WO2021059937A1 - Dicing device and method - Google Patents

Dicing device and method Download PDF

Info

Publication number
WO2021059937A1
WO2021059937A1 PCT/JP2020/033741 JP2020033741W WO2021059937A1 WO 2021059937 A1 WO2021059937 A1 WO 2021059937A1 JP 2020033741 W JP2020033741 W JP 2020033741W WO 2021059937 A1 WO2021059937 A1 WO 2021059937A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
jig
dicing
shape
division line
Prior art date
Application number
PCT/JP2020/033741
Other languages
French (fr)
Japanese (ja)
Inventor
邦義 武田
健夫 對馬
浩則 深谷
裕介 新井
翼 清水
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020149028A external-priority patent/JP6912745B1/en
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to CN202080061320.1A priority Critical patent/CN114340846B/en
Priority to KR1020217041965A priority patent/KR102411860B1/en
Publication of WO2021059937A1 publication Critical patent/WO2021059937A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a dicing device and a method, and relates to a dicing device and a method for dividing a workpiece (hereinafter referred to as a work) such as a wafer on which a semiconductor device or an electronic component is formed into individual chips.
  • a work such as a wafer on which a semiconductor device or an electronic component is formed into individual chips.
  • a dicing device that divides a work such as a wafer on which a semiconductor device or an electronic component is formed into individual chips includes a blade that is rotated at high speed by a spindle, a work table that attracts and holds the work, and a work table and a blade. It includes X, Y, Z and ⁇ drive units that change their relative positions. In the dicing device, dicing (cutting) is performed by cutting the blade into the work while relatively moving the blade and the work by each drive unit.
  • the work When dicing the work, the work is sucked and fixed to the jig, and the work division line and the jig groove of the jig are aligned. As a result, the work can be completely divided by cutting the blade deeply so as to penetrate the work.
  • Patent Documents 1 and 2 disclose that when the work is to be aligned with the scheduled division line of the work, the work is retracted from the jig and then replaced. Specifically, the jig groove and the planned division line are detected from the images before and after the work is placed on the jig, and the position between the jig groove position of the jig and the position of the planned division line of the work is reached. Calculate the amount of deviation. Next, the work is retracted from the jig, the work or the jig is moved to correct the amount of deviation, and then the work is placed back on the jig. As a result, the scheduled division line and the jig groove are aligned.
  • (1) and (2) can be considered as factors that cause the blade and the jig to interfere with each other during dicing.
  • Patent Documents 1 and 2 the amount of deviation between the position of the jig groove of the jig and the position of the line to be divided of the work is calculated, and the work is retracted from the jig and repositioned to perform alignment. There is. According to Patent Documents 1 and 2, the amount of deviation due to the carry-in error of (1) can be calculated from the images before and after the work is placed on the jig, and the amount of deviation can be corrected by repositioning. .. However, in Patent Documents 1 and 2, it takes time and effort to retract the work from the jig and replace it, which leads to a loss of time. Therefore, there is a problem that the throughput of the dicing apparatus is lowered.
  • the present invention has been made in view of such circumstances, and a dicing apparatus and method capable of preventing interference between a blade and a jig during dicing processing and ensuring throughput can be provided.
  • the purpose is to provide.
  • the dicing apparatus is used for dicing a jig for sucking and holding a work and a work sucked and held by the jig along a planned division line.
  • a machined part including a blade for processing and dividing, and a measurement result of the shape of the work before dicing, and based on the measurement result, the blade thickness along the planned division line is obtained.
  • a control unit for aligning the work and the jig is provided so that a line having a corresponding thickness fits in the jig groove of the jig, and the control unit is separated from the cross point of the planned division line on the surface of the work.
  • the inclination of the planned division line is detected from the detection results of at least two patterns formed at the above positions, the position of the cross point is calculated from the inclination of the planned division line, and the work is performed from the inclination of the planned division line and the position of the cross point. Calculate the amount of distortion of.
  • the dicing apparatus further includes a pre-alignment unit for measuring the shape of the work, and the control unit obtains the measurement result of the shape of the work from the pre-alignment unit. get.
  • the control unit acquires the measurement result of the shape of the work from the external device for prealignment for measuring the shape of the work.
  • control unit has all the lines of the thickness corresponding to the blade thickness along the planned division line of the jig. Align the work piece and the jig so that they fit in the jig groove.
  • the control unit divides the work into a plurality of divided areas, and the blades along the planned division line included in the divided areas. Align the work piece with the jig so that the line with the thickness corresponding to the blade thickness of the tool fits in the jig groove of the jig.
  • a shape measurement step for measuring the shape of the work and a measurement result of the shape of the work are acquired, and based on the measurement result, a line along a scheduled division line of the work is used.
  • the shape measurement step was formed on the surface of the work at a position away from the cross point of the planned division line, including a step of sucking and holding the work with a jig and dicing the work along the planned division line.
  • a step of detecting the inclination of the planned division line from the detection results of at least two patterns, a step of calculating the position of the cross point from the inclination of the planned division line, and a distortion of the work from the inclination of the planned division line and the position of the cross point. Includes a step to calculate the quantity.
  • the shape of the work is measured by the pre-alignment unit provided in the dicing device in the shape measurement step, and from the pre-alignment unit in the alignment step. , Obtain the measurement result of the shape of the work.
  • the dicing method according to the eighth aspect of the present invention measures the shape of the work by an external device for prealignment different from the dicing device in the shape measurement step in the sixth aspect, and externally in the alignment step. Obtain the measurement result of the shape of the work from the device.
  • the position of the planned division line is measured in advance and the alignment is performed so that the blade and the jig can be aligned. Interference can be prevented.
  • FIG. 1 is a plan view showing a dicing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a control system of the dicing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a plan view for explaining pattern matching in measuring the shape of the work.
  • FIG. 4 is a plan view for explaining pattern matching in measuring the shape of the work.
  • FIG. 5 is a plan view for explaining a pattern search method (spiral search operation) using a microscope.
  • FIG. 6 is a plan view showing another embodiment of the handler arm.
  • FIG. 7 is a plan view (before alignment) showing the machining stage and the work.
  • FIG. 8 is a plan view (after alignment) showing the machining stage and the work.
  • FIG. 7 is a plan view (before alignment) showing the machining stage and the work.
  • FIG. 9 is an enlarged perspective view showing a jig provided on the surface of the processing stage.
  • FIG. 10 is a plan view showing a cutting state of the work.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG.
  • FIG. 12 is a plan view showing a comparative example.
  • FIG. 13 is a flowchart showing a dicing method according to the first embodiment of the present invention.
  • FIG. 14 is a plan view showing a case where the cross marks on the planned division line are arranged apart from each other in the Y direction with respect to the pattern.
  • FIG. 15 is a plan view showing an example in which the planned division line is tilted with respect to the example of FIG. FIG.
  • FIG. 16 is a plan view showing a case where the cross marks on the planned division line are arranged apart from each other in the XY directions with respect to the pattern.
  • FIG. 17 is a plan view showing an example in which the planned division line is tilted with respect to the example of FIG.
  • FIG. 18 is a flowchart showing a procedure for calculating the position of the scheduled division line.
  • FIG. 19 is a plan view showing an example in which the left and right patterns and the distance to the cross mark are different.
  • FIG. 20 is a plan view showing an example in which the left and right patterns and the distance to the cross mark are different.
  • FIG. 21 is a plan view for explaining the dicing method according to the second embodiment of the present invention.
  • FIG. 21 is a plan view for explaining the dicing method according to the second embodiment of the present invention.
  • FIG. 22 is a flowchart showing a dicing method according to the second embodiment of the present invention.
