WO2021062662A1 - 图像传感器、摄像头组件及移动终端 - Google Patents

图像传感器、摄像头组件及移动终端 Download PDF

Info

Publication number
WO2021062662A1
WO2021062662A1 PCT/CN2019/109517 CN2019109517W WO2021062662A1 WO 2021062662 A1 WO2021062662 A1 WO 2021062662A1 CN 2019109517 W CN2019109517 W CN 2019109517W WO 2021062662 A1 WO2021062662 A1 WO 2021062662A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
pixels
image
panchromatic
Prior art date
Application number
PCT/CN2019/109517
Other languages
English (en)
French (fr)
Inventor
唐城
张弓
张海裕
徐锐
杨鑫
蓝和
孙剑波
李小涛
王文涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19947867.8A priority Critical patent/EP3985728A4/en
Priority to CN201980097805.3A priority patent/CN114008781A/zh
Priority to PCT/CN2019/109517 priority patent/WO2021062662A1/zh
Publication of WO2021062662A1 publication Critical patent/WO2021062662A1/zh
Priority to US17/573,561 priority patent/US20220139974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • H04N25/534Control of the integration time by using differing integration times for different sensor regions depending on the spectral component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • This application relates to the field of imaging technology, and in particular to an image sensor, a camera assembly and a mobile terminal.
  • Mobile terminals such as mobile phones are often equipped with cameras to realize the function of taking pictures.
  • An image sensor is provided in the camera.
  • the image sensor In order to realize the collection of color images, the image sensor usually includes a plurality of pixels arranged in a two-dimensional array. When the image sensor is working, the problem of optical crosstalk between adjacent pixels may occur.
  • the application provides an image sensor, a camera assembly and a mobile terminal.
  • the image sensor includes a plurality of pixels. At least some of the pixels include an isolation layer, a condenser lens, and a photoelectric conversion element.
  • the condensing lens is arranged in the isolation layer.
  • the photoelectric conversion element is used to receive light passing through the condenser lens.
  • the present application also provides a camera assembly.
  • the camera assembly includes an image sensor.
  • the image sensor includes a plurality of pixels. At least some of the pixels include an isolation layer, a condenser lens, and a photoelectric conversion element.
  • the condensing lens is arranged in the isolation layer.
  • the photoelectric conversion element is used to receive light passing through the condenser lens.
  • this application also provides a mobile terminal.
  • the mobile terminal includes a casing and an image sensor, and the image sensor is installed in the casing.
  • the image sensor includes a plurality of pixels. At least some of the pixels include an isolation layer, a condenser lens, and a photoelectric conversion element.
  • the condensing lens is arranged in the isolation layer.
  • the photoelectric conversion element is used to receive light passing through the condenser lens.
  • Fig. 1 is a schematic diagram of an image sensor in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a pixel circuit in an embodiment of the present application.
  • Figure 3 is a schematic diagram of exposure saturation time for different color channels
  • FIG. 4A is a schematic partial cross-sectional view of a pixel array in an embodiment of the present application.
  • FIG. 4B is a schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 4A;
  • 5A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • 5B is a schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 5A;
  • 5C is another schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 5A;
  • 6A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • 6B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 6A;
  • 6C is a schematic diagram of the arrangement of photoelectric conversion elements in the pixel array of FIG. 6A;
  • FIG. 7B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 7A;
  • FIG. 7C is a schematic diagram of the arrangement of photoelectric conversion elements in the pixel array of FIG. 7A;
  • FIG. 8B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 8A;
  • FIG. 8C is a schematic diagram of the arrangement of photoelectric conversion elements in the pixel array of FIG. 8A;
  • FIG. 9 is a schematic partial cross-sectional view of another pixel array in an embodiment of the present application.
  • FIG. 10A is a schematic partial cross-sectional view of another pixel array in an embodiment of the present application.
  • FIG. 10B is a schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 10A;
  • FIG. 11A is a schematic partial cross-sectional view of another pixel array in an embodiment of the present application.
  • FIG. 11B is a schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 11A;
  • FIG. 11C is another schematic diagram of the arrangement of photoelectric conversion elements (or filters) in the pixel array of FIG. 11A;
  • FIG. 12A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • FIG. 12B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 12A;
  • FIG. 13A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • FIG. 13B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 13A;
  • FIG. 13C is a schematic diagram of the arrangement of photoelectric conversion elements in the pixel array of FIG. 13A;
  • FIG. 14A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • FIG. 14B is a schematic diagram of the arrangement of filters in the pixel array of FIG. 14A;
  • FIG. 14C is a schematic diagram of the arrangement of photoelectric conversion elements in the pixel array of FIG. 14A;
  • 15A is a schematic partial cross-sectional view of yet another pixel array in an embodiment of the present application.
  • 16 is a schematic diagram of the connection mode of the pixel array and the exposure control line in the embodiment of the present application.
  • FIG. 18 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 20 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 23 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 24 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 25 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 26 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 27 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 28 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 29 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 31 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 32 is a schematic diagram of another minimum repeating unit pixel arrangement in an embodiment of the present application.
  • FIG. 33 is a schematic diagram of a camera assembly according to an embodiment of the present application.
  • FIG. 34 is a schematic flowchart of an image acquisition method according to some embodiments of the present application.
  • FIG. 35 is a schematic diagram of the principle of an image acquisition method in the related art.
  • FIG. 36 is a schematic diagram of a principle of a light image acquisition method in an embodiment of the present application.
  • FIG. 42 is another schematic diagram of the principle of the optical image acquisition method in the embodiment of the present application.
  • FIG. 43 is another schematic diagram of the principle of the optical image acquisition method in the embodiment of the present application.
  • FIG. 44 is another schematic diagram of the principle of the optical image acquisition method in the embodiment of the present application.
  • FIG. 45 is another schematic diagram of the principle of the optical image acquisition method in the embodiment of the present application.
  • FIG. 46 is another schematic diagram of the principle of the optical image acquisition method in the embodiment of the present application.
  • FIG. 47 is a schematic diagram of a mobile terminal according to an embodiment of the present application.
  • the present application provides an image sensor 10 including a plurality of pixels. At least some of the pixels include an isolation layer 1183, a condenser lens 1186, and a photoelectric conversion element 117.
  • the condenser lens 1186 is disposed in the isolation layer 1183.
  • the photoelectric conversion element 117 is used to receive light passing through the condenser lens 1186.
  • the present application also provides a camera assembly 40.
  • the camera assembly 40 includes the image sensor 10.
  • the image sensor 10 includes a plurality of pixels. At least some of the pixels include an isolation layer 1183, a condenser lens 1186, and a photoelectric conversion element 117.
  • the condenser lens 1186 is disposed in the isolation layer 1183.
  • the photoelectric conversion element 117 is used to receive light passing through the condenser lens 1186.
  • the present application also provides a mobile terminal 90.
  • the mobile terminal includes an image sensor 50 and a cabinet 80.
  • the image sensor 50 is mounted on the casing 80.
  • the image sensor 10 includes a plurality of pixels. At least some of the pixels include an isolation layer 1183, a condenser lens 1186, and a photoelectric conversion element 117.
  • the condenser lens 1186 is disposed in the isolation layer 1183.
  • the photoelectric conversion element 117 is used to receive light passing through the condenser lens 1186.
  • the present application provides an image sensor 10.
  • an isolation layer 1183 and a condenser lens 1186 arranged in the isolation layer 1183 to each pixel, the light passing through the microlens 1181 and the filter 1182 of each pixel can be condensed by the condenser lens 1186, and It is incident on the photoelectric conversion element 117 of the pixel to avoid the problem of light crosstalk between adjacent pixels.
  • FIG. 1 is a schematic diagram of an image sensor 10 in an embodiment of the present application.
  • the image sensor 10 includes a pixel array 11, a vertical driving unit 12, a control unit 13, a column processing unit 14 and a horizontal driving unit 15.
  • the image sensor 10 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) photosensitive element or a charge-coupled device (CCD, Charge-coupled Device) photosensitive element.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the pixel array 11 includes a plurality of pixels (not shown in FIG. 1) arranged two-dimensionally in an array, and each pixel includes a photoelectric conversion element 117 (shown in FIG. 2). Each pixel converts light into electric charge according to the intensity of light incident on it.
  • the vertical driving unit 12 includes a shift register and an address decoder.
  • the vertical drive unit 12 includes readout scanning and reset scanning functions.
  • Readout scanning refers to sequentially scanning unit pixels line by line, and reading signals from these unit pixels line by line. For example, the signal output by each pixel in the pixel row that is selected and scanned is transmitted to the column processing unit 14.
  • the reset scan is used to reset the charges, and the photocharges of the photoelectric conversion element 117 are discarded, so that accumulation of new photocharges can be started.
  • the signal processing performed by the column processing unit 14 is correlated double sampling (CDS) processing.
  • CDS correlated double sampling
  • the reset level and the signal level output from each pixel in the selected pixel row are taken out, and the level difference is calculated.
  • A/D analog-to-digital
  • the horizontal driving unit 15 includes a shift register and an address decoder.
  • the horizontal driving unit 15 sequentially scans the pixel array 11 column by column. Through the selection scanning operation performed by the horizontal driving unit 15, each pixel column is sequentially processed by the column processing unit 14, and is sequentially output.
  • control unit 13 configures timing signals according to the operation mode, and uses multiple timing signals to control the vertical driving unit 13, the column processing unit 14, and the horizontal driving unit 15 to work together.
  • FIG. 2 is a schematic diagram of a pixel circuit 110 in an embodiment of the present application.
  • the pixel circuit 110 in FIG. 2 is applied to each pixel in FIG. 1.
  • the working principle of the pixel circuit 110 will be described below in conjunction with FIG. 1 and FIG. 2.
  • the pixel circuit 110 includes a photoelectric conversion element 117 (e.g., photodiode PD), an exposure control circuit 116 (e.g., transfer transistor 112), a reset circuit (e.g., reset transistor 113), and an amplifier circuit (e.g., amplifier The transistor 114) and the selection circuit (for example, the selection transistor 115).
  • a photoelectric conversion element 117 e.g., photodiode PD
  • an exposure control circuit 116 e.g., transfer transistor 112
  • a reset circuit e.g., reset transistor 113
  • an amplifier circuit e.g., amplifier The transistor 114
  • the selection transistor 115 for example, the selection transistor 115.
  • the transfer transistor 112, the reset transistor 113, the amplifying transistor 114, and the selection transistor 115 are, for example, MOS transistors, but are not limited thereto.
  • the gate TG of the transfer transistor 112 is connected to the vertical driving unit 12 through an exposure control line (not shown in the figure); the gate RG of the reset transistor 113 is connected through a reset control line (not shown in the figure). ) Is connected to the vertical driving unit 12; the gate SEL of the selection transistor 114 is connected to the vertical driving unit 12 through a selection line (not shown in the figure).
  • the exposure control circuit 116 (for example, the transfer transistor 112) in each pixel circuit 110 is electrically connected to the photoelectric conversion element 117 for transferring the electric potential accumulated by the photoelectric conversion element 117 after being irradiated with light.
  • the photoelectric conversion element 117 includes a photodiode PD, and the anode of the photodiode PD is connected to the ground, for example.
  • the photodiode PD converts the received light into electric charge.
  • the cathode of the photodiode PD is connected to the floating diffusion unit FD via the exposure control circuit 116 (for example, the transfer transistor 112).
  • the floating diffusion unit FD is connected to the gate of the amplifying transistor 114 and the source of the reset transistor 113.
  • the exposure control circuit 116 is the transfer transistor 112, and the control terminal TG of the exposure control circuit 116 is the gate of the transfer transistor 112.
  • a pulse of an effective level for example, VPIX level
  • the transfer transistor 112 is turned on.
  • the transfer transistor 112 transfers the charge photoelectrically converted by the photodiode PD to the floating diffusion unit FD.
  • the drain of the reset transistor 113 is connected to the pixel power supply VPIX.
  • the source of the reset transistor 113 is connected to the floating diffusion unit FD.
  • the pulse of the effective reset level is transmitted to the gate of the reset transistor 113 via the reset line, and the reset transistor 113 is turned on.
  • the reset transistor 113 resets the floating diffusion unit FD to the pixel power supply VPIX.
  • the gate of the amplifying transistor 114 is connected to the floating diffusion unit FD.
  • the drain of the amplifying transistor 114 is connected to the pixel power supply VPIX.
  • the amplifying transistor 114 After the floating diffusion unit FD is reset by the reset transistor 113, the amplifying transistor 114 outputs the reset level through the output terminal OUT via the selection transistor 115.
  • the amplifying transistor 114 After the charge of the photodiode PD is transferred by the transfer transistor 112, the amplifying transistor 114 outputs a signal level through the output terminal OUT via the selection transistor 115.
  • the drain of the selection transistor 115 is connected to the source of the amplifying transistor 114.
  • the source of the selection transistor 115 is connected to the column processing unit 14 in FIG. 1 through the output terminal OUT.
  • the selection transistor 115 is turned on.
  • the signal output by the amplification transistor 114 is transmitted to the column processing unit 14 through the selection transistor 115.
  • the pixel structure of the pixel circuit 110 in the embodiment of the present application is not limited to the structure shown in FIG. 2.
  • the pixel circuit 110 may have a three-transistor pixel structure, in which the functions of the amplifying transistor 114 and the selecting transistor 115 are performed by one transistor.
  • the exposure control circuit 116 is not limited to a single transfer transistor 112, and other electronic devices or structures with a control terminal to control the conduction function can be used as the exposure control circuit in the embodiment of the present application.
  • the implementation of the single transfer transistor 112 Simple, low cost, and easy to control.
  • the condenser lens 1186 can be applied to an image sensor containing only color pixels (including but not limited to RGB), and can also be applied to an image sensor containing panchromatic pixels and color pixels to improve the imaging quality of the image sensor.
  • the sensitivity of the pixels also affects the imaging quality of the image sensor.
  • pixels of different colors receive different exposures per unit time. After some colors are saturated, some colors have not yet been exposed to an ideal state. For example, exposure to 60%-90% of the saturated exposure may have a relatively good signal-to-noise ratio and accuracy, but the embodiments of the present application are not limited thereto.
  • RGBW red, green, blue, and full color
  • the horizontal axis is the exposure time
  • the vertical axis is the exposure
  • Q is the saturated exposure
  • LW is the exposure curve of the panchromatic pixel W
  • LG is the exposure curve of the green pixel G
  • LR is the red pixel R
  • the exposure curve of LB is the exposure curve of the blue pixel.
  • the slope of the exposure curve LW of the panchromatic pixel W is the largest, that is, the panchromatic pixel W can obtain more exposure per unit time and reach saturation at t1.
  • the slope of the exposure curve LG of the green pixel G is second, and the green pixel is saturated at time t2.
  • the slope of the exposure curve LR of the red pixel R is again the same, and the red pixel is saturated at time t3.
  • the slope of the exposure curve LB of the blue pixel B is the smallest, and the blue pixel is saturated at t4.
  • the panchromatic pixel W has been saturated, but the exposure of the three pixels R, G, and B has not yet reached the ideal state.
  • the exposure time of the four RGBW pixels is jointly controlled.
  • the exposure time of each row of pixels is the same, connected to the same exposure control line, and controlled by the same exposure control signal.
  • the exposure control signal For example, continue to refer to Figure 3, during the time period 0-t1, all four pixels of RGBW can work normally. However, due to the shorter exposure time and less exposure of RGB during this period, the image will be displayed with lower brightness and confidence. A phenomenon in which the noise ratio is low, and even the colors are not bright enough. In the period t1-t4, the W pixels are overexposed due to saturation and cannot work, and the exposure data can no longer truly reflect the target.
  • the exposure curve in FIG. 3 is only an example, and the slope and the relative relationship of the curve will vary according to different pixel response bands, and the application is not limited to the situation shown in FIG. 3.
  • the slope of the exposure curve of the red pixel R may be lower than the slope of the exposure curve of the blue pixel B.
  • FIG. 4A to 8C show various cross-sectional schematic diagrams of some pixels in the pixel array 11 of FIG. 1 taken along the light-receiving direction of the image sensor 10, and the photoelectric conversion element 117 (or filter 1182) in the pixel array 11 Schematic diagram of arrangement.
  • the panchromatic pixels and the color pixels are arranged at intervals, and the color pixels have a narrower spectral response than the panchromatic pixels.
  • Each panchromatic pixel and each color pixel includes a microlens 1181, a filter 1182, a condenser lens 1186, and a photoelectric conversion element 117.
  • the photoelectric conversion element 117 can convert received light into electric charge.
  • the photoelectric conversion element 117 includes a substrate 1171 and an n-well layer 1172 formed inside the substrate 1171.
  • the n-well layer 1172 can realize light-to-charge conversion. Conversion.
  • the isolation layer 1183 is disposed on a surface of the photoelectric conversion element 117 (specifically, a surface of the substrate 1171). Since the substrate 1171 is not completely flat, it is difficult for the filter 1182 to be directly disposed on the surface of the substrate 1171.
  • An isolation layer 1183 is provided on one surface of the bottom 1171, and the surface of the isolation layer 1183 away from the substrate 1171 has a relatively high flatness, which facilitates the placement of the filter 1182 on this surface.
  • the filter 1182 is disposed on the surface of the isolation layer 1183 away from the substrate 1171, and the filter 1182 can pass light of a specific wavelength band.
  • the microlens 1181 is disposed on the side of the filter 1182 far away from the isolation layer 1183. The microlens 1181 is used for condensing light and can guide the incident light to the photoelectric conversion element 117 more.
  • a condenser lens 1186 is provided in the isolation layer 1183.
  • the condenser lens 1186 can be used to condense the light passing through the microlens 1181 and the filter 1182, so that more light can enter the corresponding photoelectric conversion element 117 to avoid occurrence of The problem of optical crosstalk between adjacent pixels.
  • the full well capacity of the photoelectric conversion element 117 is related to the volume of the n well layer of the photoelectric conversion element 117. The larger the volume of the n well layer 1172, the greater the full well capacity. In any of the embodiments shown in FIGS.
  • the volume of the n-well layer 1172 of the panchromatic pixel is larger than the volume of the n-well layer 1172 of the color pixel, so that the full-well capacity of the panchromatic pixel is greater than that of the color pixel
  • the full well capacity increases the exposure Q of the panchromatic pixel saturation, and increases the time for the panchromatic pixel to reach saturation, thereby avoiding the problem of premature saturation of the panchromatic pixel, and balancing the exposure of the panchromatic pixel and the color pixel
  • the imaging quality of the image sensor 10 is improved through the design of the condenser lens 1186 and the design of the full well capacity of the panchromatic pixels being greater than the full well capacity of the color pixels.
  • FIGS. 4A and 4B are respectively a schematic cross-sectional view of the pixel array 11 taken along the light-receiving direction and a schematic view of the arrangement of a plurality of photoelectric conversion elements 117 (or a plurality of filters 1182) of an embodiment of the present application.
  • the size of the multiple cross-sections of the isolation layer 1183 of each pixel are all equal; the condenser lens 1186 is arranged in the isolation layer 1183; along the light-receiving direction, each The size of the multiple cross-sections of the n well layer 1172 of each pixel (the same pixel) are all equal; the size of the cross-section of the n well layer 1172 of the panchromatic pixel is equal to the size of the cross-section of the n well layer 1172 of the color pixel Size; the depth H1 of the n-well layer 1172 of the panchromatic pixel is greater than the depth H2 of the n-well layer 1172 of the color pixel.
  • the volume of the n well layer 1172 of the panchromatic pixel is larger than the volume of the n well layer 1172 of the color pixel, and the panchromatic pixel has a larger full well capacity than that of the color pixel.
  • the condenser lens 1186 condenses light so that more light enters the corresponding photoelectric conversion element 117, thereby avoiding the problem of optical crosstalk.
  • the cross-section of the isolation layer 1183 is the cross-section of the isolation layer taken along the direction perpendicular to the light-receiving direction
  • the cross-section of the n-well layer 1172 is the n-potential taken along the direction perpendicular to the light-receiving direction.
  • Cross section of well layer 1172 The cross section of the isolation layer 1183 of each pixel corresponds to the shape and size of the cross section of the n well layer 1172 of the pixel.
  • the cross section can be polygons such as rectangles, squares, parallelograms, rhombuses, pentagons, hexagons, etc., which is not limited here.
  • the size of the multiple cross-sections of the n-well layer 1172 (or the isolation layer 1183) of the same pixel are all equal, which means that the multiple cross-sections have the same area and correspond to each other.
  • the side lengths of are equal.
  • the size of the cross-section of the n-well layer 1172 of the panchromatic pixel is equal to the size of the cross-section of the n-well layer 1172 of the color pixel. This means that the cross-sectional area of the n-well layer 1172 of the panchromatic pixel is the same as that of the color pixel
  • the cross-sectional areas of the n-well layer 1172 are equal.
  • the side length of the shape formed by the cross-section of the n-well layer 1172 of the full-color pixel and the side length of the shape formed by the cross-section of the n-well layer 1172 of the corresponding color pixel may be equal or unequal.
  • the cross section of the n well layer 1172 of the panchromatic pixel and the color pixel shown in FIG. 4B are both rectangular, including length and width.
  • the area of the cross section of the n well layer 1172 of the panchromatic pixel is equal to that of the color pixel.
  • the length L of the cross section of the n-well layer 1172 of panchromatic pixels is equal to the full length L of the cross section of the color layer, the n-well 1172 of the color pixel, the potential panchromatic pixels n the cross-sectional width W of the well layer 1172 of the full-color pixel is equal to the n-well layer of a cross-sectional width W of 1172 color.
  • full W W color may not be equal, as long as the panchromatic pixels of the n-well layer 1172 of the cross-sectional area equal to the color pixel layer of the n-well 1172 of the cross-section The area is enough.
  • the cross-section of the n-well layer 1172 (or the isolation layer 1183), the n-well layer 1172 (or the isolation layer 1183) of each pixel have the same size, and the n-well layer of the full-color pixel
  • the explanation that the size of the cross section of 1172 is equal to the size of the cross section of the n well layer 1172 of the color pixel is the same as the explanation here.
  • FIG. 5A is a schematic cross-sectional view taken along the light-receiving direction of the pixel array 11 of another embodiment of the present application
  • FIG. 5B and FIG. 5C are multiple photoelectric conversion elements 117 (or multiple filter filters) in the pixel array 11 of FIG. 5A.
  • the dimensions of multiple cross-sections of the isolation layer 1183 of each pixel (the same pixel) are all equal; the condenser lens 1186 is arranged in the isolation layer 1183; along the light-receiving direction, each The size of the cross-sections of the n-well layer 1172 of each pixel (the same pixel) are all equal; the size of the cross-section of the n-well layer 1172 of the panchromatic pixel is larger than that of the n-well layer 1172 of the color pixel. Size; the depth H1 of the n-well layer 1172 of the panchromatic pixel is equal to the depth H2 of the n-well layer 1172 of the color pixel.
  • the volume of the n well layer 1172 of the panchromatic pixel is larger than the volume of the n well layer 1172 of the color pixel, and the panchromatic pixel has a larger full well capacity than that of the color pixel.
  • the condenser lens 1186 condenses light so that more light enters the corresponding photoelectric conversion element 117, thereby avoiding the problem of optical crosstalk.
  • the depth H1 of the n well layer 1172 of the panchromatic pixel in FIG. 5A may also be greater than the depth H2 of the n well layer 1172 of the color pixel.
  • the size of the cross-section of the n-well layer 1172 of the panchromatic pixel is larger than the size of the cross-section of the n-well layer 1172 of the color pixel refers to: the size of the cross-section of the n-well layer 1172 of the panchromatic pixel
  • the area is larger than the cross-sectional area of the n-well layer 1172 of the color pixel
  • the side length of the shape formed by the cross-section of the n-well layer of the full-color pixel may be partially or completely larger than the width of the n-well layer 1172 of the corresponding color pixel.
  • the side length of the shape formed by the section is larger than the size of the cross-section of the n-well layer 1172 of the color pixel.
  • the cross-sectional length L of the n-well layer 1172 of panchromatic pixels is greater than n well layers full color pixels 5B cross section 1172, the panchromatic pixels n well layers the cross-sectional width W of 1172 full-color pixel is equal to width W of the color of the cross-section of the n-well layer 1172; 5C, the cross sectional length L of the n-well layer panchromatic pixels is equal to 1172 full-color pixel color length L of the cross section of the n-well layer 1172, the n-well panchromatic pixels layer 1172 of cross section larger than the width W of full-color pixel width W of the n-well layer 1172 of a cross section of the color.
  • the following explanation of the size of the cross-section of the n-well layer 1172 of the panchromatic pixel being larger than the size of the cross-section of the n-well layer 1172 of the color pixel is the same as the explanation here.
  • FIGS. 6A to 6C are respectively a schematic cross-sectional view taken along the light-receiving direction of the pixel array 11 according to another embodiment of the present application, a schematic view of the arrangement of a plurality of filters 1182, and an arrangement of a plurality of photoelectric conversion elements 117. Schematic. As shown in FIG.
  • the size of the multiple cross-sections of the isolation layer 1183 of each pixel (the same pixel) are all equal; the condenser lens 1186 is arranged in the isolation layer 1183; along the light-receiving direction, each The size of the cross-section of the n-well layer 1172 of each full-color pixel (the same full-color pixel) gradually increases, and the size of the cross-section of the n-well layer 1172 of each color pixel (the same color pixel) gradually decreases And, the size of the smallest cross-section of the n-well layer 1172 of the panchromatic pixel is equal to the size of the largest cross-section of the n-well layer 1172 of the color pixel; the depth H1 of the n-well layer 1172 of the panchromatic pixel is equal to the color The depth H2 of the n-well layer 1172 of the pixel.
  • the size of the cross-section of the filter 1182 of the panchromatic pixel is equal to the size of the cross-section of the filter 1182 of the color pixel (the area and the corresponding side length are equal), as shown in FIG. 6C
  • the size of the cross section of the n well layer 1172 in the full-color pixel photoelectric conversion element 117 is larger than that of the n well layer in the color pixel photoelectric conversion element 117 The size of the cross-section of 1172.
  • the volume of the n well layer 1172 of the panchromatic pixel is larger than the volume of the n well layer 1172 of the color pixel, and the panchromatic pixel has a larger full well capacity than that of the color pixel.
  • the condenser lens 1186 condenses light so that more light enters the corresponding photoelectric conversion element 117, thereby avoiding the problem of optical crosstalk.
  • the size of the smallest cross-section of the n-well layer 1172 of the panchromatic pixel in FIG. 6A may also be larger than the size of the largest cross-section of the n-well layer of the color pixel.
  • the depth H1 of the layer 1172 may also be greater than the depth H2 of the n well layer 1172 of the color pixel.
  • FIGS. 7A to 7C are respectively a schematic cross-sectional view taken along the light-receiving direction of the pixel array 11 according to another embodiment of the present application, a schematic view of the arrangement of a plurality of filters 1182, and an arrangement of a plurality of photoelectric conversion elements 117. Schematic.
  • the size of the multiple cross-sections of the isolation layer 1183 of each panchromatic pixel gradually increases, and the isolation of each color pixel (the same color pixel)
  • the size of the multiple cross-sections of the layer 1183 gradually decreases; the condenser lens 1186 is arranged in the isolation layer 1183; along the light-receiving direction, the size of the cross-section of the n-well layer 1172 of each panchromatic pixel gradually increases, each The size of the cross section of the n well layer 1172 of each color pixel gradually decreases, and the size of the smallest cross section of the n well layer 1172 of the panchromatic pixel is equal to the largest cross section of the n well layer 1172 of the color pixel
  • the depth H1 of the n-well layer 1172 of the panchromatic pixel is equal to the depth H2 of the n-well layer 1172 of the color pixel.
  • the size of the cross section of the filter 1182 of the panchromatic pixel is equal to the size of the cross section of the filter 1182 of the color pixel (the area and the corresponding side length are the same), as shown in FIG. 7C
  • the size of the cross section of the n well layer 1172 in the full-color pixel photoelectric conversion element 117 is larger than that of the n well layer in the color pixel photoelectric conversion element 117 The size of the cross-section of 1172.
  • the volume of the n well layer 1172 of the panchromatic pixel is larger than the volume of the n well layer 1172 of the color pixel, and the panchromatic pixel has a larger full well capacity than that of the color pixel.
  • the condenser lens 1186 condenses light so that more light enters the corresponding photoelectric conversion element 117, thereby avoiding the problem of optical crosstalk.
  • the size of the smallest cross-section of the n-well layer 1172 of the panchromatic pixel in FIG. 7A may also be larger than the size of the largest cross-section of the n-well layer of the color pixel.
  • the depth H1 of the layer 1172 may also be greater than the depth H2 of the n well layer 1172 of the color pixel.
  • FIGS. 8A to 8C are schematic cross-sectional views taken along the light-receiving direction of the pixel array 11, a schematic view of the arrangement of multiple filters 1182, and a schematic view of the arrangement of multiple photoelectric conversion elements 117 of another embodiment of the present application. . As shown in FIG.
  • the size of the multiple cross-sections of the isolation layer 1183 of each panchromatic pixel gradually increases, and the isolation of each color pixel (the same color pixel)
  • the size of the multiple cross-sections of the layer 1183 gradually decreases, and the size of the smallest cross-section of the isolation layer 1183 of the panchromatic pixel is equal to the size of the largest cross-section of the isolation layer 1183 of the color pixel;
  • the condenser lens 1186 is arranged at In the isolation layer 1183; along the light-receiving direction, the size of the multiple cross-sections of the n-well layer 1172 of each pixel are equal; the size of the cross-section of the n-well layer 1172 of the panchromatic pixel is larger than the n-well layer of the color pixel
  • the size of the cross-section of the layer 1172; the depth H1 of the n-well layer 1172 of the panchromatic pixel is equal to the depth
  • the size of the cross-section of the filter 1182 of the panchromatic pixel is equal to the size of the cross-section of the filter 1182 of the color pixel (the area and the corresponding side length are equal), as shown in FIG. 8C
  • the size of the cross section of the n well layer 1172 in the full-color pixel photoelectric conversion element 117 is larger than that of the n well layer in the color pixel photoelectric conversion element 117 The size of the cross-section of 1172.
  • the volume of the n well layer 1172 of the panchromatic pixel is larger than the volume of the n well layer 1172 of the color pixel, and the panchromatic pixel has a larger full well capacity than that of the color pixel.
  • the condenser lens 1186 condenses light so that more light enters the corresponding photoelectric conversion element 117, thereby avoiding the problem of optical crosstalk.
  • the depth H1 of the n-well layer 1172 of the full-color pixel in FIG. 8A may also be greater than the depth H2 of the n-well layer 1172 of the color pixel;
  • the size of the cross section may also be larger than the size of the largest cross section of the isolation layer 1183 of the color pixel.
  • each pixel is provided with a condenser lens 1186.
  • the condenser lens 1186 with different radius of curvature can be designed according to the needs of different pixels.
  • the condenser lens 1186 of a color pixel has a larger radius of curvature than that of a panchromatic pixel.
  • the curvature radius of 1186 makes the light-gathering ability of the condenser lens 1186 of the color pixel higher than that of the condenser lens 1186 of the panchromatic pixel.
