WO2021064807A1 - 顕微鏡装置、データ生成方法、およびプログラム - Google Patents

顕微鏡装置、データ生成方法、およびプログラム Download PDF

Info

Publication number
WO2021064807A1
WO2021064807A1 PCT/JP2019/038569 JP2019038569W WO2021064807A1 WO 2021064807 A1 WO2021064807 A1 WO 2021064807A1 JP 2019038569 W JP2019038569 W JP 2019038569W WO 2021064807 A1 WO2021064807 A1 WO 2021064807A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
detection
pupil
illumination
light
Prior art date
Application number
PCT/JP2019/038569
Other languages
English (en)
French (fr)
Inventor
諭史 池田
福武 直樹
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/038569 priority Critical patent/WO2021064807A1/ja
Publication of WO2021064807A1 publication Critical patent/WO2021064807A1/ja
Priority to US17/707,096 priority patent/US20220244516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/088Condensers for both incident illumination and transillumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/12Condensers affording bright-field illumination

Definitions

  • the present invention relates to a microscope device, a data generation method, and a program.
  • Non-Patent Document 1 a method for obtaining the phase distribution and the refractive index distribution in a sample such as a phase object has been devised.
  • the microscope device detects light from the sample through an illumination optical system for illuminating the sample, a detection optical system in which light from the sample is incident, and the detection optical system to detect light.
  • a detector that outputs a detection signal
  • a data processing unit that generates data on the transmittance of the sample based on the detection signal output from the detector, and at least one of the illumination optical system and the detection optical system.
  • the present invention includes an element provided at the position of the pupil or a position conjugate with the pupil, and the light transmittance changes in the plane of the pupil or in the plane conjugated with the pupil.
  • the data generation method is the position of the pupil in at least one of the illumination optical system for illuminating the sample, the detection optical system in which the light from the sample is incident, and the illumination optical system and the detection optical system.
  • it is a data generation method using a microscope provided at a position conjugate with the pupil and having an element whose light transmittance changes in the plane of the pupil or in a plane conjugated with the pupil, and the detection optics. The light from the sample is detected through the system, a light detection signal is output, and the transmittance data of the sample is generated based on the output detection signal.
  • the program according to the third aspect includes an illumination optical system that illuminates a sample, a detection optical system in which light from the sample is incident, and a pupil position or the pupil position in at least one of the illumination optical system and the detection optical system.
  • (A) is a graph which shows the distribution of the transmittance of a conventional pupil.
  • (B) is a figure which shows the distribution of POTF in the case of (A).
  • (A) is a graph which shows the case where the light transmittance of the illumination side modulation element changes according to the cosine function.
  • (B) is a figure which shows the distribution of POTF in the case of (A).
  • (A) is a graph which shows the case where the light transmittance of an illumination side modulation element changes according to a sine function.
  • (B) is a figure which shows the distribution of POTF in the case of (A).
  • (A) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element changes according to a Gaussian function.
  • (B) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element changes according to a quadratic function.
  • (A) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element and a detection side modulation element changes according to a sine function.
  • FIG. (B) is a diagram showing the distribution of POTF when the light transmittance of the illumination side modulation element changes according to the sine function and the light transmittance of the detection side modulation element changes according to the cosine function.
  • FIG. (C) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element changes according to a sine function, and the light transmittance of a detection side modulation element changes according to a cosine function.
  • FIG. (A) is a diagram showing the distribution of POTF when the light transmittance of the illumination side modulation element changes according to the cosine function and the light transmittance of the detection side modulation element changes according to the trigonometric function.
  • FIG. (B) is a diagram showing the distribution of POTF when the light transmittance of the illumination side modulation element changes according to the cosine function and the light transmittance of the detection side modulation element changes according to the trigonometric function.
  • (A) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element and a detection side modulation element changes according to a cosine function.
  • (B) is a figure which shows the distribution of POTF when the light transmittance of an illumination side modulation element and a detection side modulation element changes according to a cosine function.
  • (C) is a figure which shows the distribution of POTF when the light transmittance of the illumination side modulation element changes according to the cosine function.
  • It is a schematic diagram which shows the distribution of POTF which has a missing cone, and the distribution of POTF which estimated the missing cone. It is a schematic diagram of the image displayed on the image display unit.
  • the microscope device 1 according to the first embodiment has a stage 2, a light source 5 for transmission illumination, a light source 6 for epi-illumination, a transmission illumination optical system 10, an epi-illumination optical system 20, a detection optical system 40, and detection. It includes a device 60, a control unit 65, an image processing unit 66, an operation input unit 67, and an image display unit 70.
  • the optical axis of the transmission illumination optical system 10 is referred to as Ax1
  • the optical axis of the detection optical system 40 is referred to as Ax2.
  • the optical axis Ax1 of the transmission illumination optical system 10 and the optical axis Ax2 of the detection optical system 40 are basically the same optical axis as the optical axis of the microscope device 1 (that is, coaxial). It is divided into the optical axis Ax1 of the transmission illumination optical system 10 and the optical axis Ax2 of the detection optical system 40.
  • the stage 2 is formed by using a transparent parallel flat plate. Stage 2 supports sample SA. Sample SA is a phase object such as a cell.
  • the stage 2 is provided with a stage drive unit 3.
  • the stage drive unit 3 moves the stage 2 along the optical axis Ax1 of the transmission illumination optical system 10.
  • the coordinate axis extending in the optical axis direction of the transmission illumination optical system 10 is defined as the z-axis.
  • the stage drive unit 3 By moving the stage 2 in the z direction by the stage drive unit 3, the predetermined position Z 0 , the position Z 0 + ⁇ z separated from the position Z 0 by + ⁇ z, the position Z 0 ⁇ z separated from the position Z 0 by ⁇ z, position Z 0 from + 2Derutaz position spaced Z 0 + 2 ⁇ z, it is possible to acquire the image data of the cross section of the sample SA at the position Z 0 -2Derutaz ... separated by -2Derutaz from the position Z 0.
  • the transmitted illumination light source 5 generates illumination light in a predetermined wavelength band.
  • the transmission illumination optical system 10 includes a collector lens 12, a field diaphragm 14, a relay lens 15, an illumination side modulation element 16, an aperture diaphragm 17, and a condenser lens 18 in this order from the transmission illumination light source 5 side.
  • the transmission light source 5 is configured by using, for example, a halogen lamp or the like. When a halogen lamp is used as the light source 5 for transmitted illumination, it is preferable to provide an element that narrows the wavelength band of the illumination light. By narrowing the wavelength band of the illumination light, the accuracy of calculated values such as POTF, which will be described in detail later, can be improved.
  • the wavelength band of the illumination light can be narrowed by inserting a bandpass filter 13 having a predetermined spectral transmittance characteristic into the optical path between the collector lens 12 and the relay lens 15 in the transmission illumination optical system 10. It is possible.
  • the spectral transmittance characteristic of the bandpass filter 13 is set based on the wavelength band of the illumination light according to the purpose of observation such as bright-field observation and fluorescence observation.
  • the bandpass filter 13 may be inserted in the optical path between the field diaphragm 14 and the relay lens 15 in the transmission illumination optical system 10.
  • a filter cube (not shown) provided with a bandpass filter may be inserted into the optical path of the illumination optical system as described in detail in the ninth embodiment described later. ..
  • the illumination side modulation element 16 and the aperture diaphragm 17 of the transmission illumination optical system 10 at the position P0 of the pupil (hereinafter, may be referred to as an illumination pupil) between the relay lens 15 and the condenser lens 18 in the transmission illumination optical system 10. It is arranged on a plane perpendicular to the optical axis Ax1.
  • the illumination side modulation element 16 is arranged adjacent to the aperture diaphragm 17 (as an example, above the aperture diaphragm 17 as shown in FIG. 1).
  • the surface perpendicular to the optical axis Ax1 of the transmission illumination optical system 10 at the position P0 of the illumination pupil is referred to as the surface of the illumination pupil.
  • the illumination side modulation element 16 is a flat plate having light transmittance, and the light transmittance changes in the plane of the flat plate.
  • This flat plate is formed by depositing a film (having a light-shielding property) capable of reducing light transmittance on a parallel flat plate such as a glass substrate.
  • a metal film is vapor-deposited.
  • the light transmittance can be changed according to the portion of the parallel plate (the thicker the film thickness, the lower the transmittance). Become).
  • the illumination side modulation element 16 By arranging the illumination side modulation element 16 on the surface of the illumination pupil, the light transmittance can be changed in the surface of the illumination pupil.
  • the light transmittance of the illumination side modulation element 16 changes in the plane of the illumination pupil.
  • the light transmittance of the illumination side modulation element 16 changes continuously (or discretely) in the plane of the illumination pupil.
  • the light transmittance of the illumination side modulation element 16 changes according to the portion of the illumination side modulation element 16, so that the light transmittance distribution of the illumination side modulation element 16 (in other words, the distribution of the light transmittance on the surface of the illumination pupil). Is decided.
  • the illumination side modulation element 16 it is possible to select one of a plurality of illumination side modulation elements 16 having different changes in light transmittance, that is, the distribution of light transmittance, and arrange them at the position P0 of the illumination pupil. is there.
  • the details of the light transmittance of the illumination side modulation element 16 will be described later.
  • the position where the illumination side modulation element 16 is arranged is not limited to the position P0 of the illumination pupil.
  • the illumination side modulation element 16 may be arranged on a plane perpendicular to the optical axis Ax1 (in other words, a plane conjugate with the illumination pupil) at a position conjugate with the illumination pupil.
  • the condenser lens 18 is arranged above the stage 2 so as to face each other. As the condenser lens 18, any one of a plurality of condenser lenses 18 having different optical characteristics can be selected and arranged above the stage 2.
  • the epi-illumination light source 6 generates excitation light in a predetermined wavelength band.
  • the epi-illumination optical system 20 has an objective lens unit 21 and a filter cube 31 in this order from the sample SA side.
  • the objective lens unit 21 includes a plurality of objective lenses 22, a lens holding unit 25, and a unit driving unit 26.
  • the objective lens 22 is arranged below the stage 2 so as to face each other.
  • the lens holding unit 25 holds a plurality of objective lenses 22 having different focal lengths.
  • the lens holding portion 25 is configured by using, for example, a revolver, a turret, or the like.
  • the unit driving unit 26 can drive the lens holding unit 25 and select one of the plurality of objective lenses 22 and arrange it below the stage 2.
  • the unit drive unit 26 may move the lens holding unit 25 along the z-axis. In this case, the stage drive unit 3 may be used in combination, or the stage drive 3 may not be used.
  • the filter cube 31 When observing the bright field of the sample SA using the transmission illumination optical system 10, the filter cube 31 is retracted from the optical path of the detection optical system 40 including the epi-illumination optical system 20 as shown by the solid line in FIG.
  • the filter cube 31 When observing the fluorescence of the sample SA using the epi-illumination light source 6, the filter cube 31 is inserted into the optical path of the detection optical system 40 including the epi-illumination optical system 20 as shown by the two-point chain line in FIG.
  • the filter cube 31 reflects the excitation light emitted from the epi-illumination light source 6 toward the stage 2.
  • the filter cube 31 transmits the fluorescence generated in the sample SA on the stage 2 toward the first imaging lens 41 of the detection optical system 40.
  • the filter cube 31 has an excitation filter 32 that transmits excitation light from the epi-illumination light source 6.
  • the filter cube 31 has an absorption filter 33 that absorbs the excitation light reflected by the sample SA, the stage 2, or the
  • the detection optical system 40 includes an objective lens unit 21 and a filter cube 31.
  • the detection optical system 40 includes a first imaging lens 41, a first mirror 43, a lens 44, a second mirror 45, a collimator lens 46, and a half mirror 47 in order from the epi-illumination optical system 20 side. .. Further, the detection optical system 40 includes a third imaging lens 50 and a detection side modulation element 53. Further, the second imaging lens 48, the third mirror 49, and the eyepiece lens 55 are arranged on the optical path of the light transmitted through the half mirror 47.
  • the ratio of the transmittance and the reflectance of the half mirror 47 is set to, for example, 1: 1.
  • a part of the light incident on the half mirror 47 is reflected by the half mirror 47 and incident on the third imaging lens 50.
  • the light transmitted through the third imaging lens 50 is imaged on a predetermined first image plane IA.
  • the position of the predetermined first image plane IA is a position conjugate with the focal position of the objective lens 22.
  • the detector 60 is arranged on the first image plane IA of the detection optical system 40.
  • the other part of the light incident on the half mirror 47 passes through the half mirror 47 and is incident on the second imaging lens 48.
  • the light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the position of the predetermined second image plane IB is a position conjugate with the focal position of the objective lens 22.
  • the observer can observe the image of the sample SA imaged on the second image plane IB using the eyepiece lens 55.
  • An image sensor such as a CCD or CMOS is used for the detector 60.
  • the detection side modulation element 53 is arranged on a plane perpendicular to the optical axis Ax2 of the detection optical system 40 at a position P2 conjugate with the pupil of the objective lens 22 (hereinafter, may be referred to as a detection pupil) in the detection optical system 40. ..
  • the surface perpendicular to the optical axis Ax2 of the detection optical system 40 at the position P2 conjugate with the detection pupil is referred to as a surface conjugate with the detection pupil.
  • the detection side modulation element 53 is formed by depositing a film capable of reducing the light transmittance on a parallel flat plate such as a glass substrate, similarly to the illumination side modulation element 16.
  • the detection side modulation element 53 By arranging the detection side modulation element 53 on a surface conjugate with the detection pupil, the light transmittance can be changed in the surface conjugate with the detection pupil. Therefore, it can be said that the light transmittance of the detection side modulation element 53 changes in the plane conjugate with the detection pupil.
  • the light transmittance of the detection-side modulation element 53 changes continuously (or discretely) in a plane conjugate with the detection pupil.
  • the detection-side modulation element 53 one of a plurality of detection-side modulation elements 53 having different light transmittance distributions can be selected and arranged at the position P2 conjugate with the detection pupil. The details of the light transmittance of the detection side modulation element 53 will be described later.
  • the position where the detection side modulation element 53 is arranged is not limited to the position P2 conjugate with the detection pupil.
  • the detection side modulation element 53 may be arranged on a plane perpendicular to the optical axis Ax2 at the position of the detection pupil (in other words, the plane of the detection pupil).
  • the detection side modulation element 53 may be built in the objective lens 22.
  • the filter cube 31 is transmitted from the optical path of the detection optical system 40 (epi-illumination optical system 20) as shown by the solid line in FIG. It is evacuated.
  • the illumination light emitted from the transmitted illumination light source 5 is incident on the collector lens 12 (through the bandpass filter 13 when a halogen lamp is used as the transmitted illumination light source 5).
  • the illumination light transmitted through the collector lens 12 becomes parallel light, passes through the field diaphragm 14, and is incident on the relay lens 15.
  • the illumination light transmitted through the relay lens 15 passes through the illumination side modulation element 16 and the aperture diaphragm 17 and enters the condenser lens 18.
  • the illumination light transmitted through the condenser lens 18 becomes parallel light and is incident on the sample SA on the stage 2.
  • the transmitted illumination optical system 10 illuminates the sample SA on the stage 2 with the illumination light from the transmitted illumination light source 5.
  • the light transmitted or diffracted through the sample SA (hereinafter, may be referred to as detection light) is incident on the objective lens 22 as the detection optical system 40.
  • the detection light transmitted through the objective lens 22 is incident on the first imaging lens 41.
  • the detected light transmitted through the first imaging lens 41 is reflected by the first mirror 43 to form an image on a predetermined intermediate image plane IM, and is incident on the lens 44.
  • the detected light transmitted through the lens 44 is reflected by the second mirror 45 and incident on the collimator lens 46.
  • the detection light transmitted through the collimator lens 46 becomes parallel light, passes through the detection side modulation element 53, and is incident on the half mirror 47. A part of the detection light incident on the half mirror 47 is reflected by the half mirror 47 and incident on the third imaging lens 50.
  • the detection light transmitted through the third imaging lens 50 is imaged on a predetermined first image plane IA on which the detector 60 is arranged.
  • the other part of the detection light incident on the half mirror 47 passes through the half mirror 47 and is incident on the second imaging lens 48.
  • the detected light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the filter cube 31 is inserted into the optical path of the detection optical system 40 (ec-illumination optical system 20) as shown by the two-point chain line in FIG.
  • the excitation light emitted from the epi-illumination light source 6 passes through the excitation filter 32 of the epi-illumination optical system 20 and enters the filter cube 31.
  • the excitation light incident on the filter cube 31 is reflected by the filter cube 31 and incident on the objective lens 22.
  • the excitation light transmitted through the objective lens 22 is incident on the sample SA on the stage 2.
  • the epi-illumination optical system 20 illuminates the sample SA on the stage 2 with the excitation light from the epi-illumination light source 6.
  • the fluorescent substance contained in the sample SA is excited and fluorescence is emitted.
  • the fluorescence from the sample SA is incident on the objective lens 22 as the detection optical system 40.
  • the fluorescence transmitted through the objective lens 22 is incident on the filter cube 31.
  • the fluorescence incident on the filter cube 31 passes through the filter cube 31 and enters the first imaging lens 41 through the absorption filter 33.
  • the fluorescence transmitted through the first imaging lens 41 is reflected by the first mirror 43 to form an image on a predetermined intermediate image plane IM, and is incident on the lens 44.
  • the fluorescence transmitted through the lens 44 is reflected by the second mirror 45 and is incident on the collimator lens 46.
  • the fluorescence transmitted through the collimator lens 46 becomes parallel light, passes through the detection side modulation element 53, and is incident on the half mirror 47.
  • a part of the fluorescence incident on the half mirror 47 is reflected by the half mirror 47 and incident on the third imaging lens 50.
  • the fluorescence transmitted through the third imaging lens 50 is imaged on a predetermined first image plane IA on which the detector 60 is arranged.
  • the other part of the fluorescence incident on the half mirror 47 passes through the half mirror 47 and is incident on the second imaging lens 48.
  • the detected light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the detector 60 illuminates the sample SA using the transmission illumination optical system 10, and the light from the sample SA (in other words, the detection light transmitted or diffracted through the sample SA) via the detection optical system 40. ) Is detected, and the detection signal of the light is output.
  • the detection unit 60 captures an image of the sample SA via the detection optical system 40.
  • the detection signal is a signal indicating the signal intensity detected by the detector 60 according to the intensity of light (detection light).
  • the detector 60 is a CCD, it is a signal in each pixel of the CCD.
  • the detection signal can be rephrased as a signal indicating the signal intensity detected by the detector 60 according to the intensity of the image of the sample SA.
  • the detection signal of the light (detection light) output from the detector 60 is transmitted to the image processing unit 66 via the control unit 65.
  • the detector 60 detects the fluorescence from the sample SA via the detection optical system 40 and outputs the detection signal of the fluorescence.
  • the fluorescence detection signal output from the detector 60 is transmitted to the image processing unit 66 via the control unit 65.
  • the control unit 65 controls the entire microscope device 1.
  • the control unit 65 is electrically connected to the stage drive unit 3, the unit drive unit 26, the detector 60, the image processing unit 66, the operation input unit 67, the image display unit 70, and the like.
  • the image processing unit 66 illuminates the sample SA using the transmission illumination optical system 10 and outputs the light from the sample SA via the detection optical system 40 (in other words, bright-field observation) from the detector 60. Based on the detection signal of the generated light (detection light), the refractive index data for the sample SA is generated.
  • the refractive index data relating to the sample SA is data representing the refractive index of the sample SA, for example, data of the refractive index at each position in the sample SA, that is, data showing the refractive index distribution in the sample SA. ..
  • the refractive index data regarding the sample SA is stored in a storage unit (not shown) as, for example, a look-up table.
  • the image processing unit 66 sets the brightness value of each pixel according to the value of the refractive index at each position of the refractive index distribution in the sample SA (hereinafter, referred to as the image data of the refractive index distribution of the sample SA). In some cases). Further, the image processing unit 66 is based on the detection signal of the detection light output from the detector 60, and is each according to the value of the signal intensity of the detection signal at each position (each pixel of the detector 60) in the sample SA. Image data in which the brightness value of the pixel is set (hereinafter, may be referred to as image data of sample SA by bright field observation) is generated.
  • the image processing unit 66 Based on the fluorescence detection signal output from the detector 60, the image processing unit 66 sets each pixel according to the value of the signal intensity of the detection signal at each position (each pixel of the detector 60) in the sample SA.
  • Image data (hereinafter, may be referred to as image data of sample SA by fluorescence observation) in which the brightness value of is set is generated.
  • the image display unit 70 displays an image of the refractive index distribution in the sample SA based on the image data of the refractive index distribution of the sample SA generated by the image processing unit 66. Further, the image display unit 70 displays an image of the sample SA by bright field observation based on the image data of the sample SA by bright field observation generated by the image processing unit 66. The image display unit 70 displays an image of the sample SA by fluorescence observation based on the image data of the sample SA by fluorescence observation generated by the image processing unit 66.
  • o represents the complex amplitude transmittance of the object.
  • TCC represents the mutual transmission coefficient (Transmission Cross Coefficient).
  • ( ⁇ , ⁇ , ⁇ ) represents the direction cosine of diffracted light (or direct light).
  • the image in this case is an image of the sample SA obtained by forming an image of light (detection light) transmitted through at least a part of the sample SA by illumination. Therefore, the intensity I (x, y, z) of the image of the three-dimensional object, that is, the image of the three-dimensional sample SA is the signal intensity of the detection signal output from the detector 60 in the image processing (that is, the detector). It can be replaced with the signal strength in each pixel of the detector 60 when the sample SA is imaged by 60).
  • the detector 60 captures an image of the xy cross section at each position of the sample SA in the z direction (that is, each position in the optical axis direction).
  • the signal strength of the detection signal that is imaged and output is used.
  • the coordinate axes extending in the optical axis direction of the transmission illumination optical system 10 are defined as the z-axis
  • the coordinate axes perpendicular to the z-axis are defined as the x-axis and the y-axis.
  • the intertransmission coefficient TCC can be expressed as the following equation (2).
  • the xy cross section of the sample SA at each position in the z direction is not necessary to capture an image of the xy cross section of the sample SA at each position in the z direction with the detector 60, and the xy cross section of the arbitrary position in the z direction acquired by the detector 60 is used by using machine learning.
  • An image of an xy cross section at another position in the z direction may be obtained from the detection signal corresponding to the image.
  • a trained model is created in advance using images at each position of the sample in the z direction as teacher data, and the image processing unit 66 prepares the sample SA acquired by the detection unit 60 at an arbitrary position in the z direction.
  • the detection signal corresponding to the image of the xy cross section at another position in the z direction of the sample SA may be obtained. Since the detection signal corresponding to the image of the sample SA obtained by using machine learning as described above is also the information in which the light from the sample SA is estimated, it can be paraphrased as the detection signal of the light from the sample SA. Can be done.
  • Equation (2) S represents the illuminated pupil.
  • G represents the detection pupil. Since the mutual permeability coefficient TCC is Hermitian conjugate, it has the property shown in the following equation (3).
  • Equation (5) P represents the real part of the scattering potential.
  • represents the imaginary part of the scattering potential.
  • Equation (4) is expressed as the following equation (6) by using the equation (5).
  • WOTF Weak Object Transfer Function
  • the intensity I (x, y, z) of the image of the three-dimensional object obtained by the transmission illumination type microscope is expressed by the following equation (8).
  • EPSF represents an effective point spread function.
  • EPSF is equivalent to the inverse Fourier transform of WOTF.
  • EPSF is generally a complex function.
  • the first term of the formula (9) represents the background intensity.
  • the second term of the formula (9) indicates that the imaginary part ⁇ of the scattering potential of the sample is multiplied by the imaginary part Im [EPSF] of EPSF. Using this equation (9), the imaginary part ⁇ of the scattering potential of the sample can be obtained.
  • images of a plurality of cross sections having different positions in the z direction (that is, positions in the optical axis direction) of the sample SA may be collectively referred to as a z stack image of the sample SA.
  • the first term of the equation (9) is a constant term representing the background intensity.
  • both sides of the equation (9) are divided by this constant term to normalize, and then the first term of the normalized equation (9) is removed in the real space (or frequency space). Then, by performing deconvolution using Im [EPSF], the following equation (10) can be obtained.
  • the one obtained by performing the three-dimensional Fourier transform of Im [EPSF] is referred to as POTF (Phase Optical Transfer Function). Since Im [EPSF] can take from a positive value to a negative value, the POTF value can also take from a positive value to a negative value.
  • POTF is an index showing the contrast and resolution of the image (image) of the sample SA by bright-field observation.
  • the absolute value of POTF represents the contrast of the image, and the higher the absolute value of POTF, the higher the contrast of the image (image) of the sample SA by bright-field observation. Further, the wider the region where the POTF value is not 0 in the frequency space, the higher the resolution of the image (image) of the sample SA by bright-field observation.
  • the intensity I (for example, I 1 to I 6 in FIG. 3) of the image of each cross section of the sample SA in the z-stack image of the sample SA is standardized by the constant term of the equation (9) and is defined as I'. ⁇ shall take any small value.
  • equation (13) If the right side of equation (13) is expressed in real space, it will be as shown in equation (14) below.
  • Equation (15) the three-dimensional Fourier transform of ImEPSF'is referred to as POTF'.
  • the intensity I (I (x, y, z + ⁇ z) and I (x, y, z ⁇ z)) of the images of the two cross sections having different positions in the z direction (that is, the position in the optical axis direction) of the sample SA is expressed by the equation ( Let I'be the one standardized by the constant term of 14). ⁇ shall take any small value. The above two methods are valid for any pupil shape.
  • n (x, y, z) represents a refractive index distribution of the three-dimensional in the sample SA
  • k 0 represents the wave number in vacuum
  • n m represents the refractive index of the medium.
  • the image processing unit 66 uses the above equation (10) or equation (15) and the equation (16) to obtain the signal strength of the detection signal output from the detector 60, that is, the image of the three-dimensional sample SA.
  • the three-dimensional refractive index distribution n (x, y, z) in the sample SA is calculated from the intensity I (x, y, z).
  • the image processing unit 66 sets the brightness value of each pixel according to the value of the refractive index at each position (coordinate) of the three-dimensional refractive index distribution in the calculated sample SA, that is, the sample SA 3 Generate image data of a three-dimensional refractive index distribution.
  • the intensity of the image of the three-dimensional sample SA can be expressed as the intensity of the image of each cross section of the sample SA in the z-stack image of the sample SA. That is, the intensity of the image of the three-dimensional sample SA can be said to be the intensity of a plurality of images having different positions in the z direction (that is, positions in the optical axis direction) in the sample SA.
  • the illumination ⁇ is increased (illumination ⁇ is close to 1) in order to improve the resolution, and as a result, the sample SA by bright field observation is performed.
  • the contrast of the image (image) of the above is low, the dynamic range of the refractive index at each position of the obtained sample SA is narrowed. That is, the contrast of the image of the refractive index distribution in the sample SA becomes low.
  • the resolution of the image (image) of the sample SA by bright-field observation becomes low as a result of reducing the illumination ⁇ in order to improve the contrast, it is not possible to obtain a fine change in the refractive index at each position of the sample SA.
  • the illumination ⁇ is the ratio of the numerical aperture of the transmission illumination optical system 10 to the numerical aperture of the detection optical system 40.
  • the illumination side modulation element 16 whose light transmittance changes in the plane of the illumination pupil is provided at the position P0 of the illumination pupil in the transmission illumination optical system 10. Further, at the position P2 conjugate with the detection pupil in the detection optical system 40, a detection side modulation element 53 in which the light transmittance changes in a plane conjugate with the detection pupil is provided.
  • the illumination ⁇ is large and the resolution of the image (image) of the sample SA by bright field observation is high, the contrast is maintained in a high state. It is possible to obtain a three-dimensional refractive index distribution that has a wide dynamic range of the refractive index and represents a fine change in the refractive index. That is, it is possible to obtain an image of the refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • 5 to 7 are graphs showing an example of the distribution of light transmittance of the illumination side modulation element 16 and the detection side modulation element 53.
  • X is the coordinate in the x direction with the coordinate position through which the optical axis (optical axis Ax1 of the transmission illumination optical system 10 or optical axis Ax2 of the detection optical system 40) passes as the origin
  • Y is the optical axis. It is a coordinate in the y direction whose origin is the coordinate position through which the product passes.
  • FIG. 5 to 7 is the coordinate in the x direction with the coordinate position through which the optical axis (optical axis Ax1 of the transmission illumination optical system 10 or optical axis Ax2 of the detection optical system 40) passes as the origin
  • Y is the optical axis. It is a coordinate in the y direction whose origin is the coordinate position through which the product passes. In the example shown in FIG.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 changes according to a continuous function.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is maximum at the origins of X and Y, and X and Y are on any straight line passing through the origins of X and Y. Decreases from the origin of the light according to the cosine function (parts with equal light transmittance are distributed concentrically around the origins of X and Y). That is, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 changes according to the cosine function.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is a continuous function (in the plane of the illumination pupil or in the plane conjugate to the detection pupil) from the origins of X and Y in the pupil. For example, it can be said that it changes according to the cosine function), and it can be said that it decreases as the distance from the origin of X and Y increases.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is the minimum at the origins of X and Y, and is from the origins of X and Y on any straight line passing through the origins of X and Y. It may be increased according to the cosine function. Further, on any straight line passing through a point where the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is different from the origin of X and Y, the cosine is from a point different from the origin of X and Y. It may change according to the function (the parts having the same light transmittance may be distributed concentrically around the points different from the origins of X and Y).
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is maximum at the origins of X and Y, and X is on any straight line passing through the origins of X and Y. , Y may decrease from the origin according to the Gaussian function. Further, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is maximum at the origins of X and Y, and is from the origins of X and Y on any straight line passing through the origins of X and Y. It may decrease according to a quadratic function. That is, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is not limited to the cosine function, and may change according to a Gaussian function or a quadratic function.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 increases once in the plane of the pupil according to a continuous function (for example, a Gaussian function) in the X direction (one direction) and then decreases. I can say.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 may decrease and then increase according to the Gauss function in any direction in the XY coordinate system, not limited to the X direction and the Y direction. (Parts having the same light transmittance may be distributed in a straight line extending in a direction perpendicular to an arbitrary direction in the XY coordinate system).
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 changes according to a continuous function. Specifically, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 decreases monotonically according to a sine function in the X direction (for example, the ⁇ X direction) (the portions having the same light transmittance are in the Y direction). It is distributed in a straight line extending to). That is, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 changes according to a sine function.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 increases monotonically in the pupil plane according to a sine function in the X direction (for example, the + X direction), and monotonously in the X direction. It can be said that it decreases or increases.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 may be monotonically decreased or increased according to a sine function in the Y direction (a linear portion in which portions having the same light transmittance extend in the X direction). May be distributed in). Further, the light transmission rate of the illumination side modulation element 16 or the detection side modulation element 53 may be monotonically decreased or increased according to a sine function in any direction in the XY coordinate system, not limited to the X direction or the Y direction ( Parts with equal light transmission may be distributed in a straight line extending in a direction perpendicular to an arbitrary direction in the XY coordinate system).
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 may decrease monotonically according to a linear function in the X direction (for example, the ⁇ X direction). That is, the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 is not limited to the trigonometric function, and may change according to a linear function.
  • the above continuous function may be any one of a sine function, a cosine function, a quadratic function, a linear function, and a Gaussian function.
  • the above-mentioned continuous function is not limited to a sine function, a cosine function, a quadratic function, a linear function, and a Gaussian function, and may be another function such as a cubic function.
  • the range in which the light transmittance changes in the illumination side modulation element 16 and the detection side modulation element 53 may be set according to the size (diameter) of the pupil (illumination pupil, detection pupil). For example, in the case shown in FIGS. 5 to 7, the illumination side modulation element 16 and the detection side modulation element 53 are formed so that the region where the light transmittance is 0 matches the outer peripheral portion of the pupil (illumination pupil, detection pupil). To do.
  • the cosine within the plane of the pupil is smaller than one cycle. It is desirable that the change follows a function or a sine function. This is because if the range is larger than one cycle, the POTF value also behaves periodically, which is not preferable from the viewpoint of deconvolution. In this case, there will be a plurality of frequencies at which the POTF value becomes 0, and the noise generated in the deconvolution process will increase, so that the accuracy of the refractive index distribution of the obtained sample SA will decrease.
  • the light transmittance of the illumination side modulation element 16 or the detection side modulation element 53 changes according to the cosine function
  • the light transmittance becomes 0 at the outer periphery of the pupil (illumination pupil, detection pupil) (cosine function).
  • the value of) is set to 0), but this is because the discontinuity of the light transmittance at the outer periphery of the pupil causes artifacts such as ringing in the image. is there.
  • FIG. 8A shows the light transmittance at the position P0 of the illumination pupil and the position P2 conjugate with the detection pupil is 100% in the plane of the illumination pupil and in the plane conjugate with the detection pupil ( (Constant) is shown.
  • the light transmittance distribution is the same as that of the conventional circular aperture diaphragm.
  • FIG. 8B shows the distribution of POTF in the case of FIG. 8A.
  • the illumination ⁇ 0.95 is set.
  • gray (background) indicates that the POTF value is 0
  • white indicates that the POTF value is a positive value
  • black indicates that the POTF value is a negative value. Indicates that. Therefore, in FIG.
  • FIG. 9A the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to the cosine function as shown in FIG. 5, and the light at the position P2 conjugate with the detection pupil changes.
  • FIG. 9B shows the distribution of POTF in the case of FIG. 9A.
  • the illumination ⁇ 0.95 is set.
  • gray (background) indicates that the POTF value is 0
  • white indicates that the POTF value is a positive value
  • black Indicates that the value of POTF is a negative value. From FIG.
  • FIG. 10A the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to a sine function as shown in FIG. 7, and the light at the position P2 conjugate with the detection pupil changes.
  • FIG. 10 (B) shows the distribution of POTF in the case of FIG. 10 (A).
  • gray (background) indicates that the POTF value is 0, and white indicates that the POTF value is a positive value.
  • the black color indicates that the value of POTF is a negative value (hereinafter, the description in the same drawing will be omitted).
  • the absolute value of POTF in a wide frequency band is high. Further, it can be seen that the absolute value of POTF shown in FIG. 10 (B) is larger than the absolute value of the conventional POTF shown in FIG. 8 (B) in the entire band in the frequency space.
  • the contrast of the image (image) of the sample SA by bright-field observation is high, and the dynamic range of the refractive index at each position of the obtained sample SA is widened (the contrast of the image of the refractive index distribution is high). That is, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the illumination side modulation element 16 all or a part of the illumination side modulation elements having different light transmittance distributions can be adopted as shown in FIGS. 5 to 7.
  • the detection side modulation element 53 as shown in FIGS. 5 to 7, all or a part of the detection side modulation elements having different light transmittance distributions can be adopted.
  • 11 to 14 show an example in which the illumination side modulation element 16 or the detection side modulation element 53 is used to change the light transmittance at the illumination pupil position P0 or the position P2 conjugate with the detection pupil.
  • FIG. 11A shows the distribution of POTF when the light transmittance is 100% (constant) in the plane conjugated to the detection pupil as in the conventional case.
  • the illumination ⁇ 0.95 is set. It can also be seen in FIG. 11 (A) that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B). Therefore, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • FIG. 11 (B) shows the distribution of POTF when the light transmittance of the above is 100% (constant) in the plane conjugate with the detection pupil as in the conventional case.
  • the illumination ⁇ 0.95 is set. It can also be seen in FIG. 11 (B) that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B). Therefore, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the distribution of POTF in this case is shown in FIG. 12 (A).
  • the light transmittance distributions in the illumination side modulation element 16 and the detection side modulation element 53 are the same. It can also be seen in FIG. 12 (A) that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B).
  • the illumination side modulation element 16 and the detection side modulation element 53 are not limited to the sine function, but changes according to the linear function or other function described as a modification of the sine function as shown in FIG. But the same can be said.
  • FIG. 12B shows the distribution of POTF when the light transmittance changes according to the cosine function described as a modification of the Gaussian function as shown in FIG.
  • the light transmittance of the detection side modulation element 53 is not limited to the cosine function, but follows the Gaussian function as shown in FIG. 6, the quadratic function described as a modification of the Gaussian function as shown in FIG. 6, and other functions. The same is true when it changes.
  • the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to a sine function as shown in FIG. 7, and the detection side modulation element 53 provided at the detection pupil position P2 is conjugated with the detection pupil.
  • the distribution of POTF when the light transmittance changes according to the cosine function as shown in FIG. 5 is shown in FIG. 12 (C).
  • the light transmittance of the illumination side modulation element 16 is not limited to the trigonometric function but changes according to the linear function or other function described as a modification of the trigonometric function as shown in FIG. I can say.
  • the light transmittance of the detection side modulation element 53 is not limited to the cosine function but changes according to the Gaussian function, the quadratic function, or other function described as a modification of the cosine function as shown in FIG. Can be said.
  • FIG. 13A shows the distribution of POTF when the light transmittance of the detection side modulation element 53 changes according to a sine function as shown in FIG. 7.
  • FIG. 13 (A) it can be seen that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B). Therefore, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the light transmittance of the illumination side modulation element 16 is not limited to the cosine function, but is limited to the Gaussian function as shown in FIG. 6, the quadratic function described as a modification of the Gaussian function as shown in FIG. 6, and others. The same is true if it changes according to the function.
