離法による接着強度を以下の方法で求めた。
 無機基板に対してフィルムを90度の角度で引き剥がす。
測定装置    ; 島津製作所社製 オートグラフAG-IS
測定温度    ; 室温(25℃)
剥離速度    ; 100mm/min
雰囲気     ; 大気
測定サンプル幅 ; 2.5cm
 なお、測定は積層体の中央部分と、四角からの合計5点について測定し、その平均値を求めた。
 なお、測定は、積層体を得た直後(200℃1時間熱処理後)と、積層体を450℃1時間の熱処理を行った後(200℃1時間熱処理後、さらに、450℃1時間の熱処理を行った後)に行い、前者を初期接着強度、後者を熱処理後接着強度とした。
<ブリスター欠点の計数>
 本実施例では長径が300μm以上のものをブリスターとして計数した。ブリスターとはウキ欠点または気泡欠点とも呼ばれ、フィルムが基板に接着せずにバブル状に浮き上がっている個所であって、比較的硬い異物を挟むことによりフィルムがテント状に持ち上げられて生じること多い。
 本実施例では、無機基板と高分子フィルムとの接着面に焦点を合わせて、積層体を拡大観察し、長径300μm以上のブリスターの個数を、少なくとも
 G2(370mm×470mm)サイズ積層体については4枚
 G4.5(730mm×920mm)サイズ積層体については2枚
 G5(1100mm×1250mm)サイズ積層体については1枚
について計数し、1平方mあたりの個数に換算した。
<窒素元素成分比>
積層体から高分子フィルムを90°剥離した剥離面50mm×50mmの範囲をESCAにて分析し、無機基板の剥離面に存在する窒素元素の割合を評価した。装置にはK-Alpha (Thermo Fisher Scientific社製)を用いた。測定条件は以下のとおりである。なお、解析の際、バックグラウンドの除去はshirley法にて行った。また、表面組成比は3箇所以上の測定結果の平均値とした。
・測定条件
  励起X線:モノクロ化Al Kα線
  X線出力:12kV、6mA
  光電子脱出角度:90°
  スポットサイズ:400μmφ
  パスエネルギー:50eV
  ステップ:0.1eV
〔ポリアミド酸溶液Aの調製〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N-ジメチルアセトアミド4416質量部とを加えて完全に溶解させた。次に、ピロメリット酸二無水物(PMDA)217質量部とともに、コロイダルシリカ(平均粒径:0.08μm)をジメチルアセトアミドに分散させたスノーテックス(DMAC-ST30、日産化学工業製)をコロイダルシリカがポリアミド酸溶液A中のポリマー固形分総量に対して0.7質量%になるように加え、25℃の反応温度で24時間攪拌して、
褐色で粘調なポリアミド酸溶液Aを得た。
〔ポリイミドフィルムの作製例1〕
 ポリアミド酸溶液Aを、ダイコーターを用いて、鏡面仕上げしたステンレススチール製の無端連続ベルト上に塗布し(塗工幅1240mm)、90~115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルムを支持体から剥離して両端をカットし、グリーンフィルムを得た。
 得られたグリーンフィルムをピンテンターによって、最終ピンシート間隔が1140mmとなるように搬送し、1段目170℃で2分間、2段目230℃で2分間、3段目465℃で6分間として熱処理を施し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、表1に示すポリイミドフィルム1を得た。
〔ポリイミドフィルムの作製例2〕
 出来上がりポリイミド膜厚38μmとなるようにダイコーターのギャップを変えたこと以外は、同様に操作し、表1に示すポリイミドフィルム2を得た。
〔ポリイミドフィルム3〕
 宇部興産製の厚さ25μmのポリイミドフィルム Upilex25S(登録商標)をポリイミドフィルム3として用いた。
<積層体の作製>
 (実施例1)
 まず、製造例2で得たポリイミドフィルム1を370mm×500mm幅に切り出した。次に、フィルム表面処理としてUV/O照射器(LANテクニカル製SKR1102N-03)を用い、UV/Oの照射を3分間行った。この時UV/Oランプとフィルムとの距離は30mmとした。
 図4に模式図を示す装置を用い、G2サイズ(370mm×470mm、厚さ0.7mmのガラス基板:日本電気硝子社製OA10G)にアミノ基含有シランカップリング剤を気相を介して塗布した。
 ガラス基板は、純水洗浄、乾燥後にUV/O3照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。
