WO2021060739A1 - 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법 - Google Patents

마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법 Download PDF

Info

Publication number
WO2021060739A1
WO2021060739A1 PCT/KR2020/011958 KR2020011958W WO2021060739A1 WO 2021060739 A1 WO2021060739 A1 WO 2021060739A1 KR 2020011958 W KR2020011958 W KR 2020011958W WO 2021060739 A1 WO2021060739 A1 WO 2021060739A1
Authority
WO
WIPO (PCT)
Prior art keywords
marking
optical film
film
unit
coating layer
Prior art date
Application number
PCT/KR2020/011958
Other languages
English (en)
French (fr)
Inventor
이문찬
허은규
박정호
권현철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190120074A external-priority patent/KR102363070B1/ko
Priority claimed from KR1020200095885A external-priority patent/KR102363071B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022519519A priority Critical patent/JP7301452B2/ja
Publication of WO2021060739A1 publication Critical patent/WO2021060739A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/005Curtain coaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/80Identifying, e.g. coding, dating, marking, numbering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • Embodiments of the present invention relate to an optical film, an optical film manufacturing apparatus, and a manufacturing method using marking.
  • optical films are subjected to manufacturing processes such as stretching treatment, surface treatment, and slitting.
  • the manufacturing process of such an optical film is mainly performed in a roll-to-roll (R2R) method.
  • the surface treatment process of the optical film In the case of the surface treatment process of the optical film, it consists of unwinding, surface treatment, curing, and winding of the optical film.
  • the winding process is a final step in the optical film production process, and when a defect occurs, it is not easy to solve it, and it is a factor that deteriorates the product quality.
  • Examples of poor winding of the film include meandering in the direction perpendicular to the running direction of the film during winding, and poor pressing due to the winding core fixing tape.
  • the winding tension should be increased or the slip resistance of the film should be increased, and the amount of air drawn between the laminated films during winding should be minimized.
  • the winding tension should be lowered and the amount of air drawn between the films during winding should be increased.
  • the present invention has been devised to improve the above problems, and in consideration of the fact that physical properties vary according to the axial direction of the stretched optical film, an optical film capable of preventing meandering when forming an optimal marking and winding, It is an object to provide an optical film manufacturing apparatus and manufacturing method.
  • An optical film manufacturing apparatus includes: a supply unit for supplying an optical film in a first direction; A receiving unit disposed spaced apart from the supply unit and winding the optical film supplied from the supply unit; And a marking unit disposed between the supply unit and the receiving unit to form a marking by irradiating a light source on the optical film.
  • a driving unit connected to the marking unit to move the marking unit may be further included, and the marking may be formed to form a first direction and a preset angle as the marking unit is moved.
  • the optical film may include protrusions respectively formed along both sides of the marking.
  • each of the protrusions formed on both sides of the marking may include having different heights in the protruding direction.
  • the optical film may include a marking area and an effective area, and the marking may include being formed in a preset section of the marking area.
  • the effective area may be formed at a central portion along the length direction of the optical film, and the marking area may be formed at the edge of the optical film so as to be disposed on both sides of the effective area.
  • a plurality of the marking units may be provided in the marking area.
  • the marking may include forming 0° to 180° with the first direction.
  • a coating unit for forming a coating layer on one surface of the optical film between the supply unit and the receiving unit further includes, wherein the marking unit is disposed spaced apart from the coating unit with the optical film interposed therebetween, and the other surface of the optical film It can form a marking on.
  • the coating layer is formed in a first region formed on one surface of the optical film
  • the marking is formed in a second region formed on the other surface opposite to one surface of the optical film on which the coating layer is formed, and the first region And the second region may not overlap in a direction perpendicular to the first direction.
  • the marking may include forming a first direction and a predetermined angle.
  • the optical film may include protrusions respectively formed along both sides of the marking.
  • each of the protrusions formed on both sides of the marking may include having different heights in the protruding direction.
  • forming a coating layer on one surface of the optical film may further include.
  • the marking may be formed on the other surface of the optical film on which the coating layer is formed on one surface.
  • the coating layer is formed in a first region formed on one surface of the optical film
  • the marking is formed in a second region formed on the other surface opposite to one surface of the optical film on which the coating layer is formed, and the first region And the second region may not overlap in a direction perpendicular to the first direction.
  • the optical film according to the present invention may include one manufactured by any one of the above optical film manufacturing methods.
  • the marking may be formed in a groove shape, and the groove depth of the marking may include formed in a ratio of 0.5 to 5 when the total thickness of the optical film is 10.
  • the height of the protrusions formed on both sides of the marking may include those formed in a ratio of 0.5 to 10 when the total thickness of the optical film is 10.
  • the height of the protrusion is formed differently by forming the marking so as to achieve a predetermined angle with the axial direction, and physical properties according to the axial direction of the stretched optical film. There is an effect of forming an optimal marking in response to different points.
  • a coating layer is formed on one surface of the film manufactured by the optical film manufacturing apparatus and manufacturing method according to the present invention, and the surface energy, friction coefficient, and slip resistance increase due to the formation of a marking on the other surface opposite to the one surface. There is an effect that can prevent the occurrence of test meandering.
  • the coating layer and the marking do not overlap in a direction perpendicular to the length direction of the film, there is an effect of reducing the possibility of breakage when the film is wound.
  • FIG. 1 is a perspective view schematically showing an optical film manufacturing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a side view schematically showing an optical film manufacturing apparatus according to a first embodiment of the present invention
  • FIG. 5 is a plan view partially showing an optical film manufacturing apparatus according to a first embodiment of the present invention.
  • 6A to 6C are views showing markings formed to achieve a preset angle with a first direction
  • FIG. 8 is a flow chart showing a method of manufacturing an optical film according to the first embodiment of the present invention.
  • FIG. 9 is a perspective view schematically showing an optical film manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a side view schematically showing an optical film manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 11 is an enlarged view of part A of FIG. 10;
  • FIG. 12 is a plan view showing an optical film manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 13 is a side view showing an optical film according to a second embodiment of the present invention.
  • FIG. 14 is a flow chart showing a method of manufacturing an optical film according to a second embodiment of the present invention.
  • 15A is a graph showing a water contact angle according to a heat treatment temperature
  • 15B is a graph showing the surface energy of the surface according to the heat treatment temperature
  • 16A is a graph showing a coefficient of friction (COF) according to a heat treatment temperature of an optical film according to a second embodiment of the present invention
  • 16B is a graph showing a coefficient of friction according to a heat treatment temperature of an optical film that has not been subjected to a surface treatment.
  • optical film manufacturing apparatus L light source
  • FIG. 1 is a perspective view schematically showing an optical film manufacturing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a side view schematically showing an optical film manufacturing apparatus according to a first embodiment of the present invention.
  • the optical film manufacturing apparatus 1 includes a supply unit 100, a receiving unit 200, a marking unit 300, a driving unit 400 can do.
  • the supply unit 100 supplies the optical film 10 (hereinafter, referred to as'film') along the first direction (from left to right based on FIG. 2). It receives power from and can rotate clockwise or counterclockwise.
  • 'film' optical film 10
  • the supply unit 100 is rotated in a clockwise direction (based on FIG. 2 ), and the wound film 10 is unfolded and moves toward the receiving unit 200 disposed to be spaced apart from the supply unit 100.
  • the film 10 moved from the supply unit 100 to the receiving unit 200 may be wound up as the receiving unit 200 receives power from the outside and rotates in a clockwise direction.
  • the receiving unit 200 is disposed to be spaced apart from the supply unit 100 and may wind up the film 10 supplied from the supply unit 100.
  • the receiving unit 200 may be rotated in a clockwise or counterclockwise direction by receiving power from the outside, and may wind up the film 10 supplied from the supply unit 100 while rotating in a clockwise direction based on FIG. 2.
  • the film 10 is moved from the supply unit 100 to the receiving unit 200 in the first direction, and the light source L on one side (the upper surface of FIG. 2) of the film 10 by the marking unit 300 to be described later. This is irradiated, and the marking 16 having the shape of a groove and a groove can be formed.
  • the marking part 300 is disposed between the supply part 100 and the receiving part 200, and may form the marking 16 by irradiating the light source L on the film 10.
  • the light source L is a laser
  • a marking 16 having a groove shape is formed in a preset section, and the marking 16 is In the formed section, the protrusions 17 may protrude along both sides of the marking 16 in an outward direction (upper side based on FIG. 3 ).
  • the height of the protrusion 17 is formed relatively higher than the bottom surface corresponding to the groove of the marking 16, and before the marking 16 is formed, it may be formed to protrude upward from one surface of the film 10 (the upper side based on FIG. 3). have.
  • the protrusion 17 may have a constant height based on the upper surface of the film 10 (based on FIG. 3 ).
  • the protrusion 17 may serve as a guide so that the film 10 does not shift to one side in the process of being received by the receiving unit 200.
  • a protrusion 17 is formed on the upper surface of the film 10 (based on FIG. 2 ), and is wound by the receiving unit 200 in a centrifugal direction with respect to the center of the receiving unit 200. 10) will be stacked. At this time, the protrusion 17 comes into contact with the lower surface of the film 10 laminated on the outside of the protrusion 17, and the slip resistance increases as the surface pressure increases.
  • the protrusions 17 are formed on both sides based on the marking 16 having the shape of a groove and a groove, and the heights (h1, h2) of the protrusions 17 formed on both sides as shown in FIG. 3 are formed equally. I can.
  • the marking unit 300 can adjust the path and angle for irradiating the light source L, and at this time, the protrusions 17 formed on both sides of the marking 16
  • the height (h1, h2) of may be formed differently. This will be described in detail later.
  • the groove depth d of the marking 16 is preferably formed in a ratio of 0.5 to 5 when the total thickness t of the optical film 10 is 10.
  • the groove depth d of the marking 16 when the groove depth d of the marking 16 is formed at a ratio of 0.5 or less, there is a problem that the protrusion 17 may not be formed to an appropriate height. That is, the groove depth d and the height of the protrusion 17 increase in proportion. When the groove depth d is shallow and the height of the protrusion 17 is formed to be low, the effect of increasing the slip resistance may be insignificant.
  • the height of the protrusions 17 formed on both sides of the marking 16 is preferably formed in a ratio of 0.5 to 10 when the total thickness t of the optical film 10 is 10.
  • the height ratio of the protrusion 17 is 10 or more.
  • the height no longer increases significantly and becomes saturation, but the groove depth d continues to increase.
  • the groove depth d ratio is about 5, so it is preferable to select this as a reference ratio value.
  • a coating layer (not shown) having a predetermined thickness may be laminated on either one of the surface and the back surface of the optical film 10 or both the surface and the back surface of the optical film 10.
  • the marking 16 may be formed on the coating layer of the optical film 10.
  • the coating layer imparts various functional roles such as anti-reflection, anti-glare, anti-scattering, and optical film protection.
  • the coating used in the present invention is an ASG (Anti-semi-glare) coating.
  • the coating layer is generally made of a harder material than the film, so it is sensitive to fracture and has low surface energy (PET film 45 mN/m> ASG_PET film 30 mN/m).
  • PET film 45 mN/m> ASG_PET film 30 mN/m As the surface energy is lowered, slip may easily occur during the winding process of the optical film 10. Accordingly, the protrusion 17 is formed on the edge of the optical film 10 through laser marking.
  • the laser marking 16 is preferably formed on the back surface of the optical film 10 on which the coating layer is not formed.
  • the marking part 300 is marked by irradiating a light source L on the marking area 15, which is the edges of both sides of the effective area 11 formed in the central part based on the length direction of the film 10. (16) can be formed.
  • the film 10 includes an effective area 11 and a marking area 15, and in this specification, the effective area 11 refers to an area attached to the display panel on one surface of the film 10.
  • the effective area 11 may be formed on the film 10 along the first direction (up-down direction based on FIG. 5 ).
  • the effective area 11 may be formed to have a preset width based on the center of the film 10 in the longitudinal direction. That is, it is a region formed in the central portion of the film 10 in the width direction.
  • the'marking area 15' refers to an area of one surface of the film 10 excluding the effective area 11, which is an area attached to the display panel, in the first direction on the film 10 (up and down directions based on FIG. 5). It can be formed along.
  • the marking areas 15 may be formed on both sides of the effective area 11, that is, at the edges of the film 10 with respect to the center of the film 10 in the longitudinal direction (up and down directions based on FIG. 5 ).
  • the marking part 300 is disposed above the marking area 15 (as shown in FIG. 2 ), and receives power from the driving part 400 to be described later to form a path for forming the marking 16. , The irradiation angle of the light source L can be adjusted.
  • a plurality of marking units 300 may be provided and may be disposed on each of the marking regions 15 formed on both sides of the effective region 11.
  • markings 16 may be formed on the marking regions 15 formed on both edges of the effective region 11 of the film 10.
  • the width of the effective area 11 may be determined according to the interval between the markings 16 formed in the marking area 15.
  • the driving unit 400 is connected to the marking unit 300 and may move the marking unit 300.
  • the driving unit 400 transfers power to the marking unit 300 to move the marking unit 300, and as the marking unit 300 moves, the marking 16 forms a first direction and a preset angle. I can.
  • the driving unit 400 may be disposed between the supply unit 100 and the receiving unit 200, and may be disposed above the film 10 which is moved between the supply unit 100 and the receiving unit 200.
  • the driving unit 400 is electrically connected to the marking unit 300, and transmits power to the marking unit 300 to control the irradiation path and angle of the marking unit 300.
  • the marking unit 300 is moved by the driving unit 400 (Gun type laser) has been illustrated and described, but is not limited thereto. That is, the marking unit 300 may be changed and applied in a manner of forming the marking 16 by irradiating a laser beam at a desired angle through an optical method (Scanner type laser) on its own.
  • the moving direction of the film 10 is a first direction, that is, from a lower side to an upper side (based on FIG. 6A), and formed by the light source L irradiated from the marking part 300.
  • the marking 16 may be formed at a predetermined angle with the first direction.
  • the marking 16 is formed in the same direction as the machine direction (MD) of the film 10, and the formation path and the first direction of the marking 16 are formed to form 0°.
  • the formation path and the first direction of the marking 16 form 0°
  • the height h1 of the left protrusion 17 and the height h2 of the right protrusion 17 formed on both sides of the marking 16 can be formed identically.
  • the marking 16 may be formed to form a predetermined angle ( ⁇ 1) with a first direction (up-down direction based on FIG. 6B ), which is a moving direction of the film 10, and specifically 15° with the first direction.
  • the formation path of the marking 16 and the first direction form 15°, so that the height h1 of the left protrusion 17 formed on both sides of the marking 16 is higher than the height h1 of the right protrusion 17.
  • the height h2 may be formed relatively high.
  • the marking 16 may be formed at an angle ( ⁇ 2) with a first direction (the vertical direction based on FIG. 6C ), which is the moving direction of the film 10, and specifically 30° with the first direction.