  • the light transmittance of the detection side modulation element 53 is not limited to the trigonometric function but changes according to the linear function or other function described as a modification of the trigonometric function as shown in FIG. 7.
  • the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to the cosine function as shown in FIG. 5, and the detection side modulation element 53 provided at the detection pupil position P2 is conjugated with the detection pupil.
  • the distribution of POTF when the light transmittance changes according to a sine function as shown in FIG. 7 is shown in FIG. 13 (B).
  • FIG. 13 (B) it can be seen that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B). Therefore, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the light transmittance of the illumination side modulation element 16 is not limited to the cosine function, and even when it changes according to the Gaussian function, the quadratic function, or other function described as a modification of the cosine function as shown in FIG. The same can be said.
  • the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 and the light transmittance of the detection side modulation element 53 provided at the detection pupil position P2 is a modification of the Gaussian function as shown in FIG.
  • the distribution of POTF when changing according to the cosine function described as is shown in FIG. 14 (A).
  • the light transmittance distributions in the illumination side modulation element 16 and the detection side modulation element 53 are the same. It can also be seen in FIG. 14 (A) that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B).
  • the light transmittance of the illumination side modulation element 16 and the detection side modulation element 53 is not limited to the cosine function, and has been described as a modification of the Gaussian function as shown in FIG. 6 and the Gaussian function as shown in FIG. The same is true when it changes according to a quadratic function or other function.
  • the distribution of POTF in this case is shown in FIG. 14 (B).
  • the light transmittance distributions in the illumination side modulation element 16 and the detection side modulation element 53 are the same.
  • FIG. 14 (B) it can be seen that the absolute value of POTF in a wide frequency band is larger than the absolute value of the conventional POTF in FIG. 8 (B).
  • the light transmission rate of the illumination side modulation element 16 and the detection side modulation element 53 is not limited to the cosine function, and is a Gaussian function, a quadratic function, or another function described as a modification of the cosine function as shown in FIG. The same is true if it changes according to.
  • FIG. 14 (C) shows the distribution of POTF when the light transmittance is 100% (constant) in the plane conjugated to the detection pupil as in the conventional case.
  • the light transmittance of the illumination side modulation element 16 is not limited to the cosine function, but is limited to the Gaussian function as shown in FIG. 6, the quadratic function described as a modification of the Gaussian function as shown in FIG. 6, and others. The same is true if it changes according to the function.
  • the refractive index is corrected by using a missing cone estimation method such as the Gerchberg-Papoulis method, the Edge-Preserving Regularization method, and the Total Variation Regularization method.
  • a constraint condition is set so that the minimum refractive index value becomes a predetermined refractive index value (for example, the refractive index value of the medium in a known sample SA). As shown in FIG. 15, the missing cone region is estimated.
  • the image display unit 70 displays an image of the three-dimensional refractive index distribution in the sample SA based on the image data of the three-dimensional refractive index distribution of the sample SA generated by the image processing unit 66.
  • the image display unit 70 displays an image of the sample SA by bright field observation based on the image data of the sample SA by bright field observation generated by the image processing unit 66.
  • the image display unit 70 can display an image of the sample SA by bright-field observation as a bright-field observation image partitioned at the lower left of the screen.
  • the image display unit 70 can display an image of the three-dimensional refractive index distribution in the sample SA as a refractive index distribution image partitioned at the lower right of the screen.
  • the image display unit 70 displays the characters of the "contrast priority mode", the characters of the "resolution priority mode”, and the characters of the "balance mode” in order from the top as the mode selection image partitioned on the upper side of the screen.
  • the mode selection image is an image for allowing the user to select one of a contrast priority mode, a resolution priority mode, and a balance mode as a plurality of modes having different characteristics of the three-dimensional refractive index distribution in the sample SA. That is, the mode selection image uses one of a plurality of modes (contrast priority mode, resolution priority mode, and balance mode) for displaying images having different characteristics with respect to the image of the three-dimensional refractive index distribution in the sample SA. It is an image for letting you select.
  • the characteristics of the image are, for example, the resolution and contrast of the image of the three-dimensional refractive index distribution in the sample SA. More specific image characteristics include higher contrast characteristics that prioritize high contrast over high resolution, higher resolution characteristics that prioritize high resolution over high contrast, and contrast. And there is a characteristic that the contrast and the resolution are well-balanced, and the height of the resolution is as high as that.
  • the illumination side modulation element 16 one of a plurality of illumination side modulation elements 16 having different changes in light transmittance, that is, different distributions of light transmittance is selected and arranged at the position P0 of the illumination pupil. It is possible to do.
  • a turret (not shown) holding a plurality of illumination-side modulation elements 16 may be provided, and the illumination-side modulation element 16 to be arranged at the illumination pupil position P0 may be selected by rotating the turret.
  • the element changing unit capable of selecting and changing the illumination side modulation element 16 arranged at the illumination pupil position P0 from the plurality of illumination side modulation elements 16 is not limited to the turret, but is not limited to the turret, but existing existing sliders and the like A mechanism may be used.
  • the control unit 65 changes the distribution of the light transmittance in the plane of the illumination pupil by controlling the element change unit so as to change the illumination side modulation element 16 arranged at the position P0 of the illumination pupil. ..
  • the detection-side modulation element 53 one of a plurality of detection-side modulation elements 53 having different light transmittance distributions can be selected and arranged at the position P2 conjugate with the detection pupil.
  • the control unit 65 controls the element change unit so as to change the detection side modulation element 53 arranged at the position P2 conjugate with the detection pupil, so that the light transmittance in the plane conjugate with the detection pupil can be determined. Change the distribution.
  • the conditions for the distribution of light transmittance in the plane of the pupil or in the plane conjugate with the pupil specifically, the distribution of the light transmittance in the plane of the illuminated pupil and the in-plane conjugate with the detection pupil.
  • the condition of the combination with the distribution of the light transmittance in the above is referred to as a detection condition.
  • a detection condition For example, as described above, it is possible to select one of a plurality of illumination side modulation elements 16 having different light transmittance distributions and arrange them at the illumination pupil position P0, and the light transmittance distribution can be increased.
  • At least one of the illumination-side modulation element 16 and the detection-side modulation element 53 is selected. By doing so, it is possible to set and change the detection conditions.
  • the user operates the operation input unit 67 including the keyboard, the operation dial, and the like, and the refractive index desired by the user from the contrast priority mode, the resolution priority mode, and the balance mode displayed on the image display unit 70. Select the mode according to the characteristics of the distribution image. Then, at least one of the illumination side modulation element 16 and the detection side modulation element 53 corresponding to the preset detection conditions is selected according to the selected mode. Under the detection conditions corresponding to the mode selected by the user, the transmission illumination optical system 10 illuminates the sample SA, and the detector 60 detects the detection light from the sample SA via the detection optical system 40.
  • the image processing unit 66 calculates the three-dimensional refractive index distribution of the sample SA based on the detection signal of the detection light output from the detector 60, and generates image data of the three-dimensional refractive index distribution of the sample SA. .. Then, the image display unit 70 displays an image of the refractive index distribution in the sample SA based on the image data of the refractive index distribution of the sample SA generated by the image processing unit 66.
  • the detection conditions for displaying the image of the refractive index distribution in the sample SA (and the image of the phase distribution described later) can be easily set.
  • the contrast priority mode is selected when it is desired to prioritize the contrast of the image of the three-dimensional refractive index distribution in the sample SA.
  • the detection condition that is, the distribution of the light transmittance in the plane of the illumination pupil and the conjugate with the detection pupil
  • the detection condition can obtain an image having a refractive index distribution having a higher contrast among the resolution (resolution) and the contrast.
  • the three-dimensional refractive index distribution in the sample SA is obtained under the condition of combination with the light transmittance distribution in the plane). Therefore, by selecting the contrast priority mode, it is possible to obtain an image of the three-dimensional refractive index distribution in the sample SA, which has higher resolution (resolution) and contrast than the conventional one, but has higher contrast characteristics. ..
  • the POTF does not become 0 over a wide frequency band as compared with the case where the pupil position is a circular aperture (that is, the light transmittance is 100%) as in the conventional case.
  • the distribution of light transmittance in the plane of the illuminated pupil and the distribution of light transmittance in the plane conjugated to the detection pupil are selected, which gives an absolute value but a higher absolute value of POTF.
  • the distribution of POTF is such that the illumination side modulation element 16 whose light transmittance changes according to the cosine function is arranged at the position P0 of the illumination pupil, and the detection side is detected.
  • the modulation element 53 is not arranged. Further, for example, as shown in FIG.
  • the illumination pupil of the illumination side modulation element 16 whose light transmittance changes according to the Gaussian function described as a modification of the cosine function as shown in FIG. It is not necessary to arrange the detection side modulation element 53 at the position P0.
  • FIG. 11 (B) the position of the illumination pupil of the illumination side modulation element 16 in which the light transmittance changes according to the quadratic function described as a modification of the cosine function as shown in FIG. It is not necessary to arrange the detection side modulation element 53 at P0.
  • the distribution of POTF is shown in FIG.
  • the light transmission of the illumination side modulation element 16 may change according to a continuous function (for example, a sine function or a linear function) other than the cosine function, the Gauss function, and the quadratic function, and is discontinuous. It may change according to a function (eg, a step function).
  • a continuous function for example, a sine function or a linear function
  • the illumination side modulation element 16 is arranged at the illumination pupil position P0, but the present invention is not limited to this.
  • the illumination side modulation element 16 may be arranged at the illumination pupil position P0, and the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the illumination side modulation element 16 may not be arranged, and only the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the light transmittance of the detection side modulation element 53 arranged at the position P2 conjugate with the detection pupil may change according to any continuous function or discontinuous function.
  • the resolution priority mode is selected when it is desired to prioritize the resolution (resolution) of the image of the three-dimensional refractive index distribution in the sample SA.
  • the contrast priority mode the three-dimensional refractive index distribution in the sample SA is obtained under the detection condition that an image having a refractive index distribution having a higher resolution (resolution) among the resolution (resolution) and the contrast can be obtained. Therefore, by selecting the resolution priority mode, an image of the three-dimensional refractive index distribution in the sample SA, which has higher resolution (resolution) and contrast than the conventional one but has higher resolution (resolution), can be obtained. be able to.
  • the pupil position is a circular aperture (that is, the light transmittance is 100%) as in the conventional case, but more.
  • the distribution of light transmittance in the plane of the illuminated pupil and the distribution of light transmittance in the plane conjugate to the detection pupil are selected so that the absolute value of POTF can be obtained over a wide frequency band.
  • the illumination side modulation element 16 whose light transmittance changes according to a sine function is arranged at the illumination pupil position P0 as shown in FIG. 7, and the detection side.
  • the modulation element 53 is not placed at the position P2 conjugate with the detection pupil.
  • the light transmission of the illumination side modulation element 16 may change according to continuous functions other than the sine function (for example, cosine function, Gaussian function, quadratic function, linear function), and is discontinuous. It may change according to a function (eg, a step function).
  • a function eg, a step function
  • only the illumination side modulation element 16 is arranged at the illumination pupil position P0, but the present invention is not limited to this.
  • the illumination side modulation element 16 may be arranged at the illumination pupil position P0, and the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the illumination side modulation element 16 may not be arranged, and only the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil. In this case, the light transmittance of the detection side modulation element 53 arranged at the position P2 conjugate with the detection pupil may change according to any continuous function or discontinuous function.
  • the balance mode is selected when it is desired to prioritize the balance between the contrast and the resolution (resolution) of the image of the three-dimensional refractive index distribution in the sample SA.
  • the balance mode it is possible to obtain an image of the three-dimensional refractive index distribution in the sample SA in which the contrast and the resolution (resolution) are well-balanced.
  • the distribution of the light transmittance in the plane of the illumination pupil and the light in the plane conjugate with the detection pupil are obtained, which obtains the POTF characteristics intermediate between the contrast priority mode and the resolution priority mode.
  • the transmittance distribution of is selected. That is, a light transmittance distribution with a high absolute value of POTF is selected over a wide frequency band.
  • the illumination side modulation element 16 whose light transmittance changes according to a sine function is arranged at the position P0 of the illumination pupil so that the distribution of POTF is shown in FIG.
  • the detection side modulation element 53 whose transmittance changes according to the cosine function described as a modification of the Gaussian function as shown in FIG.
  • the illumination side modulation element 16 whose light transmittance changes according to a sine function as shown in FIG. 7 is arranged at the position P0 of the illumination pupil, and the light is emitted.
  • the detection side modulation element 53 whose transmittance changes according to the cosine function may be arranged at the position P2 conjugate with the detection pupil.
  • the position P0 of the illumination pupil is such that the illumination side modulation element 16 whose light transmittance changes according to the cosine function described as a modification of the Gaussian function as shown in FIG.
  • the detection side modulation element 53 in which the light transmittance changes according to a sine function as shown in FIG. 7, may be arranged at a position P2 conjugate with the detection pupil.
  • the illumination side modulation element 16 whose light transmittance changes according to the cosine function is arranged at the position P0 of the illumination pupil so that the distribution of POTF is shown in FIG. As shown in FIG.
  • the detection side modulation element 53 which changes according to the sine function may be arranged at the position P2 conjugate with the detection pupil.
  • An illumination side modulation element 16 whose light transmittance changes according to a continuous function such as a cosine function or a sine function is arranged at the position P0 of the illumination pupil, and a detection side modulation element having a different light transmittance distribution from the illumination side modulation element 16.
  • the illumination side modulation element 16 whose light transmittance changes according to a trigonometric function is arranged at the position P0 of the illumination pupil so that the distribution of POTF is shown in FIG.
  • the detection side modulation element 53 whose transmittance changes according to a sine function may be arranged at a position P2 conjugate with the detection pupil.
  • the position P0 of the illumination pupil is such that the illumination side modulation element 16 whose light transmittance changes according to the cosine function described as a modification of the Gaussian function as shown in FIG.
  • the detection side modulation element 53 in which the light transmittance changes according to the cosine function described as a modification of the Gaussian function as shown in FIG. 6, may be arranged at the position P2 conjugate with the detection pupil.
  • the illumination side modulation element 16 whose light transmittance changes according to the cosine function is arranged at the position P0 of the illumination pupil so that the distribution of POTF is shown in FIG.
  • the detection side modulation element 53 which changes according to the cosine function may be arranged at the position P2 conjugate with the detection pupil.
  • An illumination side modulation element 16 whose light transmittance changes according to a continuous function such as a cosine function or a sine function is arranged at the position P0 of the illumination pupil, and a detection side modulation element having the same light transmittance distribution as the illumination side modulation element 16 is arranged. Even if the 53 is arranged at the position P2 conjugate with the detection pupil, an image of the three-dimensional transmittance distribution in the sample SA having a characteristic in which the contrast and the resolution (resolution) are balanced can be obtained.
  • the light transmission of the illumination side modulation element 16 and the light transmission of the detection side modulation element 53 are continuous functions other than the cosine function and the sine function (for example, Gaussian function, quadratic function, first order). It may change according to a function) or according to a discontinuous function (eg, a step function).
  • the illumination side modulation element 16 is arranged at the illumination pupil position P0, and the detection side modulation element 53 is arranged at the position P2 conjugate with the detection pupil, but the present invention is not limited to this.
  • the detection side modulation element 53 may not be arranged, and only the illumination side modulation element 16 may be arranged at the position P0 of the illumination pupil.
  • the illumination side modulation element 16 may not be arranged, and only the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the light transmittance of the modulation elements (illumination side modulation element 16 and detection side modulation element 53) arranged at the position P0 of the illumination pupil or the position P2 conjugate with the detection pupil follows any continuous function or discontinuous function. It may change.
  • the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the standard setting modes, and the detector 60 from the sample SA via the detection optical system 40. It is also possible to detect the detection light of. Under the detection conditions corresponding to the standard setting mode, for example, as shown in FIG. 11 (B) for the distribution of POTF, the quadratic function described as a modification of the cosine function in which the light transmittance is shown in FIG.
  • the illumination side modulation element 16 that changes according to the illumination side is arranged at the position P0 of the illumination pupil, and the detection side modulation element 53 is not arranged.
  • the light transmission of the illumination side modulation element 16 may change according to a continuous function other than the quadratic function (for example, cosine function, Gaussian function, sine function, linear function), and is not possible. It may change according to a continuous function (for example, a step function).
  • a continuous function for example, a step function.
  • the illumination side modulation element 16 is arranged at the illumination pupil position P0, but the present invention is not limited to this.
  • the illumination side modulation element 16 may be arranged at the illumination pupil position P0, and the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the illumination side modulation element 16 may not be arranged, and only the detection side modulation element 53 may be arranged at the position P2 conjugate with the detection pupil.
  • the light transmittance of the detection side modulation element 53 arranged at the position P2 conjugate with the detection pupil may change according to any continuous function or discontinuous function.
  • the user can freely set the detection conditions corresponding to the standard setting
  • FIG. 17 is a flowchart showing a data generation method according to the first embodiment. It is assumed that the sample SA is placed on the stage 2 in advance.
  • the control unit 65 includes, for example, a computer system.
  • the control unit 65 reads out the control program stored in the storage unit and executes various processes according to the control program.
  • This control program causes a computer to execute a control process for controlling the detector 60 for detecting light from the sample SA and a data process for generating image data related to the sample SA by the image processing unit 66.
  • step ST11 information regarding the setting of the microscope device 1 (hereinafter, may be simply referred to as "setting") is input via the operation input unit 67.
  • the setting for example, the wavelength of the illumination light, the number of cross sections (xy cross sections) of the sample SA in the z-stack image of the sample SA (that is, the number of image data of the cross section of the sample SA to be acquired), and the periphery of the sample SA.
  • the refractive index of the medium around the sample SA is, for example, the refractive index of water when the sample SA is in water, and the refractive index of the culture solution when the sample SA is in the culture solution.
  • step ST12 it is determined whether or not the operation for selecting the mode has been performed. If the determination is YES, the process proceeds to step ST13. If the determination is NO, the process proceeds to step ST16.
  • step ST13 any mode selected by the user from a plurality of modes (for example, the contrast priority mode, the resolution priority mode, and the balance mode described above) is input. ..
  • the mode corresponding to the operation of the operation input unit 67 is stored in the storage unit.
  • step ST14 the control unit 65 sets the detection conditions according to the mode input in step ST13.
  • at least one of the illumination side modulation element 16 and the detection side modulation element 53 corresponding to the preset detection conditions is selected according to the mode selected by the user.
  • the condenser lens 18 and the objective lens 22 determined according to the illumination ⁇ are selected.
  • the illumination ⁇ is preset in each mode.
  • step ST15 the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the mode selected by the user, and the detector 60 detects the detection light from the sample SA via the detection optical system 40.
  • the control unit 65 calculates the interval ⁇ z of each cross section of the sample SA in the z-stack image of the sample SA according to the combination of the condenser lens 18 and the objective lens 22.
  • the control unit 65 can acquire the intensity of each cross section of the sample SA in the z-stack image of the sample SA (the signal intensity of the detection signal of the detector 60) at the calculated interval ⁇ z, so that the stage drive unit 3 and the detector can acquire the intensity. It controls 60 and so on.
  • step ST16 the control unit 65 sets the detection conditions corresponding to the standard setting mode. As a result, at least one of the illumination side modulation element 16 and the detection side modulation element 53 corresponding to the detection conditions set in advance as the standard setting mode is selected. At this time, the condenser lens 18 and the objective lens 22 determined according to the illumination ⁇ are selected.
  • step ST17 the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the standard setting mode, and the detector 60 detects the detection light from the sample SA via the detection optical system 40.
  • the control unit 65 can acquire the intensity of each cross section of the sample SA in the z-stack image of the sample SA (the signal intensity of the detection signal of the detector 60) at the interval ⁇ z corresponding to the standard setting mode.
  • the stage drive unit 3 and the detector 60 are controlled.
  • step ST18 the image processing unit 66 obtains the three-dimensional refractive index distribution in the sample SA based on the detection signal output from the detector 60, and generates image data of the three-dimensional refractive index distribution in the sample SA. ..
  • the image processing unit 66 uses the above equation (10) or equation (15) and the equation (16) to obtain the signal strength of the detection signal output from the detector 60, that is, From the intensity I (x, y, z) of the image of the three-dimensional sample SA, the three-dimensional refractive index distribution n (x, y, z) in the sample SA is calculated.
  • the intensity of the image of the three-dimensional sample SA is expressed as the intensity of the image of each cross section of the sample SA in the z-stack image of the sample SA.
  • the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal output from the detector 60.
  • the image display unit 70 displays an image of the three-dimensional refractive index distribution in the sample SA based on the image data of the three-dimensional refractive index distribution in the sample SA generated by the image processing unit 66.
  • the image display unit 70 displays an image of the sample SA by bright field observation based on the image data of the sample SA by bright field observation generated by the image processing unit 66.
  • step ST19 the image processing unit 66 corrects the image data of the three-dimensional refractive index distribution in the sample SA.
  • the image processing unit 66 estimates the missing cone region by using the missing cone estimation algorithm. Thereby, the calculation accuracy of the three-dimensional refractive index distribution can be improved.
  • the image display unit 70 displays an image of the corrected three-dimensional refractive index distribution based on the image data of the three-dimensional refractive index distribution corrected by the image processing unit 66. If the image data of the three-dimensional refractive index distribution is not corrected, the process of step ST19 is not executed and ends.
  • step ST12 may be omitted.
  • steps ST12 to ST15 may be omitted, and after the processing of step ST11, the processing of step ST16 and the processing of step ST17 may be followed by the processing of step ST18.
  • the processing of step ST12, step ST16 and step ST17 may be omitted, and after the processing of step ST11, the processing of step ST18 may be performed following the processing of steps ST13 to ST15.
  • the process of step ST19 may be omitted.
  • the interval ⁇ z in the z direction is calculated in step ST15, but the interval is not limited to this.
  • the interval ⁇ z in the z direction may be input as the information regarding the setting.
  • the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the mode selected by the user or the standard setting mode, and the detector 60 from the sample SA via the detection optical system 40.
  • the detection light is detected, but the present invention is not limited to this.
  • the user directly sets the detection condition (setting to select at least one of the illumination side modulation element 16 and the detection side modulation element 53) by performing a setting operation on the operation input unit 67.
  • the transmission illumination optical system 10 may illuminate the sample SA, and the detector 60 may detect the detection light from the sample SA via the detection optical system 40.
  • the microscope device according to the second embodiment has the same configuration as the microscope device 1 according to the first embodiment except for the processing in the image processing unit 66. Therefore, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the image processing unit 66 illuminates the sample SA using the transmission illumination optical system 10 and detects the light from the sample SA via the detection optical system 40 (in other words, bright-field observation). Generates phase data for sample SA based on the detection signal of the light (detection light) output from the detector 60.
  • the phase data relating to the sample SA is data representing the phase of the sample SA, and is, for example, data showing the phase at each position in the sample SA, that is, data showing the phase distribution in the sample SA.
  • the phase data relating to the sample SA is stored in a storage unit (not shown) as, for example, a look-up table.
  • the image processing unit 66 may refer to image data in which the brightness value of each pixel is set according to the phase value at each position of the phase distribution in the sample SA (hereinafter, referred to as the image data of the phase distribution of the sample SA). ) Is generated.
  • the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60.
  • the image processing unit 66 generates image data of the sample SA by fluorescence observation based on the fluorescence detection signal output from the detector 60.
  • the image display unit 70 displays an image showing the phase distribution in the sample SA based on the image data of the phase distribution of the sample SA generated by the image processing unit 66. Further, the image display unit 70 displays an image of the sample SA by bright field observation based on the image data of the sample SA by bright field observation generated by the image processing unit 66. The image display unit 70 displays an image of the sample SA by fluorescence observation based on the image data of the sample SA by fluorescence observation generated by the image processing unit 66.
  • the intensity I (x, y) of the image of a two-dimensional object can be expressed as the following equation (17).
  • o represents the complex amplitude transmittance of the object.
  • TCC represents the mutual transmission coefficient (Transmission Cross Coefficient).
  • ( ⁇ , ⁇ ) represents the direction cosine of diffracted light (or direct light).
  • the image in this case is an image of the sample SA obtained by forming an image of light (detection light) transmitted through at least a part of the sample SA by illumination. Therefore, the intensity I (x, y) of the image of the two-dimensional object, that is, the image of the two-dimensional sample SA is the signal intensity of the detection signal output from the detector 60 in the image processing (that is, the detector 60. It can be replaced with the signal strength in each pixel of the detector 60 when the sample SA is imaged).
  • the intertransmission coefficient TCC can be expressed by the following equation (18).
  • Equation (18) S represents the illuminated pupil.
  • G represents the detection pupil. Since the mutual permeability coefficient TCC is Hermitian conjugate, it has the property shown in the following equation (19).
  • the intertransmission coefficient TCC can be expressed as in equation (21) below.
  • EPSF represents an effective point image distribution (Effective Point Spread Function).
  • Effective Point Spread Function Effective Point Spread Function
  • Equation (23) ⁇ represents the phase of the object.
  • P represents the amplitude of the object.
  • Equation (20) is expressed as the following equation (24) by using the equations (22) and (23).
  • WOTF Weak Object Transfer Function
  • equation (26) it is possible to extend the equation of the intensity I (x, y) of the image of a two-dimensional object as the following equation (27).
  • FIG. 18 schematically shows a process of acquiring the intensity of one defocus image of the sample SA (the signal intensity of the detection signal of the detector 60) and performing deconvolution.
  • the intensity I (x, y) + ⁇ z of the image of the two-dimensional object (that is, one defocus image of the sample SA) at a position separated from the in-focus position by + ⁇ z is expressed by the above equation (27).
  • P 0.
  • the first term of equation (28) is a constant term representing the background strength.
  • the second term of the formula (28) represents that the imaginary part Im [EPSF] of EPSF is applied to the phase ⁇ of the object (sample).
  • both sides of the equation (28) are divided by this constant term to normalize, and then the first term of the normalized equation (28) is removed in the real space (or frequency space). Then, by performing deconvolution using Im [EPSF], the following equation (29) can be obtained.
  • the two-dimensional Fourier transform of Im [EPSF] is referred to as POTF (Phase Optical Transfer Function).
  • shall take any small value.
  • the image processing unit 66 calculates the two-dimensional phase distribution ⁇ (x, y) in the sample SA from the intensity I (x, y) + ⁇ z of one defocus image of the sample SA using the equation (29). ..
  • the image processing unit 66 obtains image data in which the brightness value of each pixel is set according to the phase value at each position of the two-dimensional phase distribution in the calculated sample SA, that is, the image data of the phase distribution of the sample SA.
  • FIG. 19 schematically shows a process of acquiring the intensities of the two defocus images of the sample SA (the signal intensities of the detection signals of the detector 60), obtaining the difference in the intensities of the two defocus images, and performing deconvolution. Shown in. First, consider the image formation when z is shifted by ⁇ ⁇ z.
  • the intensities I (x, y) + ⁇ z and I (x, y) - ⁇ z of the two-dimensional object image (that is, the two defocus images of the sample SA) at a position ⁇ ⁇ z away from the in-focus position are as follows. It is represented by the formula (27) and the formula (30).
  • WOTF' the difference for WOTF is WOTF'.
  • WOTF' can be expressed as the following equation (32).
  • the image processing unit 66 uses the equation (34) to obtain a two-dimensional phase distribution in the sample SA from the intensities I (x, y) + ⁇ z and I (x, y) ⁇ z of the two defocused images of the sample SA. Calculate ⁇ (x, y).
  • the image processing unit 66 obtains image data in which the brightness value of each pixel is set according to the phase value at each position of the two-dimensional phase distribution in the calculated sample SA, that is, the image data of the phase distribution of the sample SA. Generate.
  • the two-dimensional phase distribution ⁇ (x, y) in the sample SA can be obtained by using not only the two defocus images but also the two defocus images and the one in focus image.
  • the illumination ⁇ is increased (illumination ⁇ is close to 1) in order to improve the resolution, and as a result, the sample SA by bright field observation is performed.
  • the contrast of the image (image) of the above is low, the dynamic range of the phase at each position of the obtained sample SA is narrowed. That is, the contrast of the image of the phase distribution in the sample SA becomes low.
  • the resolution of the image (image) of the sample SA by bright-field observation is lowered as a result of reducing the illumination ⁇ in order to improve the contrast, it is not possible to obtain a fine change in the phase at each position of the sample SA.
  • the resolution of the image of the phase distribution in the sample SA becomes low. Therefore, it is difficult to obtain a fine change in phase with a wide dynamic range of phase. That is, it is difficult to obtain an image of the phase distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the illumination side modulation element 16 whose light transmittance changes in the plane of the illumination pupil is provided at the position P0 of the illumination pupil in the transmission illumination optical system 10. Further, at the position P2 conjugate with the detection pupil in the detection optical system 40, a detection side modulation element 53 in which the light transmittance changes in a plane conjugate with the detection pupil is provided.
  • the contrast is maintained in a high state even when the illumination ⁇ is large and the resolution of the image (image) of the sample SA by bright field observation is high. It is possible to obtain a two-dimensional phase distribution that has a wide dynamic range of phase and represents fine changes in phase. That is, it is possible to obtain an image of the phase distribution in the sample SA, which has both high contrast and high resolution (resolution).
  • FIG. 8A shows the light transmittance at the position P0 of the illumination pupil and the position P2 conjugate with the detection pupil is 100% in the plane of the illumination pupil and in the plane conjugate with the detection pupil ( The case where it is constant) in the case where it is constant). In this case, the light transmittance distribution is the same as that of the conventional circular aperture diaphragm.
  • FIG. 9A the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to the cosine function as shown in FIG. 5, and is a position conjugate with the detection pupil as in the conventional case.
  • FIG. 20 (B) shows the gain of POTF in the case of FIG. 9 (A).
  • the value of POTF in a wide frequency band is high.
  • the value of POTF shown in FIG. 20 (B) is larger than the value of the conventional POTF shown in FIG. 20 (A) in the entire band in the frequency space. Therefore, the contrast of the image (image) of the sample SA by bright-field observation is high, and the dynamic range of the phase at each position of the obtained sample SA is widened (the contrast of the image of the phase distribution is high). That is, it is possible to generate an image of a two-dimensional phase distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the light transmittance of the illumination side modulation element 16 provided at the illumination pupil position P0 changes according to the cosine function as shown in FIG. 5, and at the position P2 conjugate with the detection pupil as in the conventional case.
  • the case where the light transmittance of the light is 100% (constant) in the plane conjugate with the detection pupil has been described, but the present invention is not limited to this.
  • the transmittance of light at the position P0 of the illumination pupil or the position P2 conjugated to the detection pupil using the illumination side modulation element 16 or the detection side modulation element 53 described with reference to FIGS. 10 to 14 in the first embodiment. May be changed.
  • FIG. 21 is a flowchart showing a data generation method according to the second embodiment. It is assumed that the sample SA is placed on the stage 2 in advance.
  • the control unit 65 reads out the control program stored in the storage unit and executes various processes according to the control program. This control program causes a computer to execute a control process for controlling the detector 60 for detecting light from the sample SA and a data process for generating image data related to the sample SA by the image processing unit 66.
  • step ST21 as in the first embodiment, information regarding the setting of the microscope device 1 is input via the operation input unit 67.
  • step ST22 it is determined whether or not the operation for selecting the mode has been performed as in the first embodiment. If the determination is YES, the process proceeds to step ST23. If the determination is NO, the process proceeds to step ST26.
  • step ST22 If the determination in step ST22 is YES, the user selects from a plurality of modes (for example, the contrast priority mode, the resolution priority mode, and the balance mode described above) in step ST23 as in the first embodiment. Either mode is entered.
  • step ST24 as in the first embodiment, the control unit 65 sets the detection conditions according to the mode input in step ST23.
  • step ST25 the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the mode selected by the user, and the detector 60 detects the detection light from the sample SA via the detection optical system 40.
  • the control unit 65 calculates the defocus amount ⁇ z for defocusing the image of the sample SA according to the combination of the condenser lens 18 and the objective lens 22.
  • the control unit 65 can acquire the intensity of one defocus image or one in-focus image of the sample SA (the signal intensity of the detection signal of the detector 60) with the calculated defocus amount ⁇ z, so that the stage drive unit 3 and the control unit 65 can acquire the intensity. It controls the detector 60 and the like.
  • step ST26 the control unit 65 sets the detection conditions corresponding to the standard setting mode in step ST26 as in the first embodiment.
  • the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the standard setting mode, and the detector 60 detects the detection light from the sample SA via the detection optical system 40.
  • the control unit 65 can acquire the intensity of one defocus image or one in-focus image of the sample SA (the signal intensity of the detection signal of the detector 60) with the defocus amount ⁇ z corresponding to the standard setting mode.
  • the stage drive unit 3 and the detector 60 are controlled.
  • step ST28 the image processing unit 66 obtains a two-dimensional phase distribution in the sample SA based on the detection signal output from the detector 60, and generates image data of the two-dimensional phase distribution in the sample SA.
  • the image processing unit 66 uses the above formula (29) to obtain the sample from the intensity I (x, y) + ⁇ z of one defocus image or one in-focus image of the sample SA.
  • the two-dimensional phase distribution ⁇ (x, y) in SA is calculated.
  • the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal output from the detector 60.
  • the image display unit 70 displays an image of the two-dimensional phase distribution in the sample SA based on the image data of the two-dimensional phase distribution in the sample SA generated by the image processing unit 66.
  • the image display unit 70 displays an image of the sample SA by bright field observation based on the image data of the sample SA by bright field observation generated by the image processing unit 66.
  • step ST25 the control unit 65 calculates the defocus amount ⁇ z for defocusing the image of the sample SA according to the combination of the condenser lens 18 and the objective lens 22.
  • the control unit 65 controls the stage drive unit 3, the detector 60, and the like so that the intensities of the two defocus images of the sample SA (the signal intensities of the detection signals of the detector 60) can be acquired with the calculated defocus amount ⁇ z. I do.
  • step ST27 the control unit 65 drives the stage so that the intensities of the two defocus images of the sample SA (the signal intensities of the detection signals of the detector 60) can be acquired with the defocus amount ⁇ z corresponding to the standard setting mode. It controls the unit 3 and the detector 60.
  • step ST28 the image processing unit 66 uses the above equation (34) to obtain the sample SA from the intensities I (x, y) + ⁇ z , I (x, y) ⁇ z of the two defocused images of the sample SA.
  • the two-dimensional phase distribution ⁇ (x, y) in is calculated.
  • step ST22 may be omitted in the flow of FIG.
  • the processing of steps ST22 to ST25 may be omitted, and after the processing of step ST21, the processing of step ST26 and the processing of step ST27 may be followed by the processing of step ST28.
  • the processing of step ST22, step ST26, and step ST27 may be omitted, and the processing of step ST28 may be performed after the processing of step ST21, followed by the processing of steps ST23 to ST25.
  • the transmission illumination optical system 10 illuminates the sample SA under the detection conditions corresponding to the mode selected by the user or the standard setting mode, and the detector 60 illuminates the sample SA via the detection optical system 40.
  • the detection light from is detected, but the present invention is not limited to this.
  • the user directly sets the detection condition (setting to select at least one of the illumination side modulation element 16 and the detection side modulation element 53) by performing a setting operation on the operation input unit 67.
  • the transmission illumination optical system 10 may illuminate the sample SA, and the detector 60 may detect the detection light from the sample SA via the detection optical system 40.
  • the microscope device 101 according to the third embodiment has the same configuration as the microscope device 1 according to the first embodiment, except for the detection optical system. Therefore, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the microscope device 101 according to the third embodiment includes a stage 2, a transmission light source 5, a transmission illumination optical system 10, a detection optical system 140, a detector 60, a control unit 65, and an image processing unit 66.
  • the operation input unit 67 and the image display unit 70 are provided.
  • the detection optical system 140 has an objective lens unit 121, a first imaging lens 41, and a half mirror 42 in this order from the sample SA side. Further, on the optical path of the light transmitted through the half mirror 42, the first mirror 43, the lens 44, the second mirror 45, the collimator lens 46, the second imaging lens 48, the third mirror 49, and the eyepiece The lens 55 and the lens 55 are arranged.
  • the objective lens unit 121 includes a plurality of objective lenses 122, a lens holding unit 125, and a unit driving unit 126.
  • the objective lens 122 is arranged below the stage 2 so as to face each other.
  • the lens holding unit 125 holds a plurality of objective lenses 122 having different focal lengths.
  • the lens holding portion 125 is configured by using, for example, a revolver, a turret, or the like.
  • the unit driving unit 126 can drive the lens holding unit 125 and select one of the plurality of objective lenses 122 and arrange it below the stage 2.
