WO2021062695A1 - 一种机器人的关节连接结构及机器人 - Google Patents

一种机器人的关节连接结构及机器人 Download PDF

Info

Publication number
WO2021062695A1
WO2021062695A1 PCT/CN2019/109587 CN2019109587W WO2021062695A1 WO 2021062695 A1 WO2021062695 A1 WO 2021062695A1 CN 2019109587 W CN2019109587 W CN 2019109587W WO 2021062695 A1 WO2021062695 A1 WO 2021062695A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
connection structure
signal line
joint connection
annular groove
Prior art date
Application number
PCT/CN2019/109587
Other languages
English (en)
French (fr)
Inventor
姚吉隆
张晟
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to PCT/CN2019/109587 priority Critical patent/WO2021062695A1/zh
Publication of WO2021062695A1 publication Critical patent/WO2021062695A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints

Definitions

  • the present invention mainly relates to the field of robots, in particular to a joint connection structure of a robot and a robot.
  • Collaborative robots are flexible, compact, and easy to configure, so they are widely used in various industrial fields, especially in light-weight assemblies.
  • collaborative robots usually include numerous joints and arm links, as well as external controllers.
  • the joint is a joint structure in a collaborative robot, which is composed of gears, motors, sensors, bearings, and drive circuits.
  • a power line is required to provide power for it, and a signal line to communicate with the controller.
  • the structure of the conductive slip ring is as follows.
  • one part is provided with a conductive ring
  • the other part is provided with a conductive contact
  • the conductive contact is in electrical contact with the conductive ring
  • the conductive ring and the conductive contact Connect to the cables separately.
  • the present invention aims to provide a joint connection structure of a robot and a robot, so as to improve the signal transmission quality and reliability of the robot joint.
  • the joint connection structure includes: a first signal line and a second signal line for transmitting electrical signals; a first power line and a second power line, Used to transmit electric power; the first connector is provided with an annular groove and a conductive ring, the annular groove is filled with liquid metal, the liquid metal is electrically connected to the first signal line, and the conductive ring is electrically connected to the The first power line; a second connector, which can rotate relative to the first connector, is provided with a conductive contact, and the conductive contact is electrically connected between the conductive ring and the second power line, Wherein, the second signal line extends through the second connecting member and extends into the annular groove to be in contact with the liquid metal.
  • the liquid metal has good surface tension and can be widely attached to the annular groove, reducing or avoiding the formation of gaps.
  • the second signal line extends to the liquid metal, due to the inside of the annular groove The gap is reduced or eliminated, which can significantly increase the contact area between the second signal line and the liquid metal, thereby improving the signal transmission quality and reliability.
  • a first signal line connector and a first power line connector are respectively provided on the first connector. In this way, the electromagnetic interference between the signal line and the power line can be reduced, and the signal and power transmission efficiency can be improved.
  • a first connector is provided on the first connector, and the first connector connects the first signal line and the first power line.
  • a second signal line connector and a second power line connector are respectively provided on the second connector. In this way, the electromagnetic interference between the signal line and the power line can be reduced, and the signal and power transmission efficiency can be improved.
  • a second connector is provided on the second connector, and the second connector connects the second signal line and the second power line.
  • the first connector is provided with a plurality of annular grooves arranged at intervals
  • the joint connection structure includes a plurality of second signal wires
  • the plurality of second signal wires pass through the The second connecting member extends into the corresponding annular groove to contact the liquid metal.
  • sealing rings are provided on both sides of the opening of the annular groove to seal the liquid metal filled in the annular groove. In this way, the sealing performance of liquid metal can be improved.
  • the plurality of annular grooves are arranged at equal intervals.
  • the liquid alloy is made of mercury or a low melting point alloy material.
  • the present invention also provides a robot including the joint connection structure described above. Since the robot includes the above-mentioned joint connection structure, based on the joint connection structure, its signal transmission quality and reliability are correspondingly improved.
  • Fig. 1 is a schematic cross-sectional view of a joint connection structure according to an embodiment of the present invention
  • Figure 2 is a side view of a joint connection structure according to an embodiment of the present invention.
  • Fig. 3 is a three-dimensional structural diagram of a joint connection structure according to an embodiment of the present invention.
  • Figure 4 is a front view of a joint connection structure according to an embodiment of the present invention.