  • only part of the pixels may include the condenser lens 1186, the condenser lens 1186 may not be provided in the panchromatic pixels, and the condenser lens 1186 may be provided in the color pixels.
  • the cross-section of the n-well layer 1172 of the panchromatic pixel gradually increases, and the cross-section of the n-well layer of the color pixel gradually decreases, passing through Most of the light from the filter 1182 of the panchromatic pixel can enter the photoelectric conversion element 117 of the panchromatic pixel, while a small part of the light passing through the filter 1182 of the color pixel can enter the photoelectric conversion element of the color pixel.
  • the condenser lens 1186 may be provided only in the isolation layer 1183 of the color pixel, so that more light can enter the photoelectric conversion element 117 of the color pixel by using the condensing effect of the condenser lens 1186. Providing the condenser lens 1186 only in part of the pixels can reduce the manufacturing cost of the image sensor 10.
  • each condenser lens 1186 opposite to the photoelectric conversion element 117 can be provided with an anti-reflection film.
  • the anti-reflection film can be used to reduce light interference and avoid light interference on the image sensor. 10 Influence of imaging effect.
  • the depth H3 of the photoelectric conversion element 117 of the panchromatic pixel is equal to the depth H4 of the photoelectric conversion element 117 of the color pixel.
  • the depth H3 of the substrate 1171 is equal to the depth H4 of the substrate 1171 of the color pixel.
  • Each pixel in any one of the embodiments shown in FIGS. 4A to 8C further includes an optical isolation interlayer 1185.
  • the optical isolation interlayer 1185 is disposed between the isolation layers 1183 of two adjacent pixels.
  • an optical isolation interlayer 1185 is disposed between the isolation layer 1183 of the panchromatic pixel W and the isolation layer 1183 of the color pixel A
  • another optical isolation interlayer 1185 is disposed between the isolation layer 1183 of the panchromatic pixel W and the isolation layer 1183 of the color pixel B.
  • the optical isolation interlayer 1185 may be made of at least one material of tungsten, titanium, aluminum, and copper. The optical isolation interlayer 1185 can prevent the light incident on a pixel from entering another pixel adjacent to the pixel, and avoid causing noise to other pixels, that is, avoiding light crosstalk.
  • the condenser lens 1186 in each pixel in any of the embodiments shown in FIGS. 4A to 8C can be replaced with a light guide layer 1184.
  • the structure of the image sensor 10 in FIG. 10A except for the light guide layer 1184 is the same as the image sensor 10 in FIG. 4A, and the image sensor 10 in FIG. 11A except for the light guide layer 1184
  • the structure other than that is the same as that of the image sensor 10 in FIG. 5A.
  • the structure of the image sensor 10 in FIG. 12A except for the light guide layer 1184 is the same as that of FIG. 6A.
  • the structure of the image sensor 10 in FIG. 13A except for the light guide layer 1184 All are the same as the image sensor 10 in FIG.
  • the structure of the image sensor 10 in FIG. 14A except for the light guide layer 1184 is the same as the image sensor 10 in FIG. 8A.
  • the lens 1181, the filter 1182, the isolation layer 1183, the optical isolation interlayer 1185, and the photoelectric conversion element 117 are described.
  • the light guide layer 1184 is formed in the isolation layer 1183, and the refractive index of the light guide layer 1184 is greater than the refractive index of the isolation layer 1183.
  • the isolation layer 1183 of each pixel, the light guide layer 1184 of the pixel, and the isolation layer 1183 of the pixel are sequentially arranged, for example, along the direction perpendicular to the light-receiving direction, the full-color pixel W
  • the isolation layer 1183, the light guide layer 1184 of the panchromatic pixel W, and the isolation layer 1183 of the panchromatic pixel W are sequentially arranged, the isolation layer 1183 of the color pixel A, the light guide layer 1184 of the color pixel A, and the color pixel
  • the isolation layer 1183 of A is arranged in sequence, the isolation layer 1183 of the color pixel B, the light guide layer 1184 of the color pixel B, and the isolation layer 1183 of the color
  • the purpose of providing the light guide layer 1184 in the isolation layer 1183 is to make the light passing through the filter 1182 totally reflect in the structure composed of the isolation layer 1183 and the light guide layer 1184, thereby concentrating the light and allowing more light.
  • the ground enters the role of the corresponding photoelectric conversion element 117, which can avoid the problem of optical crosstalk between adjacent pixels.
  • the n-well layer 1172 in the photoelectric conversion element 117 may receive light passing through the light guide layer 1184 to convert the light into electric charges.
  • the refractive index at each position of the light guide layer 1184 is equal.
  • This design method can simplify the design of the light guide layer and reduce the difficulty of manufacturing the pixel array 11.
  • the refractive index of the light guide layer 1184 gradually increases. This design method can enhance the light-gathering ability of the light guide layer 1184, so that more light can enter the photoelectric conversion element 117.
  • the sizes of the multiple cross-sections of the isolation layer 1183 of each pixel are all the same, and the sizes of the multiple cross-sections of the light guide layer 1184 of each pixel are also the same.
  • This design method can simplify the manufacturing process of the light guide layer 1184.
  • the structure of the light guide layer 1184 may also be: along the light-receiving direction, each pixel
  • the size of the multiple cross-sections of the light guide layer 1184 gradually decreases. This design can enhance the light-gathering ability of the light guide layer 1184, so that more light can enter the photoelectric conversion element 117.
  • the size of the multiple cross-sections of the isolation layer 1183 of each panchromatic pixel gradually increases, and the size of the multiple cross-sections of the isolation layer 1183 of each color pixel gradually increases. Decrease, the size of the cross section of the light guide layer 1184 of each panchromatic pixel and the light guide layer 1184 of each color pixel are gradually reduced.
  • This design method can enhance the light-gathering ability of the light guide layer 1184, so that more light can enter the photoelectric conversion element 117.
  • the size of the multiple cross-sections of the isolation layer 1183 of each panchromatic pixel gradually increases along the light-receiving direction, and the size of the multiple cross-sections of the isolation layer 1183 of each color pixel gradually increases.
  • the structure of the light guide layer 1184 may also be such that along the light receiving direction, the dimensions of the multiple cross-sections of the isolation layer 1183 of each pixel are all equal. This design method can simplify the manufacturing process of the light guide layer 1184.
  • the depth of the light guide layer 1184 is equal to the depth of the isolation layer 1183, so that the light collection ability of the light guide layer 1184 can be enhanced.
  • the thickness of the isolation layer 1183 of the present application is larger, for example, greater than a predetermined thickness, so as to form a longer optical path and improve the composition of the light guide layer 1184 and the isolation layer 1183 The structure of the light-gathering effect.
  • the image sensor 10 further includes a barrier layer 1187.
  • the barrier layer 1187 may be disposed between the photoelectric conversion elements 117 of two adjacent pixels.
  • one barrier layer 1187 is provided between the photoelectric conversion element 117 of the panchromatic pixel W and the photoelectric conversion element 117 of the color pixel A
  • the other barrier layer 1187 is provided between the photoelectric conversion element 117 of the panchromatic pixel W and the photoelectric conversion element 117 of the color pixel B.
  • the barrier layer 1187 may be a Deep Trench Isolation (DTI).
  • DTI Deep Trench Isolation
  • the barrier layer 1187 can prevent the light entering the photoelectric conversion element 117 of a certain pixel from entering the photoelectric conversion element 117 of other pixels adjacent to the pixel, and avoid causing noise to the photoelectric conversion element 117 of other pixels.
  • the full-well capacity corresponding to the sensitivity of the color pixel can be set according to the sensitivity of the color pixel (the shorter the time for reaching the saturated exposure, the higher the sensitivity). For example, as shown in Figure 1, the sensitivity of green pixels>the sensitivity of red pixels>the sensitivity of blue pixels, the full well capacity of the color pixels can be set as: full well capacity of green pixels>full well capacity of red pixels> The full well capacity of the blue pixel.
  • the way to increase the full well capacity of a color pixel is similar to the way to increase the full well capacity of a full-color pixel.
  • different full well capacities can be set according to different sensitivities, so that the exposure of pixels of various colors can be balanced and the image shooting quality can be improved.
  • the exposure time of panchromatic pixels and the exposure time of color pixels can be further controlled to balance the exposure of panchromatic pixels and color pixels.
  • FIG. 16 is a schematic diagram of the connection mode of the pixel array 11 and the exposure control line according to an embodiment of the present application.
  • the pixel array 11 is a two-dimensional pixel array.
  • the two-dimensional pixel array includes a plurality of panchromatic pixels and a plurality of color pixels, wherein the color pixels have a narrower spectral response than the panchromatic pixels.
  • the arrangement of pixels in the pixel array 11 is as follows:
  • pixels 1101, 1103, 1106, 1108, 1111, 1113, 1116, and 1118 are full-color pixels W
  • pixels 1102, 1105 are first-color pixels A (for example, red pixels R)
  • pixels 1104, 1107 , 1112 and 1115 are the second color pixel B (for example, the green pixel G)
  • the pixels 1114 and 1117 are the third color pixel C (for example, the blue pixel Bu).
  • the control terminal TG of the exposure control circuit in the panchromatic pixel W (pixels 1101, 1103, 1106, and 1108) is connected to a first exposure control line TX1, and the panchromatic pixel W (1111, 1113, 1116) , And 1118) the control terminal TG of the exposure control circuit is connected to another first exposure control line TX1; the control terminal TG of the exposure control circuit in the first color pixel A (pixels 1102 and 1105), the second color pixel B (pixel 1104, 1107) the control terminal TG of the exposure control circuit is connected to a second exposure control line TX2, the control terminal TG of the exposure control circuit in the second color pixel B (pixels 1112, 1115), the third color pixel C (pixel 1114) , 1117) The control terminal TG of the exposure control circuit is connected to another second exposure control line TX2.
  • Each first exposure control line TX1 can control the exposure duration of the panchromatic pixel through the first exposure control signal; each second exposure control line TX2 can control the color pixels (such as the first color pixel A and the first color pixel A and the first color pixel A) through the second exposure control signal.
  • the first exposure control line TX1 and the second exposure control line TX2 are connected to the vertical driving unit 12 in FIG. 2, and the corresponding exposure control signals in the vertical driving unit 12 are transmitted to the pixels in the pixel array 11
  • the control terminal TG of the exposure control circuit is connected to the vertical driving unit 12 in FIG. 2, and the corresponding exposure control signals in the vertical driving unit 12 are transmitted to the pixels in the pixel array 11 The control terminal TG of the exposure control circuit.
  • the vertical driving unit 12 connects multiple first exposure control lines TX1 and multiple second exposure control lines TX2.
  • the plurality of first exposure control lines TX1 and the plurality of second exposure control lines TX2 correspond to corresponding pixel row groups.
  • the first first exposure control line TX1 corresponds to the panchromatic pixels in the first and second rows; the second first exposure control line TX1 corresponds to the panchromatic pixels in the third and fourth rows, so
  • the third first exposure control line TX1 corresponds to the panchromatic pixels in the fifth and sixth rows;
  • the fourth first exposure control line TX1 corresponds to the panchromatic pixels in the seventh and eighth rows, and then down
  • the corresponding relationship between the first exposure control line TX1 and the panchromatic pixels downstream will not be repeated here.
  • the signal timings transmitted by different first exposure control lines TX1 are also different, and the signal timings are configured by the vertical driving unit 12.
  • the first second exposure control line TX2 corresponds to the color pixels in the first and second rows; the second second exposure control line TX2 corresponds to the color pixels in the third and fourth rows, and so on,
  • the third second exposure control line TX2 corresponds to the color pixels in the fifth and sixth rows; the fourth second exposure control line TX2 corresponds to the color pixels in the seventh and eighth rows, and then the second exposure
  • the corresponding relationship between the control line TX2 and the downstream color pixels will not be repeated.
  • the timing of the signal transmitted by the different second exposure control line TX2 is also different, and the timing of the signal is also configured by the vertical driving unit 12.
  • FIGS. 17 to 32 show examples of pixel arrangements in various image sensors 10 (shown in FIG. 2).
  • the image sensor 10 includes a plurality of color pixels (for example, a plurality of first color pixels A, a plurality of second color pixels B, and a plurality of third color pixels C) and a plurality of full color pixels.
  • a two-dimensional pixel array composed of color pixels W that is, the pixel array 11 shown in FIG. 16).
  • color pixels have a narrower spectral response than panchromatic pixels.
  • the response spectrum of the color pixel is, for example, a part of the W response spectrum of the panchromatic pixel.
  • the two-dimensional pixel array includes the smallest repeating unit ( Figures 17 to 32 show examples of the smallest repeating unit of pixels in a variety of image sensors 10), the two-dimensional pixel array is composed of multiple smallest repeating units, and the smallest repeating unit is in rows and columns. Copy and arrange on top.
  • the panchromatic pixels W are arranged in the first diagonal direction D1
  • the color pixels are arranged in the second diagonal direction D2
  • the first diagonal direction D1 is different from the second diagonal direction D2.
  • Each minimum repeating unit includes a plurality of sub-units, and each sub-unit includes a plurality of single-color pixels (for example, a plurality of first-color pixels A, a plurality of second-color pixels B, or a plurality of third-color pixels C) and a plurality of full Color pixel W.
  • the pixel 1101-1108 and the pixel 1111-1118 form a minimum repeating unit, where the pixels 1101, 1103, 1106, 1108, 1111, 1113, 1116, 1118 are panchromatic pixels, and the pixel 1102 , 1104, 1105, 1107, 1112, 1114, 1115, and 1117 are color pixels.
  • Pixels 1101, 1102, 1105, and 1106 form a sub-unit, where pixels 1101, 1106 are full-color pixels, and pixels 1102, 1105 are single-color pixels (for example, the first color pixel A); pixels 1103, 1104, 1107, 1108 The pixels 1103 and 1108 are full-color pixels, and the pixels 1104 and 1107 are single-color pixels (for example, the second color pixel B); the pixels 1111, 1112, 1115, and 1116 form a sub-unit.
  • pixels 1111, 1116 are full-color pixels, and pixels 1112, 1115 are single-color pixels (for example, second color pixel B); pixels 1113, 1114, 1117, and 1118 form a sub-unit, among which, pixels 1113 and 1118 are full-color pixels, The pixels 1114 and 1117 are single-color pixels (for example, the third-color pixel C).
  • the number of pixels in the rows and columns of the minimum repeating unit is equal.
  • the smallest repeating unit includes, but is not limited to, a smallest repeating unit of 4 rows and 4 columns, 6 rows and 6 columns, 8 rows and 8 columns, and 10 rows and 10 columns.
  • the number of pixels in the rows and columns of sub-units in the smallest repeating unit is equal.
  • subunits include, but are not limited to, subunits with 2 rows and 2 columns, 3 rows and 3 columns, 4 rows and 4 columns, and 5 rows and 5 columns. This setting helps to balance the resolution and color performance of the image in the row and column directions, and improve the display effect.
  • FIG. 17 is a schematic diagram of a minimum repeating unit 1181 pixel arrangement in an embodiment of the present application; the minimum repeating unit has 4 rows, 4 columns and 16 pixels, and the subunits have 2 rows, 2 columns and 4 pixels.
  • the arrangement is:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper left corner and the lower right corner in FIG. 17), and the color pixels are arranged in the second diagonal direction D2 (for example, as shown in FIG. The direction connecting the lower left corner and the upper right corner in 17), the first diagonal direction D1 is different from the second diagonal direction D2.
  • the first diagonal line and the second diagonal line are perpendicular.
  • the first exposure time of two adjacent panchromatic pixels W in the first diagonal direction D1 (for example, two panchromatic pixels in the first row, first column and second row and second column from the upper left) is determined by the first exposure time
  • One exposure signal control at least two color pixels adjacent in the second diagonal direction D2 (for example, two color pixels B in the fourth row, first column and third row and second column from the upper left)
  • the exposure time is controlled by the second exposure signal.
  • first diagonal direction D1 and the second diagonal direction D2 are not limited to the diagonal, but also include directions parallel to the diagonal.
  • the panchromatic pixels 1101, 1106, 1113 and 1118 are arranged in the first diagonal direction D1
  • the panchromatic pixels 1103 and 1108 are also arranged in the first diagonal direction D1
  • the panchromatic pixels 1111 and 1116 are also arranged in the first diagonal direction D1
  • the color pixels 1104, 1107, 1112, and 1115 are arranged in the second diagonal direction D2
  • the first color pixels 1102 and 1105 are also arranged in the second diagonal direction D2
  • the third color pixels 1114 and 1117 are also arranged in the second diagonal direction.
  • the diagonal direction D2 is not a single direction, but can be understood as the concept of a "straight line” indicating the arrangement, and there can be two-way directions at both ends of the straight line.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in a "W" shape to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the first exposure signal is transmitted via the first exposure control line TX1
  • the second exposure signal is transmitted via the second exposure control line TX2.
  • the first exposure control line TX1 is in the shape of "W” and is electrically connected to the control terminal of the exposure control circuit in the panchromatic pixels in two adjacent rows
  • the second exposure control line TX2 is in the shape of "W” and is connected to the two adjacent rows.
  • the control terminal of the exposure control circuit in the color pixel is electrically connected.
  • the specific connection manner refer to the description of the connection and the pixel circuit in the relevant parts of FIG. 2 and FIG. 16.
  • the "W" shape of the first exposure control line TX1 and the second exposure control line TX2 does not mean that the physical wiring must be set in strict accordance with the "W” shape, only the connection mode corresponds to the full-color pixel and color
  • the arrangement of the pixels is sufficient.
  • the setting of the "W" type exposure control line corresponds to the "W" type pixel arrangement method. This setting method is simple to route, and the pixel arrangement has good resolution and color effects, and realizes full color at low cost. Independent control of pixel exposure time and color pixel exposure time.
  • FIG. 18 is a schematic diagram of another minimum repeating unit 1182 pixel arrangement in an embodiment of the present application.
  • the minimum repeating unit is 4 rows, 4 columns and 16 pixels, and the subunits are 2 rows, 2 columns and 4 pixels.
  • the arrangement is as follows:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixel W is arranged in the first diagonal direction D1 (that is, the direction connecting the upper right corner and the lower left corner in FIG. 18), and the color pixels are arranged in the second diagonal direction D2 (for example, as shown in FIG. The direction of the connection between the upper left corner and the lower right corner in 18).
  • the first diagonal line and the second diagonal line are perpendicular.
  • the first exposure time of two adjacent panchromatic pixels W in the first diagonal direction D1 (for example, two panchromatic pixels in the first row, second column, and second row, first column from the upper left) is determined by the first exposure time
  • One exposure signal control second exposure of at least two color pixels adjacent in the second diagonal direction (for example, two color pixels A in the first row, first column and second row and second column from the upper left)
  • the time is controlled by the second exposure signal.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in a "W" shape, so as to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • FIG. 19 is a schematic diagram of another minimum repeating unit 1183 pixel arrangement in the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another minimum repeating unit 1184 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a schematic diagram of another minimum repeating unit 1183 pixel arrangement in the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another minimum repeating unit 1184 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a blue pixel.
  • the response band of the panchromatic pixel W is the visible light band (for example, 400 nm-760 nm).
  • the panchromatic pixel W is provided with an infrared filter to filter out infrared light.
  • the response wavelength band of the panchromatic pixel W is the visible light wavelength band and the near-infrared wavelength band (for example, 400 nm-1000 nm), which matches the response wavelength band of the photoelectric conversion element 117 (for example, the photodiode PD) in the image sensor 10.
  • the panchromatic pixel W may not be provided with a filter, and the response band of the panchromatic pixel W is determined by the response band of the photodiode, that is, the two match.
  • the embodiments of the present application include but are not limited to the above-mentioned waveband range.
  • FIG. 21 is a schematic diagram of another minimum repeating unit 1185 pixel arrangement in the embodiment of the present application.
  • FIG. 22 is a schematic diagram of another minimum repeating unit 1186 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a yellow pixel Y
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a schematic diagram of another minimum repeating unit 1185 pixel arrangement in the embodiment of the present application.
  • FIG. 22 is a schematic diagram of another minimum repeating unit 1186 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a yellow pixel Y
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a blue pixel.
  • FIG. 23 is a schematic diagram of another minimum repeating unit 1187 pixel arrangement in the embodiment of the present application.
  • FIG. 24 is a schematic diagram of another minimum repeating unit 1188 pixel arrangement in the embodiment of the present application.
  • the first color pixel A is magenta pixel M
  • the second color pixel B is cyan pixel Cy
  • the third color pixel C is Yellow pixel Y.
  • FIG. 25 is a schematic diagram of another minimum repeating unit 1191 pixel arrangement in the embodiment of the present application.
  • the smallest repeating unit is 36 pixels in 6 rows and 6 columns, and the sub-units are 9 pixels in 3 rows, 3 columns, and the arrangement is:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in the shape of "W" to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A, B, and C) of the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the fifth row and the sixth row are connected together by the first exposure control line TX1 in the shape of "W” to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the fifth row and the sixth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • FIG. 26 is a schematic diagram of another minimum repeating unit 1192 pixel arrangement in the embodiment of the present application.
  • the smallest repeating unit is 36 pixels in 6 rows and 6 columns, and the sub-units are 9 pixels in 3 rows, 3 columns, and the arrangement is:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in a "W" shape, so as to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A, B, and C) of the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the fifth row and the sixth row are connected together by the first exposure control line TX1 in the shape of "W” to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the fifth row and the sixth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • FIG. 27 is a schematic diagram of another minimum repeating unit 1193 pixel arrangement in an embodiment of the present application.
  • FIG. 28 is a schematic diagram of another minimum repeating unit 1194 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a schematic diagram of another minimum repeating unit 1193 pixel arrangement in an embodiment of the present application.
  • FIG. 28 is a schematic diagram of another minimum repeating unit 1194 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a blue pixel.
  • the first color pixel A is a red pixel R; the second color pixel B is a yellow pixel Y; and the third color pixel C is a blue pixel Bu.
  • the first color pixel A is a magenta pixel M; the second color pixel B is a cyan pixel Cy; and the third color pixel C is a yellow pixel Y.
  • the embodiments of the present application include but are not limited to this. Please refer to the above description for the specific connection mode of the circuit, which will not be repeated here.
  • FIG. 29 is a schematic diagram of another minimum repeating unit 1195 pixel arrangement in the embodiment of the present application.
  • the smallest repeating unit is 8 rows, 8 columns and 64 pixels, and the sub-units are 4 rows, 4 columns and 16 pixels.
  • the arrangement is:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in a "W" shape, so as to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) in the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the fifth row and the sixth row are connected together by the first exposure control line TX1 in the shape of "W” to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the fifth row and the sixth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the seventh row and the eighth row are connected together by the first exposure control line TX1 in the shape of "W” to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the seventh row and the eighth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • FIG. 30 is a schematic diagram of another minimum repeating unit 1196 pixel arrangement in the embodiment of the present application.
  • the smallest repeating unit is 8 rows, 8 columns and 64 pixels, and the sub-units are 4 rows, 4 columns and 16 pixels.
  • the arrangement is:
  • W represents a full-color pixel
  • A represents a first color pixel among multiple color pixels
  • B represents a second color pixel among multiple color pixels
  • C represents a third color pixel among multiple color pixels.
  • the panchromatic pixels in the first row and the second row are connected together by a first exposure control line TX1 in a "W" shape, so as to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) of the first row and the second row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the third row and the fourth row are connected together by the first exposure control line TX1 in the shape of "W", so as to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (A and B) in the third row and the fourth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the fifth row and the sixth row are connected together by the first exposure control line TX1 in the shape of "W” to realize the individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the fifth row and the sixth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • the panchromatic pixels in the seventh row and the eighth row are connected together by the first exposure control line TX1 in the shape of "W” to realize individual control of the exposure time of the panchromatic pixels.
  • the color pixels (B and C) in the seventh row and the eighth row are connected together by a second exposure control line TX2 in a "W" shape to realize individual control of the exposure time of the color pixels.
  • FIG. 31 is a schematic diagram of another minimum repeating unit 1197 pixel arrangement in the embodiment of the present application.
  • FIG. 32 is a schematic diagram of another minimum repeating unit 1198 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a schematic diagram of another minimum repeating unit 1197 pixel arrangement in the embodiment of the present application.
  • FIG. 32 is a schematic diagram of another minimum repeating unit 1198 pixel arrangement in an embodiment of the present application.
  • the first color pixel A is a red pixel R
  • the second color pixel B is a green pixel G
  • the third color pixel C is a blue pixel.
  • Color pixel Bu is a blue pixel.
  • the first color pixel A is a red pixel R; the second color pixel B is a yellow pixel Y; and the third color pixel C is a blue pixel Bu.
  • the first color pixel A is a magenta pixel M; the second color pixel B is a cyan pixel Cy; and the third color pixel C is a yellow pixel Y.
  • the embodiments of the present application include but are not limited to this. Please refer to the above description for the specific connection mode of the circuit, which will not be repeated here.
  • the image sensor 10 (shown in FIG. 2) includes a plurality of color pixels and a plurality of panchromatic pixels W arranged in a matrix, the color pixels and the panchromatic pixels They are arranged at intervals in the row and column directions.
  • panchromatic pixels, color pixels, panchromatic pixels, color pixels are alternately arranged in the row direction.
  • panchromatic pixels, color pixels, panchromatic pixels, color pixels are alternately arranged in the column direction.
  • the first exposure control line TX1 is electrically connected to the control terminal TG (for example, the gate of the transfer transistor 112) of the exposure control circuit 116 in the 2n-1th row and the 2nth row of the panchromatic pixel W;
  • the exposure control line TX2 is electrically connected to the control terminal TG (for example, the gate of the transfer transistor 112) of the exposure control circuit 116 in the color pixels in the 2n-1th row and the 2nth row;
  • n is a natural number greater than or equal to 1.
  • the first exposure control line TX1 is electrically connected to the control terminal TG of the exposure control circuit 116 in the panchromatic pixels W in the first row and the second row; the second exposure control line TX2 is connected to the first row and The control terminal TG of the exposure control circuit 116 in the color pixels in the second row is electrically connected.
  • the first exposure control line TX1 is electrically connected to the control terminal TG of the exposure control circuit 116 in the panchromatic pixels W in the third and fourth rows; the second exposure control line TX2 is electrically connected to the third and fourth rows.
  • the control terminal TG of the exposure control circuit 116 in the color pixels of the row is electrically connected.
  • the first exposure time is less than the second exposure time.
  • the first exposure time is determined according to the n-well layer 1172 (shown in FIG. 4A) of the panchromatic pixel, and the second exposure time can be determined according to the n-well layer 1172 (shown in FIG. 4A) of the color pixel.
  • the present application provides a camera assembly 40.
  • the camera assembly 40 includes the image sensor 10, the processing chip 20, and the lens 30 described in any one of the above embodiments.
  • the image sensor 10 is electrically connected to the processing chip 20.
  • the lens 30 is provided on the optical path of the image sensor 10.
  • the processing chip 20 and the image sensor 10 and the lens 30 may be packaged in the same housing of the camera assembly 40; or the image sensor 10 and the lens 30 are packaged in the housing, and the processing chip 20 is arranged outside the housing.
  • the present application also provides an image acquisition method that can be applied to the camera assembly 40 of FIG. 33.
  • the image acquisition method includes:
  • the image acquisition method of the present application can be implemented by the camera assembly 40.
  • step 01 can be implemented by the image sensor 10.
  • step 02, step 03, and step 04 can be implemented by the processing chip 20.
  • the image sensor 10 can be exposed to obtain a full-color original image and a color original image.
  • the processing chip 20 may be used to process a color original image, to treat all pixels of each subunit as a single color large pixel corresponding to a single color in the subunit, and output the pixel value of the single color large pixel to obtain a color intermediate image.
  • the processing chip 20 may also be used to process a full-color original image to obtain a full-color intermediate image, and to process a color intermediate image and/or a full-color intermediate image to obtain a target image.
  • the image sensor when the image sensor is working, the image sensor will fit the pixel value of each panchromatic pixel in the pixel array to other pixels.
  • the original image including only the color pixels is output. Specifically, taking pixel A as a red pixel R, pixel B as a green pixel G, and pixel C as a blue pixel Bu as an example, the column processing unit in the image sensor reads out the pixel values of multiple red pixels R and multiple green pixels.
  • the image sensor After the pixel value of G, the pixel value of multiple blue pixels Bu, and the pixel value of multiple panchromatic pixels W, the image sensor will first fit the pixel value of each panchromatic pixel W to be adjacent to the panchromatic pixel In the red pixel R, green pixel G, and blue pixel Bu, the non-Bayer array arrangement image is converted into the original image output of the Bayer array arrangement for the processing chip to perform subsequent processing on the original image, such as the original image
  • the image is subjected to interpolation processing to obtain a full-color image (the pixel value of each pixel in a full-color image is composed of three components of red, green and blue), etc.
  • the image sensor needs to execute a more complex algorithm, and the amount of calculation is relatively large, and because the Qualcomm platform does not support the processing of images arranged in a non-Bayer array, additional hardware (such as additional Processing chip) to perform the process of converting the image of the non-Bayer array arrangement into the original image of the Bayer array arrangement.
  • additional hardware such as additional Processing chip
  • the image acquisition method and the camera assembly 40 of the present application can reduce the calculation amount of the image sensor and avoid adding additional hardware to the image sensor.
  • the vertical drive unit 12 in the image sensor 10 controls the exposure of multiple panchromatic pixels and multiple color pixels in the two-dimensional pixel array, and the column processing unit 14 will read the pixel value of each panchromatic pixel and the pixel value of each color pixel.
  • the image sensor 10 does not perform the operation of fitting the pixel value of the panchromatic pixel to the pixel value of the color pixel, but directly outputs a panchromatic original image based on the pixel values of multiple panchromatic pixels, and directly based on the pixel values of multiple panchromatic pixels.
  • the pixel value of the pixel outputs a color original image.
  • the panchromatic original image includes a plurality of panchromatic pixels W and a plurality of empty pixels N (NULL).
  • the empty pixels are neither panchromatic pixels nor color pixels.
  • the panchromatic original image is hollow pixels.
  • the position of N can be regarded as no pixel at that position, or the pixel value of an empty pixel can be regarded as zero. Comparing the two-dimensional pixel array with the full-color original image, it can be seen that for each sub-unit in the two-dimensional pixel array, the sub-unit includes two full-color pixels W and two color pixels (color pixel A, color pixel B, or color pixel). Pixel C).
  • the full-color original image also has a sub-unit corresponding to each sub-unit in the two-dimensional pixel array.