  • FIG. 23 is a flowchart showing a dicing process for each divided area in FIG. 22.
  • FIG. 24 is a plan view showing a dicing apparatus according to a third embodiment of the present invention.
  • FIG. 25 is a block diagram showing a control system of the dicing apparatus according to the third embodiment of the present invention.
  • FIG. 1 is a plan view showing a dicing apparatus according to the first embodiment of the present invention
  • FIG. 2 is a block diagram showing a control system of the dicing apparatus according to the first embodiment of the present invention.
  • the dicing apparatus 1 includes a pre-alignment unit 10 for measuring the shape of the work W and a processing unit 20 for dicing the work W.
  • the shape of the work W is measured in the prealignment unit 10 before the dicing process, and the work W in the processing unit 20 is measured based on the measurement result of the measurement of the shape of the work W.
  • the jig J1 is aligned with the jig groove G1 (see FIGS. 7 to 11).
  • the handler 50 is used to carry the work W into the pre-alignment unit 10, move the work W between the pre-alignment unit 10 and the processing unit 20, and carry out the work W from the processing unit 20.
  • the handler 50 includes a handler axis 52, a handler arm 54, and a handler drive unit 56.
  • the handler axis 52 extends in the Y direction and holds the handler arm 54 so as to be movable along the Y direction and the Z direction.
  • the handler arm 54 attracts and holds the work W.
  • the handler drive unit 56 includes a power source (for example, a motor) for moving the handler arm 54 in the Y direction.
  • a ball screw mechanism in which the handler shaft 52 is provided with a ball screw and the handler arm 54 is provided with a nut or the like to be screwed with the ball screw, a rack and pinion mechanism, or the like. It is possible to use a mechanism capable of reciprocating linear motion.
  • the control system of the dicing device 1 includes a control unit 100, an input unit 102, and a display unit 104.
  • the control system of the dicing device 1 can be realized by a general-purpose computer such as a personal computer or a microcomputer.
  • the control unit 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device (for example, a hard disk, etc.) and the like.
  • various programs such as a control program stored in the ROM are expanded in the RAM, and the program expanded in the RAM is executed by the CPU to realize the functions of each unit of the dicing device 1.
  • the input unit 102 includes an operation member (for example, a keyboard, a pointing device, etc.) for receiving an operation input from the user.
  • an operation member for example, a keyboard, a pointing device, etc.
  • the display unit 104 is a device that displays a GUI (Graphical User Interface) or the like for operating the dicing device 1, and includes, for example, a liquid crystal display.
  • GUI Graphic User Interface
  • the prealigned portion 10 and the processed portion 20 of the dicing apparatus 1 will be described below.
  • a three-dimensional Cartesian coordinate system will be used for convenience.
  • the prealignment unit 10 includes a prealignment stage ST0, a microscope MS1, a prealignment stage drive unit 12, and an MS drive unit 14.
  • the work W is attracted and held by the handler arm 54, carried into the prealignment unit 10, and placed on the prealignment stage ST0.
  • a jig J1 (see FIGS. 7 to 11) for sucking and holding the work W is provided on the surface of the prealignment stage ST0, and the work W is sucked and held on the prealignment stage ST0 by the jig J1. Will be done.
  • the prealignment stage drive unit 12 includes a motor that rotates the prealignment stage ST0 in the ⁇ 0 direction, and a vacuum source (vacuum generator, for example, an ejector, a pump) for sucking air and attracting the work W to the prealignment stage ST0. Etc.) and is included.
  • a vacuum source vacuum generator, for example, an ejector, a pump
  • the MS drive unit 14 includes a power source (for example, a motor) for moving the microscope MS1 along the X0 axis and the MS1 axis.
  • a power source for example, a motor
  • a mechanism for moving the microscope MS1 for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
  • the microscope MS1 captures an image of the surface of the work W adsorbed and held by the prealignment stage ST0.
  • the surface image of the work W taken by the microscope MS1 is transmitted to the control unit 100.
  • the microscope MS1 is moved along the X0 axis and the MS1 axis, but the prealignment stage ST0 may be moved, or both the microscope MS1 and the prealignment stage ST0 are moved. You may let it.
  • the control unit 100 performs image processing on the surface image of the work W received from the microscope MS1 and measures the position of the scheduled division line of the work W. For example, the control unit 100 performs pattern matching on the surface image of the work W received from the microscope MS1. Then, the control unit 100 detects the repeating pattern or alignment mark (hereinafter referred to as pattern M1) of the semiconductor device or electronic component formed on the surface of the work W, thereby detecting the position of the scheduled division line of the work W (hereinafter referred to as the pattern M1). For example, the coordinates of the intersection and the end point) are measured. As a result, the shape of the work W is measured.
  • pattern M1 repeating pattern or alignment mark
  • 3 and 4 are plan views for explaining pattern matching in measuring the shape of the work.
  • the intersection (pattern M1) of substantially all scheduled division lines CL1 of the work W is detected by pattern matching with respect to the image taken by the microscope MS1. According to the example shown in FIG. 3, it is possible to align the work W scheduled division line CL1 and the jig groove G1 of the jig J1 with high accuracy.
  • a part of the work W pattern M1 (for example, points at four corners) is detected. Also in the example shown in FIG. 4, when the dicing process is performed along the scheduled division line CL1, the alignment can be performed so that the scheduled division line CL1 and the jig groove G1 of the jig J1 do not interfere with each other.
  • the pattern M1 can be increased or decreased according to the required alignment accuracy.
  • Patent Documents 1 and 2 since it is necessary to perform pattern matching for alignment at least twice before and after repositioning, the time required for alignment of the work W becomes long. In particular, as shown in FIG. 3, when a large number of patterns M1 to be detected are set, the efficiency of dicing processing is significantly reduced. On the other hand, according to the present embodiment, even when a large number of patterns M1 to be detected are set, the shape of the work W is measured only once in the prealignment unit 10, so that the pattern matching time is required. Can be shortened, and a decrease in the efficiency of dicing processing can be suppressed.
  • FIG. 5 is a plan view for explaining a pattern search method (spiral search operation) using a microscope.
  • the pattern M1 may not be included in the field of view V1 of the microscope MS1 when the microscope MS1 is moved to the position of the pattern M1 on the design of the work W.
  • the microscope MS1 is moved in the X0 direction and the MS1 direction to sequentially search the periphery of the field of view V1. This makes it possible to detect the pattern M1.
  • the processing unit 20 can perform alignment without performing the spiral search operation as described above.
  • the processing unit 20 includes a first stage ST1, a second stage ST2, a first stage drive unit 22-1, a second stage drive unit 22-2, a processing drive unit 26, a microscope MS2, an MS drive unit 28, and a first spindle 30. -1, 2nd spindle 30-2, 1st blade 32-1 and 2nd blade 32-2 are included.
  • the work W whose shape has been measured in the pre-alignment unit 10 is attracted and held by the handler arm 54, carried into the processing unit 20, and placed on the first stage ST1 or the second stage ST2. Similar to the prealignment stage ST0, a jig for sucking and holding the work W is provided on the surface of the first stage ST1 or the second stage ST2.
  • W workpieces being conveyed
  • W0 workpieces adsorbed and held by the prealignment stage ST0, the first stage ST1 and the second stage ST2
  • W0, W1 and W2 respectively.
  • the first stage drive unit 22-1 includes a motor for rotating the first stage ST1 in the ⁇ 1 direction and a pump for sucking air and sucking the work W to the first stage ST1.
  • the second stage drive unit 22-2 includes a motor for rotating the second stage ST2 in the ⁇ 2 direction and a pump for sucking air and sucking the work W to the second stage ST2.