  • Fig. 5 is a rear view of the joint connection structure according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a joint connection structure 100 according to an embodiment of the present invention.
  • FIG. 2 is a side view of the joint connection structure 100 according to an embodiment of the present invention.
  • the joint connection structure 100 includes a first signal line 101 and a second signal line 102.
  • the first signal line 101 and the second signal line 102 are used to transmit electrical signals between the joints of the robot.
  • the electrical signal can be a control signal or a communication signal.
  • the first signal line 101 and the second signal line 102 may be coaxial cables or twisted pair cables. It can be understood that, in order to shield external noise, a protective cover is provided on the outside of the first signal line 101 and the second signal line 102.
  • the joint connection structure 100 includes a first power line 103 and a second power line 104.
  • the first power line 103 and the second power line 104 are used to transfer electric power between the joints of the robot.
  • electrical power refers to providing power to drive the joints to perform various types of motion, such as translation, rotation, or rotation.
  • the first power line 103 and the second power line 104 may be coaxial cables or twisted pair cables. It can be understood that, in order to shield external noise, a protective cover is provided on the outside of the first power line 103 and the second power line 104.
  • the first connecting member 120 is a flange disc with a certain thickness, and the center of the flange disc has an opening.
  • a plurality of annular grooves 105 are provided on the first connecting member 120.
  • the annular groove 105 refers to an annular groove formed around the center of the first connecting member 120.
  • FIG. 1 shows that the first connecting member 120 is provided with three annular grooves 105, and the three annular grooves 105 are arranged at equal intervals.
  • the annular groove 105 extends downward from the surface of the first connecting member 120.
  • the three annular grooves 105 have the same cross-sectional shape and depth.
  • FIG. 1 is only an example, and is not used to limit the number, structure and arrangement of the annular groove 105.
  • one annular groove 105 may be provided on the first connecting member 120, or a larger number of annular grooves 105 may be provided on the first connecting member 120.
  • the plurality of annular grooves 105 may also be arranged at non-equal intervals.
  • the cross-sectional shape and depth of the plurality of annular grooves may be different from each other, or may be partially the same. The embodiment of the present invention does not limit the number, structure and arrangement of the annular grooves.
  • the annular groove 105 is filled with liquid metal 106.
  • the liquid metal 106 has good surface tension and can be widely attached to the annular groove 105 to reduce or avoid the formation of voids.
  • each annular groove 105 is filled with the same liquid metal 106.
  • the liquid metal 106 may be made of mercury or a low melting point alloy material.
  • the liquid metal 106 is electrically connected to the first signal line 101 and can send and receive signals.
  • a conductive ring is also provided on the first connecting member 120.
  • the conductive ring refers to a ring structure formed around the center of the first connector 120.
  • a conductive ring 108 a and a conductive ring 108 b are provided on the first connector 120, wherein the conductive ring 108 a is located on the inner side wall of the first connector 120, and the conductive ring 108 b is located on the surface of the first connector 120.
  • the conductive ring can be made of any conductive material.
  • the conductive ring can be made of copper or iron.
  • the second connecting member 130 can rotate relative to the first connecting member 120. As shown in FIG. 1, the center of the second connecting member 130 has an opening, and the opening is inserted into a rotating shaft (not shown in the figure), and the second connecting member 130 can be driven by the rotating shaft to rotate.
  • the rotating shaft may be installed in the opening of the second connector 130 through a bearing.
  • the left side surface of the second connecting member 130 is attached to the right side surface of the first connecting member 120 to seal the liquid metal 106 in the annular groove 105.
  • sealing rings 109 are provided on both sides of the opening of the annular groove 105.
  • the sealing ring 109 is located between the left side surface of the second connecting member 130 and the right side surface of the first connecting member 120.
  • adjacent annular grooves 105 share the same sealing ring 109, and only four sealing rings are required.
  • the second signal line 102 passes through the second connecting member 130 and extends into the annular groove 105 to contact the liquid metal 106.
  • the second signal line 102 can be connected to the liquid metal. 106 keep in touch.
  • the liquid metal 106 has good surface tension and can be widely attached to the annular groove 105 to reduce or avoid the formation of voids.
  • the second signal line 102 extends to the liquid metal 106, since the void in the annular groove 105 is reduced or eliminated, the contact area between the second signal line 102 and the liquid metal can be significantly increased, thereby improving the quality and reliability of signal transmission.
  • the diameter of the second signal line 102 is adapted to the width of the annular groove 105.