  • the sub-unit of the full-color original image includes two full-color pixels W and two empty pixels N, and two empty pixels N
  • the location corresponds to the location of the two color pixels in the subunit of the two-dimensional pixel array.
  • the color original image includes a plurality of color pixels and a plurality of empty pixels N.
  • the empty pixels are neither panchromatic pixels nor color pixels.
  • the position of the empty pixel N in the color original image can be regarded as no Pixel, or the pixel value of an empty pixel can be treated as zero.
  • the sub-unit includes two panchromatic pixels W and two color pixels.
  • the color original image also has a sub-unit corresponding to each sub-unit in the two-dimensional pixel array.
  • the sub-unit of the color original image includes two color pixels and two empty pixels N.
  • the positions of the two empty pixels N correspond to each other. The position where the two panchromatic pixels W in the subunit of the two-dimensional pixel array are located.
  • the processing chip 20 After the processing chip 20 receives the full-color original image and the color original image output by the image sensor 10, it can further process the full-color original image to obtain a full-color intermediate image, and further process the color original image to obtain a color intermediate image.
  • the color original image can be transformed into a color intermediate image in the manner shown in FIG. 37.
  • the color original image includes a plurality of sub-units, and each sub-unit includes a plurality of empty pixels N and a plurality of single-color color pixels (also called single-color pixels).
  • some sub-units include two empty pixels N and two single-color pixels A
  • some sub-units include two empty pixels N and two single-color pixels B
  • some sub-units include two empty pixels N and Two single-color pixels C.
  • the processing chip 20 may regard all the pixels in the sub-unit including the empty pixel N and the single-color pixel A as the single-color large pixel A corresponding to the single-color A in the sub-unit, and will include the empty pixel N and the single-color pixel B.
  • the processing chip 20 can form a color intermediate image based on the plurality of monochromatic large pixels A, the plurality of monochromatic large pixels B, and the plurality of monochromatic large pixels C. If the color original image including a plurality of empty pixels N is regarded as an image with the second resolution, the color intermediate image obtained in the manner shown in FIG. 37 is an image with the first resolution. One resolution is smaller than the second resolution.
  • the full-color intermediate image and/or the color intermediate image may be further processed to obtain the target image.
  • the processing chip 20 may only process the full-color intermediate image to obtain the target image; the processing chip 20 may also only process the color intermediate image to obtain the target image; the processing chip 20 may also process the full-color intermediate image and the color intermediate image at the same time to obtain the target image. Target image.
  • the processing chip 20 can determine the processing mode of the two intermediate images according to actual requirements.
  • the image sensor 10 can directly output the full-color original image and the color original image.
  • the subsequent processing of the full-color original image and the color original image is executed by the processing chip 20, and the image sensor 10 does not need to execute the conversion process.
  • the operation of fitting the pixel value of the panchromatic pixel W to the pixel value of the color pixel reduces the computational complexity of the image sensor 10, and there is no need to add new hardware to the image sensor 10 to support the image sensor 10 to perform image processing.
  • the design of the image sensor 10 is simplified.
  • step 01 controlling the exposure of the two-dimensional pixel array to obtain a full-color original image and a color original image can be implemented in various ways.
  • step 01 includes:
  • 011 Control the simultaneous exposure of all panchromatic pixels and all color pixels in the two-dimensional pixel array
  • step 011, step 012, and step 013 can be implemented by the image sensor 10.
  • the image sensor 10 may output the pixel values of all panchromatic pixels to obtain a panchromatic original image, and may also output the pixel values of all color pixels to obtain a color original image.
  • the panchromatic pixels and the color pixels can be exposed at the same time, wherein the exposure time of the panchromatic pixels can be less than or equal to the exposure time of the color pixels.
  • the exposure start time and the exposure cutoff time of the panchromatic pixel are the same as the exposure start time and the exposure cutoff time of the color pixel, respectively.
  • the exposure start time of the panchromatic pixel is later than or equal to the exposure start time of the color pixel, and the exposure cut-off time of the panchromatic pixel is earlier than the exposure cut-off time of the color pixel; or
  • the exposure start time of the panchromatic pixel is later than the exposure start time of the color pixel, and the exposure cutoff time of the panchromatic pixel is earlier than or equal to the exposure cutoff time of the color pixel.
  • the image sensor 10 After the panchromatic pixels and the color pixels are exposed and evened, the image sensor 10 outputs the pixel values of all the panchromatic pixels to obtain the panchromatic original image, and outputs the pixel values of all the color pixels to obtain the color original image.
  • the full-color original image can be output before the color original image, or; the color original image can be output before the full-color original image; or, the full-color original image and the color original image can be output at the same time.
  • the output order of the two is not limited here. Simultaneous exposure of panchromatic pixels and color pixels can reduce the acquisition time of panchromatic original images and color original images, and speed up the process of acquiring panchromatic original images and color original images.
  • the method of simultaneous exposure of panchromatic pixels and color pixels has great advantages in fast shooting, continuous shooting and other modes that require higher image output speed.
  • step 01 includes:
  • step 014, step 015, and step 016 can all be implemented by the image sensor 10.
  • all the panchromatic pixels and all the color pixels in the image sensor 10 are exposed in a time-sharing manner.
  • the image sensor 10 may output the pixel values of all panchromatic pixels to obtain a panchromatic original image, and may also output the pixel values of all color pixels to obtain a color original image.
  • the panchromatic pixels and the color pixels may be exposed in time sharing, wherein the exposure time of the panchromatic pixels may be less than or equal to the exposure time of the color pixels.
  • the time-sharing exposure method for all panchromatic pixels and all color pixels can be: (1) All panchromatic pixels first perform the exposure for the first exposure time, and wait After all the panchromatic pixels are exposed, all the color pixels perform the second exposure time exposure; (2) All the color pixels perform the second exposure time exposure first, and after all the color pixels are exposed, all the panchromatic pixels perform the second exposure time again.
  • One exposure time of exposure can be: (1) All panchromatic pixels first perform the exposure for the first exposure time, and wait After all the panchromatic pixels are exposed, all the color pixels perform the second exposure time exposure; (2) All the color pixels perform the second exposure time exposure first, and after all the color pixels are exposed, all the panchromatic pixels perform the second exposure time again.
  • the image sensor 10 After the panchromatic pixels and the color pixels are exposed and evened, the image sensor 10 outputs the pixel values of all the panchromatic pixels to obtain the panchromatic original image, and outputs the pixel values of all the color pixels to obtain the color original image.
  • the output mode of the full-color original image and the color original image can be: (1) When the full-color pixel is exposed before the color pixel, the image sensor 10 can output the full-color original image during the color pixel exposure period, or it can output the full-color original image during the color pixel exposure.
  • the full-color original image and the color original image are sequentially output; (2) When the color pixels are exposed before the full-color pixels, the image sensor 10 can output the color original images during the exposure of the full-color pixels, or wait for the full-color pixels After the exposure is completed, the color original image and the full-color original image are output in turn; (3) No matter which of the pan-color pixels and the color pixels is first exposed, the image sensor 10 can output the full-color original image at the same time after all pixels are exposed And color original image.
  • the control logic of the time-sharing exposure of panchromatic pixels and color pixels is relatively simple.
  • the image sensor 10 may simultaneously have the functions of controlling the simultaneous exposure of panchromatic pixels and color pixels, and controlling the time-sharing exposure of panchromatic pixels and color pixels, as shown in FIGS. 38 and 39.
  • the specific exposure mode used by the image sensor 10 in the process of collecting images can be selected according to actual needs. For example, simultaneous exposure can be used in fast shooting, continuous shooting, etc. modes to meet the needs of rapid image output; in ordinary shooting modes, time-sharing exposure can be used to simplify the control logic.
  • the exposure sequence of panchromatic pixels and color pixels can be controlled by the control unit 13 in the image sensor 10.
  • the exposure time of the panchromatic pixels can be controlled by the first exposure signal, and the exposure time of the color pixels can be controlled by the second exposure signal.
  • the image sensor 10 may use a first exposure signal to control at least two adjacent panchromatic pixels in a first diagonal direction to expose for a first exposure time, and use a second exposure signal to control at least two panchromatic pixels. At least two adjacent color pixels in the second diagonal direction are exposed at a second exposure time, where the first exposure time may be less than or equal to the second exposure time.
  • the vertical driving unit 12 in the image sensor 10 transmits the first exposure signal through the first exposure control line TX1 to control at least two adjacent panchromatic pixels in the first diagonal direction to be exposed at the first exposure time, and drive vertically.
  • the unit 12 transmits a second exposure signal through the second exposure control line TX2 to control at least two adjacent panchromatic pixels in the second diagonal direction to be exposed at the second exposure time. After all panchromatic pixels and all color pixels are exposed, as shown in FIG. 36, the image sensor 10 does not perform the process of fitting the pixel values of multiple panchromatic pixels to the pixel values of the color pixels, but directly outputs One full-color original image and one color original image.
  • the image sensor 10 can use the first exposure signal to control the 2n-1th row and the 2nth row of panchromatic pixels to be exposed for the first exposure time, and use the second exposure signal to control the first exposure time.
  • the color pixels in the 2n-1 row and the 2nth row are exposed at the second exposure time, where the first exposure time may be less than or equal to the second exposure time.
  • the first exposure control line TX1 in the image sensor 10 is connected to the control terminals TG of all panchromatic pixels in the 2n-1 row and the 2nth row
  • the second exposure control line TX2 is connected to the 2n-1 row and the 2nth row.
  • the control terminals TG of all color pixels are connected.
  • the vertical driving unit 12 transmits the first exposure signal through the first exposure control line TX1 to control the panchromatic pixels in the 2n-1th row and the 2nth row to be exposed with the first exposure time, and transmits the second exposure signal through the second exposure control line TX2 To control the color pixels of the 2n-1th row and the 2nth row to be exposed with the second exposure time.
  • the image sensor 10 does not perform the process of fitting the pixel values of multiple panchromatic pixels to the pixel values of the color pixels, but directly outputs One full-color original image and one color original image.
  • the processing chip 20 may determine the relative relationship between the first exposure time and the second exposure time according to the environmental brightness.
  • the image sensor 10 may first control the exposure of panchromatic pixels and output a panchromatic original image, and the processing chip 20 analyzes the pixel values of multiple panchromatic pixels in the panchromatic original image to determine the environmental brightness.
  • the image sensor 10 controls the panchromatic pixels to be exposed at the first exposure time equal to the second exposure time; when the ambient brightness is greater than the brightness threshold, the image sensor 10 controls the panchromatic pixels to be less than the second exposure time.
  • Exposure time is the first exposure time to exposure.
  • the relative relationship between the first exposure time and the second exposure time can be determined according to the brightness difference between the ambient brightness and the brightness threshold. For example, the greater the brightness difference, the greater the first exposure time and the second exposure time.
  • the ratio of the second exposure time is smaller. For example, when the brightness difference is within the first range [a,b), the ratio of the first exposure time to the second exposure time is V1:V2; when the brightness difference is within the second range [b,c) , The ratio of the first exposure time to the second exposure time is V1:V3; when the brightness difference is greater than or equal to c, the ratio of the first exposure time to the second exposure time is V1:V4, where V1 ⁇ V2 ⁇ V3 ⁇ V4.
  • step 02 includes:
  • a color intermediate image is formed according to the pixel values of a plurality of monochromatic large pixels, and the color intermediate image has the first resolution.
  • both step 021 and step 022 can be implemented by the processing chip 20.
  • the processing chip 20 can be used to combine the pixel values of all pixels in each subunit to obtain the pixel value of a single large pixel, and to form a color intermediate image based on the pixel values of multiple large monochrome pixels.
  • the image has the first resolution.
  • the color intermediate image has the first resolution.
  • the processing chip 20 may add the pixel values of all pixels in the sub-unit including the empty pixel N and the single-color pixel A, and use the result of the addition as Corresponding to the pixel value of the single-color large pixel A of the sub-unit, the pixel value of the empty pixel N can be regarded as zero, the same below; the processing chip 20 can treat all the sub-units including the empty pixel N and the single-color pixel B The pixel values of the pixels are added, and the result of the addition is taken as the pixel value of the single-color large pixel B corresponding to the sub-unit; the processing chip 20 may add the values of all pixels in the sub-unit including the empty pixel N and the single-color pixel C The pixel values are added, and the result of the addition is used as the pixel value of the single-color large pixel C corresponding to the sub-unit.
  • the processing chip 20 can obtain the pixel values of a plurality of single large pixels A, the pixel values of a plurality of monochromatic large pixels B, and the pixel values of a plurality of monochromatic large pixels C.
  • the processing chip 20 then forms a color intermediate image according to the pixel values of the plurality of monochromatic large pixels A, the pixel values of the plurality of monochromatic large pixels B, and the pixel values of the plurality of monochromatic large pixels C.
  • the single color A is red R
  • the single color B is green G
  • the single color C is blue Bu
  • the color intermediate image is an image arranged in a Bayer array.
  • the manner in which the processing chip 20 obtains the color intermediate image is not limited to this.
  • different modes correspond to different target images.
  • the processing chip 20 first determines which mode the camera assembly 40 is in, and then performs corresponding processing on the color intermediate image and/or the full-color intermediate image according to the mode of the camera assembly 40 to obtain the target image corresponding to the mode.
  • the target image includes at least four types of target images: a first target image, a second target image, a third target image, and a fourth target image.
  • step 04 when the target image is the first target image, step 04 includes:
  • Step 040 may be implemented by the processing chip 20.
  • the processing chip 20 can be used to perform interpolation processing on each single-color large pixel in the color intermediate image to obtain and output the pixel values of the other two colors except the single color to obtain the first resolution.
  • the first target image is a single-color large pixel in the color intermediate image.
  • the processing chip 20 needs to perform demosaicing (that is, interpolation processing) on the color intermediate image, so that the pixel value of each monochromatic large pixel has three components of R, G, and B at the same time.
  • demosaicing that is, interpolation processing
  • a linear interpolation method may be used to calculate the pixel values of the other two colors of each monochromatic large pixel except for the single color of the monochromatic large pixel.
  • the processing chip 20 After the processing chip 20 calculates the pixel values of the three components of each monochromatic large pixel, it can calculate the final pixel value corresponding to the monochromatic large pixel based on the three pixel values, namely A+B+C, which needs to be explained.
  • A+B+C here does not mean directly adding three pixels to obtain the final pixel value of the monochromatic large pixel, but only means that the monochromatic large pixel includes the three color components of A, B, and C.
  • the processing chip 20 may form a first target image according to the final pixel values of a plurality of monochromatic large pixels.
  • the first target image is a color intermediate image obtained through interpolation processing, and the processing chip 20 does not perform interpolation processing on the color intermediate image. Therefore, the resolution of the first target image is also the first resolution. rate.
  • the processing algorithm for the processing chip 20 to process the color intermediate image to obtain the first target image is relatively simple, and the processing speed is faster.
  • the camera assembly 40 uses the first target image as the preview image when the mode is both the preview mode and the low power consumption mode. To meet the requirement of the preview mode for the output speed, the power consumption of the camera assembly 40 can also be saved.
  • step 03 when the target image is the second target image, step 03 includes:
  • Step 04 includes:
  • step 031, step 041, step 042 and step 043 can all be implemented by the processing chip 20.
  • the processing chip 20 can be used to process a full-color original image, treat all pixels of each subunit as a full-color large pixel, and output the pixel value of the full-color large pixel to obtain a full-color intermediate image, a full-color intermediate image Has the first resolution.
  • the processing chip 20 can also be used to separate the color and brightness of the color intermediate image to obtain a color-brightness separated image with a first resolution, and to fuse the brightness of the full-color intermediate image and the brightness of the color-brightness separated image to obtain a color and brightness separated image with the first resolution.
  • Brightness-corrected color image, and interpolation processing is performed on each single-color large pixel in the brightness-corrected color image to obtain the pixel values of the other two colors in addition to the single color and output to obtain the second target with the first resolution image.
  • the full-color original image can be transformed into a full-color intermediate image in the manner shown in FIG. 43.
  • the full-color original image includes a plurality of sub-units, and each sub-unit includes two empty pixels N and two pan-color pixels W.
  • the processing chip 20 may regard all pixels in each sub-unit including the empty pixel N and the full-color pixel W as the full-color large pixel W corresponding to the sub-unit. In this way, the processing chip 20 can form a full-color intermediate image based on a plurality of full-color large pixels W. If the full-color original image including multiple empty pixels N is regarded as an image with the second resolution, the full-color intermediate image obtained in the manner shown in FIG. 43 is an image with the first resolution, where , The first resolution is smaller than the second resolution.
  • the processing chip 20 may use all the pixels of each subunit in the full-color original image as the full-color large pixel W corresponding to the sub-unit in the following manner: the processing chip 20 first merges the pixels of all pixels in each sub-unit Value to obtain the pixel value of the panchromatic large pixel W, and then form a panchromatic intermediate image according to the pixel values of the multiple panchromatic large pixels W. Specifically, for each full-color large pixel, the processing chip 20 may add all the pixel values in the sub-units including the empty pixel N and the full-color pixel W, and use the result of the addition as the full-color corresponding to the sub-unit. The pixel value of the large pixel W, where the pixel value of the empty pixel N can be regarded as zero. In this way, the processing chip 20 can obtain the pixel values of a plurality of full-color large pixels W.
  • the processing chip 20 After the processing chip 20 obtains the full-color intermediate image and the color intermediate image, it can perform fusion processing on the full-color intermediate image and the color intermediate image to obtain the second target image.
  • the processing chip 20 first separates the color and brightness of the color intermediate image to obtain the color-brightness separated image.
  • L represents brightness
  • CLR represents color.
  • the processing chip 20 can convert the color intermediate image in the RGB space into Color and brightness separation image in YCrCb space, at this time Y in YCrCb is the brightness L in the color and brightness separation image, and Cr and Cb in YCrCb are the color CLR in the color and brightness separation image; (2)
  • the processing chip 20 can also Convert the RGB color intermediate image to the color-brightness separated image in Lab space.
  • L in Lab is the brightness L in the color-brightness separated image
  • a and b in Lab are the color CLRs in the color-brightness separated image.
  • L+CLR in the color-light separation image shown in FIG. 43 does not mean that the pixel value of each pixel is formed by adding L and CLR, but only that the pixel value of each pixel is composed of L and CLR.
  • the processing chip 20 fuses the brightness of the color-brightness separated image and the brightness of the full-color intermediate image.
  • the pixel value of each panchromatic pixel W in the panchromatic intermediate image is the brightness value of each panchromatic pixel
  • the processing chip 20 may correspond to the L of each pixel in the color-brightness separation image with that in the panchromatic intermediate image. Add the W of the panchromatic pixel at the position to get the pixel value after brightness correction.
  • the processing chip 20 forms a brightness-corrected color-brightness separated image according to a plurality of brightness-corrected pixel values, and then uses color space conversion to convert the brightness-corrected color-brightness separated image into a brightness-corrected color image.
  • the brightness-corrected color image is an image arranged in a Bayer array
  • the processing chip 20 needs to The brightness-corrected color image is subjected to interpolation processing, so that the pixel value of each large monochromatic pixel after brightness correction has three components of R, G, and B at the same time.
  • the processing chip 20 may perform interpolation processing on the brightness-corrected color image to obtain the second target image. For example, a linear interpolation method may be used to obtain the second target image.
  • the linear interpolation process is similar to the interpolation process in the aforementioned step 040. Go into details again.
  • the second target image is a brightness-corrected color image obtained through interpolation processing, and the processing chip 20 does not perform interpolation processing on the brightness-corrected color image. Therefore, the resolution of the second target image is also The first resolution. Since the second target image is obtained by fusing the brightness of the color intermediate image and the brightness of the panchromatic intermediate image, the second target image has a better imaging effect.
  • the mode is the preview mode and the non-low power consumption mode
  • using the second target image as the preview image can improve the preview effect of the preview image.
  • the mode is the imaging mode and the low power consumption mode
  • the second target image is used as the image provided to the user.
  • the camera assembly 40 can be reduced to a certain extent.
  • the power consumption can meet the usage requirements in the low power consumption mode; at the same time, the brightness of the second target image is relatively bright, which can meet the user's brightness requirements for the target image.
  • step 04 includes:
  • both steps 044 and 045 can be implemented by the processing chip 20.
  • the processing chip 20 can be used to interpolate and process the color intermediate image to obtain a color interpolated image with a second resolution.
  • the corresponding subunits in the color interpolated image are arranged in a Bayer array, and the second resolution is greater than The first resolution.
  • the processing chip 20 can also be used to perform interpolation processing on all single-color pixels in the color interpolation image to obtain pixel values of two other colors except the single color and output to obtain a third target image with a second resolution. .
  • the processing chip 20 splits each large monochrome pixel in the color intermediate image into four color pixels.
  • the four color pixels form a subunit in the color interpolation image, and each subunit It includes three colors of color pixels, which are one color pixel A, two color pixels B, and one color pixel C.
  • the color pixel A is a red pixel R
  • the color pixel B is a green pixel G
  • the color pixel C is a blue pixel Bu
  • the multiple color pixels in each subunit are arranged in a Bayer array. Therefore, the color interpolated image containing multiple subunits is the image arranged in the Bayer array.
  • the processing chip 20 may perform interpolation processing on the color interpolation image to obtain the third target image.
  • a linear interpolation method may be used to obtain the second target image.
  • the linear interpolation process is similar to the interpolation process in the foregoing step 040. Go into details again.
  • the third target image is an image obtained through interpolation processing, and the resolution of the third target image (ie, the second resolution) is greater than the resolution of the color intermediate image (ie, the first resolution).
  • the mode is both the preview mode and the non-low power consumption mode
  • the third target image is used as the preview image to obtain a clearer preview image.
  • the mode is both the imaging mode and the low power consumption mode
  • the third target image is used as the image provided to the user. Since the third target does not need to be fused with the panchromatic intermediate image during the formation process, it can be reduced to a certain extent.
  • the power consumption of the camera assembly 40 can also meet the user's requirements for the clarity of the captured image.
  • step 03 when the target image is the fourth target image, step 03 includes:
  • Step 04 includes:
  • the processing chip 20 can also be used to separate the color and brightness of the color interpolation image to obtain a color-brightness separated image with a second resolution, and to fuse the brightness of the full-color interpolation image and the brightness of the color-brightness separated image to obtain a second resolution.
  • the processing chip 20 first performs interpolation processing on the full-color original image of the first resolution to obtain the full-color intermediate image of the second resolution.
  • the full-color original image includes multiple sub-units, each sub-unit includes two empty pixels N and two pan-color pixels W, the processing chip 20 needs to replace each empty pixel N in each sub-unit with a full Color pixel W, and calculate the pixel value of each panchromatic pixel W at the position of the empty pixel N after replacement.
  • the processing chip 20 For each empty pixel N, the processing chip 20 replaces the empty pixel N with a panchromatic pixel W, and determines the replaced panchromatic pixel W according to the pixel values of the remaining panchromatic pixels W adjacent to the replaced panchromatic pixel W The pixel value of the panchromatic pixel W.
  • empty pixel N 1,8 in the full-color original image shown in Figure 46 Take the empty pixel N 1,8 in the full-color original image shown in Figure 46 ("empty pixel N 1,8 " is the empty pixel N in the first row and the eighth column from the upper left, the same below), the empty pixel Pixel N 1,8 is replaced with panchromatic pixel W 1,8 , and pixels adjacent to panchromatic pixel W 1,8 are panchromatic pixels W 1,7 and panchromatic pixels W 2,8 in the panchromatic original image, As an example, the average value of the pixel value of the panchromatic pixel W 1,7 and the pixel value of the panchromatic pixel W 2,8 may be used as the pixel value of the panchromatic pixel W 1,8 .
  • the empty pixels N 2,3 in the panchromatic original image shown in Figure 46 are replaced with panchromatic pixels W 2,3 , and the panchromatic pixels adjacent to the panchromatic pixel W 2,3 Is the panchromatic pixel W 1,3 , panchromatic pixel W 2,2 , panchromatic pixel W 2,4 , and panchromatic pixel W 3,3 in the panchromatic original image.
  • the processing chip 20 sets the panchromatic pixel The pixel value of W 1,3 , the pixel value of panchromatic pixel W 2,2 , the pixel value of panchromatic pixel W 2,4 , and the average value of the pixel value of panchromatic pixel W 3,3 are used as the replaced panchromatic pixel The pixel value of W 2,3.
  • the processing chip 20 may perform interpolation processing on the color intermediate image of the first resolution to obtain the color interpolation image of the second resolution, as shown in FIG. 45.
  • the specific interpolation method is similar to the interpolation method in step 045, and will not be repeated here.
  • the processing chip 20 can separate the color and brightness of the color interpolation image to obtain a color-brightness separated image.
  • L represents brightness
  • CLR represents color.
  • the processing chip 20 can convert the color interpolation image in the RGB space Is the color and brightness separation image in YCrCb space, at this time Y in YCrCb is the brightness L in the color and brightness separation image, and Cr and Cb in YCrCb are the color CLR in the color and brightness separation image; (2) the processing chip 20 also The RGB color interpolation image can be converted into the color and brightness separation image in Lab space.
  • L in Lab is the brightness L in the color and brightness separation image
  • a and b in Lab are the colors in the color and brightness separation image.
  • CLR L+CLR in the color-light separation image shown in FIG. 45 does not mean that the pixel value of each pixel is formed by adding L and CLR, but only that the pixel value of each pixel is composed of L and CLR.
  • the processing chip 20 can merge the brightness of the color-brightness separated image and the brightness of the full-color intermediate image.
  • the pixel value of each panchromatic pixel W in the panchromatic intermediate image is the brightness value of each panchromatic pixel
  • the processing chip 20 may correspond to the L of each pixel in the color-brightness separation image with that in the panchromatic intermediate image. Add the W of the panchromatic pixel at the position to get the pixel value after brightness correction.
  • the processing chip 20 forms a brightness-corrected color-brightness separated image according to a plurality of brightness-corrected pixel values, and then converts the brightness-corrected color-brightness separated image into a brightness-corrected color image.
  • the brightness-corrected color image has a second resolution. rate.
  • the brightness correction color image is an image arranged in a Bayer array
  • the processing chip 20 needs to interpolate the brightness correction color image Processing is performed so that the pixel value of each color pixel after brightness correction has three components of R, G, and B at the same time.
  • the processing chip 20 may perform interpolation processing on the brightness-corrected color image to obtain the fourth target image. For example, linear interpolation may be used to obtain the fourth target image.
  • the linear interpolation process is similar to the interpolation process in the aforementioned step 40. Repeat it again.
  • the fourth target image is obtained by fusing the brightness of the color intermediate image and the brightness of the panchromatic intermediate image, and the fourth target image has a larger resolution, the fourth target image has better brightness and clarity.
  • the mode is both the imaging mode and the non-low power consumption mode, using the fourth target image as the image provided to the user can meet the user's quality requirements for the captured image.
  • the image acquisition method may further include acquiring environmental brightness.
  • This step can be implemented by the processing chip 20, and the specific implementation manner is as described above, and will not be repeated here.
  • the environmental brightness is greater than the brightness threshold
  • the first target image or the third target image can be used as the target image
  • the second target image or the fourth target image can be used as the target image. It can be understood that when the ambient brightness is bright, the brightness of the first target image and the second target image obtained only from the color intermediate image is sufficient to meet the user's brightness requirements for the target image, and there is no need to merge the brightness of the full-color intermediate image.
  • the calculation amount of the processing chip 20 can be reduced, but also the power consumption of the camera assembly 40 can be reduced.
  • the brightness of the first target image and the second target image obtained only from the color intermediate image may not meet the user's brightness requirements for the target image, and the second target obtained by fusing the brightness of the full-color intermediate image
  • the image or the fourth target image is used as the target image, which can increase the brightness of the target image.
  • the mobile terminal 90 may be a mobile phone, a tablet computer, a notebook computer, a smart wearable device (such as a smart watch, a smart bracelet, a smart glasses, a smart helmet, etc.), a head-mounted display device, a virtual reality device, etc., which are not limited here.
  • the mobile terminal 90 includes an image sensor 50, a processor 60, a memory 70, and a case 80, and the image sensor 50, the processor 60, and the memory 70 are all installed in the case 80.
  • the image sensor 50 is connected to the processor 60, and the image sensor 50 may be the image sensor 10 (shown in FIG. 33) described in any one of the above embodiments.
  • the processor 60 can perform the same functions as the processing chip 20 in the camera assembly 40 (shown in FIG. 33). In other words, the processor 60 can implement the functions that can be implemented by the processing chip 20 described in any of the foregoing embodiments.
  • the memory 70 is connected to the processor 60, and the memory 70 can store data obtained after processing by the processor 60, such as a target image.
  • the processor 60 and the image sensor 50 may be mounted on the same substrate. At this time, the image sensor 50 and the processor 60 can be regarded as a camera assembly 40. Of course, the processor 60 and the image sensor 50 may also be mounted on a different substrate.
  • the image sensor 50 in the mobile terminal 90 of the present application is provided with a condenser lens 1186 to converge light, so that more light can enter the photoelectric conversion element 117 of the corresponding pixel, thereby avoiding the problem of light crosstalk between adjacent pixels , The imaging quality of the image sensor 50 is improved.