  • the detection side modulation element 123 is provided at the pupil position (detection pupil position) P1 of the objective lens 122. More specifically, the detection side modulation element 123 is built in the objective lens 122. The surface perpendicular to the optical axis Ax3 of the objective lens 122 at the position P1 of the detection pupil is referred to as the surface of the detection pupil.
  • the detection side modulation element 123 is formed in the same manner as the illumination side modulation element 16 and the detection side modulation element 53 of the first embodiment, except that the light transmittance changes in the plane of the detection pupil.
  • a mechanism (not shown) may be provided to detachably hold the detection side modulation element 123 in each objective lens having a different focal length.
  • this mechanism it is possible to change the detection side modulation element 123 having a different light transmittance distribution in each objective lens (that is, light transmission in the plane of the detection pupil without changing the focal length). The distribution of rates can be changed).
  • the ratio of the transmittance and the reflectance of the half mirror 42 is set to, for example, 1: 1.
  • a part of the light incident on the half mirror 42 is reflected by the half mirror 42 and imaged on a predetermined first image plane IA.
  • the position of the predetermined first image plane IA is a position conjugate with the focal position of the objective lens 122.
  • the detector 60 is arranged on the first image plane IA of the detection optical system 140.
  • the other part of the light incident on the half mirror 42 passes through the half mirror 42 and is reflected by the first mirror 43.
  • the light reflected by the first mirror 43 is imaged on a predetermined intermediate image plane IM and incident on the lens 44.
  • the light transmitted through the lens 44 is reflected by the second mirror 45 and is incident on the collimator lens 46.
  • the light transmitted through the collimator lens 46 becomes parallel light and is incident on the second imaging lens 48.
  • the light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the position of the predetermined second image plane IB is a position conjugate with the focal position of the objective lens 122.
  • the observer can observe the image of the sample SA imaged on the second image plane IB using the eyepiece lens 55.
  • the transmission illumination optical system 10 illuminates the sample SA on the stage 2 with the illumination light from the transmission illumination light source 5 as in the first embodiment.
  • the detection light transmitted or diffracted through the sample SA is incident on the objective lens 122 of the detection optical system 140.
  • the detection light incident on the objective lens 122 passes through the detection side modulation element 123 and is emitted toward the first imaging lens 41.
  • the detection light emitted from the objective lens 122 is incident on the first imaging lens 41.
  • the detection light transmitted through the first imaging lens 41 is incident on the half mirror 42. A part of the detection light incident on the half mirror 42 is reflected by the half mirror 42 and imaged on a predetermined first image plane IA on which the detector 60 is arranged.
  • the other part of the detection light incident on the half mirror 42 passes through the half mirror 42 and is reflected by the first mirror 43.
  • the detection light reflected by the first mirror 43 is imaged on a predetermined intermediate image plane IM and incident on the lens 44.
  • the detected light transmitted through the lens 44 is reflected by the second mirror 45 and incident on the collimator lens 46.
  • the detected light transmitted through the collimator lens 46 becomes parallel light and is incident on the second imaging lens 48.
  • the detected light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 140 and outputs the detection signal of the detection light.
  • the image processing unit 66 generates data indicating the refractive index distribution in the sample SA (for example, image data of the three-dimensional refractive index distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. To do. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60.
  • the image processing unit 66 obtains the three-dimensional refractive index distribution in the sample SA and generates image data of the three-dimensional refractive index distribution in the sample SA, as in the first embodiment. As a result, according to the third embodiment, the same effect as that of the first embodiment can be obtained.
  • the microscope device according to the fourth embodiment has the same configuration as the microscope device 101 according to the third embodiment except for the processing in the image processing unit 66. Therefore, the same configurations as those of the first and third embodiments are designated by the same reference numerals as those of the first and third embodiments, and detailed description thereof will be omitted.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 140 and outputs the detection signal of the detection light, as in the third embodiment. To do.
  • the image processing unit 66 generates data indicating the phase distribution in the sample SA (for example, image data of the two-dimensional phase distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. In the fourth embodiment, the image processing unit 66 obtains the two-dimensional phase distribution in the sample SA and generates the image data of the two-dimensional phase distribution in the sample SA, as in the second embodiment. As a result, according to the fourth embodiment, the same effect as that of the second embodiment can be obtained.
  • the microscope device 201 according to the fifth embodiment has the same configuration as the microscope device 1 according to the first embodiment, except for the epi-illumination optical system, the detection optical system, and the detector. Therefore, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the microscope device 201 according to the fifth embodiment detects the stage 2, the transmission light source 5, the epi-illumination light source 6, the transmission illumination optical system 10, the epi-illumination optical system 220, and the detection optical system 240. It includes a device 60, a second detector 261, a control unit 65, an image processing unit 66, an operation input unit 67, and an image display unit 70.
  • the epi-illumination optical system 220 has an objective lens unit 21 and a filter cube 231 in this order from the sample SA side.
  • the filter cube 231 is always inserted into the optical path of the detection optical system 240 including the epi-illumination optical system 220.
  • the filter cube 231 reflects the excitation light emitted from the epi-illumination light source 6 toward the stage 2.
  • the filter cube 231 transmits the fluorescence generated in the sample SA on the stage 2 by the irradiation of the excitation light from the epi-illumination light source 6 toward the first imaging lens 41.
  • the filter cube 231 transmits light (detection light) transmitted or diffracted through the sample SA by irradiation with illumination light from the transmitted illumination optical system 10.
  • the filter cube 231 has an excitation filter 232 that transmits excitation light from the epi-illumination light source 6.
  • the filter cube 231 has an absorption filter 233 that absorbs the excitation light reflected by the sample SA, the stage 2, or the like.
  • the absorption filter 233 transmits the fluorescence and the detection light from the sample SA.
  • the detection optical system 240 includes an objective lens unit 21 and a filter cube 231.
  • the configuration other than the objective lens unit 21 and the filter cube 231 in the detection optical system 240 is the detection optics of the first embodiment except that the dichroic filter 242 is arranged between the first imaging lens 41 and the first mirror 43. It has the same configuration as the system 40.
  • the dichroic filter 242 separates light according to the difference in the wavelength of light. Specifically, the fluorescence emitted from the sample SA (due to the irradiation of the excitation light from the epi-illumination optical system 20) as a part of the light incident on the dichroic filter 242 is reflected by the dichroic filter 242 and has a predetermined number.
  • the image is formed by the three image plane ICs.
  • the position of the predetermined third image plane IC is a position conjugate with the focal position of the objective lens 22.
  • the second detector 261 is arranged on the third image plane IC of the detection optical system 240.
  • the light (detection light) transmitted or diffracted through the sample SA (by irradiation of the illumination light from the transmitted illumination optical system 10) as another part of the light incident on the dichroic filter 242 is transmitted through the dichroic filter 242. It is reflected by the first mirror 43.
  • the detection light reflected by the first mirror 43 is imaged on a predetermined first image plane IA on which the detector 60 is arranged, as in the first embodiment.
  • An image sensor such as a CCD or CMOS is used for the second detector 261.
  • a barrier filter is used together with the half mirror. Specifically, a first barrier filter that absorbs a part of the light reflected from the half mirror (detection light from the sample SA) is provided, and a part of the light transmitted through the half mirror (sample) is provided. A second barrier filter that absorbs fluorescence from SA) is provided. With this configuration, the image due to the fluorescence from the sample SA reflected by the half mirror can be imaged by the second detector 261, and the image due to the detection light from the sample SA transmitted through the half mirror can be captured by the detector. It can be imaged at 60.
  • the transmission illumination optical system 10 illuminates the sample SA on the stage 2 with the illumination light from the transmission illumination light source 5 as in the first embodiment.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 240 and outputs the detection signal of the detection light.
  • the detection light from the sample SA is incident on the objective lens 22.
  • the detection light transmitted through the objective lens 22 is incident on the filter cube 231.
  • the detection light incident on the filter cube 231 passes through the filter cube 231, passes through the absorption filter 233, and is incident on the first imaging lens 41.
  • the detection light transmitted through the first imaging lens 41 is incident on the dichroic filter 242.
  • the detection light incident on the dichroic filter 242 passes through the dichroic filter 242 and is reflected by the first mirror 43.
  • the detection light reflected by the first mirror 43 is imaged on a predetermined first image plane IA on which the detector 60 is arranged, as in the first embodiment.
  • the epi-illumination optical system 220 illuminates the sample SA on the stage 2 with the excitation light from the epi-illumination light source 6 as in the first embodiment.
  • the second detector 261 detects the fluorescence from the sample SA via the detection optical system 240 and outputs the detection signal of the fluorescence.
  • the fluorescence from the sample SA is incident on the objective lens 22.
  • the fluorescence transmitted through the objective lens 22 is incident on the filter cube 231.
  • the fluorescence incident on the filter cube 231 passes through the filter cube 231 and enters the first imaging lens 41 through the absorption filter 233.
  • the fluorescence transmitted through the first imaging lens 41 is incident on the dichroic filter 242.
  • the fluorescence incident on the dichroic filter 242 is reflected by the dichroic filter 242 and imaged by a predetermined third image plane IC on which the second detector 261 is arranged.
  • the image processing unit 66 generates data indicating the refractive index distribution in the sample SA (for example, image data of the three-dimensional refractive index distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. To do. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. The image processing unit 66 generates image data of the sample SA by fluorescence observation based on the fluorescence detection signal output from the second detector 261. In the fifth embodiment, the image processing unit 66 obtains the three-dimensional refractive index distribution in the sample SA and generates the image data of the three-dimensional refractive index distribution in the sample SA, as in the first embodiment.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 240
  • the second detector 261 detects the fluorescence from the sample SA via the detection optical system 240. Therefore, it is possible to generate an image of the three-dimensional refractive index distribution in the sample SA at the same time and an image of the sample SA by fluorescence observation, and the user can compare and observe both images.
  • the microscope device according to the sixth embodiment has the same configuration as the microscope device 201 according to the fifth embodiment except for the processing in the image processing unit 66. Therefore, the same configurations as those of the first and fifth embodiments are designated by the same reference numerals as those of the first and fifth embodiments, and detailed description thereof will be omitted.
  • the transmission illumination optical system 10 illuminates the sample SA on the stage 2 with the illumination light from the transmission illumination light source 5, as in the fifth embodiment.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 240 and outputs the detection signal of the detection light.
  • the epi-illumination optical system 220 illuminates the sample SA on the stage 2 with the excitation light from the epi-illumination light source 6.
  • the second detector 261 detects the fluorescence from the sample SA via the detection optical system 240 and outputs the detection signal of the fluorescence, as in the fifth embodiment.
  • the image processing unit 66 generates data indicating the phase distribution in the sample SA (for example, image data of the two-dimensional phase distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. The image processing unit 66 generates image data of the sample SA by fluorescence observation based on the fluorescence detection signal output from the second detector 261. In the sixth embodiment, the image processing unit 66 obtains the two-dimensional phase distribution in the sample SA and generates the image data of the two-dimensional phase distribution in the sample SA, as in the second embodiment.
  • the same effect as that of the second embodiment can be obtained. Further, in the sixth embodiment, as in the fifth embodiment, it is possible to generate an image of the two-dimensional phase distribution in the sample SA at the same time and an image of the sample SA by fluorescence observation, and both images by the user can be generated. Can be compared and observed.
  • the microscope device 301 according to the seventh embodiment will be described with reference to FIG. 24.
  • the microscope device 101 according to the third embodiment has the same configuration as the microscope device 1 according to the first embodiment, except for the detection optical system. Therefore, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the microscope device 301 according to the seventh embodiment includes a stage 2, a transmission light source 5, a transmission illumination optical system 10, a detection optical system 340, a detector 60, a control unit 65, and an image processing unit 66.
  • the operation input unit 67 and the image display unit 70 are provided.
  • the detection optical system 340 includes the objective lens unit 21, the first imaging lens 41, the first mirror 43, the lens 44, the second mirror 45, the collimator lens 46, and the half mirror 47 in order from the sample SA side. And have. Further, the detection optical system 340 includes a third imaging lens 50, an optical path dividing member 351 and a detection side modulation element 53. Further, the second imaging lens 48, the third mirror 49, and the eyepiece lens 55 are arranged on the optical path of the light transmitted through the half mirror 47.
  • the optical path dividing member 351 is arranged between the third imaging lens 50 and the predetermined first image plane IA.
  • the optical path dividing member 351 divides the optical path between the third imaging lens 50 and the detector 60 into three optical paths having different optical path lengths.
  • the optical path dividing member 351 is configured by using, for example, a triple prism, and has three reflecting surfaces.
  • the light incident on the optical path dividing member 351 reaches the first reflecting surface of the optical path dividing member 351. A part of the light that has reached the first reflecting surface is reflected by the first reflecting surface and is imaged on one end side (left side in FIG. 24) of the first image plane IA. The other part of the light that has reached the first reflecting surface passes through the first reflecting surface and reaches the second reflecting surface.
  • a part of the light that has reached the second reflecting surface is reflected by the second reflecting surface and is imaged at the center of the first image plane IA.
  • the other part of the light that has reached the second reflecting surface passes through the second reflecting surface and is reflected by the third reflecting surface.
  • the light reflected by the third reflecting surface is imaged on the other end side (right side of FIG. 24) of the first image plane IA.
  • the light divided by the optical path dividing member 351 forms three defocus images arranged in parallel on the first image plane IA.
  • the defocus amounts of these three defocus images differ from each other depending on the difference in the optical path length.
  • the ratio of the transmittance to the reflectance of the first reflecting surface in the optical path dividing member 351 is set to, for example, 2: 1.
  • the ratio of the transmittance and the reflectance of the second reflecting surface in the optical path dividing member 351 is set to, for example, 1: 1.
  • the ratio of the transmittance and the reflectance of the third reflecting surface in the optical path dividing member 351 is set to, for example, 0: 1.
  • the transmission illumination optical system 10 illuminates the sample SA on the stage 2 with the illumination light from the transmission illumination light source 5 as in the first embodiment.
  • the detection light transmitted or diffracted through the sample SA is incident on the objective lens 22 of the detection optical system 340.
  • the detection light transmitted through the objective lens 22 is incident on the first imaging lens 41.
  • the detected light transmitted through the first imaging lens 41 is reflected by the first mirror 43 to form an image on a predetermined intermediate image plane IM, and is incident on the lens 44.
  • the detected light transmitted through the lens 44 is reflected by the second mirror 45 and incident on the collimator lens 46.
  • the detection light transmitted through the collimator lens 46 becomes parallel light, passes through the detection side modulation element 53, and is incident on the half mirror 47.
  • a part of the detection light incident on the half mirror 47 is reflected by the half mirror 47 and incident on the third imaging lens 50.
  • the detection light transmitted through the third imaging lens 50 is incident on the optical path dividing member 351.
  • the detection light divided by the optical path dividing member 351 forms three defocus images arranged in parallel on the first image plane IA.
  • the other part of the detection light incident on the half mirror 47 passes through the half mirror 47 and is incident on the second imaging lens 48.
  • the detected light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 340 and outputs the detection signal of the detection light.
  • the image processing unit 66 generates data indicating the refractive index distribution in the sample SA (for example, image data of the three-dimensional refractive index distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. To do.
  • the image processing unit 66 obtains the three-dimensional refractive index distribution in the sample SA and generates image data of the three-dimensional refractive index distribution in the sample SA, as in the first embodiment. As a result, according to the seventh embodiment, the same effect as that of the first embodiment can be obtained.
  • the seventh embodiment three defocus images having different defocus amounts are formed on the first image plane IA.
  • the z-stack image of the sample SA (the position of the sample SA in the z direction (that is, that is)).
  • the intensities of the three defocus images can be acquired as the images of the three cross sections of the images of the plurality of cross sections having different positions in the optical axis direction). Therefore, the intensity of each cross section of the sample SA in the z-stack image of the sample SA can be obtained in a short time, and the three-dimensional refractive index distribution in the sample SA can be obtained in a short time.
  • the image processing unit 66 may generate image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. As described above, three defocus images having different defocus amounts are formed on the first image plane IA. Therefore, the image processing unit 66 can generate a defocus image of the sample SA by bright-field observation based on the three defocus images, and generates an in-focus image of the sample SA by bright-field observation. It is also possible.
  • the optical path dividing member 351 is used as a method for acquiring the intensity of each cross section of the sample SA in the z-stack image of the sample SA has been described, but the present invention is not limited to this, and for example, MFG.
  • the light may be divided using (Multi Focus Grating).
  • the optical path dividing member 351 is arranged between the third imaging lens 50 and the first image plane IA (detector 60), but the present invention is not limited to this, and for example, in the third embodiment. It may be arranged between the half mirror 42 and the first image plane IA (detector 60) in the microscope device 101 (see FIG. 22).
  • the microscope device according to the eighth embodiment has the same configuration as the microscope device 401 according to the seventh embodiment except for the processing in the image processing unit 66. Therefore, the same configurations as those of the first and seventh embodiments are designated by the same reference numerals as those of the first and seventh embodiments, and detailed description thereof will be omitted.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 340 and outputs the detection signal of the detection light, as in the seventh embodiment. To do.
  • the image processing unit 66 generates data indicating the phase distribution in the sample SA (for example, image data of the two-dimensional phase distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. In the eighth embodiment, the image processing unit 66 obtains the two-dimensional phase distribution in the sample SA from the intensities of the two defocused images of the sample SA, as in the case of the second method in the second embodiment. Obtain and generate image data of the two-dimensional phase distribution in the sample SA. As a result, according to the eighth embodiment, the same effect as that of the second embodiment can be obtained.
  • the intensities of the two defocus images of the sample SA (the signal intensity of the detection signal of the detector 60) can be obtained in a short time, and the two-dimensional phase distribution in the sample SA can be obtained in a short time.
  • the image processing unit 66 is not limited to the second method in the second embodiment, and is one defocus image or one in-focus image of the sample SA as in the case of the first method in the second embodiment.
  • the two-dimensional phase distribution in the sample SA may be obtained from the intensity of the focus image, and the image data of the two-dimensional phase distribution in the sample SA may be generated.
  • the microscope device 401 according to the ninth embodiment has the same configuration as the microscope device 1 according to the first embodiment except for the illumination optical system and the detection optical system. Therefore, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the microscope device 401 according to the ninth embodiment operates the stage 2, the illumination light source 406, the illumination optical system 410, the detection optical system 440, the detector 60, the control unit 65, the image processing unit 66, and the like. It includes an input unit 67 and an image display unit 70.
  • the illumination light source 406 generates illumination light in a predetermined wavelength band.
  • the illumination optical system 410 includes a filter cube 431, an objective lens unit 421, and an illumination mirror 411 in this order from the illumination light source 406 side.
  • the objective lens unit 421 has a plurality of objective lenses 422, a lens holding unit 425, and a unit driving unit 426.
  • the objective lens 422 is arranged below the stage 2 so as to face each other.
  • the lens holding unit 425 holds a plurality of objective lenses 422 having different focal lengths.
  • the lens holding portion 425 is configured by using, for example, a revolver, a turret, or the like.
  • the unit drive unit 426 drives the lens holding unit 425, and one of the plurality of objective lenses 422 can be selected and arranged below the stage 2.
  • the illumination / detection side modulation element 423 is provided at the position P1 of the pupil of the objective lens 422 (since the illumination pupil and the detection pupil are at the same position in the present embodiment, hereinafter referred to as the illumination / detection pupil or simply the pupil). ..
  • the surface perpendicular to the optical axis Ax3 of the objective lens 422 at the position P1 of the pupil is referred to as the surface of the illumination / detection pupil.
  • the illumination / detection side modulation element 423 is formed in the same manner as the illumination / detection side modulation element 16 and the detection side modulation element 53 of the first embodiment, except that the light transmittance changes in the plane of the illumination / detection pupil.
  • the illumination / detection side modulation element 423 may be built in the objective lens 422 or may be arranged separately from the objective lens 422.
  • the filter cube 431 reflects a part of the illumination light emitted from the illumination light source 406 toward the stage 2.
  • the filter cube 431 transmits a part of the detection light transmitted or diffracted through the sample SA on the stage 2 toward the first imaging lens 41 of the detection optical system 440.
  • the filter cube 431 has a first filter 432 through which the illumination light from the illumination light source 406 passes.
  • the filter cube 431 has a second filter 433 through which the detection light from the sample SA passes.
  • a bandpass filter is used as the first filter 432 and the second filter 433, for example.
  • the detection optical system 440 includes an objective lens unit 421 and a filter cube 431.
  • the detection optical system 440 includes a first imaging lens 41 and a half mirror 42 in this order from the illumination optical system 410 side. Further, on the optical path of the light transmitted through the half mirror 42, the first mirror 43, the lens 44, the second mirror 45, the collimator lens 46, the second imaging lens 48, the third mirror 49, and the eyepiece The lens 55 and the lens 55 are arranged.
  • the ratio of the transmittance and the reflectance of the half mirror 42 is set to, for example, 1: 1.
  • a part of the light incident on the half mirror 42 is reflected by the half mirror 42 and imaged on a predetermined first image plane IA.
  • the position of the predetermined first image plane IA is a position conjugate with the focal position of the objective lens 422.
  • the detector 60 is arranged on the first image plane IA of the detection optical system 440.
  • the other part of the light incident on the half mirror 42 passes through the half mirror 42 and is reflected by the first mirror 43.
  • the light reflected by the first mirror 43 is imaged on a predetermined intermediate image plane IM and incident on the lens 44.
  • the light transmitted through the lens 44 is reflected by the second mirror 45 and is incident on the collimator lens 46.
  • the light transmitted through the collimator lens 46 becomes parallel light and is incident on the second imaging lens 48.
  • the light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the position of the predetermined second image plane IB is a position conjugate with the focal position of the objective lens 422.
  • the observer can observe the image of the sample SA imaged on the second image plane IB using the eyepiece lens 55.
  • the illumination light emitted from the illumination light source 406 passes through the first filter 432 of the illumination optical system 410 and enters the filter cube 431. A part of the illumination light incident on the filter cube 431 is reflected by the filter cube 431 and incident on the objective lens 422.
  • the illumination light incident on the objective lens 422 passes through the illumination / detection side modulation element 423 and is emitted toward the stage 2.
  • the illumination light emitted from the objective lens 422 passes through the stage 2 and the sample SA and is reflected by the illumination mirror 411.
  • the illumination optical system 410 illuminates the sample SA on the stage 2 with the illumination light from the illumination light source 406.
  • the detection light transmitted or diffracted through the sample SA is incident on the objective lens 422 as the detection optical system 440.
  • the detection light incident on the objective lens 422 passes through the illumination / detection side modulation element 423 and is emitted toward the filter cube 431.
  • the detection light emitted from the objective lens 422 is incident on the filter cube 431.
  • a part of the detection light incident on the filter cube 431 passes through the filter cube 431, passes through the second filter 433, and is incident on the first imaging lens 41.
  • the detection light transmitted through the first imaging lens 41 is incident on the half mirror 42.
  • a part of the detection light incident on the half mirror 42 is reflected by the half mirror 42 and imaged on a predetermined first image plane IA on which the detector 60 is arranged.
  • the other part of the detection light incident on the half mirror 42 passes through the half mirror 42 and is reflected by the first mirror 43.
  • the detection light reflected by the first mirror 43 is imaged on a predetermined intermediate image plane IM and incident on the lens 44.
  • the detected light transmitted through the lens 44 is reflected by the second mirror 45 and incident on the collimator lens 46.
  • the detected light transmitted through the collimator lens 46 becomes parallel light and is incident on the second imaging lens 48.
  • the detected light transmitted through the second imaging lens 48 is reflected by the third mirror 49 and imaged on the predetermined second image plane IB.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 440 and outputs the detection signal of the detection light.
  • the image processing unit 66 generates data indicating the refractive index distribution in the sample SA (for example, image data of the three-dimensional refractive index distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. To do. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. In the ninth embodiment, the image processing unit 66 obtains the three-dimensional refractive index distribution in the sample SA and generates the image data of the three-dimensional refractive index distribution in the sample SA, as in the first embodiment. As a result, according to the ninth embodiment, the same effect as that of the first embodiment can be obtained.
  • the microscope device according to the tenth embodiment has the same configuration as the microscope device 401 according to the ninth embodiment except for the processing in the image processing unit 66. Therefore, the same configurations as those of the first and ninth embodiments are designated by the same reference numerals as those of the first and ninth embodiments, and detailed description thereof will be omitted.
  • the detector 60 detects the detection light from the sample SA via the detection optical system 440 and outputs the detection signal of the detection light, as in the ninth embodiment.
  • the image processing unit 66 generates data indicating the phase distribution in the sample SA (for example, image data of the two-dimensional phase distribution in the sample SA) based on the detection signal of the detection light output from the detector 60. Further, the image processing unit 66 generates image data of the sample SA by bright field observation based on the detection signal of the detection light output from the detector 60. In the tenth embodiment, the image processing unit 66 obtains the two-dimensional phase distribution in the sample SA and generates the image data of the two-dimensional phase distribution in the sample SA, as in the second embodiment. As a result, according to the tenth embodiment, the same effect as that of the second embodiment can be obtained.
  • the image processing unit 66 determines a three-dimensional refractive index distribution or a two-dimensional phase distribution in the sample SA based on the light detection signal detected under one detection condition regarding the light transmittance. I'm looking for it, but it's not limited to this.
  • the image processing unit 66 may obtain a three-dimensional refractive index distribution or a two-dimensional phase distribution in the sample SA based on the light detection signals detected under a plurality of detection conditions regarding the light transmittance. For example, the image processing unit 66 obtains the linear sum of POTF based on the light detection signals detected under the two detection conditions set by the user and the like.
  • the image processing unit 66 uses the above formula (10) or formula (15) including POTF and the formula (16) to obtain a three-dimensional refractive index distribution n (x, y, z) in the sample SA. Can be calculated.
  • the image processing unit 66 can calculate the two-dimensional phase distribution ⁇ (x, y) in the sample SA by using the above formula (29) or formula (34) including POTF.
  • the illumination side modulation element 16 whose light transmittance changes according to the cosine function is arranged at the illumination pupil position P0, and the detection side modulation element 53 is not arranged.
  • the illumination side modulation element 16 in which the light transmittance is distributed in a discontinuous ring band shape in the plane of the illumination pupil is arranged at the position P0 of the illumination pupil, and the detection side modulation element 53 is not arranged.
  • the linear sum of the POTF based on the light detection signal detected under the first detection condition and the POTF based on the light detection signal detected under the second detection condition is obtained.
  • the second detection condition is not limited to the case where the light transmittance is distributed in a discontinuous ring band shape.
  • the illumination side modulation element 16 whose light transmittance changes according to a discontinuous function may be arranged at the position P0 of the illumination pupil. In this case, the light transmittance changes according to the step function.
  • the illumination side modulation element 16 may be arranged at the illumination pupil position P0.
  • the second modification in the case of obtaining the three-dimensional refractive index distribution in the sample SA will be described.
  • the illumination side modulation element 16 whose light transmittance changes according to a sine function as shown in FIG. 7 is arranged at the illumination pupil position P0, and the detection side modulation element 53 is not arranged.
  • the illumination side modulation element 16 whose light transmittance changes in the direction opposite to that shown in FIG. 7 according to the trigonometric function is arranged at the illumination pupil position P0, and the detection side modulation element 53 is not arranged.
  • the linear sum of the POTF based on the light detection signal detected under the first detection condition and the POTF based on the light detection signal detected under the second detection condition is obtained.
  • the width of the frequency band where the absolute value of is not 0 does not change significantly, it was found that the absolute value of POTF is doubled.
  • the first term of the above equation (9) is a constant term representing the background strength.
  • the first term of equation (9) cancels out, so the operation excluding the first term of equation (9) is performed. No need to do. Therefore, it is possible to improve the accuracy of deconvolution with respect to the equation (9), that is, the accuracy of calculating ⁇ (x, y, z) using the above equation (10).
  • the image processing unit 66 is not limited to the light transmittance, but is based on a light detection signal detected under a plurality of conditions regarding the defocus amount (hereinafter, the defocus amount condition may be referred to as a focus condition).
  • the three-dimensional refractive index distribution or the two-dimensional phase distribution in the sample SA may be obtained.
  • the image processing unit 66 obtains a linear sum of POTF based on the detection signals of light detected under two focus conditions having different defocus amounts ⁇ z, and obtains a three-dimensional refractive index distribution or a two-dimensional phase distribution in the sample SA. May be sought.
  • POTF over a wide frequency band can be easily obtained only by changing the defocus amount ⁇ z. Therefore, it is possible to generate an image of a three-dimensional refractive index distribution or an image of a two-dimensional phase distribution in the sample SA, which has high contrast and high resolution (resolution).
  • the three-dimensional refractive index distribution in the sample SA is obtained as the data showing the refractive index distribution in the sample SA, but the present invention is not limited to this, and the two-dimensional refractive index of the sample SA is not limited to this. It is also possible to obtain the distribution and the one-dimensional refractive index distribution of the sample SA. For example, by setting z to a constant value, the two-dimensional refractive index distribution in the sample SA is calculated using the equation (10) or the equation (15) and the equation (16) (two-dimensional in the sample SA). It is possible to generate refractive index data). Further, a part of the three-dimensional refractive index data in the sample SA may be extracted to generate the two-dimensional refractive index data and the one-dimensional refractive index data in the sample SA.
  • the illumination side modulation element 16 is provided at the position P0 of the illumination pupil, but the present invention is not limited to this, and the illumination side modulation element 16 may be provided at a position conjugate with the illumination pupil. ..
  • the microscope device is provided with the illumination side modulation element 16 and the detection side modulation elements 53 and 123, but the present invention is not limited thereto.
  • the microscope device may be provided with only the illumination side modulation element 16, or may be provided with only the detection side modulation elements 53 and 123.
  • the illumination side modulation element 16, the detection side modulation elements 53, 123, and the illumination / detection side modulation element 423 are elements such as a glass substrate whose light transmittance changes in the plane of the flat plate.
  • An example of an element formed by depositing a film capable of reducing light transmittance on a parallel flat plate is illustrated, but the present invention is not limited to this.
  • the illumination side modulation element, the detection side modulation element, and the illumination / detection side modulation element have a minute dot pattern (having a light-shielding property) capable of reducing the light transmittance on a parallel flat plate such as a glass substrate. May be formed.
  • the illumination side modulation element, the detection side modulation element, and the illumination / detection side modulation element are not limited to the optical elements as described above, but are SLM (spatial space) such as a transmission type liquid crystal element, a reflection type liquid crystal element, and a DMD (digital mirror device). It may be configured using an optical modulator).
  • the SLM When the SLM is used, the SLM is arranged at a position conjugate with the pupil (at least one of the illumination pupil and the detection pupil) or the pupil, similarly to the optical element in each of the above-described embodiments.
  • a transmissive liquid crystal element is used as the SLM
  • a desired light transmittance distribution can be set by controlling the transmittance of each pixel of the element.
  • DMD is used as the SLM
  • the desired light transmittance distribution can be set by controlling the angle of each mirror. In this way, it is possible to change the detection conditions by changing the distribution of the light transmittance in the plane where the SLM is the pupil or the plane conjugate to the pupil.
  • the control unit 65 controls the pupil.
  • the element change part for example, turret
  • the control unit 65 controls the element change unit so as to change the illumination side modulation element 16 arranged at the position P0 of the illumination pupil in the plane of the illumination pupil. Change the distribution of light transmittance.
  • the control unit 65 changes the distribution of the light transmittance in the plane conjugate with the detection pupil by controlling the element change unit so as to change the detection side modulation element 53 arranged at the position P2 conjugate with the detection pupil. To do.
  • the control unit 65 controls the SLM to transmit light in the plane of the pupil or in the plane conjugate with the pupil. Change the distribution of rates. Therefore, in order to change the light transmittance distribution by the control unit 65, it is not necessary to provide a plurality of elements or element changing units.
  • control unit 65 can change the distribution of the light transmittance in the plane of the pupil or in the plane conjugate with the pupil from a predetermined first distribution to a second distribution. It is not limited.
  • the optical path is on the image plane side of the collimator lens 46.
  • a dividing element (not shown), a first detection side modulation element (not shown), a second detection side modulation element (not shown), and an imaging lens for the first detection side modulation element (FIG.).
  • the optical path dividing element divides the optical path from the collimator lens 46 into two optical paths, an optical path toward the first detection side modulation element and an optical path toward the second detection side modulation element.
  • the first detection side modulation element and the second detection side modulation element have the same configuration as the detection side modulation element 53 of the first embodiment.
  • the light transmittance distribution of the first detection-side modulation element is one of the transmittance distributions described in the first embodiment (hereinafter referred to as the first distribution).
  • the light transmittance distribution of the second detection-side modulation element is a second distribution different from the above-mentioned first distribution among the transmittance distributions described in the first embodiment.
  • the first detection-side modulation element imaging lens and the second detection-side modulation element imaging lens have the same configuration as the third imaging lens 50 of the first embodiment.
  • the detector for the first detection side modulation element has the same configuration as the detector 60 of the first embodiment, and is divided by the optical path dividing element for the first detection side modulation element and the first detection side modulation element. The light (detection light) from the sample SA that has passed through the imaging lens is detected, and the detection signal of the light is output.
  • the second detection side modulation element detector has the same configuration as the detector 60 of the first embodiment, and is divided by the optical path dividing element for the second detection side modulation element and the second detection side modulation element.
  • the light (detection light) from the sample SA that has passed through the imaging lens is detected, and the detection signal of the light is output.
  • the image processing unit 66 receives at least one of the light detection signal output from the first detection side modulation element detector and the light detection signal output from the second detection side modulation element detector.
  • the image data of the three-dimensional refractive index distribution or the image data of the two-dimensional phase distribution in the sample SA may be generated based on the above.
  • the step of changing the conditions that is, changing the distribution of the light transmittance in the plane of the pupil or in the plane conjugate with the pupil
  • the optical path dividing member 351 is placed between the imaging lens for the first detection side modulation element and the detector for the first detection side modulation element. It may be provided between the imaging lens for the second detection side modulation element and the detector for the second detection side modulation element, respectively.
  • the light transmittances of the illumination side modulation element 16, the detection side modulation elements 53, 123, and the illumination / detection side modulation element 423 are continuously changed according to a continuous function. It is not limited.
  • the light transmittances of the illumination side modulation element 16, the detection side modulation elements 53, 123, and the illumination / detection side modulation element 423 may change discretely according to a discontinuous function such as a step function.
  • the light transmittances of the illumination side modulation element 16, the detection side modulation elements 53, 123, and the illumination / detection side modulation element 423 change continuously according to a continuous function partially and discretely according to a discontinuous function partially. May change to.
  • the "lens” such as the collector lens 12, the relay lens 15, the condenser lens 18, the first imaging lens 41, the lens 44, the collimator lens 46, and the third imaging lens 50 is used for convenience of explanation. Although it is described as one lens in each figure, it is not limited to this.
  • the "lens” such as the collector lens 12 may be composed of a plurality of lenses, or may be a combination of a lens and an existing optical element other than the lens.
  • the transmitted illumination light source 5 or the illumination light source 406 is provided in the microscope device, but is not limited to this, and may be provided separately from the microscope device.
  • the transmitted illumination light source 5 or the illumination light source 406 may be detachably attached to the microscope device.
  • the transmitted illumination light source 5 or the illumination light source 406 may be externally attached to the microscope device when observing with the microscope device or the like.
  • the illumination for the sample SA is Koehler illumination, but the illumination is not limited to this, and may be critical illumination.
  • a microscope device capable of detecting light from the entire sample SA is used, but the present invention is not limited to this.
  • a scanning microscope device that detects light from a part of the sample and scans the entire sample may be used.
  • Microscope device 10 Transmission illumination optical system 16 Illumination side modulation element 20 Epi-illumination optical system 21 Objective lens unit 22 Objective lens 40 Detection optical system 53 Detection side modulation element 60 Detection unit 65 Control unit 66 Image processing unit (data processing unit) 70 Image display unit 101 Microscope device (third embodiment) 120 Epi-illumination optical system 121 Objective lens unit 122 Objective lens 123 Detection side modulation element 140 Detection optical system 201 Microscope device (fifth embodiment) 220 Epi-illumination optical system 240 Detection optical system 260 First detector 261 Second detector 301 Microscope device (7th embodiment) 340 Detection optical system 351 Optical path dividing member 401 Microscope device (9th embodiment) 410 Illumination optical system 421 Objective lens unit 422 Objective lens 423 Illumination / detection side modulation element 440 Detection optical system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

