WO2021063315A1 - 一种雷达与通信一体化系统的协同工作方法及系统 - Google Patents

一种雷达与通信一体化系统的协同工作方法及系统 Download PDF

Info

Publication number
WO2021063315A1
WO2021063315A1 PCT/CN2020/118418 CN2020118418W WO2021063315A1 WO 2021063315 A1 WO2021063315 A1 WO 2021063315A1 CN 2020118418 W CN2020118418 W CN 2020118418W WO 2021063315 A1 WO2021063315 A1 WO 2021063315A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm signal
radar
module
communication
signal
Prior art date
Application number
PCT/CN2020/118418
Other languages
English (en)
French (fr)
Inventor
冯志勇
黄赛
严正行
张轶凡
尉志青
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2021063315A1 publication Critical patent/WO2021063315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a collaborative working method and system of an integrated radar and communication system.
  • the integrated radar and communication system includes a communication module and a radar module.
  • the communication module and radar module of the system can share spectrum resources. , Reduce mutual interference, obtain better mutual information gain, and improve the reliability of the system.
  • radar and communication integrated systems are mainly divided into integrated systems based on non-waveform fusion and integrated systems based on waveform fusion.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • Communication transmission and radar detection need to be carried out separately under different time-frequency resources. This will make communication transmission and radar detection in The time-frequency resources are limited, resulting in lower communication transmission and radar detection performance of the transceiver equipment installed with the integrated radar and communication system.
  • the purpose of the embodiments of the present application is to provide a cooperative working method and system of a radar and communication integrated system, so as to improve the performance of the transceiver device.
  • the specific technical solutions are as follows:
  • the embodiments of the present application provide a collaborative working method of a radar and communication integrated system, which is applied to a collaborative working system.
  • the collaborative working system includes a transceiver device and a receiving device; the transceiver device is provided with a radar and An integrated communication system.
  • the integrated radar and communication system includes a radar module and a first communication module, and at least a second communication module is provided on the receiving end device;
  • the method includes:
  • the first communication module sends the OFDM signal to the receiving end device and the radar module respectively;
  • the second communication module After receiving the OFDM signal sent by the first communication module, the second communication module acquires the communication information carried in the OFDM signal, wherein there is at least one receiving end device;
  • the radar module receives at least one reflected signal of the reflected OFDM signal sent by the first communication module; and based on the at least one reflected signal and the OFDM signal, determines the relative positional relationship between the receiving end device and the surrounding environment, and the surrounding environment includes at least the receiving end device.
  • the embodiment of the present application provides a cooperative working method of a radar and communication integrated system, which is applied to a cooperative working system.
  • the cooperative working system includes a plurality of transceiver devices; the transceiver device is provided with a radar and communication integrated system.
  • the integrated system of radar and communication includes: radar module and communication module;
  • the method includes:
  • the first transceiver device sends the shared OFDM signal carrying communication information to the communication module of the second transceiver device through its own radar and communication integrated system;
  • the communication receiving module of the second transceiver device After the communication receiving module of the second transceiver device receives the shared OFDM signal sent by the first transceiver device, it decodes the shared OFDM signal to obtain the communication information carried in the OFDM signal, wherein the The radar module of the second transceiver device will not process the shared OFDM signal;
  • the radar module of the first transceiver device receives at least one reflected signal after the shared OFDM signal is reflected; the radar module of the first transceiver device calculates based on the at least one reflected signal and the shared OFDM signal Obtain the relative positional relationship between the first transceiver device and the surrounding environment.
  • the embodiments of the present application also provide a cooperative working system of a radar and communication integrated system.
  • the cooperative working system includes a transceiver terminal device and a receiving terminal device; the transceiver terminal device is provided with a radar and communication integrated system,
  • the integrated radar and communication system includes: a radar module and a first communication module, and at least a second communication module is provided on the receiving end device;
  • the first communication module is used to send the OFDM signal to the receiving end device and the radar module respectively;
  • the second communication module is configured to obtain the communication information carried in the OFDM signal after receiving the OFDM signal sent by the first communication module, wherein there is at least one receiving end device;
  • the radar module is used to receive at least one reflected signal of the OFDM signal transmitted by the first communication module; and based on the at least one reflected signal and the OFDM signal, determine the relative positional relationship between the transceiver device and the surrounding environment.
  • the surrounding environment includes at least the receiving ⁇ End equipment.
  • an embodiment of the present application provides a transceiver terminal device.
  • the transceiver terminal device is provided with an integrated radar and communication system.
  • the integrated radar and communication system includes: a radar module and a communication module; the communication The module includes a communication sending and processing sub-module and a communication receiving and processing sub-module; the radar module includes a radar transmitting and processing sub-module and a radar receiving and processing sub-module;
  • the communication transmission processing sub-module is configured to generate an OFDM signal carrying communication information, and send the OFDM signal carrying the communication information to the radar transmission processing sub-module; receive the shared OFDM signal returned by the radar transmission processing sub-module , And send the shared OFDM signal to the communication module of other devices in a radio frequency wireless manner, so that other devices can obtain the communication information carried in the shared OFDM signal after receiving the shared OFDM signal;
  • the communication receiving and processing sub-module is configured to extract the communication information carried in the shared OFDM signal transmitted by other devices after receiving the shared OFDM signal transmitted by other devices;
  • the radar transmission processing sub-module is used to adjust the OFDM signal carrying communication information by using the parameters related to radar detection and the radar detection signal to obtain a shared OFDM signal;
  • the radar receiving and processing sub-module is used to receive at least one reflection superimposed signal of the shared OFDM signal sent by the transceiver device after being reflected by surrounding objects, and based on the reflection superimposed signal and the communication transmission processing sub-module of the transceiver device
  • the shared OFDM signal of the module determines the relative positional relationship between the transceiver device and the surrounding environment objects.
  • the cooperative working method and system of a radar and communication integrated system provided by the embodiments of the present application can be applied to a cooperative working system.
  • the cooperative working system includes a transceiver terminal device and a receiving terminal device; the transceiver terminal device is provided with radar and communication An integrated system.
  • the integrated radar and communication system includes a radar module and a first communication module.
  • the receiving end device is provided with at least a second communication module; the first communication module sends OFDM signals to the receiving device and the radar module respectively, and the second After the communication module receives the OFDM signal sent by the first communication module, it obtains the communication information carried in the OFDM signal, and the radar module receives at least one reflected signal of the OFDM signal sent by the first communication module after being reflected by the receiving end device; and based on at least A reflected signal and OFDM signal determine the relative positional relationship between the transceiver and the surrounding environment. In this way, the transceiver device can not only realize the communication with the receiving end by sending the OFDM signal carrying the communication information, but also determine the relative position relationship between itself and the surrounding environment.
  • the communication transmission and radar detection share the OFDM signal through the same
  • the OFDM signal realizes communication transmission and radar detection at the same time, so that the transceiver equipment can realize communication transmission and radar detection at the same time, thereby improving the performance of the transceiver equipment.
  • any product or method of the present application does not necessarily need to achieve all the advantages described above at the same time.
  • FIG. 1 is a schematic structural diagram of a cooperative working system of a radar and communication integrated system according to an embodiment of the application;
  • FIG. 2 is a flowchart of a first implementation manner of a cooperative working method of a radar and communication integrated system according to an embodiment of this application;
  • FIG. 3 is a flowchart of a second implementation manner of a cooperative working method of a radar and communication integrated system according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of an application scenario of a cooperative working method of a radar and communication integrated system according to an embodiment of the application;
  • Fig. 5 is a simulation diagram of the ranging result of the transceiver device in the application scenario shown in Fig. 4;
  • FIG. 6 is a simulation diagram of the speed measurement result of the transceiver device in the application scenario shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a transceiver device according to an embodiment of the application.
  • the embodiments of the present application provide a cooperative working method of a radar and communication integrated system and a transceiver device, so as to improve the overall performance of the signal sent by the transmitter.
  • the cooperative working system of a radar and communication integrated system provided by an embodiment of the present application is introduced.
  • the cooperative working system of a radar and communication integrated system provided by an embodiment of the present application is
  • the collaborative working system may include a first node 110, a second node 130, and a third node 140, wherein the arrowed line 120 represents the communication link between any two of the above three nodes.
  • Any one of the three nodes can be used as a transceiver device, and the other two nodes can be used as a receiving device. It is understandable that there may be one receiving end device, or greater than or equal to two. Here, two receiving end devices are used as an example for description.
  • the first node 110 may be provided with an integrated radar and communication system, and the integrated radar and communication system may Including: a first radar module and a first communication module.
  • the second node 130 and the third node 140 may be respectively provided with a second communication module, and may also be respectively provided with a second radar module.
  • the above-mentioned first communication module on the first node 110 may respectively send the OFDM signal to the second communication module of the receiving device, that is, the second node 130 and the third node 140. In this way, the first node 110 can communicate with the second node 130 and the third node 140 respectively.
  • the second node 130 and the third node 140 After receiving the OFDM signal, the second node 130 and the third node 140 can obtain the communication information carried in the OFDM signal.
  • the first communication module on the first node 110 also sends the OFDM signal to the first radar module on the first node 110, so that the first radar module can use the OFDM signal to determine the pose of the first node 110.
  • the first communication module generally has a certain transmission angle, and the first communication module sends an OFDM signal within the range of its own transmission angle.
  • the OFDM signal sent by the first communication module on the first node 110 is not only used by the second node 130 and
  • the third node 140 may also transmit to other objects around the first node 110, and when the OFDM signal reaches the surface of other objects, it may be reflected by the surface of other objects. Therefore, the first radar module on the first node 110 can receive at least one reflected signal after reflection.
  • the first radar module may determine the relative position relationship between the first node 110 and the surrounding environment based on the at least one reflected signal and the OFDM signal.
  • the transceiver device can send OFDM signals to determine the relative position between itself and the surrounding environment when communicating with the receiving end, communication transmission and radar detection share OFDM signals, and communication can be achieved simultaneously through the same OFDM signal. Transmission and radar detection, so that the transceiver device can realize communication transmission and radar detection at the same time, thereby improving the performance of the transceiver device installed with the integrated radar and communication system.
  • the transceiver device since the transceiver device here has both a communication module and a radar module, the transceiver device can not only send a signal, but also receive the reflected signal after the transmission signal is reflected.
  • FIG. 2 a flow chart of the first implementation manner of a method for integrated collaboration of communication and radar according to an embodiment of the present application is shown in FIG.
  • the collaborative working method can be applied to a collaborative working system, the collaborative working system includes a transceiver terminal device and a receiving terminal device; the transceiver terminal device is provided with an integrated radar and communication system, and the integrated radar and communication system includes: A radar module and a first communication module, and at least a second communication module is provided on the receiving end device; the method may include:
  • the first communication module sends the OFDM signal to the receiving device and the radar module respectively; wherein the OFDM signal carries communication information.
  • the first communication module respectively sends the OFDM signal to the second communication module and the radar module of the receiving device.
  • the second communication module After receiving the OFDM signal sent by the first communication module, the second communication module obtains the communication information carried in the OFDM signal, where there is at least one receiving end device.
  • the radar module receives at least one reflected signal of the OFDM signal sent by the first communication module; and based on the at least one reflected signal and the OFDM signal, determines the relative positional relationship between the receiving end device and the receiving end device.
  • the OFDM signal sent by the first communication module is reflected by the receiving device and other objects in the space to form a reflected signal; when the reflected signal is within the detection range of the radar module, it will be captured by the radar module; the radar module receives at least one of the OFDM signals Reflect the signal, and use the received at least one reflected signal and OFDM signal to determine the relative positional relationship between the receiving end device and the receiving end device. In addition, the relative positional relationship between the receiving end device and other objects in the space can also be determined.
  • Communication transmission and radar detection share the OFDM signal, and the communication transmission and radar detection can be realized at the same time through the same OFDM signal, so that the transceiver device can realize communication transmission and radar detection at the same time, thereby improving the performance of the transceiver device.
  • the transceiver device may send an OFDM signal to the receiving device to communicate with the receiving device, and the first communication module of the transceiver device may encode the OFDM signal, and then send the encoded OFDM signal to Receiving device.
  • the transceiver device since the transceiver device and the receiving device are in wireless communication, the transceiver device may broadcast the OFDM signal in the form of broadcasting, and the second communication module of the receiving device may receive the broadcast OFDM signal, To establish a communication connection with the transceiver device.
  • the receiving end device may decode the OFDM signal, so as to obtain the communication information carried in the OFDM signal.
  • the OFDM signal sent by the receiving end device may also be reflected by the receiving end device. After the OFDM signal is reflected, it may be received by the radar module of the transceiver device through line-of-sight propagation, or it may be received by the transceiver device through non-line-of-sight propagation. Therefore, the reflection received by the transceiver device The signal can be at least one.