  • the height h2 of the right protrusion 17 is higher than the height h1 of the left protrusion 17 formed on both sides of the marking 16 ) May be formed relatively high.
  • the height h2 of the right protrusion 17 in FIG. 6C may be formed higher than the height h2 of the right protrusion 17 in FIG. 6B, and the height h1 of the left protrusion 17 is FIG. 6B. It may be formed lower than the height of the left protrusion 17 at.
  • the optical film 10 used as a material for a display since it is generally stretched and used, tensile strength, elongation, heat absorption/conduction, volume expansion, etc., depending on the axial direction, specifically the first direction, etc. The degree of can be generated differently.
  • the driving unit 400 may be formed to transmit power to the marking unit 300 so that the marking unit 300 forms a first direction and a preset angle, specifically 0° to 180°.
  • the driving unit 400 is connected to the marking unit 300, the marking unit 300 moves on the driving unit 400, and the irradiation path and angle of the light source L may be adjusted.
  • the marking part 300 can be moved in a preset direction (left and right directions based on FIG. 2) on the driving part 400.
  • a preset direction left and right directions based on FIG. 2
  • the present invention is not limited thereto, and various modifications may be implemented, such as movement in the left and right directions based on FIG.
  • the angle at which the light source L irradiated from the marking unit 300 is incident on one surface (the upper surface of FIG. 2) of the film 10 may also be adjusted.
  • the marking unit 300 irradiates the light source L to form the marking 16 on the marking area 15 of the film 10, and at this time, the left protrusions 17 formed on both sides of the marking 16
  • the height h1 of) and the height h2 of the right protrusion 17 may be formed to be the same (in the case of 0° and 180°) or different from each other (in the case of more than 0° and less than 180°).
  • FIG. 7 it is a graph showing the height of the protrusion 17 according to the angle formed by the marking 16 and the first direction (up and down direction based on FIG. 6A), and the height of the left protrusion 17 according to the angle (h1) ,
  • the height h2 of the right protrusion 17 may be formed to be the same or different.
  • the driving unit 400 drives the marking unit 300 By controlling, it is possible to set the formation path of the marking 16 and the angle with the first direction.
  • the formation path of the marking 16 forming the first direction and a preset angle can be adjusted to correspond to the physical properties of the film 10, and the surface pressure distribution due to the thickness deviation of the film 10 at the optimum height of the protrusion 17 It is possible to increase slip resistance by introducing air by increasing and preventing the interface between the films 10 from being completely in close contact with each other during winding.
  • FIG. 8 is a flow chart showing a method of manufacturing an optical film according to the first embodiment of the present invention.
  • the optical film manufacturing method supplying an optical film (S10), determining a marking formation path by adjusting an angle (S20), by irradiating a light source It may include the step of forming the marking (S30) and the step of winding the optical film (S40).
  • the optical film 10 is supplied from the supply unit 100 in the first direction (from left to right based on FIG. 2 ).
  • the supply unit 100 can be rotated clockwise or counterclockwise by receiving power from the outside, and referring to FIG. 2, it is rotated clockwise to move the film 10 in the right direction (see FIG. 2 ). have.
  • the marking 16 formation path may be determined by adjusting the marking part 300 disposed on the upper side of the optical film 10.
  • the marking unit 300 is disposed between the supply unit 100 and the receiving unit 200 and receives power from the driving unit 400 disposed above the film 10 (see FIG. 2) to form the marking 16 You can decide the route.
  • the formation path of the marking 16 means not only the marking 16, but also the formation path of the protrusions 17 formed together along both sides of the marking 16 formed in a groove or groove shape.
  • protrusions 17 having preset heights h1 and h2 are formed on the left and right sides of the marking 16 along the longitudinal direction of the marking 16, respectively.
  • the driving unit 400 may determine a path for forming the marking 16 by moving and rotating the marking unit 300 (see FIG. 1 ).
  • the marking unit 300 is moved and rotated so that the first direction (the vertical direction based on FIG. 6A ), which is the supply direction of the film 10, and the marking 16 have a preset angle. I can make it.
  • control unit that is electrically connected to the driving unit 400 and the marking unit 300 to receive an electrical signal from the driving unit 400 and controls the driving of the marking unit 300 may be included.
  • FIG. 6A shows the first direction and the formation path of the marking 16 at 0°
  • FIG. 6B shows the first direction and the formation path of the marking 16 at 15°
  • FIG. 6C shows the first direction and the marking It is a diagram showing a state in which the formation path of (16) is formed by 30°.
  • the present invention is not limited thereto, and various modifications are possible, such as that the formation path of the marking 16 may be formed at a predetermined angle within the range of 0° to 180° with the first direction (up and down direction based on FIG. 6A).
  • the marking 16 is formed by irradiating the light source L from the marking portion 300 toward the optical film 10.
  • the light source L may be irradiated according to the path determined in the step S20 of determining the marking formation path.
  • the marking 16 may be formed at a predetermined angle with respect to the supply direction of the film 10 (in the vertical direction based on FIG. 6A ).
  • the height h1 of the left and right protrusions 17 protruding from both sides of the marking 16 while the marking 16 is formed at a predetermined angle with the first direction. h2) can be formed differently.
  • the supply unit 100 and the receiving unit 200 spaced apart from the supply unit 100 are rotated in a clockwise direction (see Fig. 2) by receiving power from the outside.
  • the film 10 on which the marking 16 forming a predetermined angle with one direction (the vertical direction based on FIG. 6A) is formed is wound.
  • the first direction which is the supply direction of the marking 16 and the film 10
  • the first direction is formed at a preset angle, so that the height of the protrusion 17 formed on both sides of the marking 16, specifically the left protrusion 17 (h1) ) And the height (h2) of the right protrusion 17 may be formed differently, and reflect this when considering the difference in physical properties according to the axial direction of the stretched film 10 (up and down directions based on FIG. 5).
  • the optimal marking 16 and the protrusion 17 can be formed.
  • an optical film manufacturing apparatus 1 ′ includes a supply unit 100, a receiving unit 200, a coating unit 500, and a marking unit ( 300).
  • the supply unit 100 and the receiving unit 200 according to the second embodiment of the present invention may be configured in the same manner as the optical film manufacturing apparatus 1 according to the first embodiment.
  • the optical film 10 is moved from the supply unit 100 to the receiving unit 200 along the first direction, and one surface (the upper surface of Fig. 10) of the film 10 is coated by a coating unit 500 to be described later, or ,
  • the marking 16 may be formed by the marking part 300 on the other surface (refer to FIG. 10) opposite to one surface of the film 10 to be coated.
  • the coating part 500 is disposed between the supply part 100 and the receiving part 200 and may form a coating layer CL on one surface (the upper surface of FIG. 10) of the optical film 10.
  • the coating part 500 may form a coating layer CL through a solution coating ⁇ curing ⁇ drying process on the upper surface of the optical film 10 moving along the first direction.
  • the coating solution flows out of the coating unit 500 onto the film 10 and surface treatment is performed.
  • the film 10 may be formed of PET (polyethylene terephthalate).
  • the coating layer CL is an Anti-Semi-Glare (ASG) coating layer CL and may be specifically formed of microparticles, UV-cured resin, and fluorine-based additives.
  • ASG Anti-Semi-Glare
  • the coating layer CL is formed on the film 10, and the hardness may be increased compared to the film 10 in which the coating layer CL is not formed.
  • the coating part 500 may be disposed over the film 10 and a direction perpendicular to the length direction (left and right directions based on FIG. 12 ).
  • the film 10 includes an effective area 11 and a marking area 15, and in this specification, the'effective area 11' is an area attached to the display panel among one surface of the film 10 Means.
  • the effective area 11 may be formed on the film 10 along a first direction (up-down direction based on FIG. 12 ).
  • the effective area 11 may be formed to have a preset width based on the center of the film 10 in the longitudinal direction (up and down direction). That is, it is a region formed in the central portion of the film 10 in the width direction.
  • the'marking area 15' is an area of one surface of the film 10 except for the effective area 11 which is an area attached to the display panel, and may be formed on the film 10 along the first direction.
  • the marking regions 15 may be formed on both sides of the effective region 11, that is, at the edges of the film 10 with respect to the center of the film 10 in the longitudinal direction (up and down direction).
  • a marking part 300 to be described later may be disposed under the film 10, specifically, the marking area 15, and a coating part 500 may be disposed above the film 10.
  • the coating part 500 may form a coating layer CL in a preset area of the effective area 11 of the film 10.
  • the marking unit 300 is disposed on the other side (lower side of Fig. 9) opposite to one side (upper side of Fig. 9) of the film 10 on which the coating unit 500 is located, and irradiates a light source (L) to the film 10 Thus, the marking 16 can be formed.
  • the coating part 500 may be disposed so as not to overlap with the marking part 300 in a direction perpendicular to the first direction.
  • an ASG coating layer (CL) is formed on one surface (the upper surface of Fig. 9), and the corresponding other surface (the lower surface of Fig. 9) in the vertical direction (the upper surface of Fig. 10) is marked. (16) is not formed.
  • the ASG coating layer (CL) and the marking 16 are not disposed in an area overlapping the vertical direction of the first direction of the film 10, it is possible to prevent breakage when the film 10 is wound compared to the overlapping. have.
  • the marking unit 300 irradiates the light source L on the other surface corresponding thereto to mark 16 When is formed, a groove (or groove) of the marking 16 is formed.
  • the risk of breaking of the film 10 is increased due to the depth of the groove of the marking 16, but the risk of breaking can be reduced because the marking 16 and the coating layer CL do not overlap in a direction perpendicular to the first direction. have.
  • the marking part 300 is disposed spaced apart from the coating part 500 with the optical film 10 interposed therebetween, and a light source L on the other surface opposite to one surface of the optical film 10 on which the coating layer CL is formed. By irradiating the marking 16 can be formed.
  • the light source L is a laser, and as the light source L is irradiated on the film 10, a marking 16 having a groove shape is formed in a preset section, and the marking 16 is In the formed section, protrusions 17 may be formed along both sides of the marking 16 along the outer direction (lower side of FIG. 11 ).
  • the protrusion 17 may protrude downward with respect to the lower surface of the film 10 and may have a constant height. Referring to FIG. 11, the protrusion 17 may serve as a guide so that the film 10 is not shifted to one side in the process of being received by the receiving unit 200.
  • a protrusion 17 is formed on the lower surface of the film 10, and the film 10 is stacked in a centrifugal direction with respect to the center of the receiving unit 200 while being wound by the receiving unit 200. do. At this time, the protrusion 17 comes into contact with the upper surface of the film 10 already wound inside the protrusion 17, and the slip resistance increases as the surface pressure increases.
  • the surface energy of the film 10 is increased by the film 10 by the marking part 300, specifically the protrusion part 17 formed in the marking area 15, and the slip Resistance is increased and there is an effect of preventing meandering due to slip when winding.
  • the marking part 300 may form markings 16 on the marking regions 15 that are both edges of the effective region 11 formed in the central portion based on the longitudinal direction of the film 10.
  • the marking 16 may be formed on the other surface opposite to the upper surface of the film 10 on which the coating layer CL is formed, and may be formed so as not to overlap in a direction perpendicular to the longitudinal direction of the film 10.
  • the marking 16 is formed in a groove shape, it does not correspond to the position of the coating layer CL, so that the protrusion 17 is formed on the other surface corresponding to the area where the hardness is increased due to the UV-cured coating layer CL.
  • a plurality of marking units 300 may be provided and disposed in the marking regions 15 formed on both sides of the effective region 11. Accordingly, markings 16 may be formed on the marking regions 15 formed on both edges of the effective region 11 of the film 10.
  • the width of the effective area 11 may be determined according to the interval between each marking 16 formed in the marking area 15, and accordingly, the area in which the coating layer CL is formed may also be increased.
  • FIG. 14 is a flowchart illustrating a method of manufacturing an optical film according to a second embodiment of the present invention.
  • the optical film manufacturing method includes the steps of supplying an optical film (S10), forming a coating layer (S20), and forming a marking (S30). ), may include the step of winding the optical film (S40).
  • the optical film 10 is supplied from the supply unit 100 in the first direction (from left to right based on FIG. 10 ).
  • the supply unit 100 may be rotated in a clockwise or counterclockwise direction by receiving power from the outside, and may be rotated in a clockwise direction to move the film 10 in the right direction (refer to FIG. 10 ).
  • the coating layer CL is formed on one surface of the optical film 10, but the ASG coating layer CL is formed, but it is not limited thereto, and various functional coating layers can be formed. Of course.
  • the coating layer CL is formed on one surface (the upper surface of FIG. 13) of the film 10 and may be formed on the effective area 11 of the film 10.
  • the coating layer CL may be formed so as not to overlap in a direction perpendicular to the first direction of the film 10 and the marking 16 formed in the step S30 of forming a marking to be described later.
  • the marking 16 is not formed on the lower surface of the film 10 corresponding to the upper surface of the film 10 on which the coating layer CL is formed, and the marking 16 is formed corresponding to the lower surface of the film 10.
  • the coating layer CL is not formed on the upper surface of the film 10.
  • the coating layer is not formed.
  • the surface energy of the film (NCL) increases compared to at room temperature, through which the slip resistance increases when the surface of the film 10 is melted by irradiation with a laser light source It is possible to suppress the possibility of meandering.
  • FIGS. 16A and 16B after heat-treating the film on which the coating layer is formed near the glass transition temperature (Tg) and melting temperature (Tm), the coefficient of friction (COF) is measured.
  • the coefficient of friction of the formed film CL is measured, and FIG. 16B is a measurement of the coefficient of friction of the film NCL in which the coating layer is not formed.
  • the interfacial friction force between the film surfaces was measured under loads of 200 g (Case 1) and 700 g (Case 2) with a friction coefficient measuring device. It can be seen that even after heat treatment at Tm), the surface friction is very low compared to the film (NCL) in which the coating layer is not formed.
  • Low surface friction means that it is vulnerable to slip resistance, and meandering is likely to occur during winding.
  • the marking 16 is formed by irradiating the light source L with the optical film 10 from the marking portion 300 disposed outside the optical film 10 (lower side as in FIG. 10). can do.
  • the marking part 300 is a light source on the lower surface of the film 10 corresponding to a region in which the coating layer CL is not formed on the upper surface of the film 10 along a direction perpendicular to the first direction, which is the longitudinal direction of the film 10. (L), that is, the marking 16 can be formed by irradiating a laser.
  • protrusions 17 protrude on both sides of the marking 16, and surface energy, friction coefficient, and slip resistance increase due to the formation of the protrusions 17, and meandering when winding There is an effect that can prevent this from occurring.
  • the coating layer CL is not formed on the upper side of the area where the marking 16 is formed, and the coating layer CL and the marking 16 do not overlap, UV curing is prevented in the process of forming the ASG coating layer CL. In addition to the reduction in surface energy, it is possible to prevent an increase in the risk of fracture due to the depth of the groove-shaped marking 16.
  • the receiving unit 200 disposed spaced apart from the supply unit 100 receives power from the outside and rotates clockwise to form a coating layer CL, and a film on which the marking 16 is formed. (10) is wound up.
  • the coating layer CL and the marking 16 do not overlap in a direction perpendicular to the longitudinal direction of the film 10, there is an effect of reducing the possibility of breakage when the film 10 is wound.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Winding Of Webs (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 연신 처리된 광학 필름의 축 방향에 따라 물성을 달리하는 점을 고려하여 최적의 마킹 형성 및 권취 시 사행을 방지할 수 있도록 한 광학 필름, 광학 필름 제조 장치 및 제조 방법에 관한 것이다.