顕微鏡装置(1)は、試料(SA)を照明する照明光学系(10)と、試料(SA)からの光が入射する検出光学系(40)と、検出光学系(40)を介して試料(SA)からの光を検出して光の検出信号を出力する検出器(60)と、検出器(60)から出力された検出信号に基づいて試料(SA)における屈折率のデータを生成するデータ処理部(66)と、照明光学系(10)および検出光学系(40)のうち少なくとも一方における瞳の位置もしくは瞳と共役な位置に設けられ、光の透過率が瞳の面内もしくは瞳と共役な面内で変化する素子(16,53)とを備える。

Description

顕微鏡装置、データ生成方法、およびプログラム
 本発明は、顕微鏡装置、データ生成方法、およびプログラムに関する。
 近年、位相物体等の試料における位相分布や屈折率分布を求める方法が考案されている(例えば、非特許文献1を参照)。
Juan M. Soto 他,Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited],「Applied Optics」,2018年1月1日,第57巻,第1号
 第1の態様に係る顕微鏡装置は、試料を照明する照明光学系と、前記試料からの光が入射する検出光学系と、前記検出光学系を介して前記試料からの光を検出して光の検出信号を出力する検出器と、前記検出器から出力された前記検出信号に基づいて前記試料における屈折率のデータを生成するデータ処理部と、前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える。
 第2の態様に係るデータ生成方法は、試料を照明する照明光学系と、前記試料からの光が入射する検出光学系と、前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える顕微鏡を用いたデータ生成方法であって、前記検出光学系を介して前記試料からの光を検出して光の検出信号を出力し、出力した前記検出信号に基づいて前記試料における屈折率のデータを生成する。
 第3の態様に係るプログラムは、試料を照明する照明光学系と、前記試料からの光が入射する検出光学系と、前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える顕微鏡を用いるためのプログラムであって、コンピュータに、検出器に前記検出光学系を介して前記試料からの光を検出させて光の検出信号を出力させる制御処理と、前記検出器から出力された前記検出信号に基づいて前記試料における屈折率のデータを生成するデータ処理とを実行させる。
第1実施形態に係る顕微鏡装置の概略構成図である。 ステージの拡大図である。 試料の複数の断面の画像データに基づいてデコンボリューションを行う第1の方法を示す模式図である。 試料の複数の断面の画像データに基づいてデコンボリューションを行う第2の方法を示す模式図である。 変調素子の光の透過率が余弦関数に従って変化する場合を示すグラフである。 変調素子の光の透過率がガウス関数に従って変化する場合を示すグラフである。 変調素子の光の透過率が正弦関数に従って変化する場合を示すグラフである。 (A)は従来の瞳の透過率の分布を示すグラフである。(B)は(A)の場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子の光の透過率が余弦関数に従って変化する場合を示すグラフである。(B)は(A)の場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子の光の透過率が正弦関数に従って変化する場合を示すグラフである。(B)は(A)の場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子の光の透過率がガウス関数に従って変化する場合におけるPOTFの分布を示す図である。(B)は照明側変調素子の光の透過率が二次関数に従って変化する場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子および検出側変調素子の光の透過率が正弦関数に従って変化する場合におけるPOTFの分布を示す図である。(B)は照明側変調素子の光の透過率が正弦関数に従って変化し、検出側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの分布を示す図である。(C)は照明側変調素子の光の透過率が正弦関数に従って変化し、検出側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子の光の透過率が余弦関数に従って変化し、検出側変調素子の光の透過率が正弦関数に従って変化する場合におけるPOTFの分布を示す図である。(B)は照明側変調素子の光の透過率が余弦関数に従って変化し、検出側変調素子の光の透過率が正弦関数に従って変化する場合におけるPOTFの分布を示す図である。 (A)は照明側変調素子および検出側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの分布を示す図である。(B)は照明側変調素子および検出側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの分布を示す図である。(C)は照明側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの分布を示す図である。 ミッシングコーンを持つPOTFの分布および、ミッシングコーンを推定したPOTFの分布を示す模式図である。 画像表示部に表示される画像の模式図である。 第1実施形態に係るデータ生成方法を示すフローチャートである。 試料のデフォーカス像に基づいてデコンボリューションを行う第1の方法を示す模式図である。 試料のデフォーカス像に基づいてデコンボリューションを行う第2の方法を示す模式図である。 (A)は従来の瞳の形状の場合におけるPOTFの利得を示す図である。(B)は照明側変調素子の光の透過率が余弦関数に従って変化する場合におけるPOTFの利得を示す図である。 第2実施形態に係るデータ生成方法を示すフローチャートである。 第3実施形態に係る顕微鏡装置の概略構成図である。 第5実施形態に係る顕微鏡装置の概略構成図である。 第7実施形態に係る顕微鏡装置の概略構成図である。 第9実施形態に係る顕微鏡装置の概略構成図である。 第1実施形態の変形例におけるPOTFの分布を示す図である。 第2実施形態の変形例におけるPOTFの利得を示す図である。
 以下、各実施形態に係る顕微鏡装置について説明する。以下の説明で用いる図は、特徴を分かり易くするために、便宜上、構成部品を拡大して示している場合があり、各構成部品の寸法比率等が実際と同じであるとは限らない。
 <第1実施形態>
 まず、図1を用いて、第1実施形態に係る顕微鏡装置1について説明する。第1実施形態に係る顕微鏡装置1は、ステージ2と、透過照明用光源5と、落射照明用光源6と、透過照明光学系10と、落射照明光学系20と、検出光学系40と、検出器60と、制御部65と、画像処理部66と、操作入力部67と、画像表示部70とを備える。ここで、透過照明光学系10の光軸をAx1、検出光学系40の光軸をAx2と表す。なお、透過照明光学系10の光軸Ax1と検出光学系40の光軸Ax2は、基本的に、顕微鏡装置1の光軸と共通の光軸(つまり、同軸)であるが、説明の便宜上、透過照明光学系10の光軸Ax1と検出光学系40の光軸Ax2に分けて表す。ステージ2は、透明の平行平板を用いて形成される。ステージ2は、試料SAを支持する。試料SAは、例えば細胞等の位相物体である。ステージ2には、ステージ駆動部3が設けられる。ステージ駆動部3は、ステージ2を透過照明光学系10の光軸Ax1に沿って移動させる。
 図2に示すように、透過照明光学系10の光軸方向に延びる座標軸をz軸とする。ステージ駆動部3によりステージ2をz方向に移動させることで、所定の位置Z、位置Zから+Δzだけ離れた位置Z+Δz、位置Zから-Δzだけ離れた位置Z-Δz、位置Zから+2Δzだけ離れた位置Z+2Δz、位置Zから-2Δzだけ離れた位置Z-2Δz…における試料SAの断面の画像データを取得することが可能である。
 透過照明用光源5は、所定の波長帯域の照明光を発生させる。透過照明光学系10は、透過照明用光源5側から順に、コレクタレンズ12と、視野絞り14と、リレーレンズ15と、照明側変調素子16と、開口絞り17と、コンデンサレンズ18とを有する。透過照明用光源5は、例えばハロゲンランプ等を用いて構成される。透過照明用光源5としてハロゲンランプが用いられる場合、照明光の波長帯域を狭くする素子が設けられることが好ましい。照明光の波長帯域を狭くすることで、詳細は後述するPOTF等の計算値の精度を高くすることができる。例えば、透過照明光学系10におけるコレクタレンズ12とリレーレンズ15との間の光路に、所定の分光透過率特性を有するバンドパスフィルター13を挿入することで、照明光の波長帯域を狭くすることが可能である。バンドパスフィルター13の分光透過率特性は、明視野観察や蛍光観察などの観察の用途に応じた照明光の波長帯域に基づいて設定される。
 なお、透過照明光学系10における視野絞り14とリレーレンズ15との間の光路に、バンドパスフィルター13を挿入してもよい。上記のようなバンドパスフィルター13に限らず、詳細は後述する第9実施形態のように、照明光学系の光路に、バンドパスフィルターを備えたフィルターキューブ(図示せず)を挿入してもよい。
 照明側変調素子16および開口絞り17は、透過照明光学系10におけるリレーレンズ15とコンデンサレンズ18との間の瞳(以降、照明瞳と称する場合がある)の位置P0において透過照明光学系10の光軸Ax1と垂直な面に配置される。照明側変調素子16は、開口絞り17に隣接して(一例として、図1のように開口絞り17の上側に)配置される。照明瞳の位置P0における透過照明光学系10の光軸Ax1と垂直な面を、照明瞳の面と称する。照明側変調素子16は、一例として、光の透過性を有する平板であって、この平板の面内で光の透過率が変化する平板である。この平板は、例えば、ガラス基板等の平行平板に、光の透過率を低減させることが可能な(遮光性のある)膜を蒸着させることにより形成される。一例として、金属膜を蒸着させる。例えば、膜が蒸着される平行平板の部位に応じて膜厚を変化させることにより、平行平板の部位に応じて光の透過率を変化させることができる(膜厚が厚いほど、透過率は低くなる)。この照明側変調素子16を、照明瞳の面に配置することによって、照明瞳の面内で光の透過率を変化させることができる。したがって、照明側変調素子16の光の透過率が照明瞳の面内で変化すると言える。照明側変調素子16の光の透過率は、照明瞳の面内で連続的(もしくは離散的)に変化する。なお、照明側変調素子16の部位に応じて光の透過率が変化することにより、照明側変調素子16の光の透過率の分布(言い換えれば、照明瞳の面における光の透過率の分布)が決まる。照明側変調素子16として、光の透過率の変化、すなわち光の透過率の分布が異なる複数の照明側変調素子16のうちいずれかを選択して照明瞳の位置P0に配置することが可能である。照明側変調素子16の光の透過率の詳細については、後述する。なお、照明側変調素子16が配置される位置は、照明瞳の位置P0に限られない。例えば、照明側変調素子16は、照明瞳と共役な位置において光軸Ax1と垂直な面(言い換えれば、照明瞳と共役な面)に配置されてもよい。
 コンデンサレンズ18は、ステージ2の上方に対向して配置される。コンデンサレンズ18として、光学特性が異なる複数のコンデンサレンズ18のうちいずれかを選択してステージ2の上方に配置することが可能である。
 落射照明用光源6は、所定の波長帯域の励起光を発生させる。落射照明光学系20は、試料SA側から順に、対物レンズユニット21と、フィルターキューブ31とを有する。対物レンズユニット21は、複数の対物レンズ22と、レンズ保持部25と、ユニット駆動部26とを有する。対物レンズ22は、ステージ2の下方に対向して配置される。レンズ保持部25は、焦点距離が異なる複数の対物レンズ22を保持する。レンズ保持部25は、例えば、レボルバやターレット等を用いて構成される。ユニット駆動部26は、レンズ保持部25を駆動し、複数の対物レンズ22のうちいずれかを選択してステージ2の下方に配置することが可能である。なお、ユニット駆動部26は、レンズ保持部25をz軸に沿って移動させてもよい。この場合、ステージ駆動部3を併用してもよいし、ステージ駆動3を使わなくてもよい。
 フィルターキューブ31は、透過照明光学系10を用いて試料SAの明視野観察等を行う場合、図1の実線で示すように落射照明光学系20を含む検出光学系40の光路から退避される。フィルターキューブ31は、落射照明用光源6を用いて試料SAの蛍光観察を行う場合、図1の二点鎖線で示すように落射照明光学系20を含む検出光学系40の光路に挿入される。フィルターキューブ31は、落射照明用光源6から出射した励起光をステージ2に向けて反射させる。フィルターキューブ31は、ステージ2上の試料SAで発生した蛍光を検出光学系40の第1結像レンズ41に向けて透過させる。フィルターキューブ31は、落射照明用光源6からの励起光を透過させる励起フィルター32を有する。フィルターキューブ31は、試料SAやステージ2等で反射した励起光を吸収する吸収フィルター33を有する。
 検出光学系40は、対物レンズユニット21と、フィルターキューブ31とを含む。検出光学系40は、落射照明光学系20側から順に、第1結像レンズ41と、第1ミラー43と、レンズ44と、第2ミラー45と、コリメータレンズ46と、ハーフミラー47とを有する。さらに、検出光学系40は、第3結像レンズ50と、検出側変調素子53とを有する。また、ハーフミラー47を透過する光の光路上に、第2結像レンズ48と、第3ミラー49と、接眼レンズ55とが配置される。
 ハーフミラー47の透過率と反射率の比率は、例えば1:1に設定される。ハーフミラー47に入射した光の一部は、当該ハーフミラー47で反射して第3結像レンズ50に入射する。第3結像レンズ50を透過した光は、所定の第1像面IAで結像する。ここで、所定の第1像面IAの位置は、対物レンズ22の焦点位置と共役な位置である。検出光学系40の第1像面IAに、検出器60が配置される。ハーフミラー47に入射した光の他の一部は、当該ハーフミラー47を透過して第2結像レンズ48に入射する。第2結像レンズ48を透過した光は、第3ミラー49で反射して所定の第2像面IBで結像する。ここで、所定の第2像面IBの位置は、対物レンズ22の焦点位置と共役な位置である。観察者は、接眼レンズ55を用いて第2像面IBに結像された試料SAの像を観察することが可能である。なお、検出器60には、CCDやCMOS等の撮像素子が用いられる。
 検出側変調素子53は、検出光学系40における対物レンズ22の瞳(以降、検出瞳と称する場合がある)と共役な位置P2において検出光学系40の光軸Ax2と垂直な面に配置される。検出瞳と共役な位置P2における検出光学系40の光軸Ax2と垂直な面を、検出瞳と共役な面と称する。検出側変調素子53は、一例として、照明側変調素子16と同様に、ガラス基板等の平行平板に、光の透過率を低減させることが可能な膜を蒸着させることにより形成される。この検出側変調素子53を、検出瞳と共役な面に配置することによって、検出瞳と共役な面内で光の透過率を変化させることができる。したがって、検出側変調素子53の光の透過率が検出瞳と共役な面内で変化すると言える。検出側変調素子53の光の透過率は、検出瞳と共役な面内で連続的(もしくは離散的)に変化する。検出側変調素子53として、光の透過率の分布が異なる複数の検出側変調素子53のうちいずれかを選択して検出瞳と共役な位置P2に配置することが可能である。検出側変調素子53の光の透過率の詳細については、後述する。なお、検出側変調素子53が配置される位置は、検出瞳と共役な位置P2に限られない。例えば、検出側変調素子53は、検出瞳の位置において光軸Ax2と垂直な面(言い換えれば、検出瞳の面)に配置されてもよい。この場合、例えば、検出側変調素子53は、対物レンズ22に内蔵されてもよい。
 本実施形態において、透過照明光学系10を用いて試料SAの明視野観察等を行う場合、図1の実線で示すようにフィルターキューブ31が検出光学系40(落射照明光学系20)の光路から退避される。透過照明用光源5から出射した照明光は、(透過照明用光源5としてハロゲンランプが用いられる場合にはバンドパスフィルター13を通って)コレクタレンズ12に入射する。コレクタレンズ12を透過した照明光は、平行光となって視野絞り14を通り、リレーレンズ15に入射する。リレーレンズ15を透過した照明光は、照明側変調素子16と開口絞り17とを通ってコンデンサレンズ18に入射する。コンデンサレンズ18を透過した照明光は、平行光となってステージ2上の試料SAに入射する。これにより、透過照明光学系10は、透過照明用光源5からの照明光によって、ステージ2上の試料SAを照明する。
 試料SAを透過もしくは回折した光(以降、検出光と称する場合がある)は、検出光学系40としての対物レンズ22に入射する。対物レンズ22を透過した検出光は、第1結像レンズ41に入射する。第1結像レンズ41を透過した検出光は、第1ミラー43で反射して所定の中間像面IMで結像し、レンズ44に入射する。レンズ44を透過した検出光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した検出光は、平行光となって検出側変調素子53を通り、ハーフミラー47に入射する。ハーフミラー47に入射した検出光の一部は、当該ハーフミラー47で反射して第3結像レンズ50に入射する。第3結像レンズ50を透過した検出光は、検出器60が配置される所定の第1像面IAで結像する。ハーフミラー47に入射した検出光の他の一部は、当該ハーフミラー47を透過して第2結像レンズ48に入射する。第2結像レンズ48を透過した検出光は、第3ミラー49で反射して所定の第2像面IBで結像する。
 落射照明用光源6を用いて試料SAの蛍光観察を行う場合、図1の二点鎖線で示すようにフィルターキューブ31が検出光学系40(落射照明光学系20)の光路に挿入される。落射照明用光源6から出射した励起光は、落射照明光学系20の励起フィルター32を通ってフィルターキューブ31に入射する。フィルターキューブ31に入射した励起光は、当該フィルターキューブ31で反射して対物レンズ22に入射する。対物レンズ22を透過した励起光は、ステージ2上の試料SAに入射する。これにより、落射照明光学系20は、落射照明用光源6からの励起光によって、ステージ2上の試料SAを照明する。
 励起光の照射によって、試料SAに含まれる蛍光物質が励起されて蛍光が出射する。試料SAからの蛍光は、検出光学系40としての対物レンズ22に入射する。対物レンズ22を透過した蛍光は、フィルターキューブ31に入射する。フィルターキューブ31に入射した蛍光は、当該フィルターキューブ31を透過し、吸収フィルター33を通って第1結像レンズ41に入射する。第1結像レンズ41を透過した蛍光は、第1ミラー43で反射して所定の中間像面IMで結像し、レンズ44に入射する。レンズ44を透過した蛍光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した蛍光は、平行光となって検出側変調素子53を通り、ハーフミラー47に入射する。
 ハーフミラー47に入射した蛍光の一部は、当該ハーフミラー47で反射して第3結像レンズ50に入射する。第3結像レンズ50を透過した蛍光は、検出器60が配置される所定の第1像面IAで結像する。ハーフミラー47に入射した蛍光の他の一部は、当該ハーフミラー47を透過して第2結像レンズ48に入射する。第2結像レンズ48を透過した検出光は、第3ミラー49で反射して所定の第2像面IBで結像する。
 検出器60は、明視野観察の場合、透過照明光学系10を用いて試料SAを照明し、検出光学系40を介して試料SAからの光(言い換えると、試料SAを透過もしくは回折した検出光)を検出し、当該光の検出信号を出力する。なお、検出部60は、検出光学系40を介して試料SAの像を撮像すると言い換えることができる。ここで、検出信号とは、光(検出光)の強度に応じて検出器60で検出された信号強度を示す信号である。具体的には、検出器60がCCDの場合、CCDの各画素における信号である。なお、検出信号は、試料SAの像の強度に応じて検出器60で検出された信号強度を示す信号と言い換えることができる。検出器60から出力された光(検出光)の検出信号は、制御部65を介して画像処理部66に送信される。なお、検出器60は、蛍光観察の場合、検出光学系40を介して試料SAからの蛍光を検出し、当該蛍光の検出信号を出力する。検出器60から出力された蛍光の検出信号は、制御部65を介して画像処理部66に送信される。制御部65は、顕微鏡装置1の全体的な制御を行う。制御部65は、ステージ駆動部3、ユニット駆動部26、検出器60、画像処理部66、操作入力部67、画像表示部70等と電気的に接続される。
 画像処理部66は、透過照明光学系10を用いて試料SAを照明し、検出光学系40を介して試料SAからの光を検出すること(言い換えれば、明視野観察)によって検出器60から出力された光(検出光)の検出信号に基づいて、試料SAに関する屈折率のデータを生成する。ここで、試料SAに関する屈折率のデータとは、試料SAの屈折率を表すデータであり、例えば、試料SAにおける各位置での屈折率のデータ、すなわち試料SAにおける屈折率分布を示すデータである。また、試料SAに関する屈折率のデータは、例えばルックアップテーブルとして記憶部(図示せず)に記憶される。また、画像処理部66は、試料SAにおける屈折率分布の各位置での屈折率の値に応じて各画素の輝度値を設定した画像データ(以降、試料SAの屈折率分布の画像データと称する場合がある)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける各位置(検出器60の各画素)での検出信号の信号強度の値に応じて各画素の輝度値を設定した画像データ(以降、明視野観察による試料SAの画像データと称する場合がある)を生成する。なお、画像処理部66は、検出器60から出力された蛍光の検出信号に基づいて、試料SAにおける各位置(検出器60の各画素)での検出信号の信号強度の値に応じて各画素の輝度値を設定した画像データ(以降、蛍光観察による試料SAの画像データと称する場合がある)を生成する。
 画像表示部70は、画像処理部66で生成された試料SAの屈折率分布の画像データに基づいて、試料SAにおける屈折率分布の画像を表示する。また、画像表示部70は、画像処理部66で生成された明視野観察による試料SAの画像データに基づいて、明視野観察による試料SAの画像を表示する。なお、画像表示部70は、画像処理部66で生成された蛍光観察による試料SAの画像データに基づいて、蛍光観察による試料SAの画像を表示する。
 次に、画像処理部66により、試料SAに関する屈折率のデータとして試料SAにおける3次元の屈折率分布を求める方法について説明する。試料SAにおける3次元の屈折率分布を求める代表的な例として、PC-ODT(Partially Coherent-Optical Diffraction Tomography)と称される理論を用いる方法がある。以下、PC-ODTの理論について述べる。部分コヒーレント結像の式より、3次元の物体の像の強度I(x,y,z)は、下記の式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、oは物体の複素振幅透過率を表す。TCCは相互透過係数(Transmission Cross Coefficient)を表す。(ξ,η,ζ)は回折光(もしくは直接光)の方向余弦を表す。また、この場合の像とは、照明により試料SAの少なくとも一部を透過した光(検出光)が結像して得られる試料SAの像である。したがって、3次元の物体の像、すなわち3次元の試料SAの像の強度I(x,y,z)は、画像処理においては検出器60から出力される検出信号の信号強度(つまり、検出器60で試料SAを撮像した際の検出器60の各画素における信号強度)に置き換えることができる。より具体的には、試料SAの像の強度I(x,y,z)として、試料SAのz方向の各位置(つまり、光軸方向の各位置)におけるxy断面の像を検出器60で撮像し、出力される検出信号の信号強度を用いる。図1に示すように、透過照明光学系10の光軸方向に延びる座標軸をz軸とし、z軸と垂直な座標軸をx軸およびy軸とする。相互透過係数TCCは、下記の式(2)のように表すことができる。
 なお、検出器60で試料SAのz方向の各位置におけるxy断面の像を撮像しなくてもよく、機械学習を利用して、検出器60で取得したz方向における任意の位置のxy断面の像に応じた検出信号からz方向の他の位置のxy断面の像を求めてもよい。この場合、予め、試料のz方向の各位置における画像を教師データとして、学習済みモデルを作成しておき、画像処理部66は、検出部60で取得した試料SAのz方向における任意の位置のxy断面の像に応じた検出信号をその学習済みモデルに入力することで、試料SAのz方向の他の位置のxy断面の像に応じた検出信号を求めてもよい。なお、以上のように機械学習を利用して求められた試料SAの像に応じた検出信号も、試料SAからの光を推定した情報であるため、試料SAからの光の検出信号と言い換えることができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、Sは照明瞳を表す。Gは検出瞳を表す。相互透過係数TCCは、エルミート共役であることから、下記の式(3)に示す性質を持つ。
Figure JPOXMLDOC01-appb-M000003
 