  • the radar module of the transceiver device In order to be able to determine the relative positional relationship between the transceiver device and the surrounding environment, the radar module of the transceiver device not only receives at least one reflected signal, but also needs to receive the OFDM signal sent by the communication module of the transceiver device; the radar module can be based on The OFDM signal and at least one reflected signal sent by the first communication module of the transceiver device determine the relative positional relationship between itself and the surrounding environment.
  • the surrounding environment includes at least the receiving end device.
  • the surrounding environment may also include other people or objects.
  • the relative pose of the receiving end device and the surrounding environment specifically the relative pose of the receiving end device and the people or objects in the surrounding environment.
  • the relative position relationship may include a relative distance relationship and/or a relative speed relationship.
  • the receiving end device when the above-mentioned receiving end device is equipped with an integrated radar and communication system, the receiving end device can also be used as a transceiver device to determine the relative positional relationship between itself and other devices, for example, to determine its own relationship with other devices.
  • the relative positional relationship between the transmitter and receiver devices or other receiver devices That is, the device in the collaborative working system in the embodiment of the present application can not only play the role of the transceiver device, but also the role of the receiver device.
  • the cooperative working method of radar and communication integrated system provided by the embodiments of the present application can be applied to a cooperative working system.
  • the cooperative working system includes a transceiver device and a receiving device; the transceiver device is provided with a radar and communication integration
  • the integrated radar and communication system includes a radar module and a first communication module.
  • the receiving end device is provided with at least a second communication module; the first communication module sends OFDM signals to the receiving device and the radar module respectively, and the second communication module After receiving the OFDM signal sent by the first communication module, the communication information carried in the OFDM signal is acquired, and the radar module receives at least one reflected signal after the OFDM signal sent by the first communication module is reflected by the receiving end device; and based on the at least one reflection Signals and OFDM signals to determine the relative positional relationship between the transceiver and the surrounding environment.
  • the transceiver device can not only realize the communication with the receiving end, but also determine the relative position relationship between itself and the surrounding environment by sending the OFDM signal.
  • the communication transmission and radar detection share the OFDM signal, which can be realized at the same time through the same OFDM signal. Communication transmission and radar detection enable the transceiver device to simultaneously realize communication transmission and radar detection, thereby improving the performance of the transceiver device.
  • FIG. 3 a cooperative radar and communication integrated system according to an embodiment of the present application is provided.
  • a flowchart of the second implementation mode of the working method, the method may include:
  • the first communication module sends the OFDM signal to the receiving device and the radar module respectively.
  • the second communication module After receiving the OFDM signal sent by the first communication module, the second communication module acquires the communication information carried in the OFDM signal, where there is at least one receiving end device.
  • the radar module receives at least one reflected signal of the OFDM signal sent by the first communication module after being reflected, and determines a reflected signal matrix based on the at least one reflected signal.
  • the radar module obtains the OFDM signal sent by the first communication module, and determines an OFDM signal matrix based on the OFDM signal.
  • the radar module determines the relative positional relationship between the transceiver device and the surrounding environment according to the reflected signal matrix and the OFDM signal matrix.
  • the OFDM signal sent by the first communication module can be received by the radar module of the transceiver device through line-of-sight propagation, or it can be received by the radar module of the transceiver end through non-line-of-sight propagation. Therefore, the radar The module can receive at least one reflected signal.
  • the radar module may determine the reflected signal matrix based on the at least one reflected signal.
  • the rows in the reflected signal matrix indicate the number of subcarriers in the reflected signal
  • the columns in the reflected signal matrix indicate the number of signal symbols in the reflected signal.
  • the transceiver device can send communication information to the receiver device.
  • the receiver device also needs to send communication information to the transceiver device.
  • the transceiver device may communicate with the receiving device in a frequency division duplex mode or a time division duplex mode, and may also communicate with the receiving device in a hybrid mode of frequency division duplex and time division duplex. .
  • the front end of each frame of the OFDM signal includes a cyclic prefix, and the duration of the cyclic prefix is greater than the transmission duration of the reflected signal, wherein the transmission duration of the reflected signal is from the first communication
  • An OFDM signal is composed of multiple OFDM symbols. For any OFDM symbol, copy the signal of the specified duration at the end of the OFDM symbol to obtain the cyclic prefix of the OFDM symbol, and add the cyclic prefix of the OFDM symbol to the front of the OFDM symbol. In this way, one frame of signal is obtained, and the OFDM signal is composed of multiple frames of signals.
  • the designated duration is the duration of the cyclic prefix, and the designated duration should be greater than the transmission duration of the reflected signal.
  • the duration of the cyclic prefix can be set according to the maximum detection distance of the required radar module. For example, if the maximum detection distance of the required radar module is S, the duration T of the cyclic prefix should be greater than 2S/C, where C is The transmission speed of the OFDM signal.
  • the duration of the cyclic prefix is greater than the transmission duration of the reflected signal.
  • the duration of the cyclic prefix can meet the requirement of the radar detection action time.
  • the OFDM signal is used as the shared signal of the communication function and the radar function of the radar and communication integrated system, the existence of the cyclic prefix not only reduces the inter-code crosstalk of signal transmission as much as possible, and ensures the quality of communication transmission, but also gives the radar module Sufficient time is reserved for the detection of the radar, so there is no need to allocate additional time for the radar function.
  • the transceiver device and the receiver device when the transceiver device and the receiver device work in the frequency division duplex mode, the transceiver device and the receiver device can respectively transmit OFDM signals according to the pre-allocated frequency bands, and the transceiver device can be based on its own allocation. OFDM signal and reflected signal of the frequency band to determine the relative position relationship with the receiving end device.
  • the first communication module sends the OFDM signal of the frequency band (hereinafter referred to as the first frequency band) pre-allocated to itself (the first communication module) to the receiving end device and the radar module; the second communication module in the receiving end device,
  • the above-mentioned first frequency band may be used to receive the OFDM signal, and to obtain the communication information carried in the OFDM signal.
  • the radar module of the transceiver device receives the OFDM signal of the first frequency band sent by the first communication module and the reflected signal of the first frequency band reflected by the receiver device to determine the relative positional relationship between the transceiver device and the receiver device.
  • the second communication module of the receiving end device can send to the first communication module the OFDM signal of the frequency band (hereinafter referred to as the second frequency band) pre-allocated to itself (the second communication module) to realize the receiving end device and the transceiver end device Communication between. among them.
  • the first frequency band and the second frequency band are different frequency bands.
  • the transceiver device and the receiver device may perform OFDM signal transmission according to pre-allocated time slots.
  • the first communication module may use pre-allocated time slots to send OFDM signals to the receiving end device and radar module; the second communication module in the receiving end device may use the same time slot pre-allocated for the first communication module It receives the OFDM signal and obtains the communication information carried in the OFDM signal.
  • the transceiver device and the receiver device may perform OFDM signal transmission according to pre-allocated time slots and frequency bands, respectively.
  • the first communication module uses pre-allocated time slots and frequency bands to send OFDM signals to the receiving end equipment and radar module; the second communication module uses the same time slots and frequency bands as the time slots and frequency bands pre-allocated for the first communication module.
  • Frequency band receives OFDM signal, and obtains the communication information carried in OFDM signal.
  • the radar module of the transmitter-receiver device does not need to perform complicated time and frequency synchronization of the reflected signal, and only the time and frequency synchronization of the radar module and the communication module can be ensured.
  • the radar module may use the same time slot and/or frequency band as the first communication module to obtain the OFDM signal sent by the first communication module.
  • the second communication module of the receiving end device may also send an OFDM signal to the receiving end device.
  • the first communication module uses a different time slot and/or frequency band from the radar module to receive the receiving end.
  • the time slot/frequency band of the radar module of the transceiver device is the same as the time slot/frequency band of the OFDM signal sent by the first communication module. That is, the radar module of the transceiver device is used to receive the OFDM signal sent by the first communication module and the reflected signal after the OFDM signal sent by the first communication module is reflected.
  • the above-mentioned first communication module can also send the OFDM signal to the radar module.
  • the radar module receives the OFDM signal sent by the first communication module, it can determine the OFDM signal matrix of the OFDM signal based on the OFDM signal.
  • the rows in the OFDM signal matrix represent the number of subcarriers in the OFDM signal
  • the columns in the OFDM signal matrix represent the number of signal symbols in the OFDM signal.
  • the above-mentioned radar module determines the reflected signal matrix and the OFDM signal matrix, it can determine the relative positional relationship between the receiving end device and the receiving end device according to the reflected signal matrix and the OFDM signal matrix.
  • the method for determining the relative positional relationship between the receiving end device and the receiving end device that reflects the reflected signal may refer to the radar pose determination method in the related technology.
  • the aforementioned radar module can determine the relative positional relationship between the transceiver device and the surrounding environment through the following steps:
  • Step A1 according to the reflected signal matrix D Rx (m,n) and the OFDM signal matrix D Tx (m,n), the following formula is used:
  • the OFDM signal will be interfered to different degrees during the spatial propagation process. Therefore, in order to improve the accuracy of the calculation, the interference can be taken into consideration when determining the relative position relationship, for example, when determining the relative position.
  • the interference of Gaussian white noise on the OFDM signal can be considered. Therefore, the Gaussian white noise can be subtracted from the reflected signal matrix to obtain the reflected signal matrix after the Gaussian white noise is subtracted, and then calculated with the inverse matrix of the OFDM signal matrix, so as to obtain the difference between the receiving end device and the receiving end device.
  • the environment matrix of the relative position relationship is described in relation to the relationship.
  • the element value of the element in the p row and the q column is 0 ⁇ p ⁇ N c -1, -N sym /2+1 ⁇ q ⁇ N sym /2, N c is the number of subcarriers of the OFDM signal, and N sym is the number of symbols in the OFDM signal transmitted within the preset time ;
  • Step A3 to the transformed environment matrix Take the modulus of each element in to get the matrix after the modulus
  • Step A4 based on the matrix after taking the modulus Determine the relative positional relationship between the transceiver device and the surrounding environment.
  • the environment matrix may be subjected to discrete Fourier transform first to obtain the first The environment matrix after a transformation, and then the inverse discrete Fourier transform is performed on the environment matrix after the first transformation to obtain the environment matrix after the second transformation, that is, the above-mentioned transformed environment matrix
  • the environment matrix where 0 ⁇ N c -1 are used to represent the environment matrix
  • Each column of, that is, the environment matrix The first column of is -N sym /2+1 column, the environment matrix The last column of is the N sym /2 column.
  • the radar module After the above-mentioned radar module obtains the transformed environment matrix, it can take the modulus of each element in the transformed environment matrix, so as to obtain the matrix after the modulus, which can then be based on the matrix after the modulus. Determine the relative positional relationship between the transceiver device and the surrounding environment.
  • the relative position relationship may include at least: relative distance and/or relative speed.
  • the relative distance between the transceiver device and the surrounding environment can be determined through the following steps, specifically the relative distance between the transceiver device and people or objects in the surrounding environment:
  • the matrix after the modulus In when there is an element value greater than the value of other elements adjacent to the element value, the element value is the peak value. Then, the above-mentioned radar module can obtain the number of rows p(k) where the element value is located, and use formula (3) in step B1 to calculate the relative distance value corresponding to the element value.
  • the distance value corresponding to the k-th peak As the relative distance value of the k-th object in the surrounding environment of the receiving end device, where the object includes the receiving end device.
  • the radar module after the above-mentioned radar module obtains the distance value corresponding to a peak value, it can indicate that there is only one object around the transceiver device. When the radar module obtains the distance values corresponding to multiple peaks, it can indicate that the transceiver terminal There are multiple objects around the device. Then the radar module can calculate the distance value corresponding to the k-th peak As the relative distance value between the receiving device and the kth object in the surrounding environment,.
  • the relative distance value between the transceiver device and the kth object in the surrounding environment may be the actual distance value between the transceiver device and the kth object.
  • the relative speed of the transceiver device and the surrounding environment can be determined through the following steps:
  • the matrix after the modulus In when there is an element value greater than the value of other elements adjacent to the element value, the element value is the peak value. Then the aforementioned radar module can obtain the number of columns q(k) where the element value is located, and use formula (4) in step C1 to calculate the relative velocity value corresponding to the element value.
  • the speed value corresponding to the k-th peak As the relative speed value between the receiving end device and the k-th object in the surrounding environment, where the object includes the receiving end device.
  • the radar module after the above-mentioned radar module obtains the speed value corresponding to a peak, it can indicate that there is only one object around the transceiver device.
  • the radar module obtains the speed values corresponding to multiple peaks, it can indicate that the transceiver terminal There are multiple objects around the device. Then the radar module can calculate the speed value corresponding to the k-th peak As the relative speed value of the k-th object in the surrounding environment and the transceiver device.
  • the relative velocity value of the transceiver device and the kth object may be the actual velocity value of the kth object.
  • the radar module can also calculate the matrix after the modulus.
  • the number of medium peaks can then be based on the number of peaks to determine the number of objects in the surrounding environment where the transceiver device is located.
  • FIG. 4 is a schematic structural diagram of an application scenario of a cooperative working method of a radar and communication integrated system according to an embodiment of the present application;
  • the A car 410 and the B car 420 may be included, where the A car 410 may be a transceiver terminal device, and the B car 420 may be a receiving terminal device.
  • the A car 410 may be provided with an integrated radar and communication system, and the integrated radar and communication system includes a radar module and a communication module.