  • the processing unit 20 is provided with two stages (first stage ST1 and second stage ST2), but the processing unit 20 may have one stage.
  • the pre-alignment unit 10 dedicated to shape measurement is provided separately from the processing unit 20, but the present invention is not limited to this.
  • the processing unit 20 has two stages, one of the stages of the processing unit 20 may also be used as the pre-alignment unit 10 without providing the pre-alignment unit 10 dedicated to shape measurement.
  • the machining of the work is not completed in the second stage ST2 even though the shape measurement of the work W1-1 is completed in the first stage ST1.
  • the situation is possible. In this case, if only one work can be held by the handler arm 54, the work W1-1 whose shape has been measured cannot be processed until the second stage ST2 becomes empty. Therefore, a waiting time occurs between the measurement of the shape in the first stage ST1 and the start of machining in the second stage ST2, which causes a decrease in tact.
  • the handler arm 54A provided with a mechanism for holding a plurality of (two pieces) of the workpieces W1-1 and W1-2, the work W-1 is vacant after the shape is measured.
  • the shape of the work W-2 can be measured.
  • the shape of the work can be measured all at once, and no empty stage is generated, so that the stage can be effectively used.
  • the first blade 32-1 and the second blade 32-2 are attached to the first spindle 30-1 and the second spindle 30-2, respectively.
  • the first spindle 30-1 and the second spindle 30-2 include a high frequency motor for rotating the first blade 32-1 and the second blade 32-2 at high speed, respectively.
  • the first blade 32-1 and the second blade 32-2 are, for example, disk-shaped cutting blades.
  • a diamond abrasive grain or an electrodeposition blade obtained by electrodepositing CBN (Cubic Boron Nitride) abrasive grains with nickel, a resin blade obtained by bonding with a resin, or the like is used. It is possible.
  • the first blade 32-1 and the second blade 32-2 can be replaced according to the type and size of the work W to be processed, the processing content, and the like.
  • the first stage ST1 and the second stage ST2 have the same configuration. Therefore, in the following description, the first stage drive unit 22-1 and the second stage drive unit 22-2 are the machining stage drive unit 22, the first spindle 30-1 and the second spindle 30-2 are the spindle 30, and the second spindle 30-2.
  • the 1st blade 32-1 and the 2nd blade 32-2 may be collectively referred to as the blade 32.
  • the machining drive unit 26 includes a motor for moving the first spindle 30-1 and the second spindle 30-2 along the machining axis (Y axis).
  • the MS drive unit 28 includes a power source (for example, a motor) for moving the microscope MS2 along the X1 axis, the X2 axis, and the MS2 axis.
  • a power source for example, a motor
  • a mechanism for moving the microscope MS2 for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
  • the microscope MS2 captures images of the surfaces of the workpieces W1 and W2 adsorbed and held in the first stage ST1 and the second stage ST2.
  • the surface images of the works W1 and W2 taken by the microscope MS2 are transmitted to the control unit 100.
  • the microscope MS2 is moved along the X1 axis, the X2 axis, and the MS2 axis, but the first stage ST1 and the second stage ST2 may be moved, or the microscope MS2, The first stage ST1 and the second stage ST2 may be moved.
  • the first stage ST1 and the second stage ST2 may be referred to as a machining stage ST.
  • the control unit 100 performs image processing on the surface images of the workpieces W1 and W2 received from the microscope MS2, and is provided on the planned division lines of the workpieces W1 and W2 and the surfaces of the first stage ST1 and the second stage ST2. Align with the jig.
  • the X0, X1 and X2 axes are parallel to the X axis
  • the handler axis 52, MS1 axis, MS2 axis and processing axis are parallel to the Y axis.
  • the X0 axis and the MS1 axis of the prealignment unit 10 and the X1 axis and the X2 axis and the MS2 axis of the processing unit 20 can be provided independently of each other.
  • FIG. 7 and 8 are plan views showing a machining stage and a work. 7 and 8 show the states before and after the alignment between the machining stage ST and the work W is performed, respectively. Further, FIG. 9 is an enlarged perspective view showing a jig provided on the surface of the processing stage.
  • a division schedule line CL1 for dividing a semiconductor device, an electronic component, or the like formed on the work W into individual chips is provided on the surface of the work W.
  • a jig (suction pad) J1 is provided on the surface of the processing stage ST so as to have a one-to-one correspondence with the tip of the work W.
  • Jig J1 is the surface of the work stage ST, at predetermined intervals W G, (it is bonded) by being mounted side by side along the XY direction.
  • the space between the jigs J1 is referred to as a jig groove G1.
  • the jig J1 is replaced according to the type of workpiece W to be processed and the size and contents of the machining or the like, the width W G is the width (edge thickness) of the blade 32 of Chigumizo G1 wider than W B Is used.
  • the planar shape of the jig J1 is substantially rectangular in the examples shown in FIGS. 7 and 8, but it can be changed according to the shape of the chip. As shown in FIG. 8, the size of the jig J1 in a plan view is smaller than the size of the chip.
  • the jig J1 is made of rubber, for example, and has a tubular shape (square tubular shape) with the upper side (+ Z side) open and the bottom closed, as shown in FIG.
  • a suction hole H1 is formed on the bottom surface of the jig J1 and is used between the work W and the jig J1 by using the pump of the first stage drive unit 22-1 or the second stage drive unit 22-2. By sucking air, the work W is attracted and held on the processing stage ST.
  • the shape of the jig J1 is not limited to the tubular shape.
  • the jig J1 may be created, for example, by dicing a plate-shaped rubber having a plurality of suction holes H1 formed therein.
  • the control unit 100 When the work W is loaded on the machining stage ST, alignment is performed based on the position of the scheduled division line CL1 measured by the pre-alignment unit 10 as shown in FIG. More specifically, the control unit 100, X of the workpiece W to fit into the line of the thickness W B along the dividing lines CL1 measured in the pre-alignment unit 10 all corresponding Chigumizo G1, Y coordinates And the rotation angle ( ⁇ 1 or ⁇ 2) of the machining stage ST is calculated. Then, the control unit 100 adjusts the relative position between the handler arm 54 and the machining stage ST based on the calculated X and Y coordinates and the rotation angle ( ⁇ 1 or ⁇ 2), and aligns the work W with the jig groove G1. To attract the work W to the jig J1.
  • the line of the thickness W B along the dividing lines CL1 has to perform the alignment to fit into all the corresponding Chigumizo G1
  • the present invention is not limited thereto.
  • only a part of the planned division line CL1 for example, the two planned division lines CL X11 and CL X42 closest to the two opposing sides of the work W in the X direction, and the two opposing sides of the work W in the Y direction).
  • the two planned division lines closest to In the example shown in FIG.
  • the scheduled division line CL1 is distributed substantially linearly according to the strain of the work W. Therefore, for example, even if the alignment is performed so that the two scheduled division lines CL1 closest to the two opposite sides of the work W in the Y direction fit into the corresponding jig groove G1, the other scheduled division lines CL1 correspond. It is possible to fit in the jig groove G1.
  • FIG. 10 is a plan view showing a cutting state of the work
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG.
  • FIG. 12 is a plan view showing a comparative example.
  • the alignment as lines CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1 Do. Thereby, the interference between the blade 32 and the jig J1 can be prevented.
  • FIG. 13 is a flowchart showing a dicing method according to the first embodiment of the present invention.
  • control unit 100 controls the handler arm 54 and carries it into the prealignment unit 10. Then, the control unit 100 loads the work W on the prealignment stage ST0, and the pump of the prealignment stage drive unit 12 sucks and holds the work W on the prealignment stage ST0.