  • the diameter of the second signal line 102 is adapted to the width of the annular groove 105 means that when the second signal line 102 is inserted into the annular groove 105, it will not touch the side wall of the annular groove 105 , But not too far from the side wall of the annular groove 105. For this reason, the second signal line 102 is limited to a fixed range of the annular groove 105, which can take into account the service life and signal transmission quality.
  • the depth of the second signal line 102 extending through the second connector 130 to the annular groove 105 may be half of the depth of the annular groove 105.
  • a conductive contact is provided on the second connector 130, and the conductive contact is electrically connected between the conductive ring and the second power line 104, that is, one end of the conductive contact is in electrical contact with the conductive ring, and the other end is connected to the second power line 104 .
  • a conductive contact 107a and a conductive contact 107b are provided on the second connector 130.
  • the conductive contact 107a is located on the outer side wall of the second connector 130 and is disposed opposite to the conductive ring 108a
  • the conductive contact 107b is located on the surface of the second connector 130 and is disposed opposite to the conductive ring 108b.
  • the other ends of the conductive contact 107 a and the conductive contact 107 b are connected to the second power line 104.
  • the conductive contact can be made of any conductive material.
  • the conductive contact may be made of copper or iron.
  • the conductive contact 107a maintains electrical contact with the conductive ring 108a
  • the conductive contact 107b maintains electrical contact with the conductive ring 108b, which can transmit the electric energy of the first power line 103 To the second power line 104, or make the second power line 103 receive the electric energy sent by the second power line 104.
  • the joint connection structure includes three annular grooves 105, three second signal lines 102, three first signal lines 101, and two first power lines 103, and two second power lines. 104, 2 conductive rings, 2 conductive contacts. It can be understood that the number of these structures is not limited to this, as long as the number of the annular groove 105, the first signal line 101 and the second signal line 102 corresponds to the number of the first power line 103, the second power line 104, the conductive ring and the conductive ring. The corresponding number of contacts should fall within the protection scope of the present invention.
  • Fig. 3 is a schematic diagram of a three-dimensional structure of a joint connection structure according to an embodiment of the present invention.
  • Fig. 4 is a front view of a joint connection structure according to an embodiment of the present invention.
  • Fig. 5 is a rear view of the joint connection structure according to an embodiment of the present invention.
  • the joint connection structure 100 further includes a connector 140 and a connector 150.
  • the connector 140 is used to connect the first signal line 101 and the first power line 103 to the first connector 120
  • the connector 150 is used to connect the second signal line 102 and the second power line 104 to the second connector 130.
  • the first signal connector 141 connects the first signal line 101 to the first connector 120
  • the first power connector 142 connects the first power line 103 to the first connector 120
  • the second signal connector 151 connects the second signal line 102 to the second connector 130
  • the second power connector 152 connects the second power line 102 to the second connector 130.
  • the first signal connector 141 may be integrated with the first power connector 142 to form a first connector.
  • the second signal connector 151 may be integrated with the second power connector 152 to form a second connector.
  • the first signal connector and the first power connector may be of the same type as the second signal connector and the second power connector, for example, the same integral type or the same split type. In some embodiments, the first signal connector and the first power connector may be of different types from the second signal connector and the second power connector, for example, one is an integral type and the other is a split type.
  • This embodiment of the present invention provides a joint connection structure that transmits electrical signals with liquid metal through signal lines.
  • the liquid metal has good surface tension and can be widely attached to the annular groove to reduce or avoid the formation of gaps. Second When the signal line extends to the liquid metal, since the gap inside the annular groove is reduced or eliminated, the contact area between the second signal line and the liquid metal can be significantly increased, thereby improving signal transmission quality and reliability.
  • the present invention also provides a robot, which includes the joint connection structure as described above, and based on the joint connection structure, the signal transmission quality and reliability of the robot are correspondingly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人的关节连接结构(100),关节连接结构(100)包括:第一信号线(101)和第二信号线(102),用于传递电信号;第一功率线(103)和第二功率线(104),用于传递电功率;第一连接件(120),设有环形槽(105)和导电环(108a,108b),环形槽(105)中填充有液态金属(106),液态金属(106)电连接至第一信号线(101),导电环(108a,108b)电连接至第一功率线(103);第二连接件(130),可相对于第一连接件(120)旋转,设有导电触点(107a,107b),导电触点(107a,107b)电连接于导电环(108a,108b)与第二功率线(104)之间,其中,第二信号线(102)穿过第二连接件(130)延伸至环形槽(105)中与液态金属(106)接触。