Abstract

一种图像传感器(10)、摄像头组件(40)及移动终端(90)。图像传感器(10)包括多个像素。多个像素中的至少部分像素包括隔离层(1183)、聚光透镜(1186)、及光电转换元件(117)。聚光透镜(1186)设置在隔离层(1183)内。光电转换元件(117)用于接收穿过聚光透镜(1186)的光线。

Description

图像传感器、摄像头组件及移动终端 技术领域
本申请涉及影像技术领域,特别涉及一种图像传感器、摄像头组件及移动终端。
背景技术
手机等移动终端中往往装配有摄像头,以实现拍照功能。摄像头中设置有图像传感器。为了实现彩色图像的采集,图像传感器中通常包括二维阵列排布的多个像素。图像传感器工作时,相邻像素之间可能发生光串扰的问题。
发明内容
本申请提供一种图像传感器、摄像头组件及移动终端。
本申请一个方面提供一种图像传感器。图像传感器包括多个像素。多个所述像素中的至少部分像素包括隔离层、聚光透镜、及光电转换元件。所述聚光透镜设置在所述隔离层内。所述光电转换元件用于接收穿过所述聚光透镜的光线。
在另一个方面,本申请还提供一种摄像头组件。摄像头组件包括图像传感器。图像传感器包括多个像素。多个所述像素中的至少部分像素包括隔离层、聚光透镜、及光电转换元件。所述聚光透镜设置在所述隔离层内。所述光电转换元件用于接收穿过所述聚光透镜的光线。
在又一个方面,本申请还提供一种移动终端。移动终端包括机壳及图像传感器,所述图像传感器安装在所述机壳内。图像传感器包括多个像素。多个所述像素中的至少部分像素包括隔离层、聚光透镜、及光电转换元件。所述聚光透镜设置在所述隔离层内。所述光电转换元件用于接收穿过所述聚光透镜的光线。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式中图像传感器的示意图;
图2是本申请实施方式中一种像素电路的示意图;
图3是不同色彩通道曝光饱和时间的示意图;
图4A是本申请实施方式中一种像素阵列的部分截面示意图;
图4B是图4A的像素阵列中光电转换元件(或滤光片)的排布示意图;
图5A是本申请实施方式中又一种像素阵列的部分截面示意图;
图5B是图5A的像素阵列中光电转换元件(或滤光片)的一个排布示意图;
图5C是图5A的像素阵列中光电转换元件(或滤光片)的另一个排布示意图;
图6A是本申请实施方式中又一种像素阵列的部分截面示意图;
图6B是图6A的像素阵列中滤光片的排布示意图;
图6C是图6A的像素阵列中光电转换元件的排布示意图;
图7A是本申请实施方式中又一种像素阵列的部分截面示意图;
图7B是图7A的像素阵列中滤光片的排布示意图;
图7C是图7A的像素阵列中光电转换元件的排布示意图;
图8A是本申请实施方式中又一种像素阵列的部分截面示意图;
图8B是图8A的像素阵列中滤光片的排布示意图;
图8C是图8A的像素阵列中光电转换元件的排布示意图;
图9是本申请实施方式中又一种像素阵列的部分截面示意图;
图10A是本申请实施方式中又一种像素阵列的部分截面示意图;
图10B是图10A的像素阵列中光电转换元件(或滤光片)的排布示意图;
图11A是本申请实施方式中又一种像素阵列的部分截面示意图;
图11B是图11A的像素阵列中光电转换元件(或滤光片)的一个排布示意图;
图11C是图11A的像素阵列中光电转换元件(或滤光片)的另一个排布示意图;
图12A是本申请实施方式中又一种像素阵列的部分截面示意图;
图12B是图12A的像素阵列中滤光片的排布示意图;
图12C是图12A的像素阵列中光电转换元件的排布示意图;
图13A是本申请实施方式中又一种像素阵列的部分截面示意图;
图13B是图13A的像素阵列中滤光片的排布示意图;
图13C是图13A的像素阵列中光电转换元件的排布示意图;
图14A是本申请实施方式中又一种像素阵列的部分截面示意图;
图14B是图14A的像素阵列中滤光片的排布示意图;
图14C是图14A的像素阵列中光电转换元件的排布示意图;
图15A是本申请实施方式中又一种像素阵列的部分截面示意图;
图15B是本申请实施方式中又一种像素阵列的部分截面示意图;
图16是本申请实施方式中像素阵列及曝光控制线连接方式的示意图;
图17是本申请实施方式中一种最小重复单元像素排布的示意图;
图18是本申请实施方式中又一种最小重复单元像素排布的示意图;
图19是本申请实施方式中又一种最小重复单元像素排布的示意图;
图20是本申请实施方式中又一种最小重复单元像素排布的示意图;
图21是本申请实施方式中又一种最小重复单元像素排布的示意图;
图22是本申请实施方式中又一种最小重复单元像素排布的示意图;
图23是本申请实施方式中又一种最小重复单元像素排布的示意图;
图24是本申请实施方式中又一种最小重复单元像素排布的示意图;
图25是本申请实施方式中又一种最小重复单元像素排布的示意图;
图26是本申请实施方式中又一种最小重复单元像素排布的示意图;
图27是本申请实施方式中又一种最小重复单元像素排布的示意图;
图28是本申请实施方式中又一种最小重复单元像素排布的示意图;
图29是本申请实施方式中又一种最小重复单元像素排布的示意图;
图30是本申请实施方式中又一种最小重复单元像素排布的示意图;
图31是本申请实施方式中又一种最小重复单元像素排布的示意图;
图32是本申请实施方式中又一种最小重复单元像素排布的示意图;
图33是本申请实施方式的摄像头组件的示意图;
图34是本申请某些实施方式的图像采集方法的流程示意图;
图35是相关技术中的图像采集方法的原理示意图;
图36是本申请实施方式中光图像采集方法的一个原理示意图;
图37是本申请实施方式中光图像采集方法的另一个原理示意图;
图38至图41是本申请某些实施方式的图像采集方法的流程示意图;
图42是本申请实施方式中光图像采集方法的又一个原理示意图;
图43是本申请实施方式中光图像采集方法的再一个原理示意图;
图44是本申请实施方式中光图像采集方法的再一个原理示意图;
图45是本申请实施方式中光图像采集方法的再一个原理示意图;
图46是本申请实施方式中光图像采集方法的再一个原理示意图;
图47是本申请实施方式的移动终端的示意图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至 终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
请参阅图4A,本申请提供一种图像传感器10,图像传感器10包括多个像素。多个像素中的至少部分像素包括隔离层1183、聚光透镜1186、及光电转换元件117。聚光透镜1186设置在隔离层1183内。光电转换元件117用于接收穿过聚光透镜1186的光线。
请参阅图4A和图33,本申请还提供一种摄像头组件40。摄像头组件40包括图像传感器10。图像传感器10包括多个像素。多个像素中的至少部分像素包括隔离层1183、聚光透镜1186、及光电转换元件117。聚光透镜1186设置在隔离层1183内。光电转换元件117用于接收穿过聚光透镜1186的光线。
请参阅图4A和图47,本申请还提供一种移动终端90。移动终端包括图像传感器50和机壳80。图像传感器50安装在机壳80上。图像传感器10包括多个像素。多个像素中的至少部分像素包括隔离层1183、聚光透镜1186、及光电转换元件117。聚光透镜1186设置在隔离层1183内。光电转换元件117用于接收穿过聚光透镜1186的光线。下面结合附图对本申请的实施例作进一步说明。
在包含多二维像素阵列排布的多个像素的图像传感器中,当非垂直照射的光线在穿过某一个像素的微透镜与滤光片之后,可能会有部分光线入射到相邻像素的光电转换元件上,从而导致光串扰。对于包含有多种色彩的像素的图像传感器,相邻像素间的光串扰会产生混色问题,进而影响成像质量。
基于上述原因,如图4A所示,本申请提供一种图像传感器10。通过在每个像素中额外增设隔离层1183和设置于隔离层1183内的聚光透镜1186,使得穿过每个像素的微透镜1181和滤光片1182的光线可以被聚光透镜1186汇聚,并入射到该像素的光电转换元件117上,避免相邻像素之间的光串扰问题。
接下来首先介绍一下图像传感器10的基本结构。请参阅图1,图1是本申请实施方式中的图像传感器10的示意图。图像传感器10包括像素阵列11、垂直驱动单元12、控制单元13、列处理单元14和水平驱动单元15。
例如,图像传感器10可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。
例如,像素阵列11包括以阵列形式二维排列的多个像素(图1中未示出),每个像素均包括光电转换元件117(图2所示)。每个像素根据入射在其上的光的强度将光转换为电荷。
例如,垂直驱动单元12包括移位寄存器和地址译码器。垂直驱动单元12包括读出扫描和复位扫描功能。读出扫描是指顺序地逐行扫描单位像素,从这些单位像素逐行地读取信号。例如,被选择并被扫描的像素行中的每一像素输出的信号被传输到列处理单元14。复位扫描用于复位电荷,光电转换元件117的光电荷被丢弃,从而可以开始新的光电荷的积累。
例如,由列处理单元14执行的信号处理的是相关双采样(CDS)处理。在CDS处理中,取出从所选像素行中的每一像素输出的复位电平和信号电平,并且计算电平差。因而,获得了一行中的像素的信号。列处理单元14可以具有用于将模拟像素信号转换为数字格式的模数(A/D)转换功能。
例如,水平驱动单元15包括移位寄存器和地址译码器。水平驱动单元15顺序逐列扫描像素阵列11。通过水平驱动单元15执行的选择扫描操作,每一像素列被列处理单元14顺序地处理,并且被顺序输出。
例如,控制单元13根据操作模式配置时序信号,利用多种时序信号来控制垂直驱动单元13、列处理单元14和水平驱动单元15协同工作。
图2是本申请实施方式中一种像素电路110的示意图。图2中像素电路110应用在图1的每个像素中。下面结合图1和图2对像素电路110的工作原理进行说明。
如图2所示,像素电路110包括光电转换元件117(例如,光电二极管PD)、曝光控制电路116(例如,转移晶体管112)、复位电路(例如,复位晶体管113)、放大电路(例如,放大晶体管114)和选择电路(例如,选择晶体管115)。在本申请的实施例中,转移晶体管112、复位晶体管113、放大晶体管114和选择晶体管115例如是MOS管,但不限于此。
例如,参见图1和图2,转移晶体管112的栅极TG通过曝光控制线(图中未示出)连接垂直驱动单元12;复位晶体管113的栅极RG通过复位控制线(图中未示出)连接垂直驱动单元12;选择晶体管114的栅极SEL通过选择线(图中未示出)连接垂直驱动单元12。每个像素电路110中的曝光控制电路116(例如,转移晶体管112)与光电转换元件117电连接,用于转移光电转换元件117经光照后积累的电势。例如,光电转换元件117包括光电二极管PD,光电二极管PD的阳极例如连接到地。光电 二极管PD将所接收的光转换为电荷。光电二极管PD的阴极经由曝光控制电路116(例如,转移晶体管112)连接到浮动扩散单元FD。浮动扩散单元FD与放大晶体管114的栅极、复位晶体管113的源极连接。
例如,曝光控制电路116为转移晶体管112,曝光控制电路116的控制端TG为转移晶体管112的栅极。当有效电平(例如,VPIX电平)的脉冲通过曝光控制线(图中未示出)传输到转移晶体管112的栅极时,转移晶体管112导通。转移晶体管112将光电二极管PD光电转换的电荷传输到浮动扩散单元FD。
例如,复位晶体管113的漏极连接到像素电源VPIX。复位晶体管113的源极连接到浮动扩散单元FD。在电荷被从光电二极管PD转移到浮动扩散单元FD之前,有效复位电平的脉冲经由复位线传输到复位晶体管113的栅极,复位晶体管113导通。复位晶体管113将浮动扩散单元FD复位到像素电源VPIX。
例如,放大晶体管114的栅极连接到浮动扩散单元FD。放大晶体管114的漏极连接到像素电源VPIX。在浮动扩散单元FD被复位晶体管113复位之后,放大晶体管114经由选择晶体管115通过输出端OUT输出复位电平。在光电二极管PD的电荷被转移晶体管112转移之后,放大晶体管114经由选择晶体管115通过输出端OUT输出信号电平。
例如,选择晶体管115的漏极连接到放大晶体管114的源极。选择晶体管115的源极通过输出端OUT连接到图1中的列处理单元14。当有效电平的脉冲通过选择线被传输到选择晶体管115的栅极时,选择晶体管115导通。放大晶体管114输出的信号通过选择晶体管115传输到列处理单元14。
需要说明的是,本申请实施例中像素电路110的像素结构并不限于图2所示的结构。例如,像素电路110可以具有三晶体管像素结构,其中放大晶体管114和选择晶体管115的功能由一个晶体管完成。例如,曝光控制电路116也不局限于单个转移晶体管112的方式,其它具有控制端控制导通功能的电子器件或结构均可以作为本申请实施例中的曝光控制电路,单个转移晶体管112的实施方式简单、成本低、易于控制。
聚光透镜1186可以应用在仅包含彩色像素(包括但不限于RGB)的图像传感器中,也可以应用在包含全色像素和彩色像素的图像传感器中,以提升图像传感器的成像质量。然而,除了光串扰会影响图像传感器的成像质量以外,像素的灵敏度(即单位时间接收的曝光量)也会影响图像传感器的成像质量。示例地,在包含全色像素和彩色像素的图像传感器中,不同色彩的像素单位时间接收的曝光量不同,在某些色彩饱和后,某些色彩还未曝光到理想的状态。例如,曝光到饱和曝光量的60%-90%可以具有比较好的信噪比和精确度,但本申请的实施例不限于此。
图3中以RGBW(红、绿、蓝、全色)四种像素为例说明。参见图3,图3中横轴为曝光时间、纵轴为曝光量,Q为饱和的曝光量,LW为全色像素W的曝光曲线,LG为绿色像素G的曝光曲线,LR为红色像素R的曝光曲线,LB为蓝色像素的曝光曲线。
从图3中可以看出,全色像素W的曝光曲线LW的斜率最大,也就是说在单位时间内全色像素W可以获得更多的曝光量,在t1时刻即达到饱和。绿色像素G的曝光曲线LG的斜率次之,绿色像素在t2时刻饱和。红色像素R的曝光曲线LR的斜率再次之,红色像素在t3时刻饱和。蓝色像素B的曝光曲线LB的斜率最小,蓝色像素在t4时刻饱和。在t1时刻,全色像素W已经饱和,而R、G、B三种像素曝光还未达到理想状态。
相关技术中,RGBW四种像素的曝光时间是共同控制的。例如,每行像素的曝光时间是相同的,连接于同一曝光控制线,受同一曝光控制信号的控制。例如,继续参见图3,在0-t1时间段,RGBW四种像素都可以正常工作,但在此区间RGB由于曝光时间较短、曝光量较少,在图像显示时会造成亮度较低、信噪比较低、甚至色彩不够鲜艳的现象。在t1-t4时段,W像素由于饱和造成过度曝光,无法工作,曝光量数据已经无法真实反映目标。
为使得图像传感器10具有更好的成像质量,除了通过增加聚光透镜1186来解决光串扰问题以外,还可以进一步通过增大全色像素的满阱容量,使得全色像素的满阱容量可以大于彩色像素的满阱容量,从而避免全色像素过早饱和的问题,从而提高图像拍摄质量。
需要说明的是,图3中的曝光曲线仅为一个示例,根据像素响应波段的不同,曲线的斜率和相对关系会有所变化,本申请不限于图3中所示的情形。例如,当红色像素R响应的波段比较窄时,红色像素R的曝光曲线斜率可能比蓝色像素B曝光曲线的斜率更低。
图4A至图8C示出了图1的像素阵列11中部分像素沿图像传感器10的收光方向截取的多种截面示意图、以及像素阵列11中的光电转换元件117(或滤光片1182)的排布示意图。其中,全色像素和彩色像素均间隔设置,彩色像素具有比全色像素更窄的光谱响应。每个全色像素及每个彩色像素均包括微透镜1181、滤光片1182、聚光透镜1186、及光电转换元件117。沿图像传感器10的收光方向,微透镜1181、滤光片1182、隔离层1183、及光电转换元件117依次设置。光电转换元件117可以将所接收的光转换为电荷,具体地,光电转换元件117包括衬底1171和形成在衬底1171内部的n势阱层1172,n势阱层1172可以实现光到电荷的转换。隔离层1183设置在光电转换元件117的一个表面(具体为衬底1171的一个表面)上,由于衬底1171不是完全平整的,滤光片1182难以直接设置在衬底1171的表面上,在衬底1171的一个表面上设置隔离层1183,隔离层1183的远离衬底1171的一面的平整度较高,便于滤光片1182设置该面上。滤光片1182设置在隔离层1183的远离衬底1171的表面,滤光片1182可以使特定波段的光线通过。微透镜1181设置在滤光片1182的远离隔离层1183的一侧,微透镜1181用于汇聚光线,可以将入射的光线更多地引导至光电转换元件117。隔离层1183内设置有聚光透镜1186,聚光透镜1186可以用于汇聚穿过微透镜1181及滤光片1182的光线,从而使得光线能够更多地进入对应的光电转换元件117中,避免出现相邻像素之间的光串扰问题。光电转换元件117的满阱容量与光电转换元件117的n势阱层的体积有关,n势阱层1172的体积越大,满阱容量越大。图4A至图8C所示的任意一个实施例中,全色像素的n势阱层1172的体积均大于彩色像素的n势阱层1172的体积,从而使得全色像素的满阱容量大于彩色像素的满阱容量,增大了全色像素饱和的曝光量Q,增长了全色像素达到饱和的时长,由此避免了全色像素过早饱和的问题,可以均衡全色像素与彩色像素的曝光.如此,通过聚光透镜1186的设计、以及全色像素的满阱容量大于彩色像素的满阱容量的设计来改善图像传感器10的成像质量。
例如,图4A和图4B分别是本申请一个实施例的像素阵列11的沿收光方向截取的截面示意图、以及多个光电转换元件117(或多个滤光片1182)的排布示意图。如图4A所示,沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;聚光透镜1186设置在隔离层1183内;沿收光方向,每个像素(同一个像素)的n势阱层1172的多个横截面的尺寸均相等;全色像素的n势阱层1172的横截面的尺寸等于彩色像素的n势阱层1172的横截面的尺寸;全色像素的n势阱层1172的深度H1大于彩色像素的n势阱层1172的深度H2。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图4A所示的图像传感器10中,聚光透镜1186汇聚光线以使更多光线进入到对应的光电转换元件117中,避免光串扰问题。
需要说明的是,隔离层1183的横截面为沿垂直于收光方向的方向截取到的隔离层的截面,n势阱层1172的横截面为沿垂直于收光方向的方向截取得到的n势阱层1172的截面。每个像素的隔离层1183的横截面与该像素的n势阱层1172横截面的形状及尺寸均对应。横截面可以是长方形、正方形、平行四边形、菱形、五边形、六边形等多边形,在此不作限制。
沿收光方向,同一个像素的n势阱层1172(或隔离层1183)的多个横截面的尺寸均相等指的是:多个横截面具有相同的面积,且多个横截面中相对应的边长均相等。全色像素的n势阱层1172的横截面的尺寸与彩色像素的n势阱层1172的横截面的尺寸相等指的是:全色像素的n势阱层1172的横截面的面积与彩色像素的n势阱层1172的横截面的面积相等。全色像素的n势阱层1172的横截面所形成形状的边长与对应的彩色像素的n势阱层1172的横截面所形成形状的边长可以相等或不相等。例如,图4B所示的全色像素和彩色像素的n势阱层1172的横截面均为长方形,其包括长和宽,全色像素的n势阱层1172的横截面的面积等于彩色像素的n势阱层1172的横截面的面积,全色像素的n势阱层1172的横截面的长L 等于彩色像素的n势阱层1172的横截面的长L ,全色像素的n势阱层1172的横截面的宽W 等于彩色像素的n势阱层1172的横截面的宽W 。在其他例子中,L 可以不等于L ,W 可以不等于W ,只要满足全色像素的n势阱层1172的横截面的面积等于彩色像素的n势阱层1172的横截面的面积即可。下文对n势阱层1172(或隔离层1183)的横截面、每个像素的n势阱层1172(或隔离层1183)的多个横截面的尺寸均相等、全色像素的n势阱层1172的横截面的尺寸与彩色像素的n势阱层1172的横截面的尺寸相等的解释与此处的解释相同。
例如,图5A是本申请另一个实施例的像素阵列11的沿收光方向截取的截面示意图,图5B和图5C是图5A的像素阵列11中多个光电转换元件117(或多个滤光片1182)的排布示意图。如图5A所示, 沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;聚光透镜1186设置在隔离层1183内;沿收光方向,每个像素(同一个像素)的n势阱层1172的多个横截面的尺寸均相等;全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸;全色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图5A所示的图像传感器10中,聚光透镜1186汇聚光线以使更多光线进入到对应的光电转换元件117中,避免光串扰问题。
当然,在其他实施例中,图5A中全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2。
需要说明的是,全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸指的是:全色像素的n势阱层1172的横截面的面积大于彩色像素的n势阱层1172的横截面的面积,全色像素的n势阱层的横截面所形成形状的边长可以部分或全部大于对应的彩色像素的n势阱层1172的横截面所形成形状的边长。示例地,如图5B所示,全色像素的n势阱层1172的横截面的长L 大于彩色像素的n势阱层1172的横截面的长L ,全色像素的n势阱层1172的横截面的宽W 等于彩色像素的n势阱层1172的横截面的宽W ;如图5C所示,全色像素的n势阱层1172的横截面的长L 等于彩色像素的n势阱层1172的横截面的长L ,全色像素的n势阱层1172的横截面的宽W 大于彩色像素的n势阱层1172的横截面的宽W 。下文对全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸的解释与此处的解释相同。
例如,图6A至图6C分别是本申请又一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图6A所示,沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;聚光透镜1186设置在隔离层1183内;沿收光方向,每个全色像素(同一个全色像素)的n势阱层1172的横截面的尺寸逐渐增大,每个彩色像素(同一个彩色像素)的n势阱层1172的横截面的尺寸逐渐减小,并且,全色像素的n势阱层1172的最小的横截面的尺寸等于彩色像素的n势阱层1172的最大的横截面的尺寸;全色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图6B所示,虽然全色像素的滤光片1182的横截面的尺寸与彩色像素的滤光片1182的横截面的尺寸相等(面积和相对应的边长均相等),但如图6C所示,实际上全色像素光电转换元件117中的n势阱层1172的横截面(除最小尺寸的横截面以外的横截面)的尺寸是大于彩色像素光电转换元件117中的n势阱层1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图6A所示的图像传感器10中,聚光透镜1186汇聚光线以使更多光线进入到对应的光电转换元件117中,避免光串扰问题。
在其他实施例中,图6A中全色像素的n势阱层1172的最小的横截面的尺寸也可以大于彩色像素的n势阱层的最大的横截面的尺寸,全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2。
例如,图7A至图7C分别是本申请再一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图7A所示,沿收光方向,每个全色像素(同一个全色像素)的隔离层1183的多个横截面的尺寸逐渐增大,每个彩色像素(同一个彩色像素)的隔离层1183的多个横截面的尺寸逐渐减小;聚光透镜1186设置在隔离层1183内;沿收光方向,每个全色像素的n势阱层1172的横截面的尺寸逐渐增大,每个彩色像素的n势阱层1172的横截面的尺寸逐渐减小,并且,全色像素的n势阱层1172的最小的横截面的尺寸等于彩色像素的n势阱层1172的最大的横截面的尺寸;全色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图7B所示,虽然全色像素的滤光片1182的横截面的尺寸与彩色像素的滤光片1182的横截面的尺寸相等(面积和相对应的边长均相等),但如图7C所示,实际上全色像素光电转换元件117中的n势阱层1172的横截面(除最小尺寸的横截面以外的横截面)的尺寸是大于彩色像素光电转换元件117中的n势阱层1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图7A所示的图像传感器10中,聚光透镜1186汇聚光线以使更多光线进入到对应的光电转换元件117中,避免光串扰问题。
在其他实施例中,图7A中全色像素的n势阱层1172的最小的横截面的尺寸也可以大于彩色像素的n势阱层的最大的横截面的尺寸,全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2。
例如,图8A至图8C是本申请再一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图8A所示,沿收光方向,每个全色像素(同一个全色像素)的隔离层1183的多个横截面的尺寸逐渐增大,每个彩色像素(同一个彩色像素)的隔离层1183的多个横截面的尺寸逐渐减小,并且,全色像素的隔离层1183的最小的横截面的尺寸等于彩色像素的隔离层1183的最大的横截面的尺寸;聚光透镜1186设置在隔离层1183内;沿收光方向,每个像素的n势阱层1172的多个横截面的尺寸均相等;全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸;全色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图8B所示,虽然全色像素的滤光片1182的横截面的尺寸与彩色像素的滤光片1182的横截面的尺寸相等(面积和相对应的边长均相等),但如图8C所示,实际上全色像素光电转换元件117中的n势阱层1172的横截面(除最小尺寸的横截面以外的横截面)的尺寸是大于彩色像素光电转换元件117中的n势阱层1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图8A所示的图像传感器10中,聚光透镜1186汇聚光线以使更多光线进入到对应的光电转换元件117中,避免光串扰问题。
在其他实施例中,图8A中全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2;图8A中全色像素的隔离层1183的最小的横截面的尺寸也可以大于彩色像素的隔离层1183的最大的横截面的尺寸。
图4A至图8C任意一个实施例所示的图像传感器10中,每个像素中均设置有聚光透镜1186。当每个像素中均设置有聚光透镜1186时,可以根据不同像素的需求设计不同曲率半径的聚光透镜1186,例如,彩色像素的聚光透镜1186的曲率半径大于全色像素的聚光透镜1186的曲率半径,从而使得彩色像素的聚光透镜1186的聚光能力高于全色像素的聚光透镜1186的聚光能力等。
在其他实施例中,也可以仅有部分像素包括聚光透镜1186,全色像素中可以不设置聚光透镜1186,彩色像素中设置聚光透镜1186。例如,如请结合图9所示实施例中,沿收光方向,全色像素的n势阱层1172的横截面逐渐增大,彩色像素的n势阱层的横截面逐渐减小,穿过全色像素的滤光片1182的光线极大部分都可以进入到全色像素的光电转换元件117中,而穿过彩色像素的滤光片1182的光线较少部分可以进入彩色像素的光电转换元件117中,此时可以仅在彩色像素的隔离层1183中设置聚光透镜1186,从而利用聚光透镜1186的聚光作用使得更多光线可以进入彩色像素的光电转换元件117中。仅在部分像素中设置聚光透镜1186可以减小图像传感器10的制作成本。
像素中设置有聚光透镜1186时,每一个聚光透镜1186的与光电转换元件117相对的一面可以设置抗反射膜,抗反射膜可以用于减小光的干涉,避免光的干涉对图像传感器10成像效果的影响。