 ガラス基板を装置のチャンバー内に静置し、容量1Lの薬液タンクの中に、3-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-903)を130g入れて、この外側の湯煎を42℃に温め、発生するシランカップリング剤蒸気をクリーンドライエアとともにチャンバーに、ガス流量22L/minで送り、シランカップリング剤蒸気にガラス基板を暴露した。この際に、基板温度は21℃、クリーンドライエアの温度は23℃、湿度は1.2%RHとした。排気は負圧の排気口に接続したため、チャンバーは10Pa程度の負圧となっていることを差圧計によって確認している。
 このようにしてアミノ基含有シランカップリング剤を塗布したガラス基板を、シリコンゴムローラーを装備したロールラミネータにセットし、まずシランカップリング剤塗布面にスポイトで100mlの純水を水性媒体として基板全体に広がるように滴下し、基板を濡らした。
 次いで、ポリイミドフィルムの表面処理面を、ガラス基板のシランカップリング剤塗布面、すなわち純水で濡らした面に対向するように重ね、ガラス基板の一方の一辺から順次回転ロールでポリイミドフィルムとガラス基板間の純水を押し出しながら加圧してガラス基板とポリイミドフィルムをラミネートして仮積層体を得た。使用したラミネータは、MCK社製の有効ロール幅1350mmのラミネータであり、貼合条件は、エアー元圧力:0.5MPa、ラミネート速度:50mm/秒、ロール温度:22℃、環境温度22度、湿度55%RHであった。
 得られた仮積層体を、クリーンオーブンにて200℃10分間加熱処理し、本発明における積層体を得た。同様の操作を4枚のガラス基板について実施した。
 得られた積層体の評価結果を表2に示す。
 (実施例2~20、比較例1~4)
 以下同様に表2~表5に示す条件にて積層体を作製し、積層体の特性を評価した。結果を表2~表5に示す。なお表中の略称は、以下を意味する。
 フィルム1:ポリイミドフィルムの作製例1で得られたポリイミドフィルム
 フィルム2:ポリイミドフィルムの作製例2で得られたポリイミドフィルム
 フィルム1:宇部興産社製ポリイミドフィルムUpilex25S(登録商標)
 ガラス:日本電気硝子社製OA10G
 無機基板サイズ(ガラスサイズ)
  G2サイズ(370mm×470mm)
  G4.5サイズ(730mm×920mm)
  G5サイズ(1100mm×1250mm)
 水性媒体
  純水:超純水
  純水+MeOH:純水99/メタノール1(質量比)
  純水+EtOH:純水99/エタノール1(質量比)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<応用実施例>
 実施例15にて得られた積層体を用い、以下の工程により、ポリイミドフィルム上に真空蒸着法を用いてタングステン膜(膜厚75nm)を形成し、さらに大気にふれることなく、絶縁膜として酸化シリコン膜(膜厚150nm)を積層形成した。次いで、プラズマCVD法で下地絶縁膜となる酸化窒化シリコン膜(膜厚100nm)を形成し、さらに大気にふれることなく、アモルファスシリコン膜(膜厚54nm)を積層形成した。
 次いでアモルファスシリコン膜の水素元素を除去し結晶化を促進し、ポリシリコン膜を形成する為に500℃の熱処理を40分間行った。
 得られたポリシリコン膜を用いてTFT素子を作製した。まず、ポリシリコン薄膜をパターニングを行って所定の形状のシリコン領域を形成し、適宜、ゲート絶縁膜の形成、ゲート電極の形成、活性領域へのドーピングによるソース領域またはドレイン領域の形成、層間絶縁膜の形成、ソース電極およびドレイン電極の形成、活性化処理を行い、ポリシリコンを用いたPチャンネルTFTのアレイを作製した。
 TFTアレイ外周の0.5mm程度内側に沿ってUV-YAGレーザーにて高分子フィルム部を焼き切り、切れ目の端部から薄いカミソリ状の刃を用いてすくい上げるように剥離を行い、フレキシブルなA3サイズのTFTアレイを得た。この時の剥離角度は3度である。剥離は極微力で可能であり、TFTにダメージを与えること無く剥離することが可能であった。得られたフレキシブルTFTアレイは3mmφの丸棒に巻き付けても性能劣化は見られず、良好な特性を維持した。
10 積層体製造装置
20 無機基板搬送装置(ローラコンベア)
30 第1の洗浄装置(無機基板洗浄装置、金属箔洗浄装置、第1の耐熱高分子フィルム洗浄装置)
40 塗布装置
50 水供給装置
60 第2の洗浄装置(フィルム洗浄装置、第2の耐熱高分子フィルム洗浄装置)
70 ラミネート装置(ロールラミネート装置)
80 外観検査装置
100 第1のシート(無機基板、金属箔、第1の耐熱高分子フィルム)
102 第2のシート(耐熱高分子フィルム、第2の耐熱高分子フィルム)
104 積層体
400 積層体ロール
1000、2000 積層体ロール製造装置