 細胞のような厚みの薄い試料の場合、散乱の影響は小さいので、第1次Born近似(低コントラスト近似)が成り立つ。このとき、試料を透過した直接光(0次回折光)と、試料で回折した回折光(1次回折光)との干渉のみを考えればよい。そのため、第1次Born近似によって、上記の式(1)~(3)から下記の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 また、物体の複素振幅透過率oは、下記の式(5)のように近似することができる。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、Pは散乱ポテンシャルの実部を表す。Φは散乱ポテンシャルの虚部を表す。上記の式(4)は、式(5)を利用して、下記の式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
   
 ここで、TCCをWOTF(Weak Object Transfer Function)と改める。WOTFは下記の式(7)で定義される。
Figure JPOXMLDOC01-appb-M000007
 上記の式(6)および式(7)より、透過照明方式の顕微鏡で得られる3次元の物体の像の強度I(x,y,z)は、下記の式(8)のように表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、試料の振幅変化は、小さくて無視できるものとする。すなわち、P=0とする。この場合、上記の式(8)を実空間上で表すと、下記の式(9)が得られる。
Figure JPOXMLDOC01-appb-M000009
 式(9)において、EPSFは、有効点像分布(Effective Point Spread Function)を表す。EPSFは、WOTFを逆フーリエ変換したものに等しい。EPSFは、一般的に複素関数である。式(9)の第1項は、背景強度を表す。式(9)の第2項は、試料の持つ散乱ポテンシャルの虚部Φに、EPSFの虚部Im[EPSF]がかかっていることを表す。この式(9)を利用して、試料の持つ散乱ポテンシャルの虚部Φを求めることができる。
 <Φ(x,y,z)を求める第1の方法>
 Φ(x,y,z)を求める第1の方法として、Im[EPSF]を用いて直接デコンボリューションを行う方法がある。図3に、ステージ2をz方向(つまり、光軸方向)に移動させて、試料SAのz方向の位置(つまり、光軸方向の位置)が異なる複数の断面(xy断面)の像の強度(検出器60の検出信号の信号強度)を取得し、デコンボリューションを行う過程を模式的に示す。なお、試料SAのz方向の位置(つまり、光軸方向の位置)が異なる複数の断面の像を纏めて、試料SAのzスタック像と称する場合がある。式(9)の第1項は、背景強度を表す定数項である。まず、式(9)の両辺をこの定数項で割って規格化した後、規格化した式(9)の第1項を実空間(もしくは周波数空間)上で除く。そして、Im[EPSF]を用いてデコンボリューションを行うことで、下記の式(10)が得られる。
Figure JPOXMLDOC01-appb-M000010
 式(10)において、Im[EPSF]を3次元フーリエ変換したものをPOTF(Phase Optical Transfer Function)とする。なお、Im[EPSF]は正の値から負の値までとり得るため、POTFの値も、正の値から負の値までとり得る。ここで、POTFは、明視野観察による試料SAの画像(像)のコントラストや分解能を表す指標となる。具体的には、POTFの絶対値は画像のコントラストを表し、POTFの絶対値が高いほど、明視野観察による試料SAの画像(像)のコントラストは高くなる。また、周波数空間においてPOTFの値が0ではない領域が広いほど、明視野観察による試料SAの画像(像)の分解能は高くなる。また、試料SAのzスタック像における試料SAの各断面の像の強度I(例えば、図3におけるI~I)を式(9)の定数項で規格化したものをI’とする。γは、任意の小さい値を取るものとする。
 <Φ(x,y,z)を求める第2の方法>
 Φ(x,y,z)を求める第2の方法として、試料SAのz方向の位置(つまり、光軸方向の位置)が異なる2つの断面の像の強度の差分を求めることで、式(9)の定数項を除いた後、求めた強度の差分のIm[EPSF]を用いてデコンボリューションを行う方法がある。図4に、試料SAのz方向の位置(つまり、光軸方向の位置)が異なる2つの断面の像の強度(検出器60の検出信号の信号強度)を取得して、当該2つの断面の像の強度の差分を求め、デコンボリューションを行う過程を模式的に示す。
 まず、zを±Δzだけずらした場合の結像を考える。そうすると、式(8)から下記の式(11)が得られる。
Figure JPOXMLDOC01-appb-M000011
 次に、式(11)について、I(x,y,z+Δz)とI(x,y,z-Δz)との差分を求める。これにより、式(11)の第1項が打ち消し合って、下記の式(12)が得られる。
Figure JPOXMLDOC01-appb-M000012
 ここで、WOTF’(ξ,η,ζ)=WOTF(ξ,η,ζ)2isinkζΔzとする。これにより、式(12)を下記の式(13)のように表すことができる。
Figure JPOXMLDOC01-appb-M000013
 式(13)の右辺を実空間上で表せば、下記の式(14)のようになる。
Figure JPOXMLDOC01-appb-M000014
 そして、両辺を定数項で割った後、ImEPSF’を用いてデコンボリューションを行うことで、下記の式(15)が得られる。
Figure JPOXMLDOC01-appb-M000015
 式(15)において、ImEPSF’を3次元フーリエ変換したものをPOTF’とする。試料SAのz方向の位置(つまり、光軸方向の位置)が異なる2つの断面の像の強度I(I(x,y,z+Δz)およびI(x,y,z-Δz))を式(14)の定数項で規格化したものをI’とする。γは、任意の小さい値を取るものとする。なお、上述した2つの方法は、任意の瞳形状において成り立つ。
 なお、散乱ポテンシャルΦは、P=0の場合、下記の式(16)で定義される。
Figure JPOXMLDOC01-appb-M000016
 式(16)において、n(x,y,z)は試料SAにおける3次元の屈折率分布を表し、kは真空中の波数を表し、nは媒質の屈折率を表す。式(16)を用いれば、上述した第1の方法または第2の方法によって求めた散乱ポテンシャルΦを、3次元の屈折率分布に換算することができる。画像処理部66は、上記の式(10)もしくは式(15)と、式(16)とを用いて、検出器60から出力された検出信号の信号強度、すなわち3次元の試料SAの像の強度I(x,y,z)から試料SAにおける3次元の屈折率分布n(x,y,z)を算出する。一例として画像処理部66は、算出した試料SAにおける3次元の屈折率分布の各位置(座標)での屈折率の値に応じて各画素の輝度値を設定した画像データ、すなわち試料SAの3次元の屈折率分布の画像データを生成する。なお、3次元の試料SAの像の強度は、試料SAのzスタック像における試料SAの各断面の像の強度として表すことができる。すなわち、3次元の試料SAの像の強度は、試料SAにおけるz方向の位置(つまり、光軸方向の位置)が異なる複数の像の強度とも言える。
 第1実施形態において、瞳の位置での開口形状が従来のように円形である場合、分解能を向上させるために照明σを大きく(照明σを1に近く)した結果、明視野観察による試料SAの画像(像)のコントラストが低くなると、得られる試料SAの各位置における屈折率のダイナミックレンジが狭くなる。つまり、試料SAにおける屈折率分布の画像のコントラストが低くなる。逆に、コントラストを向上させるために照明σを小さくした結果、明視野観察による試料SAの画像(像)の分解能が低くなると、試料SAの各位置における屈折率の細かい変化を求めることができない。つまり、試料SAにおける屈折率分布の画像の解像度(分解能)が低くなる。したがって、屈折率のダイナミックレンジが広く、かつ屈折率の細かい変化を求めることは困難である。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける屈折率分布の画像を得ることは困難である。なお、照明σは、透過照明光学系10の開口数と検出光学系40の開口数との比である。
 本実施形態では、透過照明光学系10における照明瞳の位置P0に、光の透過率が照明瞳の面内で変化する照明側変調素子16が設けられる。また、検出光学系40における検出瞳と共役な位置P2に、光の透過率が検出瞳と共役な面内で変化する検出側変調素子53が設けられる。これにより、本実施形態によれば、照明σが大きく、明視野観察による試料SAの画像(像)の分解能が高い状態であっても、コントラストが高い状態に維持されるため、試料SAにおいて、屈折率のダイナミックレンジが広く、かつ屈折率の細かい変化を表す3次元の屈折率分布を得ることが可能になる。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける屈折率分布の画像を得ることができる。
 照明側変調素子16および検出側変調素子53の、瞳の面内における光の透過率の変化(言い換えると、瞳の面内における光の透過率の分布)の例について述べる。図5~図7は、照明側変調素子16および検出側変調素子53の光の透過率の分布の一例を示すグラフである。図5~図7において、Xは光軸(透過照明光学系10の光軸Ax1または検出光学系40の光軸Ax2)が通る座標位置を原点とするx方向の座標であり、Yは光軸が通る座標位置を原点とするy方向の座標である。図5に示す例では、照明側変調素子16または検出側変調素子53の光の透過率が、連続関数に従って変化する。具体的には、照明側変調素子16または検出側変調素子53の光の透過率が、X,Yの原点において最大となり、かつX,Yの原点を通るいずれの直線上においても、X,Yの原点から余弦関数に従って減少する(光の透過率の等しい部分がX,Yの原点を中心として同心円状に分布する)。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、余弦関数に従って変化する。なお、照明側変調素子16または検出側変調素子53の光の透過率は、瞳の面内(照明瞳の面内または検出瞳と共役な面内)で、X,Yの原点から連続関数(例えば、余弦関数)に従って変化するとも言えるし、X,Yの原点から離れるのにつれて減少するとも言える。
 なお、照明側変調素子16または検出側変調素子53の光の透過率が、X,Yの原点において最小となり、かつX,Yの原点を通るいずれの直線上においても、X,Yの原点から余弦関数に従って増加してもよい。また、照明側変調素子16または検出側変調素子53の光の透過率が、X,Yの原点とは異なる点を通るいずれの直線上においても、当該X,Yの原点とは異なる点から余弦関数に従って変化してもよい(光の透過率の等しい部分がX,Yの原点とは異なる点を中心として同心円状に分布してもよい)。
 図5に示す例において、照明側変調素子16または検出側変調素子53の光の透過率が、X,Yの原点において最大となり、かつX,Yの原点を通るいずれの直線上においても、X,Yの原点からガウス関数に従って減少してもよい。また、照明側変調素子16または検出側変調素子53の光の透過率が、X,Yの原点において最大となり、かつX,Yの原点を通るいずれの直線上においても、X,Yの原点から二次関数に従って減少してもよい。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、余弦関数に限られず、ガウス関数に従って変化してもよく、二次関数に従って変化してもよい。
 図6に示す例では、照明側変調素子16または検出側変調素子53の光の透過率が、連続関数に従って変化する。具体的には、照明側変調素子16または検出側変調素子53の光の透過率が、X=0の座標位置で最大となり、X方向において当該X=0の座標位置からガウス関数に従って減少する(光の透過率の等しい部分がY方向へ延びる直線状に分布する)。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、ガウス関数に従って変化する。なお、照明側変調素子16または検出側変調素子53の光の透過率は、瞳の面内で、X方向(一方向)において連続関数(例えば、ガウス関数)に従って一旦増加してから減少するとも言える。
 なお、照明側変調素子16または検出側変調素子53の光の透過率が、Y=0の座標位置で最大となり、Y方向において当該Y=0の座標位置からガウス関数に従って減少してもよい(光の透過率の等しい部分がX方向へ延びる直線状に分布してもよい)。また、照明側変調素子16または検出側変調素子53の光の透過率が、X方向やY方向に限らず、XY座標系における任意の方向においてガウス関数に従って一旦増加してから減少してもよい(光の透過率の等しい部分が上記XY座標系における任意の方向と垂直な方向へ延びる直線状に分布してもよい)。
 なお、照明側変調素子16または検出側変調素子53の光の透過率が、X=0の座標位置で最小となり、X方向において当該X=0の座標位置からガウス関数に従って増加してもよい(光の透過率の等しい部分がY方向へ延びる直線状に分布してもよい)。また、照明側変調素子16または検出側変調素子53の光の透過率が、Y=0の座標位置で最小となり、Y方向において当該Y=0の座標位置からガウス関数に従って増加してもよい(光の透過率の等しい部分がX方向へ延びる直線状に分布してもよい)。また、照明側変調素子16または検出側変調素子53の光の透過率が、X方向やY方向に限らず、XY座標系における任意の方向においてガウス関数に従って一旦減少してから増加してもよい(光の透過率の等しい部分が上記XY座標系における任意の方向と垂直な方向へ延びる直線状に分布してもよい)。
 図6に示す例において、照明側変調素子16または検出側変調素子53の光の透過率が、X=0の座標位置で最大となり、X方向において当該X=0の座標位置から余弦関数に従って減少してもよい。また、照明側変調素子16または検出側変調素子53の光の透過率が、X=0の座標位置で最大となり、X方向において当該X=0の座標位置から二次関数に従って減少してもよい。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、ガウス関数に限られず、余弦関数に従って変化してもよく、二次関数に従って変化してもよい。
 図7に示す例では、照明側変調素子16または検出側変調素子53の光の透過率が、連続関数に従って変化する。具体的には、照明側変調素子16または検出側変調素子53の光の透過率が、X方向(例えば-X方向)において正弦関数に従って単調に減少する(光の透過率の等しい部分がY方向へ延びる直線状に分布する)。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、正弦関数に従って変化する。なお、照明側変調素子16または検出側変調素子53の光の透過率は、瞳の面内で、X方向(例えば+X方向)において正弦関数に従って単調に増加するとも言えるし、X方向において単調に減少もしくは増加するとも言える。
 なお、照明側変調素子16または検出側変調素子53の光の透過率が、Y方向において正弦関数に従って単調に減少もしくは増加してもよい(光の透過率の等しい部分がX方向へ延びる直線状に分布してもよい)。また、照明側変調素子16または検出側変調素子53の光の透過率が、X方向やY方向に限らず、XY座標系における任意の方向において正弦関数に従って単調に減少もしくは増加してもよい(光の透過率の等しい部分が上記XY座標系における任意の方向と垂直な方向へ延びる直線状に分布してもよい)。
 図7に示す例において、照明側変調素子16または検出側変調素子53の光の透過率が、X方向(例えば-X方向)において一次関数に従って単調に減少してもよい。つまり、照明側変調素子16または検出側変調素子53の光の透過率が、正弦関数に限られず、一次関数に従って変化してもよい。
 図5~図7に示す例において、上記の連続関数は、正弦関数、余弦関数、二次関数、一次関数、ガウス関数のうちいずれかであればよい。なお、上記の連続関数は、正弦関数、余弦関数、二次関数、一次関数、ガウス関数に限られず、三次関数など他の関数であってもよい。また、照明側変調素子16や検出側変調素子53において光の透過率が変化する範囲は、瞳(照明瞳、検出瞳)の大きさ(直径)に合わせて設定すればよい。例えば、図5~7に示す場合には、光の透過率が0となる領域が瞳(照明瞳、検出瞳)の外周部と合うように照明側変調素子16や検出側変調素子53を形成する。
 なお、照明側変調素子16または検出側変調素子53の光の透過率が、余弦関数や正弦関数に従って変化する場合、瞳(照明瞳、検出瞳)の面内において1周期より小さい範囲での余弦関数や正弦関数に従った変化であることが望ましい。1周期より大きい範囲になると、POTFの値も周期的な振る舞いをするため、デコンボリューションを行う観点から好ましくないからである。この場合、POTFの値が0になる周波数が複数存在することになり、デコンボリューションの過程で生じるノイズが大きくなるため、得られる試料SAの屈折率分布の精度が低下する。また、照明側変調素子16または検出側変調素子53の光の透過率が、余弦関数に従って変化する場合、瞳(照明瞳、検出瞳)の外周部で光の透過率が0になる(余弦関数の値が0になる)ように工夫しているが、これは瞳の外周部における光の透過率の不連続性が、像におけるリンギング等のアーティファクトの原因となっていることを考慮したものである。
 図8(A)に、従来のように、照明瞳の位置P0および検出瞳と共役な位置P2での光の透過率が、照明瞳の面内および検出瞳と共役な面内で100%(一定)である場合を示す。この場合、従来の円形の開口絞りと同様の光の透過率の分布となる。図8(B)に、図8(A)の場合におけるPOTFの分布を示す。なお、図8(B)において、照明σ=0.95に設定している。ここで、図8(B)において、灰色(背景)はPOTFの値が0であることを示し、白色はPOTFの値が正の値であることを示し、黒色はPOTFの値が負の値であることを示す。したがって、図8(B)において、白色又は黒色が濃いほどPOTFの絶対値が大きくなる。図8(B)より、従来のように、瞳の位置での光の透過率が当該瞳の面内で100%(一定)である場合、照明σ=0.95まで大きくなると、周波数空間における全帯域でのPOTFの絶対値が小さいことが分かる。そのため、明視野観察による試料SAの画像(像)のコントラストが低く、得られる試料SAの各位置における屈折率のダイナミックレンジが狭くなる(屈折率分布の画像のコントラストが低くなる)。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することが難しい。
 図9(A)に、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化し、検出瞳と共役な位置P2での光の透過率が、従来のように当該検出瞳と共役な面内で100%(一定)である場合を示す。図9(B)に、図9(A)の場合におけるPOTFの分布を示す。なお、図9(B)において、照明σ=0.95に設定している。ここで、図8(B)と同様、図9(B)において、灰色(背景)はPOTFの値が0であることを示し、白色はPOTFの値が正の値であることを示し、黒色はPOTFの値が負の値であることを示す。図9(B)より、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化すると、照明σ=0.95まで大きくなっても、広範囲の周波数帯域におけるPOTFの絶対値が高い。また、図9(B)に示すPOTFの絶対値は、周波数空間における全帯域において、図8(B)に示す従来のPOTFの絶対値より大きいことが分かる。そのため、明視野観察による試料SAの画像(像)のコントラストが高く、得られる試料SAの各位置における屈折率のダイナミックレンジが広くなる(屈折率分布の画像のコントラストが高くなる)。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。
 図10(A)に、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図7に示すように正弦関数に従って変化し、検出瞳と共役な位置P2での光の透過率が、従来のように当該検出瞳と共役な面内で100%(一定)である場合を示す。図10(B)に、図10(A)の場合におけるPOTFの分布を示す。ここで、図8(B)、図9(B)と同様、図10(B)において、灰色(背景)はPOTFの値が0であることを示し、白色はPOTFの値が正の値であることを示し、黒色はPOTFの値が負の値であることを示す(以降、同様の図面においての説明は省略する)。なお、図10(B)において、照明σ=1に設定している。図10(B)より、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図7に示すように正弦関数に従って変化すると、照明σ=1まで大きくなっても、広範囲の周波数帯域におけるPOTFの絶対値が高い。また、図10(B)に示すPOTFの絶対値は、周波数空間における全帯域において、図8(B)に示す従来のPOTFの絶対値より大きいことが分かる。そのため、明視野観察による試料SAの画像(像)のコントラストが高く、得られる試料SAの各位置における屈折率のダイナミックレンジが広くなる(屈折率分布の画像のコントラストが高くなる)。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。
 本実施形態では、照明側変調素子16として、図5~図7に示すように光の透過率の分布が異なる照明側変調素子の全部もしくは一部を採用することが可能である。検出側変調素子53として、図5~図7に示すように光の透過率の分布が異なる検出側変調素子の全部もしくは一部を採用することが可能である。図11~図14に、照明側変調素子16または検出側変調素子53を用いて、照明瞳の位置P0または検出瞳と共役な位置P2での光の透過率を変化させた例について示す。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すような余弦関数の変形例として説明したガウス関数に従って変化し、検出瞳と共役な位置P2での光の透過率が、従来のように当該検出瞳と共役な面内で100%(一定)である場合のPOTFの分布を、図11(A)に示す。なお、図11(A)において、照明σ=0.95に設定している。図11(A)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すような余弦関数の変形例として説明した二次関数に従って変化し、検出瞳と共役な位置P2での光の透過率が、従来のように当該検出瞳と共役な面内で100%(一定)である場合のPOTFの分布を、図11(B)に示す。なお、図11(B)において、照明σ=0.95に設定している。図11(B)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。
 照明瞳の位置P0に設けられた照明側変調素子16と検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、共に図7に示すように正弦関数に従って変化する場合のPOTFの分布を、図12(A)に示す。なお、図12(A)において、照明σ=1に設定している。図12(A)に示す例では、照明側変調素子16および検出側変調素子53における光の透過率の分布が同じである。図12(A)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16および検出側変調素子53の光の透過率が、正弦関数に限られず、図7に示すような正弦関数の変形例として説明した一次関数やその他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図7に示すように正弦関数に従って変化し、検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する場合のPOTFの分布を、図12(B)に示す。なお、図12(B)において、照明σ=1に設定している。図12(B)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16の光の透過率が、正弦関数に限られず、図7に示すような正弦関数の変形例として説明した一次関数やその他の関数に従って変化する場合でも、同様のことが言える。検出側変調素子53の光の透過率が、余弦関数に限られず、図6に示すようなガウス関数や、図6に示すようなガウス関数の変形例として説明した二次関数、その他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図7に示すように正弦関数に従って変化し、検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、図5に示すように余弦関数に従って変化する場合のPOTFの分布を、図12(C)に示す。なお、図12(C)において、照明σ=1に設定している。図12(C)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16の光の透過率が、正弦関数に限られず、図7に示すような正弦関数の変形例として説明した一次関数やその他の関数に従って変化する場合でも、同様のことが言える。検出側変調素子53の光の透過率が、余弦関数に限られず、図5に示すような余弦関数の変形例として説明したガウス関数または二次関数やその他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化し、検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、図7に示すように正弦関数に従って変化する場合のPOTFの分布を、図13(A)に示す。なお、図13(A)において、照明σ=1に設定している。図13(A)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16の光の透過率が、余弦関数に限られず、図6に示すようなガウス関数や、図6に示すようなガウス関数の変形例として説明した二次関数、その他の関数に従って変化する場合でも、同様のことが言える。検出側変調素子53の光の透過率が、正弦関数に限られず、図7に示すような正弦関数の変形例として説明した一次関数やその他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化し、検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、図7に示すように正弦関数に従って変化する場合のPOTFの分布を、図13(B)に示す。なお、図13(B)において、照明σ=1に設定している。図13(B)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16の光の透過率が、余弦関数に限られず、図5に示すような余弦関数の変形例として説明したガウス関数または二次関数やその他の関数に従って変化する場合でも、同様のことが言える。検出側変調素子53の光の透過率が、正弦関数に限られず、図7に示すような正弦関数の変形例として説明した一次関数やその他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16と検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、共に図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する場合のPOTFの分布を、図14(A)に示す。なお、図14(A)において、照明σ=1に設定している。図14(A)に示す例では、照明側変調素子16および検出側変調素子53における光の透過率の分布が同じである。図14(A)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16および検出側変調素子53の光の透過率が、余弦関数に限られず、図6に示すようなガウス関数や、図6に示すようなガウス関数の変形例として説明した二次関数、その他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16と検出瞳と共役な位置P2に設けられた検出側変調素子53の光の透過率が、共に図5に示すように余弦関数に従って変化する場合のPOTFの分布を、図14(B)に示す。なお、図14(B)において、照明σ=1に設定している。図14(B)に示す例では、照明側変調素子16および検出側変調素子53における光の透過率の分布が同じである。図14(B)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16および検出側変調素子53の光の透過率が、余弦関数に限られず、図5に示すような余弦関数の変形例として説明したガウス関数または二次関数やその他の関数に従って変化する場合でも、同様のことが言える。
 照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化し、検出瞳と共役な位置P2での光の透過率が、従来のように当該検出瞳と共役な面内で100%(一定)である場合のPOTFの分布を、図14(C)に示す。なお、図14(C)において、照明σ=1に設定している。図14(C)においても、広範囲の周波数帯域におけるPOTFの絶対値は、図8(B)での従来のPOTFの絶対値より大きいことが分かる。したがって、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、照明側変調素子16の光の透過率が、余弦関数に限られず、図6に示すようなガウス関数や、図6に示すようなガウス関数の変形例として説明した二次関数、その他の関数に従って変化する場合でも、同様のことが言える。
 なお、上記の式(10)もしくは式(15)と、式(16)とを用いて、3次元の屈折率分布を求める場合、屈折率の補正が必要となる。理由は、図15に示すように、POTFがz方向に対して情報の欠落する領域(以降、missing cone領域と称する)を持つため、z方向の屈折率の変化にエラーが生じるからである。そこで、Gerchberg-Papoulis法、Edge-Preserving Regularization法、Total Variation Regularization法などのmissing cone推定手法を用いて、屈折率の補正を行う。具体的には、missing cone推定アルゴリズムを使用して、最小の屈折率値が所定の屈折率値(例えば、既知である試料SAにおける媒質の屈折率値)となるように拘束条件を設定し、図15に示すようにmissing cone領域を推定する。
 画像表示部70は、画像処理部66で生成された試料SAの3次元の屈折率分布の画像データに基づいて、試料SAにおける3次元の屈折率分布の画像を表示する。画像表示部70は、画像処理部66で生成された明視野観察による試料SAの画像データに基づいて、明視野観察による試料SAの画像を表示する。例えば、図16に示すように、画像表示部70は、画面の左下に区画された明視野観察画像として、明視野観察による試料SAの画像を表示することが可能である。画像表示部70は、画面の右下に区画された屈折率分布画像として、試料SAにおける3次元の屈折率分布の画像を表示することが可能である。また、画像表示部70は、画面の上側に区画されたモード選択画像として、上から順に、「コントラスト優先モード」の文字、「解像度優先モード」の文字、および「バランスモード」の文字を表示することが可能である。モード選択画像は、試料SAにおける3次元の屈折率分布の特性がそれぞれ異なる複数のモードとして、コントラスト優先モード、解像度優先モード、およびバランスモードのうちいずれかをユーザーに選択させるための画像である。すなわち、モード選択画像は、試料SAにおける3次元の屈折率分布の画像について、それぞれ異なる特性の画像を表示する複数のモード(コントラスト優先モード、解像度優先モード、およびバランスモード)のうちいずれかをユーザーに選択させるための画像である。ここで、画像の特性とは、例えば、試料SAにおける3次元の屈折率分布の画像の解像度およびコントラストである。より具体的な画像の特性として、解像度の高さよりもコントラストの高さを優先した、よりコントラストが高い特性と、コントラストの高さよりも解像度の高さを優先した、より解像度が高い特性と、コントラスト及び解像度の高さが同程度に高い、コントラストと解像度のバランスが取れた特性とがある。