Description

一种机器人的关节连接结构及机器人 技术领域
本发明主要涉及机器人领域,尤其涉及一种机器人的关节连接结构及机器人。
背景技术
协作机器人(collaborative robot)灵活、紧凑,且易于配置,因此广泛应用于各个工业领域,尤其是在轻量组装(light-weight assemblies)中。
在结构上,协作机器人通常包括众多的关节(joints)和臂连杆(arm links),以及配置在外部的控制器。其中,关节是协作机器人中的关节结构,其由齿轮、电机、传感器、轴承以及驱动电路组成。对于驱动电路,需要功率线为其提供电源,以及信号线与控制器进行通信。
这些线缆(包括信号线和功率线)位于机械臂的内部,从基关节(base joint)级联到末关节(last joint)。由于机械臂的内部空间非常有限,在机械臂的内部走线对其机械设计构成了相当大的挑战,并且复杂的内部走线也会非常耗时。此外,由于关节、臂连杆之间布置了大量复杂的走线,关节之间的旋转需要限制在一定范围(通常为100°)内,以避免绕线对线缆造成的伤害。
为了避免绕线对旋转造成的限制,现有的一种解决方案是在关节与关节之间以及关节和臂连杆之间使用导电滑环(slippery ring)结构。导电滑环的结构如下,在相对旋转的两个部件中,其中一个部件上设置有导电环,另一个部件上设置有导电触点,导电触点与导电环电接触,导电环和导电触点分别连接至线缆。在两个部件相对旋转时,导电触点与导电环保持电接触,可以将电信号和电功率从一个部件传递至另一个部件,避免了在两个部件布置线缆,消除了两个部件之间的旋转限制。
然而,随着导电环与导电触点的老化,其连接可靠性将会成为潜在的问题。此外,其通信连接信号不佳,特别是针对高速通信(100MHz或更高)。
发明内容
本发明旨在提供一种机器人的关节连接结构及机器人,以在提高机器人 关节的信号传输质量和可靠性。
为实现上述目的,本发明提出了一种机器人的关节连接结构,所述关节连接结构包括:第一信号线和第二信号线,用于传递电信号;第一功率线和第二功率线,用于传递电功率;第一连接件,设有环形槽和导电环,所述环形槽中填充有液态金属,所述液态金属电连接至所述第一信号线,所述导电环电连接至所述第一功率线;第二连接件,可相对于所述第一连接件旋转,设有导电触点,所述导电触点电连接于所述导电环与所述第二功率线之间,其中,所述第二信号线穿过所述第二连接件延伸至所述环形槽中与所述液态金属接触。这样,通过信号线与液态金属传递电信号,液态金属具有良好的表面张力,可以广泛地附着于环形槽中,减少或避免空隙的形成,第二信号线延伸至液态金属时,由于环形槽内部的空隙被减少或消除,可以显著提高第二信号线与液态金属的接触面积,从而提高了信号传输质量以及可靠性。
在本发明的一实施例中,所述第一连接件上分别设有第一信号线连接器和第一功率线连接器。这样,可以降低信号线与功率线之间的电磁干扰,提高信号与功率的传输效率。
在本发明的一实施例中,所述第一连接件上设有第一连接器,所述第一连接器连接所述第一信号线和所述第一功率线。这样,可以提高部件结构的集成度,简化结构。
在本发明的一实施例中,所述第二连接件上分别设有第二信号线连接器和第二功率线连接器。这样,可以降低信号线与功率线之间的电磁干扰,提高信号与功率的传输效率。
在本发明的一实施例中,所述第二连接件上设有第二连接器,所述第二连接器连接所述第二信号线和所述第二功率线。这样,可以提高部件结构的集成度,简化结构。
在本发明的一实施例中,所述第一连接件上设有多个间隔设置的环形槽,所述关节连接结构包括多个第二信号线,所述多个第二信号线穿过所述第二连接件延伸至相应的所述环形槽中与所述液态金属接触。这样,由于设置了多个信号线,单位时间内可以传输更多信号,提高了信号的传输速度。
在本发明的一实施例中,所述环形槽的开口两侧设有密封环,用于密封所述环形槽中填充的液态金属。这样,可以提高液态金属的密封性。
在本发明的一实施例中,所述多个环形槽等间距设置。
在本发明的一实施例中,所述液态合金由汞或低熔点合金材料制成。
本发明还提出了一种机器人,包括如上所述的关节连接结构。由于该机器人包括如上所述的关节连接结构,基于该关节连接结构,其信号传输质量和可靠性也相应提高。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中,