Description

마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법
본 발명의 실시예들은 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법에 관한 것이다.
일반적으로 광학 필름은 연신 처리, 표면 처리, 슬리팅(slitting) 등의 제조 공정을 거치게 된다. 이러한 광학 필름의 제조 공정은 주로 롤-투-롤(roll to roll, R2R) 방식으로 이루어진다.
광학 필름의 표면 처리 공정의 경우 광학 필름의 권출, 표면 처리, 경화, 권취 순서로 이루어진다. 상기 권취 공정은 광학 필름 생산 공정의 최종 단계로 결함이 발생되는 경우 이를 해결하기가 쉽지 않으며 제품의 품질을 저하시키는 요인이 된다.
R2R 공정 후에 광학 필름을 제대로 권취하려면, 필름에 가해지는 권취 장력 분포, 필름의 두께 편차, 필름의 슬립 저항성, 필름 표면의 거칠기, 권취한 필름의 밀도 등 다양한 요인들을 고려해야 한다.
필름의 권취의 불량 사례로는 권취 중 필름의 주행 방향과 수직 방향의 사행, 권심 고정 테잎에 의한 눌림 불량이 있다. 이 경우 사행 불량을 억제하기 위해서는 권취 장력을 높이거나 필름의 슬립 저항력을 높이고 권취 시 적층되는 필름 사이에 인입되는 공기의 양을 최소화해야 한다. 눌림 불량을 방지하기 위해서는 권취 장력을 낮추고, 권취 시 필름 사이에 인입되는 공기의 양을 늘려주어야 한다.
그러나 종래와 같이 필름의 권취 장력을 조절하는 방식만으로는 필름을 권취하는 과정에서 사행과 눌림 불량을 모두 해결하기 어려운 문제점이 있다.
또한 종래 광학 필름의 표면에 표면 처리를 하게 되면 첨가제가 코팅액에 포함된다. 이에 따라 단일의 광학 필름에 비하여 표면에너지가 낮고, 슬립 저항성이 낮아 필름의 주행 방향과 수직 방향의 사행이 발생하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 개선하기 위해 안출된 것으로, 연신 처리된 광학 필름의 축 방향에 따라 물성을 달리하는 점을 고려하여 최적의 마킹 형성 및 권취 시 사행을 방지할 수 있도록 한 광학 필름, 광학 필름 제조 장치 및 제조 방법을 제공하는데 그 목적이 있다.
본 발명에 따른 광학 필름 제조 장치는, 광학 필름을 제1방향으로 공급하는 공급부; 상기 공급부와 이격 배치되며 상기 공급부에서 공급되는 상기 광학 필름을 권취하는 수취부; 및 상기 공급부와 상기 수취부 사이에 배치되며 상기 광학 필름 상에 광원을 조사하여 마킹을 형성하는 마킹부;를 포함할 수 있다.
또한 상기 마킹부와 연결되어 상기 마킹부를 이동시키는 구동부;를 더 포함하며, 상기 마킹부가 이동됨에 따라 상기 마킹은 제1방향과 미리 설정된 각도를 이루도록 형성될 수 있다.
또한 상기 광학 필름에는 상기 마킹의 양측을 따라 돌출부가 각각 형성되는 것을 포함할 수 있다.
또한 상기 마킹의 양측에 형성되는 각각의 상기 돌출부는 돌출 방향으로의 높이가 다르게 형성되는 것을 포함할 수 있다.
또한 상기 광학 필름은 마킹 영역과 유효 영역을 포함하고, 상기 마킹은 상기 마킹 영역의 미리 설정된 구간에서 형성되는 것을 포함할 수 있다.
또한 상기 유효 영역은 상기 광학 필름의 길이 방향을 따라 중앙부에 형성되고, 상기 마킹 영역은 상기 유효 영역의 양측에 배치되도록 상기 광학 필름의 가장 자리에 형성되는 것을 포함할 수 있다.
또한 상기 마킹부는 상기 마킹 영역에 복수 개가 구비되는 것을 포함할 수 있다.
또한 상기 마킹은 상기 제1방향과 0° 내지 180°를 이루는 것을 포함할 수 있다.
또한 상기 공급부와 상기 수취부 사이에는 상기 광학 필름의 일면에 코팅층을 형성해주는 코팅부;를 더 포함하고, 상기 마킹부는 상기 광학 필름을 사이에 두고 상기 코팅부와 이격 배치되어, 상기 광학 필름의 타면에 마킹을 형성해줄 수 있다.
또한 상기 코팅층은 상기 광학 필름의 일면에 형성되는 제1영역에 형성되고, 상기 마킹은 상기 코팅층이 형성되는 상기 광학 필름의 일면에 대향되는 타면에 형성되는 제2영역에 형성되며, 상기 제1영역과 상기 제2영역은 상기 제1방향의 수직되는 방향으로 중첩되지 않는 것을 특징으로 할 수 있다.
본 발명에 따른 광학 필름 제조 방법은,
공급부로부터 제1방향을 따라 광학 필름을 공급하는 단계; 상기 광학 필름의 외측에 배치되는 마킹부를 조절하여 마킹 형성 경로를 결정하는 단계; 상기 마킹부에서 상기 광학 필름으로 광원을 조사하여 마킹을 형성하는 단계; 및 상기 공급부와 이격 배치되는 수취부에 의해 상기 마킹이 형성된 광학 필름을 권취하는 단계;를 포함할 수 있다.
또한 상기 마킹은 제1방향과 미리 설정된 각도를 이루도록 형성하는 것을 포함할 수 있다.
또한 상기 광학 필름에는 상기 마킹의 양측을 따라 돌출부가 각각 형성되는 것을 포함할 수 있다.
또한 상기 마킹의 양측에 형성되는 각각의 돌출부는 돌출 방향으로의 높이가 다르게 형성되는 것을 포함할 수 있다.
또한 상기 공급부로부터 제1방향을 따라 광학 필름을 공급하는 단계 이후, 상기 광학 필름의 일면 상에 코팅층을 형성하는 단계;를 더 포함할 수 있다.
또한 상기 마킹은 일면에 코팅층이 형성되는 상기 광학 필름의 타면 상에 형성될 수 있다.
또한 상기 코팅층은 상기 광학 필름의 일면에 형성되는 제1영역에 형성되고, 상기 마킹은 상기 코팅층이 형성되는 상기 광학 필름의 일면에 대향되는 타면에 형성되는 제2영역에 형성되며, 상기 제1영역과 상기 제2영역은 상기 제1방향의 수직되는 방향으로 중첩되지 않는 것을 특징으로 할 수 있다.
본 발명에 따른 광학 필름은 상기 광학 필름 제조 방법 중 어느 하나에 의해 제조된 것을 포함할 수 있다.
또한 상기 마킹은 홈 형상으로 형성되며, 상기 마킹의 홈 깊이는 상기 광학 필름의 전체 두께를 10이라 하였을 때 0.5 ~ 5의 비율로 형성된 것을 포함할 수 있다.
또한 상기 마킹의 양측에 형성되는 돌출부의 높이는, 상기 광학 필름의 전체 두께를 10이라 하였을 때 0.5 ~ 10의 비율로 형성된 것을 포함할 수 있다.
본 발명에 따른 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법은, 축 방향과 미리 설정된 각도를 이루도록 마킹을 형성하여 돌출부의 높이를 다르게 형성하고 연신 처리된 광학 필름의 축 방향에 따라 물성을 달리하는 점에 대응하여 최적의 마킹을 형성할 수 있는 효과가 있다.
또한, 마킹의 양측에 형성되는 돌출부로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가되며 필름의 권취 시 사행이 발생하는 것을 방지할 수 있는 효과가 있다.
또한, 권취 시 적층되는 복수의 필름 사이에 공기가 인입됨으로 인하여 권심 고점 테잎에 의한 눌림 불량을 해소할 수 있는 효과가 있다.
또한, 본 발명에 따른 광학 필름 제조 장치 및 제조 방법에 의해 제조되는 필름의 일면에는 코팅층이 형성되고, 상기 일면에 대향되는 타면에 마킹이 형성됨으로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가하여 권취 시 사행이 발생되는 것을 방지할 수 있는 효과가 있다.
또한, 코팅층과 마킹이 필름의 길이 방향에 수직되는 방향으로 중첩되지 않음으로 인하여 필름의 권취 시 파단 가능성을 저감시킬 수 있는 효과가 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 제1실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 사시도,
도 2는 본 발명의 제1실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 측면도,
도 3 및 도 4는 도 2의 A부분을 확대한 도면,
도 5는 본 발명의 제1실시예에 따른 광학 필름 제조 장치를 부분적으로 도시한 평면도,
도 6a 내지 도 6c는 제1방향과 미리 설정된 각도를 이루도록 형성되는 마킹을 도시한 도면,
도 7은 마킹 형성 각도에 따른 각 돌출부의 높이를 도시한 그래프,
도 8은 본 발명의 제1실시예에 따른 광학 필름 제조 방법을 도시한 순서도,
도 9는 본 발명의 제2실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 사시도,
도 10은 본 발명의 제2실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 측면도,
도 11은 도 10의 A부분을 확대한 도면,
도 12는 본 발명의 제2실시예에 따른 광학 필름 제조 장치를 도시한 평면도,
도 13은 본 발명의 제2실시예에 따른 광학 필름을 도시한 측면도,
도 14는 본 발명의 제2실시예에 따른 광학 필름 제조 방법을 도시한 순서도,
도 15a는 열 처리 온도에 따른 물 접촉각을 도시한 그래프,
도 15b는 열 처리 온도에 따른 포면 표면에너지를 도시한 그래프,
도 16a는 본 발명의 제2실시예에 따른 광학 필름의 열 처리 온도에 따른 마찰 계수(Coefficient of Friction, COF)를 도시한 그래프,
도 16b는 표면 처리가 되지 않은 광학 필름의 열 처리 온도에 따른 마찰 계수를 도시한 그래프이다.
※부호의 설명※
1: 광학 필름 제조 장치 L: 광원
10: 광학 필름 11: 유효 영역
15: 마킹 영역 16: 마킹
17: 돌출부 100: 공급부
200: 수취부 300: 마킹부
400: 구동부 500: 코팅부
이하 첨부한 도면을 참조하여 본 발명의 구체적인 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
도 1은 본 발명의 제1실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 사시도이고, 도 2는 본 발명의 제1실시예에 따른 광학 필름 제조 장치를 개략적으로 도시한 측면도이다.
도 1 및 도 2를 참조하면, 본 발명의 제1실시예에 따른 광학 필름 제조 장치(1)는, 공급부(100), 수취부(200), 마킹부(300), 구동부(400)를 포함할 수 있다.
구체적으로, 본 발명의 제1실시예에 따른 공급부(100)는 광학 필름(10)(이하, '필름'이라 함)을 제1방향(도 2 기준 좌측에서 우측 방향)을 따라 공급하는 것으로 외부로부터 동력을 전달받아, 시계 방향 또는 반시계 방향으로 회전이 가능하다.
이 경우 공급부(100)는 시계 방향(도 2 기준)으로 회전되며, 감겨있던 필름(10)이 펴지며 공급부(100)와 이격되게 배치되는 수취부(200) 측으로 이동하게 된다.
공급부(100)에서 수취부(200) 측으로 이동되는 필름(10)은 수취부(200)가 외부로부터 동력을 전달받아 시계 방향으로 회전됨에 따라 권취될 수 있다.
본 발명의 제1실시예에 따른 수취부(200)는 공급부(100)와 이격 배치되는 것으로, 공급부(100)에서 공급되는 필름(10)을 권취할 수 있다.