  • control unit 100 takes an image of the work W using the microscope MS1 and performs pattern matching of the image of the work W to detect the pattern M1 of the work W. Then, the control unit 100 measures the shape of the work W based on the position (distribution) of the pattern M1 (step S10: shape measurement step).
  • control unit 100 controls the prealignment stage drive unit 12 to release the suction state of the work W. Then, the control unit 100 controls the handler arm 54 to carry out the work W from the pre-alignment unit 10 and load the work W into the processing stage ST of the processing unit 20. At this time, the control unit 100 aligns the work W with the jig groove G1 of the jig J1 using the measurement result of the shape of the work W in step S10, controls the machining stage drive unit 22, and performs machining. The work W is sucked and held on the stage ST (step S12: alignment step). The alignment in step S12 is performed by, for example, any of the following (A) to (C).
  • control unit 100 performs alignment to fit into line CT1 Thickness W B along the dividing lines CL1 are all corresponding Chigumizo G1.
  • the control unit 100 is the two lines CL X11 and CL X42 (see FIG. 8) closest to the two opposite sides of the work W in the X direction, or the Y of the work W (B2).
  • Scheduled division lines closest to the two opposite sides at both ends of the direction In the example shown in FIG. 8, since the work W is divided into four division areas A1 to A4, a total of eight scheduled division lines CL Y11 and CL Y12 , alignment to fit into the CL Y21, CL Y22, CL Y31 , CL Y32, CL Y41 and CL Y42) the line CT1 of thickness W B along the corresponding Chigumizo G1.
  • the planned division lines CL Y11 , CL Y21 , CL Y31 and CL Y41 and the planned division lines CL Y12 , CL Y22 , CL Y32 and CL Y42 are each cut by one scan, so that each line is one. It may be treated as a planned division line.
  • the control unit 100 determines whether it is possible to alignment to fit into Chigumizo G1 which line CT1 of thickness W B along the dividing lines CL1 of the part of the all corresponding.
  • the part of the planned division line CL1 is, for example, (C1) the planned division lines (CL X11 and CL X42 and CL Y11 , CL Y12 , CL Y21 , CL Y22 , CL Y31 , which are closest to the four sides of the work W.
  • CL Y32 , CL Y41 and CL Y42 (C2) Two scheduled split lines CL1 or (C3) including the two scheduled split lines CL X11 and CL X42 closest to the two opposite sides of the work W in the X direction.
  • Multiple scheduled division lines CL1 including CL Y11 , CL Y12 , CL Y21 , CL Y22 , CL Y31 , CL Y32 , CL Y41 and CL Y42, which are the closest to the two opposite sides of the work W in the Y direction. Is.
  • control unit 100 moves the blade 32 along the scheduled division line CL1 of the work W attracted and held by the machining stage ST to perform dicing machining (step S14).
  • the blade 32 is aligned by measuring the position of the scheduled division line CL1 in advance. And the jig J1 can be prevented from interfering with each other.
  • FIG. 14 is a plan view showing a case where the cross marks on the planned division line are arranged apart from the pattern in the Y direction
  • FIG. 15 is a plan view in which the planned division line is tilted with respect to the example of FIG. It is a top view which shows an example.
  • the cross mark is omitted for convenience of illustration.
  • the scheduled division line CL1 is parallel to the X-axis, and a substantially cross is formed on the surface of the work W at a position dY away (offset) from the scheduled division line CL1 to the ⁇ Y side.
  • the shape pattern P1 is arranged.
  • the planned division line CL1 is a tangent line tangent to a circle C1 having a diameter dY centered on the center point (cross point) of each of the two patterns P1, and the contact point between the planned division line CL1 and the circle C1 is scheduled to be divided in the XY direction. It becomes the cross mark CM1 which is the intersection of the lines CL1.
  • the scheduled division line CL1 has a pattern as in the example shown in FIG. It is defined as the tangent of the circle C1 with radius dY centered on the cross point of P1.
  • FIG. 16 is a plan view showing a case where the cross marks on the planned division line are arranged apart from the pattern in the XY direction, and FIG. 17 shows the planned division line tilted with respect to the example of FIG. It is a top view which shows an example.
  • the scheduled division line CL1 is parallel to the X axis, and on the surface of the work W, dX is separated (offset) from the planned division line CL1 to the ⁇ X side and the ⁇ Y side.
  • a substantially cross-shaped pattern P1 is arranged at the position).
  • the planned division line CL1 is a tangent line tangent to a circle C1 having a diameter dY centered on the center point (cross point) of each of the two patterns P1, and is dX away from the contact point between the planned division line CL1 and the circle C1 in the + X direction.
  • the position is the cross mark CM1.
  • the scheduled division line CL1 has a pattern as in the example shown in FIG. It is defined as the tangent of the circle C1 with radius dY centered on the cross point of P1.
  • a plurality of scheduled division lines CL1 are obtained as described above. That is, at least two patterns P1 corresponding to the scheduled division line CL1 are detected to obtain the angle component d ⁇ , and the planned division line CL1 is obtained based on the angle component d ⁇ .
  • the strain amount of the work W is calculated based on the coordinates (X, Y) (hereinafter referred to as reference coordinates) of the cross mark CM1 obtained for the plurality of dividing lines. Specifically, a two-dimensional map of the correction amount with respect to the reference coordinates is created from the reference coordinates (X, Y) obtained for the plurality of division lines CL1 and the design coordinates. Then, the strain amount of the work W for each reference coordinate is calculated by the interpolation method or the like.
  • the strain amount of the work W is calculated from the reference coordinates (X, Y) and the slope d ⁇ of the plurality of scheduled division lines CL1, but the present invention is not limited to this.
  • a two-dimensional map for the XY coordinates of the pattern P1 may be created from the design value and the measured value of the coordinates of each pattern P1, and the strain amount of the work W for each reference coordinate may be calculated by an interpolation method or the like.
  • the amount of distortion at each reference coordinate is added to the amount of offset between the pattern P1 and the cross mark CM1, and the reference position (X, Y) is recalculated.
  • the machining position of the scheduled division line CL1 can be detected with high accuracy by obtaining the cross mark CM1 after obtaining the slope d ⁇ of the scheduled division line CL1.
  • the interference between the blade 32 and the jig J1 can be checked with high accuracy.
  • FIG. 18 is a flowchart showing a procedure for calculating the position of the scheduled division line.
  • control unit 100 takes an image of the work W using the microscope MS1. Then, the control unit 100 performs pattern matching of the image of the work W, detects at least two (one pair) patterns P1 for each scheduled division line CL1 from the image captured by the microscope MS1, and detects the scheduled division line CL1. The slope d ⁇ of is detected (step S100).
  • control unit 100 calculates the reference coordinates (X, Y) of the cross mark CM1 of the scheduled division line CL1 by the above equations (1) and (2) (step S102).
  • the amount of strain of the work W is calculated from the reference coordinates (X, Y) and the slope d ⁇ of the plurality of scheduled division lines CL1 (step S104).
  • step S106 based on the strain amount of the work W obtained in step S104, the position of each scheduled division line CL1 is recalculated to accurately obtain the machining position (step S106).
  • the cross mark CM1 on the scheduled division line is arranged apart from the pattern P1 in the Y direction or the XY direction has been described. It is also applicable when they are arranged apart in the direction. That is, in FIG. 15, the slope d ⁇ of the line segment connecting the two cross points is calculated assuming that the radius of the circle C1 centered on the cross point of the pattern P1 is zero. Then, assuming that the cross mark CM1 is located at a position dX away from the X axis rotated by d ⁇ in the ⁇ direction, the position of the cross mark CM1 can be calculated with high accuracy by obtaining the coordinates of the cross mark CM1. it can.