图1是根据本发明的一实施例的关节连接结构的剖面示意图;
图2是根据本发明的一实施例的关节连接结构的侧视图;
图3是根据本发明的一实施例的关节连接结构的立体结构示意图;
图4是根据本发明的一实施例的关节连接结构的正视图;
图5是根据本发明的一实施例的关节连接结构的后视图。
附图标记说明
100关节连接结构
101第一信号线
102第二信号线
103第一功率线
104第二功率线
105环形槽
106液态金属
107a、107b导电触点
108a、108b导电环
109密封环
120第一连接件
130第二连接件
140连接器
141第一信号线连接器
142第一功率线连接器
150连接器
151第二信号线连接器
152第二功率线连接器
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本发明和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
图1是根据本发明的一实施例的关节连接结构100的剖面示意图。图2是根据本发明的一实施例的关节连接结构100的侧视图。如图1所示,关节连接结构100包括第一信号线101和第二信号线102。第一信号线101和第二信号线102用于在机器人的关节之间传递电信号。电信号可以是控制信号,也可以是通信信号。第一信号线101和第二信号线102可以是同轴线缆,也可以双绞线缆。可以理解,为了屏蔽外部噪声,第一信号线101和第二信号线102的外部设有保护套。
关节连接结构100包括第一功率线103和第二功率线104。第一功率线103和第二功率线104用于在机器人的关节之间传递电功率。在本发明的实施例中,电功率指的是提供电源,以驱动关节进行各种类型的运动,例如平动,转动或旋转等。第一功率线103和第二功率线104可以是同轴线缆,也可以双绞线缆。可以理解,为了屏蔽外部噪声,第一功率线103和第二功率线104的外部设有保护套。
第一连接件120为具有一定厚度的法兰盘(flange disc),法兰盘的中央具有一开口。第一连接件120上设有多个环形槽105。在本发明的实施例中,环形槽105指的是绕第一连接件120的圆心形成的环形凹槽。图1示出了第一连接件120上设有3个环形槽105,3个环形槽105等间距设置。环形槽105从第一连接件120的表面向下延伸。3个环形槽105的具有相同的截面形状和深度。
图1所示仅为示例,不用于限制环形槽105的数量、结构和排列方式。在一些实施例中,可以在第一连接件120上设置1个环形槽105,也可以在第一连接件120设置更多数量的环形槽105。在一些实施例中,多个环形槽105也可以非等间距设置。在一些实施例中,多个环形槽的截面形状和深度可以各不相同,也可以部分相同。本发明的实施例不对环形槽的数量、结构和排列方式做出限定。
环形槽105中填充有液态金属106。液态金属106具有良好的表面张力,可以广泛地附着于环形槽105中,减少或避免空隙的形成。优选地,在关节连接结构设置有多个环形槽105时,各环形槽105中填充相同的液态金属106。作为一个非限定的示例,液态金属106可以由汞或低熔点合金材料制成。液态金属106与第一信号线101电连接,可以收发信号。
第一连接件120上还设有导电环。同样地,在本发明的实施例中,导电环指的是绕第一连接件120的圆心形成的环状结构。在图1中,第一连接件120上设有导电环108a和导电环108b,其中,导电环108a位于第一连接件120的内侧壁上,导电环108b位于第一连接件120的表面上。
导电环可以由任意的导电材料制成。作为一个非限定的示例,导电环可以为铜或铁制成。
第二连接件130可相对于第一连接件120旋转。如图1所示,第二连接件130的中央具有一开口,该开口插入旋转轴(图中未示出),第二连接件130可在旋转轴的驱动下旋转。旋转轴可以通过轴承安装至第二连接件130的开口中。第二连接件130的左侧表面与第一连接件120的右侧表面贴合,可以将液态金属106密封在环形槽105内。
在一些实施例中,环形槽105的开口两侧设有密封环109。密封环109位于第二连接件130的左侧表面与第一连接件120的右侧表面之间。如图1所示,相邻的环形槽105共用同一密封环109,仅需要四条密封环。通过在环形槽105的开口两侧设有密封环109,可以进一步防止环形槽105中的液态金属泄露出来,提高了液态金属的密闭性。