Claims (9)

  1.  第1のシートを搬送する第1のシート搬送装置と、
     シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する水供給装置と、
     水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせるラミネート装置と
    を備えることを特徴とする積層体製造装置。
  2.  シランカップリング剤を第1のシートへ塗布する塗布装置
    を備えることを特徴とする請求項1に記載の積層体製造装置。
  3.  水性媒体が供給される前の第1のシートを洗浄する第1の洗浄装置
    を備えることを特徴とする請求項1又は2に記載の積層体製造装置。
  4.  水性媒体が供給される前の第2のシートを洗浄する第2の洗浄装置
    を備えることを特徴とする請求項1~3のいずれか1に記載の積層体製造装置。
  5.  第1のシートと第2のシートとを有する積層体の製造方法であって、
     シランカップリング剤が塗布された第1のシートの表面、及び/又は、シランカップリング剤が塗布された第2のシートの表面に、水性媒体を供給する工程A、及び、
     水性媒体が供給された後の第1のシートと第2のシートとを貼り合わせる工程B
    を有することを特徴とする積層体の製造方法。
  6.  前記工程Aの前に、シランカップリング剤を第1のシートへ塗布する工程X-1
    を有することを特徴とする請求項5に記載の積層体の製造方法。
  7.  前記工程Aの前に、第1のシートを洗浄する工程X-2
    を有することを特徴とする請求項6に記載の積層体の製造方法。
  8.  前記工程Aの前に、第2のシートを洗浄する工程X-3
    を有することを特徴とする請求項5~7のいずれか1に記載の積層体の製造方法。
  9.  前記工程Bの後、貼り合わせられた第1のシートと第2のシートとの積層体の外観を検査する工程X-4
    を有することを特徴とする請求項5~8のいずれか1に記載の積層体の製造方法。
PCT/JP2020/024005 2019-10-02 2020-06-18 積層体製造装置、及び、積層体の製造方法 WO2021065101A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021550328A JP7205706B2 (ja) 2019-10-02 2020-06-18 積層体製造装置、及び、積層体の製造方法
US17/632,159 US20220274314A1 (en) 2019-10-02 2020-06-18 Apparatus for manufacturing laminate and method for manufacturing laminate
EP20872017.7A EP4039447A4 (en) 2019-10-02 2020-06-18 LAMINATE MANUFACTURING APPARATUS AND LAMINATE MANUFACTURING METHOD
KR1020227013449A KR20220066376A (ko) 2019-10-02 2020-06-18 적층체 제조 장치, 및 적층체의 제조 방법
CN202080066032.5A CN114423612A (zh) 2019-10-02 2020-06-18 层叠体制造装置以及层叠体的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019-182016 2019-10-02
JP2019182016 2019-10-02
JP2020-011498 2020-01-28
JP2020011313 2020-01-28
JP2020011498 2020-01-28
JP2020-011313 2020-01-28
JP2020044268 2020-03-13
JP2020-044268 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021065101A1 true WO2021065101A1 (ja) 2021-04-08