수취부(200)는 외부로부터 동력을 전달받아 시계 방향 또는 반시계 방향으로 회전하며, 도 2를 기준으로 시계 방향으로 회전하면서 공급부(100)로부터 공급되는 필름(10)을 권취할 수 있다.
필름(10)은 공급부(100)에서 수취부(200)로 제1방향을 따라 이동하는데 뒤에 설명할 마킹부(300)에 의해 필름(10)의 일면(도 2 기준 상면)에 광원(L)이 조사되고, 홈, 그르부(groove)의 형상을 가지는 마킹(16)이 형성될 수 있다.
마킹부(300)는, 공급부(100)와 수취부(200) 사이에 배치되는 것으로 필름(10) 상에 광원(L)을 조사하여 마킹(16)을 형성할 수 있다.
본 발명에서 광원(L)은 레이저(laser)이며, 광원(L)이 필름(10) 상에 조사됨에 따라 미리 설정되는 구간에서 홈 형상을 가지는 마킹(16)이 형성되고, 마킹(16)이 형성되는 구간에서 마킹(16)의 양측을 따라 외측 방향(도 3 기준 상측)으로 돌출부(17)가 돌출 형성될 수 있다.
돌출부(17)의 높이는 마킹(16)의 홈에 해당하는 저면보다 상대적으로 높게 형성되며, 마킹(16)이 형성되기 전 필름(10)의 일면(도 3 기준 상측)보다 상측으로 돌출 형성될 수 있다.
도 3을 참조하면, 상기 돌출부(17)는 필름(10)의 상면(도 3 기준)을 기준으로 일정한 높이를 가질 수 있다.
돌출부(17)는 필름(10)이 수취부(200)에 수취되는 과정에서 한쪽으로 쏠리지 않도록 가이드 역할을 할 수 있다.
도면에 도시하지는 않았으나, 필름(10)의 상면(도 2 기준)에 돌출부(17)가 형성되고, 수취부(200)에 의하여 권취되면서 수취부(200)의 중심을 기준으로 원심 방향으로 필름(10)이 적층되게 된다. 이때 돌출부(17)는 돌출부(17)의 외측에 적층되는 필름(10)의 하면과 접촉하게 되고, 면압이 증가되면서 슬립 저항성이 증가된다.
또한, 돌출부(17)로 인하여 표면에너지가 증가하여 권취 시 슬립으로 인한 사행이 일어나는 것을 방지할 수 있는 효과가 있다.
이에 더하여 필름(10)이 층을 이루며 수취부(200)에 적층 시에 각 층 간격을 일정하게 유지할 수 있는 효과가 있다.
또한, 필름(10) 제조 공정에서 예기치 않게 이물질이 투입되는 경우에 상측에 배치되는 필름(10)의 눌림 압력에 의해 필름(10)이 손상, 파손되는 것을 방지할 수 있는 효과가 있다. 돌출부(17)가 높아짐에 따라 권심 방향으로의 면압을 증가시킬 수 있는 효과가 있다.
상기 돌출부(17)는 홈, 그루브의 형상을 가지는 마킹(16)을 기준으로 양측에 각각 형성되는데, 도 3과 같이 양측에 형성되는 돌출부(17)의 높이(h1, h2)가 동일하게 형성될 수 있다.
이와 달리, 뒤에 설명할 구동부(400)로부터 동력을 전달받아 마킹부(300)는 광원(L)을 조사하는 경로, 각도를 조절할 수 있으며, 이때 마킹(16)의 양측에 형성되는 돌출부(17)의 높이(h1, h2)가 다르게 형성될 수 있다. 이와 관련하여는 뒤에서 자세하게 설명하도록 한다.
구체적으로, 상기 마킹(16)의 홈 깊이(d)는, 광학 필름(10)의 전체 두께(t)를 10 이라 하였을 때 0.5 ~ 5의 비율로 형성되는 것이 바람직하다.
즉 마킹(16)의 홈 깊이(d)가 0.5 이하의 비율로 형성되는 경우 돌출부(17)가 적정 높이로 형성되지 않을 수 있는 문제가 있다. 즉 홈 깊이(d)와 돌출부(17) 높이는 비례하여 증가하게 되는데, 홈 깊이(d)가 얕아 돌출부(17)의 높이가 낮게 형성되는 경우 슬립 저항 증가 효과가 미미해질 수 있다.
반대로, 마킹(16)의 홈 깊이(d)가 5 이상의 비율로 형성되는 경우 광학 필름(10)의 파단 위험이 급격히 증가할 수 있는 문제가 있다.
아울러, 상기 마킹(16)의 양측에 형성되는 돌출부(17)의 높이는, 광학 필름(10)의 전체 두께(t)를 10 이라 하였을 때 0.5 ~ 10의 비율로 형성되는 것이 바람직하다.
즉 돌출부(17)의 높이(h1, h2)가 0.5 이하의 비율로 형성되는 경우 슬립 저항 증가 효과가 미미해질 수 있는 문제가 있다.
반대로, 돌출부(17)의 높이(h1, h2)가 10 이상의 비율로 형성되는 경우 홈 깊이(d)가 과도하게 증가하여 광학 필름(10)의 파단 위험이 급격히 증가할 수 있는 문제가 있다.
레이저 출력을 증가시키거나 마킹(16) 패턴 각도를 바꾸어 돌출부(17) 높이(h1, h2) 및 홈 깊이(d)를 증가시키는 경우, 돌출부(17)의 높이 비율 10 이상에서는 돌출부(17)의 높이가 더 이상 크게 증가하지 않고 포화상태(saturation)가 되나 홈 깊이(d)는 계속 증가하게 된다. 돌출부(17)의 높이 비율이 10 정도 될 때 홈 깊이(d) 비율이 5 정도가 되므로 이를 기준 비율 값으로 선정하는 것이 바람직하다.
이 경우 상기 광학 필름(10)의 표면과 이면 중 어느 하나, 또는 상기 광학 필름(10)의 표면과 이면 둘 다 모두에는, 소정 두께의 코팅층(미도시)이 적층될 수 있다. 그리고 광학 필름(10)의 표면에 코팅층이 형성된 경우 상기 마킹(16)은 광학 필름(10)의 코팅층 상에 형성될 수 있다.
상기 코팅층은 반사 방지(Anti-reflection), 눈부심 방지(Anti-glare), 산란 방지(Anti-scattering), 광학 필름 보호(Protective) 등 다양한 기능성 역할을 부여해주게 된다.
이 경우 본 발명에서 사용한 코팅은 ASG(Anti-semi-glare) 코팅이다. 코팅층은 일반적으로 필름에 비해 딱딱한 물질로 이루어져 있어 파단에 민감하고 표면에너지가 낮다(PET 필름 45 mN/m > ASG_PET필름 30 mN/m). 표면에너지가 낮아짐에 따라 광학 필름(10)의 권취 공정 시 슬립이 쉽게 일어날 수 있다. 이에 따라 광학 필름(10)의 가장자리에 레이저 마킹을 통해 돌출부(17)를 만들어주게 된다. 이 경우 레이저 마킹(16)을 코팅층이 형성된 광학 필름(10)의 표면에 형성할 경우 파단 위험이 증가할 수 있다. 따라서 상기 레이저 마킹(16)은 코팅층이 형성되지 않은 광학 필름(10)의 이면에 형성해주는 것이 바람직하다.
도 5를 참조하면, 상기 마킹부(300)는 필름(10)의 길이 방향을 기준으로 중앙부에 형성되는 유효 영역(11)의 양측 가장자리인 마킹 영역(15)에 광원(L)을 조사하여 마킹(16)을 형성할 수 있다.
필름(10)은 유효 영역(11), 마킹 영역(15)으로 이루어지며, 본 명세서에서 유효 영역(11)은 필름(10)의 일면 중에 디스플레이 패널에 부착되는 영역을 의미한다. 유효 영역(11)은 필름(10) 상에 제1방향(도 5 기준 상하 방향)을 따라 형성될 수 있다.
유효 영역(11)은 필름(10)의 길이 방향 중심을 기준으로 미리 설정된 폭을 가지도록 형성될 수 있다. 즉, 필름(10)의 폭 방향의 중앙부에 형성되는 영역이다.
본 명세서에서 '마킹 영역(15)'은 필름(10)의 일면 중에 디스플레이 패널에 부착되는 영역인 유효 영역(11)을 제외한 영역으로 필름(10) 상에 제1방향(도 5 기준 상하 방향)을 따라 형성될 수 있다.
마킹 영역(15)은 필름(10)의 길이 방향(도 5 기준 상하 방향) 중심을 기준으로 유효 영역(11)의 양측, 즉 필름(10)의 가장자리에 형성될 수 있다.
본 발명의 제1실시예에 따른 마킹부(300)는 마킹 영역(15)의 상측(도 2 기준)에 배치되며, 뒤에 설명할 구동부(400)로부터 동력을 전달받아 마킹(16)의 형성 경로, 광원(L)의 조사 각도가 조절될 수 있다.
또한 마킹부(300)는 복수 개가 구비되어 유효 영역(11)의 양측에 형성되는 마킹 영역(15)에 각각 배치될 수 있다.
이로 인하여 필름(10)의 유효 영역(11)의 양측 가장자리에 형성되는 마킹 영역(15)에 각각 마킹(16)이 형성될 수 있다. 이에 더하여 마킹 영역(15)에 형성되는 각 마킹(16) 사이 간격에 따라 유효 영역(11)의 폭이 결정될 수 있다.
구동부(400)는 마킹부(300)와 연결되는 것으로 마킹부(300)를 이동시킬 수 있다. 이러한 구동부(400)는 마킹부(300)에 동력을 전달하여 마킹부(300)를 이동시키며, 마킹부(300)가 이동됨에 따라 마킹(16)은 제1방향과 미리 설정된 각도를 이루며 형성될 수 있다.
이 경우 구동부(400)는 공급부(100)와 수취부(200) 사이에 배치되고, 공급부(100)와 수취부(200) 사이에서 이동되는 필름(10)의 상측에 배치될 수 있다. 구동부(400)는 마킹부(300)와 전기적으로 연결되며, 마킹부(300)에 동력을 전달하여 마킹부(300)의 조사 경로, 각도를 제어할 수 있다.
이 경우 본 발명에서는 마킹부(300)가 구동부(400)에 의해 이동하는 경우(Gun type laser)의 일례를 들어 도시하고 설명하였으나, 이에 한정되지 않는다. 즉 상기 마킹부(300)는 자체에서 광학적인 방식(Scanner type laser)을 통해 레이저 빔을 원하는 각도로 조사하여 마킹(16)을 형성하는 방식으로 변경 적용될 수 있다.
도 6a 내지 도 6c를 참조하면, 상기 필름(10)의 이동 방향은 제1방향, 즉 하측에서 상측 방향(도 6a 기준)이며, 마킹부(300)에서 조사하는 광원(L)에 의하여 형성되는 마킹(16)은 제1방향과 미리 설정된 각도를 이루며 형성될 수 있다.
구체적으로 도 6a에서 마킹(16)은 필름(10)의 이동 방향(machine direction, MD)과 동일한 방향으로 형성되며, 마킹(16)의 형성 경로와 제1방향은 0°를 이루도록 형성된다.
이 경우 마킹(16)의 형성 경로와 제1방향이 0°를 이루게 됨으로 인하여 마킹(16)의 양측에 형성되는 좌측 돌출부(17)의 높이(h1)와 우측 돌출부(17)의 높이(h2)가 동일하게 형성될 수 있다.
상기 마킹(16)은 필름(10)의 이동 방향인 제1방향(도 6b 기준 상하 방향)과 소정 각도를(θ1) 이루며, 구체적으로 제1방향과 15°를 이루도록 형성될 수 있다.
도 6b를 참조하면, 마킹(16)의 형성 경로와 제1방향이 15°를 이루게 됨으로 인하여 마킹(16)의 양측에 형성되는 좌측 돌출부(17)의 높이(h1)보다 우측 돌출부(17)의 높이(h2)가 상대적으로 높게 형성될 수 있다.
도 6c에서 마킹(16)은 필름(10)의 이동 방향인 제1방향(도 6c 기준 상하 방향)과 소정 각도를(θ2) 이루며, 구체적으로 제1방향과 30°를 이루도록 형성될 수 있다.
이 경우 상기 마킹(16)의 형성 경로와 제1방향이 30°를 이루게 됨으로 인하여 마킹(16)의 양측에 형성되는 좌측 돌출부(17)의 높이(h1)보다 우측 돌출부(17)의 높이(h2)가 상대적으로 높게 형성될 수 있다.
도 6c에서의 우측 돌출부(17)의 높이(h2)는 도 6b에서의 우측 돌출부(17)의 높이(h2)보다 더 높게 형성될 수 있고, 좌측 돌출부(17)의 높이(h1)는 도 6b에서의 좌측 돌출부(17)의 높이보다 더 낮게 형성될 수 있다.