第二信号线102穿过第二连接件130延伸至环形槽105中与液态金属106接触,在第一连接件120与第二连接件130相对旋转时,可以使第二信号线102与液态金属106保持接触。液态金属106具有良好的表面张力,可以广泛地附着于环形槽105中,减少或避免空隙的形成。第二信号线102延伸至液 态金属106时,由于环形槽105内部的空隙被减少或消除,可以显著提高第二信号线102与液态金属的接触面积,从而提高了信号传输的质量以及可靠性。
第二信号线102的直径与环形槽105的宽度相适配。在本发明的实施例中,第二信号线102的直径与环形槽105的宽度相适配指的是,第二信号线102插入至环形槽105中时,不会触及环形槽105的侧壁,但是又不会离环形槽105的侧壁太远。为此,第二信号线102被限定在环形槽105的固定范围内,可以兼顾使用寿命和信号传输质量。
优选地,第二信号线102穿过第二连接件130延伸至环形槽105的深度可以在环形槽105深度的一半。
第二连接件130上设有导电触点,导电触点电连接于导电环与第二功率线104之间,即导电触点的一端与导电环电接触,另一端连接至第二功率线104。在图1中,第二连接件130上设有导电触点107a和导电触点107b。其中,导电触点107a位于第二连接件130的外侧壁上,与导电环108a相对设置,导电触点107b位于第二连接件130的表面上,与导电环108b相对设置。导电触点107a和导电触点107b的另一端连接至第二功率线104。
导电触点可以由任意的导电材料制成。作为一个非限定的示例,导电触点可以为铜或铁制成。
在第一连接件120与第二连接件130相对旋转时,导电触点107a与导电环108a保持电接触,导电触点107b与导电环108b保持电接触,可以将第一功率线103的电能发送至第二功率线104,或者使第二功率线103接收第二功率线104发送的电能。
继续参考图1,其示出了关节连接结构包括3个环形槽105,3根第二信号线102,3根第一信号线101,以及2根第一功率线103,2根第二功率线104,2个导电环,2个导电触点。可以理解,这些结构的数量并不局限于此,只要环形槽105、第一信号线101和第二信号线102的数目相对应,第一功率线103、第二功率线104、导电环和导电触点的数目相对应,都应落入本发明的保护范围。
图3是根据本发明的一实施例的关节连接结构的立体结构示意图。图4是根据本发明的一实施例的关节连接结构的正视图。图5是根据本发明的一实施例的关节连接结构的后视图。
参考图3所示,关节连接结构100还包括连接器140和连接器150。连接器140用于将第一信号线101和第一功率线103连接至第一连接件120,连接器150用于将第二信号线102和第二功率线104连接至第二连接件130。
在图3中,第一信号连接器141将第一信号线101连接至第一连接件120,第一功率连接器142将第一功率线103连接至第一连接件120,第二信号连接器151将第二信号线102连接至第二连接件130,第二功率连接器152将第二功率线102连接至第二连接件130。
在一些实施例中,第一信号连接器141可以与第一功率连接器142集成为一体,形成第一连接器。在另一些实施例中,第二信号连接器151可以与第二功率连接器152集成为一体,形成第二连接器。
在一些实施例中,第一信号连接器、第一功率连接器可以与第二信号连接器、第二功率连接器为相同类型,例如同为一体式或同为分体式。在一些实施例中,第一信号连接器、第一功率连接器可以与第二信号连接器、第二功率连接器为不同类型,例如一个为一体式,另一个为分体式。
本发明的该实施例提供了一种关节连接结构,通过信号线与液态金属传递电信号,液态金属具有良好的表面张力,可以广泛地附着于环形槽中,减少或避免空隙的形成,第二信号线延伸至液态金属时,由于环形槽内部的空隙被减少或消除,可以显著提高第二信号线与液态金属的接触面积,从而提高信号传输质量以及可靠性。
本发明还提出了一种机器人,该机器人包括如上所述的关节连接结构,基于该关节连接结构,其信号传输质量和可靠性也相应提高。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化、修改与结合,均应属于本发明保护的范围。