  • the communication module in the A car 410 sends the OFDM signal to the B car 420 and the radar module in the A car respectively, and the OFDM signal carries communication information, so that the B car 420 obtains the communication information of the A car 410 based on the OFDM signal .
  • the OFDM signal sent by the communication module in the A car 410 can be transmitted to the B car 420 through space, so that it can be received by the communication module in the B car.
  • the OFDM signal can be decoded, so that the communication information transmitted by the A car 410 to the B car 420 can be obtained.
  • the OFDM signal arriving at the B car 420 and other objects around the A car 410 can reflect the OFDM signal.
  • the reflected signal of the OFDM signal is called the reflected signal, and it returns to the A car 410 again after traveling through space. Therefore,
  • the radar module in the A car 410 can receive at least one reflected signal.
  • the radar module in the A car 410 may determine the reflected signal matrix based on the at least one reflected signal, and determine the OFDM signal matrix based on the OFDM signal. Then calculate the environment matrix H(m,n) of the relative position relationship between the A car 410 and the B car 420 through the formula (1) of step A1, and then use the formula (2) of the step A2 to the environment matrix H(m,n) Perform the transformation, and finally take the modulus of each element in the transformed matrix, so that the matrix after the modulus can be obtained
  • the radar module in the A car 410 can use steps B1 to B2 to determine the distance between itself and the B car 420, and can also use steps C1 to C2 to determine the relative speed between itself and the B car 420 .
  • the above-mentioned A car 410 determines that the relative distance between itself and the B car 420 may be the relative distance shown in FIG. 5, and in FIG. 5, the value with the highest radar image intensity may be the above-mentioned modulo matrix
  • the relative distance corresponding to the peak value is 50m, and the relative distance between the A car and the B car is 50m.
  • the above-mentioned A car 410 determines that the relative speed between itself and the B car 420 may be the relative speed shown in FIG. 6, and in FIG. 6, the value with the highest radar image intensity may be the above-mentioned matrix after the modulus.
  • the relative speed corresponding to this peak is 15m/s, and the relative speed between the A car and the B car is 15m/s.
  • the relative speed between the transceiver device and the objects in the surrounding environment can be positive or it can be Negative value, for example, when the transceiver device and the object in the surrounding environment move towards each other, the relative speed between the two is positive; when the transceiver device and the object in the surrounding environment move away from each other, the two The relative speed between the two is negative.
  • the transceiver device there may be interference signals in the reflected signals received by the transceiver device. Therefore, in Figures 5 and 6, when the relative distance is 50m and the relative speed is 15m, there will be an interval value for the intensity of the radar image.
  • the interval value can reflect the intensity of the interference signal in the reflected signal received by the transceiver device. In Figure 5 and Figure 6, the intensity of the interference signal can reach 40dB.
  • the cooperative work system includes a plurality of transceiver end devices; the transceiver end device is provided with an integrated radar and communication system, and the integrated radar and communication system includes: a radar module and Communication module; a cooperative working method of radar and communication integrated system in an embodiment of the present application includes:
  • Step 1 The first transceiver device sends the shared OFDM signal carrying communication information to the communication module of the second transceiver device through its own radar and communication integrated system.
  • the first transceiver device may be any transceiver device, and the first transceiver device includes an integrated radar and communication system.
  • the aforementioned OFDM signal may specifically be a shared OFDM signal for communication and radar detection, and the shared OFDM signal carries communication information.
  • the shared OFDM signal may also be an OFDM signal optimized for radar detection requirements.
  • the above method further includes: the first transceiver device generates an OFDM signal that carries communication information, and adjusts the OFDM signal that carries the communication information according to the parameters related to radar detection and the radar detection signal to obtain the shared OFDM signal.
  • Step 2 The communication receiving module of the second transceiver device decodes the shared OFDM signal after receiving the shared OFDM signal sent by the first transceiver device to obtain the communication information carried in the OFDM signal, where , The radar module of the second transceiver device will not process the shared OFDM signal.
  • the second transceiver device is a transceiver device other than the first transceiver device, and the second transceiver device also includes an integrated radar and communication system.
  • Step 3 The radar module of the first transceiver device receives at least one reflected signal after the shared OFDM signal is reflected; the radar module of the first transceiver device is based on the at least one reflected signal and the shared OFDM signal Signal, the relative position relationship between the first transceiver device and the surrounding environment is obtained by calculation.
  • the at least one reflected signal includes a reflected signal of a third transceiver device
  • the relative positional relationship between the first transceiver device and the surrounding environment includes the first transceiver device and the third transceiver device
  • the third transceiver terminal device is the second transceiver terminal device or a transceiver terminal device different from the second transceiver terminal device.
  • the radar module of the first transceiver device calculates the relative position relationship between the first transceiver device and the surrounding environment based on the at least one reflected signal and the shared OFDM signal, including:
  • the radar module of the first transceiver device determines a reflection signal matrix according to the at least one reflection signal.
  • the radar module of the first transceiver device obtains the shared OFDM signal, and determines an OFDM signal matrix of the shared OFDM signal.
  • the radar module of the first transceiver device determines the relative position relationship between the first transceiver device and the surrounding environment according to the reflected signal matrix and the OFDM signal matrix, where the relative position relationship includes relative distance, Relative speed and relative orientation.
  • an embodiment of the present application also provides a cooperative working system of an integrated radar and communication system.
  • FIG. 1 this is an embodiment of the present application for a cooperative radar and communication integrated system.
  • the cooperative working system may include a transceiver device and a receiver device; the transceiver device may be any of the three nodes in the system shown in FIG. 1, and the receiver device may be the one shown in FIG. The other two nodes in the system.
  • an embodiment of the present application also provides a transceiver terminal device.
  • the transceiver terminal device is provided with an integrated radar and communication system.
  • the integrated radar and communication system includes a radar module 710 and a first communication module 720. .
  • the first communication module 720 is configured to send the OFDM signal to the receiving end device and the radar module 710 respectively, so that the second communication module of the receiving end device obtains the OFDM signal after receiving the OFDM signal sent by the first communication module 720 The communication information carried.
  • the radar module 710 is configured to receive at least one reflected signal of the OFDM signal transmitted by the first communication module 720; and based on the at least one reflected signal and the OFDM signal, determine the relative positional relationship between the transceiver device and the surrounding environment. At least including the receiving end equipment.
  • the transceiver device provided by the embodiment of the application shares the OFDM signal for communication transmission and radar detection, and the same OFDM signal is used to realize the communication with the receiving end while simultaneously determining the surrounding environment where it is located, so that the transceiver device
  • the communication transmission and radar detection can be realized at the same time, so that the performance of the transceiver device installed with the integrated radar and communication system can be improved.
  • the communication module that is, the first communication module 720, includes a communication transmission processing sub-module and a communication reception processing sub-module;
  • the radar module includes a radar transmission processing sub-module and a radar receiving processing sub-module.
  • the communication transmission processing sub-module is configured to generate an OFDM signal carrying communication information, and send the OFDM signal carrying the communication information to the radar transmission processing sub-module; receive the shared OFDM signal returned by the radar transmission processing sub-module , And send the shared OFDM signal to the communication module of other devices in a radio frequency wireless manner, so that other devices can obtain the communication information carried in the shared OFDM signal after receiving the shared OFDM signal;
  • the communication receiving and processing sub-module is configured to extract the communication information carried in the shared OFDM signal transmitted by other devices after receiving the shared OFDM signal transmitted by other devices;
  • the radar transmission processing sub-module is used to adjust the OFDM signal carrying communication information by using the parameters related to radar detection and the radar detection signal to obtain a shared OFDM signal;
  • the radar emission processing module can first calculate the radar detection signal parameters such as the bandwidth, frame duration, signal power and other radar detection signal parameters that can meet the above requirements according to the application scenarios for radar detection range accuracy and range, speed accuracy and range; specific For calculation methods of radar detection signal parameters such as bandwidth, frame duration, signal power, etc., please refer to the calculation method of radar detection signal parameters in related technologies, which will not be repeated here.
  • the processing of equalization and other aspects finally obtains a shared OFDM signal that carries communication information and satisfies the radar detection requirements of the application scenario at the same time.
  • the radar receiving and processing sub-module is used to receive at least one reflection superimposed signal of the shared OFDM signal sent by the transceiver device after being reflected by surrounding objects, and based on the reflection superimposed signal and the communication transmission processing sub-module of the transceiver device
  • the shared OFDM signal of the module determines the relative positional relationship between the transceiver device and the surrounding environment objects.
  • the radar module 710 is specifically configured to receive at least one reflected signal of the OFDM signal sent by the first communication module 720 after being reflected, and determine the reflected signal matrix based on the at least one reflected signal; obtain the signal sent by the first communication module 720 OFDM signal, and determine the OFDM signal matrix based on the OFDM signal; determine the relative position relationship between the transceiver device and the surrounding environment according to the reflected signal matrix and the OFDM signal matrix.
  • the radar module 710 includes:
  • the environment matrix calculation sub-module is used to calculate the reflection signal matrix D Rx (m,n) and the OFDM signal matrix D Tx (m,n) through the following formula:
  • H(m,n) D Tx (m,n) -1 (D Rx (m,n)-W(m,n))
  • the matrix transformation sub-module is used to pass the following formula:
  • the element value of the element in the p row and the q column is 0 ⁇ p ⁇ N c -1, -N sym /2+1 ⁇ q ⁇ N sym /2, N c is the number of subcarriers of the OFDM signal, and N sym is the number of symbols in the OFDM signal transmitted within the preset time ;
  • Surrounding environment determination sub-module used for matrix based on modulo Determine the relative positional relationship between the transceiver device and the surrounding environment.
  • the surrounding environment determines the sub-modules, including:
  • the relative distance value calculation unit is used to calculate the distance value corresponding to the k-th peak As the relative distance value between the receiving end device and the k-th object in the surrounding environment, the object includes the receiving end device.
  • the surrounding environment determines the sub-modules, including:
  • the relative speed value calculation unit is used to calculate the speed value corresponding to the k-th peak value As the relative speed value between the receiving end device and the k-th object in the surrounding environment, where the object includes the receiving end device.
  • the front end of each frame of the OFDM signal includes a cyclic prefix, and the duration of the cyclic prefix is greater than the transmission duration of the reflected signal, wherein the transmission duration of the reflected signal is from the first communication The length of time between when the module sends the OFDM signal and when the radar module receives the reflected signal.
  • the first communication module 720 is specifically configured to: use a pre-allocated frequency band to send the OFDM signal to the receiving end device and the radar module 710; or to use a pre-allocated time slot to send the OFDM signal to the receiving end device and the radar Module 710; Or, using pre-allocated time slots and frequency bands, send the OFDM signal to the receiving end device and radar module 710;
  • the second communication module is specifically configured to: use the same frequency band as the frequency band pre-allocated for the first communication module 720, receive the OFDM signal, and obtain the communication information carried in the OFDM signal; or, use the same frequency band as the pre-allocated frequency band for the first communication module 720; Receive the OFDM signal in the same time slot with the allocated time slot and obtain the communication information carried in the OFDM signal; or, use the same time slot and frequency band as the pre-allocated time slot and frequency band for the first communication module 720 to receive the OFDM signal , And obtain the communication information carried in the OFDM signal.
  • the radar module 710 is configured to use the same time slot and/or frequency band as the first communication module 720 to obtain the OFDM signal sent by the first communication module 720.
  • the first communication module 720 is further configured to use a time slot and/or frequency band different from the radar module 710 to receive the OFDM signal sent by the second communication module of the receiving end device.
  • the embodiment of the present application also provides a cooperative working system of an integrated radar and communication system.
  • the cooperative working system includes a receiving end device and any one of the transceiver end devices described in the above embodiments; the receiving end device is provided with radar and communication An integrated system.
  • the integrated radar and communication system includes: a radar module and a first communication module, and at least a second communication module is provided on the receiving end device;
  • the first communication module is used to send the OFDM signal to the receiving end device and the radar module respectively;
  • the second communication module is configured to obtain the communication information carried in the OFDM signal after receiving the OFDM signal sent by the first communication module, wherein there is at least one receiving end device;
  • the radar module is used to receive at least one reflected signal of the OFDM signal transmitted by the first communication module; and based on the at least one reflected signal and the OFDM signal, determine the relative positional relationship between the transceiver device and the surrounding environment.
  • the surrounding environment includes at least the receiving ⁇ End equipment.
  • the first communication module is specifically configured to: use a pre-allocated frequency band to send the OFDM signal to the receiving end device and the radar module; or to use a pre-allocated time slot to send the OFDM signal to the receiving end device and the radar module; Or, use pre-allocated time slots and frequency bands to send OFDM signals to the receiving end equipment and radar module;
  • the second communication module is specifically configured to: use the same frequency band as the frequency band pre-allocated for the first communication module, receive the OFDM signal, and obtain the communication information carried in the OFDM signal; or, use the same frequency band pre-allocated for the first communication module
  • the time slot with the same time slot receive the OFDM signal, and obtain the communication information carried in the OFDM signal; or, use the same time slot and frequency band as the pre-allocated time slot and frequency band for the first communication module, receive the OFDM signal, and obtain The communication information carried in the OFDM signal.
  • An embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, any one of the radar and communication integrated systems in the above-mentioned embodiments is implemented. Collaborative working methods.
  • a computer program product containing instructions is also provided, which when running on a computer, causes the computer to execute any one of the above-mentioned embodiments of the integrated radar and communication system. work method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达与通信一体化系统的协同工作方法及系统,协同该工作系统包括设置有雷达与通信一体化系统的收发端设备和设置有第二通信模块的接收端设备;雷达与通信一体化系统包括:雷达模块和第一通信模块;该方法包括:第一通信模块分别将OFDM信号发送至接收端设备和雷达模块;第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个;雷达模块接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系,周围环境至少包括接收端设备。从而可以提高收发端设备的性能。