디스플레이의 재료로 사용되는 광학 필름(10)의 경우 일반적으로 연신하여 사용되므로, 축 방향, 구체적으로 제1방향에 따라 인장 강도(tensile strength), 신율(elongation), 열 흡수/전도, 부피 팽창 등의 정도가 상이하게 발생될 수 있다.
따라서 필름(10)의 물성에 따라 돌출부(17)의 높이를 조절해야 하며, 마킹(16)의 형성 경로를 필름(10)의 공급 방향인 제1방향과 미리 설정된 각도를 이루도록 할 필요가 있다.
상기 구동부(400)는 마킹부(300)에 동력을 전달하여 마킹부(300)가 제1방향과 미리 설정된 각도, 구체적으로 0° 내지 180°를 이루도록 형성될 수 있다.
구동부(400)는 마킹부(300)와 연결되며, 마킹부(300)가 구동부(400) 상에서 이동하며 광원(L)의 조사 경로, 각도가 조절될 수 있다.
상기 마킹부(300)는 구동부(400) 상에서 미리 설정된 방향(도 2 기준 좌우 방향)으로 이동이 가능하다. 그러나 이에 한정하는 것은 아니고, 도 5를 기준으로 좌우 방향으로도 이동이 가능하는 등 다양한 변형실시가 가능하다.
도면에 도시하지는 않았지만 마킹부(300)에서 조사되는 광원(L)이 필름(10)의 일면(도 2 기준 상면)에 입사되는 각도 또한 조절될 수 있다.
이로 인하여 마킹부(300)에서 광원(L)을 조사하여 필름(10)의 마킹 영역(15) 상에 마킹(16)을 형성하게 되고, 이때 마킹(16)의 양측에 형성되는 좌측 돌출부(17)의 높이(h1)와 우측 돌출부(17)의 높이(h2)가 동일(0°, 180°의 경우)하거나 서로 상이(0° 초과 180°미만의 경우)하게 형성될 수 있다.
도 7을 참조하면, 마킹(16)과 제1방향(도 6a 기준 상하 방향)이 이루는 각도에 따른 돌출부(17)의 높이를 나타낸 그래프로, 각도에 따라 좌측 돌출부(17)의 높이(h1), 우측 돌출부(17)의 높이(h2)가 동일하거나 상이하게 형성될 수 있다.
따라서 필름(10)의 물성에 따라 동일한 레이저 광원(L)의 출력에서 최적의 돌출부(17) 높이를 가지는 마킹(16) 형성 각도가 다르게 형성되므로, 구동부(400)에서 마킹부(300)의 구동을 제어하여 마킹(16)의 형성 경로 및 제1방향과의 각도를 설정할 수 있다.
이로 인하여 필름(10)의 물성에 대응되도록 제1방향과 미리 설정된 각도를 이루는 마킹(16)의 형성 경로를 조절할 수 있으며, 최적의 돌출부(17) 높이에서 필름(10) 두께 편차에 의한 면압 분포를 증가시키고, 권취 시 필름(10) 간 계면이 완전히 밀착되는 것을 방지하여 공기를 인입시켜 슬립 저항성을 증가시킬 수 있다.
슬립 저항성이 증가됨에 따라 권취 시 사행이 일어나는 것을 방지할 수 있고, 적층되는 필름(10)의 계면 사이에 공기가 인입되므로 인하여 권취 시 발생되는 눌림 불량을 억제할 수 있는 효과가 있다.
이하, 본 발명의 제1실시예에 따른 마킹을 이용한 광학 필름 제조 장치의 작동원리 및 광학 필름 제조 방법에 관하여 설명한다. 도 8은 본 발명의 제1실시예에 따른 광학 필름 제조 방법을 도시한 순서도이다.
도 8을 참조하면, 본 발명의 제1실시예에 따른 광학 필름 제조 방법은, 광학 필름을 공급하는 단계(S10), 각도를 조절하여 마킹 형성 경로를 결정하는 단계(S20), 광원을 조사하여 마킹을 형성하는 단계(S30), 광학 필름을 권취하는 단계(S40)를 포함할 수 있다.
광학 필름을 공급하는 단계(S10)에서는 공급부(100)에서 광학 필름(10)을 제1방향(도 2 기준 좌측에서 우측 방향)으로 공급하게 된다.
공급부(100)는 외부로부터 동력을 전달받아 시계 방향 또는 반시계 방향으로 회전이 가능하고, 도 2를 참조하면, 시계 방향으로 회전되어 필름(10)을 우측 방향(도 2 기준)으로 이동시킬 수 있다.
마킹 형성 경로를 결정하는 단계(S20)에서는 광학 필름(10)의 상측에 배치되는 마킹부(300)를 조절하여 마킹(16) 형성 경로를 결정할 수 있다.
마킹부(300)는 공급부(100)와 수취부(200) 사이에 배치되며, 필름(10)의 상측(도 2 기준)에 배치되는 구동부(400)로부터 동력을 전달받아 마킹(16)의 형성 경로를 결정할 수 있다.
여기서 마킹(16)의 형성 경로라 함은 마킹(16) 뿐만 아니라, 홈, 그루브 형상으로 형성되는 마킹(16)의 양측을 따라 함께 형성되는 돌출부(17)의 형성 경로도 함께 의미하는 것이다.
즉, 마킹(16)이 형성되면 마킹(16)의 길이 방향을 따라 마킹(16)의 좌측, 우측에 각각 미리 설정된 높이(h1, h2)를 가지는 돌출부(17)가 형성되는 것이다.
구동부(400)는 마킹부(300)를 이동, 회전시켜 마킹(16) 형성 경로를 결정할 수 있다(도 1 참조).
구체적으로 도 6a 내지 도 6c를 참조하면, 필름(10)의 공급 방향인 제1방향(도 6a 기준 상하 방향)과 마킹(16)이 미리 설정된 각도를 가지도록 마킹부(300)를 이동, 회전시킬 수 있다.
도면에 도시하지는 않았지만 구동부(400), 마킹부(300)와 전기적으로 연결되어 구동부(400)로부터 전기적 신호를 전달받아 마킹부(300)의 구동을 제어하는 제어부(도면 미도시)를 포함할 수 있다.
도 6a는 제1방향과 마킹(16)의 형성 경로가 0°를 이루는 것이고, 도 6b는 제1방향과 마킹(16)의 형성 경로가 15°를 이루는 것이며, 도 6c는 제1방향과 마킹(16)의 형성 경로가 30°를 이루는 상태를 도시한 도면이다..
그러나 이에 한정하는 것은 아니고 마킹(16)의 형성 경로는 제1방향(도 6a 기준 상하 방향)과 0° 내지 180°의 범위 안에서 미리 설정된 각도를 이루며 형성될 수 있는 등 다양한 변형실시가 가능하다.
마킹을 형성하는 단계(S30)에서는 마킹부(300)에서 광학 필름(10)을 향해 광원(L)을 조사하여 마킹(16)을 형성하게 된다. 마킹을 형성하는 단계(S30)에서는 마킹 형성 경로를 결정하는 단계(S20)에서 결정된 경로에 따라 광원(L)을 조사할 수 있다.
도 6a 내지 도 6c를 참조하면, 필름(10)의 공급 방향(도 6a 기준 상하 방향)에 대하여 미리 설정된 각도를 이루며 마킹(16)이 형성될 수 있다.
도 4, 도 6b, 도 6c를 참조하면, 마킹(16)이 제1방향과 미리 설정된 각도를 이루며 형성되면서 마킹(16)의 양측에 돌출 형성되는 좌, 우측 돌출부(17)의 높이(h1, h2)가 다르게 형성될 수 있다.
이로 인하여 연신 처리된 필름(10)의 축 방향(도 5 기준 상하 방향)에 따라 인장 강도, 열 흡수/전도, 부피 팽창 등의 물성이 다르게 형성되고 면압, 슬립 저항성을 증가시킬 수 있는 최적의 돌출부(17)의 높이가 다른 점을 고려할 때, 필름(10)에 따라 돌출부(17)의 높이를 다르게 형성할 수 있는 효과가 있다.
광학 필름을 권취하는 단계(S40)에서는 공급부(100)와 이격 배치되는 수취부(200)가 외부로부터 동력을 전달받아 시계 방향(도 2 기준)으로 회전되며, 필름(10)의 공급 방향인 제1방향(도 6a 기준 상하 방향)과 미리 설정된 각도를 이루는 마킹(16)이 형성된 필름(10)이 권취된다.
이 경우 필름(10) 상의 마킹 영역(15)에 형성되는 마킹(16)의 양측의 돌출부(17)로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가되며 필름(10)의 권취 시 사행이 발생되는 것을 방지할 수 있는 효과가 있다.
이에 더하여 권취 시 적층되는 복수의 필름(10) 사이에 공기가 인입됨으로 인하여 권심 고점 테잎에 의한 눌림 불량을 해소할 수 있는 효과가 있다.
이에 더하여 마킹(16)과 필름(10)의 공급 방향인 제1방향이 미리 설정된 각도를 이루게 됨으로써 마킹(16)의 양측에 형성되는 돌출부(17), 구체적으로 좌측 돌출부(17)의 높이(h1)와 우측 돌출부(17)의 높이(h2)가 상이하게 형성될 수 있으며, 일반적으로 연신 처리된 필름(10)의 축 방향(도 5 기준 상하 방향)에 따라 물성이 다른 점을 고려할 때 이를 반영하여 최적의 마킹(16), 돌출부(17) 형성이 가능한 효과가 있다.
한편, 도 9 및 도 10을 참조하면, 본 발명의 제2실시예에 따른 광학 필름 제조 장치(1')는, 공급부(100), 수취부(200), 코팅부(500), 마킹부(300)를 포함할 수 있다.
본 발명의 제2실시예에 따른 공급부(100)와 수취부(200)는 제1실시예에 따른 광학 필름 제조 장치(1)와 동일하게 구성될 수 있다.
광학 필름(10)은 공급부(100)에서 수취부(200)로 제1방향을 따라 이동하는데 뒤에 설명할 코팅부(500)에 의해 필름(10)의 일면(도 10 기준 상면)이 코팅 처리되거나, 코팅 처리되는 필름(10)의 일면에 대향되는 타면(도 10 기준 하면)에서 마킹부(300)에 의해 마킹(16)이 형성될 수 있다.
상기 코팅부(500)는 공급부(100)와 수취부(200) 사이에 배치되는 것으로 광학 필름(10)의 일면(도 10 기준 상면)에 코팅층(CL)을 형성할 수 있다.
구체적으로, 상기 코팅부(500)는 제1방향을 따라 이동하는 광학 필름(10)의 상면에 용액 코팅 → 경화 → 건조 공정을 거치며 코팅층(CL)을 형성해줄 수 있다.
코팅부(500)에서 코팅액이 필름(10) 상으로 유출되며 표면 처리가 수행된다. 구체적으로 필름(10)은 PET(polyethylene terephthalate)으로 형성될 수 있다.
상기 코팅층(CL)은 ASG(Anti-Semi-Glare) 코팅층(CL)으로 구체적으로 마이크로 입자, UV 경화된 수지, 플로오루(fluorine) 기반의 첨가제로 형성될 수 있다.
상기 코팅부(500)로 인하여 필름(10) 상에 코팅층(CL)이 형성되고, 코팅층(CL)이 형성되지 않는 필름(10)에 비하여 경도가 증가될 수 있다.
상기 코팅부(500)는 필름(10), 길이 방향과 수직을 이루는 방향(도 12 기준 좌우 방향)에 걸쳐서 배치될 수 있다.
도 12를 참조하면, 필름(10)은 유효 영역(11), 마킹 영역(15)으로 이루어지며, 본 명세서에서 '유효 영역(11)'은 필름(10)의 일면 중에 디스플레이 패널에 부착되는 영역을 의미한다. 유효 영역(11)은 필름(10) 상에 제1방향(도 12 기준 상하 방향)을 따라 형성될 수 있다.
유효 영역(11)은 필름(10)의 길이 방향(상하 방향) 중심을 기준으로 미리 설정된 폭을 가지도록 형성될 수 있다. 즉, 필름(10)의 폭 방향의 중앙부에 형성되는 영역이다.
본 명세서에서 '마킹 영역(15)'은 필름(10)의 일면 중에 디스플레이 패널에 부착되는 영역인 유효 영역(11)을 제외한 영역으로 필름(10) 상에 제1방향을 따라 형성될 수 있다.
상기 마킹 영역(15)은 필름(10)의 길이 방향(상하 방향) 중심을 기준으로 유효 영역(11)의 양측, 즉 필름(10)의 가장자리에 형성될 수 있다.
필름(10), 구체적으로 마킹 영역(15)의 하측에는 뒤에 설명할 마킹부(300)가 배치될 수 있고, 상측에는 코팅부(500)가 배치될 수 있다. 코팅부(500)는 필름(10)의 유효 영역(11)의 미리 설정된 영역에 코팅층(CL)을 형성할 수 있다.