Claims (10)

  1. 一种机器人的关节连接结构(100),包括:
    第一信号线(101)和第二信号线(102),用于传递电信号;
    第一功率线(103)和第二功率线(104),用于传递电功率;
    第一连接件(120),设有环形槽(105)和导电环(108a,108b),所述环形槽(105)中填充有液态金属(106),所述液态金属(106)电连接至所述第一信号线(101),所述导电环(108a,108b)电连接至所述第一功率线(103);
    第二连接件(130),可相对于所述第一连接件(120)旋转,设有导电触点(107a,107b),所述导电触点(107a,107b)电连接于所述导电环(108a,108b)与所述第二功率线(104)之间,其中,所述第二信号线(102)穿过所述第二连接件(130)延伸至所述环形槽(105)中与所述液态金属(106)接触。
  2. 如权利要求1所述的关节连接结构,其特征在于,所述第一连接件(120)上分别设有第一信号线连接器(141)和第一功率线连接器(142)。
  3. 如权利要求1所述的关节连接结构,其特征在于,所述第一连接件(120)上设有第一连接器,所述第一连接器连接所述第一信号线(101)和所述第一功率线(103)。
  4. 如权利要求1或3所述的关节连接结构,其特征在于,所述第二连接件(130)上分别设有第二信号线连接器(151)和第二功率线连接器(152)。
  5. 如权利要求1或3所述的关节连接结构,其特征在于,所述第二连接件(130)上设有第二连接器,所述第二连接器连接所述第二信号线(102)和所述第二功率线(104)。
  6. 如权利要求1所述的关节连接结构,其特征在于,所述第一连接件(120)上设有多个间隔设置的环形槽(105),所述关节连接结构包括多个第二信号线(102),所述多个第二信号线(102)穿过所述第二连接件(130)延伸至相应的所述环形槽(105)中与所述液态金属(106)接触。
  7. 如权利要求1或6所述的关节连接结构,其特征在于,所述环形槽(105)的开口两侧设有密封环(109),用于密封所述环形槽(105)中填充的液态金属(106)。
  8. 如权利要求6所述的关节连接结构,其特征在于,所述多个环形槽(105)等间距设置。
  9. 如权利要求1所述的关节连接结构,其特征在于,所述液态金属(106)由汞或低熔点合金材料制成。
  10. 一种机器人,包括如权利要求1-9任一项所述的关节连接结构。
PCT/CN2019/109587 2019-09-30 2019-09-30 一种机器人的关节连接结构及机器人 WO2021062695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109587 WO2021062695A1 (zh) 2019-09-30 2019-09-30 一种机器人的关节连接结构及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109587 WO2021062695A1 (zh) 2019-09-30 2019-09-30 一种机器人的关节连接结构及机器人