  • the line CT1 of thickness W B along the dividing lines CL1 performs an alignment to fit into all the corresponding Chigumizo G1.
  • the present embodiment in which only a part of the line CT1 of the lines CT1 Thickness W B along the dividing lines CL1 repeats alignment to fit into the Chigumizo G1.
  • FIG. 21 is a plan view for explaining the dicing method according to the second embodiment of the present invention.
  • line CT1 of thickness W B along the dividing lines CL1 can not perform an alignment to fit into all the corresponding Chigumizo G1. Therefore, the work W is divided into a plurality of divided areas A1 to A4, and alignment and dicing are performed for each of the divided areas A1 to A4.
  • the scheduled division line CL1 included in the division area A1 is aligned with the jig groove G1 of the jig J1.
  • a portion of the line CT1 of thickness W B along the dividing lines CL1 is interfering with the jig J1.
  • dicing processing is performed on the scheduled division line CL1 included in the division area A1.
  • the chip included in the divided area A1 is separated from the work W.
  • the suction state of the work W is released, and the work W composed of the divided areas A2 to A4 is pulled up by the handler arm 54 to be sucked and held.
  • the dividing lines CL1 included in divided area A2 the alignment such as lines CT1 Thickness W B along the dividing lines CL1 falls in all jig groove of the corresponding tool group JG2 G1.
  • dicing processing is performed on the scheduled division line CL1 included in the division area A2.
  • the chip included in the divided area A2 is separated from the work W.
  • the division areas A3 and A4 are also sequentially aligned and diced. Accordingly, even when the line CT1 of thickness W B along the dividing lines CL1 can not perform an alignment to fit into all the corresponding Chigumizo G1, the blade 32 and the jig J1 Dicing can be performed while preventing interference.
  • Alignment of each divided area A1 to A4 with the jig groove G1 of the jig J1 can be performed by the following ⁇ A> to ⁇ C>.
  • ⁇ B> For each division area A1 to A4, two planned division lines CL X11 and CL X12 , CL X21 and CL X22 , CL X31 and CL X32 , and CL X41 and CL X42 , or CL X41 and CL X42 at both ends in the ⁇ B1> X direction.
  • ⁇ B2> 2 this dividing line CL in the Y direction across Y11 and CL Y12, CL Y21 and CL Y22, CL Y31 and CL Y32 and CL Y41 and the line CT1 of thickness W B along the CL Y42 all corresponding Align so that it fits in the jig groove G1.
  • the part of the planned division lines CL1 is, for example, in the ⁇ C1> division areas A1 to A4, each of the four planned division lines (CL X11 , CL X12 , CL Y11 and CL Y12 , CL) closest to the four sides.
  • the machining stage drive unit 22 may be able to release the suction state for each of the divided areas A1 to A4, for example.
  • the tip of the jig group JG1 corresponding to the divided area A1 is kept sucked and held.
  • the suction state is released, and the work W composed of the divided areas A2 to A4 is pulled up from the machining stage ST by the handler arm 54.
  • the remaining divided areas A2 to A4 may be diced in the same procedure, and the chips may be collected when all the divided areas A1 to A4 are diced.
  • the chip separated from the work W by the dicing process may be collected.
  • the number of divided areas is four, but the present invention is not limited to this.
  • the work W is divided along the X direction, it may be divided in the Y direction or both the X direction and the Y direction.
  • the work W may be divided in a direction in which the distortion is larger.
  • FIG. 22 is a flowchart showing a dicing method according to the second embodiment of the present invention.
  • FIG. 23 is a flowchart showing a dicing process for each divided area in FIG. 22.
  • control unit 100 takes an image of the work W using the microscope MS1 and performs pattern matching of the image of the work W to detect the pattern M1 of the work W. Then, the control unit 100 measures the shape of the work W based on the position (distribution) of the pattern M1 (step S20).
  • step S22 determines whether or not it is possible to align all the scheduled division lines CL1 of the work W with the jig groove G1 based on the measurement result of the shape of the work W (step S22).
  • step S22 it is determined whether it is possible to perform the alignment as lines CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1.
  • the control unit 100 connects the scheduled division line CL1 of the work W and the jig groove G1. Alignment (step S24) and dicing (step S26) are performed. Since steps S24 and S26 are the same as steps S12 and S14 in FIG. 13, the description thereof will be omitted.
  • step S28 if it is determined in step S22 that it is impossible to align all the scheduled division lines CL1 of the work W with the jig groove G1, dicing is performed for each division area (step S28).
  • step S22 it was determined whether or not the alignment of (A) in step S12 of FIG. 13 was possible, but it may be determined whether or not the alignment of (B) or (C) is possible.
  • control unit 100 When dicing is performed for each division area, the control unit 100 first divides the work W into a plurality of (N) division areas A1, ..., AN based on the shape measurement result in step S20 (step S280). ).
  • the blade 32 and the jig J1 interfere with each other by repeatedly performing the alignment and the dicing process for each of the plurality of divided areas. Dicing can be performed while preventing the above.
  • the dicing device 1 includes a pre-alignment unit 10 for measuring the shape of the work W, but the present invention is not limited to this, and the pre-alignment unit 10 is different from the dicing device 1. It may be an external device.
  • FIG. 24 is a plan view showing the dicing device according to the third embodiment of the present invention
  • FIG. 25 is a block diagram showing a control system of the dicing device according to the third embodiment of the present invention.
  • the same reference numerals will be given to the same configurations as those in the above embodiment, and the description thereof will be omitted.
  • the dicing device 1-2 has a configuration in which the prealignment unit 10 is removed from the dicing device 1 according to the above embodiment. Then, in the present embodiment, the shape of the work W is measured by using the external device 70 for prealignment.
  • the external device 70 includes a pre-alignment stage ST3, a microscope MS3, a pre-alignment stage drive unit 72, an MS drive unit 74, and a control device 76.
  • the control device 76 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device (for example, a hard disk, etc.), and an input / output device (for example, an operation unit and a display unit for receiving operation input). Etc.) etc. are included.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage device for example, a hard disk, etc.
  • an input / output device for example, an operation unit and a display unit for receiving operation input.
  • Etc. etc.
  • the work W is carried into the external device 70 and placed on the prealignment stage ST3.
  • a jig J1 (see FIGS. 7 to 11) for sucking and holding the work W is provided on the surface of the prealignment stage ST3, and the work W is sucked and held on the prealignment stage ST3 by the jig J1. Will be done.
  • the prealignment stage drive unit 72 includes a motor that rotates the prealignment stage ST0 in the ⁇ 0 direction, and a vacuum source (vacuum generator, for example, an ejector, a pump) for sucking air and attracting the work W to the prealignment stage ST3. Etc.) and is included.
  • a vacuum source vacuum generator, for example, an ejector, a pump
  • the MS drive unit 74 includes a power source (for example, a motor) for moving the microscope MS3 along the X0 axis and the MS1 axis.
  • a power source for example, a motor
  • a mechanism for moving the microscope MS3 for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
  • the microscope MS3 captures an image of the surface of the work W adsorbed and held by the prealignment stage ST3.
  • the surface image of the work W taken by the microscope MS3 is transmitted to the control device 76.
  • the microscope MS3 is moved along the X0 axis and the MS3 axis, but the prealignment stage ST3 may be moved, or both the microscope MS3 and the prealignment stage ST3 are moved. You may let it.
  • the line scan camera may capture an image of the entire area of the work W to measure the shape of the work.