Description

一种雷达与通信一体化系统的协同工作方法及系统
本申请要求于2019年09月30日提交中国专利局、申请号为201910943966.1发明名称为“一种雷达与通信一体化系统的协同工作方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别是涉及一种雷达与通信一体化系统的协同工作方法及系统。
背景技术
随着无人机、自动驾驶汽车等自动驾驶设备的广泛应用,通信设备和雷达设备的使用需求日益增大,然而当通信设备和雷达设备同时装备在同一无人机或自动驾驶汽车上时,彼此之间会产生电磁干扰,导致通信设备和雷达设备的性能均变低。
为了同时提高通信设备和雷达设备的性能,现有技术中提出了雷达与通信一体化系统,雷达与通信一体化系统中包括通信模块和雷达模块,该系统的通信模块和雷达模块可以共用频谱资源,减少了相互间的干扰,获得更好的互信息增益,提高了系统的可靠性。目前,雷达与通信一体化系统主要分为基于非波形融合的一体化系统和基于波形融合的一体化系统。
而在基于波形融合的雷达与通信一体化系统中,由于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)信号具备频谱资源利用效率高,抗衰落及多径传播效应等优点,成为了主流选择。
然而,发明人在研究中发现,目前采用OFDM信号的雷达与通信一体化系统,通常是采用不同的相位编码方式来进行通信传输和雷达探测,以实现雷达与通信一体化,即雷达与通信一体化系统中的通信模块和雷达模块分别采用不同的相位编码方式来进行通信传输和雷达探测,通信传输和雷达探测需要在不同的时频资源下分别进行,这样,会使得通信传输和雷达探测在时频资源上受到限制,从而造成安装有雷达与通信一体化系统的收发端设备的通信传输和雷达探测性能较低。
发明内容
本申请实施例的目的在于提供一种雷达与通信一体化系统的协同工作方法及系统,以提高收发端设备的性能。具体技术方案如下:
第一方面,本申请实施例提供了一种雷达与通信一体化系统的协同工作方法,应用于协同工作系统,协同该工作系统包括收发端设备和接收端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和第一通信模块,接收端设备上至少设置有第二通信模块;
该方法包括:
第一通信模块分别将OFDM信号发送至接收端设备和雷达模块;
第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个;
雷达模块接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系,周围环境至少包括接收端设备。
第二方面,本申请实施例提供了一种雷达与通信一体化系统的协同工作方法,应用于协同工作系统,协同该工作系统包括多个收发端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和通信模块;
该方法包括:
第一收发端设备将携带有通信信息的共享OFDM信号通过自身的雷达与通信一体化系统发送给第二收发端设备的通信模块;
所述第二收发端设备的通信接收模块在接收到所述第一收发端设备发送的共享OFDM信号后,解码所述共享OFDM信号,得到所述OFDM信号中携带的通信信息,其中,所述第二收发端设备的雷达模块不会处理所述共享OFDM信号;
所述第一收发端设备的雷达模块接收所述共享OFDM信号经反射后的至少一个反射信号;所述第一收发端设备的雷达模块基于所述至少一个反射信号和所述共享OFDM信号,计算得到所述第一收发端设备与周围环境的相对位置关系。
第三方面,本申请实施例还提供了一种雷达与通信一体化系统的协同工作系统,协同该工作系统包括收发端设备和接收端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和第一通信模块,接收端设备上至少设置有第二通信模块;
第一通信模块,用于分别将OFDM信号发送至接收端设备和雷达模块;
第二通信模块,用于在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个;
雷达模块,用于接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系,周围环境至少包括接收端设备。
第四方面,本申请实施例提供了一种收发端设备,所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和通信模块;所述通信模块,包括通信发送处理子模块和通信接收处理子模块;所述雷达模块,包括雷达发射处理子模块和雷达接收处理子模块;
所述通信发送处理子模块,用于生成携带有通信信息的OFDM信号,将携带有通信信息的OFDM信号发送给所述雷达发射处理子模块;接收所述雷达发射处理子模块返回的共享OFDM信号,并将所述共享OFDM信号通过射频无线的方式发送给其他设备的通信模 块,以使其他设备在接收到共享OFDM信号后,获取共享OFDM信号中携带的通信信息;
所述通信接收处理子模块,用于在接收到其他设备发射的共享OFDM信号后,提取其他设备发射的共享OFDM信号中所携带的通信信息;
所述雷达发射处理子模块,用于利用雷达探测相关的参数及雷达探测信号,对携带有通信信息的OFDM信号进行调整,得到共享OFDM信号;
所述雷达接收处理子模块,用于接收本收发端设备上发出的共享OFDM信号经周边物体反射后的至少一个反射叠加信号,并基于所述反射叠加信号和本收发端设备的通信发送处理子模块的共享OFDM信号,确定本收发端设备与周围环境物体的相对位置关系。
本申请实施例提供的一种雷达与通信一体化系统的协同工作方法及系统,可以应用于协同工作系统,协同该工作系统包括收发端设备和接收端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和第一通信模块,接收端设备上至少设置有第二通信模块;第一通信模块分别将OFDM信号发送至接收设备和雷达模块,第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,雷达模块接收第一通信模块发送的OFDM信号经接收端设备反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系。这样,可以使得收发端设备通过发送携带通信信息的OFDM信号,便既可以实现与接收端的通信,又可以实现确定自身与周围环境的相对位置关系,通信传输与雷达探测共享OFDM信号,通过相同的OFDM信号同时实现通信传输与雷达探测,使得收发端设备可以同时实现通信传输与雷达探测,从而可以提高收发端设备的性能。当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的一种雷达与通信一体化系统的协同工作系统的结构示意图;
图2为本申请实施例的一种雷达与通信一体化系统的协同工作方法第一种实施方式的流程图;
图3为本申请实施例的一种雷达与通信一体化系统的协同工作方法第二种实施方式的流程图;
图4为本申请实施例的一种雷达与通信一体化系统的协同工作方法的应用场景的结构示意图;
图5为图4所示的应用场景中收发端设备的测距结果仿真图;
图6为图4所示的应用场景中收发端设备的测速结果仿真图;
图7为本申请实施例的一种收发端设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决现有技术存在的问题,本申请实施例提供了一种雷达与通信一体化系统的协同工作方法及收发端设备,提高发送端发送的信号的整体性能。
下面,首先对本申请实施例提供的一种雷达与通信一体化系统的协同工作系统进行介绍,如图1所示,为本申请实施例提供的一种雷达与通信一体化系统的协同工作系统的结构示意图,该协同工作系统可以包括第一节点110、第二节点130以及第三节点140,其中,带箭头的线120表示上述三个节点中任意两个节点间的通信链路。
该三个节点中的任一个节点都可以作为收发端设备,其他两个节点可以作为接收端设备。可以理解的是,接收端设备可以是1个,也可以大于或等于2个,这里以两个接收端设备为例进行说明。
假设上述的第一节点110为收发端设备,第二节点130和第三节点140为接收端设备,则该第一节点110上可以设置有雷达与通信一体化系统,雷达与通信一体化系统可以包括:第一雷达模块和第一通信模块。该第二节点130和第三节点140上可以分别设置有第二通信模块,还可以分别设置有第二雷达模块。
上述的第一节点110上的第一通信模块可以分别将OFDM信号发送至接收设备的第二通信模块,也即第二节点130和第三节点140。这样,该第一节点110可以分别与第二节点130和第三节点140进行通信。
该第二节点130和第三节点140在接收到该OFDM信号后,可以获取到该OFDM信号中携带的通信信息。
该第一节点110上的第一通信模块还将OFDM信号发送至该第一节点110上的第一雷达模块,从而第一雷达模块可以利用该OFDM信号确定第一节点110的位姿。
实际场景中,第一通信模块一般具有一定的发射角度,第一通信模块向自身发射角度的范围内发送OFDM信号。在一些示例中,由于该第一节点110与第二节点130以及第三节点140是无线通信的,因此,该第一节点110上的第一通信模块发送的OFDM信号除了被第二节点130以及第三节点140接收外,还可以向该第一节点110周围的其他物体发射,当该OFDM信号到达其他物体表面后,可以被该其他物体表面反射。因此,该第一节点110上的第一雷达模块可以接收到经反射后的至少一个反射信号。第一雷达模块可以基于该至少一个反射信号和OFDM信号,来确定第一节点110与周围环境的相对位置关系。这样,可以使得收发端设备通过发送OFDM信号,在实现与接收端的通信的情况下,同时实 现确定自身与周围环境的相对位置,通信传输与雷达探测共享OFDM信号,通过相同的OFDM信号同时实现通信传输与雷达探测,使得收发端设备可以同时实现通信传输与雷达探测,从而可以提高安装有雷达与通信一体化系统的收发端设备的性能。
可以理解的是,由于这里的收发端设备上既有通信模块,又有雷达模块,因此该收发端设备既可以发送信号,又可以接收该发送信号经反射后的反射信号。
下面,对本申请实施例的一种方法进行介绍,如图2所示,为本申请实施例的一种通信与雷达一体化协同工作的方法第一种实施方式的流程图,图2所示的协同工作方法可以应用于协同工作系统,所述协同该工作系统包括收发端设备和接收端设备;所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和第一通信模块,所述接收端设备上至少设置有第二通信模块;该方法可以包括:
S210,第一通信模块分别将OFDM信号发送至接收设备和雷达模块;其中,所述OFDM信号中携带有通信信息。
具体的,第一通信模块分别将OFDM信号发送至接收设备的第二通信模块和雷达模块。
S220,第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个。
S230,雷达模块接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与接收端设备的相对位置关系。
第一通信模块发送的OFDM信号经过接收端设备及空间中其他物体的反射,形成反射信号;当反射信号在雷达模块的检测范围内时,会被雷达模块捕获;雷达模块接收OFDM信号的至少一个反射信号,并利用接收到的至少一个反射信号和OFDM信号,确定收发端设备与接收端设备的相对位置关系,此外还可以确定收发端设备与空间中其他物体的相对位置关系。通信传输与雷达探测共享OFDM信号,通过相同的OFDM信号同时实现通信传输与雷达探测,使得收发端设备可以同时实现通信传输与雷达探测,从而可以提高收发端设备的性能。
在一些示例中,收发端设备可以向接收端设备发送OFDM信号,以便与接收端设备进行通信,该收发端设备的第一通信模块可以对OFDM信号进行编码,然后将编码后的OFDM信号发送至接收端设备。
在一些示例中,由于该收发端设备与接收端设备是无线通信,因此,该收发端设备可以以广播的形式广播该OFDM信号,接收端设备的第二通信模块可以接收到广播的OFDM信号,以与收发端设备建立通信连接。
在一些示例中,该接收端设备在接收到该第一通信模块发送的OFDM信号后,可以对该OFDM信号进行解码处理,从而可以得到该OFDM信号中携带的通信信息。
在一些示例中,该收发端设备发送的OFDM信号,除了被接收端设备接收外,还可以被该接收端设备反射。该OFDM信号被反射后,可能会通过视距传播被该收发端设备的雷达模块接收到,也可能会经过非视距传播被该收发端设备接收到,因此,该收发端设备接 收到的反射信号可以为至少一个。
为了能够确定出收发端设备与周围环境的相对位置关系,该收发端设备的雷达模块除了接收至少一个反射信号外,还需要接收该收发端设备的通信模块发送的OFDM信号;该雷达模块可以基于该收发端设备的第一通信模块发送的OFDM信号和至少一个反射信号来确定自身与周围环境的相对位置关系。
在一些示例中,该周围环境至少包括接收端设备。
周围环境中除了接收端设备外,还可能包括其他的人或物等,收发端设备与周围环境的相对位姿,具体为收发端设备与周围环境中人或物的相对位姿。
在一些示例中,该相对位置关系可以包括相对距离关系和/或相对速度关系。
在又一些示例中,当上述接收端设备中设置有雷达与通信一体化系统时,该接收端设备同样可以作为收发端设备,可以确定自身与其他设备的相对位置关系,例如,确定自身与其他收发端设备或其他接收端设备之间的相对位置关系。即本申请实施例中的协同工作系统中的设备既可以充当收发端设备的角色,又可以充当接收端设备的角色。
本申请实施例提供的一种雷达与通信一体化系统的协同工作方法,可以应用于协同工作系统,协同该工作系统包括收发端设备和接收端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和第一通信模块,接收端设备上至少设置有第二通信模块;第一通信模块分别将OFDM信号发送至接收设备和雷达模块,第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,雷达模块接收第一通信模块发送的OFDM信号经接收端设备反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系。这样,可以使得收发端设备通过发送OFDM信号,便既可以实现与接收端的通信,又可以实现确定自身与周围环境的相对位置关系,通信传输与雷达探测共享OFDM信号,通过相同的OFDM信号同时实现通信传输与雷达探测,使得收发端设备可以同时实现通信传输与雷达探测,从而可以提高收发端设备的性能。
在图2所示的协同工作的方法的基础上,本申请实施例还提供了一种可能的实现方式,如图3所示,为本申请实施例的一种雷达与通信一体化系统的协同工作方法第二种实施方式的流程图,该方法可以包括:
S310,第一通信模块分别将OFDM信号发送至接收设备和雷达模块。
S320,第二通信模块在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个。