图4A至图8C所示的任意一个实施例中的像素阵列11中,全色像素的光电转换元件117的深度H3与彩色像素的光电转换元件117的深度H4相等,具体地,全色像素的衬底1171的深度H3与彩色像素的衬底1171的深度H4相等。H3和H4相等时,全色像素的衬底1171的远离滤光片1182的表面与彩色像素的衬底1171的远离滤光片1182的表面处于同一水平面中,可以减小读出电路设计与制造的复杂度。
图4A至图8C所示的任意一个实施例中的各个像素还包括光学隔离夹层1185。光学隔离夹层1185设置在相邻两个像素的隔离层1183之间。例如,一个光学隔离夹层1185设置在全色像素W的隔离层1183和彩色像素A的隔离层1183之间,另一个光学隔离夹层1185设置在全色像素W的隔离层1183和彩色像素B的隔离层1183之间等。光学隔离夹层1185可由钨、钛、铝和铜中的至少一种材料制成。光学隔离夹层1185可防止入射到某一像素的光线进入到与该像素相邻的另一个像素中,避免为其他像素带来噪声,也即避免光串扰。
图4A至图8C所示的任一个实施例中各个像素内的聚光透镜1186均可以被替换为导光层1184。具体地,如图10A至图14C所示,图10A中的图像传感器10除导光层1184以外的结构均与图4A中的图像传感器10相同,图11A中的图像传感器10除导光层1184以外的结构均与图5A中的图像传感器10相同,图12A中的图像传感器10除导光层1184以外的结构均与图6A相同,图13A中的图像传感器 10除导光层1184以外的结构均与图7A中的图像传感器10相同,图14A中的图像传感器10除导光层1184以外的结构均与图8A中的图像传感器10相同,在此不再对图10A至图14C中的微透镜1181、滤光片1182、隔离层1183、光学隔离夹层1185、光电转换元件117(衬底1171和n势阱层1172)做描述。
如图10A至图14C所示,导光层1184形成在隔离层1183内,导光层1184的折射率大于隔离层1183的折射率。沿与收光方向垂直的方向,每个像素的隔离层1183、该像素的导光层1184、及该像素的隔离层1183依次设置,例如,沿与收光方向垂直的方向,全色像素W隔离层1183、该全色像素W的导光层1184、及该全色像素W的隔离层1183依次设置,彩色像素A的隔离层1183、该彩色像素A的导光层1184、及该彩色像素A的隔离层1183依次设置,彩色像素B的隔离层1183、该彩色像素B的导光层1184、及该彩色像素B的隔离层1183依次设置等。在隔离层1183中设置导光层1184的目的是使得穿过滤光片1182的光线在隔离层1183和导光层1184组成的结构中发生全反射,从而起到汇聚光线、让光线能够更多地进入对应的光电转换元件117的作用,可以避免相邻像素之间的光串扰问题。光电转换元件117中的n势阱层1172可以接收穿过导光层1184的光,以将光转换为电荷。
在一个例子中,导光层1184各个位置处的折射率均相等,此种设计方式可以简化导光层的设计,减小像素阵列11的制造难度。在另一个例子中,沿图像传感器10的收光方向,导光层1184的折射率逐渐增大。此种设计方式可以增强导光层1184的聚光能力,使得更多光线可以进入到光电转换元件117中。
如图10A至图12C所示,沿收光方向,每个像素的隔离层1183的多个横截面的尺寸均相等,每个像素的导光层1184的多个横截面的尺寸也均相等。此种设计方式可以简化导光层1184的制造工艺。当然,在其他实施例中,当沿收光方向,每个像素的隔离层1183的多个横截面的尺寸均相等时,导光层1184的结构还可以是:沿收光方向,每个像素的导光层1184的多个横截面的尺寸逐渐减小。此种设计可以增强导光层1184的聚光能力,使得更多光线可以进入到光电转换元件117中。
如图13A和图14A所示,沿收光方向,每个全色像素的隔离层1183的多个横截面的尺寸逐渐增大,每个彩色像素的隔离层1183的多个横截面的尺寸逐渐减小,每个全色像素的导光层1184和每个彩色像素的导光层1184的横截面的尺寸均逐渐减小。此种设计方式可以增强导光层1184的聚光能力,使得更多光线可以进入到光电转换元件117中。当然,在其他实施例中,当沿收光方向,每个全色像素的隔离层1183的多个横截面的尺寸逐渐增大,每个彩色像素的隔离层1183的多个横截面的尺寸逐渐减小时,导光层1184的结构还可以是:沿收光方向,每个像素的隔离层1183的多个横截面的尺寸均相等。此种设计方式可以简化导光层1184的制造工艺。
导光层1184的深度与隔离层1183的深度相等,从而可以增强导光层1184的聚光能力。与现有的图像传感器中隔离层的厚度相比,本申请的隔离层1183的厚度要来得大,例如大于一个预定厚度,从而可以形成更长的光路,提升导光层1184和隔离层1183组成的结构的聚光效果。
请参阅图15A和图15B,图像传感器10还包括屏障层1187。屏障层1187可以设置在相邻两个像素的光电转换元件117之间。例如,一个屏障层1187设置在全色像素W的光电转换元件117和彩色像素A的光电转换元件117之间,另一个屏障层1187设置在全色像素W的光电转换元件117和彩色像素B的光电转换元件117之间等。示例地,屏障层1187可以是深度隔离墙(DeepTrench Isolation,DTI)。屏障层1187可以防止进入某一个像素的光电转换元件117的光线进入到与该像素相邻的其他像素的光电转换元件117中,避免为其他像素的光电转换元件117带来噪声。
除了前文所述的将全色像素的满阱容量设置成大于彩色像素的满阱容量以外,本申请实施例中,还可以对不同颜色的彩色像素设置不同的满阱容量。具体地,可以根据彩色像素的灵敏度(达到饱和的曝光量的时长越短的像素,其灵敏度越高)来设置对应其灵敏度的满阱容量。例如,如图1所示,绿色像素的灵敏度>红色像素的灵敏度>蓝色像素的灵敏度,则可以将彩色像素的满阱容量设置成:绿色像素的满阱容量>红色像素的满阱容量>蓝色像素的满阱容量。其中,增大彩色像素的满阱容量的方式与增大全色像素的满阱容量的方式类似,例如,一种方式可以是:当各个像素的n势阱层1172的横截面积都相同,即S W=S G=S R=S B时,则各个像素的n势阱层1172的深度的关系可以为H W>H G>H R>H B;再例如,当各个像素的n势阱层1172的深度都相同,即H W=H G=H R=H B时,则各个像素的n势阱层1172的横截面积的关系可以为S W>S G>S R>S B,其他情况在此不再赘述。如此,可以根据灵敏度的不同设置不同的满阱容量,从而可以均衡各个色彩的像素的曝光,提升图像拍摄质量。
在将全色像素的满阱容量设置成大于彩色像素的满阱容量的基础上,还可以进一步通过独立控制全色像素的曝光时间和彩色像素的曝光时间来均衡全色像素和彩色像素的曝光。
图16是本申请一个实施例的像素阵列11及曝光控制线连接方式的示意图。像素阵列11为二维像素阵列。二维像素阵列包括多个全色像素和多个彩色像素,其中,彩色像素具有比全色像素更窄的光谱响应。像素阵列11中的像素排布为如下方式:
Figure PCTCN2019109517-appb-000001
需要说明的是,为了方便图示说明,图16中仅示出了像素阵列11中的部分像素,周边其它像素及连线以省略号“……”代替。
如图16所示,像素1101、1103、1106、1108、1111、1113、1116、及1118为全色像素W,像素1102、1105为第一颜色像素A(例如红色像素R),像素1104、1107、1112、1115为第二颜色像素B(例如绿色像素G),像素1114、1117为第三颜色像素C(例如蓝色像素Bu)。从图16中可以看出,全色像素W(像素1101、1103、1106和1108)中曝光控制电路的控制端TG与一条第一曝光控制线TX1连接,全色像素W(1111、1113、1116、和1118)中曝光控制电路的控制端TG与另一条第一曝光控制线TX1连接;第一颜色像素A(像素1102和1105)中曝光控制电路的控制端TG、第二颜色像素B(像素1104、1107)中曝光控制电路的控制端TG与一条第二曝光控制线TX2连接,第二颜色像素B(像素1112、1115)中曝光控制电路的控制端TG、第三颜色像素C(像素1114、1117)中曝光控制电路的控制端TG与另一条第二曝光控制线TX2连接。每条第一曝光控制线TX1可通过第一曝光控制信号控制全色像素的曝光时长;每条第二曝光控制线TX2可通过第二曝光控制信号控制彩色像素(例如第一颜色像素A和第二颜色像素B、第二颜色像素B和第三颜色像素C)的曝光时长。由此可实现全色像素和彩色像素曝光时长的独立控制。例如,可以实现在全色像素曝光结束时,彩色像素继续曝光,以达到理想的成像效果。
请参考图2和图16,第一曝光控制线TX1和第二曝光控制线TX2与图2中的垂直驱动单元12连接,将垂直驱动单元12中相应的曝光控制信号传输到像素阵列11中像素的曝光控制电路的控制端TG。
可以理解的是,由于像素阵列11中有多个像素行组,垂直驱动单元12连接多条第一曝光控制线TX1和多条第二曝光控制线TX2。多条第一曝光控制线TX1和多条第二曝光控制线TX2对应于相应的像素行组。
例如,第一条第一曝光控制线TX1对应第一行和第二行中的全色像素;第二条第一曝光控制线TX1对应第三行和第四行中的全色像素,以此类推,第三条第一曝光控制线TX1对应第五行和第六行中的全色像素;第四条第一曝光控制线TX1对应第七行和第八行中的全色像素,再往下的第一曝光控制线TX1与再往下行的全色像素的对应关系不再赘述。不同第一曝光控制线TX1传输的信号时序也会有所不同,该信号时序由垂直驱动单元12配置。
例如,第一条第二曝光控制线TX2对应第一行和第二行中的彩色像素;第二条第二曝光控制线TX2对应第三行和第四行中的彩色像素,以此类推,第三条第二曝光控制线TX2对应第五行和第六行中的彩色像素;第四条第二曝光控制线TX2对应第七行和第八行中的彩色像素,再往下的第二曝光控制线TX2与再往下行的彩色像素的对应关系不再赘述。不同第二曝光控制线TX2传输的信号时序也会有所不同,该信号时序也由垂直驱动单元12配置。
图17至图32示出了多种图像传感器10(图2所示)中像素排布的示例。参见图2、及图17至图32,图像传感器10包括由多个彩色像素(例如多个第一颜色像素A、多个第二颜色像素B和多个第三颜色像素C)和多个全色像素W组成的二维像素阵列(也即图16所示的像素阵列11)。其中,彩色像素具有比全色像素更窄的光谱响应。彩色像素的响应光谱例如为全色像素W响应光谱中的部分。二维像素阵列包括最小重复单元(图17至图32示出了多种图像传感器10中像素最小重复单元的示例),二维像素阵列由多个最小重复单元组成,最小重复单元在行和列上复制并排列。在最小重复单元中,全色像素W设置在第一对角线方向D1,彩色像素设置在第二对角线方向D2,第一对角线方向D1与第二对角线方向D2不同。第一对角线方向D1相邻的至少两个全色像素的第一曝光时间由第一曝光信号控制,第二对角线方向D2相邻的至少两个彩色像素的第二曝光时间由第二曝光信号控制,从而实现全色像素 曝光时间和彩色像素曝光时间的独立控制。每个最小重复单元均包括多个子单元,每个子单元包括多个单颜色像素(例如多个第一颜色像素A、多个第二颜色像素B或多个第三颜色像素C)和多个全色像素W。例如,请结合图2和图16,像素1101-1108及像素1111-1118组成一个最小重复单元,其中,像素1101、1103、1106、1108、1111、1113、1116、1118为全色像素,像素1102、1104、1105、1107、1112、1114、1115、1117为彩色像素。像素1101、1102、1105、1106组成一个子单元,其中,像素1101、1106为全色像素,像素1102、1105为单颜色像素(例如为第一颜色像素A);像素1103、1104、1107、1108组成一个子单元,其中,像素1103、1108为全色像素,像素1104、1107为单颜色像素(例如为第二颜色像素B);像素1111、1112、1115、1116组成一个子单元,其中,像素1111、1116为全色像素,像素1112、1115为单颜色像素(例如为第二颜色像素B);像素1113、1114、1117、1118组成一个子单元,其中,像素1113、1118为全色像素,像素1114、1117为单颜色像素(例如为第三颜色像素C)。
例如,最小重复单元行和列的像素数量相等。例如最小重复单元包括但不限于,4行4列、6行6列、8行8列、10行10列的最小重复单元。例如,最小重复单元中的子单元行和列的像素数量相等。例如,子单元包括但不限于,2行2列、3行3列、4行4列、5行5列的子单元。这种设置有助于均衡行和列方向图像的分辨率和均衡色彩表现,提高显示效果。
例如,图17是本申请实施方式中一种最小重复单元1181像素排布的示意图;最小重复单元为4行4列16个像素,子单元为2行2列4个像素,排布方式为:
Figure PCTCN2019109517-appb-000002
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图17所示,全色像素W设置在第一对角线方向D1(即图17中左上角和右下角连接的方向),彩色像素设置在第二对角线方向D2(例如图17中左下角和右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。第一对角线方向D1相邻的两个全色像素W(例如,从左上方起第一行第一列和第二行第二列的两个全色像素)的第一曝光时间由第一曝光信号控制,第二对角线方向D2相邻的至少两个彩色像素(例如,从左上方起第四行第一列和第三行第二列的两个彩色像素B)的第二曝光时间由第二曝光信号控制。
需要说明的是,第一对角线方向D1和第二对角线方向D2并不局限于对角线,还包括平行于对角线的方向,例如图16中,全色像素1101、1106、1113、及1118设置在第一对角线方向D1,全色像素1103及1108也设置在第一对角线方向D1,全色像素1111及1116也设置在第一对角线方向D1;第二颜色像素1104、1107、1112、及1115设置在第二对角线方向D2,第一颜色像素1102及1105也设置在第二对角线方向D2,第三颜色像素1114及1117也设置在第二对角线方向D2,下文图18至图32中对第一对角线方向D1及第二对角线方向D2的解释与此处相同。这里的“方向”并非单一指向,可以理解为指示排布的“直线”的概念,可以有直线两端的双向指向。
需要理解的是,此处以及下文中的术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
例如,如图17所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。例如,第一曝光信号经由第一曝光控制线TX1传输,第二曝光信号经由第二曝光控制线TX2传输。例如,第一曝光控制线TX1呈“W”型,与相邻两行的全色像素中曝光控制电路的控制端电连接;第二曝光控制线TX2呈“W”型,与相邻两行的彩色像素中曝光控制电路的控制端电连接。具体连接方式可参见前述图2和图16相关部分关于连接和像素电路的描述。
需要说明的是,第一曝光控制线TX1和第二曝光控制线TX2呈“W”型并不是指物理上走线必须严格按照“W”型设置,只需连接方式对应于全色像素和彩色像素的排布即可。例如,“W”型曝光控制线的设置对应“W”型的像素排布方式,这种设置方式走线简单,像素排布的解像力、色彩都有较好的效果,以低成本实现全色像素曝光时间和彩色像素曝光时间的独立控制。
例如,图18是本申请实施方式中又一种最小重复单元1182像素排布的示意图。最小重复单元为4行4列16个像素,子单元为2行2列4个像素,排布方式为:
Figure PCTCN2019109517-appb-000003
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图18所示,全色像素W设置在第一对角线方向D1(即图18中右上角和左下角连接的方向),彩色像素设置在第二对角线方向D2(例如图18中左上角和右下角连接的方向)。例如,第一对角线和第二对角线垂直。第一对角线方向D1相邻的两个全色像素W(例如,从左上方起第一行第二列和第二行第一列的两个全色像素)的第一曝光时间由第一曝光信号控制,第二对角线方向相邻的至少两个彩色像素(例如,从左上方起第一行第一列和第二行第二列的两个彩色像素A)的第二曝光时间由第二曝光信号控制。
例如,如图18所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
例如,图19是本申请实施方式中又一种最小重复单元1183像素排布的示意图。图20是本申请实施方式中又一种最小重复单元1184像素排布的示意图。在图19和图20的实施例中,分别对应图17和图18的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
需要说明的是,在一些实施例中,全色像素W的响应波段为可见光波段(例如,400nm-760nm)。例如,全色像素W上设置有红外滤光片,以实现红外光的滤除。在一些实施例中,全色像素W的响应波段为可见光波段和近红外波段(例如,400nm-1000nm),与图像传感器10中的光电转换元件117(例如光电二极管PD)响应波段相匹配。例如,全色像素W可以不设置滤光片,全色像素W的响应波段由光电二极管的响应波段确定,即两者相匹配。本申请的实施例包括但不局限于上述波段范围。
例如,图21是本申请实施方式中又一种最小重复单元1185像素排布的示意图。图22是本申请实施方式中又一种最小重复单元1186像素排布的示意图。在图21和图22的实施例中,分别对应图17和图18的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。
例如,图23是本申请实施方式中又一种最小重复单元1187像素排布的示意图。图24是本申请实施方式中又一种最小重复单元1188像素排布的示意图。在图23和图24的实施例中,分别对应图17和图18的排布方式,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。
例如,图25是本申请实施方式中又一种最小重复单元1191像素排布的示意图。最小重复单元为6行6列36个像素,子单元为3行3列9个像素,排布方式为:
Figure PCTCN2019109517-appb-000004
Figure PCTCN2019109517-appb-000005
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图25所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A、B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
例如,图26是本申请实施方式中又一种最小重复单元1192像素排布的示意图。最小重复单元为6行6列36个像素,子单元为3行3列9个像素,排布方式为:
Figure PCTCN2019109517-appb-000006
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图26所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A、B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
例如,图27是本申请实施方式中又一种最小重复单元1193像素排布的示意图。图28是本申请实施方式中又一种最小重复单元1194像素排布的示意图。在图27和图28的实施例中,分别对应图25和图26的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
例如,在其它实施方式中,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。例如,在其它实施方式中,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。本申请的实施例包括但不局限于此。电路具体连接方式参见上文说明,在此不再赘述。
例如,图29是本申请实施方式中又一种最小重复单元1195像素排布的示意图。最小重复单元为8行8列64个像素,子单元为4行4列16个像素,排布方式为:
Figure PCTCN2019109517-appb-000007
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图29所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第七行和第八行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第七行和第八行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
例如,图30是本申请实施方式中又一种最小重复单元1196像素排布的示意图。最小重复单元为8行8列64个像素,子单元为4行4列16个像素,排布方式为:
Figure PCTCN2019109517-appb-000008
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
例如,如图30所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第七行和第八行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第七行和第八行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
例如,图31是本申请实施方式中又一种最小重复单元1197像素排布的示意图。图32是本申请实施方式中又一种最小重复单元1198像素排布的示意图。在图31和图32的实施例中,分别对应图29和图30的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
例如,在其它实施方式中,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。例如,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。本申请的实施例包括但不局限于此。电路具体连接方式参见上文说明,在此不再赘述。
从上述实施例中可以看出,如图17至图32所示,图像传感器10(图2所示)包括矩阵排布的多个彩色像素和多个全色像素W,彩色像素和全色像素在行和列的方向上均间隔排布。
例如,在行的方向上依次交替设置全色像素、彩色像素、全色像素、彩色像素……
例如,在列的方向上依次交替设置全色像素、彩色像素、全色像素、彩色像素……
请结合图16,第一曝光控制线TX1与第2n-1行和第2n行的全色像素W中曝光控制电路116的控 制端TG(例如,转移晶体管112的栅极)电连接;第二曝光控制线TX2与第2n-1行和第2n行的彩色像素中曝光控制电路116的控制端TG(例如,转移晶体管112的栅极)电连接;n为大于等于1的自然数。
例如,当n=1时,第一曝光控制线TX1与第1行和第2行的全色像素W中曝光控制电路116的控制端TG电连接;第二曝光控制线TX2与第1行和第2行的彩色像素中曝光控制电路116的控制端TG电连接。当n=2时,第一曝光控制线TX1与第3行和第4行的全色像素W中曝光控制电路116的控制端TG电连接;第二曝光控制线TX2与第3行和第4行的彩色像素中曝光控制电路116的控制端TG电连接。以此类推,在此不再赘述。
在一些实施例中,第一曝光时间小于第二曝光时间。第一曝光时间根据全色像素的n势阱层1172(图4A所示)来确定,第二曝光时间可以根据彩色像素的n势阱层1172(图4A所示)来确定。
请参阅图33,本申请提供一种摄像头组件40。摄像头组件40包括上述任意一项实施方式所述的图像传感器10、处理芯片20及镜头30。图像传感器10与处理芯片20电连接。镜头30设置在图像传感器10的光路上。处理芯片20可以与图像传感器10及镜头30封装在同一个摄像头组件40的壳体内;或者,图像传感器10与镜头30封装在壳体内,处理芯片20设置在壳体外。
本申请还提供一种可以应用于图33的摄像头组件40的图像采集方法。如图34所示,图像采集方法包括:
01:控制二维像素阵列曝光以获取全色原始图像和彩色原始图像;
02:处理彩色原始图像,以将每个子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并输出单色大像素的像素值以得到彩色中间图像;
03:处理全色原始图像以得到全色中间图像;及
04:处理彩色中间图像和/或全色中间图像以获取目标图像。
请参阅图2和图33,本申请的图像采集方法可以由摄像头组件40实现。其中,步骤01可以由图像传感器10实现。步骤02、步骤03及步骤04可以由处理芯片20实现。也即是说,图像传感器10可以曝光以获取全色原始图像和彩色原始图像。处理芯片20可以用于处理彩色原始图像,以将每个子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并输出单色大像素的像素值以得到彩色中间图像。处理芯片20还可以用于处理全色原始图像以得到全色中间图像、以及处理彩色中间图像和/或全色中间图像以获取目标图像。
请结合图35,相关技术中,图像传感器的像素阵列若同时包括全色像素及彩色像素,则图像传感器工作时,图像传感器会将像素阵列中的每个全色像素的像素值拟合到其他彩色像素的像素值中,从而输出仅包括彩色像素的原始图像。具体地,以像素A为红色像素R,像素B为绿色像素G,像素C为蓝色像素Bu为例,图像传感器中的列处理单元读出多个红色像素R的像素值、多个绿色像素G的像素值、多个蓝色像素Bu的像素值、及多个全色像素W的像素值后,图像传感器会先将每个全色像素W的像素值拟合到与该全色像素邻近的红色像素R、绿色像素G、及蓝色像素Bu中,再将非拜耳阵列排布的图像转换成拜耳阵列排布的原始图像输出,以供处理芯片对原始图像做后续处理,比如对原始图像做插值处理以得到全彩图像(全彩图像中每个像素的像素值均由红色、绿色及蓝色三个分量组合而成)等。这一处理方式中,图像传感器需要执行较为复杂的算法,运算量比较大,且由于高通平台不支持非拜耳阵列排布的图像的处理,可能需要在图像传感器中增加额外的硬件(例如额外的处理芯片)来执行将非拜耳阵列排布的图像转换成拜耳阵列排布的原始图像的处理。
本申请的图像采集方法和摄像头组件40可以减小图像传感器的运算量,以及避免在图像传感器中增加额外硬件。
具体地,请结合图2和图36,在用户请求拍照时,图像传感器10中的垂直驱动单元12会控制二维像素阵列中的多个全色像素和多个彩色像素均曝光,列处理单元14会读出每一个全色像素的像素值以及每一个彩色像素的像素值。图像传感器10不执行将全色像素的像素值拟合到彩色像素的像素值中的操作,而是直接根据多个全色像素的像素值输出一张全色原始图像,并直接根据多个彩色像素的像素值输出一张彩色原始图像。
如图36所示,全色原始图像包括多个全色像素W及多个空像素N(NULL),其中,空像素既不为全色像素,也不为彩色像素,全色原始图像中空像素N所处位置可视为该位置没有像素,或者可以将空 像素的像素值视为零。比较二维像素阵列与全色原始图像可知,对于二维像素阵列中的每一个子单元,该子单元包括两个全色像素W和两个彩色像素(彩色像素A、彩色像素B、或彩色像素C)。全色原始图像中也具有与二维像素阵列中的每一个子单元对应的一个子单元,全色原始图像的子单元包括两个全色像素W和两个空像素N,两个空像素N所处位置对应二维像素阵列子单元中的两个彩色像素所处的位置。
同样地,彩色原始图像包括多个彩色像素及多个空像素N,其中,空像素既不为全色像素,也不为彩色像素,彩色原始图像中空像素N所处位置可视为该位置没有像素,或者可以将空像素的像素值视为零。比较二维像素阵列与彩色原始图像可知,对于二维像素阵列中的每一个子单元,该子单元包括两个全色像素W和两个彩色像素。彩色原始图像中也具有与二维像素阵列中的每一个子单元对应的一个子单元,彩色原始图像的子单元包括两个彩色像素和两个空像素N,两个空像素N所处位置对应二维像素阵列子单元中的两个全色像素W所处的位置。