 上述したように、照明側変調素子16として、光の透過率の変化、すなわち光の透過率の分布が異なる複数の照明側変調素子16のうちいずれかを選択して照明瞳の位置P0に配置することが可能である。この場合、複数の照明側変調素子16を保持したターレット(図示せず)を設け、当該ターレットを回動させることで照明瞳の位置P0に配置する照明側変調素子16を選択してもよい。なお、複数の照明側変調素子16の中から、照明瞳の位置P0に配置する照明側変調素子16を選択し変更することが可能な素子変更部として、ターレットに限られず、スライダー等の既存の機構を用いてもよい。これにより、制御部65が、照明瞳の位置P0に配置する照明側変調素子16を変更するように素子変更部を制御することで、照明瞳の面内における光の透過率の分布を変更する。検出側変調素子53として、光の透過率の分布が異なる複数の検出側変調素子53のうちいずれかを選択して検出瞳と共役な位置P2に配置することが可能である。この場合、複数の検出側変調素子53を保持したターレット(図示せず)を設け、当該ターレットを回動させることで検出瞳と共役な位置P2に配置する検出側変調素子53を選択してもよい。なお、複数の検出側変調素子53の中から、検出瞳と共役な位置P2に配置する検出側変調素子53を選択する手段として、照明瞳の位置P0に配置する照明側変調素子16を選択する手段と同様の手段(素子変更部)を用いることが可能である。これにより、制御部65が、検出瞳と共役な位置P2に配置する検出側変調素子53を変更するように素子変更部を制御することで、検出瞳と共役な面内における光の透過率の分布を変更する。
 ここで、瞳の面内もしくは瞳と共役な面内における光の透過率の分布の条件、具体的には、照明瞳の面内における光の透過率の分布と、検出瞳と共役な面内における光の透過率の分布との組み合わせの条件を、検出条件と称する。例えば、前述したように、光の透過率の分布が異なる複数の照明側変調素子16のうちいずれかを選択して照明瞳の位置P0に配置することが可能で、光の透過率の分布が異なる複数の検出側変調素子53のうちいずれかを選択して検出瞳と共役な位置P2に配置することが可能である場合、照明側変調素子16および検出側変調素子53のうち少なくとも一方を選択することにより、検出条件を設定し変更することが可能である。
 ユーザーは、キーボードや操作ダイヤル等からなる操作入力部67を操作して、画像表示部70に表示された、コントラスト優先モード、解像度優先モード、およびバランスモードの中から、ユーザーの希望する、屈折率分布の画像の特性に応じたモードを選択する。そうすると、選択したモードに応じて、予め設定された検出条件に対応する照明側変調素子16および検出側変調素子53のうち少なくとも一方が選択される。ユーザーが選択したモードに対応する検出条件で、透過照明光学系10が試料SAを照明し、検出器60が検出光学系40を介して試料SAからの検出光を検出する。画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける3次元の屈折率分布を算出し、試料SAの3次元の屈折率分布の画像データを生成する。そして、画像表示部70は、画像処理部66で生成された試料SAの屈折率分布の画像データに基づいて、試料SAにおける屈折率分布の画像を表示する。これにより、本実施形態によれば、ユーザーが望む試料SAにおける屈折率分布の画像を生成することができる。また、試料SAにおける屈折率分布の画像(および、後述する位相分布の画像)を表示する際の検出条件の設定を容易に行うことができる。
 コントラスト優先モードは、試料SAにおける3次元の屈折率分布の画像のコントラストを優先させたい場合に選択される。コントラスト優先モードにおいては、解像度(分解能)とコントラストのうち、よりコントラストが高い屈折率分布の画像が得られる検出条件(すなわち、照明瞳の面内における光の透過率の分布と、検出瞳と共役な面内における光の透過率の分布との組み合わせの条件)で、試料SAにおける3次元の屈折率分布を求める。そのため、コントラスト優先モードを選択することにより、従来に比べて解像度(分解能)とコントラストが共に高いが、よりコントラストが高い特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 コントラスト優先モードに対応する検出条件では、従来のように瞳の位置が円形開口(つまり、光の透過率が100%)である場合と比較して、広範囲の周波数帯域にわたり0にはならないPOTFの絶対値は得られるが、より高いPOTFの絶対値が得られる、照明瞳の面内における光の透過率の分布および、検出瞳と共役な面内における光の透過率の分布が選択される。例えば、POTFの分布が図9(B)に示されるように、光の透過率が図5に示すように余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。また例えば、POTFの分布が図11(A)に示されるように、光の透過率が図5に示すような余弦関数の変形例として説明したガウス関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しなくてもよい。POTFの分布が図11(B)に示されるように、光の透過率が図5に示すような余弦関数の変形例として説明した二次関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しなくてもよい。POTFの分布が図14(C)に示されるように、光の透過率が図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しなくてもよい。余弦関数、ガウス関数、二次関数等の連続関数に従って、光の透過率が照明瞳の面内で光軸(透過照明光学系10の光軸Ax1)から離れるのにつれて減少する照明側変調素子16のみを照明瞳の位置P0に配置することで、従来に比べて解像度(分解能)とコントラストが共に高いが、よりコントラストが高い特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 上述のコントラスト優先モードにおいて、照明側変調素子16の光の透過率は、余弦関数、ガウス関数、二次関数以外の連続関数(例えば、正弦関数や一次関数)に従って変化してもよく、不連続関数(例えば、ステップ関数)に従って変化してもよい。また、照明側変調素子16のみを照明瞳の位置P0に配置しているが、これに限られるものではない。例えば、照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。照明側変調素子16を配置せず、検出側変調素子53のみを検出瞳と共役な位置P2に配置してもよい。この場合、検出瞳と共役な位置P2に配置する検出側変調素子53の光の透過率は、いずれの連続関数や不連続関数に従って変化してもよい。
 解像度優先モードは、試料SAにおける3次元の屈折率分布の画像の解像度(分解能)を優先させたい場合に選択される。コントラスト優先モードにおいては、解像度(分解能)とコントラストのうち、より解像度(分解能)が高い屈折率分布の画像が得られる検出条件で、試料SAにおける3次元の屈折率分布を求める。そのため、解像度優先モードを選択することにより、従来に比べて解像度(分解能)とコントラストが共に高いが、より解像度(分解能)が高い特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 解像度優先モードに対応する検出条件では、従来のように瞳の位置が円形開口(つまり、光の透過率が100%)である場合と比較して、高いPOTFの絶対値は得られるが、より広範囲の周波数帯域にわたりPOTFの絶対値が得られる、照明瞳の面内における光の透過率の分布および、検出瞳と共役な面内における光の透過率の分布が選択される。例えば、POTFの分布が図10(B)に示されるように、光の透過率が図7に示すように正弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を検出瞳と共役な位置P2に配置しない。正弦関数、一次関数等の連続関数に従って、光の透過率が照明瞳の面内で一方向に沿って減少する照明側変調素子16のみを照明瞳の位置P0に配置することで、従来に比べて解像度(分解能)とコントラストが共に高いが、より解像度(分解能)が高い特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 上述の解像度優先モードにおいて、照明側変調素子16の光の透過率は、正弦関数以外の連続関数(例えば、余弦関数、ガウス関数、二次関数、一次関数)に従って変化してもよく、不連続関数(例えば、ステップ関数)に従って変化してもよい。また、照明側変調素子16のみを照明瞳の位置P0に配置しているが、これに限られるものではない。例えば、照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。照明側変調素子16を配置せず、検出側変調素子53のみを検出瞳と共役な位置P2に配置してもよい。この場合、検出瞳と共役な位置P2に配置する検出側変調素子53の光の透過率は、いずれの連続関数や不連続関数に従って変化してもよい。
 バランスモードは、試料SAにおける3次元の屈折率分布の画像のコントラストと解像度(分解能)のバランスを優先させたい場合に選択される。バランスモードを選択することにより、コントラストと解像度(分解能)のバランスが取れた、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 バランスモードに対応する検出条件では、コントラスト優先モードと解像度優先モードとの中間のPOTFの特性が得られる、照明瞳の面内における光の透過率の分布および、検出瞳と共役な面内における光の透過率の分布が選択される。つまり、広範囲の周波数帯域にわたり、POTFの絶対値が高くなる光の透過率の分布が選択される。例えば、POTFの分布が図12(B)に示されるように、光の透過率が図7に示すように正弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置する。また例えば、POTFの分布が図12(C)に示されるように、光の透過率が図7に示すように正弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図5に示すように余弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。
 POTFの分布が図13(A)に示されるように、光の透過率が図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図7に示すように正弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。POTFの分布が図13(B)に示されるように、光の透過率が図5に示すように余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図7に示すように正弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。余弦関数、正弦関数等の連続関数に従って光の透過率が変化する照明側変調素子16を照明瞳の位置P0に配置し、照明側変調素子16と光の透過率の分布が異なる検出側変調素子53を検出瞳と共役な位置P2に配置することで、コントラストと解像度(分解能)のバランスが取れた特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 また、POTFの分布が図12(A)に示されるように、光の透過率が図7に示すように正弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図7に示すように正弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。POTFの分布が図14(A)に示されるように、光の透過率が図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図6に示すようなガウス関数の変形例として説明した余弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。POTFの分布が図14(B)に示されるように、光の透過率が図5に示すように余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、光の透過率が図5に示すように余弦関数に従って変化する検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。余弦関数や正弦関数等の連続関数に従って光の透過率が変化する照明側変調素子16を照明瞳の位置P0に配置し、照明側変調素子16と光の透過率の分布が同じ検出側変調素子53を検出瞳と共役な位置P2に配置しても、コントラストと解像度(分解能)のバランスが取れた特性を有する、試料SAにおける3次元の屈折率分布の画像を得ることができる。
 上述のバランスモードにおいて、照明側変調素子16の光の透過率と、検出側変調素子53の光の透過率は、余弦関数、正弦関数以外の連続関数(例えば、ガウス関数、二次関数、一次関数)に従って変化してもよく、不連続関数(例えば、ステップ関数)に従って変化してもよい。また、照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を検出瞳と共役な位置P2に配置しているが、これに限られるものではない。例えば、検出側変調素子53を配置せず、照明側変調素子16のみを照明瞳の位置P0に配置してもよい。照明側変調素子16を配置せず、検出側変調素子53のみを検出瞳と共役な位置P2に配置してもよい。この場合、照明瞳の位置P0もしくは検出瞳と共役な位置P2に配置する変調素子(照明側変調素子16、検出側変調素子53)の光の透過率は、いずれの連続関数や不連続関数に従って変化してもよい。
 なお、ユーザーが上述した各モードを選択しない場合、標準設定のモードに対応する検出条件で、透過照明光学系10が試料SAを照明し、検出器60が検出光学系40を介して試料SAからの検出光を検出することも可能である。標準設定のモードに対応する検出条件では、例えば、POTFの分布が図11(B)に示されるように、光の透過率が図5に示すような余弦関数の変形例として説明した二次関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。
 上述の標準設定のモードにおいて、照明側変調素子16の光の透過率は、二次関数以外の連続関数(例えば、余弦関数、ガウス関数、正弦関数、一次関数)に従って変化してもよく、不連続関数(例えば、ステップ関数)に従って変化してもよい。また、照明側変調素子16のみを照明瞳の位置P0に配置しているが、これに限られるものではない。例えば、照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を検出瞳と共役な位置P2に配置してもよい。照明側変調素子16を配置せず、検出側変調素子53のみを検出瞳と共役な位置P2に配置してもよい。この場合、検出瞳と共役な位置P2に配置する検出側変調素子53の光の透過率は、いずれの連続関数や不連続関数に従って変化してもよい。なお、ユーザーは、標準設定のモードに対応する検出条件を自由に設定することが可能である。
 次に、第1実施形態に係る顕微鏡装置1における屈折率のデータ生成方法について説明する。図17は、第1実施形態に係るデータ生成方法を示すフローチャートである。なお、試料SAは、予めステージ2の上に載置されているものとする。制御部65は、例えばコンピュータシステムを含む。制御部65は、記憶部に記憶されている制御プログラムを読み出し、この制御プログラムに従って各種の処理を実行する。この制御プログラムは、コンピュータに、試料SAからの光を検出する検出器60の制御を行う制御処理と、画像処理部66により試料SAに関する画像データを生成するデータ処理とを実行させる。
 ステップST11において、操作入力部67を介して顕微鏡装置1の設定(以降、単に「設定」と称する場合がある)に関する情報が入力される。設定に関する情報として、例えば、照明光の波長や、試料SAのzスタック像における試料SAの断面(xy断面)の数(つまり、取得する試料SAの断面の画像データの枚数)、試料SAの周辺の媒質の屈折率等がある。試料SAの周辺の媒質の屈折率は、例えば、試料SAが水の中にある場合は水の屈折率であり、試料SAが培養液の中にある場合は培養液の屈折率である。ユーザーが操作入力部67に対して設定に関する情報を入力する操作を行うと、操作入力部67を介して入力された設定に関する情報が記憶部に記憶される。
 ステップST12において、モードの選択を行う操作が行われたか否かを判定する。判定がYESの場合、ステップST13に進む。判定がNOの場合、ステップST16に進む。
 ステップST12での判定がYESの場合、ステップST13において、ユーザーによって複数のモード(例えば、前述したコントラスト優先モード、解像度優先モード、およびバランスモード)の中から選択されたいずれかのモードが入力される。ユーザーが操作入力部67に対していずれかのモードを選択する操作を行うと、操作入力部67の操作に応じたモードが記憶部に記憶される。
 ステップST14において、制御部65は、ステップST13で入力されたモードに応じて検出条件の設定を行う。これにより、ユーザーが選択したモードに応じて、予め設定された検出条件に対応する照明側変調素子16および検出側変調素子53のうち少なくとも一方が選択される。またこのとき、照明σに応じて決まるコンデンサレンズ18および対物レンズ22が選択される。なお、照明σは、各モードにおいて予め設定されている。
 ステップST15において、ユーザーが選択したモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出する。このとき、制御部65は、コンデンサレンズ18および対物レンズ22の組み合わせに応じて、試料SAのzスタック像における試料SAの各断面の間隔Δzを算出する。制御部65は、算出した間隔Δzで試料SAのzスタック像における試料SAの各断面の像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST15の処理が終了すると、ステップST18に進む。
 ステップST12での判定がNOの場合、ステップST16において、制御部65は、標準設定のモードに対応した検出条件の設定を行う。これにより、標準設定のモードとして予め設定された検出条件に対応する照明側変調素子16および検出側変調素子53のうち少なくとも一方が選択される。またこのとき、照明σに応じて決まるコンデンサレンズ18および対物レンズ22が選択される。
 ステップST17において、標準設定のモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出する。このとき、制御部65は、標準設定のモードに対応した間隔Δzで試料SAのzスタック像における試料SAの各断面の像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST17の処理が終了すると、ステップST18に進む。
 ステップST18において、画像処理部66は、検出器60から出力された検出信号に基づいて、試料SAにおける3次元の屈折率分布を求め、試料SAにおける3次元の屈折率分布の画像データを生成する。このとき、画像処理部66は、前述したように、上記の式(10)もしくは式(15)と、式(16)とを用いて、検出器60から出力された検出信号の信号強度、すなわち3次元の試料SAの像の強度I(x,y,z)から、試料SAにおける3次元の屈折率分布n(x,y,z)を算出する。なお、3次元の試料SAの像の強度は、試料SAのzスタック像における試料SAの各断面の像の強度として表される。また、画像処理部66は、検出器60から出力された検出信号に基づいて、明視野観察による試料SAの画像データを生成する。画像表示部70は、画像処理部66で生成された試料SAにおける3次元の屈折率分布の画像データに基づいて、試料SAにおける3次元の屈折率分布の画像を表示する。画像表示部70は、画像処理部66で生成された明視野観察による試料SAの画像データに基づいて、明視野観察による試料SAの画像を表示する。
 ステップST19において、画像処理部66は、試料SAにおける3次元の屈折率分布の画像データを補正する。画像処理部66は、上記の式(10)もしくは式(15)等を用いて3次元の屈折率分布を算出する際、missing cone推定アルゴリズムを使用して、missing cone領域を推定する。これにより、3次元の屈折率分布の算出精度を高めることができる。画像表示部70は、画像処理部66で補正した3次元の屈折率分布の画像データに基づいて、補正後の3次元の屈折率分布の画像を表示する。3次元の屈折率分布の画像データを補正しない場合、ステップST19の処理が実行されずに終了する。
 図17のフローにおいて、ステップST12の処理を省いてもよい。例えば、ステップST12~ST15の処理を省き、ステップST11の処理の後、ステップST16とステップST17の処理に続いて、ステップST18の処理が行われるようにしてもよい。また、ステップST12とステップST16とステップST17の処理を省き、ステップST11の処理の後、ステップST13~ST15の処理に続いて、ステップST18の処理が行われるようにしてもよい。また、上述のフローにおいて、ステップST19の処理を省いてもよい。
 図17のフローにおいて、ステップST15でz方向の間隔Δzを算出しているが、これに限られるものではない。例えば、ステップST11で、設定に関する情報として、z方向の間隔Δzが入力されるようにしてもよい。
 図17のフローにおいて、ユーザーが選択したモードもしくは標準設定のモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出しているが、これに限られるものではない。例えば、ユーザーが操作入力部67に対して設定操作を行うこと等により、直接的に検出条件の設定(照明側変調素子16および検出側変調素子53のうち少なくとも一方を選択する設定)を行い、設定した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出してもよい。
 <第2実施形態>
 次に、第2実施形態に係る顕微鏡装置について説明する。第2実施形態に係る顕微鏡装置は、画像処理部66における処理の他は、第1実施形態に係る顕微鏡装置1と同様の構成である。そのため、第1実施形態と同様の構成については、第1実施形態と同一の符号を付して詳細な説明を省略する。第2実施形態において、画像処理部66は、透過照明光学系10を用いて試料SAを照明し、検出光学系40を介して試料SAからの光を検出すること(言い換えれば、明視野観察)によって検出器60から出力された光(検出光)の検出信号に基づいて、試料SAに関する位相のデータを生成する。ここで、試料SAに関する位相のデータとは、試料SAの位相を表すデータであり、例えば、試料SAにおける各位置での位相のデータ、すなわち試料SAにおける位相分布を示すデータである。また、試料SAに関する位相のデータは、例えばルックアップテーブルとして記憶部(図示せず)に記憶される。また、画像処理部66は、試料SAにおける位相分布の各位置での位相の値に応じて各画素の輝度値を設定した画像データ(以降、試料SAの位相分布の画像データと称する場合がある)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。なお、画像処理部66は、検出器60から出力された蛍光の検出信号に基づいて、蛍光観察による試料SAの画像データを生成する。
 画像表示部70は、画像処理部66で生成された試料SAの位相分布の画像データに基づいて、試料SAにおける位相分布を示す画像を表示する。また、画像表示部70は、画像処理部66で生成された明視野観察による試料SAの画像データに基づいて、明視野観察による試料SAの画像を表示する。なお、画像表示部70は、画像処理部66で生成された蛍光観察による試料SAの画像データに基づいて、蛍光観察による試料SAの画像を表示する。
 次に、画像処理部66により、試料SAに関する位相のデータとして試料SAにおける2次元の位相分布を求める方法について述べる。部分コヒーレント結像の式より、2次元の物体の像の強度I(x,y)は、下記の式(17)のように表すことができる。
Figure JPOXMLDOC01-appb-M000017
 式(17)において、oは物体の複素振幅透過率を表す。TCCは相互透過係数(Transmission Cross Coefficient)を表す。(ξ,η)は回折光(もしくは直接光)の方向余弦を表す。また、この場合の像とは、照明により試料SAの少なくとも一部を透過した光(検出光)が結像して得られる試料SAの像である。したがって、2次元の物体の像、すなわち2次元の試料SAの像の強度I(x,y)は、画像処理においては検出器60から出力される検出信号の信号強度(つまり、検出器60で試料SAを撮像した際の検出器60の各画素における信号強度)に置き換えることができる。相互透過係数TCCは、下記の式(18)のように表すことができる。
Figure JPOXMLDOC01-appb-M000018
   
 式(18)において、Sは照明瞳を表す。Gは検出瞳を表す。相互透過係数TCCは、エルミート共役であることから、下記の式(19)に示す性質を持つ。
Figure JPOXMLDOC01-appb-M000019
 第1実施形態で述べたように、細胞のような厚みの薄い試料の場合、散乱の影響は小さいので、第1次Born近似(低コントラスト近似)が成り立つ。そのため、第1次Born近似によって、上記の式(17)~(19)から下記の式(20)が得られる。
Figure JPOXMLDOC01-appb-M000020
    
 式(20)において、相互透過係数TCCは、下記の式(21)のように表すことができる。
Figure JPOXMLDOC01-appb-M000021
 TCCをフーリエ変換したものをEPSFとする。EPSFは、有効点像分布(Effective Point Spread Function)を表す。有効点像分布EPSFは、下記の式(22)のように表すことができる。
Figure JPOXMLDOC01-appb-M000022
 また、物体の複素振幅透過率oは、下記の式(23)のように近似することができる。
Figure JPOXMLDOC01-appb-M000023
 式(23)において、φは物体の位相を表す。Pは物体の振幅を表す。上記の式(20)は、式(22)および式(23)を利用して、下記の式(24)のように表される。
Figure JPOXMLDOC01-appb-M000024
 ここで、TCCをWOTF(Weak Object Transfer Function)と改める。WOTFは下記の式(25)で定義される。
Figure JPOXMLDOC01-appb-M000025
 合焦位置から+Δzだけデフォーカスした際のWOTFが、下記の式(26)のように表されるものとする。
Figure JPOXMLDOC01-appb-M000026
  
 式(26)を利用して、2次元の物体の像の強度I(x,y)の式を下記の式(27)のように拡張することが可能である。
Figure JPOXMLDOC01-appb-M000027
 この式(27)を利用して、物体(すなわち試料SA)における2次元の位相分布φ(x,y)を求める。
 <φ(x,y)を求める第1の方法>
 試料SAにおける2次元の位相分布φ(x,y)を求める第1の方法として、試料SAの1つのデフォーカス像または1つのインフォーカス像を用いて試料SAにおける2次元の位相分布φ(x,y)を求める方法がある。図18に、試料SAの1つのデフォーカス像の強度(検出器60の検出信号の信号強度)を取得し、デコンボリューションを行う過程を模式的に示す。合焦位置から+Δzだけ離れた位置における2次元の物体の像(すなわち試料SAの1つのデフォーカス像)の強度I(x,y)+Δzは、上記の式(27)で表される。ここで、試料の振幅変化は、小さくて無視できるものとする。すなわち、P=0とする。この場合、上記の式(27)を実空間上で表すと、下記の式(28)が得られる。
Figure JPOXMLDOC01-appb-M000028
    
 式(28)の第1項は、背景強度を表す定数項である。式(28)の第2項は、物体(試料)の位相φに、EPSFの虚部Im[EPSF]がかかっていることを表す。まず、式(28)の両辺をこの定数項で割って規格化した後、規格化した式(28)の第1項を実空間(もしくは周波数空間)上で除く。そして、Im[EPSF]を用いてデコンボリューションを行うことで、下記の式(29)が得られる。
Figure JPOXMLDOC01-appb-M000029
 式(29)において、Im[EPSF]を2次元フーリエ変換したものをPOTF(Phase Optical Transfer Function)とする。2次元の物体の像の強度を式(28)の定数項で規格化したものをI’とする。γは、任意の小さい値を取るものとする。画像処理部66は、式(29)を用いて、試料SAの1つのデフォーカス像の強度I(x,y)+Δzから、試料SAにおける2次元の位相分布φ(x,y)を算出する。一例として画像処理部66は、算出した試料SAにおける2次元の位相分布の各位置での位相の値に応じて各画素の輝度値を設定した画像データ、すなわち試料SAの位相分布の画像データを生成する。
 試料SAにおける2次元の位相分布φ(x,y)を求める第1の方法として、試料SAの1つのデフォーカス像を用いる場合について説明した。試料SAの1つのインフォーカス像を用いる場合、上記の式(29)においてΔz=0とすればよい。例えば、光の透過率が二次関数に従って変化する照明側変調素子16(図5を参照)を照明瞳の位置P0に配置する場合、試料SAの1つのデフォーカス像を用いて試料SAにおける2次元の位相分布φ(x,y)を求める。また例えば、光の透過率が正弦関数に従って変化する照明側変調素子16(図7を参照)を照明瞳の位置P0に配置する場合、試料SAの1つのインフォーカス像を用いて試料SAにおける2次元の位相分布φ(x,y)を求める。
 <φ(x,y)を求める第2の方法>
 試料SAにおける2次元の位相分布φ(x,y)を求める第2の方法として、試料SAの2つのデフォーカス像を用いて試料SAにおける2次元の位相分布φ(x,y)を求める方法がある。図19に、試料SAの2つのデフォーカス像の強度(検出器60の検出信号の信号強度)を取得して当該2つのデフォーカス像の強度の差分を求め、デコンボリューションを行う過程を模式的に示す。まず、zを±Δzだけずらした場合の結像を考える。合焦位置から±Δzだけ離れた位置における2次元の物体の像(すなわち試料SAの2つのデフォーカス像)の強度I(x,y)+Δz,I(x,y)-Δzは、下記の式(27)および式(30)で表される。
Figure JPOXMLDOC01-appb-M000030
 ここで、試料の振幅変化は、小さくて無視できるものとする。すなわち、P=0とする。式(27)および式(30)の第1項は、背景強度を表す定数項である。そこで、式(27)と式(30)との差分を求める。これにより、式(27)および式(30)の第1項が打ち消し合って、下記の式(31)が得られる。
Figure JPOXMLDOC01-appb-M000031
    