S330,雷达模块接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号,并基于至少一个反射信号,确定反射信号矩阵。
S340,雷达模块获取第一通信模块发送的OFDM信号,并基于OFDM信号确定OFDM信号矩阵。
S350,雷达模块根据反射信号矩阵和OFDM信号矩阵,确定收发端设备与周围环境的 相对位置关系。
在一些示例中,当第一通信模块发送的OFDM信号被反射后,可以经过视距传播被收发端设备的雷达模块接收,也可以经过非视距传播被收发端的雷达模块接收,因此,该雷达模块可以接收到至少一个反射信号。
该雷达模块接收到该至少一个反射信号后,可以基于该至少一个反射信号,来确定反射信号矩阵。其中,该反射信号矩阵中的行表示该反射信号中的子载波数量,该反射信号矩阵中的列表示该反射信号中的信号符号数量。
收发端设备可以向接收端设备发送通信信息,在一些可能的场景中,接收端设备同样需要向收发端设备发送通信信息。在一些示例中,上述收发端设备可以采用频分双工模式或者时分双工模式与上述接收端设备进行通信,还可以采用频分双工与时分双工的混合模式与上述接收端设备进行通信。
在一些示例中,所述OFDM信号的每帧信号的前端包括循环前缀,所述循环前缀的时长大于所述反射信号的传输时长,其中,所述反射信号的传输时长为从所述第一通信模块发送所述OFDM信号到所述雷达模块接收到所述反射信号之间的时长。OFDM信号是由多个OFDM符号组成的,针对任一OFDM符号,复制该OFDM符号尾部的指定时长的信号,得到该OFDM符号的循环前缀,将该OFDM符号的循环前缀添加到该OFDM符号前,从而得到一帧信号,OFDM信号是由多帧信号组成的。指定时长即为循环前缀的时长,指定时长应该大于反射信号的传输时长。可选的,循环前缀的时长可以根据要求的雷达模块的最大探测距离进行设置,例如,要求的雷达模块的最大探测距离为S,则循环前缀的时长T应当大于2S/C,其中,C为OFDM信号的传输速度。
在本申请实施例中,循环前缀的时长大于反射信号的传输时长,对于共享OFDM信号的雷达模块来说,循环前缀的时长能够满足雷达探测的作用时间要求。当OFDM信号作为雷达与通信一体化系统的通信功能和雷达功能的共享信号时,循环前缀的存在,既尽可能减少了信号传输的码间串扰,保证了通信传输的质量,同时也给雷达模块的探测预留了足够的作用时间,从而不必再为雷达功能分配额外的作用时间。
在一些示例中,当收发端设备和接收端设备采用频分双工模式工作时,收发端设备和接收端设备可以分别按照预先分配的频段进行OFDM信号传输,此时收发端设备可以基于自身分配的频段的OFDM信号和反射信号,来确定与接收端设备的相对位置关系。
例如,该第一通信模块将预先分配给自身(第一通信模块)的频段(以下称为第一频段)的OFDM信号发送给接收端设备和雷达模块;接收端设备中的第二通信模块,可以采用上述第一频段接收OFDM信号,并获取OFDM信号中携带的通信信息。收发端设备的雷达模块接收第一通信模块发送的第一频段的OFDM信号及接收端设备反射的第一频段的反射信号,来确定收发端设备与接收端设备的相对位置关系。此外,接收端设备的第二通信模块可以向第一通信模块发送预先分配给自身(第二通信模块)的频段(以下称为第二频段)的OFDM信号,以实现接收端设备与收发端设备之间的通信。其中。第一频段与 第二频段为不同的频段。
在一些示例中,当收发端设备和接收端设备采用时分双工模式工作时,收发端设备和接收端设备可以按照预先分配的时隙进行OFDM信号传输。
例如,第一通信模块可以采用预先分配的时隙将OFDM信号发送至接收端设备和雷达模块;该接收端设备中的第二通信模块,可以采用与为第一通信模块预先分配的时隙相同的时隙,接收OFDM信号,并获取OFDM信号中携带的通信信息。
在一些示例中,当收发端设备和接收端设备采用混合模式工作时,收发端设备和接收端设备可以分别按照预先分配的的时隙和频段进行OFDM信号传输。
例如,第一通信模块采用预先分配的时隙和频段,将OFDM信号发送至接收端设备和雷达模块;第二通信模块采用与为第一通信模块预先分配的时隙和频段相同的时隙和频段,接收OFDM信号,并获取OFDM信号中携带的通信信息。
可以理解的是,收发端设备的雷达模块无需对反射信号进行复杂的时间和频率同步,可以仅保证雷达模块和通信模块的时间和频率同步即可。也就是说,雷达模块可以采用与第一通信模块相同的时隙和或/频段获取第一通信模块发送的OFDM信号。
在一些示例中,上述接收端设备的第二通信模块,还可以向上述的收发端设备发送OFDM信号,此时,第一通信模块采用与雷达模块不同的时隙和/或频段,接收接收端设备的第二通信模块发送的OFDM信号,其中,收发端设备的雷达模块的时隙/频段与第一通信模块发送的OFDM信号的时隙/频段相同。也就是说,收发端设备的雷达模块用于接收第一通信模块发送的OFDM信号及第一通信模块发送的OFDM信号被反射后的反射信号。
上述第一通信模块除了将OFDM信号发送至接收端设备,还可以将OFDM信号发送至雷达模块。该雷达模块在接收到第一通信模块发送的OFDM信号后,可以基于该OFDM信号,确定出该OFDM信号的OFDM信号矩阵。其中,该OFDM信号矩阵中的行表示该OFDM信号中的子载波数量,该OFDM信号矩阵中的列表示该OFDM信号中的信号符号数量。上述的雷达模块在确定出反射信号矩阵和OFDM信号矩阵后,可以根据反射信号矩阵和OFDM信号矩阵,确定收发端设备与接收端设备的相对位置关系。
根据反射信号和OFDM信号,确定收发端设备与反射该反射信号的接收端设备之间的相对位置关系的方法,可以参见相关技术中的雷达位姿确定方法。在一些示例中,上述的雷达模块可以通过以下步骤来确定收发端设备与周围环境的相对位置关系:
步骤A1,根据反射信号矩阵D Rx(m,n)和OFDM信号矩阵D Tx(m,n),通过以下公式:
H(m,n)=D Tx(m,n) -1(D Rx(m,n)-W(m,n))       (1)
计算收发端设备与周围环境的相对位置关系的环境矩阵H(m,n);其中,m为OFDM信号/反射信号中子载波的数量,n为OFDM信号/反射信号中的符号的数量,W(m,n)表示叠加的高斯白噪声。
在一些示例中,OFDM信号在空间传播过程中,会不同程度的受到干扰,因此,为了 提高计算的准确度,可以在确定相对位置关系时,将受到的干扰考虑进来,例如,在确定相对位置关系时,可以考虑高斯白噪声对OFDM信号的干扰。因此,可以在反射信号矩阵中,减去该高斯白噪声,得到减去高斯白噪声后的反射信号矩阵,然后与OFDM信号矩阵的逆矩阵进行计算,从而可以得到收发端设备与接收端设备的相对位置关系的环境矩阵。
步骤A2,通过以下公式:
Figure PCTCN2020118418-appb-000001
对环境矩阵H(m,n)进行离散傅里叶变换和反离散傅里叶变换,得到变换后的环境矩阵
Figure PCTCN2020118418-appb-000002
其中,环境矩阵中
Figure PCTCN2020118418-appb-000003
第p行第q列元素的元素值为
Figure PCTCN2020118418-appb-000004
0≤p≤N c-1,-N sym/2+1≤q≤N sym/2,N c为OFDM信号的子载波数量,N sym为预设时间内传输的OFDM信号中的符号的数量;
步骤A3,对变换后的环境矩阵
Figure PCTCN2020118418-appb-000005
中的每一个元素进行取模,得到取模后的矩阵
Figure PCTCN2020118418-appb-000006
步骤A4,基于取模后的矩阵
Figure PCTCN2020118418-appb-000007
确定收发端设备与周围环境的相对位置关系。
在一些示例中,上述的雷达模块在得到环境矩阵后,为了能够基于该环境矩阵,确定出收发端设备与周围环境的相对位置关系,可以对该环境矩阵先进行离散傅里叶变换,得到第一次变换后的环境矩阵,然后对该第一次变换后的环境矩阵进行反离散傅里叶变换,得到第二次变换后的环境矩阵,也即上述的变换后的环境矩阵
Figure PCTCN2020118418-appb-000008
在一些示例中,在上述的环境矩阵
Figure PCTCN2020118418-appb-000009
中,采用0~N c-1表示该环境矩阵
Figure PCTCN2020118418-appb-000010
的每一行,也即,该环境矩阵
Figure PCTCN2020118418-appb-000011
的第1行为第0行,该环境矩阵
Figure PCTCN2020118418-appb-000012
的最后一行为第N c-1行;采用-N sym/2+1~N sym/2表示该环境矩阵
Figure PCTCN2020118418-appb-000013
的每一列,也即,该环境矩阵
Figure PCTCN2020118418-appb-000014
的第1列为第-N sym/2+1列,该环境矩阵
Figure PCTCN2020118418-appb-000015
的最后一列为第N sym/2列。
上述的雷达模块在得到变换后的环境矩阵后,可以对该变换后的环境矩阵中的每个元素进行取模,从而可以得到取模后的矩阵,然后可以基于该取模后的矩阵
Figure PCTCN2020118418-appb-000016
确定收发端设备与周围环境的相对位置关系。
在一些示例中,该相对位置关系可以至少包括:相对距离和/或相对速度。
在一些示例中,可以通过以下步骤,来确定收发端设备与周围环境的相对距离,具体为收发端设备与周围环境中人或物的相对距离:
B1,获取取模后的矩阵
Figure PCTCN2020118418-appb-000017
中的峰值的行数p(k),并通过以下公式:
Figure PCTCN2020118418-appb-000018
计算第k个峰值对应的距离值
Figure PCTCN2020118418-appb-000019
其中,0≤p(k)≤N c-1,0<k<N c-1,c 0为光在空气中的传播速度,Δf为OFDM信号中子载波之间的频率间隔;取模后的矩阵
Figure PCTCN2020118418-appb-000020
中与峰值相邻的元素的元素值小于峰值。
在一些示例中,在取模后的矩阵
Figure PCTCN2020118418-appb-000021
中,当存在一个元素值大于与该元素值相邻的其 他元素值时,则该元素值则为峰值。则上述的雷达模块可以获取该元素值所在的行数p(k),并采用步骤B1中的公式(3),可以计算得到该元素值对应的相对距离值。
在一些示例中,该取模后的矩阵中,可以存在一个峰值,也可以存在多个峰值,该多个峰值的大小可以相同,也可以不同。
B2,将第k个峰值对应的距离值
Figure PCTCN2020118418-appb-000022
作为收发端设备周围环境中的第k个物体的相对距离值,其中,物体包括接收端设备。
在一些示例中,上述的雷达模块在得到一个峰值对应的距离值后,可以说明该收发端设备周围只有一个物体,当该雷达模块在得到多个峰值对应的距离值后,可以说明该收发端设备周围有多个物体。则该雷达模块可以将第k个峰值对应的距离值
Figure PCTCN2020118418-appb-000023
作为收发端设备与周围环境中的第k个物体的相对距离值,。
在一些示例中,当上述的收发端设备静止时,该收发端设备与周围环境中的第k个物体的相对距离值,可以是该收发端设备与第k个物体之间的实际距离值。
在一些示例中,可以通过以下步骤,来确定收发端设备与周围环境的相对速度:
C1,获取取模后的矩阵
Figure PCTCN2020118418-appb-000024
中的峰值的列数q(k),并通过以下公式:
Figure PCTCN2020118418-appb-000025
计算第k个峰值对应的速度值
Figure PCTCN2020118418-appb-000026
其中,-N sym/2+1≤q(k)≤N sym/2,0<k<N sym,c 0为光在空气中的传播速度,f c为OFDM信号中的载波频率;T OFDM为OFDM信号中一个符号的周期,取模后的矩阵
Figure PCTCN2020118418-appb-000027
中与峰值相邻的元素的元素值小于峰值;即取模后的矩阵
Figure PCTCN2020118418-appb-000028
中与峰值表示的元素所相邻的元素的元素值小于该峰值。
在一些示例中,在取模后的矩阵
Figure PCTCN2020118418-appb-000029
中,当存在一个元素值大于与该元素值相邻的其他元素值时,则该元素值则为峰值。则上述的雷达模块可以获取该元素值所在的列数q(k),并采用步骤C1中的公式(4),可以计算得到该元素值对应的相对速度值。
C2,将第k个峰值对应的速度值
Figure PCTCN2020118418-appb-000030
作为收发端设备与周围环境中第k个物体的相对速度值,其中,物体包括接收端设备。
在一些示例中,上述的雷达模块在得到一个峰值对应的速度值后,可以说明该收发端设备周围只有一个物体,当该雷达模块在得到多个峰值对应的速度值后,可以说明该收发端设备周围有多个物体。则该雷达模块可以将第k个峰值对应的速度值
Figure PCTCN2020118418-appb-000031
作为收发端设备与周围环境中第k个物体的相对速度值。
在又一些示例中,当上述的收发端设备静止时,该收发端设备与第k个物体的相对速度值可以是该第k个物体的实际速度值。
由于该取模后的矩阵中的元素值会因为该收发端设备周围环境的影响而影响计算精确度。通过本申请实施例来计算收发端设备与接收端设备的相对位置关系,可以避免采用 上述的取模后的矩阵中的元素值来计算,从而可以提高确定相对位置关系的准确度。
在又一些示例中,上述的雷达模块在确定出收发端设备与周围环境的相对位置关系后,还可以统计取模后的矩阵
Figure PCTCN2020118418-appb-000032
中峰值的数量,然后可以基于峰值的数量,确定出收发端设备所处位置周围环境中物体的数量。
为了更清楚的说明本申请实施例,这里,结合图4进行说明,如图4所示,为本申请实施例的一种雷达与通信一体化系统的协同工作方法的应用场景的结构示意图;在图4中,可以包括A汽车410和B汽车420,其中,该A汽车410可以是收发端设备,B汽车420可以是接收端设备。该A汽车410中可以设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和通信模块。
该A汽车410中的通信模块分别将OFDM信号发送至B汽车420和该A汽车中的雷达模块,该OFDM信号中携带有通信信息,以使得B汽车420基于OFDM信号获取A汽车410的通信信息。
例如,该A汽车410中的通信模块发送的OFDM信号可以经过空间传播至B汽车420,从而可以被B汽车中的通信模块接收。B汽车420接收到该OFDM信号后,可以对该OFDM信号进行解码,从而可以获取到A汽车410传输给B汽车420的通信信息。
到达B汽车420处的OFDM信号以及A汽车410周围其他物体可以对该OFDM信号进行反射,将该OFDM信号反射后的信号称为反射信号,在经过空间传播后再次返回到A汽车410,因此,该A汽车410中的雷达模块可以接收到至少一个反射信号。