마킹부(300)는 코팅부(500)가 위치한 필름(10)의 일측(도 9 기준 상측)에 대향되는 타측(도 9 기준 하측)에 배치되며, 필름(10)에 광원(L)을 조사하여 마킹(16)을 형성할 수 있다.
도 13을 참조하면, 코팅부(500)는 마킹부(300)와 제1방향에 수직되는 방향으로 중첩되지 않도록 배치될 수 있다.
즉, 필름(10)의 미리 설정된 구간에서 일면(도 9 기준 상면)에는 ASG 코팅층(CL)이 형성되고, 수직 방향(도 10 기준 상하 방향)으로의 대응되는 타면(도 9 기준 하면)에는 마킹(16)이 형성되지 않는다.
ASG 코팅층(CL)과 마킹(16)이 필름(10)의 제1방향의 수직 방향에 중첩되는 영역에 배치되지 않음으로 인하여, 중첩되는 것에 비하여 필름(10)의 권취 시 파단되는 것을 방지할 수 있다.
다시 말하면 필름(10)에 ASG 코팅층(CL)이 형성되는 과정에서 UV 경화에 의해 높은 경도를 가지게 되고, 이에 대응되는 타면 상에 마킹부(300)가 광원(L)을 조사하여 마킹(16)이 형성되면 마킹(16)의 홈(또는 그루브(groove)) 이 형성된다.
마킹(16)의 홈의 깊이로 인하여 필름(10)의 파단 위험성이 증가되는데, 제1방향과 수직되는 방향으로 마킹(16)과 코팅층(CL)이 중첩되지 않음으로 인하여 파단 위험성을 저감시킬 수 있다.
이에 더하여 마킹(16)의 양측에 형성되는 돌출부(17)로 인하여 표면에너지가 증가하고, 슬립 저항성이 향상되어 필름(10) 권취 시 사행이 방지될 수 있는 효과가 있다.
상기 마킹부(300)는 광학 필름(10)을 사이에 두고 코팅부(500)와 이격 배치되며, 코팅층(CL)이 형성되는 광학 필름(10)의 일면에 대향되는 타면 상에 광원(L)을 조사하여 마킹(16)을 형성할 수 있다.
본 발명에서 광원(L)은 레이저(laser)이며, 광원(L)이 필름(10) 상에 조사됨에 따라 미리 설정되는 구간에서 홈 형상을 가지는 마킹(16)이 형성되고, 마킹(16)이 형성되는 구간에서 마킹(16)의 양측을 따라 외측 방향(도 11 기준 하측)을 따라 돌출부(17)가 형성될 수 있다.
상기 돌출부(17)는 필름(10)의 하부면을 기준으로 하측 방향으로 돌출되고 일정한 높이를 가질 수 있다. 도 11을 참조하면, 돌출부(17)는 필름(10)이 수취부(200)에 수취되는 과정에서 한쪽으로 쏠리지 않도록 가이드 역할을 할 수 있다.
도면에 도시하지는 않았으나, 필름(10)의 하면에 돌출부(17)가 형성되고, 수취부(200)에 의하여 권취되면서 수취부(200)의 중심을 기준으로 원심 방향으로 필름(10)이 적층되게 된다. 이때 돌출부(17)는 돌출부(17)의 내측에 이미 권취된 필름(10)의 상면과 접촉하게 되고, 면압이 증가되면서 슬립 저항성이 증가된다.
이에 더하여 필름(10)이 층을 이루며 수취부(200)에 적층 시에 각 층 간격을 일정하게 유지할 수 있는 효과가 있다.
또한, 광학 필름(10) 제조 공정에서 예기치 않게 이물질이 투입되는 경우에 상측에 배치되는 필름(10)의 눌림 압력에 의해 필름(10)이 손상, 파손되는 것을 방지할 수 있는 효과가 있다. 돌출부(17)가 높아짐에 따라 권심 방향의 면압을 증가시킬 수 있는 효과가 있다.
도 11 및 도 12를 참조하면, 상기 마킹부(300)에 의해 필름(10), 구체적으로 마킹 영역(15)에 형성되는 돌출부(17)에 의해 필름(10)의 표면에너지가 증가하고, 슬립 저항성이 증가되며 권취 시 슬립으로 인한 사행이 일어나는 것을 방지할 수 있는 효과가 있다.
상기 마킹부(300)는 필름(10)의 길이 방향을 기준으로 중앙부에 형성되는 유효 영역(11)의 양측 가장자리인 마킹 영역(15)에 마킹(16)을 형성할 수 있다.
마킹(16)은 코팅층(CL)이 형성되는 필름(10)의 상면에 대향되는 타면에 형성되고, 필름(10)의 길이 방향에 수직을 이루는 방향에서 중첩되지 않도록 형성될 수 있다.
이로 인하여 마킹(16)이 홈 형상으로 형성되어도, 코팅층(CL)의 위치에 대응되지 않아, UV 경화된 코팅층(CL)으로 인해 경도가 높아진 영역에 대응되는 타면에 돌출부(17)가 형성되는 것에 비하여 권취 시 필름(10)의 파단 가능성을 저감시키고, 돌출부(17)로 인하여 표면에너지 및 슬립 저항성을 증가시켜 권취 시 사행 발생을 저감시킬 수 있다.
도 12를 참조하면, 상기 마킹부(300)는 복수 개가 구비되어 유효 영역(11)의 양측에 형성되는 마킹 영역(15)에 배치될 수 있다. 이로 인하여 필름(10)의 유효 영역(11)의 양측 가장자리에 형성되는 마킹 영역(15)에 각각 마킹(16)이 형성될 수 있다.
마킹 영역(15)에 형성되는 각 마킹(16) 사이 간격에 따라 유효 영역(11)의 폭이 결정될 수 있으며, 이에 따라 코팅층(CL)이 형성되는 영역 또한 증가될 수 있다.
이하, 본 발명의 제2실시예에 따른 광학 필름의 제조 장치의 작동원리 및 광학 필름 제조 방법에 관하여 설명한다. 도 14는 본 발명의 제2실시예에 따른 광학 필름 제조 방법을 도시한 순서도이다.
도 9 내지 도 14를 참조하면, 본 발명의 제2실시예에 따른 광학 필름 제조 방법은, 광학 필름을 공급하는 단계(S10), 코팅층을 형성하는 단계(S20), 마킹을 형성하는 단계(S30), 광학 필름을 권취하는 단계(S40)를 포함할 수 있다.
광학 필름을 공급하는 단계(S10)에서는 공급부(100)에서 광학 필름(10)을 제1방향(도 10 기준 좌측에서 우측 방향)으로 공급하게 된다. 공급부(100)는 외부로부터 동력을 전달받아 시계 방향 또는 반시계 방향으로 회전 가능하고, 시계 방향으로 회전되어 필름(10)을 우측 방향(도 10 기준)으로 이동시킬 수 있다.
코팅층을 형성하는 단계(S20)에서는 광학 필름(10)의 일면 상에 코팅층(CL)을 형성하는 것으로, ASG 코팅층(CL)이 형성되나, 이에 한정하는 것은 아니고 다양한 기능성 코팅층이 형성될 수 있음은 물론이다.
도 12, 도 13을 참조하면, 상기 코팅층(CL)은 필름(10)의 일면(도 13 기준 상면)에 형성되며, 필름(10)의 유효 영역(11) 상에 형성될 수 있다.
코팅층(CL)은 뒤에 설명할 마킹을 형성하는 단계(S30)에서 형성되는 마킹(16)과 필름(10)의 제1방향과 수직되는 방향에서 중첩되지 않도록 형성될 수 있다.
즉, 코팅층(CL)이 형성되는 필름(10)의 상면에 대응되는 필름(10)의 하면에는 마킹(16)이 형성되지 않고, 마킹(16)이 형성되는 필름(10)의 하면에 대응되는 필름(10)의 상면에는 코팅층(CL)이 형성되지 않는 것이다.
도 15a, 도 15b를 참조하면, 코팅층이 형성된 필름(CL)과 코팅층이 형성되지 않은 필름(NCL)을 유리 전이 온도(glass transition temperature, Tg), 용융 온도(melting temperature, Tm) 부근에서 열 처리한 뒤 표면에너지 결과를 측정한 것인데, 상온에서 코팅층이 형성되지 않은 필름(NCL)에 비해 코팅층이 형성된 필름(CL)의 표면에너지가 매우 낮음을 볼 수 있다. 코팅 후에, 필름(10)의 표면에너지가 감소함에 따라 슬립 저항성이 저하되고, 권취 시 사행이 발생할 가능성이 증가되는 문제점이 있다.
반면, 용융 온도 부근에서 열 처리 후에는 코팅층이 형성되지 않음 필름(NCL)의 표면에너지가 상온에서 비해 증가하는데, 이를 통하여 레이저 광원이 조사되어 필름(10)의 표면이 용융될 경 슬립 저항성이 증대되어 사행 발생 가능성을 억제할 수 있다.
도 16a, 도 16b를 참조하면, 코팅층이 형성된 필름을 유리 전이 온도(Tg), 용융 온도(Tm) 부근에서 열처리한 뒤 마찰 계수(Coefficient of Friction, COF)를 측정한 것으로, 도 16a는 코팅층이 형성된 필름(CL)의 마찰 계수를 측정한 것이고, 도 16b는 코팅층이 형성되지 않은 필름(NCL)의 마찰 계수를 측정한 것이다.
구체적으로 도 16a, 도 16b를 참조하면, 마찰 계수 측정 장비를 가지고 하중 200g(Case 1), 700g(Case 2)에서 필름 표면 간 계면 마찰력을 측정한 것으로, 하중이 낮은 Case 1의 경우 용융 온도(Tm)에서 열처리 한 후에도 코팅층이 형성되지 않은 필름(NCL)에 비하여 표면 마찰력이 매우 낮은 것을 알 수 있다.
표면 마찰력이 낮다는 것은 슬립 저항에 취약하다는 것이며, 권취 시 사행이 발생할 가능성이 높은 것을 의미한다.
마킹을 형성하는 단계(S30)에서는 광학 필름(10)의 외측(도 10 기준 하측)에 배치되는 마킹부(300)에서 광학 필름(10)으로 광원(L)을 조사하여 마킹(16)을 형성할 수 있다.
마킹부(300)는 필름(10)의 길이 방향인 제1방향에 수직하는 방향을 따라 필름(10)의 상면에 코팅층(CL)이 형성되지 않은 영역에 대응되는 필름(10)의 하면에 광원(L), 즉 레이저를 조사하여 마킹(16)을 형성할 수 있다.
마킹(16)이 홈 형상으로 형성됨에 따라 마킹(16)의 양측에 돌출부(17)가 돌출 형성되고, 돌출부(17)가 형성됨으로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가되며, 권취 시 사행이 발생되는 것을 방지할 수 있는 효과가 있다.
이에 더하여 마킹(16)이 형성되는 영역의 상측에 코팅층(CL)이 형성되지 않고, 코팅층(CL)과 마킹(16)이 중첩되지 않음으로 인하여 ASG 코팅층(CL)이 형성되는 과정에서 UV 경화에 따른 표면에너지 감소에 더하여 홈 형상의 마킹(16)의 깊이로 인한 파단 위험성이 증가하는 것을 방지할 수 있다.
광학 필름을 권취하는 단계(S40)에서는 공급부(100)와 이격 배치되는 수취부(200)가 외부로부터 동력을 전달받아 시계 방향으로 회전되며 코팅층(CL)이 형성되고, 마킹(16)이 형성된 필름(10)이 권취된다.
마킹을 형성하는 단계(S30)에서 필름(10) 상의 마킹 영역(15)에 형성되는 마킹(16)의 양측의 돌출부(17)로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가되며 필름(10)의 권취 시 사행이 발생되는 것을 방지할 수 있는 효과가 있다.
본 발명에 따른 광학 필름 제조 장치(1) 및 제조 방법에 의해 제조되는 필름(10)의 일면에는 코팅층(CL)이 형성되고, 상기 일면에 대향되는 타면에 마킹(16)이 형성됨으로 인하여 표면에너지, 마찰 계수, 슬립 저항성이 증가하여 권취 시 사행이 발생되는 것을 방지할 수 있는 효과가 있다.
또한, 코팅층(CL)과 마킹(16)이 필름(10)의 길이 방향에 수직되는 방향으로 중첩되지 않음으로 인하여 필름(10)의 권취 시 파단 가능성을 저감시킬 수 있는 효과가 있다.
이상에서는 본 발명을 특정의 구체적인 실시 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 않으며 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양한 변경과 수정이 가능함은 물론이다.