 式(31)において、WOTFについての差分をWOTF’とする。WOTF’は、下記の式(32)のように表すことができる。
Figure JPOXMLDOC01-appb-M000032
 上記の式(31)を実空間上で表すと、下記の式(33)が得られる。
Figure JPOXMLDOC01-appb-M000033
    
 そして、式(33)の両辺を定数項で割った後、ImEPSF’を用いてデコンボリューションを行うことで、下記の式(34)が得られる。
Figure JPOXMLDOC01-appb-M000034
 これが、任意の空間的コヒーレンスにおける2次元の位相分布を求める方法である。画像処理部66は、式(34)を用いて、試料SAの2つのデフォーカス像の強度I(x,y)+Δz,I(x,y)-Δzから、試料SAにおける2次元の位相分布φ(x,y)を算出する。一例として画像処理部66は、算出した試料SAにおける2次元の位相分布の各位置での位相の値に応じて各画素の輝度値を設定した画像データ、すなわち試料SAの位相分布の画像データを生成する。
 なお、2つのデフォーカス像に限らず、2つのデフォーカス像および1つのインフォーカス像を用いて、試料SAにおける2次元の位相分布φ(x,y)を求めることができる。この場合、式(33)において規格化する際に、Δz=0のインフォーカス像の強度を用いる。
 第2実施形態において、瞳の位置での開口形状が従来のように円形である場合、分解能を向上させるために照明σを大きく(照明σを1に近く)した結果、明視野観察による試料SAの画像(像)のコントラストが低くなると、得られる試料SAの各位置における位相のダイナミックレンジが狭くなる。つまり、試料SAにおける位相分布の画像のコントラストが低くなる。逆に、コントラストを向上させるために照明σを小さくした結果、明視野観察による試料SAの画像(像)の分解能が低くなると、試料SAの各位置における位相の細かい変化を求めることができない。つまり、試料SAにおける位相分布の画像の解像度(分解能)が低くなる。したがって、位相のダイナミックレンジが広く、かつ位相の細かい変化を求めることは困難である。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける位相分布の画像を得ることは困難である。
 本実施形態では、透過照明光学系10における照明瞳の位置P0に、光の透過率が照明瞳の面内で変化する照明側変調素子16が設けられる。また、検出光学系40における検出瞳と共役な位置P2に、光の透過率が検出瞳と共役な面内で変化する検出側変調素子53が設けられる。これにより、本実施形態によれば、照明σが大きく、明視野観察による試料SAの画像(像)の分解能が高い状態であっても、コントラストが高い状態に維持されるため、試料SAにおいて、位相のダイナミックレンジが広く、かつ位相の細かい変化を表す2次元の位相分布を得ることが可能になる。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける位相分布の画像を得ることができる。
 図8(A)に、従来のように、照明瞳の位置P0および検出瞳と共役な位置P2での光の透過率が、照明瞳の面内および検出瞳と共役な面内で100%(一定)である場合を示した。この場合、従来の円形の開口絞りと同様の光の透過率の分布となる。図20(A)に、図8(A)の場合におけるPOTFの利得を示す。なお、図20(A)において、照明σ=0.95に設定している。POTFの利得を示すグラフにおいて、デフォーカス量をΔzとする。図20(A)より、従来のように、瞳の位置での光の透過率が当該瞳の面内で100%(一定)である場合、照明σ=0.95まで大きくなると、Δz=0.5[μm]、Δz=1.0[μm]、Δz=3.0[μm]のいずれにおいても、周波数空間における全帯域でのPOTFの値がほぼ0であることがわかる。そのため、明視野観察による試料SAの画像(像)のコントラストが低く、得られる試料SAの各位置における位相のダイナミックレンジが狭くなる(位相分布の画像のコントラストが低くなる)。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける2次元の位相分布の画像を生成することが難しい。
 図9(A)に、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化し、従来のように検出瞳と共役な位置P2での光の透過率が、当該検出瞳と共役な面内で100%(一定)である場合を示した。図20(B)に、図9(A)の場合におけるPOTFの利得を示す。なお、図20(B)において、照明σ=0.95に設定している。図20(B)より、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化すると、照明σ=0.95まで大きくなっても、広範囲の周波数帯域におけるPOTFの値が高い。また、図20(B)に示すPOTFの値は、周波数空間における全帯域において、図20(A)に示す従来のPOTFの値より大きいことが分かる。そのため、明視野観察による試料SAの画像(像)のコントラストが高く、得られる試料SAの各位置における位相のダイナミックレンジが広くなる(位相分布の画像のコントラストが高くなる)。つまり、コントラストと解像度(分解能)が共に高い、試料SAにおける2次元の位相分布の画像を生成することができる。
 本実施形態において、照明瞳の位置P0に設けられた照明側変調素子16の光の透過率が、図5に示すように余弦関数に従って変化し、従来のように検出瞳と共役な位置P2での光の透過率が、当該検出瞳と共役な面内で100%(一定)である場合について説明したが、これに限られるものではない。例えば、第1実施形態において図10~図14を用いて説明した照明側変調素子16または検出側変調素子53を用いて照明瞳の位置P0または検出瞳と共役な位置P2での光の透過率を変化させるようにしてもよい。
 次に、第2実施形態に係る顕微鏡装置における位相のデータ生成方法について説明する。図21は、第2実施形態に係るデータ生成方法を示すフローチャートである。なお、試料SAは、予めステージ2の上に載置されているものとする。制御部65は、記憶部に記憶されている制御プログラムを読み出し、この制御プログラムに従って各種の処理を実行する。この制御プログラムは、コンピュータに、試料SAからの光を検出する検出器60の制御を行う制御処理と、画像処理部66により試料SAに関する画像データを生成するデータ処理とを実行させる。
 ステップST21において、第1実施形態と同様に、操作入力部67を介して顕微鏡装置1の設定に関する情報が入力される。ステップST22において、第1実施形態と同様に、モードの選択を行う操作が行われたか否かを判定する。判定がYESの場合、ステップST23に進む。判定がNOの場合、ステップST26に進む。
 ステップST22での判定がYESの場合、第1実施形態と同様に、ステップST23において、ユーザーによって複数のモード(例えば、前述したコントラスト優先モード、解像度優先モード、およびバランスモード)の中から選択されたいずれかのモードが入力される。ステップST24において、第1実施形態と同様に、制御部65は、ステップST23で入力されたモードに応じて検出条件の設定を行う。
 ステップST25において、ユーザーが選択したモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出する。以降のステップでは、上述した第1の方法によりφ(x,y)を求める場合について述べる。制御部65は、コンデンサレンズ18および対物レンズ22の組み合わせに応じて、試料SAの像をデフォーカスさせるデフォーカス量Δzを算出する。制御部65は、算出したデフォーカス量Δzで試料SAの1つのデフォーカス像もしくは1つのインフォーカス像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST25の処理が終了すると、ステップST28に進む。
 ステップST22での判定がNOの場合、第1実施形態と同様に、ステップST26において、制御部65は、標準設定のモードに対応した検出条件の設定を行う。ステップST27において、標準設定のモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出する。このとき、制御部65は、標準設定のモードに対応したデフォーカス量Δzで試料SAの1つのデフォーカス像もしくは1つのインフォーカス像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST27の処理が終了すると、ステップST28に進む。
 ステップST28において、画像処理部66は、検出器60から出力された検出信号に基づいて、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成する。このとき、画像処理部66は、前述したように、上記の式(29)を用いて、試料SAの1つのデフォーカス像もしくは1つのインフォーカス像の強度I(x,y)+Δzから、試料SAにおける2次元の位相分布φ(x,y)を算出する。また、画像処理部66は、検出器60から出力された検出信号に基づいて、明視野観察による試料SAの画像データを生成する。画像表示部70は、画像処理部66で生成された試料SAにおける2次元の位相分布の画像データに基づいて、試料SAにおける2次元の位相分布の画像を表示する。画像表示部70は、画像処理部66で生成された明視野観察による試料SAの画像データに基づいて、明視野観察による試料SAの画像を表示する。
 上述のフローにおいて、第1の方法によりφ(x,y)を求める場合について述べたが、第2の方法によりφ(x,y)を求める場合も同様のフローとなる。ここで、第2の方法によりφ(x,y)を求める場合に、第1の方法と異なる点ついて述べる。
 ステップST25において、制御部65は、コンデンサレンズ18および対物レンズ22の組み合わせに応じて、試料SAの像をデフォーカスさせるデフォーカス量Δzを算出する。制御部65は、算出したデフォーカス量Δzで試料SAの2つのデフォーカス像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST27において、制御部65は、標準設定のモードに対応したデフォーカス量Δzで試料SAの2つのデフォーカス像の強度(検出器60の検出信号の信号強度)を取得できるように、ステージ駆動部3や検出器60等の制御を行う。ステップST28において、画像処理部66は、上記の式(34)を用いて、試料SAの2つのデフォーカス像の強度I(x,y)+Δz,I(x,y)-Δzから、試料SAにおける2次元の位相分布φ(x,y)を算出する。
 なお、図21のフローにおいて、ステップST22の処理を省いてもよい。例えば、ステップST22~ST25の処理を省き、ステップST21の処理の後、ステップST26とステップST27の処理に続いて、ステップST28の処理が行われるようにしてもよい。また、ステップST22とステップST26とステップST27の処理を省き、ステップST21の処理の後、ステップST23~ST25の処理に続いて、ステップST28の処理が行われるようにしてもよい。
 なお、図21のフローにおいて、ユーザーが選択したモードもしくは標準設定のモードに対応した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出しているが、これに限られるものではない。例えば、ユーザーが操作入力部67に対して設定操作を行うこと等により、直接的に検出条件の設定(照明側変調素子16および検出側変調素子53のうち少なくとも一方を選択する設定)を行い、設定した検出条件で、透過照明光学系10が試料SAを照明し、検出光学系40を介して検出器60が試料SAからの検出光を検出してもよい。
 <第3実施形態>
 次に、図22を用いて、第3実施形態に係る顕微鏡装置101について説明する。第3実施形態に係る顕微鏡装置101は、検出光学系の他は、第1実施形態に係る顕微鏡装置1と要部が共通の構成である。そのため、第1実施形態と同様の構成については、第1実施形態と同一の符号を付して詳細な説明を省略する。第3実施形態に係る顕微鏡装置101は、ステージ2と、透過照明用光源5と、透過照明光学系10と、検出光学系140と、検出器60と、制御部65と、画像処理部66と、操作入力部67と、画像表示部70とを備える。
 検出光学系140は、試料SA側から順に、対物レンズユニット121と、第1結像レンズ41と、ハーフミラー42とを有する。また、ハーフミラー42を透過する光の光路上に、第1ミラー43と、レンズ44と、第2ミラー45と、コリメータレンズ46と、第2結像レンズ48と、第3ミラー49と、接眼レンズ55とが配置される。
 対物レンズユニット121は、複数の対物レンズ122と、レンズ保持部125と、ユニット駆動部126とを有する。対物レンズ122は、ステージ2の下方に対向して配置される。レンズ保持部125は、焦点距離が異なる複数の対物レンズ122を保持する。レンズ保持部125は、例えば、レボルバやターレット等を用いて構成される。ユニット駆動部126は、レンズ保持部125を駆動し、複数の対物レンズ122のうちいずれかを選択してステージ2の下方に配置することが可能である。
 対物レンズ122の瞳の位置(検出瞳の位置)P1に、検出側変調素子123が設けられる。より具体的には、対物レンズ122に検出側変調素子123が内蔵されている。検出瞳の位置P1における対物レンズ122の光軸Ax3と垂直な面を、検出瞳の面と称する。検出側変調素子123は、光の透過率が検出瞳の面内で変化する他は、第1実施形態の照明側変調素子16および検出側変調素子53と同様に形成される。なお、対物レンズ122に検出側変調素子123を内蔵する場合、焦点距離が異なる各対物レンズで検出側変調素子123を着脱可能に保持する不図示の機構を設けてもよい。この機構を設けることによって、各対物レンズで、光の透過率の分布が異なる検出側変調素子123を変更することができる(つまり、焦点距離を変えることなく、検出瞳の面内における光の透過率の分布を変更することができる)。
 ハーフミラー42の透過率と反射率の比率は、例えば1:1に設定される。ハーフミラー42に入射した光の一部は、当該ハーフミラー42で反射して所定の第1像面IAで結像する。ここで、所定の第1像面IAの位置は、対物レンズ122の焦点位置と共役な位置である。検出光学系140の第1像面IAに、検出器60が配置される。ハーフミラー42に入射した光の他の一部は、当該ハーフミラー42を透過して第1ミラー43で反射する。第1ミラー43で反射した光は、所定の中間像面IMで結像してレンズ44に入射する。レンズ44を透過した光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した光は、平行光となって第2結像レンズ48に入射する。第2結像レンズ48を透過した光は、第3ミラー49で反射して所定の第2像面IBで結像する。ここで、所定の第2像面IBの位置は、対物レンズ122の焦点位置と共役な位置である。観察者は、接眼レンズ55を用いて第2像面IBに結像された試料SAの像を観察することが可能である。
 本実施形態において明視野観察を行う場合、透過照明光学系10は、第1実施形態と同様に、透過照明用光源5からの照明光によって、ステージ2上の試料SAを照明する。試料SAを透過もしくは回折した検出光は、検出光学系140の対物レンズ122に入射する。対物レンズ122に入射した検出光は、検出側変調素子123を通り第1結像レンズ41に向けて出射する。対物レンズ122から出射した検出光は、第1結像レンズ41に入射する。第1結像レンズ41を透過した検出光は、ハーフミラー42に入射する。ハーフミラー42に入射した検出光の一部は、当該ハーフミラー42で反射して、検出器60が配置される所定の第1像面IAで結像する。ハーフミラー42に入射した検出光の他の一部は、当該ハーフミラー42を透過して第1ミラー43で反射する。第1ミラー43で反射した検出光は、所定の中間像面IMで結像してレンズ44に入射する。レンズ44を透過した検出光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した検出光は、平行光となって第2結像レンズ48に入射する。第2結像レンズ48を透過した検出光は、第3ミラー49で反射して所定の第2像面IBで結像する。
 検出器60は、明視野観察の場合、検出光学系140を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける屈折率分布を示すデータ(一例として、試料SAにおける3次元の屈折率分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。第3実施形態において、画像処理部66は、第1実施形態と同様に、試料SAにおける3次元の屈折率分布を求め、試料SAにおける3次元の屈折率分布の画像データを生成する。これにより、第3実施形態によれば、第1実施形態と同様の効果を得ることができる。
 <第4実施形態>
 次に、第4実施形態に係る顕微鏡装置について説明する。第4実施形態に係る顕微鏡装置は、画像処理部66における処理の他は、第3実施形態に係る顕微鏡装置101と同様の構成である。そのため、第1および第3実施形態と同様の構成については、第1および第3実施形態と同一の符号を付して詳細な説明を省略する。第4実施形態において、検出器60は、明視野観察の場合、第3実施形態と同様に、検出光学系140を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。
 画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける位相分布を示すデータ(一例として、試料SAにおける2次元の位相分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。第4実施形態において、画像処理部66は、第2実施形態と同様に、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成する。これにより、第4実施形態によれば、第2実施形態と同様の効果を得ることができる。
 <第5実施形態>
 次に、図23を用いて、第5実施形態に係る顕微鏡装置201について説明する。第5実施形態に係る顕微鏡装置201は、落射照明光学系、検出光学系および検出器の他は、第1実施形態に係る顕微鏡装置1と同様の構成である。そのため、第1実施形態と同様の構成については、第1実施形態と同一の符号を付して詳細な説明を省略する。第5実施形態に係る顕微鏡装置201は、ステージ2と、透過照明用光源5と、落射照明用光源6と、透過照明光学系10と、落射照明光学系220と、検出光学系240と、検出器60と、第2の検出器261と、制御部65と、画像処理部66と、操作入力部67と、画像表示部70とを備える。
 落射照明光学系220は、試料SA側から順に、対物レンズユニット21と、フィルターキューブ231とを有する。フィルターキューブ231は、落射照明光学系220を含む検出光学系240の光路に常時挿入される。フィルターキューブ231は、落射照明用光源6から出射した励起光をステージ2に向けて反射させる。フィルターキューブ231は、落射照明用光源6からの励起光の照射によってステージ2上の試料SAで発生した蛍光を第1結像レンズ41に向けて透過させる。フィルターキューブ231は、透過照明光学系10からの照明光の照射によって試料SAを透過もしくは回折した光(検出光)を透過させる。フィルターキューブ231は、落射照明用光源6からの励起光を透過させる励起フィルター232を有する。フィルターキューブ231は、試料SAやステージ2等で反射した励起光を吸収する吸収フィルター233を有する。吸収フィルター233は、試料SAからの蛍光および検出光を透過させる。
 検出光学系240は、対物レンズユニット21と、フィルターキューブ231とを含む。検出光学系240における対物レンズユニット21およびフィルターキューブ231以外の構成は、第1結像レンズ41と第1ミラー43との間にダイクロイックフィルター242が配置される他は、第1実施形態の検出光学系40と同様の構成である。
 ダイクロイックフィルター242は、光の波長の違いにより光を分離する。具体的には、ダイクロイックフィルター242に入射した光の一部として、(落射照明光学系20からの励起光の照射によって)試料SAから出射した蛍光は、当該ダイクロイックフィルター242で反射して所定の第3像面ICで結像する。ここで、所定の第3像面ICの位置は、対物レンズ22の焦点位置と共役な位置である。検出光学系240の第3像面ICに、第2の検出器261が配置される。ダイクロイックフィルター242に入射した光の他の一部として、(透過照明光学系10からの照明光の照射によって)試料SAを透過もしくは回折した光(検出光)は、当該ダイクロイックフィルター242を透過して第1ミラー43で反射する。第1ミラー43で反射した検出光は、第1実施形態と同様に、検出器60が配置される所定の第1像面IAで結像する。なお、第2の検出器261には、CCDやCMOS等の撮像素子が用いられる。
 なお、ダイクロイックフィルター242に限らず、ハーフミラーを用いてもよい。この場合、当該ハーフミラーと共にバリアフィルタを用いる。具体的には、当該ハーフミラーを反射した光の一部の光(試料SAからの検出光)を吸収する第1のバリアフィルタを設け、当該ハーフミラーを透過した光の一部の光(試料SAからの蛍光)を吸収する第2のバリアフィルタを設ける。この構成により、当該ハーフミラーを反射した、試料SAからの蛍光による像を第2の検出器261で撮像することができ、当該ハーフミラーを透過した、試料SAからの検出光による像を検出器60で撮像することができる。
 本実施形態において、透過照明光学系10は、第1実施形態と同様に、透過照明用光源5からの照明光によって、ステージ2上の試料SAを照明する。検出器60は、検出光学系240を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。本実施形態の検出光学系240において、試料SAからの検出光は、対物レンズ22に入射する。対物レンズ22を透過した検出光は、フィルターキューブ231に入射する。フィルターキューブ231に入射した検出光は、当該フィルターキューブ231を透過し、吸収フィルター233を通って第1結像レンズ41に入射する。第1結像レンズ41を透過した検出光は、ダイクロイックフィルター242に入射する。ダイクロイックフィルター242に入射した検出光は、当該ダイクロイックフィルター242を透過して第1ミラー43で反射する。第1ミラー43で反射した検出光は、第1実施形態と同様に、検出器60が配置される所定の第1像面IAで結像する。
 落射照明光学系220は、第1実施形態と同様に、落射照明用光源6からの励起光によって、ステージ2上の試料SAを照明する。第2の検出器261は、検出光学系240を介して試料SAからの蛍光を検出し、当該蛍光の検出信号を出力する。本実施形態の検出光学系240において、試料SAからの蛍光は、対物レンズ22に入射する。対物レンズ22を透過した蛍光は、フィルターキューブ231に入射する。フィルターキューブ231に入射した蛍光は、当該フィルターキューブ231を透過し、吸収フィルター233を通って第1結像レンズ41に入射する。第1結像レンズ41を透過した蛍光は、ダイクロイックフィルター242に入射する。ダイクロイックフィルター242に入射した蛍光は、当該ダイクロイックフィルター242で反射して、第2の検出器261が配置される所定の第3像面ICで結像する。
 画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける屈折率分布を示すデータ(一例として、試料SAにおける3次元の屈折率分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。画像処理部66は、第2の検出器261から出力された蛍光の検出信号に基づいて、蛍光観察による試料SAの画像データを生成する。第5実施形態において、画像処理部66は、第1実施形態と同様に、試料SAにおける3次元の屈折率分布を求め、試料SAにおける3次元の屈折率分布の画像データを生成する。これにより、第5実施形態によれば、第1実施形態と同様の効果を得ることができる。第5実施形態では、検出器60が検出光学系240を介して試料SAからの検出光を検出し、第2の検出器261が検出光学系240を介して試料SAからの蛍光を検出する。そのため、同時刻における、試料SAにおける3次元の屈折率分布の画像と、蛍光観察による試料SAの画像とを生成することができ、ユーザーによる両画像の比較観察が可能となる。
 <第6実施形態>
 次に、第6実施形態に係る顕微鏡装置について説明する。第6実施形態に係る顕微鏡装置は、画像処理部66における処理の他は、第5実施形態に係る顕微鏡装置201と同様の構成である。そのため、第1および第5実施形態と同様の構成については、第1および第5実施形態と同一の符号を付して詳細な説明を省略する。第6実施形態において、透過照明光学系10は、第5実施形態と同様に、透過照明用光源5からの照明光によって、ステージ2上の試料SAを照明する。検出器60は、第5実施形態と同様に、検出光学系240を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。落射照明光学系220は、第5実施形態と同様に、落射照明用光源6からの励起光によって、ステージ2上の試料SAを照明する。第2の検出器261は、第5実施形態と同様に、検出光学系240を介して試料SAからの蛍光を検出し、当該蛍光の検出信号を出力する。
 画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける位相分布を示すデータ(一例として、試料SAにおける2次元の位相分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。画像処理部66は、第2の検出器261から出力された蛍光の検出信号に基づいて、蛍光観察による試料SAの画像データを生成する。第6実施形態において、画像処理部66は、第2実施形態と同様に、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成する。これにより、第6実施形態によれば、第2実施形態と同様の効果を得ることができる。また、第6実施形態では、第5実施形態と同様、同時刻における、試料SAにおける2次元の位相分布の画像と、蛍光観察による試料SAの画像とを生成することができ、ユーザーによる両画像の比較観察が可能となる。
 <第7実施形態>
 次に、図24を用いて、第7実施形態に係る顕微鏡装置301について説明する。第3実施形態に係る顕微鏡装置101は、検出光学系の他は、第1実施形態に係る顕微鏡装置1と要部が共通の構成である。そのため、第1実施形態と同様の構成については、第1実施形態と同一の符号を付して詳細な説明を省略する。第7実施形態に係る顕微鏡装置301は、ステージ2と、透過照明用光源5と、透過照明光学系10と、検出光学系340と、検出器60と、制御部65と、画像処理部66と、操作入力部67と、画像表示部70とを備える。
 検出光学系340は、試料SA側から順に、対物レンズユニット21と、第1結像レンズ41と、第1ミラー43と、レンズ44と、第2ミラー45と、コリメータレンズ46と、ハーフミラー47とを有する。さらに、検出光学系340は、第3結像レンズ50と、光路分割部材351と、検出側変調素子53とを有する。また、ハーフミラー47を透過する光の光路上に、第2結像レンズ48と、第3ミラー49と、接眼レンズ55とが配置される。
 光路分割部材351は、第3結像レンズ50と所定の第1像面IAとの間に配置される。光路分割部材351は、第3結像レンズ50と検出器60との間の光路を互いに光路長が異なる3つの光路に分割する。光路分割部材351は、例えば3連プリズムを用いて構成され、3つの反射面を有している。光路分割部材351に入射した光は、光路分割部材351における第1反射面に達する。第1反射面に達した光の一部は、当該第1反射面で反射して第1像面IAの一端側(図24の左側)で結像する。第1反射面に達した光の他の一部は、当該第1反射面を透過して第2反射面に達する。第2反射面に達した光の一部は、当該第2反射面で反射して第1像面IAの中央で結像する。第2反射面に達した光の他の一部は、当該第2反射面を透過して第3反射面で反射する。第3反射面で反射した光は、第1像面IAの他端側(図24の右側)で結像する。このようにして、光路分割部材351で分割された光は、第1像面IAにおいて平行に並ぶ3つのデフォーカス像を結像する。この3つのデフォーカス像は、光路長の差に応じてデフォーカス量が互いに異なる。光路分割部材351における第1反射面の透過率と反射率の比率は、例えば2:1に設定される。光路分割部材351における第2反射面の透過率と反射率の比率は、例えば1:1に設定される。光路分割部材351における第3反射面の透過率と反射率の比率は、例えば0:1に設定される。これにより、3つのデフォーカス像の明るさを等しくすることができる。
 本実施形態において明視野観察を行う場合、透過照明光学系10は、第1実施形態と同様に、透過照明用光源5からの照明光によって、ステージ2上の試料SAを照明する。試料SAを透過もしくは回折した検出光は、検出光学系340の対物レンズ22に入射する。対物レンズ22を透過した検出光は、第1結像レンズ41に入射する。第1結像レンズ41を透過した検出光は、第1ミラー43で反射して所定の中間像面IMで結像し、レンズ44に入射する。レンズ44を透過した検出光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した検出光は、平行光となって検出側変調素子53を通り、ハーフミラー47に入射する。ハーフミラー47に入射した検出光の一部は、当該ハーフミラー47で反射して第3結像レンズ50に入射する。第3結像レンズ50を透過した検出光は、光路分割部材351に入射する。光路分割部材351で分割された検出光は、第1像面IAにおいて平行に並ぶ3つのデフォーカス像を結像する。ハーフミラー47に入射した検出光の他の一部は、当該ハーフミラー47を透過して第2結像レンズ48に入射する。第2結像レンズ48を透過した検出光は、第3ミラー49で反射して所定の第2像面IBで結像する。
 検出器60は、明視野観察の場合、検出光学系340を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける屈折率分布を示すデータ(一例として、試料SAにおける3次元の屈折率分布の画像データ)を生成する。第7実施形態において、画像処理部66は、第1実施形態と同様に、試料SAにおける3次元の屈折率分布を求め、試料SAにおける3次元の屈折率分布の画像データを生成する。これにより、第7実施形態によれば、第1実施形態と同様の効果を得ることができる。第7実施形態では、第1像面IAにデフォーカス量の異なる3つのデフォーカス像が結像される。これにより、検出器60が試料SAからの検出光を1回検出するごとに(つまり、試料SAを1回撮像するごとに)、試料SAのzスタック像(試料SAのz方向の位置(つまり、光軸方向の位置)が異なる複数の断面の像)のうちの3つの断面の像として、3つのデフォーカス像の強度(検出器60の検出信号の信号強度)を取得することができる。そのため、試料SAのzスタック像における試料SAの各断面の像の強度を短時間で取得することができ、試料SAにおける3次元の屈折率分布を短時間で求めることが可能になる。
 なお、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成してもよい。上述したように、第1像面IAにデフォーカス量の異なる3つのデフォーカス像が結像される。そのため、画像処理部66は、3つのデフォーカス像に基づいた、明視野観察による試料SAのデフォーカス画像を生成することが可能であるし、明視野観察による試料SAのインフォーカス画像を生成することも可能である。
 また、試料SAのzスタック像における試料SAの各断面の像の強度を短時間で取得する方法として、光路分割部材351を用いる場合について説明したが、これに限られるものではなく、例えば、MFG(Multi Focus Grating)を用いて光を分割してもよい。また、光路分割部材351は、第3結像レンズ50と第1像面IA(検出器60)との間に配置されているが、これに限られるものではなく、例えば、第3実施形態に係る顕微鏡装置101(図22を参照)におけるハーフミラー42と第1像面IA(検出器60)との間に配置されてもよい。
<第8実施形態>
 次に、第8実施形態に係る顕微鏡装置について説明する。第8実施形態に係る顕微鏡装置は、画像処理部66における処理の他は、第7実施形態に係る顕微鏡装置401と同様の構成である。そのため、第1および第7実施形態と同様の構成については、第1および第7実施形態と同一の符号を付して詳細な説明を省略する。第8実施形態において、検出器60は、明視野観察の場合、第7実施形態と同様に、検出光学系340を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。
 画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける位相分布を示すデータ(一例として、試料SAにおける2次元の位相分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。第8実施形態において、画像処理部66は、第2実施形態における第2の方法で求めた場合と同様に、試料SAの2つのデフォーカス像の強度から、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成する。これにより、第8実施形態によれば、第2実施形態と同様の効果を得ることができる。第8実施形態では、第1像面IAにデフォーカス量の異なる3つのデフォーカス像が結像される。そのため、試料SAの2つのデフォーカス像の強度(検出器60の検出信号の信号強度)を短時間で取得することができ、試料SAにおける2次元の位相分布を短時間で求めることが可能になる。なお、画像処理部66は、第2実施形態における第2の方法に限らず、第2実施形態における第1の方法で求めた場合と同様に、試料SAの1つのデフォーカス像もしくは1つのインフォーカス像の強度から、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成してもよい。
 <第9実施形態>
 次に、図25を用いて、第9実施形態に係る顕微鏡装置401について説明する。第9実施形態に係る顕微鏡装置401は、照明光学系および検出光学系の他は、第1実施形態に係る顕微鏡装置1と同様の構成である。そのため、第1実施形態と同様の構成については、第1実施形態と同一の符号を付して詳細な説明を省略する。第9実施形態に係る顕微鏡装置401は、ステージ2と、照明用光源406と、照明光学系410と、検出光学系440と、検出器60と、制御部65と、画像処理部66と、操作入力部67と、画像表示部70とを備える。
 照明用光源406は、所定の波長帯域の照明光を発生させる。照明光学系410は、照明用光源406側から順に、フィルターキューブ431と、対物レンズユニット421と、照明用ミラー411とを有する。対物レンズユニット421は、複数の対物レンズ422と、レンズ保持部425と、ユニット駆動部426とを有する。対物レンズ422は、ステージ2の下方に対向して配置される。レンズ保持部425は、焦点距離が異なる複数の対物レンズ422を保持する。レンズ保持部425は、例えば、レボルバやターレット等を用いて構成される。ユニット駆動部426は、レンズ保持部425を駆動し、複数の対物レンズ422のうちいずれかを選択してステージ2の下方に配置することが可能である。
 対物レンズ422の瞳(本実施形態において照明瞳と検出瞳は同一位置にあることから、以降、照明・検出瞳や単に瞳と称する)の位置P1に、照明・検出側変調素子423が設けられる。瞳の位置P1における対物レンズ422の光軸Ax3と垂直な面を、照明・検出瞳の面と称する。照明・検出側変調素子423は、光の透過率が照明・検出瞳の面内で変化する他は、第1実施形態の照明側変調素子16および検出側変調素子53と同様に形成される。なお、照明・検出側変調素子423は、対物レンズ422に内蔵されていてもよいし、対物レンズ422とは別個に配置されていてもよい。
 フィルターキューブ431は、照明用光源406から出射した照明光の一部をステージ2に向けて反射させる。フィルターキューブ431は、ステージ2上の試料SAを透過もしくは回折した検出光の一部を検出光学系440の第1結像レンズ41に向けて透過させる。フィルターキューブ431は、照明用光源406からの照明光が通る第1フィルター432を有する。フィルターキューブ431は、試料SAからの検出光が通る第2フィルター433を有する。第1フィルター432および第2フィルター433として、例えば、バンドパスフィルターが用いられる。
 検出光学系440は、対物レンズユニット421と、フィルターキューブ431とを含む。検出光学系440は、照明光学系410側から順に、第1結像レンズ41と、ハーフミラー42とを有する。また、ハーフミラー42を透過する光の光路上に、第1ミラー43と、レンズ44と、第2ミラー45と、コリメータレンズ46と、第2結像レンズ48と、第3ミラー49と、接眼レンズ55とが配置される。
 ハーフミラー42の透過率と反射率の比率は、例えば1:1に設定される。ハーフミラー42に入射した光の一部は、当該ハーフミラー42で反射して所定の第1像面IAで結像する。ここで、所定の第1像面IAの位置は、対物レンズ422の焦点位置と共役な位置である。検出光学系440の第1像面IAに、検出器60が配置される。ハーフミラー42に入射した光の他の一部は、当該ハーフミラー42を透過して第1ミラー43で反射する。第1ミラー43で反射した光は、所定の中間像面IMで結像してレンズ44に入射する。レンズ44を透過した光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した光は、平行光となって第2結像レンズ48に入射する。第2結像レンズ48を透過した光は、第3ミラー49で反射して所定の第2像面IBで結像する。ここで、所定の第2像面IBの位置は、対物レンズ422の焦点位置と共役な位置である。観察者は、接眼レンズ55を用いて第2像面IBに結像された試料SAの像を観察することが可能である。
 本実施形態において、照明用光源406から出射した照明光は、照明光学系410の第1フィルター432を通ってフィルターキューブ431に入射する。フィルターキューブ431に入射した照明光の一部は、当該フィルターキューブ431で反射して対物レンズ422に入射する。対物レンズ422に入射した照明光は、照明・検出側変調素子423を通りステージ2に向けて出射する。対物レンズ422から出射した照明光は、ステージ2および試料SAを透過して照明用ミラー411で反射する。照明用ミラー411で反射した照明光は、ステージ2上の試料SAに入射する。これにより、照明光学系410は、照明用光源406からの照明光によって、ステージ2上の試料SAを照明する。
 試料SAを透過もしくは回折した検出光は、検出光学系440としての対物レンズ422に入射する。対物レンズ422に入射した検出光は、照明・検出側変調素子423を通りフィルターキューブ431に向けて出射する。対物レンズ422から出射した検出光は、フィルターキューブ431に入射する。フィルターキューブ431に入射した検出光の一部は、当該フィルターキューブ431を透過して第2フィルター433を通り、第1結像レンズ41に入射する。第1結像レンズ41を透過した検出光は、ハーフミラー42に入射する。ハーフミラー42に入射した検出光の一部は、当該ハーフミラー42で反射して、検出器60が配置される所定の第1像面IAで結像する。ハーフミラー42に入射した検出光の他の一部は、当該ハーフミラー42を透過して第1ミラー43で反射する。第1ミラー43で反射した検出光は、所定の中間像面IMで結像してレンズ44に入射する。レンズ44を透過した検出光は、第2ミラー45で反射してコリメータレンズ46に入射する。コリメータレンズ46を透過した検出光は、平行光となって第2結像レンズ48に入射する。第2結像レンズ48を透過した検出光は、第3ミラー49で反射して所定の第2像面IBで結像する。
 検出器60は、検出光学系440を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける屈折率分布を示すデータ(一例として、試料SAにおける3次元の屈折率分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。第9実施形態において、画像処理部66は、第1実施形態と同様に、試料SAにおける3次元の屈折率分布を求め、試料SAにおける3次元の屈折率分布の画像データを生成する。これにより、第9実施形態によれば、第1実施形態と同様の効果を得ることができる。
 <第10実施形態>
 次に、第10実施形態に係る顕微鏡装置について説明する。第10実施形態に係る顕微鏡装置は、画像処理部66における処理の他は、第9実施形態に係る顕微鏡装置401と同様の構成である。そのため、第1および第9実施形態と同様の構成については、第1および第9実施形態と同一の符号を付して詳細な説明を省略する。第10実施形態において、検出器60は、第9実施形態と同様に、検出光学系440を介して試料SAからの検出光を検出し、当該検出光の検出信号を出力する。
 画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、試料SAにおける位相分布を示すデータ(一例として、試料SAにおける2次元の位相分布の画像データ)を生成する。また、画像処理部66は、検出器60から出力された検出光の検出信号に基づいて、明視野観察による試料SAの画像データを生成する。第10実施形態において、画像処理部66は、第2実施形態と同様に、試料SAにおける2次元の位相分布を求め、試料SAにおける2次元の位相分布の画像データを生成する。これにより、第10実施形態によれば、第2実施形態と同様の効果を得ることができる。
 <変形例>
 上述の各実施形態において、画像処理部66は、光の透過率に関して1つの検出条件で検出された光の検出信号に基づいて、試料SAにおける3次元の屈折率分布もしくは2次元の位相分布を求めているが、これに限られるものではない。画像処理部66は、光の透過率に関して複数の検出条件で検出された光の検出信号に基づいて、試料SAにおける3次元の屈折率分布もしくは2次元の位相分布を求めてもよい。例えば、画像処理部66は、ユーザーの設定等による2つの検出条件で検出された光の検出信号に基づくPOTFの線形和を求める。これにより、ユーザーの設定等による1つの検出条件で検出された光の検出信号に基づく場合よりも、広範囲の周波数帯域にわたり、高いPOTFの絶対値を得ることができる。そのため、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像もしくは2次元の位相分布の画像を生成することができる。なお、画像処理部66は、POTFを含む上記の式(10)もしくは式(15)と、式(16)とを用いて、試料SAにおける3次元の屈折率分布n(x,y,z)を算出することが可能である。画像処理部66は、POTFを含む上記の式(29)もしくは式(34)を用いて、試料SAにおける2次元の位相分布φ(x,y)を算出することが可能である。
 ここで、試料SAにおける3次元の屈折率分布を求める場合の第1変形例について説明する。第1の検出条件では、光の透過率が図5に示すように余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。第2の検出条件では、光の透過率が照明瞳の面内において不連続な輪帯状に分布する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。この第1変形例において、第1の検出条件で検出された光の検出信号に基づくPOTFと、第2の検出条件で検出された光の検出信号に基づくPOTFとの線形和を求めると、図26に示すように、低周波数の帯域と高周波数の帯域でのPOTFの絶対値が増すことが分かった。そのため、広範囲の周波数帯域の情報を含んだPOTFを含む上記の式(10)もしくは式(15)を用いて、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像を生成することができる。なお、第2の検出条件は、光の透過率が不連続な輪帯状に分布する例に限られるものではない。例えば、第2の検出条件では、光の透過率が不連続関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置すればよく、この場合、光の透過率がステップ関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置してもよい。
 試料SAにおける3次元の屈折率分布を求める場合の第2変形例について説明する。第1の検出条件では、光の透過率が図7に示すように正弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。第2の検出条件では、光の透過率が正弦関数に従って図7に示す場合と逆方向に変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。この第2変形例において、第1の検出条件で検出された光の検出信号に基づくPOTFと、第2の検出条件で検出された光の検出信号に基づくPOTFとの線形和を求めると、POTFの絶対値が0にはならない周波数帯域の広さは大きく変化しないものの、POTFの絶対値が倍になることがわかった。
 理由は、第1の検出条件におけるPOTFの値と、第2の検出条件におけるPOTFの値とが互いに逆の符号になっているためである。これにより、コントラストに優れた3次元の屈折率分布の画像データを生成することができる。また、上記の式(9)の第1項は、背景強度を表す定数項である。正弦関数に従う光の透過率の分布が反転した2つの検出条件におけるPOTFの線形和を求めると、式(9)の第1項が打ち消し合うため、式(9)の第1項を除く演算を行う必要がない。従って、式(9)に対するデコンボリューションの精度、すなわち上記の式(10)を用いたΦ(x,y,z)の算出精度を向上させることが可能である。
 また、画像処理部66は、光の透過率に限らず、デフォーカス量に関して複数の条件(以降、デフォーカス量の条件をフォーカス条件と称する場合がある)で検出された光の検出信号に基づいて、試料SAにおける3次元の屈折率分布もしくは2次元の位相分布を求めてもよい。例えば、画像処理部66は、デフォーカス量Δzが異なる2つのフォーカス条件で検出された光の検出信号に基づくPOTFの線形和を求め、試料SAにおける3次元の屈折率分布もしくは2次元の位相分布を求めてもよい。これにより、デフォーカス量Δzを変えるだけで簡便に、広範囲の周波数帯域にわたるPOTFを得ることができる。そのため、コントラストと解像度(分解能)が共に高い、試料SAにおける3次元の屈折率分布の画像もしくは2次元の位相分布の画像を生成することができる。
 ここで、試料SAにおける2次元の位相分布を求める場合の変形例について説明する。第1のフォーカス条件では、デフォーカス量Δz=0.4[μm]とする。第2のフォーカス条件では、デフォーカス量Δz=1.0[μm]とする。なお、第1および第2のフォーカス条件ではともに、光の透過率が図5に示すように余弦関数に従って変化する照明側変調素子16を照明瞳の位置P0に配置し、検出側変調素子53を配置しない。図27に、Δz=0.2[μm]、Δz=0.4[μm]、Δz=1.0[μm]の場合におけるPOTFの値を示す。Δz=0.4[μm]の場合のPOTFのピークが低周波数側の帯域に位置し、Δz=1.0[μm]の場合のPOTFのピークが高周波数側の帯域に位置していることが分かる。この変形例において、第1のフォーカス条件で検出された光の検出信号に基づくPOTFと、第2のフォーカス条件で検出された光の検出信号に基づくPOTFとの線形和を求めると、低周波数の帯域から高周波数の帯域までの広範囲の周波数帯域にわたり、POTFの値が増加する。そのため、広範囲の周波数帯域の情報を含んだPOTFを含む上記の式(29)もしくは式(34)を用いて、コントラストと解像度(分解能)が共に高い、2次元の位相分布の画像を生成することができる。
 上述の第1実施形態において、試料SAにおける屈折率分布を示すデータとして、試料SAにおける3次元の屈折率分布を求めているが、これに限られるものではなく、試料SAの2次元の屈折率分布や、試料SAの1次元の屈折率分布を求めることもできる。例えば、zを一定の値とすることにより、式(10)もしくは式(15)と、式(16)とを用いて、試料SAにおける2次元の屈折率分布を算出(試料SAにおける2次元の屈折率のデータを生成)することが可能である。また、試料SAにおける3次元の屈折率のデータの一部を抽出し、試料SAにおける2次元の屈折率のデータや1次元の屈折率のデータを生成してもよい。
 上述の第1~第8実施形態において、照明側変調素子16は、照明瞳の位置P0に設けられているが、これに限られるものではなく、照明瞳と共役な位置に設けられてもよい。
 上述の第1~第8実施形態において、顕微鏡装置に、照明側変調素子16および検出側変調素子53,123が設けられているが、これに限られるものではない。例えば、顕微鏡装置に、照明側変調素子16のみが設けられてもよく、検出側変調素子53,123のみが設けられてもよい。
 上述の各実施形態において、照明側変調素子16、検出側変調素子53,123、および照明・検出側変調素子423は、平板の面内で光の透過率が変化する素子として、ガラス基板等の平行平板に、光の透過率を低減させることが可能な膜を蒸着させることにより形成されている素子を例示しているが、これに限られるものではない。例えば、照明側変調素子、検出側変調素子、および照明・検出側変調素子は、ガラス基板等の平行平板に、光の透過率を低減させることが可能な(遮光性のある)微小なドットパターンを形成したものであってもよい。この場合、既存のリソグラフィープロセス等を用いて、平行平板(ガラス基板)上に、粗密が異なるようにドットパターンを形成することにより、光の透過率を変えることが可能である(ドットパターンが密の領域は、粗の領域に比べて透過率が低くなる)。照明側変調素子、検出側変調素子、および照明・検出側変調素子は、上述したような光学素子に限らず、透過型液晶素子、反射型液晶素子、DMD(デジタルミラーデバイス)等のSLM(空間光変調器)を用いて構成されてもよい。SLMを用いる場合、SLMを、上述の各実施形態における光学素子と同様に、瞳(照明瞳と検出瞳の少なくとも一方)もしくは瞳と共役な位置に配置する。例えば、SLMとして透過型液晶素子を用いる場合は、素子の各画素の透過率を制御することで、所望の光の透過率の分布を設定することができる。また、SLMとしてDMDを用いる場合は、各ミラーの角度を制御することにより、所望の光の透過率の分布を設定することができる。このように、SLMが瞳の面内もしくは瞳と共役な面内における光の透過率の分布を変えることで、検出条件を変更することが可能である。
 なお、照明側変調素子、検出側変調素子、および照明・検出側変調素子として、上述の各実施形態における光学素子(すなわち、光の透過性を有する平板)を用いる場合、制御部65は、瞳の位置もしくは瞳と共役な位置に配置する素子を変更するように素子変更部(例えば、ターレット)を制御することで、瞳の面内もしくは瞳と共役な面内における光の透過率の分布を変更する。例えば、第1実施形態で述べたように、制御部65は、照明瞳の位置P0に配置する照明側変調素子16を変更するように素子変更部を制御することで、照明瞳の面内における光の透過率の分布を変更する。制御部65は、検出瞳と共役な位置P2に配置する検出側変調素子53を変更するように素子変更部を制御することで、検出瞳と共役な面内における光の透過率の分布を変更する。照明側変調素子、検出側変調素子、および照明・検出側変調素子としてSLMを用いる場合、制御部65は、SLMを制御することで、瞳の面内もしくは瞳と共役な面内における光の透過率の分布を変更する。そのため、制御部65により光の透過率の分布を変更するために、複数の素子や素子変更部を設ける必要がない。
 また、制御部65により、瞳の面内もしくは瞳と共役な面内における光の透過率の分布を、所定の第1の分布から第2の分布に変更することが可能であるが、これに限られるものではない。例えば、上述の第1、第2、第5、第6実施形態において、コリメータレンズ46よりも像面側に、検出側変調素子53、第3結像レンズ50、検出器60に代えて、光路分割素子(図示せず)と、第1の検出側変調素子(図示せず)と、第2の検出側変調素子(図示せず)と、第1の検出側変調素子用結像レンズ(図示せず)と、第2の検出側変調素子用結像レンズ(図示せず)と、第1の検出側変調素子用検出器(図示せず)と、第2の検出側変調素子用検出器(図示せず)とが設けられてもよい。光路分割素子は、コリメータレンズ46からの光路を、第1の検出側変調素子に向かう光路と第2の検出側変調素子に向かう光路の2つの光路に分割する。第1の検出側変調素子および第2の検出側変調素子は、第1実施形態の検出側変調素子53と同様の構成である。第1の検出側変調素子の光の透過率の分布は、第1実施形態で説明した透過率の分布のうちいずれかの分布(以降、第1の分布と称する)となる。第2の検出側変調素子の光の透過率の分布は、第1実施形態で説明した透過率の分布のうち上述の第1の分布と異なる第2の分布となる。第1の検出側変調素子用結像レンズおよび第2の検出側変調素子用結像レンズは、第1実施形態の第3結像レンズ50と同様の構成である。第1の検出側変調素子用検出器は、第1実施形態の検出器60と同様の構成であり、光路分割素子で分割されて第1の検出側変調素子および第1の検出側変調素子用結像レンズを通った試料SAからの光(検出光)を検出し、当該光の検出信号を出力する。第2の検出側変調素子用検出器は、第1実施形態の検出器60と同様の構成であり、光路分割素子で分割されて第2の検出側変調素子および第2の検出側変調素子用結像レンズを通った試料SAからの光(検出光)を検出し、当該光の検出信号を出力する。
 そして、画像処理部66が、第1の検出側変調素子用検出器から出力された光の検出信号と、第2の検出側変調素子用検出器から出力された光の検出信号のうち少なくとも一方に基づいて、試料SAにおける3次元の屈折率分布の画像データもしくは2次元の位相分布の画像データを生成してもよい。これにより、画像処理部66が、光の透過率に関して複数の検出条件で検出された光の検出信号に基づいて、試料SAにおける3次元の屈折率分布もしくは2次元の位相分布を求める場合、検出条件を変更する(つまり、瞳の面内もしくは瞳と共役な面内における光の透過率の分布を変更する)工程を省くことができるため、試料SAにおける3次元の屈折率分布の画像データもしくは2次元の位相分布の画像データを短時間で生成することが可能になる。なおこの場合、上述の第7、第8実施形態と同様に、光路分割部材351が、第1の検出側変調素子用結像レンズと第1の検出側変調素子用検出器との間と、第2の検出側変調素子用結像レンズと第2の検出側変調素子用検出器との間に、それぞれ設けられてもよい。
 上述の各実施形態において、照明側変調素子16、検出側変調素子53,123、および照明・検出側変調素子423の光の透過率が、連続関数に従って連続的に変化しているが、これに限られるものではない。例えば、照明側変調素子16、検出側変調素子53,123、および照明・検出側変調素子423の光の透過率が、ステップ関数等の不連続関数に従って離散的に変化してもよい。照明側変調素子16、検出側変調素子53,123、および照明・検出側変調素子423の光の透過率が、部分的に連続関数に従って連続的に変化し、部分的に不連続関数に従って離散的に変化してもよい。
 上述の各実施形態において、コレクタレンズ12、リレーレンズ15、コンデンサレンズ18、第1結像レンズ41、レンズ44、コリメータレンズ46、第3結像レンズ50等の「レンズ」は、説明の便宜上、各図において1枚のレンズとして記載されているが、これに限られるものではない。例えば、コレクタレンズ12等の「レンズ」は、複数枚のレンズから構成されてもよく、レンズとレンズ以外の既存の光学素子とを組み合わせた構成であってもよい。
 上述の各実施形態において、透過照明用光源5もしくは照明用光源406は、顕微鏡装置に備えられているが、これに限られるものではなく、顕微鏡装置と別体に設けられてもよい。例えば、透過照明用光源5もしくは照明用光源406は、顕微鏡装置に着脱交換可能に取り付けられるようにしてもよい。透過照明用光源5もしくは照明用光源406は、顕微鏡装置による観察等を行う際に、顕微鏡装置に外付けされるようにしてもよい。
 上述の各実施形態において、試料SAに対する照明をケーラー照明としているが、これに限られるものではなく、クリティカル照明としてもよい。
 上述の各実施形態において、試料SA全体からの光を検出可能な顕微鏡装置を用いているが、これに限られるものではない。例えば、試料の一部からの光を検出して試料全体を走査する走査型の顕微鏡装置を用いるようにしてもよい。
  1 顕微鏡装置
 10 透過照明光学系       16 照明側変調素子
 20 落射照明光学系
 21 対物レンズユニット     22 対物レンズ
 40 検出光学系         53 検出側変調素子
 60 検出部
 65 制御部           66 画像処理部(データ処理部)
 70 画像表示部
101 顕微鏡装置(第3実施形態)
120 落射照明光学系
121 対物レンズユニット    122 対物レンズ
123 検出側変調素子
140 検出光学系
201 顕微鏡装置(第5実施形態)
220 落射照明光学系
240 検出光学系
260 第1検出器        261 第2検出器
301 顕微鏡装置(第7実施形態)
340 検出光学系        351 光路分割部材
401 顕微鏡装置(第9実施形態)
410 照明光学系
421 対物レンズユニット    422 対物レンズ
423 照明・検出側変調素子
440 検出光学系