  • the control device 76 performs image processing on the surface image of the work W received from the microscope MS3, and measures the position of the scheduled division line of the work W. For example, the control device 76 performs pattern matching on the surface image of the work W received from the microscope MS3. Then, the control device 76 detects the repeating pattern or alignment mark (hereinafter referred to as pattern M1) of the semiconductor device or electronic component formed on the surface of the work W, thereby detecting the position of the scheduled division line of the work W (hereinafter referred to as pattern M1). For example, the coordinates of the intersection and the end point) are measured. As a result, the shape of the work W is measured. The control device 76 stores the data of the measurement result of the shape of the work W in association with the identification information of the work W (for example, ID (Identification), serial number, etc.).
  • ID Identity
  • serial number serial number
  • the control device 76 can communicate with the control unit 100 of the dicing device 1-2 via a network (for example, LAN (Local Area Network)).
  • the control device 76 transmits the data of the measurement result of the shape of the work W to the control unit 100.
  • the control device 76 attaches the identification information of the work W and transmits the data.
  • the control unit 100 acquires the measurement result of the shape of the work W from the control device 76 of the external device 70 via the network.
  • the control unit 100 controls the handler arm 54 at the time of dicing, and loads the work W to be processed into the processing stage ST of the processing unit 20.
  • the dicing device 1-2 includes a work collating unit 60.
  • the work collating unit 60 reads the identification information attached to the work W loaded on the machining stage ST.
  • the means for reading the identification information attached to the work W is not particularly limited.
  • a means for reading the identification information attached to the work W for example, a two-dimensional code (for example, a QR code (registered trademark)) including the identification information is attached to the work W, and the two-dimensional code is read.
  • a code reader may be used.
  • an IC (Integrated Circuit) tag in which identification information is recorded may be attached to the work W so that the IC tag can be read.
  • the identification information (number or the like) attached to the work W may be read by OCR (Optical Character Reader).
  • the control unit 100 reads out the data of the measurement result of the shape of the work W to be machined from the measurement result of the shape of the work W acquired from the external device 70 based on the identification information of the work W. Then, the control unit 100 aligns the work W with the jig groove G1 of the jig J1 by using the measurement result data as in the first and second embodiments, and the machining stage drive unit 22 To attract and hold the work W on the machining stage ST.
  • the time difference between the dicing process and the prealignment process (the time during which the processing unit 20 or the external device 70 is idle) is taken into consideration. It can be processed without any problem, and CoO (Cost of Ownership) can be maximized.
  • control unit 100 of the dicing device 1-2 and the control device 76 of the external device 70 can communicate with each other via a network, but the present invention is not limited to this.
  • the control unit 100 of the dicing device 1-2 and the control device 76 of the external device 70 may be directly connected by, for example, a cable (for example, USB (Universal Serial Bus) or the like), or cloud storage or removable media.
  • the data of the measurement result may be exchanged via.
  • the detection result of detecting at least two patterns P1 for each scheduled division line CL1 in the external device 70 is obtained. It may be transmitted to the control unit 100 of the dicing device 1-2, and the control unit 100 may perform the calculation shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

Provided are: a dicing device and method capable of preventing interference between a blade and a jig when performing dicing processing and also capable of securing throughput. The dicing method comprises: a form measurement step for measuring a form of a work (W); an alignment step of acquiring measurement results of the form of the work, and performing, on the basis of the acquired measurement result, alignment between the work and the jig such that a line (CT1) that follows an intended dividing line (CL1) of the work and that has a breadth corresponding to a blade width of a blade (32) for performing dicing processing of the work, fits within a jig groove (G1) of a jig (J1); and a step of adsorption holding of the work with a jig and for performing dicing processing of the work along the intended dividing line.

Description

ダイシング装置及び方法Dicing equipment and method
 本発明はダイシング装置及び方法に係り、半導体装置又は電子部品等が形成されたウェーハ等の被加工物(以下、ワークという。)を個々のチップに分割するダイシング装置及び方法に関する。 The present invention relates to a dicing device and a method, and relates to a dicing device and a method for dividing a workpiece (hereinafter referred to as a work) such as a wafer on which a semiconductor device or an electronic component is formed into individual chips.
 半導体装置又は電子部品等が形成されたウェーハ等のワークを個々のチップに分割するダイシング装置は、スピンドルによって高速に回転されるブレードと、ワークを吸着保持するワークテーブルと、ワークテーブルとブレードとの相対的位置を変化させるX、Y、Z及びθ駆動部とを備えている。ダイシング装置では、各駆動部によりブレードとワークとを相対的に移動させながら、ブレードをワークに切り込ませることによりダイシング加工(切削加工)する。 A dicing device that divides a work such as a wafer on which a semiconductor device or an electronic component is formed into individual chips includes a blade that is rotated at high speed by a spindle, a work table that attracts and holds the work, and a work table and a blade. It includes X, Y, Z and θ drive units that change their relative positions. In the dicing device, dicing (cutting) is performed by cutting the blade into the work while relatively moving the blade and the work by each drive unit.
 ワークのダイシング加工を行う場合、ワークを治具に吸着固定し、ワークの分割予定ラインと、治具の治具溝との位置合わせ(アライメント)を行う。これにより、ワークを貫通するようにブレードを深く切り込ませることにより、ワークを完全に分割することが可能になる。 When dicing the work, the work is sucked and fixed to the jig, and the work division line and the jig groove of the jig are aligned. As a result, the work can be completely divided by cutting the blade deeply so as to penetrate the work.
 治具を用いてワークのダイシング加工を行う場合、ワークの分割予定ラインの位置と治具溝の位置がずれると、ワークの分割予定ラインを検出し加工した結果、ブレードと治具とが干渉して治具の一部が削られてしまう。治具の一部が削られると、ワークを治具に吸着するときにエアがリークし、ワークを治具に安定的に吸着することが困難になる。また、治具の寿命が短くなり、治具の交換の頻度が増加してコストの上昇を招いたり、治具の切削により発生したゴミがクリーンルームの汚染の原因となるという問題がある。 When dicing a work using a jig, if the position of the work division schedule line and the position of the jig groove deviate from each other, the blade and the jig interfere with each other as a result of detecting and processing the work division schedule line. A part of the jig will be scraped. If a part of the jig is scraped, air leaks when the work is attracted to the jig, and it becomes difficult to stably attract the work to the jig. Further, there is a problem that the life of the jig is shortened, the frequency of jig replacement increases, which leads to an increase in cost, and dust generated by cutting the jig causes contamination of the clean room.
 特許文献1及び2には、ワークの分割予定ラインと治具溝との位置合わせを行う際に、ワークを治具から退避させた後に置き直すことが開示されている。具体的には、ワークを治具に載置する前後の画像から治具溝及び分割予定ラインをそれぞれ検出して、治具の治具溝の位置とワークの分割予定ラインの位置との間のずれ量を算出する。次に、ワークを治具から退避させ、ワーク又は治具を移動させてずれ量の補正を行った後に、ワークを治具に置き直す。これにより、分割予定ラインと治具溝とが位置合わせされる。 Patent Documents 1 and 2 disclose that when the work is to be aligned with the scheduled division line of the work, the work is retracted from the jig and then replaced. Specifically, the jig groove and the planned division line are detected from the images before and after the work is placed on the jig, and the position between the jig groove position of the jig and the position of the planned division line of the work is reached. Calculate the amount of deviation. Next, the work is retracted from the jig, the work or the jig is moved to correct the amount of deviation, and then the work is placed back on the jig. As a result, the scheduled division line and the jig groove are aligned.
特開2013-065603号公報Japanese Unexamined Patent Publication No. 2013-065603 特開2016-143861号公報Japanese Unexamined Patent Publication No. 2016-143861
 ダイシング加工時にブレードと治具とが干渉する要因としては、以下の(1)及び(2)が考えられる。
(1)ワークを加工部に搬入(ロード)して治具に吸着保持するときの搬入誤差。
(2)ワークの歪に起因する分割予定ラインのずれ。分割予定ラインの部分的なずれが累積して生じる累積ずれ。
The following (1) and (2) can be considered as factors that cause the blade and the jig to interfere with each other during dicing.
(1) Carry-in error when the work is carried (loaded) into the machined part and sucked and held on the jig.
(2) Deviation of the scheduled division line due to distortion of the work. Cumulative deviation caused by the accumulation of partial deviations of the planned division line.
 特許文献1及び2では、治具の治具溝の位置とワークの分割予定ラインの位置との間のずれ量を算出し、ワークを治具から退避させて置き直すことにより位置合わせを行っている。特許文献1及び2によれば、ワークを治具に載置する前後の画像から(1)の搬入誤差に起因するずれ量を算出し、置き直しによりずれ量の補正を行うことが可能になる。しかしながら、特許文献1及び2では、ワークを治具から退避させて置き直すために手間がかかり、時間のロスにつながる。このため、ダイシング装置のスループットが低下するという問題があった。 In Patent Documents 1 and 2, the amount of deviation between the position of the jig groove of the jig and the position of the line to be divided of the work is calculated, and the work is retracted from the jig and repositioned to perform alignment. There is. According to Patent Documents 1 and 2, the amount of deviation due to the carry-in error of (1) can be calculated from the images before and after the work is placed on the jig, and the amount of deviation can be corrected by repositioning. .. However, in Patent Documents 1 and 2, it takes time and effort to retract the work from the jig and replace it, which leads to a loss of time. Therefore, there is a problem that the throughput of the dicing apparatus is lowered.
 さらに、特許文献1及び2では、(2)のワークの歪に起因する分割予定ラインの部分的なずれの累積ずれが考慮されておらず、分割予定ラインの部分的なずれの累積ずれに起因するブレードと治具との干渉を防止することは困難であった。ダイシング加工時にブレードと治具との干渉が発生した場合、干渉が検出されるとエラーが発生し、ダイシング装置が停止することになる。エラーの発生によりダイシング装置が停止すると、スループットがさらに低下するという問題があった。 Further, in Patent Documents 1 and 2, the cumulative deviation of the partial deviation of the scheduled division line due to the distortion of the work in (2) is not taken into consideration, and the cumulative deviation of the partial deviation of the scheduled division line is caused. It was difficult to prevent the interference between the blade and the jig. If interference occurs between the blade and the jig during dicing, an error will occur if the interference is detected, and the dicing device will stop. If the dicing device is stopped due to the occurrence of an error, there is a problem that the throughput is further reduced.
 本発明はこのような事情に鑑みてなされたもので、ダイシング加工時におけるブレードと治具との干渉を防止することが可能であり、かつ、スループットを確保することが可能なダイシング装置及び方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a dicing apparatus and method capable of preventing interference between a blade and a jig during dicing processing and ensuring throughput can be provided. The purpose is to provide.
 上記課題を解決するために、本発明の第1の態様に係るダイシング装置は、ワークを吸着保持するための治具と、治具により吸着保持されたワークに対して分割予定ラインに沿ってダイシング加工を行って分割するためのブレードとを含む加工部と、ダイシング加工を行う前に、ワークの形状の測定結果を取得し、その測定結果に基づいて、分割予定ラインに沿うブレードの刃厚に対応する太さのラインが治具の治具溝に収まるように、ワークと治具とのアライメントを行う制御部とを備え、制御部は、ワークの表面において、分割予定ラインのクロスポイントから離れた位置に形成された少なくとも2つのパターンの検出結果から分割予定ラインの傾きを検出し、分割予定ラインの傾きから、クロスポイントの位置を算出し、分割予定ラインの傾き及びクロスポイントの位置からワークの歪量を算出する。 In order to solve the above problems, the dicing apparatus according to the first aspect of the present invention is used for dicing a jig for sucking and holding a work and a work sucked and held by the jig along a planned division line. A machined part including a blade for processing and dividing, and a measurement result of the shape of the work before dicing, and based on the measurement result, the blade thickness along the planned division line is obtained. A control unit for aligning the work and the jig is provided so that a line having a corresponding thickness fits in the jig groove of the jig, and the control unit is separated from the cross point of the planned division line on the surface of the work. The inclination of the planned division line is detected from the detection results of at least two patterns formed at the above positions, the position of the cross point is calculated from the inclination of the planned division line, and the work is performed from the inclination of the planned division line and the position of the cross point. Calculate the amount of distortion of.
 本発明の第2の態様に係るダイシング装置は、第1の態様において、ワークの形状を測定するためのプリアライメント部をさらに備え、制御部は、プリアライメント部から、ワークの形状の測定結果を取得する。 In the first aspect, the dicing apparatus according to the second aspect of the present invention further includes a pre-alignment unit for measuring the shape of the work, and the control unit obtains the measurement result of the shape of the work from the pre-alignment unit. get.
 本発明の第3の態様に係るダイシング装置は、第1の態様において、制御部は、ワークの形状を測定するためのプリアライメント用の外部装置から、ワークの形状の測定結果を取得する。 In the dicing device according to the third aspect of the present invention, in the first aspect, the control unit acquires the measurement result of the shape of the work from the external device for prealignment for measuring the shape of the work.
 本発明の第4の態様に係るダイシング装置は、第1から第3の態様のいずれかにおいて、制御部は、分割予定ラインに沿うブレードの刃厚に対応する太さのラインがすべて治具の治具溝に収まるように、ワークと治具とのアライメントを行う。 In the dicing apparatus according to the fourth aspect of the present invention, in any one of the first to third aspects, the control unit has all the lines of the thickness corresponding to the blade thickness along the planned division line of the jig. Align the work piece and the jig so that they fit in the jig groove.
 本発明の第5の態様に係るダイシング装置は、第1から第3の態様のいずれかにおいて、制御部は、ワークを複数の分割エリアに分割し、分割エリアに含まれる分割予定ラインに沿うブレードの刃厚に対応する太さのラインが治具の治具溝に収まるように、ワークと治具とのアライメントを行う。 In the dicing apparatus according to the fifth aspect of the present invention, in any one of the first to third aspects, the control unit divides the work into a plurality of divided areas, and the blades along the planned division line included in the divided areas. Align the work piece with the jig so that the line with the thickness corresponding to the blade thickness of the tool fits in the jig groove of the jig.
 本発明の第6の態様に係るダイシング方法は、ワークの形状を測定する形状測定ステップと、ワークの形状の測定結果を取得し、その測定結果に基づいて、ワークの分割予定ラインに沿うラインであって、ワークのダイシング加工を行うためのブレードの刃厚に対応する太さのラインが治具の治具溝に収まるように、ワークと治具とのアライメントを行うアライメントステップと、ワークを治具により吸着保持して、ワークに対して分割予定ラインに沿ってダイシング加工を行うステップとを含み、形状測定ステップは、ワークの表面において、分割予定ラインのクロスポイントから離れた位置に形成された少なくとも2つのパターンの検出結果から分割予定ラインの傾きを検出するステップと、分割予定ラインの傾きから、クロスポイントの位置を算出するステップと、分割予定ラインの傾き及びクロスポイントの位置からワークの歪量を算出するステップとを含む。 In the dicing method according to the sixth aspect of the present invention, a shape measurement step for measuring the shape of the work and a measurement result of the shape of the work are acquired, and based on the measurement result, a line along a scheduled division line of the work is used. There is an alignment step that aligns the work and the jig so that the line of the thickness corresponding to the blade thickness for dicing the work fits in the jig groove of the jig, and the work is cured. The shape measurement step was formed on the surface of the work at a position away from the cross point of the planned division line, including a step of sucking and holding the work with a jig and dicing the work along the planned division line. A step of detecting the inclination of the planned division line from the detection results of at least two patterns, a step of calculating the position of the cross point from the inclination of the planned division line, and a distortion of the work from the inclination of the planned division line and the position of the cross point. Includes a step to calculate the quantity.