Publications (1)

Publication Number Publication Date
WO2021062695A1 true WO2021062695A1 (zh) 2021-04-08

Family

ID=75337649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109587 WO2021062695A1 (zh) 2019-09-30 2019-09-30 一种机器人的关节连接结构及机器人

Country Status (1)

Country Link
WO (1) WO2021062695A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084886A (ja) * 1998-09-10 2000-03-28 Toa Seisakusho:Kk マニピュレータ用ロータリージョイント
CN105538302A (zh) * 2016-01-26 2016-05-04 清华大学 一种基于液态金属的半柔性机器人及应用
CN207381684U (zh) * 2017-08-08 2018-05-18 云南靖创液态金属热控技术研发有限公司 一种液态金属导电滑环
CN108789495A (zh) * 2018-06-29 2018-11-13 上海与德通讯技术有限公司 一种电连接结构以及机器人关节结构
CN208539294U (zh) * 2018-08-07 2019-02-22 云南科威液态金属谷研发有限公司 一种导电滑环及导电旋转接头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084886A (ja) * 1998-09-10 2000-03-28 Toa Seisakusho:Kk マニピュレータ用ロータリージョイント
CN105538302A (zh) * 2016-01-26 2016-05-04 清华大学 一种基于液态金属的半柔性机器人及应用
CN207381684U (zh) * 2017-08-08 2018-05-18 云南靖创液态金属热控技术研发有限公司 一种液态金属导电滑环
CN108789495A (zh) * 2018-06-29 2018-11-13 上海与德通讯技术有限公司 一种电连接结构以及机器人关节结构
CN208539294U (zh) * 2018-08-07 2019-02-22 云南科威液态金属谷研发有限公司 一种导电滑环及导电旋转接头

Similar Documents

Publication Publication Date Title
US9701029B2 (en) Manipulator
CN102458778B (zh) 用于机器人的磁性旋转硬停止件
CN104115240B (zh) 数据线缆
EP2451028A2 (en) Slip ring device
US10784926B2 (en) Signal transmission apparatus, signal transmission system, and instrument
JP2014090648A (ja) 無線電力伝送による可動部多重化伝送システム
CN106464013A (zh) 电力供给系统
US20190222103A1 (en) Decentralised electric rotary actuator and associated methodology for networking of motion systems
US10456932B2 (en) Conduction path structure of robot
JP2018113577A (ja) 無線通信システム、通信装置及び通信方法
JP5541600B2 (ja) モジュール型ロボット駆動部の構造
CN103259373A (zh) 一种导电滑环
CN107887770A (zh) 一种供电装置
EP3404778B1 (en) Conductive ring assembly, conductive device and wind turbine
WO2021062695A1 (zh) 一种机器人的关节连接结构及机器人
CN109638590A (zh) 一种滚动接触式旋转电传输装置
KR100882920B1 (ko) 모듈형 로봇 구동부의 구조
JP2017199727A (ja) 基板及びケーブル接続基板
JP2020172021A (ja) ロボット
JP2010509809A (ja) 回転する電気伝達部品
JP6049316B2 (ja) 複合型電気カプラ、ロボット装置
US9634449B1 (en) Soft contacting rotational interface for RF rotary joint
KR101534028B1 (ko) 전선의 꼬임 방지가 가능한 배관 내부 검사로봇 및 이를 구비하는 검사로봇 시스템
CN102931754B (zh) 海底勘探机器人及其防水导电滑环
CN112523700B (zh) 一种过线万向轴总成及过线方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947699

Country of ref document: EP

Kind code of ref document: A1