处理芯片20接收到图像传感器10输出的全色原始图像和彩色原始图像后,可以对全色原始图像作进一步处理得到全色中间图像,并对彩色原始图像作进一步处理得到彩色中间图像。示例地,彩色原始图像可通过图37所示的方式变换为彩色中间图像。如图37所示,彩色原始图像包括多个子单元,每个子单元都包括多个空像素N和多个单颜色的彩色像素(也称单颜色像素)。具体地,某些子单元包括两个空像素N和两个单颜色像素A,某些子单元包括两个空像素N和两个单颜色像素B,某些子单元包括两个空像素N及两个单颜色像素C。处理芯片20可以将包括空像素N和单颜色像素A的子单元中的所有像素作为与该子单元中的单颜色A对应的单色大像素A,将包括空像素N和单颜色像素B的子单元中的所有像素作为与该子单元中的单颜色B对应的单色大像素B,将包括空像素N和单颜色像素C的子单元中的所有像素作为与该子单元中的单颜色C对应的单色大像素C。由此,处理芯片20即可根据多个单色大像素A、多个单色大像素B、及多个单色大像素C形成一张彩色中间图像。如果包括多个空像素N的彩色原始图像视为一张具有第二分辨率的图像,则按照图37所示方式获取的彩色中间图像则为一张具有第一分辨率的图像,其中,第一分辨率小于第二分辨率。处理芯片20得到全色中间图像以及彩色中间图像后,可以对全色中间图像和/或彩色中间图像作进一步处理以获取目标图像。具体地,处理芯片20可以仅处理全色中间图像以得到目标图像;处理芯片20也可以仅处理彩色中间图像以得到目标图像;处理芯片20还可以同时处理全色中间图像和彩色中间图像以得到目标图像。处理芯片20可以根据实际需求来决定两张中间图像的处理方式。
本申请实施方式的图像采集方法中,图像传感器10可以直接输出全色原始图像和彩色原始图像,对于全色原始图像和彩色原始图像的后续处理由处理芯片20来执行,图像传感器10无需执行将全色像素W的像素值拟合到彩色像素的像素值中的操作,图像传感器10的运算量得到减小,并且无需在图像传感器10中增加新的硬件来支持图像传感器10执行图像处理,可以简化图像传感器10的设计。
在某些实施方式中,步骤01控制二维像素阵列曝光以获取全色原始图像和彩色原始图像可以根据多种方式实现。
请参阅图38,在一个例子中,步骤01包括:
011:控制二维像素阵列中的所有全色像素和所有彩色像素同时曝光;
012:输出所有全色像素的像素值以获取全色原始图像;及
013:输出所有彩色像素的像素值以获取彩色原始图像。
请参阅图33,步骤011、步骤012和步骤013均可以由图像传感器10实现。也即是说,图像传感器10中的所有全色像素和所有彩色像素同时曝光。图像传感器10可以输出所有全色像素的像素值以获取全色原始图像,还可以输出所有彩色像素的像素值以获取彩色原始图像。
请结合图2和图16,全色像素和彩色像素可以同时曝光,其中,全色像素的曝光时间可以小于或等于彩色像素的曝光时间。具体地,在全色像素的第一曝光时间与彩色像素的第二曝光时间相等时,全色像素的曝光起始时刻及曝光截止时刻分别与彩色像素的曝光起始时刻及曝光截止时刻相同。在第一曝光时间小于第二曝光时间时,全色像素的曝光起始时刻晚于或等于彩色像素的曝光起始时刻,且全色像素的曝光截止时刻早于彩色像素的曝光截止时刻;或者,在第一曝光时间小于第二曝光时间时,全色像素的曝光起始时刻晚于彩色像素的曝光起始时刻,且全色像素的曝光截止时刻早于或等于彩色像素的曝光截止时刻。全色像素和彩色像素曝均光完毕后,图像传感器10输出所有全色像素的像素值以获取全色 原始图像,并输出所有彩色像素的像素值以获取彩色原始图像。其中,全色原始图像可以先于彩色原始图像输出,或者;彩色原始图像可以先于全色原始图像输出;或者,全色原始图像和彩色原始图像可以同时输出。二者的输出顺序在此不作限定。全色像素和彩色像素同时曝光可以减小全色原始图像及彩色原始图像的获取时间,加快全色原始图像及彩色原始图像获取进程。全色像素和彩色像素同时曝光的方式在快拍、连拍等对出图速度要求较高的模式下具有极大优势。
请参阅图39,在另一个例子中,步骤01包括:
014:控制二维像素阵列中的所有全色像素和所有彩色像素分时曝光;
015:输出所有全色像素的像素值以获取全色原始图像;及
016:输出所有彩色像素的像素值以获取彩色原始图像。
请参阅图33,步骤014、步骤015和步骤016均可以由图像传感器10实现。也即是说,图像传感器10中的所有全色像素和所有彩色像素分时曝光。图像传感器10可以输出所有全色像素的像素值以获取全色原始图像,还可以输出所有彩色像素的像素值以获取彩色原始图像。
具体地,全色像素和彩色像素可以分时曝光,其中,全色像素的曝光时间可以小于或等于彩色像素的曝光时间。具体地,无论第一曝光时间与第二曝光时间是否相等,所有全色像素和所有彩色像素分时曝光的方式均可以是:(1)所有全色像素先执行第一曝光时间的曝光,待所有全色像素曝光完毕后,所有彩色像素再执行第二曝光时间的曝光;(2)所有彩色像素先执行第二曝光时间的曝光,待所有彩色像素曝光完毕后,所有全色像素再执行第一曝光时间的曝光。全色像素和彩色像素曝均光完毕后,图像传感器10输出所有全色像素的像素值以获取全色原始图像,并输出所有彩色像素的像素值以获取彩色原始图像。其中,全色原始图像和彩色原始图像的输出方式可以是:(1)在全色像素先于彩色像素曝光时,图像传感器10可以在彩色像素曝光期间输出全色原始图像,也可以等彩色像素曝光完毕后再依次输出全色原始图像及彩色原始图像;(2)在彩色像素先于全色像素曝光时,图像传感器10可以在全色像素曝光期间输出彩色原始图像,也可以等全色像素曝光完毕后再依次输出彩色原始图像及全色原始图像;(3)无论全色像素和彩色像素中的哪一个优先曝光,图像传感器10可以在所有像素均曝光完毕后,同时输出全色原始图像和彩色原始图像。本示例中全色像素和彩色像素分时曝光的方式的控制逻辑较为简单。
图像传感器10可以同时具有图38及图39所示的控制全色像素和彩色像素同时曝光、以及控制全色像素和彩色像素分时曝光的功能。图像传感器10在采集图像的过程中具体采用哪一种曝光方式,可以根据实际需求来自主选定。比如,在快拍、连拍等模式下时可以采用同时曝光的方式以满足快速出图的需求;在普通的拍照模式下可以采用分时曝光的方式以简化控制逻辑等。
图38及图39所示的两个示例中,全色像素和彩色像素的曝光顺序可以由图像传感器10中的控制单元13来控制。
图38及图39所示的两个示例中,全色像素的曝光时间可以由第一曝光信号控制,彩色像素的曝光时间可以由第二曝光信号控制。
具体地,请结合图16,作为一个示例,图像传感器10可以用第一曝光信号控制第一对角线方向相邻的至少两个全色像素以第一曝光时间曝光,并用第二曝光信号控制第二对角线方向相邻的至少两个彩色像素以第二曝光时间曝光,其中,第一曝光时间可以小于或等于第二曝光时间。具体地,图像传感器10中的垂直驱动单元12通过第一曝光控制线TX1传输第一曝光信号以控制第一对角线方向相邻的至少两个全色像素以第一曝光时间曝光,垂直驱动单元12通过第二曝光控制线TX2传输第二曝光信号以控制第二对角线方向相邻的至少两个全色像素以第二曝光时间曝光。待所有全色像素及所有彩色像素均曝光完成后,如图36所示,图像传感器10不执行将多个全色像素的像素值拟合到彩色像素的像素值中的处理,而是直接输出一张全色原始图像和一张彩色原始图像。
请结合图2和图17,作为另一个示例,图像传感器10可以用第一曝光信号控制第2n-1行和第2n行的全色像素以第一曝光时间曝光,并用第二曝光信号控制第2n-1行和第2n行的彩色像素以第二曝光时间曝光,其中,第一曝光时间可以小于或等于第二曝光时间。具体地,图像传感器10中的第一曝光控制线TX1与2n-1行和第2n行的所有全色像素的控制端TG连接,第二曝光控制线TX2与2n-1行和第2n行的所有彩色像素的控制端TG连接。垂直驱动单元12通过第一曝光控制线TX1传输第一曝光信号以控制第2n-1行和第2n行的全色像素以第一曝光时间曝光,通过第二曝光控制线TX2传输第二曝光 信号以控制第2n-1行和第2n行的彩色像素以第二曝光时间曝光。待所有全色像素及所有彩色像素均曝光完成后,如图36所示,图像传感器10不执行将多个全色像素的像素值拟合到彩色像素的像素值中的处理,而是直接输出一张全色原始图像和一张彩色原始图像。
在某些实施方式中,处理芯片20可以根据环境亮度来确定第一曝光时间与第二曝光时间的相对关系。示例地,图像传感器10可以先控制全色像素曝光并输出一张全色原始图像,处理芯片20分析全色原始图像中多个全色像素的像素值来确定环境亮度。在环境亮度小于或等于亮度阈值时,图像传感器10控制全色像素以等于第二曝光时间的第一曝光时间来曝光;在环境亮度大于亮度阈值时,图像传感器10控制全色像素以小于第二曝光时间的第一曝光时间来曝光。在环境亮度大于亮度阈值时,可以根据环境亮度与亮度阈值之间的亮度差值来确定第一曝光时间与第二曝光时间的相对关系,例如,亮度差值越大,第一曝光时间与第二曝光时间的比例越小。示例地,在亮度差值位于第一范围[a,b)内时,第一曝光时间与第二曝光时间的比例为V1:V2;在亮度差值位于第二范围[b,c)内时,第一曝光时间与第二曝光时间的比例为V1:V3;在亮度差值大于或等于c时,第一曝光时间与第二曝光时间的比例为V1:V4,其中V1<V2<V3<V4。
请参阅图40,在某些实施方式中,步骤02包括:
021:合并每个子单元中的所有像素的像素值以得到单色大像素的像素值;及
022:根据多个单色大像素的像素值形成彩色中间图像,彩色中间图像具有第一分辨率。
请参阅图33,在某些实施方式中,步骤021及步骤022均可以由处理芯片20实现。也即是说,处理芯片20可以用于合并每个子单元中的所有像素的像素值以得到单色大像素的像素值、以及根据多个单色大像素的像素值形成彩色中间图像,彩色中间图像具有第一分辨率。其中,彩色中间图像具有第一分辨率。
具体地,如图37所示,对于单色大像素A,处理芯片20可以将包括空像素N和单颜色像素A的子单元中的所有像素的像素值相加,并将相加的结果作为对应该子单元的单色大像素A的像素值,其中,空像素N的像素值可以视为零,下同;处理芯片20可以将包括空像素N和单颜色像素B的子单元中的所有像素的像素值相加,并将相加的结果作为对应该子单元的单色大像素B的像素值;处理芯片20可以将包括空像素N和单颜色像素C的子单元中的所有像素的像素值相加,并将相加的结果作为对应该子单元的单色大像素C的像素值。由此,处理芯片20即可获得多个单个大像素A的像素值、多个单色大像素B的像素值、以及多个单色大像素C的像素值。处理芯片20再根据多个单色大象素A的像素值、多个单色大像素B的像素值、以及多个单色大像素C的像素值形成一张彩色中间图像。如图37所示,当单颜色A为红色R,单颜色B为绿色G,单颜色C为蓝色Bu时,彩色中间图像即为拜耳阵列排布的图像。当然,处理芯片20获取彩色中间图像的方式并不限于此。
在某些实施方式中,请结合图33和图41,当摄像头组件40处于不同的模式时,不同模式对应不同的目标图像。处理芯片20会先判断摄像头组件40处于哪一种模式,再根据摄像头组件40所处的模式对彩色中间图像和/或全色中间图像做相应处理以得到对应该模式的目标图像。目标图像至少包括四类目标图像:第一目标图像、第二目标图像、第三目标图像、第四目标图像。摄像头组件40所处的模式至少包括:(1)模式为预览模式,预览模式下的目标图像可以为第一目标图像或第二目标图像;(2)模式为成像模式,成像模式下的目标图像可以为第二目标图像、第三目标图像或第四目标图像;(3)模式既为预览模式又为低功耗模式,此时目标图像为第一目标图像;(4)模式即为预览模式又为非低功耗模式,此时目标图像为第二目标图像;(5)模式既为成像模式又为低功耗模式,此时目标图像为第二目标图像或第三目标图像;(6)模式既为成像模式又为非低功耗模式,此时目标图像为第四目标图像。
请参阅图41,在一个例子中,当目标图像为第一目标图像时,步骤04包括:
040:对彩色中间图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第一目标图像。
请参阅图33,步骤040可以由处理芯片20实现。也即是说,处理芯片20可以用于对彩色中间图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第一目标图像。
具体地,请结合图42,假设单色大像素A为红色像素R,单色大像素B为绿色像素G,单色大像素C为蓝色像素Bu,则彩色中间图像为拜耳阵列排布的图像,处理芯片20需要对彩色中间图像执行去 马赛克(即插值处理),以使得每个单色大像素的像素值都同时具有R、G、B三个分量。示例地,可以采用线性插值的方式来计算每个单色大像素的除单色大像素的单颜色以外的另外两种颜色的像素值。以单色大像素C 2,2(“C 2,2”表示从左上方算起第二行第二列的像素C)为例,单色大像素C 2,2仅具有颜色C的分量的像素值P(C 2,2),还需要计算出单色大像素C位置处颜色A的像素值P(A 2,2)和颜色B的像素值P(B 2,2),则P(A 2,2)=α 1·P(A 3,1)+α 2·P(A 3,3)+α 3·P(A 1,3)+α 4·P(A 1,1),P(B 2,2)=β 1·P(B 1,2)+β 2·P(B 2,1)+β 3·P(B 2,3)+β 4·P(B 3,2),其中,α 1~α 4与β 1~β 4均为插值系数,且α 1234=1,β 1234=1。上述P(A 2,2)及P(B 2,2)的计算方式仅为示例,P(A 2,2)及P(B 2,2)还可以通过除线性插值方式以外的其他插值方式计算得到,在此不作限制。
处理芯片20计算出每个单色大像素的三个分量的像素值后,即可根据三个像素值计算出对应该单色大像素的最终的像素值,即A+B+C,需要说明的是,此处的A+B+C并不表示直接将三个像素相加得到单色大像素最终的像素值,仅表示单色大像素包括A、B、C三个色彩分量。处理芯片20可以根据多个单色大像素的最终的像素值形成一张第一目标图像。由于彩色中间图像具有第一分辨率,第一目标图像为彩色中间图像经插值处理得到,处理芯片20未对彩色中间图像做插补处理,因此,第一目标图像的分辨率也为第一分辨率。处理芯片20处理彩色中间图像得到第一目标图像的处理算法较为简单,处理速度较快,摄像头组件40在模式既为预览模式又为低功耗模式时使用第一目标图像作为预览图像,既可以满足预览模式对出图速度的需求,还可以节省摄像头组件40的功耗。
请再参阅图41,在另一个例子中,当目标图像为第二目标图像时,步骤03包括:
031:处理全色原始图像,将每个子单元的所有像素作为全色大像素,并输出全色大像素的像素值以得到全色中间图像,全色中间图像具有第一分辨率;
步骤04包括:
041:分离彩色中间图像的色彩及亮度以得到具有第一分辨率的色亮分离图像;
042:融合全色中间图像的亮度及色亮分离图像的亮度以得到具有第一分辨率的亮度修正彩色图像;及
043:对亮度修正彩色图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第二目标图像。
请参阅图33,步骤031、步骤041、步骤042及步骤043均可以由处理芯片20实现。也即是说,处理芯片20可以用于处理全色原始图像,将每个子单元的所有像素作为全色大像素,并输出全色大像素的像素值以得到全色中间图像,全色中间图像具有第一分辨率。处理芯片20还可以用于分离彩色中间图像的色彩及亮度以得到具有第一分辨率的色亮分离图像、融合全色中间图像的亮度及色亮分离图像的亮度以得到具有第一分辨率的亮度修正彩色图像、以及对亮度修正彩色图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第二目标图像。
具体地,全色原始图像可通过图43所示的方式变换为全色中间图像。如图43所示,全色原始图像包括多个子单元,每个子单元都包括两个空像素N和两个全色像素W。处理芯片20可以将每个包括空像素N和全色像素W的子单元中的所有像素作为与该子单元对应的全色大像素W。由此,处理芯片20即可根据多个全色大像素W形成一张全色中间图像。如果包括多个空像素N的全色原始图像视为一张具有第二分辨率的图像,则按照图43所示方式获取的全色中间图像则为一张具有第一分辨率的图像,其中,第一分辨率小于第二分辨率。
作为一个示例,处理芯片20可以通过以下方式将全色原始图像中每个子单元的所有像素作为与该子单元对应的全色大像素W:处理芯片20首先合并每个子单元中的所有像素的像素值以得到全色大像素W的像素值,再根据多个全色大像素W的像素值形成全色中间图像。具体地,对于每个全色大像素,处理芯片20可以将包括空像素N和全色像素W的子单元中的所有像素值相加,并将相加的结果作为对应该子单元的全色大像素W的像素值,其中,空像素N的像素值可以视为零。由此,处理芯片20即可获得多个全色大像素W的像素值。
处理芯片20获得全色中间图像和彩色中间图像后,可以对全色中间图像和彩色中间图像做融合处理以得到第二目标图像。
示例地,如图43所示,处理芯片20首先分离彩色中间图像的色彩及亮度以获取色亮分离图像,图43中色亮分离图像中的L表示亮度,CLR表示色彩。具体地,假设单颜色像素A为红色像素R,单颜 色像素B为绿色像素G,单颜色像素C为蓝色像素Bu,则:(1)处理芯片20可以将RGB空间的彩色中间图像转换为YCrCb空间的色亮分离图像,此时YCrCb中的Y即为色亮分离图像中的亮度L,YCrCb中的Cr和Cb即为色亮分离图像中的色彩CLR;(2)处理芯片20也可以将RGB的彩色中间图像转换为Lab空间的色亮分离图像,此时Lab中的L即为色亮分离图像中的亮度L,Lab中的a和b即为色亮分离图像中的色彩CLR。需要说明的是,图43所示色亮分离图像中L+CLR并不表示每个像素的像素值由L和CLR相加而成,仅表示每个像素的像素值是由L和CLR组成。
随后,处理芯片20融合色亮分离图像的亮度以及全色中间图像的亮度。示例地,全色中间图像中每个全色像素W的像素值即为每个全色像素的亮度值,处理芯片20可以将色亮分离图像中每个像素的L与全色中间图像中对应位置的全色像素的W相加,即可得到亮度修正后的像素值。处理芯片20根据多个亮度修正后的像素值形成一张亮度修正后的色亮分离图像,再利用色彩空间转换将亮度修正后的色亮分离图像转换为亮度修正彩色图像。
在单色大像素A为红色像素R,单色大像素B为绿色像素G,单色大像素C为蓝色像素Bu时,亮度修正彩色图像为拜耳阵列排布的图像,处理芯片20需要对亮度修正彩色图像做插值处理,以使得每个修正了亮度后的单色大像素的像素值都同时具有R、G、B三个分量。处理芯片20可以对亮度修正彩色图像做插值处理以得到第二目标图像,示例地,可采用线性插值方式来获取第二目标图像,线性插值过程与前述步骤040中的插值过程类似,在此不再赘述。
由于亮度修正彩色图像具有第一分辨率,第二目标图像为亮度修正彩色图像经插值处理得到,处理芯片20未对亮度修正彩色图像做插补处理,因此,第二目标图像的分辨率也为第一分辨率。由于第二目标图像是融合了彩色中间图像的亮度及全色中间图像亮度得到的,因此第二目标图像具有更好的成像效果。在模式为预览模式又为非低功耗模式时使用第二目标图像作为预览图像,可以提升预览图像的预览效果。在模式为成像模式又为低功耗模式时,使用第二目标图像作为提供给用户的图像,由于第二目标图像是无需经过插补处理计算得到的,一定程度上可以减小摄像头组件40的功耗,能够满足低功耗模式下的使用需求;同时第二目标图像的亮度较亮,可以满足用户对目标图像的亮度要求。
请再参阅图41,在又一个例子中,当目标图像为第三目标图像时,步骤04包括:
044:插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率;及
045:对彩色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第三目标图像。
请参阅图33,步骤044和步骤045均可以由处理芯片20实现。也即是说,处理芯片20可以用于插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率。处理芯片20还可以用于对彩色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第三目标图像。
具体地,请结合图44,处理芯片20将彩色中间图像中的每一个单色大像素拆分为四个彩色像素,四个彩色像素组成彩色插补图像中的一个子单元,每个子单元中包括三种颜色的彩色像素,分别为一个彩色像素A、两个彩色像素B、及一个彩色像素C。当彩色像素A为红色像素R,彩色像素B为绿色像素G,彩色像素C为蓝色像素Bu时,每个子单元中的多个彩色像素即呈拜耳阵列排布。由此,包含多个子单元的彩色插补图像即为拜耳阵列排布的图像。处理芯片20可以对彩色插补图像做插值处理以得到第三目标图像,示例地,可采用线性插值方式来获取第二目标图像,线性插值过程与前述步骤040中的插值过程类似,在此不再赘述。第三目标图像是经过插补处理得到的图像,第三目标图像的分辨率(即第二分辨率)比彩色中间图像的分辨率(即第一分辨率)来得大。在模式即为预览模式又为非低功耗模式时,将第三目标图像作为预览图像,可以得到更为清晰的预览图像。在模式既为成像模式又为低功耗模式时,将第三目标图像作为提供给用户的图像,由于第三目标形成过程中不需要与全色中间图像做亮度融合,可以在一定程度上降低摄像头组件40的功耗,同时又能满足用户对拍摄图像的清晰度要求。
请再参阅图41,在又一个例子中,当目标图像为第四目标图像时,步骤03包括:
032:插补处理全色原始图像,获取每个子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像;
步骤04包括:
046:插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率;
047:分离彩色插补图像的色彩及亮度以得到具有第二分辨率的色亮分离图像;
048:融合全色插补图像的亮度及色亮分离图像的亮度以得到具有第二分辨率的亮度修正彩色图像;及
049:对亮度修正彩色图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第四目标图像。
请参阅图33,步骤032、步骤046、步骤047、步骤048及步骤049均可以由处理芯片20实现。也即是说,处理芯片20可以用于插补处理全色原始图像,获取每个子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像。处理芯片20还可以用于插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率。处理芯片20还可以用于分离彩色插补图像的色彩及亮度以得到具有第二分辨率的色亮分离图像、融合全色插补图像的亮度及色亮分离图像的亮度以得到具有第二分辨率的亮度修正彩色图像、对亮度修正彩色图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第四目标图像。
具体地,处理芯片20首先要对第一分辨率的全色原始图像做插补处理以得到第二分辨率的全色中间图像。请结合图46,全色原始图像包括多个子单元,每个子单元包括两个空像素N和两个全色像素W,处理芯片20需要将每个子单元中的每个空像素N均替换为全色像素W,并计算出替换后位于空像素N所在位置的每个全色像素W的像素值。对于每一个空像素N,处理芯片20将该空像素N替换为全色像素W,并根据与该替换后的全色像素W相邻的其余全色像素W的像素值来确定该替换后的全色像素W的像素值。以图46所示全色原始图像中的空像素N 1,8(“空像素N 1,8”为从左上方算起第一行第八列的空像素N,下同)为例,空像素N 1,8替换为全色像素W 1,8,与全色像素W 1,8相邻的像素为全色原始图像中的全色像素W 1,7以及全色像素W 2,8,作为示例,可以将全色像素W 1,7的像素值和全色像素W 2,8的像素值的均值作为全色像素W 1,8的像素值。以图46所示全色原始图像中的空像素N 2,3为例,空像素N 2,3替换为全色像素W 2,3,与全色像素W 2,3相邻的全色像素为全色原始图像中的全色像素W 1,3、全色像素W 2,2、全色像素W 2,4、以及全色像素W 3,3,作为示例,处理芯片20将全色像素W 1,3的像素值、全色像素W 2,2的像素值、全色像素W 2,4的像素值、以及全色像素W 3,3的像素值的均值作为替换后的全色像素W 2,3的像素值。
处理芯片20获得全色中间图像和彩色中间图像后,可以对全色中间图像和彩色中间图像做融合处理以得到第四目标图像。
首先,处理芯片20可以对第一分辨率的彩色中间图像做插补处理以得到第二分辨率的彩色插补图像,如图45所示。具体插补方式与步骤045中的插补方式类似,在此不做赘述。
随后,如图45所示,处理芯片20可以分离彩色插补图像的色彩及亮度以获取色亮分离图像,图45中色亮分离图像中的L表示亮度,CLR表示色彩。具体地,假设单颜色像素A为红色像素R,单颜色像素B为绿色像素G,单颜色像素C为蓝色像素Bu,则:(1)处理芯片20可以将RGB空间的彩色插补图像转换为YCrCb空间的色亮分离图像,此时YCrCb中的Y即为色亮分离图像中的亮度L,YCrCb中的Cr和Cb即为色亮分离图像中的色彩CLR;(2)处理芯片20也可以将RGB的彩色插补图像转换为Lab空间的色亮分离图像,此时Lab中的L即为色亮分离图像中的亮度L,Lab中的a和b即为色亮分离图像中的色彩CLR。需要说明的是,图45所示色亮分离图像中L+CLR并不表示每个像素的像素值由L和CLR相加而成,仅表示每个像素的像素值是由L和CLR组成。
随后,如图46所示,处理芯片20可以融合色亮分离图像的亮度以及全色中间图像的亮度。示例地,全色中间图像中每个全色像素W的像素值即为每个全色像素的亮度值,处理芯片20可以将色亮分离图像中每个像素的L与全色中间图像中对应位置的全色像素的W相加,即可得到亮度修正后的像素值。处理芯片20根据多个亮度修正后的像素值形成一张亮度修正后的色亮分离图像,再将亮度修正后的色亮分离图像转换为亮度修正彩色图像,该亮度修正彩色图像具有第二分辨率。
在彩色像素A为红色像素R,彩色像素B为绿色像素G,彩色像素C为蓝色像素Bu时,亮度修正 彩色图像为拜耳阵列排布的图像,处理芯片20需要对亮度修正彩色图像做插值处理,以使得每个修正了亮度后的彩色像素的像素值都同时具有R、G、B三个分量。处理芯片20可以对亮度修正彩色图像做插值处理以得到第四目标图像,示例地,可采用线性插值方式来获取第四目标图像,线性插值过程与前述步骤40中的插值过程类似,在此不再赘述。
由于第四目标图像是融合了彩色中间图像的亮度及全色中间图像亮度得到的,且第四目标图像具有较大的分辨率,因此第四目标图像具有更好的亮度和清晰度。在模式为既为成像模式又为非低功耗模式时使用第四目标图像作为提供给用户的图像,可以满足用户对拍摄图像的质量要求。
在某些实施方式中,图像采集方法还可以包括获取环境亮度。该步骤可以由处理芯片20实现,具体实现方式如前所述,在此不再赘述。在环境亮度大于亮度阈值时,可以将第一目标图像或第三目标图像作为目标图像;在环境亮度小于或等于亮度阈值时,可以将第二目标图像或第四目标图像作为目标图像。可以理解,在环境亮度较亮时,仅由彩色中间图像得到的第一目标图像和第二目标图像的亮度已经足够满足用户对目标图像的亮度需求,此时可以无需融合全色中间图像的亮度来提升目标图像的亮度,如此,不仅可以减小处理芯片20的计算量,还可以降低摄像头组件40的功耗。在环境亮度较低时,仅由彩色中间图像得到的第一目标图像和第二目标图像的亮度可能无法满足用户对目标图像的亮度需求,将融合了全色中间图像的亮度得到的第二目标图像或第四目标图像作为目标图像,可以提升目标图像的亮度。
请参阅图47,本申请还提供一种移动终端90。移动终端90可以是手机、平板电脑、笔记本电脑、智能穿戴设备(如智能手表、智能手环、智能眼镜、智能头盔等)、头显设备、虚拟现实设备等等,在此不做限制。
移动终端90包括图像传感器50、处理器60、存储器70和机壳80,图像传感器50、处理器60和存储器70均安装在机壳80中。其中,图像传感器50与处理器60连接,图像传感器50可以为上述任意一项实施方式所述的图像传感器10(图33所示)。处理器60可以执行与摄像头组件40(图33所示)中的处理芯片20相同的功能,换言之,处理器60可以实现上述任意一项实施方式所述的处理芯片20所能实现的功能。存储器70与处理器60连接,存储器70可以存储处理器60处理后得到的数据,如目标图像等。处理器60可以与图像传感器50安装在同一个基板上,此时图像传感器50和处理器60可视为一个摄像头组件40。当然,处理器60也可以与图像传感器50安装在不同的基板上。
本申请的移动终端90中的图像传感器50设置有聚光透镜1186来汇聚光线,以使得光线可以更多地进入对应像素的光电转换元件117中,从而避免了相邻像素之间的光串扰问题,改善了图像传感器50的成像质量。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (60)