Claims (22)

  1.  試料を照明する照明光学系と、
     前記試料からの光が入射する検出光学系と、
     前記検出光学系を介して前記試料からの光を検出して光の検出信号を出力する検出器と、
     前記検出器から出力された前記検出信号に基づいて前記試料における屈折率のデータを生成するデータ処理部と、
     前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える顕微鏡装置。
  2.  前記素子の光の透過率が、前記瞳の面内もしくは前記瞳と共役な面内で光軸から離れるのにつれて変化する請求項1に記載の顕微鏡装置。
  3.  前記素子の光の透過率が、前記瞳の面内もしくは前記瞳と共役な面内で一方向に沿って変化する請求項1に記載の顕微鏡装置。
  4.  前記素子の光の透過率が、不連続関数もしくは連続関数に従って変化する請求項2または3に記載の顕微鏡装置。
  5.  前記連続関数が、正弦関数、余弦関数、二次関数、一次関数、ガウス関数のうちいずれかである請求項4に記載の顕微鏡装置。
  6.  前記不連続関数がステップ関数である請求項4に記載の顕微鏡装置。
  7.  前記素子が、前記照明光学系および前記検出光学系の両方における瞳の位置もしくは前記瞳と共役な位置に設けられる請求項1~6のいずれか一項に記載の顕微鏡装置。
  8.  前記照明光学系および前記検出光学系の両方に設けられる前記素子の光の透過率の分布が異なる請求項7に記載の顕微鏡装置。
  9.  前記照明光学系および前記検出光学系の両方に設けられる前記素子の光の透過率の分布が同じである請求項7に記載の顕微鏡装置。
  10.  前記素子が、前記照明光学系における瞳の位置もしくは前記瞳と共役な位置に設けられる請求項1~6のいずれか一項に記載の顕微鏡装置。
  11.  前記試料における屈折率のデータを示す画像を表示する表示部を備える請求項1~10のいずれか一項に記載の顕微鏡装置。
  12.  前記データ処理部は、前記瞳の面内もしくは前記瞳と共役な面内における光の透過率の分布が第1の分布の場合に前記検出器から出力された前記検出信号と、前記瞳の面内もしくは前記瞳と共役な面内における光の透過率の分布が前記第1の分布とは異なる第2の分布の場合に前記検出器から出力された前記検出信号とに基づいて、前記試料における屈折率のデータを生成する請求項1~11のいずれか一項に記載の顕微鏡装置。
  13.  前記素子は、光の透過性を有する平板であって、前記平板の面内で光の透過率が変化する平板である請求項1~12のいずれか一項に記載の顕微鏡装置。
  14.  前記素子は、空間光変調器である請求項1~12のいずれか一項に記載の顕微鏡装置。
  15.  前記瞳の面内もしくは前記瞳と共役な面内における光の透過率の分布を変更する制御部を備える請求項1~12のいずれか一項に記載の顕微鏡装置。
  16.  前記素子は、光の透過性を有する平板であって、前記平板として前記平板の面内における光の透過率の分布が異なる第1の平板と第2の平板とを含み、
     前記瞳の位置もしくは前記瞳と共役な位置に配置される前記平板を前記第1の平板から前記第2の平板に変更可能な素子変更部を備え、
     前記制御部は、前記瞳の位置もしくは前記瞳と共役な位置に配置される前記平板を変更するように前記素子変更部を制御して、前記光の透過率の分布を変更する請求項15に記載の顕微鏡装置。
  17.  前記素子は、前記光の透過率の分布を変更可能な空間光変調器であり、
     前記制御部は、前記空間光変調器を制御して、前記光の透過率の分布を変更する請求項15に記載の顕微鏡装置。
  18.  前記試料における屈折率のデータを示す画像を表示する表示部を備え、
     前記表示部は、前記試料における屈折率のデータを示す画像の特性がそれぞれ異なる複数のモードの中からいずれかのモードを選択させるための画像を表示し、
     前記制御部は、前記複数のモードの中から選択されたモードに応じて、前記光の透過率の分布を変更する請求項15~17のいずれか一項に記載の顕微鏡装置。
  19.  前記データ処理部は、前記試料からの光の検出信号として、前記試料における光軸方向の位置が異なる複数の像の強度に応じた検出信号に基づいて、前記試料における屈折率のデータを生成する請求項1~18のいずれか一項に記載の顕微鏡装置。
  20.  前記試料における屈折率のデータが、前記試料における3次元の屈折率分布を示すデータである請求項1~19のいずれか一項に記載の顕微鏡装置。
  21.  試料を照明する照明光学系と、前記試料からの光が入射する検出光学系と、前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える顕微鏡装置を用いたデータ生成方法であって、
     前記検出光学系を介して前記試料からの光を検出して光の検出信号を出力し、
     出力した前記検出信号に基づいて前記試料における屈折率のデータを生成するデータ生成方法。
  22.  試料を照明する照明光学系と、前記試料からの光が入射する検出光学系と、前記照明光学系および前記検出光学系のうち少なくとも一方における瞳の位置もしくは前記瞳と共役な位置に設けられ、光の透過率が前記瞳の面内もしくは前記瞳と共役な面内で変化する素子とを備える顕微鏡装置を用いるためのプログラムであって、
     コンピュータに、
     検出器に前記検出光学系を介して前記試料からの光を検出させて光の検出信号を出力させる制御処理と、
     前記検出器から出力された前記検出信号に基づいて前記試料における屈折率のデータを生成するデータ処理とを実行させるプログラム。
PCT/JP2019/038569 2019-09-30 2019-09-30 顕微鏡装置、データ生成方法、およびプログラム WO2021064807A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/038569 WO2021064807A1 (ja) 2019-09-30 2019-09-30 顕微鏡装置、データ生成方法、およびプログラム
US17/707,096 US20220244516A1 (en) 2019-09-30 2022-03-29 Microscope device and data generation method using microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038569 WO2021064807A1 (ja) 2019-09-30 2019-09-30 顕微鏡装置、データ生成方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,096 Continuation US20220244516A1 (en) 2019-09-30 2022-03-29 Microscope device and data generation method using microscope

Publications (1)

Publication Number Publication Date
WO2021064807A1 true WO2021064807A1 (ja) 2021-04-08

Family

ID=75337793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038569 WO2021064807A1 (ja) 2019-09-30 2019-09-30 顕微鏡装置、データ生成方法、およびプログラム

Country Status (2)

Country Link
US (1) US20220244516A1 (ja)
WO (1) WO2021064807A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248459A1 (ja) * 2022-06-24 2023-12-28 株式会社ニコン 顕微鏡装置およびデータ生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526815A (ja) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置
JP2014052476A (ja) * 2012-09-06 2014-03-20 Astro Design Inc レーザー走査蛍光顕微鏡装置
JP2014137558A (ja) * 2013-01-18 2014-07-28 Canon Inc 撮像装置、撮像システム、および画像処理方法
JP2015018045A (ja) * 2013-07-09 2015-01-29 オリンパス株式会社 顕微鏡システム、及び、試料の屈折率測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526815A (ja) * 1998-10-07 2002-08-20 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置
JP2014052476A (ja) * 2012-09-06 2014-03-20 Astro Design Inc レーザー走査蛍光顕微鏡装置
JP2014137558A (ja) * 2013-01-18 2014-07-28 Canon Inc 撮像装置、撮像システム、および画像処理方法
JP2015018045A (ja) * 2013-07-09 2015-01-29 オリンパス株式会社 顕微鏡システム、及び、試料の屈折率測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248459A1 (ja) * 2022-06-24 2023-12-28 株式会社ニコン 顕微鏡装置およびデータ生成方法

Also Published As

Publication number Publication date
US20220244516A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US8019136B2 (en) Optical sectioning microscopy
EP2562245B1 (en) Cell observation device and cell observation method
CN107490562B (zh) 利用波面整形器的超高速三维折射率影像拍摄和荧光结构光照明显微镜系统及其使用方法
JP4236123B1 (ja) 三次元画像取得装置
JP6798625B2 (ja) 定量位相画像生成方法、定量位相画像生成装置およびプログラム
US9261690B2 (en) Microscope system
JP5479733B2 (ja) 顕微鏡照明装置及びアダプタ
EP2908166A2 (en) Confocal optical scanner
JP4922823B2 (ja) 3次元形状測定装置
WO2011132587A1 (ja) 細胞観察装置および細胞観察方法
CN107850765B (zh) 光束成形和光层显微技术的方法和组合件
TWI551885B (zh) 顯微鏡系統、伺服器和程式
US9297990B2 (en) Confocal microscope
JP2012198560A (ja) 小型超高開口率カタジオプトリック対物系
JP2020514809A (ja) 非再入型の2次的にひずめる(nrqd)回折格子及び回折格子プリズムに基づく4次元多平面広帯域結像システム
JP2014063151A (ja) 顕微鏡用照明光学系およびこれを用いた顕微鏡
CN114324245B (zh) 基于部分相干结构光照明的定量相位显微装置和方法
JP2022527829A (ja) 設定可能焦点オフセットによって試料表面を追跡するための自動焦点調節システム
TWI414818B (zh) 使用空間光調變器的超解析率廣視野光切片顯微鏡
KR101356706B1 (ko) 광량 변조와 스캐닝 시스템 기반의 구조 조명 현미경
US20220244516A1 (en) Microscope device and data generation method using microscope
JP2915919B2 (ja) レーザ走査蛍光顕微鏡
JP2005173288A (ja) 顕微鏡観察方法及びそれを用いるための顕微鏡
CN108474930B (zh) 确定对比图像的显微术方法和显微镜
WO2023248459A1 (ja) 顕微鏡装置およびデータ生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP