WO2021060038A1 - 車体姿勢検出装置及び鞍乗型車両 - Google Patents

車体姿勢検出装置及び鞍乗型車両 Download PDF

Info

Publication number
WO2021060038A1
WO2021060038A1 PCT/JP2020/034631 JP2020034631W WO2021060038A1 WO 2021060038 A1 WO2021060038 A1 WO 2021060038A1 JP 2020034631 W JP2020034631 W JP 2020034631W WO 2021060038 A1 WO2021060038 A1 WO 2021060038A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
vehicle body
axis
angular velocity
correction
Prior art date
Application number
PCT/JP2020/034631
Other languages
English (en)
French (fr)
Inventor
充史 小河原
周 倉田
謙次 北原
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112020004554.4T priority Critical patent/DE112020004554T5/de
Priority to JP2021548808A priority patent/JP7291231B2/ja
Publication of WO2021060038A1 publication Critical patent/WO2021060038A1/ja
Priority to US17/702,954 priority patent/US20220212742A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/412Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/414Acceleration sensors

Definitions

  • the present invention relates to a vehicle body posture detecting device for estimating a vehicle body roll angle and a saddle-mounted vehicle.
  • Patent Document 1 proposes a technique for estimating the roll angle of a vehicle body (bank angle in the description of Patent Document 1) in order to control the irradiation range of a headlamp of a motorcycle.
  • the estimated value of the roll angle is calculated by setting the value of the roll angle in a steady state in which the moment in the roll direction due to centrifugal force and the moment in the roll direction due to gravity are balanced as the convergence target value. I have to.
  • An object of the present invention is to provide a vehicle body posture detecting device capable of calculating a correction value using a variable correction coefficient set according to a running state of a vehicle and estimating a roll angle based on the calculated correction value. ..
  • the vehicle body posture detecting device extends in the vehicle body width direction and the x-axis extending in the front-rear direction of the vehicle body as a coordinate system fixed to the vehicle body of the saddle-mounted vehicle.
  • a vehicle body posture detection device that sequentially estimates the roll angle of the vehicle body having a y-axis and a z-axis extending in the vertical direction of the vehicle body.
  • a speed sensor that detects the speed of the vehicle body in the traveling direction and It corresponds to a plurality of acceleration sensors corresponding to each axis that detects translational acceleration in the x-axis, y-axis, and z-axis directions, and each axis that detects an angular velocity in the x-axis direction and an angular velocity in the z-axis direction.
  • a pitch angle estimating means for sequentially estimating the pitch angle of the vehicle body
  • a roll angular velocity estimating means for sequentially estimating the roll angular velocity of the vehicle body
  • a state determination means for determining the running state of the saddle-type vehicle by comparing a parameter calculated based on a detection value detected by the detection unit with a threshold value
  • a state determination means for determining the running state of the saddle-type vehicle by comparing a parameter calculated based on a detection value detected by the detection unit with a threshold value
  • a state determination means for determining the running state of the saddle-type vehicle by comparing a parameter calculated based on a detection value detected by the detection unit with a threshold value
  • a state determination means for determining the running state of the saddle-type vehicle by comparing a parameter calculated based on a detection value detected by the detection unit with a threshold value
  • a state determination means for determining the running state of the saddle-type vehicle by comparing a parameter calculated based on a detection value detected by the detection unit with
  • a roll angle estimation value calculating means for calculating the current roll angle estimation value of the vehicle body by integrating the correction value of the roll angular velocity estimated value based on the correction value is provided.
  • the correction value calculation means is characterized in that when the parameter exceeds the threshold value, the variable correction coefficient is set so as to reduce the correction value.
  • the present invention it is possible to calculate a correction value using a variable correction coefficient set according to the running state of the vehicle, and to estimate the roll angle based on the calculated correction value.
  • FIG. 3 is a perspective view partially showing a two-wheeled vehicle equipped with the vehicle body posture detection device of the embodiment.
  • the figure which shows the functional structure of the vehicle body posture detection device which concerns on embodiment.
  • the block diagram explaining the processing content of the vehicle body posture detection device.
  • the figure which illustrates the force acting on a two-wheeled vehicle while turning.
  • the figure explaining the flow of the setting method of the variable correction coefficient K3.
  • FIG. 1 is a perspective view partially showing a two-wheeled vehicle equipped with the vehicle body posture detection device of the embodiment.
  • the vehicle body posture detecting device 1 of the present embodiment is mounted on the two-wheeled vehicle 100 (saddle-type vehicle) as a device for estimating the roll angle of the vehicle body 101 of the two-wheeled vehicle 100.
  • the local coordinate system is a coordinate system fixed to the vehicle body 101 (a coordinate system that moves integrally with the vehicle body 101).
  • the axis extending in the front-rear direction of the vehicle body 101 is the x-axis (first axis)
  • the axis extending in the vehicle width direction of the vehicle body 101 is the y-axis (second axis).
  • It is defined as an xyz Cartesian coordinate system in which the axis extending in the vertical direction of the vehicle body 101 is the z-axis (third axis).
  • the global coordinate system is an inertial coordinate system for expressing the motion state of the vehicle body 101 as seen from the traveling environment of the two-wheeled vehicle 100 (moving environment of the vehicle body 101).
  • the horizontal axis in the same direction as the axis formed by projecting the x-axis of the local coordinate system on the horizontal plane is the X-axis
  • the horizontal axis in the same direction as the axis formed by projecting the y-axis of the local coordinate system on the horizontal plane Is defined as an XYZ Cartesian coordinate system with the Y axis and the vertical axis (gravity direction) as the Z axis.
  • the x-axis direction, y-axis direction, and z-axis direction of the local coordinate system are the X-axis direction, Y-axis direction, and Z of the global coordinate system, respectively.
  • the global coordinate system is a coordinate system that moves with the movement of the vehicle body 101, and is not a coordinate system that is always fixed to the road surface.
  • the roll angle, pitch angle, and yaw angle of the vehicle body 101 are expressed as an angle in the direction around the X axis, an angle in the direction around the Y axis, and an angle in the direction around the Z axis in the global coordinate system, respectively.
  • the roll angle, pitch angle, and yaw angle of the vehicle body 101 are angles expressed by Euler angles.
  • FIG. 2 is a diagram showing a functional configuration of the vehicle body posture detecting device 1 according to the embodiment.
  • the vehicle body attitude detection device 1 includes a vehicle speed sensor 2 that detects a vehicle speed V as a traveling direction speed of the vehicle body 101, an inertial sensor unit 3 that detects an acceleration and an angular velocity generated in the vehicle body 101, and a vehicle speed sensor. It includes an estimation processing unit 6 that estimates the roll angle and the like based on the detection signal input from the inertial sensor unit 3 and the inertial sensor unit 3.
  • the vehicle speed sensor 2 is composed of, for example, a rotation speed sensor such as a rotary encoder that outputs a detection signal according to the rotation speed of the rear wheels of the two-wheeled vehicle 100.
  • a rotation speed sensor such as a rotary encoder that outputs a detection signal according to the rotation speed of the rear wheels of the two-wheeled vehicle 100.
  • the wheel speed of the rear wheels corresponding to the detected value of the rotational speed of the rear wheels is obtained as the detected value of the vehicle speed.
  • the vehicle speed sensor 2 may detect the rotation speeds of both the front wheels and the rear wheels, and calculate the vehicle speed based on the detected values of the rotation speeds.
  • the vehicle speed sensor 2 may be another type of sensor (for example, a vehicle speed sensor using GPS) as long as it can detect the traveling direction speed of the vehicle body 101.
  • the inertial sensor unit 3 (inertial measurement unit: IMU) is a sensor unit capable of detecting the behavior of the two-wheeled vehicle 100 by detecting the acceleration and the angular velocity generated in the vehicle body 101. As shown in FIG. 2, the inertial sensor unit 3 can be arranged at an arbitrary position on the vehicle body 101, for example, near the center of gravity of the two-wheeled vehicle 100.
  • the inertial sensor unit 3 includes, as sensors for detecting translational acceleration, an x-axis acceleration sensor 4x that detects translational acceleration (hereinafter referred to as x-axis acceleration) in the x-axis direction (front-rear direction of the two-wheeled vehicle 100) of the local coordinate system.
  • a y-axis acceleration sensor 4y that detects translational acceleration in the y-axis direction (left-right direction of the two-wheeled vehicle 100) (hereinafter referred to as y-axis acceleration) and translational acceleration in the z-axis direction (vertical direction of the two-wheeled vehicle 100) (hereinafter, z). It has a y-axis acceleration sensor 4z that detects (referred to as axial acceleration).
  • the inertial sensor unit 3 includes an x-axis angular velocity sensor 5x that detects an angular velocity in the x-axis direction (hereinafter referred to as x-axis angular velocity) and an angular velocity in the y-axis direction (hereinafter, y-axis) as sensors for detecting the angular velocity. It has a y-axis angular velocity sensor 5y for detecting (referred to as angular velocity) and a z-axis angular velocity sensor 5z for detecting an angular velocity in the z-axis direction (hereinafter referred to as z-axis angular velocity).
  • the estimation processing unit 6 has a processing unit 61 composed of a processor such as a CPU, a RAM 62b for storing the result (previous value) of sequential arithmetic processing, a ROM 62a for storing a table 600 (FIG. 6) described later, and the like.
  • a processing unit 61 composed of a processor such as a CPU, a RAM 62b for storing the result (previous value) of sequential arithmetic processing, a ROM 62a for storing a table 600 (FIG. 6) described later, and the like.
  • an electronic control unit ECU: Electric Control Unit
  • the estimation processing unit 6 may be composed of a plurality of electronic control units capable of communicating with each other.
  • the estimation processing unit 6 has a roll angular velocity estimation unit 11, a correction value calculation unit 12, a pitch angle estimation unit 13, and so on, as a function realized by a program implemented in the storage unit 62 or a functional configuration realized by a hardware configuration. It has a roll angle estimation value calculation unit 14.
  • FIG. 3 is a block diagram illustrating the processing contents of each functional configuration in the estimation processing unit 6.
  • S indicates a differential operation
  • 1 / S indicates an integral operation. To do.
  • Roll angular velocity estimation unit 11 ST31 of FIG. 3 is a block diagram showing the processing contents of the roll angular velocity estimation unit 11.
  • the x-axis angular velocity ( ⁇ x), the z-axis angular velocity ( ⁇ z), cos ⁇ , and tan ⁇ are input to the roll angular velocity estimation unit 11.
  • the roll angular velocity estimation unit 11 estimates the roll angular velocity ⁇ dot (time change rate of the roll angle ⁇ ) of the vehicle body 101 based on the input signal.
  • the x-axis angular velocity ( ⁇ x) and the z-axis angular velocity ( ⁇ z) are based on the detection signals detected by the x-axis angular velocity sensor 5x and the z-axis angular velocity sensor 5z of the inertial sensor unit 3.
  • cos ⁇ is a cosine function value based on the roll angle ( ⁇ ) of the previous value estimated by the arithmetic processing of the roll angle estimation value calculation unit 14 in the previous arithmetic processing cycle.
  • tan ⁇ is a tangent function value based on the pitch angle ( ⁇ ) of the previous value estimated by the arithmetic processing of the pitch angle estimation unit 13 in the previous arithmetic processing cycle.
  • the roll angular velocity estimation unit 11 calculates an estimated value of the roll angular velocity ⁇ dot using this equation (1) as a basic equation.
  • the roll angular velocity estimation unit 11 acquires the detected value of the x-axis angular velocity ⁇ x (current value) and the detected value of the z-axis angular velocity ⁇ z (current value) based on the detection signal of the inertial sensor unit 3 in each arithmetic processing cycle.
  • the roll angular velocity estimation unit 11 has an estimated roll angle ⁇ (previous value ⁇ ) and a pitch angle ⁇ calculated by the roll angle estimation value calculation unit 14 and the pitch angle estimation unit 13, respectively, in the previous calculation processing cycle. Get the estimated value (previous value ⁇ ).
  • the roll angular velocity estimation unit 11 estimates the z-axis angular velocity ⁇ z detection value (current value), the z-axis angular velocity ⁇ z detection value (current value), the roll angle ⁇ estimation value (previous value ⁇ ), and the pitch angle ⁇ .
  • the estimated value of the roll angular velocity ⁇ is calculated by performing the calculation on the right side of the equation (1) using the value (previous value ⁇ ).
  • (Pitch angle estimation unit 13) ST33 of FIG. 3 is a block diagram showing the processing contents of the pitch angle estimation unit 13.
  • the vehicle speed V, cos ⁇ , and x-axis acceleration (ax) are input to the pitch angle estimation unit 13.
  • the pitch angle estimation unit 13 estimates the pitch angle ⁇ of the vehicle body 101 based on the input signal.
  • the vehicle speed V is based on the calculation from the front wheel speed and the detection signal output from the vehicle speed sensor 2 according to the rotation speed of the rear wheels of the two-wheeled vehicle 100.
  • cos ⁇ is a cosine function value based on the pitch angle ( ⁇ ) of the previous value estimated by the arithmetic processing of the pitch angle estimation unit 13 in the previous arithmetic processing cycle.
  • the x-axis acceleration (ax) is based on the detection signal detected by the x-axis acceleration sensor 4x of the inertial sensor unit 3.
  • the pitch angle estimation unit 13 calculates an estimated value of the pitch angle ⁇ using the equation (2) as a basic equation.
  • the pitch angle estimation unit 13 determines the time change rate of the vehicle speed V based on the detection signal of the vehicle speed sensor 2 (time change rate between the current value and the previous value) in each calculation processing cycle, and the pitch angle in the previous calculation processing cycle.
  • the estimated value of the pitch angle ⁇ calculated by the estimation unit 13 (previous value) and the detected value of the x-axis acceleration ax based on the detection signal of the x-axis acceleration sensor 4x of the inertial sensor unit 3 (current value) are acquired.
  • the pitch angle estimation unit 13 determines the time change rate of the vehicle speed V (time change rate between the current value and the previous value), the estimated value of the pitch angle ⁇ (previous value), and the detection value of the x-axis acceleration ax (this time).
  • the estimated value of the pitch angle ⁇ is calculated by performing the calculation on the right side of the equation (2) using the value).
  • the correction value calculation unit 12 calculates a correction value ⁇ for reducing an error in the estimated value of the roll angle ⁇ of the vehicle body 101.
  • the roll angle ⁇ of the vehicle body 101 can be basically estimated by integrating the estimated value of the roll angular velocity ⁇ dot calculated by the roll angular velocity estimation unit 11, but the roll is taken into consideration by the estimated value of the transient state.
  • the error components may be accumulated and the error of the estimated value of the roll angle may be likely to be large.
  • the traveling state of the two-wheeled vehicle 100 is either a steady state or an unsteady state (transient state) such as a drift state or a jump state. It is determined whether or not there is, and the setting of the output gain K3 of the correction value is changed according to the determination result.
  • the correction value calculation unit 12 has a variable correction coefficient K3 set according to the absolute value (time change rate) of the differential value of the angular velocity in the z-axis direction detected by the inertial sensor unit 3, and the speed detection value by the speed sensor. And, each detection value of the z-axis angular velocity and the y-axis acceleration, the previous estimated value of the roll angle, and the previous estimated value of the pitch angle are used to sequentially calculate the correction value for estimating the roll angle of the vehicle body. ..
  • the z-axis angular velocity ( ⁇ z), y-axis acceleration (ay_lyout: hereinafter referred to as ay), cos ⁇ , sin ⁇ , and vehicle speed V are input to the correction value calculation unit 12.
  • the z-axis angular velocity ( ⁇ z) is based on the detection signal detected by the z-axis angular velocity sensor 5z of the inertial sensor unit 3.
  • the y-axis angular velocity (ay) is based on the detection signal detected by the y-axis acceleration sensor 4z of the inertial sensor unit 3.
  • cos ⁇ is a cosine function value based on the pitch angle ( ⁇ ) of the previous value estimated by the arithmetic processing of the pitch angle estimation unit 13 in the previous arithmetic processing cycle.
  • sin ⁇ is a sine function value based on the roll angle ( ⁇ ) of the previous value estimated by the arithmetic processing of the roll angle estimation value calculation unit 14 in the previous arithmetic processing cycle.
  • the vehicle speed V is based on the calculation from the front wheel speed and the detection signal output from the vehicle speed sensor 2 according to the rotation speed of the rear wheels of the two-wheeled vehicle 100.
  • FIG. 4 is a diagram illustrating the force acting on the two-wheeled vehicle 100 during steady turning.
  • Ay is the acceleration in the Y-axis direction of the vehicle body 101 as seen in the global coordinate system, and is a parameter corresponding to the acceleration in the Y-axis direction due to centrifugal force, and is represented by the following equation (3). ..
  • ay_estm is an estimated value of the y-axis acceleration, and is estimated by the detected value (current value) of the z-axis angular velocity ⁇ z based on the detection signal of the inertial sensor unit 3 and the previous arithmetic processing cycle.
  • the estimated value ay_estm of the y-axis acceleration during steady turning is calculated by the following equation (4). can do.
  • equation (4) g represents gravitational acceleration.
  • ay_estm ⁇ z ⁇ V + cos ⁇ ⁇ sin ⁇ ⁇ g ⁇ ⁇ ⁇ (4)
  • the value of the y-axis acceleration ay in the block diagram of ST32 is detected by the y-axis acceleration sensor 4z of the inertial sensor unit 3, and the roll angle ⁇ is estimated based on the estimated value ay_estm of the y-axis acceleration calculated by the equation (4). Assuming that the value error is not included, the relationship of the following equation (5) is established.
  • the deviation err (ay-ay_estm) between ay and ay_estm corresponds to the error of the estimated value of the roll angle ⁇ in the steady state.
  • the variable correction coefficient K3 is a coefficient value that is variably set according to the traveling state of the two-wheeled vehicle 100.
  • the correction value calculation unit 12 is an absolute value of a differential value of a parameter (for example, z-axis angular velocity ( ⁇ z)) calculated based on a detection value detected by the inertial sensor unit 3 (detection unit) or a detection value of a plurality of acceleration sensors. It functions as a state determination unit that determines the running state of the saddle-type vehicle by comparing the total value of) with the threshold value.
  • the correction value calculation unit 12 sequentially calculates correction values for estimating the roll angle of the vehicle body based on the variable correction coefficient set according to the determination result and the detection values of the speed sensor and the inertial sensor unit 3 (detection unit). calculate. That is, the correction value calculation unit 12 uses the bias deviation multiplied by the variable correction coefficient K3 set according to the determination result to calculate the correction value ⁇ for estimating the roll angle of the vehicle body based on the following equation (6). To calculate sequentially.
  • K1 and K2 are preset fixed correction coefficient values.
  • the fixed correction coefficients K1 and K2 are set to predetermined constant values regardless of the running state of the two-wheeled vehicle 100.
  • the variable correction coefficient K3 is a coefficient whose value can be variably set based on the parameter indicating the traveling state of the two-wheeled vehicle 100, and the parameter indicating the traveling state is, for example, the absolute value of the differential value of the z-axis angular velocity ( ⁇ z).
  • the value is included, and the correction value calculation unit 12 can set the variable correction coefficient K3 according to the absolute value (time change rate) of the differential value of the z-axis angular velocity ( ⁇ z).
  • FIG. 5 is a diagram for explaining the flow of the setting method of the variable correction coefficient K3.
  • the correction value calculation unit 12 determines the detection value of the z-axis angular velocity ⁇ z (previous value) and the detection value of the z-axis angular velocity ⁇ z (previous value) based on the detection signal of the inertial sensor unit 3 in each calculation processing cycle. This time value) and is acquired.
  • step S52 the correction value calculation unit 12 sets the calculation processing cycle ( ⁇ T) based on the difference between the detection value of the z-axis angular velocity ⁇ z (previous value) and the detection value of the z-axis angular velocity ⁇ z (current value).
  • the absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z is calculated.
  • the correction value calculation unit 12 compares the calculated absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z with the preset first state determination threshold value (first threshold value).
  • the first state determination threshold value is a threshold value for determining whether or not the traveling state of the two-wheeled vehicle 100 is an unsteady state (transient state) such as a drift state, and is a correction value.
  • the calculation unit 12 determines that the traveling state of the two-wheeled vehicle 100 is a transient state such as a drift state.
  • the first state determination threshold value (first threshold value) is stored in the storage unit 62 in advance, and during the arithmetic processing, the correction value calculation unit 12 starts from the storage unit 62 to the first state determination threshold value (first threshold value). It is possible to obtain.
  • the correction value calculation unit 12 sets the variable correction coefficient K3 so as to reduce the correction value when the parameter (absolute value of the differential value of the z-axis angular velocity ⁇ z) exceeds the threshold value. That is, when the absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z exceeds the first state determination threshold value and the running state of the two-wheeled vehicle 100 is determined to be a transient state, the correction value calculation unit 12 determines.
  • the value of the variable correction coefficient K3 is set to zero so as to cancel the effect of the correction.
  • step S53 when the absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z is equal to or less than the first state determination threshold value (S53-No), the correction value calculation unit 12 advances the process to step S55. ..
  • the correction value calculation unit 12 can set the variable correction coefficient K3 according to the time change rate.
  • the correction value calculation unit 12 sets the variable correction coefficient K3 so as to reduce the correction value ⁇ as the absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z increases.
  • the correction value calculation unit 12 refers to the table of the storage unit 62, and acquires the variable correction coefficient K3 corresponding to the absolute value (time change rate) of the calculated differential value of the z-axis angular velocity ⁇ z from the table 600.
  • (6) can be set, and the correction value ⁇ obtained by multiplying the variable correction coefficient K3 obtained from the table can be output.
  • FIG. 6 is a diagram illustrating a table 600 of the storage unit 62 (ROM 62a). As shown in FIG. 6, a plurality of values ( ⁇ z_dot_1, ⁇ z_dot_2, ⁇ z_dot_3, ... ⁇ z_dot_6) are set as absolute values of the differential values of the z-axis angular velocity ⁇ z (yaw rate).
  • the absolute value of the differential value has a small value of ⁇ z_dot_1, increases to ⁇ z_dot_2, ⁇ z_dot_3, ⁇ z_dot_4, ⁇ z_dot_5 ..., And exceeds the first threshold value (first state determination threshold value) at ⁇ z_dot_6.
  • variable correction coefficient K3 are associated with the absolute value of the differential value of the z-axis angular velocity ⁇ z (yaw rate).
  • the value of the variable correction coefficient K3 is set to decrease as the absolute value (time change rate) of the differential value of the z-axis angular velocity ⁇ z (yaw rate) increases.
  • the set value becomes smaller in the order of K3_1 ⁇ K3_2 ⁇ K3_3 ⁇ K3_4 ⁇ K3_5, and zero is set for the absolute value of the differential value of the z-axis angular velocity ⁇ z (yaw rate) that exceeds the first state determination threshold value.
  • K3_6 0
  • the variable correction coefficient K3 By setting the variable correction coefficient K3 to zero, the calculation result of the equation (6) for calculating the correction value ⁇ becomes zero, and the output of the correction value ⁇ for the estimation calculation of the roll angle ⁇ can be cancelled.
  • the setting example of the table 600 is an example and is not limited to this example.
  • the parameter indicating the traveling state of the two-wheeled vehicle 100 is not limited to the absolute value of the differential value of the z-axis angular velocity ( ⁇ z), and for example, a plurality of acceleration sensors included in the inertial sensor unit 3 (FIG. 2). It is also possible to determine whether or not the traveling state of the two-wheeled vehicle 100 is a transient state such as a jumping state based on the total value obtained by combining the detected values of the accelerations of 4x, 4y, and 4z).
  • the correction value calculation unit 12 combines the total value of the acceleration detection values of the plurality of acceleration sensors detected by the inertial sensor unit 3 (detection unit) as parameters and the preset second state determination threshold value (second state determination threshold value). Compare with the threshold).
  • the second state determination threshold value is a threshold value for determining whether or not the traveling state of the two-wheeled vehicle 100 is an unsteady state (transient state) such as a jump state, and is a correction value.
  • the second state determination threshold value (second threshold value) is stored in the storage unit 62 in advance, and the correction value calculation unit 12 acquires the second state determination threshold value (second threshold value) from the storage unit 62 during the calculation process. It is possible to do.
  • the correction value calculation unit 12 determines that the running state of the two-wheeled vehicle 100 is a steady state and makes a variable correction. 1 is set as the value of the coefficient K3. In this case, the correction value calculation unit 12 calculates the correction value ⁇ based on the equation (6), and the correction value calculation unit 12 inputs the calculation result to the roll angle estimation value calculation unit 14.
  • (Roll angle estimation value calculation unit 14) ST34 of FIG. 3 is a block diagram showing the processing contents of the roll angle estimation value calculation unit 14.
  • An estimated value of the roll angular velocity ⁇ dot and a correction value ⁇ are input to the roll angle estimated value calculation unit 14.
  • the roll angular velocity estimation unit 14 calculates the estimated value of the roll angle ⁇ based on the estimated value of the roll angular velocity ⁇ dot by the roll angular velocity estimation unit 11 and the calculated value of the correction value ⁇ by the correction value calculation unit 12.
  • the roll angular velocity estimation value calculation unit 14 is an estimated value of the roll angular velocity ⁇ dot calculated by the roll angular velocity estimation unit 11 based on the correction value ⁇ (current value) calculated by the correction value calculation unit 12 in each calculation processing cycle.
  • the vehicle body posture detection device of the above embodiment has a coordinate system fixed to the vehicle body (101 of FIG. 1) of a saddle-mounted vehicle (for example, 100 in FIG. 1) and has an x-axis extending in the front-rear direction of the vehicle body.
  • a vehicle body posture detecting device (for example, 1 in FIG. 2) that sequentially estimates the roll angle of the vehicle body having a y-axis extending in the vehicle width direction of the vehicle body and a z-axis extending in the vertical direction of the vehicle body.
  • a speed sensor for example, 2 in FIG. 2) that detects the speed of the vehicle body in the traveling direction and
  • a plurality of acceleration sensors for example, 4x, 4y, 4z in FIG.
  • a detection unit (for example, 3 in FIG. 2) having a plurality of angular velocity sensors (for example, 5x and 5z in FIG. 2) corresponding to each axis for detecting the angular velocity in the direction around the z-axis.
  • a pitch angle estimating means (for example, 13 in FIG. 2) for sequentially estimating the pitch angle of the vehicle body, and
  • a roll angular velocity estimating means (for example, 11 in FIG. 2) for sequentially estimating the roll angular velocity of the vehicle body, and
  • a state determination means for example, 12 in FIG.
  • Correction value calculation that sequentially calculates the correction value for estimating the roll angle of the vehicle body based on the variable correction coefficient set according to the determination of the state determination means and the detection values of the speed sensor and the detection unit.
  • Means eg, 12 in FIG. 2 and A roll angle estimation value calculation means (for example, 14 in FIG. 2) that calculates the current roll angle estimation value of the vehicle body by integrating the correction value of the roll angular velocity estimation value based on the correction value. Equipped with The correction value calculation means (12) sets the variable correction coefficient (K3) so as to reduce the correction value when the parameter exceeds the threshold value.
  • the vehicle body posture detection device of the configuration 1 it is possible to calculate a correction value using a variable correction coefficient set according to the running state of the vehicle and estimate the roll angle based on the calculated correction value.
  • the correction value calculating means (12) includes the variable correction coefficient, the speed detection value by the speed sensor, and the z-axis angular velocity and y-axis acceleration by the detection unit.
  • the correction value is calculated using the detected value, the previous estimated value of the roll angle, and the previous estimated value of the pitch angle.
  • the correction value calculating means (12) calculates the time change rate of the angular velocity in the z-axis direction detected by the detection unit as the parameter, and uses the first threshold value as the first threshold value. Get the threshold, The variable correction coefficient (K3) is set based on the comparison between the time change rate and the first threshold value.
  • the correction value calculating means (12) sets the value of the variable correction coefficient so as to make the correction value zero when the time change rate exceeds the first threshold value. Set to zero.
  • the traveling state of the vehicle is regarded as a transient state such as a drift state, and a variable correction coefficient is set so that the correction value becomes zero.
  • the value to K3 0, the output of the correction value in the transient state can be canceled. As a result, it is possible to reduce the error of the estimated value of the roll angle in the sequential operation and further improve the estimation accuracy.
  • the vehicle body posture detecting device of the above embodiment further includes a storage means (for example, 62, 62a in FIG. 2) for storing the time change rate of the angular velocity in the z-axis direction and the value of the variable correction coefficient.
  • a storage means for example, 62, 62a in FIG. 2 for storing the time change rate of the angular velocity in the z-axis direction and the value of the variable correction coefficient.
  • the correction value calculation means (12) acquires the variable correction coefficient corresponding to the time change rate from the storage means (62, 62a).
  • a correction value obtained by multiplying the variable correction coefficient obtained from the storage means (62, 62a) is output.
  • the storage means (62, 62a) stores the variable correction coefficient set so that the value becomes smaller as the time change rate increases.
  • the roll in the sequential calculation is performed while speeding up the processing by the sequential calculation. It is possible to reduce the error of the estimated value of the angle and further improve the estimation accuracy.
  • the correction value calculating means (12) is the sum of the detected values of the plurality of acceleration sensors (4x, 4y, 4z) detected by the detection unit (3) as the parameters. The value is calculated, the second threshold value is acquired as the threshold value, and the value is calculated. The variable correction coefficient is set based on the comparison between the total value and the second threshold value.
  • the vehicle body posture detection device of the configuration 7 it is possible to calculate the correction value using the variable correction coefficient set according to the running state of the vehicle.
  • the correction value calculating means (12) sets the value of the variable correction coefficient to zero so that the correction value becomes zero when the total value exceeds the second threshold value. Set to.
  • the running state of the vehicle is a transient state such as a jump state
  • the value of the variable correction coefficient is set to zero so that the correction value becomes zero.
  • the correction value calculating means (12) sets 1 as the value of the variable correction coefficient when the total value is equal to or less than the second threshold value.
  • the correction value can be calculated using the variable correction coefficient set according to the running state of the vehicle.
  • the pitch angle estimating means (13) has the speed detected by the speed sensor (2), the x-axis acceleration detected by the detection unit (3), and the above.
  • the current estimated value of the pitch angle is calculated using the previous estimated value of the pitch angle.
  • the estimated value of the current pitch angle can be calculated based on the detected values of the speed sensor and the detection unit (inertia sensor unit) and the previous estimated value of the pitch angle. It will be possible.
  • the roll angular velocity estimating means (11) has the detection values of the x-axis angular velocity and the z-axis angular velocity by the detection unit, the previous estimated value of the roll angle, and the pitch angle.
  • the current estimated value of the roll angular velocity is calculated by using the previous estimated value of the pitch angle by the estimating means.
  • the estimated value of the current roll angular velocity can be calculated by using the detected value of the detection unit, the previous estimated value of the roll angle, and the previous estimated value of the pitch angle. It will be possible.
  • the saddle-mounted vehicle of the above embodiment includes the vehicle body posture detecting device according to any one of the above configurations 1 to 11.
  • the saddle-mounted vehicle of the configuration 12 it is possible to estimate the roll angle by setting a variable correction coefficient so as to reduce the correction value according to the increase in the time change rate of the angular velocity indicating the running state of the vehicle. It is possible to provide a saddle-type vehicle provided with a vehicle body posture detecting device.
  • 1 Body posture detector
  • 2 Vehicle speed sensor
  • 3 Inertia sensor unit
  • 11 Roll angular velocity estimation unit
  • 12 Correction value calculation unit (state determination unit)
  • 13 Pitch angle estimation unit
  • 14 Roll angle estimation value calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

車体姿勢検出装置は、状態判定部の判定に応じて設定された可変補正係数と、速度センサ及び検出ユニットの検出値とに基づいて、車体のロール角の推定用の補正値を逐次算出する補正値算出部と、ロール角速度の推定値を補正値に基づいて補正した値を積分することにより車体の現在のロール角の推定値を算出するロール角推定値算出部と、を備える。補正値算出部は、パラメータが閾値を超える場合、補正値を低減するように可変補正係数を設定する。

Description

車体姿勢検出装置及び鞍乗型車両
 本発明は、車体のロール角を推定する車体姿勢検出装置及び鞍乗型車両に関する。
 二輪車等の車体のロール角(ロール方向の傾斜角)をリアルタイムで逐次推定することが必要となる場合が多々ある。例えば、特許文献1には、自動二輪車のヘッドランプの照射範囲を制御するために、車体のロール角(特許文献1の記載ではバンク角)を推定する技術が提案されている。
特開2010-149681号公報
 特許文献1に提案されている技術では、遠心力によるロール方向のモーメントと重力によるロール方向のモーメントとが釣り合う定常状態でのロール角の値を収束目標値としてロール角の推定値を算出するようにしている。
 しかしながら、特許文献1の推定値の算出処理では、ドリフト走行状態や車両のジャンプ状態などの非定常状態(過渡状態)では、車両の横方向に作用する加速度の関係など、定常状態で成立していた物理的な関係が成立しなくなる。このため、過渡状態の推定値を加味した補正値に基づいてロール角推定値の算出処理を行うと、誤差成分が累積して、ロール角の推定値の誤差が大きくなりやすくなる場合が生じ得る。
 本発明の目的は、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出し、算出した補正値に基づいてロール角を推定することが可能な車体姿勢検出装置を提供する。
 本発明の一態様にかかる車体姿勢検出装置は、鞍乗型車両の車体に固定された座標系として、前記車体の前後方向に延在するx軸と、前記車体の車幅方向に延在するy軸と、前記車体の上下方向に延在するz軸とを有する前記車体のロール角を逐次推定する車体姿勢検出装置であって、
 前記車体の走行方向の速度を検出する速度センサと、
 前記x軸、前記y軸及び前記z軸の方向の並進加速度を検出する各軸に対応した複数の加速度センサと、x軸周り方向の角速度及びz軸周り方向の角速度を検出する各軸に対応した複数の角速度センサと、を有する検出ユニットと、
 前記車体のピッチ角を逐次推定するピッチ角推定手段と、
 前記車体のロール角速度を逐次推定するロール角速度推定手段と、
 前記検出ユニットにより検出された検出値に基づいて算出したパラメータと閾値との比較により前記鞍乗型車両の走行状態を判定する状態判定手段と、
 前記状態判定手段の判定に応じて設定された可変補正係数と、前記速度センサ及び前記検出ユニットの検出値とに基づいて、前記車体のロール角の推定用の補正値を逐次算出する補正値算出手段と、
 前記ロール角速度の推定値を前記補正値に基づいて補正した値を積分することにより前記車体の現在のロール角の推定値を算出するロール角推定値算出手段と、を備え、
 前記補正値算出手段は、前記パラメータが前記閾値を超える場合、前記補正値を低減するように前記可変補正係数を設定することを特徴とする。
 本発明によれば、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出し、算出した補正値に基づいてロール角を推定することが可能になる。
実施形態の車体姿勢検出装置を搭載する二輪車両を部分的に示す斜視図。 実施形態に係る車体姿勢検出装置の機能構成を示す図。 車体姿勢検出装置の処理内容を説明するブロック線図。 旋回中における二輪車両に作用する力を例示する図。 可変補正係数K3の設定方法の流れを説明する図。 記憶部のテーブルを例示する図。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。
 図1は実施形態の車体姿勢検出装置を搭載する二輪車を部分的に示す斜視図である。本実施形態の車体姿勢検出装置1は、図1に示すように、二輪車両100の車体101のロール角を推定する装置として、二輪車両100(鞍乗型車両)に搭載される。
 ここで、本実施形態の以降の説明において想定される、図1に示すローカル座標系及びグローバル座標系について説明する。
 ローカル座標系は、車体101に対して固定された座標系(車体101と一体に動く座標系)である。このローカル座標系は、図1に示すように、車体101の前後方向に延在する軸をx軸(第1軸)、車体101の車幅方向に延在する軸をy軸(第2軸)、車体101の上下方向に延在する軸をz軸(第3軸)とするxyz直交座標系として定義される。
 また、グローバル座標系は、二輪車両100の走行環境(車体101の移動環境)から見た車体101の運動状態を表現するための慣性座標系である。このグローバル座標系は、ローカル座標系のx軸を水平面に投影してなる軸と同方向の水平軸をX軸、ローカル座標系のy軸を水平面に投影してなる軸と同方向の水平軸をY軸、鉛直方向(重力方向)の軸をZ軸とするXYZ直交座標系として定義される。
 この場合、二輪車両100を水平面上に直進姿勢で静止させた状態では、ローカル座標系のx軸方向、y軸方向、z軸方向は、それぞれグローバル座標系のX軸方向、Y軸方向、Z軸方向に一致する。グローバル座標系は、車体101の移動と共に移動する座標系であり、路面に常時固定された座標系ではない。
 また、車体101のロール角、ピッチ角、ヨー角は、それぞれ、グローバル座標系のX軸周り方向の角度、Y軸周り方向の角度、Z軸周り方向の角度として表現される。本実施形態では、車体101のロール角、ピッチ角、ヨー角は、オイラー角で表現される角度である。以上を前提として、車体姿勢検出装置1を詳細に説明する。
 (車体姿勢検出装置の機能構成)
 図2は実施形態に係る車体姿勢検出装置1の機能構成を示す図である。車体姿勢検出装置1は、図2に示すように、車体101の走行方向速度としての車速Vを検出する車速センサ2と、車体101に生じる加速度及び角速度を検出する慣性センサユニット3と、車速センサ2及び慣性センサユニット3から入力される検出信号を基に、ロール角の推定等を行う推定処理ユニット6とを備える。
 車速センサ2は、例えば、二輪車両100の後輪の回転速度に応じた検出信号を出力するロータリエンコーダ等の回転速度センサにより構成される。この場合、後輪の回転速度の検出値に対応する後輪の車輪速が車速の検出値として得られる。
 なお、車速センサ2は、前輪及び後輪の両方の回転速度を検出し、それらの回転速度の検出値を基に車速を算出するようにしてもよい。車速センサ2は、車体101の走行方向速度を検出可能なものであれば、他の形態のセンサ(例えば、GPSを利用した車速センサ等)であってもよい。
 慣性センサユニット3(慣性計測装置:IMU)は、車体101に生じる加速度及び角速度を検出することにより二輪車両100の挙動を検知することが可能なセンサユニットである。慣性センサユニット3は、図2に示すように車体101の任意の適所、例えば、二輪車両100の重心付近に配置可能である。慣性センサユニット3は、並進加速度を検出するセンサとして、ローカル座標系のx軸方向(二輪車両100の前後方向)の並進加速度(以降、x軸加速度という)を検出するx軸加速度センサ4xと、y軸方向(二輪車両100の左右方向)の並進加速度(以降、y軸加速度という)を検出するy軸加速度センサ4yと、z軸方向(二輪車両100の上下方向)の並進加速度(以降、z軸加速度という)を検出するy軸加速度センサ4zとを有する。
 また、慣性センサユニット3は、角速度を検出するセンサとして、x軸周り方向の角速度(以降、x軸角速度という)を検出するx軸角速度センサ5xと、y軸周り方向の角速度(以降、y軸角速度という)を検出するy軸角速度センサ5yと、z軸周り方向の角速度(以降、z軸角速度という)を検出するz軸角速度センサ5zとを有する。
 推定処理ユニット6は、CPU等のプロセッサにより構成される処理部61、逐次演算処理の結果(前回値)を記憶するRAM62bや、後に説明するテーブル600(図6)を記憶するROM62a等を有する記憶部62、車速センサ2及び慣性センサユニット3を含む外部デバイスと処理部61との間で信号の送受信を行うインタフェース部63(I/F部)を有する電子制御ユニット(ECU:Electric Control Unit)により構成され、二輪車両100の任意の適所に搭載される。なお、推定処理ユニット6は、相互に通信可能な複数の電子制御ユニットにより構成されていてもよい。
 推定処理ユニット6は、記憶部62に実装されるプログラムにより実現される機能、又はハードウェア構成により実現される機能構成として、ロール角速度推定部11、補正値算出部12、ピッチ角推定部13、ロール角推定値算出部14を有する。
 図3は、推定処理ユニット6における各機能構成の処理の内容を説明するブロック線図であり、図3において、「S」は微分演算を示し、「1/S」は積分演算を示すものとする。
 (ロール角速度推定部11)
 図3のST31はロール角速度推定部11の処理内容を示すブロック線図である。ロール角速度推定部11には、x軸角速度(ωx)及びz軸角速度(ωz)、cosφ、及びtanθが入力される。ロール角速度推定部11は入力された信号に基づいて車体101のロール角速度φdot(ロール角φの時間変化率)を推定する。ここで、x軸角速度(ωx)及びz軸角速度(ωz)は、慣性センサユニット3のx軸角速度センサ5x及びz軸角速度センサ5zにより検出された検出信号に基づくものである。
 また、cosφは、前回の演算処理周期において、ロール角推定値算出部14の演算処理で推定された前回値のロール角(φ)に基づく余弦関数値である。また、tanθは、前回の演算処理周期において、ピッチ角推定部13の演算処理で推定された前回値のピッチ角(θ)に基づく正接関数値である。
 ロール角速度推定部11における処理を数式で示すと、ロール角速度φdot(=dφ/dt)は、以下の(1)式で近似することができる。
 φdot ≒ ωx+cosφ・tanθ・ωz   ・・・(1)
 ロール角速度推定部11は、この式(1)を基本式として、ロール角速度φdotの推定値を算出する。ロール角速度推定部11は、各演算処理周期において、慣性センサユニット3の検出信号に基づくx軸角速度ωxの検出値(今回値)及びz軸角速度ωzの検出値(今回値)を取得する。また、ロール角速度推定部11は、前回の演算処理周期において、ロール角推定値算出部14及びピッチ角推定部13により各々算出されたロール角φの推定値(前回値φ)及びピッチ角θの推定値(前回値θ)を取得する。
 そして、ロール角速度推定部11は、z軸角速度ωzの検出値(今回値)、z軸角速度ωzの検出値(今回値)、ロール角φの推定値(前回値φ)及びピッチ角θの推定値(前回値θ)を用いて、式(1)の右辺の演算を行うことによって、ロール角速度φの推定値を算出する。
 (ピッチ角推定部13)
 図3のST33はピッチ角推定部13の処理内容を示すブロック線図である。ピッチ角推定部13には、車速V、cosθ、x軸加速度(ax)が入力される。ピッチ角推定部13は入力された信号に基づいて車体101のピッチ角θを推定する。
 ここで、車速Vは、前輪車輪速からの演算および車速センサ2から出力される二輪車両100の後輪の回転速度に応じた検出信号に基づくものである。また、cosθは、前回の演算処理周期において、ピッチ角推定部13の演算処理で推定された前回値のピッチ角(θ)に基づく余弦関数値である。また、x軸加速度(ax)は、慣性センサユニット3のx軸加速度センサ4xにより検出された検出信号に基づくものである。
 ロール角速度推定部11における処理を数式で示すと、ロール角速度φdotは、以下の(2)式で近似することができる。
 θ=sin-1(Vdot・cosθ-ax)   ・・・(2)
 (2)式において、Vdotはグローバル座標系で見た車体101のX軸方向の車速Vの時間変化率(=dV/dt:X軸方向の加速度)である。ピッチ角推定部13は、この(2)式を基本式として、ピッチ角θの推定値を算出する。ピッチ角推定部13は、各演算処理周期において、車速センサ2の検出信号に基づく車速Vの時間変化率(今回値と前回値との間の時間変化率)、前回の演算処理周期でピッチ角推定部13により算出されたピッチ角θの推定値(前回値)、慣性センサユニット3のx軸加速度センサ4xの検出信号に基づくx軸加速度axの検出値(今回値)を取得する。
 そして、ピッチ角推定部13は、車速Vの時間変化率(今回値と前回値との間の時間変化率)、ピッチ角θの推定値(前回値)及びx軸加速度axの検出値(今回値)を用いて、式(2)の右辺の演算を行うことによって、ピッチ角θの推定値を算出する。
 (補正値算出部12)
 図3のST32は補正値算出部12の処理内容を示すブロック線図である。補正値算出部12は車体101のロール角φの推定値の誤差を低減するための補正値δを算出する。車体101のロール角φは、基本的には、ロール角速度推定部11で算出されたロール角速度φdotの推定値を積分することで推定することができるが、過渡状態の推定値を加味してロール角推定値の算出処理を行うと、誤差成分が累積して、ロール角の推定値の誤差が大きくなりやすくなる場合が生じ得る。このため、補正値算出部12は、算出した補正値δを出力する際に、二輪車両100の走行状態が、定常状態であるか、ドリフト状態やジャンプ状態等の非定常状態(過渡状態)であるか判定し、判定結果に応じて、補正値の出力ゲインK3の設定を変更する。
 補正値算出部12は、慣性センサユニット3により検出されたz軸周り方向の角速度の微分値の絶対値(時間変化率)に応じて設定した可変補正係数K3と、速度センサによる速度の検出値と、z軸角速度及びy軸加速度の各検出値と、ロール角の前回の推定値と、ピッチ角の前回の推定値とを用いて、車体のロール角の推定用の補正値を逐次算出する。
 補正値算出部12には、z軸角速度(ωz)、y軸加速度(ay_lyout:以下、ayと表記する)、cosθ、sinφ及び車速Vが入力される。ここで、z軸角速度(ωz)は、慣性センサユニット3のz軸角速度センサ5zにより検出された検出信号に基づくものである。y軸角速度(ay)は慣性センサユニット3のy軸加速度センサ4zにより検出された検出信号に基づくものである。cosθは前回の演算処理周期において、ピッチ角推定部13の演算処理で推定された前回値のピッチ角(θ)に基づく余弦関数値である。sinφは前回の演算処理周期において、ロール角推定値算出部14の演算処理で推定された前回値のロール角(φ)に基づく正弦関数値である。また、車速Vは、前輪車輪速からの演算および車速センサ2から出力される二輪車両100の後輪の回転速度に応じた検出信号に基づくものである。
 図4は定常旋回中における二輪車両100に作用する力を例示する図である。ST32のブロック線図における、Ayはグローバル座標系で見た車体101のY軸方向の加速度であり、遠心力によるY軸方向の加速度に相当するパラメータであり、次の(3)式で示される。
 Ay=ωz・V    ・・・(3)
 ST32のブロック線図における、ay_estmは、y軸加速度の推定値であり、慣性センサユニット3の検出信号に基づくz軸角速度ωzの検出値(今回値)と、前回の演算処理周期で推定されたピッチ角θの推定値(前回値)と、ロール角φの推定値(前回値)とを使用することで、以下の(4)式により、定常旋回中におけるy軸加速度の推定値ay_estmを算出することができる。(4)式において、gは重力加速度を示す。
 ay_estm=ωz・V+cosθ・sinφ・g   ・・・(4)
 ST32のブロック線図における、y軸加速度ayの値は、慣性センサユニット3のy軸加速度センサ4zで検出され、(4)式により算出されたy軸加速度の推定値ay_estmにロール角φの推定値の誤差が含まれていないとすると、以下の(5)式の関係が成立する。
 ay≒ωz・V+cosθ・sinφ・g           ・ ・・・(5)
 (5)式において、ayとay_estmとの偏差err(ay-ay_estm)は、定常状態においてロール角φの推定値の誤差に応じたものとなる。
 補正値算出部12は、偏差err(=ay-ay_estm)に可変補正係数値K3を乗算したバイアス偏差(K3・err)を算出する。ここで、可変補正係数K3は二輪車両100の走行状態に応じて可変に設定される係数値である。補正値算出部12は、慣性センサユニット3(検出ユニット)により検出された検出値に基づいて算出したパラメータ(例えば、z軸角速度(ωz)の微分値の絶対値や複数の加速度センサの検出値の合算値など)と閾値との比較により鞍乗型車両の走行状態を判定する状態判定部として機能する。補正値算出部12は判定結果に応じて設定された可変補正係数と、速度センサ及び慣性センサユニット3(検出ユニット)の検出値とに基づいて、車体のロール角の推定用の補正値を逐次算出する。すなわち、補正値算出部12は、判定結果に応じて設定された可変補正係数K3により乗算したバイアス偏差を用いて、車体のロール角の推定用の補正値δを以下の(6)式に基づいて逐次算出する。
 補正値算出部12は、(6)式に基づいて、定常状態における偏差err(=ay-ay_estm)を、ゼロに近づけるように補正値δを算出する。(6)式において、K1及びK2は予め設定された固定補正係数値である。固定補正係数K1、K2は二輪車両100の走行状態によらず、所定の定数値がそれぞれ設定されている。
 δ=K3・{K1・(ay-ay_estm)
      +K2・∫(ay-ay_estm)dt}    ・・・(6)
 (6)式において、固定補正係数K2の項は、通常の走行状態(定常状態)でロール角(φ)の推定値に含まれるゼロ点からのずれであるオフセット成分を補正するものである。
 可変補正係数K3は、二輪車両100の走行状態を示すパラメータに基づいて値を可変に設定可能な係数であり、走行状態を示すパラメータとしては、例えば、z軸角速度(ωz)の微分値の絶対値が含まれ、補正値算出部12は、z軸角速度(ωz)の微分値の絶対値(時間変化率)に応じて可変補正係数K3を設定することが可能である。
 図5は、可変補正係数K3の設定方法の流れを説明する図である。まず、ステップS51において、補正値算出部12は、各演算処理周期において、慣性センサユニット3の検出信号に基づいて、z軸角速度ωzの検出値(前回値)とz軸角速度ωzの検出値(今回値)とを取得する。
 そして、ステップS52において、補正値算出部12は、z軸角速度ωzの検出値(前回値)とz軸角速度ωzの検出値(今回値)との差分に基づいて、演算処理周期(ΔT)におけるz軸角速度ωzの微分値の絶対値(時間変化率)を算出する。
 ステップS53において、補正値算出部12は、算出したz軸角速度ωzの微分値の絶対値(時間変化率)と、予め設定された第1状態判定閾値(第1閾値)とを比較する。ここで、第1状態判定閾値(第1閾値)は、二輪車両100の走行状態が、ドリフト状態などの非定常状態(過渡状態)であるか否かを判定するための閾値であり、補正値算出部12は、z軸角速度ωzの微分値の絶対値(時間変化率)が第1状態判定閾値を超えた場合、二輪車両100の走行状態がドリフト状態などの過渡状態であると判定する。尚、第1状態判定閾値(第1閾値)を予め記憶部62に記憶しておき、演算処理の際に、補正値算出部12は、記憶部62から第1状態判定閾値(第1閾値)を取得することが可能である。
 ステップS53の判定で、z軸角速度ωzの微分値の絶対値(時間変化率)が第1状態判定閾値を超えた場合(S53―Yes)、補正値算出部12は、可変補正係数K3にゼロを設定する(K3=0)。
 補正値算出部12は、パラメータ(z軸角速度ωzの微分値の絶対値)が閾値を超える場合、補正値を低減するように可変補正係数K3を設定する。すなわち、z軸角速度ωzの微分値の絶対値(時間変化率)が第1状態判定閾値を超え、二輪車両100の走行状態が過渡状態と判定される場合には、補正値算出部12は、補正の効果をキャンセルするように可変補正係数K3の値にゼロを設定する。
 一方、ステップS53の判定で、z軸角速度ωzの微分値の絶対値(時間変化率)が第1状態判定閾値以下の場合(S53-No)、補正値算出部12は処理をステップS55に進める。
 そして、ステップS55において、補正値算出部12は時間変化率に応じた可変補正係数K3を設定することが可能である。補正値算出部12はz軸角速度ωzの微分値の絶対値(時間変化率)の増加に応じて補正値δを低減するように可変補正係数K3を設定する。
 可変補正係数K3を設定する場合に、z軸角速度ωzの微分値の絶対値と対応する可変補正係数K3とを予め対応付けたテーブル600を記憶部62(ROM62a)に記憶させておくことも可能である。この場合、補正値算出部12は記憶部62のテーブルを参照して、算出したz軸角速度ωzの微分値の絶対値(時間変化率)に対応する可変補正係数K3をテーブル600から取得して、(6)式に設定し、テーブルから取得した可変補正係数K3を乗算した補正値δを出力することも可能である。
 図6は記憶部62(ROM62a)のテーブル600を例示する図である。図6に示すように、z軸角速度ωz(ヨーレート)の微分値の絶対値として複数の値(ωz_dot_1,ωz_dot_2, ωz_dot_3,・・・ωz_dot_6)が設定されている。微分値の絶対値はωz_dot_1の値が小さく、ωz_dot_2,ωz_dot_3, ωz_dot_4, ωz_dot_5・・・と増加していき、ωz_dot_6で第1閾値(第1状態判定閾値)を超えるものとする。
 また、テーブル600には、可変補正係数K3として、複数の値(K3_1、K3_2、K3_3・・・)が、z軸角速度ωz(ヨーレート)の微分値の絶対値に対応づけられている。テーブル600において、z軸角速度ωz(ヨーレート)の微分値の絶対値(時間変化率)の増加に応じて、可変補正係数K3の値は小さくなるように設定されている。すなわち、K3_1→K3_2→K3_3→K3_4→K3_5の順に設定値は小さくなり、第1状態判定閾値を超えたz軸角速度ωz(ヨーレート)の微分値の絶対値に対しては、ゼロが設定されている(K3_6=0)。可変補正係数K3にゼロを設定することにより、補正値δを算出する(6)式の計算結果はゼロになり、ロール角φの推定演算に対する補正値δの出力をキャンセルすることができる。
 尚、テーブル600の設定例は、例示的なものであり、この例に限定されるものではない。また、二輪車両100の走行状態を示すパラメータとしては、z軸角速度(ωz)の微分値の絶対値に限定されるものではなく、例えば、慣性センサユニット3に含まれる複数の加速度センサ(図2の4x、4y、4z)の加速度の検出値を組み合わせた合算値に基づいて、二輪車両100の走行状態がジャンプ状態などの過渡状態であるか否かを判定することも可能である。
 この場合、補正値算出部12は、パラメータとして慣性センサユニット3(検出ユニット)により検出された複数の加速度センサの加速度の検出値の合算値と、予め設定された第2状態判定閾値(第2閾値)とを比較する。ここで、第2状態判定閾値(第2閾値)は、二輪車両100の走行状態が、ジャンプ状態などの非定常状態(過渡状態)であるか否かを判定するための閾値であり、補正値算出部12は、複数の加速度センサの加速度の検出値の合算値が第2状態判定閾値(第2閾値)を超えた場合、二輪車両100の走行状態がジャンプ状態などの過渡状態(非定常状態)であると判定し、補正値算出部12は可変補正係数K3にゼロを設定する(K3=0)。可変補正係数K3にゼロが設定されることにより、補正値δを算出する(6)式の計算結果はゼロになり、ロール角φの推定演算に対する補正値δの出力をキャンセルすることができる。第2状態判定閾値(第2閾値)を予め記憶部62に記憶しておき、演算処理の際に、補正値算出部12は、記憶部62から第2状態判定閾値(第2閾値)を取得することが可能である。
 一方、複数の加速度センサの加速度の検出値の合算値が第2状態判定閾値(第2閾値)以下の場合、補正値算出部12は二輪車両100の走行状態を定常状態と判定し、可変補正係数K3の値として1を設定する。この場合、補正値算出部12は(6)式に基づいて補正値δを演算し、補正値算出部12はこの演算結果をロール角推定値算出部14に入力する。
 (ロール角推定値算出部14)
 図3のST34はロール角推定値算出部14の処理内容を示すブロック線図である。ロール角推定値算出部14には、ロール角速度φdotの推定値と、補正値δとが入力される。ロール角推定値算出部14はロール角速度推定部11によるロール角速度φdotの推定値と補正値算出部12による補正値δの算出値とに基づいて、ロール角φの推定値を算出する。ロール角推定値算出部14は、各演算処理周期において、補正値算出部12で算出された補正値δ(今回値)に基づいて、ロール角速度推定部11で算出されたロール角速度φdotの推定値(今回値)を補正した値(=φdot-δ)を積分することによって、補正後のロール角φの推定値を算出する。
 <実施形態のまとめ>
 上記実施形態は、少なくとも以下の構成を開示する。
 構成1.上記実施形態の車体姿勢検出装置は、鞍乗型車両(例えば、図1の100)の車体(図1の101)に固定された座標系として、前記車体の前後方向に延在するx軸と、前記車体の車幅方向に延在するy軸と、前記車体の上下方向に延在するz軸とを有する前記車体のロール角を逐次推定する車体姿勢検出装置(例えば、図2の1)であって、
 前記車体の走行方向の速度を検出する速度センサ(例えば、図2の2)と、
 前記x軸、前記y軸及び前記z軸の方向の並進加速度を検出する各軸に対応した複数の加速度センサ(例えば、図2の4x、4y、4z)と、前記x軸周り方向の角速度及び前記z軸周り方向の角速度を検出する各軸に対応した複数の角速度センサ(例えば、図2の5x、5z)と、を有する検出ユニット(例えば、図2の3)と、
 前記車体のピッチ角を逐次推定するピッチ角推定手段(例えば、図2の13)と、
 前記車体のロール角速度を逐次推定するロール角速度推定手段(例えば、図2の11)と、
 前記検出ユニットにより検出された検出値に基づいて算出したパラメータと閾値との比較により前記鞍乗型車両の走行状態を判定する状態判定手段(例えば、図2の12)と、
 前記状態判定手段の判定に応じて設定された可変補正係数と、前記速度センサ及び前記検出ユニットの検出値とに基づいて、前記車体のロール角の推定用の補正値を逐次算出する補正値算出手段(例えば、図2の12)と、
 前記ロール角速度の推定値を前記補正値に基づいて補正した値を積分することにより前記車体の現在のロール角の推定値を算出するロール角推定値算出手段(例えば、図2の14)と、を備え、
 前記補正値算出手段(12)は、前記パラメータが前記閾値を超える場合、前記補正値を低減するように前記可変補正係数(K3)を設定する。
 構成1の車体姿勢検出装置によれば、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出し、算出した補正値に基づいてロール角を推定することが可能になる。
 構成2.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記可変補正係数と、前記速度センサによる前記速度の検出値と、前記検出ユニットによるz軸角速度及びy軸加速度の各検出値と、前記ロール角の前回の推定値と、前記ピッチ角の前回の推定値とを用いて、前記補正値を算出する。
 構成3.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記パラメータとして前記検出ユニットにより検出された前記z軸周り方向の角速度の時間変化率を算出し、前記閾値として第1閾値を取得し、
 前記時間変化率と前記第1閾値との比較に基づいて前記可変補正係数(K3)を設定する。
 構成2及び構成3の車体姿勢検出装置によれば、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出することが可能になる。
 構成4.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記時間変化率が前記第1閾値を超えた場合、前記補正値をゼロにするように前記可変補正係数の値をゼロに設定する。
 構成4の車体姿勢検出装置によれば、時間変化率が第1閾値を超えた場合には、車両の走行状態がドリフト状態などの過渡状態として、補正値をゼロにするように可変補正係数の値を、K3=0に設定することで、過渡状態における補正値の出力をキャンセルすることができる。これにより、逐次演算におけるロール角の推定値の誤差を低減し、より推定精度の向上を図ることが可能になる。
 構成5.上記実施形態の車体姿勢検出装置では、前記z軸周り方向の角速度の時間変化率と、前記可変補正係数の値とを記憶する記憶手段(例えば、図2の62、62a)を更に備え、
 前記補正値算出手段(12)は、算出した前記時間変化率が閾値以下の場合に、当該時間変化率に対応する前記可変補正係数を前記記憶手段(62、62a)から取得し、
 前記記憶手段(62、62a)から取得した前記可変補正係数を乗算した補正値を出力する。
 構成6.上記実施形態の車体姿勢検出装置では、前記記憶手段(62、62a)は、前記時間変化率の増加に応じて、値が小さくなるように設定されている前記可変補正係数を記憶する。
 構成5及び構成6の車体姿勢検出装置によれば、記憶手段を参照して時間変化率に対応する可変補正係数を設定することにより、逐次演算による処理の高速化を図りつつ、逐次演算におけるロール角の推定値の誤差を低減し、より推定精度の向上を図ることが可能になる。
 構成7.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記パラメータとして前記検出ユニット(3)により検出された前記複数の加速度センサ(4x、4y、4z)の検出値の合算値を算出し、前記閾値として第2閾値を取得し、
 前記合算値と前記第2閾値との比較に基づいて前記可変補正係数を設定する。
 構成7の車体姿勢検出装置によれば、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出することが可能になる。
 構成8.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記合算値が前記第2閾値を超えた場合、前記補正値をゼロにするように前記可変補正係数の値をゼロに設定する。
 構成8の車体姿勢検出装置によれば、合算値が第2閾値を超えた場合には、車両の走行状態がジャンプ状態などの過渡状態として、補正値をゼロにするように可変補正係数の値を、K3=0に設定することで、過渡状態における補正値をキャンセルすることができる。これにより、逐次演算におけるロール角の推定値の誤差を低減し、より推定精度の向上を図ることが可能になる。
 構成9.上記実施形態の車体姿勢検出装置では、前記補正値算出手段(12)は、前記合算値が前記第2閾値以下の場合、前記可変補正係数の値として1を設定する。
 構成9の車体姿勢検出装置によれば、車両の走行状態に応じて設定した可変補正係数を用いて補正値を算出することが可能になる。
 構成10.上記実施形態の車体姿勢検出装置では、前記ピッチ角推定手段(13)は、前記速度センサ(2)による前記速度の検出値と、前記検出ユニット(3)によるx軸加速度の検出値と、前記ピッチ角の前回の推定値とを用いて現在のピッチ角の推定値を算出する。
 構成10の車体姿勢検出装置によれば、速度センサ及び検出ユニット(慣性センサユニット)の検出値と、ピッチ角の前回の推定値とに基づいて、現在のピッチ角の推定値を算出することが可能になる。
 構成11.上記実施形態の車体姿勢検出装置では、前記ロール角速度推定手段(11)は、前記検出ユニットによるx軸角速度及びz軸角速度の各検出値と、前記ロール角の前回の推定値と、前記ピッチ角推定手段によるピッチ角の前回の推定値とを用いて現在のロール角速度の推定値を算出する。
 構成11の車体姿勢検出装置によれば、前記検出ユニットの検出値とロール角の前回の推定値と、ピッチ角の前回の推定値とを用いて現在のロール角速度の推定値を算出することが可能になる。
 構成12.上記実施形態の鞍乗型車両では、上記の構成1乃至構成11のいずれか一つの構成に記載の車体姿勢検出装置を備える。
 構成12の鞍乗型車両によれば、車両の走行状態を示す角速度の時間変化率の増加に応じて補正値を低減するように可変補正係数を設定して、ロール角を推定することが可能な車体姿勢検出装置を備える鞍乗型車両を提供することができる。
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
 本願は、2019年9月27日提出の日本国特許出願特願2019-177713を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
 1:車体姿勢検出装置、2:車速センサ、3:慣性センサユニット、
 11:ロール角速度推定部、12:補正値算出部(状態判定部)、
 13:ピッチ角推定部、14:ロール角推定値算出部