  1. 一种图像传感器,其特征在于,包括多个像素,多个所述像素中的至少部分像素包括:
    隔离层;
    聚光透镜,所述聚光透镜设置在所述隔离层内;及
    光电转换元件,所述光电转换元件用于接收穿过所述聚光透镜的光线。
  2. 根据权利要求1所述的图像传感器,其特征在于,多个所述像素包括多个全色像素和多个彩色像素,每个所述彩色像素均包括所述隔离层、所述聚光透镜、及所述光电转换元件;或
    多个所述像素包括全色像素和多个彩色像素,每个所述全色像素均包括所述隔离层、所述聚光透镜、及所述光电转换元件,每个所述彩色像素也均包括所述隔离层、所述聚光透镜、及所述光电转换元件。
  3. 根据权利要求1所述的图像传感器,其特征在于,所述聚光透镜的与所述光电转换元件相对的一面设置有抗反射膜。
  4. 根据权利要求1所述的图像传感器,其特征在于,所述图像传感器还包括光学隔离夹层,所述光学隔离夹层设置在相邻两个所述像素的所述隔离层之间。
  5. 根据权利要求1所述的图像传感器,其特征在于,多个所述像素包括多个全色像素和多个彩色像素,所述彩色像素具有比所述全色像素更窄的光谱响应,所述全色像素具有比所述彩色像素更大的满阱容量。
  6. 根据权利要求5所述的图像传感器,其特征在于,每个像素均包括光电转换元件,每个所述光电转换元件均包括衬底及形成在所述衬底内的n势阱层。
  7. 根据权利要求6所述的图像传感器,其特征在于,所述全色像素的n势阱层的横截面的尺寸与所述彩色像素的n势阱层的横截面的尺寸相等;所述全色像素的n势阱层的深度大于所述彩色像素的n势阱层的深度。
  8. 根据权利要求6所述的图像传感器,其特征在于,所述全色像素的n势阱层的横截面的尺寸大于所述彩色像素的n势阱层的横截面的尺寸,所述全色像素的n势阱层的深度大于或等于所述彩色像素的n势阱层的深度。
  9. 根据权利要求8所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,每个所述像素的n势阱层的各个横截面的尺寸相等。
  10. 根据权利要求6所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,所述全色像素的n势阱层的横截面的尺寸逐渐增大,所述彩色像素的n势阱层的横截面的尺寸逐渐减小,所述全色像素的n势阱层的最小的横截面的尺寸大于或等于所述彩色像素的n势阱层的最大的横截面的尺寸。
  11. 根据权利要求6-10任意一项所述的图像传感器,其特征在于,所述全色像素的光电转换元件的深度与所述彩色像素的光电转换元件的深度相等。
  12. 根据权利要求6-10任意一项所述的图像传感器,其特征在于,每个所述像素均包括微透镜、滤光片及隔离层,沿所述图像传感器的收光方向,所述微透镜、所述滤光片、所述隔离层、及所述光电转换元件依次设置。
  13. 根据权利要求12所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,每个所述像素的隔离层的各个横截面的尺寸相等;或
    当所述全色像素的n势阱层的横截面的尺寸大于所述彩色像素的n势阱层的横截面的尺寸,且沿所述图像传感器的收光方向,每个所述像素的n势阱层的各个横截面的尺寸相等时,沿所述收光方向,所述全色像素的隔离层的横截面的尺寸逐渐增大,所述彩色像素的隔离层的横截面的尺寸逐渐减小;或
    当沿所述图像传感器的收光方向,所述全色像素的n势阱层的横截面的尺寸逐渐增大,所述彩色像素的n势阱层的横截面的尺寸逐渐减小时,沿所述收光方向,所述全色像素的隔离层的横截面的尺寸逐渐增大,所述彩色像素的隔离层的横截面的尺寸逐渐减小。
  14. 根据权利要求5所述的图像传感器,其特征在于,所述全色像素和所述彩色像素形成二维像素阵列,所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向,所述第一对角线方向与所述第二对角线方向不同;
    所述第一对角线方向相邻的至少两个所述全色像素的第一曝光时间由第一曝光信号控制,所述第二对角线方向相邻的至少两个所述彩色像素的第二曝光时间由第二曝光信号控制。
  15. 根据权利要求14所述的图像传感器,其特征在于,所述第一曝光时间小于所述第二曝光时间。
  16. 根据权利要求14所述的图像传感器,其特征在于,所述图像传感器还包括:
    第一曝光控制线,与所述第一对角线方向相邻的至少两个所述全色像素中曝光控制电路的控制端电连接;以及
    第二曝光控制线,与所述第二对角线方向相邻的至少两个所述彩色像素中曝光控制电路的控制端电连接;
    其中,所述第一曝光信号经由所述第一曝光控制线传输,所述第二曝光信号经由所述第二曝光控制线传输。
  17. 根据权利要求16所述的图像传感器,其特征在于,所述第一曝光控制线呈“W”型,与相邻两行的全色像素中曝光控制电路的控制端电连接;
    所述第二曝光控制线呈“W”型,与相邻两行的彩色像素中曝光控制电路的控制端电连接。
  18. 根据权利要求16或17所述的图像传感器,其特征在于,所述曝光控制电路与所述光电转换元件电连接,用于转移所述光电转换元件经光照后积累的电势。
  19. 根据权利要求16所述的图像传感器,其特征在于,所述曝光控制电路为转移晶体管,所述曝光控制电路的控制端为所述转移晶体管的栅极。
  20. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为4行4列16个像素,排布方式为:
    Figure PCTCN2019109517-appb-100001
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  21. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为4行4列16个像素,排布方式为:
    Figure PCTCN2019109517-appb-100002
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  22. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为6行6列36个像素,排布方式为:
    Figure PCTCN2019109517-appb-100003
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  23. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为6行6列36个像素,排布方式为:
    Figure PCTCN2019109517-appb-100004
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  24. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为8行8列64个像素,排布方式为:
    Figure PCTCN2019109517-appb-100005
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  25. 根据权利要求14所述的图像传感器,其特征在于,所述最小重复单元为8行8列64个像素,排布方式为:
    Figure PCTCN2019109517-appb-100006
    其中,W表示所述全色像素;
    A表示所述多个所述彩色像素中的第一颜色像素;
    B表示所述多个所述彩色像素中的第二颜色像素;
    C表示所述多个所述彩色像素中的第三颜色像素。
  26. 根据权利要求20-25任意一项所述的图像传感器,其特征在于,
    所述第一颜色像素A为红色像素R;
    所述第二颜色像素B为绿色像素G;
    所述第三颜色像素C为蓝色像素Bu。
  27. 根据权利要求20-25任意一项所述的图像传感器,其特征在于,
    所述第一颜色像素A为红色像素R;
    所述第二颜色像素B为黄色像素Y;
    所述第三颜色像素C为蓝色像素Bu。
  28. 根据权利要求20-25任意一项所述的图像传感器,其特征在于,
    所述第一颜色像素A为品红色像素M;
    所述第二颜色像素B为青色像素Cy;
    所述第三颜色像素C为黄色像素Y。
  29. 根据权利要求14、20-25任意一项所述的图像传感器,其特征在于,所述全色像素的响应波段为可见光波段。
  30. 根据权利要求14、20-25任意一项所述的图像传感器,其特征在于,所述全色像素的响应波段为可见光波段和近红外波段,与所述图像传感器中的光电转换元件的响应波段相匹配。
  31. 一种摄像头组件,其特征在于,包括:权利要求1-30任意一项所述的图像传感器。
  32. 根据权利要求31所述的摄像头组件,其特征在于,每个所述最小重复单元包含多个子单元,每个所述子单元包括多个单颜色像素及多个全色像素,所述图像传感器用于曝光以获取全色原始图像和彩色原始图像;所述摄像头组件还包括处理芯片,所述处理芯片用于:
    处理所述彩色原始图像,以将每个所述子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并输出所述单色大像素的像素值以得到彩色中间图像;
    处理所述全色原始图像以得到全色中间图像;及
    处理所述彩色中间图像和/或所述全色中间图像以获取目标图像。
  33. 根据权利要求32所述的摄像头组件,其特征在于,所述图像传感器中的所有所述全色像素和所有所述彩色像素同时曝光;
    所述图像传感器输出所有所述全色像素的像素值以获取所述全色原始图像,并输出所有所述彩色像素的像素值以获取所述彩色原始图像。
  34. 根据权利要求32所述的摄像头组件,其特征在于,所述图像传感器中的所有所述全色像素和所有所述彩色像素分时曝光;
    所述图像传感器输出所有所述全色像素的像素值以获取所述全色原始图像,并输出所有所述彩色像素的像素值以获取所述彩色原始图像。
  35. 根据权利要求32所述的摄像头组件,其特征在于,所述处理芯片还用于获取环境亮度;
    在所述环境亮度大于亮度阈值时,所述第一曝光时间小于所述第二曝光时间。
  36. 根据权利要求32所述的摄像头组件,其特征在于,所述处理芯片还用于:
    合并每个所述子单元中的所有所述像素的像素值以得到所述单色大像素的像素值;及
    根据多个所述单色大像素的像素值形成所述彩色中间图像,所述彩色中间图像具有第一分辨率。
  37. 根据权利要求36所述的摄像头组件,其特征在于,所述处理芯片还用于:
    对所述彩色中间图像中的每个所述单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第一分辨率的第一目标图像。
  38. 根据权利要求36所述的摄像头组件,其特征在于,所述处理芯片还用于:
    处理所述全色原始图像,将每个所述子单元的所有像素作为全色大像素,并输出所述全色大像素的像素值以得到全色中间图像,所述全色中间图像具有所述第一分辨率;
    分离所述彩色中间图像的色彩及亮度以得到具有所述第一分辨率的色亮分离图像;
    融合所述全色中间图像的亮度及所述色亮分离图像的亮度以得到具有所述第一分辨率的亮度修正彩色图像;及
    对所述亮度修正彩色图像中的每个所述单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第一分辨率的第二目标图像。
  39. 根据权利要求38所述的摄像头组件,其特征在于,所述处理芯片还用于:
    合并每个所述子单元中的所有所述像素的像素值以得到所述全色大像素的像素值;及
    根据多个所述全色大像素的像素值形成所述全色中间图像。
  40. 根据权利要求36所述的摄像头组件,其特征在于,所述处理芯片还用于:
    插补处理所述彩色中间图像以得到具有第二分辨率的彩色插补图像,所述彩色插补图像中对应的所述子单元呈拜耳阵列排布,所述第二分辨率大于所述第一分辨率;及
    对所述彩色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第二分辨率的第三目标图像。
  41. 根据权利要求36所述的摄像头组件,其特征在于,所述处理芯片还用于:
    插补处理所述全色原始图像,获取每个所述子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像;
    插补处理所述彩色中间图像以得到具有第二分辨率的彩色插补图像,所述彩色插补图像中对应的所述子单元呈拜耳阵列排布,所述第二分辨率大于所述第一分辨率;
    分离所述彩色插补图像的色彩及亮度以得到具有所述第二分辨率的色亮分离图像;
    融合所述全色插补图像的亮度及所述色亮分离图像的亮度以得到具有所述第二分辨率的亮度修正彩色图像;及
    对所述亮度修正彩色图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第二分辨率的第四目标图像。
  42. 根据权利要求37-41任意一项所述的摄像头组件,其特征在于,所述图像传感器应用于所述摄像头组件,在所述摄像头组件处于不同模式时,不同的所述模式对应不同的所述目标图像。
  43. 根据权利要求42所述的摄像头组件,其特征在于,
    在所述模式为预览模式时,所述目标图像为所述第一目标图像或所述第二目标图像;
    在所述模式为成像模式时,所述目标图像为第二目标图像、所述第三目标图像或所述第四目标图像。
  44. 根据权利要求42所述的摄像头组件,其特征在于,
    在所述模式既为预览模式又为低功耗模式时,所述目标图像为所述第一目标图像;
    在所述模式既为所述预览模式又为非低功耗模式时,所述目标图像为所述第二目标图像;
    在所述模式既为成像模式又为所述低功耗模式时,所述目标图像为所述第二目标图像或所述第三目标图像;
    在所述模式既为所述成像模式又为所述非低功耗模式时,所述目标图像为所述第四目标图像。
  45. 根据权利要求37-41任意一项所述的摄像头组件,其特征在于,所述处理芯片还用于获取环境亮度;
    在所述环境亮度大于亮度阈值时,所述目标图像为所述第一目标图像或所述第三目标图像;
    在所述环境亮度小于所述亮度阈值时,所述目标图像为所述第二目标图像或所述第四目标图像。
  46. 一种移动终端,其特征在于,包括:
    机壳;及
    权利要求1-30任意一项所述的图像传感器,所述图像传感器安装在所述机壳内。
  47. 根据权利要求46所述的摄像头组件,其特征在于,每个所述最小重复单元包含多个子单元,每个所述子单元包括多个单颜色像素及多个全色像素,所述图像传感器用于曝光以获取全色原始图像和彩色原始图像;所述移动终端还包括处理器,所述处理器用于:
    处理所述彩色原始图像,以将每个所述子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并输出所述单色大像素的像素值以得到彩色中间图像;
    处理所述全色原始图像以得到全色中间图像;及
    处理所述彩色中间图像和/或所述全色中间图像以获取目标图像。
  48. 根据权利要求47所述的移动终端,其特征在于,所述图像传感器中的所有所述全色像素和所有所述彩色像素同时曝光;
    所述图像传感器输出所有所述全色像素的像素值以获取所述全色原始图像,并输出所有所述彩色像素的像素值以获取所述彩色原始图像。
  49. 根据权利要求47所述的移动终端,其特征在于,所述图像传感器中的所有所述全色像素和所有所述彩色像素分时曝光;
    所述图像传感器输出所有所述全色像素的像素值以获取所述全色原始图像,并输出所有所述彩色像素的像素值以获取所述彩色原始图像。
  50. 根据权利要求47所述的移动终端,其特征在于,所述处理器还用于获取环境亮度;
    在所述环境亮度大于亮度阈值时,所述第一曝光时间小于所述第二曝光时间。
  51. 根据权利要求47所述的移动终端,其特征在于,所述处理器还用于:
    合并每个所述子单元中的所有所述像素的像素值以得到所述单色大像素的像素值;及
    根据多个所述单色大像素的像素值形成所述彩色中间图像,所述彩色中间图像具有第一分辨率。
  52. 根据权利要求51所述的移动终端,其特征在于,所述处理器还用于:
    对所述彩色中间图像中的每个所述单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第一分辨率的第一目标图像。
  53. 根据权利要求51所述的移动终端,其特征在于,所述处理器还用于:
    处理所述全色原始图像,将每个所述子单元的所有像素作为全色大像素,并输出所述全色大像素的像素值以得到全色中间图像,所述全色中间图像具有所述第一分辨率;
    分离所述彩色中间图像的色彩及亮度以得到具有所述第一分辨率的色亮分离图像;
    融合所述全色中间图像的亮度及所述色亮分离图像的亮度以得到具有所述第一分辨率的亮度修正彩色图像;及
    对所述亮度修正彩色图像中的每个所述单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第一分辨率的第二目标图像。
  54. 根据权利要求53所述的移动终端,其特征在于,所述处理器还用于:
    合并每个所述子单元中的所有所述像素的像素值以得到所述全色大像素的像素值;及
    根据多个所述全色大像素的像素值形成所述全色中间图像。
  55. 根据权利要求51所述的移动终端,其特征在于,所述处理器还用于:
    插补处理所述彩色中间图像以得到具有第二分辨率的彩色插补图像,所述彩色插补图像中对应的所述子单元呈拜耳阵列排布,所述第二分辨率大于所述第一分辨率;及
    对所述彩色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第二分辨率的第三目标图像。
  56. 根据权利要求51所述的移动终端,其特征在于,所述处理器还用于:
    插补处理所述全色原始图像,获取每个所述子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像;
    插补处理所述彩色中间图像以得到具有第二分辨率的彩色插补图像,所述彩色插补图像中对应的所述子单元呈拜耳阵列排布,所述第二分辨率大于所述第一分辨率;
    分离所述彩色插补图像的色彩及亮度以得到具有所述第二分辨率的色亮分离图像;
    融合所述全色插补图像的亮度及所述色亮分离图像的亮度以得到具有所述第二分辨率的亮度修正彩色图像;及
    对所述亮度修正彩色图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有所述第二分辨率的第四目标图像。
  57. 根据权利要求52-56任意一项所述的移动终端,其特征在于,所述图像传感器应用于所述移动终端,在所述移动终端处于不同模式时,不同的所述模式对应不同的所述目标图像。
  58. 根据权利要求57所述的移动终端,其特征在于,
    在所述模式为预览模式时,所述目标图像为所述第一目标图像或所述第二目标图像;
    在所述模式为成像模式时,所述目标图像为第二目标图像、所述第三目标图像或所述第四目标图像。
  59. 根据权利要求57所述的移动终端,其特征在于,
    在所述模式既为预览模式又为低功耗模式时,所述目标图像为所述第一目标图像;
    在所述模式既为所述预览模式又为非低功耗模式时,所述目标图像为所述第二目标图像;
    在所述模式既为成像模式又为所述低功耗模式时,所述目标图像为所述第二目标图像或所述第三目标图像;
    在所述模式既为所述成像模式又为所述非低功耗模式时,所述目标图像为所述第四目标图像。
  60. 根据权利要求52-56任意一项所述的移动终端,其特征在于,所述处理芯片还用于获取环境亮度;
    在所述环境亮度大于亮度阈值时,所述目标图像为所述第一目标图像或所述第三目标图像;
    在所述环境亮度小于所述亮度阈值时,所述目标图像为所述第二目标图像或所述第四目标图像。
PCT/CN2019/109517 2019-09-30 2019-09-30 图像传感器、摄像头组件及移动终端 WO2021062662A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19947867.8A EP3985728A4 (en) 2019-09-30 2019-09-30 IMAGE SENSOR, CAMERA ARRANGEMENT AND MOBILE DEVICE
CN201980097805.3A CN114008781A (zh) 2019-09-30 2019-09-30 图像传感器、摄像头组件及移动终端
PCT/CN2019/109517 WO2021062662A1 (zh) 2019-09-30 2019-09-30 图像传感器、摄像头组件及移动终端
US17/573,561 US20220139974A1 (en) 2019-09-30 2022-01-11 Image sensor, camera assembly, and mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109517 WO2021062662A1 (zh) 2019-09-30 2019-09-30 图像传感器、摄像头组件及移动终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/573,561 Continuation US20220139974A1 (en) 2019-09-30 2022-01-11 Image sensor, camera assembly, and mobile terminal