Family

ID=75336386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024005 WO2021065101A1 (ja) 2019-10-02 2020-06-18 積層体製造装置、及び、積層体の製造方法

Country Status (7)

Country Link
US (1) US20220274314A1 (ja)
EP (1) EP4039447A4 (ja)
JP (1) JP7205706B2 (ja)
KR (1) KR20220066376A (ja)
CN (1) CN114423612A (ja)
TW (1) TWI778422B (ja)
WO (1) WO2021065101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034809A1 (ja) * 2020-08-11 2022-02-17 東洋紡株式会社 積層体、積層体の製造方法およびフレキシブル電子デバイスの製造方法
WO2023002920A1 (ja) * 2021-07-20 2023-01-26 東洋紡株式会社 積層体ロール
WO2023002919A1 (ja) * 2021-07-20 2023-01-26 東洋紡株式会社 積層体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534490B2 (ja) 1973-06-04 1978-02-17
JPS5531781B2 (ja) 1972-05-20 1980-08-20
JP2010168535A (ja) * 2008-12-24 2010-08-05 Sumitomo Metal Mining Co Ltd 金属材料の接着方法及び金属材料用接着層
JP2011063760A (ja) * 2009-09-18 2011-03-31 Seiko Epson Corp 基板接合方法
JP2012041418A (ja) * 2010-08-18 2012-03-01 Sumitomo Metal Mining Co Ltd 金属材料の接着方法
JP5152104B2 (ja) 2009-06-08 2013-02-27 東洋紡株式会社 積層体およびその製造方法
JP2015178237A (ja) 2014-03-19 2015-10-08 東洋紡株式会社 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP2017202570A (ja) * 2016-05-09 2017-11-16 東洋紡株式会社 積層体および積層体の製造方法
JP2018202308A (ja) * 2017-06-01 2018-12-27 東洋紡株式会社 シランカップリング剤処理方法、シランカップリング剤処理基材の製造方法および積層体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713068A (en) * 1971-06-07 1973-01-23 Itt Bonded assemblies and methods of making the same
JPS5152104Y2 (ja) 1972-02-21 1976-12-14
JPS61144339A (ja) * 1984-12-19 1986-07-02 日立化成工業株式会社 金属コアエポキシ樹脂銅張積層板の製造方法
JP2740573B2 (ja) * 1990-10-15 1998-04-15 アームコ・インコーポレイテッド 積層.その形成方法およびそれからの製品
JP2002103517A (ja) * 2000-09-29 2002-04-09 Three M Innovative Properties Co 透明樹脂被覆ステンレス鋼製部材
JP4148927B2 (ja) 2004-07-15 2008-09-10 三菱電機株式会社 画素信号処理方法及び装置
WO2007095973A1 (en) * 2006-02-24 2007-08-30 Freescale Semiconductor, Inc. Integrated system for semiconductor substrate processing using liquid phase metal deposition
KR101942967B1 (ko) * 2012-12-12 2019-01-28 삼성전자주식회사 실록산계 단량체를 이용한 접합 기판 구조체 및 그 제조방법
TWI709481B (zh) * 2014-08-25 2020-11-11 日商東洋紡股份有限公司 矽烷偶合劑層疊層高分子膜及其製造方法、疊層體及其製造方法、可撓性電子器件之製造方法
JPWO2017002974A1 (ja) * 2015-07-02 2018-04-12 コニカミノルタ株式会社 接合体及び接合体の製造方法
JP6802529B2 (ja) * 2015-07-10 2020-12-16 東洋紡株式会社 積層体およびその製造方法
JP6661463B2 (ja) * 2016-05-18 2020-03-11 株式会社クラレ 積層体およびその製造方法、成形体、偏光子保護フィルム、並びに偏光板
JP2018051760A (ja) * 2016-09-27 2018-04-05 株式会社山本金属製作所 手持ち式工具に用いる無線式測定ユニット
JP2018057160A (ja) * 2016-09-29 2018-04-05 株式会社クラレ ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
CN111819077B (zh) * 2018-03-09 2023-07-07 株式会社有泽制作所 层叠体及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531781B2 (ja) 1972-05-20 1980-08-20
JPS534490B2 (ja) 1973-06-04 1978-02-17
JP2010168535A (ja) * 2008-12-24 2010-08-05 Sumitomo Metal Mining Co Ltd 金属材料の接着方法及び金属材料用接着層
JP5152104B2 (ja) 2009-06-08 2013-02-27 東洋紡株式会社 積層体およびその製造方法
JP2011063760A (ja) * 2009-09-18 2011-03-31 Seiko Epson Corp 基板接合方法
JP2012041418A (ja) * 2010-08-18 2012-03-01 Sumitomo Metal Mining Co Ltd 金属材料の接着方法
JP2015178237A (ja) 2014-03-19 2015-10-08 東洋紡株式会社 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP2017202570A (ja) * 2016-05-09 2017-11-16 東洋紡株式会社 積層体および積層体の製造方法
JP2018202308A (ja) * 2017-06-01 2018-12-27 東洋紡株式会社 シランカップリング剤処理方法、シランカップリング剤処理基材の製造方法および積層体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039447A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034809A1 (ja) * 2020-08-11 2022-02-17 東洋紡株式会社 積層体、積層体の製造方法およびフレキシブル電子デバイスの製造方法
WO2023002920A1 (ja) * 2021-07-20 2023-01-26 東洋紡株式会社 積層体ロール
WO2023002919A1 (ja) * 2021-07-20 2023-01-26 東洋紡株式会社 積層体