Claims (20)

  1. 광학 필름을 제1방향으로 공급하는 공급부;
    상기 공급부와 이격 배치되며 상기 공급부에서 공급되는 상기 광학 필름을 권취하는 수취부; 및
    상기 공급부와 상기 수취부 사이에 배치되며 상기 광학 필름 상에 광원을 조사하여 마킹을 형성하는 마킹부;를 포함하는 광학 필름 제조 장치.
  2. 제1항에 있어서,
    상기 마킹부와 연결되어 상기 마킹부를 이동시키는 구동부;를 더 포함하며,
    상기 마킹부가 이동됨에 따라 상기 마킹은 제1방향과 미리 설정된 각도를 이루도록 형성되는 것인 광학 필름 제조 장치.
  3. 제2항에 있어서,
    상기 광학 필름에는 상기 마킹의 양측을 따라 돌출부가 각각 형성되는 것을 포함하는 광학 필름 제조 장치.
  4. 제3항에 있어서,
    상기 마킹의 양측에 형성되는 각각의 상기 돌출부는 돌출 방향으로의 높이가 다르게 형성되는 것을 포함하는 광학 필름 제조 장치.
  5. 제2항에 있어서,
    상기 광학 필름은 마킹 영역과 유효 영역을 포함하고, 상기 마킹은 상기 마킹 영역의 미리 설정된 구간에서 형성되는 것을 포함하는 광학 필름 제조 장치.
  6. 제5항에 있어서,
    상기 유효 영역은 상기 광학 필름의 길이 방향을 따라 중앙부에 형성되고,
    상기 마킹 영역은 상기 유효 영역의 양측에 배치되도록 상기 광학 필름의 가장 자리에 형성되는 것을 포함하는 광학 필름 제조 장치.
  7. 제6항에 있어서,
    상기 마킹부는 상기 마킹 영역에 복수 개가 구비되는 것을 포함하는 광학 필름 제조 장치.
  8. 제2항에 있어서,
    상기 마킹은 상기 제1방향과 0° 내지 180°를 이루는 것을 포함하는 광학 필름 제조 장치.
  9. 제1항에 있어서,
    상기 공급부와 상기 수취부 사이에는 상기 광학 필름의 일면에 코팅층을 형성해주는 코팅부;를 더 포함하고,
    상기 마킹부는 상기 광학 필름을 사이에 두고 상기 코팅부와 이격 배치되어, 상기 광학 필름의 타면에 마킹을 형성해주는 것인 광학 필름 제조 장치.
  10. 제9항에 있어서,
    상기 코팅층은 상기 광학 필름의 일면에 형성되는 제1영역에 형성되고,
    상기 마킹은 상기 코팅층이 형성되는 상기 광학 필름의 일면에 대향되는 타면에 형성되는 제2영역에 형성되며,
    상기 제1영역과 상기 제2영역은 상기 제1방향의 수직되는 방향으로 중첩되지 않는 것을 특징으로 하는 광학 필름 제조 장치.
  11. 공급부로부터 제1방향을 따라 광학 필름을 공급하는 단계;
    상기 광학 필름의 외측에 배치되는 마킹부를 조절하여 마킹 형성 경로를 결정하는 단계;
    상기 마킹부에서 상기 광학 필름으로 광원을 조사하여 마킹을 형성하는 단계; 및
    상기 공급부와 이격 배치되는 수취부에 의해 상기 마킹이 형성된 광학 필름을 권취하는 단계;를 포함하는 광학 필름 제조 방법.
  12. 제11항에 있어서,
    상기 마킹은 제1방향과 미리 설정된 각도를 이루도록 형성하는 것을 포함하는 광학 필름 제조 방법.
  13. 제11항에 있어서,
    상기 광학 필름에는 상기 마킹의 양측을 따라 돌출부가 각각 형성되는 것을 포함하는 광학 필름 제조 방법.
  14. 제13항에 있어서,
    상기 마킹의 양측에 형성되는 각각의 돌출부는 돌출 방향으로의 높이가 다르게 형성되는 것을 포함하는 광학 필름 제조 방법.
  15. 제11항에 있어서,
    상기 공급부로부터 제1방향을 따라 광학 필름을 공급하는 단계 이후,
    상기 광학 필름의 일면 상에 코팅층을 형성하는 단계;를 더 포함하는 광학 필름 제조 방법.
  16. 제15항에 있어서,
    상기 마킹은 일면에 코팅층이 형성되는 상기 광학 필름의 타면 상에 형성되는 것인 광학 필름 제조 방법.
  17. 제16항에 있어서,
    상기 코팅층은 상기 광학 필름의 일면에 형성되는 제1영역에 형성되고,
    상기 마킹은 상기 코팅층이 형성되는 상기 광학 필름의 일면에 대향되는 타면에 형성되는 제2영역에 형성되며,
    상기 제1영역과 상기 제2영역은 상기 제1방향의 수직되는 방향으로 중첩되지 않는 것을 특징으로 하는 광학 필름 제조 방법.
  18. 제11항 내지 제17항 중 어느 하나의 항에 따른 광학 필름 제조 방법에 의해 제조된 것을 포함하는 광학 필름.
  19. 제18항에 있어서,
    상기 마킹은 홈 형상으로 형성되며,
    상기 마킹의 홈 깊이는 상기 광학 필름의 전체 두께를 10이라 하였을 때 0.5 ~ 5의 비율로 형성된 것을 포함하는 광학 필름.
  20. 제18항에 있어서,
    상기 마킹의 양측에 형성되는 돌출부의 높이는,
    상기 광학 필름의 전체 두께를 10이라 하였을 때 0.5 ~ 10의 비율로 형성된 것을 포함하는 광학 필름.
PCT/KR2020/011958 2019-09-27 2020-09-04 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법 WO2021060739A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022519519A JP7301452B2 (ja) 2019-09-27 2020-09-04 マーキングを用いた光学フィルム、光学フィルムの製造装置および製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2019-0120073 2019-09-27
KR10-2019-0120074 2019-09-27
KR20190120073 2019-09-27
KR1020190120074A KR102363070B1 (ko) 2019-09-27 2019-09-27 표면 처리를 이용한 광학 필름, 광학 필름 제조 장치 및 그 제조 방법
KR10-2020-0095885 2020-07-31
KR1020200095885A KR102363071B1 (ko) 2019-09-27 2020-07-31 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법