Claims (12)

  1.  鞍乗型車両の車体に固定された座標系として、前記車体の前後方向に延在するx軸と、前記車体の車幅方向に延在するy軸と、前記車体の上下方向に延在するz軸とを有する前記車体のロール角を逐次推定する車体姿勢検出装置であって、
     前記車体の走行方向の速度を検出する速度センサと、
     前記x軸、前記y軸及び前記z軸の方向の並進加速度を検出する各軸に対応した複数の加速度センサと、x軸周り方向の角速度及びz軸周り方向の角速度を検出する各軸に対応した複数の角速度センサと、を有する検出ユニットと、
     前記車体のピッチ角を逐次推定するピッチ角推定手段と、
     前記車体のロール角速度を逐次推定するロール角速度推定手段と、
     前記検出ユニットにより検出された検出値に基づいて算出したパラメータと閾値との比較により前記鞍乗型車両の走行状態を判定する状態判定手段と、
     前記状態判定手段の判定に応じて設定された可変補正係数と、前記速度センサ及び前記検出ユニットの検出値とに基づいて、前記車体のロール角の推定用の補正値を逐次算出する補正値算出手段と、
     前記ロール角速度の推定値を前記補正値に基づいて補正した値を積分することにより前記車体の現在のロール角の推定値を算出するロール角推定値算出手段と、を備え、
     前記補正値算出手段は、前記パラメータが前記閾値を超える場合、前記補正値を低減するように前記可変補正係数を設定することを特徴とする車体姿勢検出装置。
  2.  前記補正値算出手段は、前記可変補正係数と、前記速度センサによる前記速度の検出値と、前記検出ユニットによるz軸角速度及びy軸加速度の各検出値と、前記ロール角の前回の推定値と、前記ピッチ角の前回の推定値とを用いて、前記補正値を算出することを特徴とする請求項1に記載の車体姿勢検出装置。
  3.  前記補正値算出手段は、前記パラメータとして前記検出ユニットにより検出された前記z軸周り方向の角速度の時間変化率を算出し、前記閾値として第1閾値を取得し、
     前記時間変化率と前記第1閾値との比較に基づいて前記可変補正係数を設定することを特徴とする請求項1または2に記載の車体姿勢検出装置。
  4.  前記補正値算出手段は、前記時間変化率が前記第1閾値を超えた場合、前記補正値をゼロにするように前記可変補正係数の値をゼロに設定することを特徴とする請求項3に記載の車体姿勢検出装置。
  5.  前記z軸周り方向の角速度の時間変化率と、前記可変補正係数の値とを記憶する記憶手段を更に備え、
     前記補正値算出手段は、前記時間変化率に対応する前記可変補正係数を前記記憶手段から取得し、
     前記記憶手段から取得した前記可変補正係数を乗算した補正値を出力することを特徴とする請求項2乃至4のいずれか1項に記載の車体姿勢検出装置。
  6.  前記記憶手段は、前記時間変化率の増加に応じて、値が小さくなるように設定されている前記可変補正係数を記憶することを特徴とする請求項5に記載の車体姿勢検出装置。
  7.  前記補正値算出手段は、前記パラメータとして前記検出ユニットにより検出された前記複数の加速度センサの検出値の合算値を算出し、前記閾値として第2閾値を取得し、
     前記合算値と前記第2閾値との比較に基づいて前記可変補正係数を設定することを特徴とする請求項1または2に記載の車体姿勢検出装置。
  8.  前記補正値算出手段は、前記合算値が前記第2閾値を超えた場合、前記補正値をゼロにするように前記可変補正係数の値をゼロに設定することを特徴とする請求項7に記載の車体姿勢検出装置。
  9.  前記補正値算出手段は、前記合算値が前記第2閾値以下の場合、前記可変補正係数の値として1を設定することを特徴とする請求項7に記載の車体姿勢検出装置。
  10.  前記ピッチ角推定手段は、前記速度センサによる前記速度の検出値と、前記検出ユニットによるx軸加速度の検出値と、前記ピッチ角の前回の推定値とを用いて現在のピッチ角の推定値を算出することを特徴とする請求項1に記載の車体姿勢検出装置。
  11.  前記ロール角速度推定手段は、前記検出ユニットによるx軸角速度及びz軸角速度の各検出値と、前記ロール角の前回の推定値と、前記ピッチ角推定手段によるピッチ角の前回の推定値とを用いて現在のロール角速度の推定値を算出することを特徴とする請求項1に記載の車体姿勢検出装置。
  12.  請求項1乃至11のいずれか1項に記載の車体姿勢検出装置を備えることを特徴とする鞍乗型車両。
PCT/JP2020/034631 2019-09-27 2020-09-14 車体姿勢検出装置及び鞍乗型車両 WO2021060038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020004554.4T DE112020004554T5 (de) 2019-09-27 2020-09-14 Körperhaltungsdetektionsvorrichtung und fahrzeug vom spreizsitz-typ
JP2021548808A JP7291231B2 (ja) 2019-09-27 2020-09-14 車体姿勢検出装置及び鞍乗型車両
US17/702,954 US20220212742A1 (en) 2019-09-27 2022-03-24 Body posture detection device and straddle type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177713 2019-09-27
JP2019177713 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,954 Continuation US20220212742A1 (en) 2019-09-27 2022-03-24 Body posture detection device and straddle type vehicle

Publications (1)

Publication Number Publication Date
WO2021060038A1 true WO2021060038A1 (ja) 2021-04-01

Family

ID=75166663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034631 WO2021060038A1 (ja) 2019-09-27 2020-09-14 車体姿勢検出装置及び鞍乗型車両

Country Status (4)

Country Link
US (1) US20220212742A1 (ja)
JP (1) JP7291231B2 (ja)
DE (1) DE112020004554T5 (ja)
WO (1) WO2021060038A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088321A (ja) * 2019-12-06 2021-06-10 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh ライダー支援システム、及び、ライダー支援システムの制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189300A (ja) * 2014-03-27 2015-11-02 本田技研工業株式会社 車体のロール角推定装置
JP2015209106A (ja) * 2014-04-25 2015-11-24 ヤマハ発動機株式会社 ロール角推定装置および輸送機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134527B2 (ja) 2008-12-25 2013-01-30 川崎重工業株式会社 自動二輪車のバンク角検知装置およびヘッドランプ装置
JP7130321B2 (ja) 2018-03-30 2022-09-05 ダイハツ工業株式会社 電動パーキングブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189300A (ja) * 2014-03-27 2015-11-02 本田技研工業株式会社 車体のロール角推定装置
JP2015209106A (ja) * 2014-04-25 2015-11-24 ヤマハ発動機株式会社 ロール角推定装置および輸送機器

Also Published As

Publication number Publication date
DE112020004554T5 (de) 2022-06-09
JP7291231B2 (ja) 2023-06-14
JPWO2021060038A1 (ja) 2021-04-01
US20220212742A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US10330469B2 (en) Bank angle detection device for vehicle
EP2517941B1 (en) Roll angle estimation device and transport equipment
US10852315B2 (en) Ground speed detection device for vehicle
JP4281777B2 (ja) 傾斜角推定機構を有する移動体
JP5996572B2 (ja) 車体のロール角推定装置
US20170247038A1 (en) Method For Estimating A Vehicle Side Slip Angle, Computer Program Implementing Said Method, Control Unit Having Said Computer Program Loaded, And Vehicle Comprising Said Control Unit
US9321498B2 (en) Method of estimating mounting angle error of gyroscopes by using a turning device, and corresponding turning device
JP2004224172A (ja) 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置
JP5919889B2 (ja) 車両姿勢制御装置
JP6604175B2 (ja) ピッチ角速度補正値算出装置、姿勢角算出装置およびピッチ角速度補正値算出方法
WO2021060038A1 (ja) 車体姿勢検出装置及び鞍乗型車両
JP2004150973A (ja) 車両用加速度検出装置
US10981617B2 (en) Inverted pendulum type vehicle
EP3583021B1 (en) System for estimating the slope of a pedal-assisted bicycle
JP2021142969A5 (ja)
JP2014070939A (ja) 車両の操舵角演算装置
JP6632727B2 (ja) 角度計測装置
JP5692516B2 (ja) 車体すべり角推定装置および車両姿勢制御装置
JP5521943B2 (ja) 車両の総重量推定装置
JP6409625B2 (ja) 車両位置算出装置
JP6454857B2 (ja) 姿勢検出装置及び姿勢検出方法
JP6187310B2 (ja) 倒立型移動体
JP6056142B2 (ja) 車両姿勢判定装置
JPS6288666A (ja) 車両運動状態量演算装置
JP2023000164A (ja) 車両挙動演算装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548808

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20868597

Country of ref document: EP

Kind code of ref document: A1