该A汽车410中的雷达模块接收到OFDM信号和至少一个反射信号后,可以基于至少一个反射信号,确定反射信号矩阵,并基于OFDM信号确定OFDM信号矩阵。然后通过步骤A1的公式(1)计算A汽车410与B汽车420的相对位置关系的环境矩阵H(m,n),再通过步骤A2的公式(2)对该环境矩阵H(m,n)进行变换,最后对变换后的矩阵中的每一个元素进行取模,从而可以得到取模后的矩阵
Figure PCTCN2020118418-appb-000033
在得到取模后的矩阵
Figure PCTCN2020118418-appb-000034
后,上述的A汽车410中的雷达模块可以采用步骤B1~B2,来确定自身与B汽车420之间的距离,还可以采用步骤C1~C2,来确定自身与B汽车420之间的相对速度。
上述的A汽车410确定出自身与B汽车420之间的相对距离可以是图5所示的相对距离,在图5中,雷达图像强度最高的值可以是上述的取模后的矩阵
Figure PCTCN2020118418-appb-000035
中的峰值,该峰值对应的相对距离为50m,则该A汽车与B汽车之间的相对距离则为50m。
上述的A汽车410确定出自身与B汽车420之间的相对速度可以是图6所示的相对速度,在图6中,雷达图像强度最高的值可以是上述的取模后的矩阵
Figure PCTCN2020118418-appb-000036
中的峰值,该峰值对应的相对速度为15m/s,则该A汽车与B汽车之间的相对速度则为15m/s。
可以理解的是,由于收发端设备与周围环境中的物体之间可以存在相向运动或相背运动,因此,收发端设备与周围环境中的物体之间的相对速度可以是正值,也可以是负值, 例如,当收发端设备与周围环境中的物体之间相向运动时,两者之间的相对速度为正值;当收发端设备与周围环境中的物体之间相背运动时,两者之间的相对速度为负值。
在一些示例中,由于收发端设备接收到的反射信号中可能会存在干扰信号,因此,在图5和图6中,相对距离为50m,相对速度为15m时,雷达图像强度会存在一个区间值,该区间值可以反映收发端设备接收到的反射信号中的干扰信号的强度,在图5和图6中,该干扰信号的强度可以达到40dB。
在一种可能的实施方式中,所述协同该工作系统包括多个收发端设备;所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和通信模块;本申请实施例的一种雷达与通信一体化系统的协同工作方法包括:
步骤一,第一收发端设备将携带有通信信息的共享OFDM信号通过自身的雷达与通信一体化系统发送给第二收发端设备的通信模块。
其中,第一收发端设备可以为任一收发端设备,第一收发端设备中包括雷达与通信一体化系统。
上述OFDM信号具体可以为通信与雷达探测的共享OFDM信号,共享OFDM信号中携带有通信信息,此外共享OFDM信号还可以为仅雷达探测需求优化后的OFDM信号。可选的,上述方法还包括:第一收发端设备生成携带有通信信息的OFDM信号,并根据雷达探测相关的参数及雷达探测信号,对携带有通信信息的OFDM信号进行调整,得到所述共享OFDM信号。
步骤二,所述第二收发端设备的通信接收模块在接收到所述第一收发端设备发送的共享OFDM信号后,解码所述共享OFDM信号,得到所述OFDM信号中携带的通信信息,其中,所述第二收发端设备的雷达模块不会处理所述共享OFDM信号。
第二收发端设备为除第一收发端设备外的一收发端设备,第二收发端设备中同样包括雷达与通信一体化系统。
步骤三,所述第一收发端设备的雷达模块接收所述共享OFDM信号经反射后的至少一个反射信号;所述第一收发端设备的雷达模块基于所述至少一个反射信号和所述共享OFDM信号,计算得到所述第一收发端设备与周围环境的相对位置关系。
可选的,所述至少一个反射信号中包括第三收发端设备的反射信号,所述第一收发端设备与周围环境的相对位置关系包括所述第一收发端设备与所述第三收发端设备的相对位置关系,所述第三收发端设备为所述第二收发端设备或区别于所述第二收发端设备的收发端设备。
可选的,所述第一收发端设备的雷达模块基于所述至少一个反射信号和所述共享OFDM信号,计算得到所述第一收发端设备与周围环境的相对位置关系,包括:
所述第一收发端设备的雷达模块根据所述至少一个反射信号,确定反射信号矩阵。
所述第一收发端设备的雷达模块获取所述共享OFDM信号,并确定所述共享OFDM信号的OFDM信号矩阵。
所述第一收发端设备的雷达模块根据所述反射信号矩阵和所述OFDM信号矩阵,确定所述第一收发端设备与周围环境的相对位置关系,其中,所述相对位置关系包括相对距离、相对速度及相对方位。
第一收发端设备与周围环境的相对位置关系的具体计算方式可以参见本申请其他实施例中关于相对位置关系计算的描述,此处不再赘述。
对应于上述的方法实施例,本申请实施例还提供了一种雷达与通信一体化系统的协同工作系统,如图1所示,为本申请实施例的一种雷达与通信一体化系统的协同工作系统的结构示意图,该协同工作系统可以包括收发端设备和接收端设备;该收发端设备可以是图1所示的系统三个节点中的任一个,接收端设备可以是图1所示的系统中的其它两个节点。
如图7所示,本申请实施例还提供了一种收发端设备,该收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块710和第一通信模块720。
第一通信模块720,用于分别将OFDM信号发送至接收端设备和雷达模块710,以使接收端设备的第二通信模块在接收到第一通信模块720发送的OFDM信号后,获取OFDM信号中携带的通信信息。
雷达模块710,用于接收第一通信模块720发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系,该周围环境至少包括接收端设备。
本申请实施例提供的收发端设备,通信传输与雷达探测共享OFDM信号,通过相同的OFDM信号在实现与接收端的通信的情况下,同时实现确定自身所处的位置的周围环境,使得收发端设备可以同时实现通信传输与雷达探测,从而可以提高安装有雷达与通信一体化系统的收发端设备的性能。
在一种可能的实施方式中,所述通信模块,即第一通信模块720,包括通信发送处理子模块和通信接收处理子模块;所述雷达模块,包括雷达发射处理子模块和雷达接收处理子模块;
所述通信发送处理子模块,用于生成携带有通信信息的OFDM信号,将携带有通信信息的OFDM信号发送给所述雷达发射处理子模块;接收所述雷达发射处理子模块返回的共享OFDM信号,并将所述共享OFDM信号通过射频无线的方式发送给其他设备的通信模块,以使其他设备在接收到共享OFDM信号后,获取共享OFDM信号中携带的通信信息;
所述通信接收处理子模块,用于在接收到其他设备发射的共享OFDM信号后,提取其他设备发射的共享OFDM信号中所携带的通信信息;
所述雷达发射处理子模块,用于利用雷达探测相关的参数及雷达探测信号,对携带有通信信息的OFDM信号进行调整,得到共享OFDM信号;
雷达发射处理模块可以根据应用场景对雷达探测距离精度与范围、速度精度与范围等雷达探测的要求,首先计算出能满足上述要求的带宽、帧持续时间、信号功率等雷达探测 信号参数;具体的带宽、帧持续时间、信号功率等雷达探测信号参数的计算方法,可以参见相关技术中雷达探测信号的参数计算方法,此处不再赘述。然后按照探测信号的参数,对携带有通信信息的OFDM信号从时频元素域进行时频元素的优化排列,包括:对存在时频元素不足之处进行插值扩充,对相邻时频元素进行功率均衡等方面的处理,最终得到携带有通信信息,且同时满足应用场景的雷达探测需求的雷达与通信一体的共享OFDM信号。
所述雷达接收处理子模块,用于接收本收发端设备上发出的共享OFDM信号经周边物体反射后的至少一个反射叠加信号,并基于所述反射叠加信号和本收发端设备的通信发送处理子模块的共享OFDM信号,确定本收发端设备与周围环境物体的相对位置关系。
在一些示例中,雷达模块710,具体用于接收第一通信模块720发送的OFDM信号经反射后的至少一个反射信号,并基于至少一个反射信号,确定反射信号矩阵;获取第一通信模块720发送的OFDM信号,并基于OFDM信号确定OFDM信号矩阵;根据反射信号矩阵和OFDM信号矩阵,确定收发端设备与周围环境的相对位置关系。
在一些示例中,雷达模块710,包括:
环境矩阵计算子模块,用于根据反射信号矩阵D Rx(m,n)和OFDM信号矩阵D Tx(m,n),通过以下公式:
H(m,n)=D Tx(m,n) -1(D Rx(m,n)-W(m,n))
计算收发端设备与周围环境的相对位置关系的环境矩阵H(m,n);其中,m为OFDM信号中子载波的数量,n为OFDM信号中的符号的数量,W(m,n)表示叠加的高斯白噪声;
矩阵变换子模块,用于通过以下公式:
Figure PCTCN2020118418-appb-000037
对环境矩阵H(m,n)进行离散傅里叶变换和反离散傅里叶变换,得到变换后的环境矩阵
Figure PCTCN2020118418-appb-000038
其中,环境矩阵中
Figure PCTCN2020118418-appb-000039
第p行第q列元素的元素值为
Figure PCTCN2020118418-appb-000040
0≤p≤N c-1,-N sym/2+1≤q≤N sym/2,N c为OFDM信号的子载波数量,N sym为预设时间内传输的OFDM信号中的符号的数量;
取模子模块,用于对变换后的环境矩阵
Figure PCTCN2020118418-appb-000041
中的每一个元素进行取模,得到取模后的矩阵
Figure PCTCN2020118418-appb-000042
周围环境确定子模块,用于基于取模后的矩阵
Figure PCTCN2020118418-appb-000043
确定收发端设备与周围环境的相对位置关系。
在一些示例中,周围环境确定子模块,包括:
距离值计算单元,用于获取取模后的矩阵
Figure PCTCN2020118418-appb-000044
中的峰值的行数p(k),并通过以下公式:
Figure PCTCN2020118418-appb-000045
计算第k个峰值对应的距离值
Figure PCTCN2020118418-appb-000046
其中,0≤p(k)≤N c-1,0<k<N c-1,c 0为 光在空气中的传播速度,Δf为OFDM信号中子载波之间的频率间隔;取模后的矩阵
Figure PCTCN2020118418-appb-000047
中与峰值相邻的元素的元素值小于峰值;
相对距离值计算单元,用于将第k个峰值对应的距离值
Figure PCTCN2020118418-appb-000048
作为收发端设备与周围环境中的第k个物体的相对距离值,其中,物体包括接收端设备。
在一些示例中,周围环境确定子模块,包括:
速度值计算单元,用于获取取模后的矩阵
Figure PCTCN2020118418-appb-000049
中的峰值的列数q(k),并通过以下公式:
Figure PCTCN2020118418-appb-000050
计算第k个峰值对应的速度值
Figure PCTCN2020118418-appb-000051
其中,-N sym/2+1≤q(k)≤N sym/2,0<k<N sym,c 0为光在空气中的传播速度,f c为OFDM信号中的载波频率;T OFDM为OFDM信号中一个符号的周期,取模后的矩阵
Figure PCTCN2020118418-appb-000052
中与峰值相邻的元素的元素值小于峰值;
相对速度值计算单元,用于将第k个峰值对应的速度值
Figure PCTCN2020118418-appb-000053
作为收发端设备与周围环境中第k个物体的相对速度值,其中,物体包括接收端设备。
在一些示例中,所述OFDM信号的每帧信号的前端包括循环前缀,所述循环前缀的时长大于所述反射信号的传输时长,其中,所述反射信号的传输时长为从所述第一通信模块发送所述OFDM信号到所述雷达模块接收到所述反射信号之间的时长。
可选的,第一通信模块720,具体用于:采用预先分配的频段将OFDM信号发送至接收端设备和雷达模块710;或者,采用预先分配的时隙将OFDM信号发送至接收端设备和雷达模块710;或者,采用预先分配的时隙和频段,将OFDM信号发送至接收端设备和雷达模块710;
第二通信模块,具体用于:采用与为第一通信模块720预先分配的频段相同的频段,接收OFDM信号,并获取OFDM信号中携带的通信信息;或者,采用与为第一通信模块720预先分配的时隙相同的时隙,接收OFDM信号,并获取OFDM信号中携带的通信信息;或者,采用与为第一通信模块720预先分配的时隙和频段相同的时隙和频段,接收OFDM信号,并获取OFDM信号中携带的通信信息。
在一些示例中,雷达模块710,用于采用与第一通信模块720相同的时隙和或/频段获取第一通信模块720发送的OFDM信号。
可选的,第一通信模块720,还用于采用与雷达模块710不同的时隙和/或频段,接收接收端设备的第二通信模块发送的OFDM信号。
本申请实施例还提供了一种雷达与通信一体化系统的协同工作系统,协同该工作系统包括接收端设备和上述实施例所述的任一收发端设备;收发端设备上设置有雷达与通信一体化系统,雷达与通信一体化系统包括:雷达模块和第一通信模块,接收端设备上至少设置有第二通信模块;
第一通信模块,用于分别将OFDM信号发送至接收端设备和雷达模块;
第二通信模块,用于在接收到第一通信模块发送的OFDM信号后,获取OFDM信号中携带的通信信息,其中,接收端设备至少为一个;
雷达模块,用于接收第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于至少一个反射信号和OFDM信号,确定收发端设备与周围环境的相对位置关系,周围环境至少包括接收端设备。
可选的,第一通信模块,具体用于:采用预先分配的频段将OFDM信号发送至接收端设备和雷达模块;或者,采用预先分配的时隙将OFDM信号发送至接收端设备和雷达模块;或者,采用预先分配的时隙和频段,将OFDM信号发送至接收端设备和雷达模块;
第二通信模块,具体用于:采用与为第一通信模块预先分配的频段相同的频段,接收OFDM信号,并获取OFDM信号中携带的通信信息;或者,采用与为第一通信模块预先分配的时隙相同的时隙,接收OFDM信号,并获取OFDM信号中携带的通信信息;或者,采用与为第一通信模块预先分配的时隙和频段相同的时隙和频段,接收OFDM信号,并获取OFDM信号中携带的通信信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还提供了一种计算机可读存储介质,上述计算机可读存储介质内存储有计算机程序,上述计算机程序被处理器执行时实现上述实施例中任一一种雷达与通信一体化系统的协同工作方法。
在本申请提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一一种雷达与通信一体化系统的协同工作方法。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (15)