Also Published As

Publication number Publication date
JPWO2021065101A1 (ja) 2021-04-08
CN114423612A (zh) 2022-04-29
KR20220066376A (ko) 2022-05-24
TWI778422B (zh) 2022-09-21
TW202115792A (zh) 2021-04-16
JP7205706B2 (ja) 2023-01-17
EP4039447A4 (en) 2023-11-22
EP4039447A1 (en) 2022-08-10
US20220274314A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6447135B2 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
WO2021065101A1 (ja) 積層体製造装置、及び、積層体の製造方法
TWI629175B (zh) 剛性複合疊層板與其製造方法、疊層體及利用該疊層體之元件的製造方法
JP7167693B2 (ja) 積層フィルム、積層体、及び、積層体の製造方法
JP2015178237A (ja) 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP2015202675A (ja) ポリイミド前駆体フィルム層/無機基板積層体、およびその製造方法、ポリイミドフィルム層/無機基板積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6950713B2 (ja) 高分子フィルム積層基板およびフレキシブル電子デバイスの製造方法
JP7205687B2 (ja) 積層体、積層体の製造方法、及び、金属含有層付き耐熱高分子フィルム
JP6955681B2 (ja) 積層体、及び、積層体の製造方法
JP2017149041A (ja) 積層体およびその製造方法
WO2022034809A1 (ja) 積層体、積層体の製造方法およびフレキシブル電子デバイスの製造方法
JP6981011B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法
US20220282052A1 (en) Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device
JP7116889B2 (ja) 耐熱高分子フィルム、表面処理された耐熱高分子フィルムの製造方法、及び、耐熱高分子フィルムロール
JP2018137347A (ja) デバイス形成用仮支持基板およびデバイスの製造方法
JP6981010B2 (ja) デバイス形成用仮支持基板およびデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013449

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020872017

Country of ref document: EP

Effective date: 20220502