Publications (1)

Publication Number Publication Date
WO2021062662A1 true WO2021062662A1 (zh) 2021-04-08

Family

ID=75337596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109517 WO2021062662A1 (zh) 2019-09-30 2019-09-30 图像传感器、摄像头组件及移动终端

Country Status (4)

Country Link
US (1) US20220139974A1 (zh)
EP (1) EP3985728A4 (zh)
CN (1) CN114008781A (zh)
WO (1) WO2021062662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447006A (zh) * 2020-10-30 2022-05-06 三星电子株式会社 包括分色透镜阵列的图像传感器和包括图像传感器的电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574377A (zh) * 2003-06-18 2005-02-02 松下电器产业株式会社 固态成像器件及其制造方法
US20070076269A1 (en) * 2005-10-03 2007-04-05 Konica Minolta Photo Imaging, Inc. Imaging unit and image sensor
CN101233763A (zh) * 2005-07-28 2008-07-30 伊斯曼柯达公司 处理彩色和全色像素
JP2009081169A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 固体撮像素子
CN103137638A (zh) * 2011-11-30 2013-06-05 索尼公司 固态摄像器件及其制造方法、电子装置及用于固态摄像器件的合成物
CN103403869A (zh) * 2011-03-02 2013-11-20 索尼公司 固态成像装置、固态成像装置的制造方法和电子设备
CN105027558A (zh) * 2013-03-01 2015-11-04 苹果公司 图像传感器的曝光控制
CN109087926A (zh) * 2018-08-10 2018-12-25 德淮半导体有限公司 图像传感器、电子装置及其制造方法
CN110649057A (zh) * 2019-09-30 2020-01-03 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端
CN110649056A (zh) * 2019-09-30 2020-01-03 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229553A (ja) * 2002-02-05 2003-08-15 Sharp Corp 半導体装置及びその製造方法
JP4449936B2 (ja) * 2006-03-31 2010-04-14 ソニー株式会社 撮像装置、カメラシステムおよびその駆動方法
JP2010183357A (ja) * 2009-02-05 2010-08-19 Panasonic Corp 固体撮像素子、カメラシステムおよび固体撮像素子の駆動方法
JP2011066204A (ja) * 2009-09-17 2011-03-31 Fujifilm Corp 固体撮像素子及びその製造方法並びに撮像装置
DE112016004235T5 (de) * 2015-09-17 2018-07-19 Semiconductor Components Industries, Llc Pixel mit hohem Dynamikbereich unter Verwendung von Lichttrennung
JP2017118191A (ja) * 2015-12-21 2017-06-29 ソニー株式会社 撮像素子及びその駆動方法、並びに撮像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574377A (zh) * 2003-06-18 2005-02-02 松下电器产业株式会社 固态成像器件及其制造方法
CN101233763A (zh) * 2005-07-28 2008-07-30 伊斯曼柯达公司 处理彩色和全色像素
US20070076269A1 (en) * 2005-10-03 2007-04-05 Konica Minolta Photo Imaging, Inc. Imaging unit and image sensor
JP2009081169A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 固体撮像素子
CN103403869A (zh) * 2011-03-02 2013-11-20 索尼公司 固态成像装置、固态成像装置的制造方法和电子设备
CN103137638A (zh) * 2011-11-30 2013-06-05 索尼公司 固态摄像器件及其制造方法、电子装置及用于固态摄像器件的合成物
CN105027558A (zh) * 2013-03-01 2015-11-04 苹果公司 图像传感器的曝光控制
CN109087926A (zh) * 2018-08-10 2018-12-25 德淮半导体有限公司 图像传感器、电子装置及其制造方法
CN110649057A (zh) * 2019-09-30 2020-01-03 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端
CN110649056A (zh) * 2019-09-30 2020-01-03 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985728A4 *

Also Published As

Publication number Publication date
US20220139974A1 (en) 2022-05-05
EP3985728A4 (en) 2022-06-15
EP3985728A1 (en) 2022-04-20
CN114008781A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN110649056B (zh) 图像传感器、摄像头组件及移动终端
WO2021063162A1 (zh) 图像传感器、摄像头组件及移动终端
US7990444B2 (en) Solid-state imaging device and camera
WO2021223590A1 (zh) 图像传感器、控制方法、摄像头组件和移动终端
CN111314592B (zh) 图像处理方法、摄像头组件及移动终端
CN110784634B (zh) 图像传感器、控制方法、摄像头组件及移动终端
CN111385543B (zh) 图像传感器、摄像头组件、移动终端及图像获取方法
KR20140113923A (ko) 고체 촬상 소자 및 카메라 시스템
US20220336508A1 (en) Image sensor, camera assembly and mobile terminal
WO2021159944A1 (zh) 图像传感器、摄像头组件及移动终端
WO2022036817A1 (zh) 图像处理方法、图像处理系统、电子设备及可读存储介质
WO2022007215A1 (zh) 图像获取方法、摄像头组件及移动终端
US20220139981A1 (en) Image sensor, camera assembly, and mobile terminal
US20220139974A1 (en) Image sensor, camera assembly, and mobile terminal
US20220150450A1 (en) Image capturing method, camera assembly, and mobile terminal
CN111031297B (zh) 图像传感器、控制方法、摄像头组件和移动终端
CN111212212A (zh) 摄像头组件、移动终端及控制方法
US20220279108A1 (en) Image sensor and mobile terminal
CN112235485B (zh) 图像传感器、图像处理方法、成像装置、终端及可读存储介质
WO2021102832A1 (zh) 图像传感器、控制方法、摄像头组件及移动终端
WO2021046690A1 (zh) 图像传感器、摄像头模组、移动终端及图像采集方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019947867

Country of ref document: EP

Effective date: 20220111

NENP Non-entry into the national phase

Ref country code: DE