  1. 一种雷达与通信一体化系统的协同工作方法,其特征在于,应用于协同工作系统,所述协同工作系统包括收发端设备和接收端设备;所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和第一通信模块,所述接收端设备上至少设置有第二通信模块;
    所述方法包括:
    所述第一通信模块分别将正交频分复用OFDM信号发送至所述接收端设备和所述雷达模块;
    所述第二通信模块在接收到所述第一通信模块发送的OFDM信号后,获取所述OFDM信号中携带的通信信息,其中,所述接收端设备至少为一个;
    所述雷达模块接收所述第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于所述至少一个反射信号和所述OFDM信号,确定所述收发端设备与周围环境的相对位置关系,所述周围环境至少包括所述接收端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述雷达模块接收所述第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于所述至少一个反射信号和所述OFDM信号,确定所述收发端设备与周围环境的相对位置关系,包括:
    所述雷达模块接收所述第一通信模块发送的OFDM信号经反射后的至少一个反射信号,并基于所述至少一个反射信号,确定反射信号矩阵;
    获取所述第一通信模块发送的所述OFDM信号,并基于所述OFDM信号确定OFDM信号矩阵;
    根据所述反射信号矩阵和所述OFDM信号矩阵,确定所述收发端设备与所述周围环境的相对位置关系。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述反射信号矩阵和所述OFDM信号矩阵,确定所述收发端设备与所述周围环境的相对位置关系,包括:
    根据所述反射信号矩阵D Rx(m,n)和所述OFDM信号矩阵D Tx(m,n),通过以下公式:
    H(m,n)=D Tx(m,n) -1(D Rx(m,n)-W(m,n))
    计算所述收发端设备与所述周围环境的相对位置关系的环境矩阵H(m,n);其中,所述m为所述OFDM信号中子载波的数量,所述n为所述OFDM信号中的符号的数量,所述W(m,n)表示叠加的高斯白噪声;
    通过以下公式:
    Figure PCTCN2020118418-appb-100001
    对所述环境矩阵H(m,n)进行离散傅里叶变换和反离散傅里叶变换,得到变换后的环境 矩阵
    Figure PCTCN2020118418-appb-100002
    其中,所述环境矩阵中
    Figure PCTCN2020118418-appb-100003
    第p行第q列元素的元素值为
    Figure PCTCN2020118418-appb-100004
    所述0≤p≤N c-1,所述-N sym/2+1≤q≤N sym/2,所述N c为所述OFDM信号的子载波数量,所述N sym为预设时间内传输的所述OFDM信号中的符号的数量;
    对所述变换后的环境矩阵
    Figure PCTCN2020118418-appb-100005
    中的每一个元素进行取模,得到取模后的矩阵
    Figure PCTCN2020118418-appb-100006
    基于所述取模后的矩阵
    Figure PCTCN2020118418-appb-100007
    确定所述收发端设备与所述周围环境的相对位置关系。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述取模后的矩阵
    Figure PCTCN2020118418-appb-100008
    确定所述收发端设备与所述周围环境的相对位置关系,包括:
    获取所述取模后的矩阵
    Figure PCTCN2020118418-appb-100009
    中的峰值的行数p(k),并通过以下公式:
    Figure PCTCN2020118418-appb-100010
    计算第k个峰值对应的距离值
    Figure PCTCN2020118418-appb-100011
    其中,所述0≤p(k)≤N c-1,所述0<k<N c-1,所述c 0为光在空气中的传播速度,所述Δf为所述OFDM信号中子载波之间的频率间隔;所述取模后的矩阵
    Figure PCTCN2020118418-appb-100012
    中与所述峰值相邻的元素的元素值小于所述峰值;
    将所述第k个峰值对应的距离值
    Figure PCTCN2020118418-appb-100013
    作为所述收发端设备与所述周围环境中的第k个物体的相对距离值,其中,所述物体包括所述接收端设备。
  5. 根据权利要求3所述的方法,其特征在于,所述基于所述取模后的矩阵
    Figure PCTCN2020118418-appb-100014
    确定所述收发端设备与所述周围环境的相对位置关系,包括:
    获取所述取模后的矩阵
    Figure PCTCN2020118418-appb-100015
    中的峰值的列数q(k),并通过以下公式:
    Figure PCTCN2020118418-appb-100016
    计算第k个峰值对应的速度值
    Figure PCTCN2020118418-appb-100017
    其中,所述-N sym/2+1≤q(k)≤N sym/2,所述0<k<N sym,所述c 0为光在空气中的传播速度,所述f c为所述OFDM信号中的载波频率;所述T OFDM为所述OFDM信号中一个符号的周期,所述取模后的矩阵
    Figure PCTCN2020118418-appb-100018
    中与所述峰值相邻的元素的元素值小于所述峰值;
    将所述第k个峰值对应的速度值
    Figure PCTCN2020118418-appb-100019
    作为所述收发端设备与所述周围环境中第k个物体的相对速度值,其中,所述物体包括所述接收端设备。
  6. 根据权利要求1所述的方法,其特征在于,所述OFDM信号的每帧信号的前端包括循环前缀,所述循环前缀的时长大于所述反射信号的往返传输时长,其中,所述反射信号的往返传输时长为从所述收发端设备发送所述OFDM信号到经周边物体反射后所述收发端设备的雷达理模块接收到所述OFDM信号的反射信号,所述OFDM信号在空间传播的最大往返时长。
  7. 根据权利要求1所述的方法,其特征在于,所述第一通信模块分别将OFDM信号发送至所述接收端设备和所述雷达模块,包括:
    所述第一通信模块采用预先分配的频段将所述OFDM信号发送至所述接收端设备和所述雷达模块;
    或者,所述第一通信模块采用预先分配的时隙将所述OFDM信号发送至所述接收端设备和所述雷达模块;
    或者,所述第一通信模块采用预先分配的时隙和频段,将所述OFDM信号发送至所述接收端设备和所述雷达模块;
    所述第二通信模块在接收到所述第一通信模块发送的OFDM信号后,获取所述OFDM信号中携带的通信信息,包括:
    所述第二通信模块采用与为所述第一通信模块预先分配的频段相同的频段,接收所述OFDM信号,并获取所述OFDM信号中携带的通信信息;
    或者,所述第二通信模块采用与为所述第一通信模块预先分配的时隙相同的时隙,接收所述OFDM信号,并获取所述OFDM信号中携带的通信信息;
    或者,所述第二通信模块采用与为所述第一通信模块预先分配的时隙和频段相同的时隙和频段,接收所述OFDM信号,并获取所述OFDM信号中携带的通信信息。
  8. 根据权利要求7所述的方法,其特征在于,所述雷达模块采用与所述第一通信模块相同的时隙和/或频段获取所述第一通信模块发送的所述OFDM信号。
  9. 根据权利要求1所述的方法,其特征在于,所述第一通信模块采用与所述雷达模块不同的时隙和/或频段,接收所述接收端设备的所述第二通信模块发送的OFDM信号。
  10. 一种雷达与通信一体化系统的协同工作系统,其特征在于,所述协同该工作系统包括收发端设备和接收端设备;所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和第一通信模块,所述接收端设备上至少设置有第二通信模块;
    所述第一通信模块,用于分别将OFDM信号发送至所述接收端设备和所述雷达模块;
    所述第二通信模块,用于在接收到所述第一通信模块发送的OFDM信号后,获取所述OFDM信号中携带的通信信息,其中,所述接收端设备至少为一个;
    所述雷达模块,用于接收所述第一通信模块发送的OFDM信号经反射后的至少一个反射信号;并基于所述至少一个反射信号和所述OFDM信号,确定所述收发端设备与周围环境的相对位置关系,所述周围环境至少包括所述接收端设备。
  11. 一种收发端设备,其特征在于,所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和通信模块;所述通信模块,包括通信发送处理子模块和通信接收处理子模块;所述雷达模块,包括雷达发射处理子模块和雷达接收处理子模块;
    所述通信发送处理子模块,用于生成携带有通信信息的OFDM信号,将携带有通信信息的OFDM信号发送给所述雷达发射处理子模块;接收所述雷达发射处理子模块返回的共 享OFDM信号,并将所述共享OFDM信号通过射频无线的方式发送给其他设备的通信模块,以使其他设备在接收到共享OFDM信号后,获取共享OFDM信号中携带的通信信息;
    所述通信接收处理子模块,用于在接收到其他设备发射的共享OFDM信号后,提取其他设备发射的共享OFDM信号中所携带的通信信息;
    所述雷达发射处理子模块,用于利用雷达探测相关的参数及雷达探测信号,对携带有通信信息的OFDM信号进行调整,得到共享OFDM信号;
    所述雷达接收处理子模块,用于接收本收发端设备上发出的共享OFDM信号经周边物体反射后的至少一个反射叠加信号,并基于所述反射叠加信号和本收发端设备的通信发送处理子模块的共享OFDM信号,确定本收发端设备与周围环境物体的相对位置关系。
  12. 一种雷达与通信一体化系统的协同工作方法,应用于协同工作系统,所述协同该工作系统包括多个收发端设备;所述收发端设备上设置有雷达与通信一体化系统,所述雷达与通信一体化系统包括:雷达模块和通信模块;所述方法包括:
    第一收发端设备将携带有通信信息的共享OFDM信号通过自身的雷达与通信一体化系统发送给第二收发端设备的通信模块;
    所述第二收发端设备的通信接收模块在接收到所述第一收发端设备发送的共享OFDM信号后,解码所述共享OFDM信号,得到所述OFDM信号中携带的通信信息,其中,所述第二收发端设备的雷达模块不会处理所述共享OFDM信号;
    所述第一收发端设备的雷达模块接收所述共享OFDM信号经反射后的至少一个反射信号;所述第一收发端设备的雷达模块基于所述至少一个反射信号和所述共享OFDM信号,计算得到所述第一收发端设备与周围环境的相对位置关系。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    第一收发端设备生成携带有通信信息的OFDM信号,并根据雷达探测相关的参数及雷达探测信号,对携带有通信信息的OFDM信号进行调整,得到所述共享OFDM信号。
  14. 根据权利要求12所述的方法,其特征在于,所述至少一个反射信号中包括第三收发端设备的反射信号,所述第一收发端设备与周围环境的相对位置关系包括所述第一收发端设备与所述第三收发端设备的相对位置关系,所述第三收发端设备为所述第二收发端设备或区别于所述第二收发端设备的收发端设备。
  15. 根据权利要求12所述的方法,其特征在于,所述第一收发端设备的雷达模块基于所述至少一个反射信号和所述共享OFDM信号,计算得到所述第一收发端设备与周围环境的相对位置关系,包括:
    所述第一收发端设备的雷达模块根据所述至少一个反射信号,确定反射信号矩阵;
    所述第一收发端设备的雷达模块获取所述共享OFDM信号,并确定所述共享OFDM信号的OFDM信号矩阵;
    所述第一收发端设备的雷达模块根据所述反射信号矩阵和所述OFDM信号矩阵,确定 所述第一收发端设备与周围环境的相对位置关系,其中,所述相对位置关系包括相对距离、相对速度及相对方位。
PCT/CN2020/118418 2019-09-30 2020-09-28 一种雷达与通信一体化系统的协同工作方法及系统 WO2021063315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910943966.1 2019-09-30
CN201910943966.1A CN110677368B (zh) 2019-09-30 2019-09-30 一种雷达与通信一体化系统的协同工作方法及系统