Publications (1)

Publication Number Publication Date
WO2021060739A1 true WO2021060739A1 (ko) 2021-04-01

Family

ID=75119582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011958 WO2021060739A1 (ko) 2019-09-27 2020-09-04 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법

Country Status (3)

Country Link
JP (1) JP7301452B2 (ko)
CN (1) CN112571693B (ko)
WO (1) WO2021060739A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201507A (ja) * 2007-02-19 2008-09-04 Toray Ind Inc シートロールの製造方法、シートロールおよびシートロールの製造装置
US20080213541A1 (en) * 2005-02-10 2008-09-04 Andreas Schilling Multi-Layer Film, Injection Molded Article Decorated Therewith and Process for the Production of the Decorated Injection Molded Article
JP2010076181A (ja) * 2008-09-25 2010-04-08 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム及び偏光板
KR20150078861A (ko) * 2013-12-31 2015-07-08 (주)엔에스 필름 제조 장치 및 방법
KR20170112748A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 광학 필름 마킹 시스템 및 광학 필름 마킹 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727445B2 (en) * 2006-04-28 2010-06-01 Konica Minolta Opto, Inc. Method for manufacturing optical film
JP2010262265A (ja) * 2009-04-10 2010-11-18 Nitto Denko Corp 光学フィルムロール原反、およびそれを用いた画像表示装置の製造方法
JP6632252B2 (ja) * 2015-08-21 2020-01-22 キヤノン株式会社 検出装置、インプリント装置、物品の製造方法及び照明光学系
JP2018180163A (ja) * 2017-04-07 2018-11-15 コニカミノルタ株式会社 光学フィルム、偏光板、表示装置および光学フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080213541A1 (en) * 2005-02-10 2008-09-04 Andreas Schilling Multi-Layer Film, Injection Molded Article Decorated Therewith and Process for the Production of the Decorated Injection Molded Article
JP2008201507A (ja) * 2007-02-19 2008-09-04 Toray Ind Inc シートロールの製造方法、シートロールおよびシートロールの製造装置
JP2010076181A (ja) * 2008-09-25 2010-04-08 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム及び偏光板
KR20150078861A (ko) * 2013-12-31 2015-07-08 (주)엔에스 필름 제조 장치 및 방법
KR20170112748A (ko) * 2016-04-01 2017-10-12 주식회사 엘지화학 광학 필름 마킹 시스템 및 광학 필름 마킹 방법

Also Published As

Publication number Publication date
JP7301452B2 (ja) 2023-07-03
CN112571693A (zh) 2021-03-30
JP2022550538A (ja) 2022-12-02
CN112571693B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2017171309A1 (ko) 증착용 마스크 및 이를 이용한 oled 패널
WO2017126810A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2017175941A1 (ko) 전기변색 소자 및 전기변색 시스템
WO2021020793A1 (ko) 디스플레이용 기판 및 이를 포함하는 디스플레이 장치
WO2018169250A1 (ko) 금속판, 증착용 마스크 및 이의 제조방법
WO2021029568A1 (ko) 디스플레이용 기판
WO2017111243A1 (ko) 교정 시스템 및 교정 방법
WO2020242055A1 (ko) 하이브리드 스틱 마스크와 이의 제조 방법, 하이브리드 스틱 마스크를 포함하는 마스크 조립체 및 이를 이용한 유기발광 디스플레이 장치
WO2013191421A1 (ko) 기판 처리 장치
WO2018124419A1 (en) Sheet type materials drying apparatus and a method for controlling the same
WO2021060739A1 (ko) 마킹을 이용한 광학 필름, 광학 필름 제조 장치 및 제조 방법
WO2017126814A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2018117384A1 (ko) 디스플레이 유닛 제조 시스템
WO2018117510A2 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2018176563A1 (zh) 一种蒸发源
WO2020242084A1 (ko) 벤딩 머신
WO2011074734A1 (ko) 씰패턴이 형성되는 기판과 씰패턴의 형성방법 및 이를 이용한 액정표시장치의 제조방법
WO2021066418A1 (ko) 폴리에스테르 다층 필름 및 그 제조방법
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법
WO2020138880A1 (ko) 도포 장치
WO2024071949A1 (ko) 접착력의 개선을 위한 전극 제조 시스템 및 전극 제조 방법
WO2021125419A1 (ko) 적재물 승강장치
WO2019124574A1 (ko) 경도가변 캐리어 필름
WO2022085901A1 (ko) 테두리경화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867632

Country of ref document: EP

Kind code of ref document: A1