Publications (1)

Publication Number Publication Date
WO2021063315A1 true WO2021063315A1 (zh) 2021-04-08

Family

ID=69080561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118418 WO2021063315A1 (zh) 2019-09-30 2020-09-28 一种雷达与通信一体化系统的协同工作方法及系统

Country Status (2)

Country Link
CN (1) CN110677368B (zh)
WO (1) WO2021063315A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056104A (zh) * 2022-12-30 2023-05-02 中国科学院上海微系统与信息技术研究所 感知通信一体化ofdm共享波形子载波的比特和功率分配方法
CN116184346A (zh) * 2022-12-27 2023-05-30 南京信息工程大学 一种5g下行信号外辐射源雷达相参积累处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677368B (zh) * 2019-09-30 2021-04-09 北京邮电大学 一种雷达与通信一体化系统的协同工作方法及系统
CN111585644B (zh) * 2020-05-27 2021-07-20 北京邮电大学 雷达通信一体化系统、信号处理方法及设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997395A (zh) * 2014-06-13 2014-08-20 电子科技大学 基于mimo雷达通信一体化信号的变进制编解码方法
WO2014125447A1 (en) * 2013-02-18 2014-08-21 University Of Cape Town Symbiotic radar and communication system
CN108809879A (zh) * 2018-04-13 2018-11-13 南京大学 基于ce-ofdm的雷达通信一体化信号设计方法
CN110677368A (zh) * 2019-09-30 2020-01-10 北京邮电大学 一种雷达与通信一体化系统的协同工作方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132768A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd 通信機能を有する車載レーダー装置
CN105137410B (zh) * 2015-07-24 2017-09-29 西安电子科技大学 基于ofdm的高分辨率雷达通信一体化的波形优化方法
CN105245584B (zh) * 2015-09-25 2018-06-15 北京航空航天大学 一种基于ofdm雷达通信一体化的车联网感知系统及其构建方法
KR101814486B1 (ko) * 2016-09-29 2018-01-05 재단법인대구경북과학기술원 레이더 및 무선 통신 기능을 가지는 차량용 레이더 장치 및 그것을 이용한 자원 조절 방법
US11644529B2 (en) * 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
CN110035029B (zh) * 2019-04-18 2020-05-12 电子科技大学 一种基于偏移正交幅度调制ofdm信号的脉冲压缩方法
CN110224965B (zh) * 2019-06-17 2021-02-12 电子科技大学 一种基于ofdm反向散射通信系统的半盲接收机设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125447A1 (en) * 2013-02-18 2014-08-21 University Of Cape Town Symbiotic radar and communication system
CN103997395A (zh) * 2014-06-13 2014-08-20 电子科技大学 基于mimo雷达通信一体化信号的变进制编解码方法
CN108809879A (zh) * 2018-04-13 2018-11-13 南京大学 基于ce-ofdm的雷达通信一体化信号设计方法
CN110677368A (zh) * 2019-09-30 2020-01-10 北京邮电大学 一种雷达与通信一体化系统的协同工作方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184346A (zh) * 2022-12-27 2023-05-30 南京信息工程大学 一种5g下行信号外辐射源雷达相参积累处理方法
CN116184346B (zh) * 2022-12-27 2023-11-03 南京信息工程大学 一种5g下行信号外辐射源雷达相参积累处理方法
CN116056104A (zh) * 2022-12-30 2023-05-02 中国科学院上海微系统与信息技术研究所 感知通信一体化ofdm共享波形子载波的比特和功率分配方法

Also Published As

Publication number Publication date
CN110677368B (zh) 2021-04-09
CN110677368A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021063315A1 (zh) 一种雷达与通信一体化系统的协同工作方法及系统
US10609687B2 (en) Duplex communication method, base station and terminal
TWI590608B (zh) 在多使用者之多輸入多輸出系統中的平行通道培訓技術
US10270496B2 (en) Apparatus and method for transmitting/receiving signal in wireless communication system supporting distributed antenna system
CN107104768B (zh) 无线通信系统的动态时分双工数据信道传输方法和装置
JP5065389B2 (ja) Ofdm通信環境におけるアップリンクアクセス要求
KR20170056527A (ko) 비면허 스펙트럼 상에서의 셀 검출, 동기화 및 측정
US10177941B2 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
JP2015528663A5 (zh)
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
CN114158090A (zh) 数据发送方法、数据接收处理方法及相关设备
WO2022121892A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
CN114762283A (zh) 用于上行链路传输配置指示符状态的准共处参考信号
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2016086815A1 (zh) 在小小区之间进行干扰协同的方法以及无线通信设备
CN114208294A (zh) 用于从相邻小区接收rmsi的方法和装置
WO2020048452A1 (zh) 定位参考信号传输的方法和装置
CN114221837B (zh) 帧结构指示方法、帧结构更新方法及相关设备
WO2016019511A1 (zh) 无线通信系统的干扰消除方法和装置
CN108737306A (zh) 基于频分复用的通信
WO2019179273A1 (zh) 一种数据传输方法及装置
EP3391606B1 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
Sit et al. MIMO OFDM radar networks: Inter-& intra-system interference handling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870710

Country of ref document: EP

Kind code of ref document: A1