 本発明の第7の態様に係るダイシング方法は、第6の態様において、形状測定ステップでは、ダイシング装置に備えられたプリアライメント部により、ワークの形状を測定し、アライメントステップでは、プリアライメント部から、ワークの形状の測定結果を取得する。 In the sixth aspect of the dicing method according to the seventh aspect of the present invention, the shape of the work is measured by the pre-alignment unit provided in the dicing device in the shape measurement step, and from the pre-alignment unit in the alignment step. , Obtain the measurement result of the shape of the work.
 本発明の第8の態様に係るダイシング方法は、第6の態様において、形状測定ステップでは、ダイシング装置とは別のプリアライメント用の外部装置により、ワークの形状を測定し、アライメントステップでは、外部装置から、ワークの形状の測定結果を取得する。 The dicing method according to the eighth aspect of the present invention measures the shape of the work by an external device for prealignment different from the dicing device in the shape measurement step in the sixth aspect, and externally in the alignment step. Obtain the measurement result of the shape of the work from the device.
 本発明によれば、ワークの歪に起因する分割予定ラインのずれが発生している場合であっても、分割予定ラインの位置を予め測定してアライメントを行うことにより、ブレードと治具との干渉を防止することができる。 According to the present invention, even when the planned division line is displaced due to the distortion of the work, the position of the planned division line is measured in advance and the alignment is performed so that the blade and the jig can be aligned. Interference can be prevented.
図1は、本発明の第1の実施形態に係るダイシング装置を示す平面図である。FIG. 1 is a plan view showing a dicing apparatus according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係るダイシング装置の制御系を示すブロック図である。FIG. 2 is a block diagram showing a control system of the dicing apparatus according to the first embodiment of the present invention. 図3は、ワークの形状の測定におけるパターンマッチングを説明するための平面図である。FIG. 3 is a plan view for explaining pattern matching in measuring the shape of the work. 図4は、ワークの形状の測定におけるパターンマッチングを説明するための平面図である。FIG. 4 is a plan view for explaining pattern matching in measuring the shape of the work. 図5は、顕微鏡を用いたパターンの探索方法(スパイラル探索動作)を説明するための平面図である。FIG. 5 is a plan view for explaining a pattern search method (spiral search operation) using a microscope. 図6は、ハンドラアームの別の実施形態を示す平面図である。FIG. 6 is a plan view showing another embodiment of the handler arm. 図7は、加工ステージとワークを示す平面図(アライメント前)である。FIG. 7 is a plan view (before alignment) showing the machining stage and the work. 図8は、加工ステージとワークを示す平面図(アライメント後)である。FIG. 8 is a plan view (after alignment) showing the machining stage and the work. 図9は、加工ステージの表面に設けられた治具を拡大して示す斜視図である。FIG. 9 is an enlarged perspective view showing a jig provided on the surface of the processing stage. 図10は、ワークの切削状況を示す平面図である。FIG. 10 is a plan view showing a cutting state of the work. 図11は、図10のXI-XI断面図である。FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 図12は、比較例を示す平面図である。FIG. 12 is a plan view showing a comparative example. 図13は、本発明の第1の実施形態に係るダイシング方法を示すフローチャートである。FIG. 13 is a flowchart showing a dicing method according to the first embodiment of the present invention. 図14は、分割予定ライン上のクロスマークがパターンに対してY方向に離れて配置されている場合を示す平面図である。FIG. 14 is a plan view showing a case where the cross marks on the planned division line are arranged apart from each other in the Y direction with respect to the pattern. 図15は、図14の例に対して分割予定ラインが傾いた例を示す平面図である。FIG. 15 is a plan view showing an example in which the planned division line is tilted with respect to the example of FIG. 図16は、分割予定ライン上のクロスマークがパターンに対してXY方向に離れて配置されている場合を示す平面図である。FIG. 16 is a plan view showing a case where the cross marks on the planned division line are arranged apart from each other in the XY directions with respect to the pattern. 図17は、図16の例に対して分割予定ラインが傾いた例を示す平面図である。FIG. 17 is a plan view showing an example in which the planned division line is tilted with respect to the example of FIG. 図18は、分割予定ラインの位置の算出手順を示すフローチャートである。FIG. 18 is a flowchart showing a procedure for calculating the position of the scheduled division line. 図19は、左右のパターンとクロスマークまでの距離が異なる例を示す平面図である。FIG. 19 is a plan view showing an example in which the left and right patterns and the distance to the cross mark are different. 図20は、左右のパターンとクロスマークまでの距離が異なる例を示す平面図である。FIG. 20 is a plan view showing an example in which the left and right patterns and the distance to the cross mark are different. 図21は、本発明の第2の実施形態に係るダイシング方法を説明するための平面図である。FIG. 21 is a plan view for explaining the dicing method according to the second embodiment of the present invention. 図22は、本発明の第2の実施形態に係るダイシング方法を示すフローチャートである。FIG. 22 is a flowchart showing a dicing method according to the second embodiment of the present invention. 図23は、図22における分割エリアごとのダイシング工程を示すフローチャートである。FIG. 23 is a flowchart showing a dicing process for each divided area in FIG. 22. 図24は、本発明の第3の実施形態に係るダイシング装置を示す平面図である。FIG. 24 is a plan view showing a dicing apparatus according to a third embodiment of the present invention. 図25は、本発明の第3の実施形態に係るダイシング装置の制御系を示すブロック図である。FIG. 25 is a block diagram showing a control system of the dicing apparatus according to the third embodiment of the present invention.
 以下、添付図面に従って本発明に係るダイシング装置及び方法の実施の形態について説明する。 Hereinafter, embodiments of the dicing apparatus and method according to the present invention will be described with reference to the accompanying drawings.
 [第1の実施形態]
 図1は、本発明の第1の実施形態に係るダイシング装置を示す平面図であり、図2は、本発明の第1の実施形態に係るダイシング装置の制御系を示すブロック図である。
[First Embodiment]
FIG. 1 is a plan view showing a dicing apparatus according to the first embodiment of the present invention, and FIG. 2 is a block diagram showing a control system of the dicing apparatus according to the first embodiment of the present invention.
 図1及び図2に示すように、本実施形態に係るダイシング装置1は、ワークWの形状の測定を行うプリアライメント部10と、ワークWのダイシング加工を行う加工部20を含んでいる。本実施形態に係るダイシング装置1では、ダイシング加工の前に、プリアライメント部10においてワークWの形状の測定を行い、ワークWの形状の測定の測定結果に基づいて、加工部20におけるワークWと治具J1の治具溝G1(図7から図11参照)とのアライメントを行う。 As shown in FIGS. 1 and 2, the dicing apparatus 1 according to the present embodiment includes a pre-alignment unit 10 for measuring the shape of the work W and a processing unit 20 for dicing the work W. In the dicing apparatus 1 according to the present embodiment, the shape of the work W is measured in the prealignment unit 10 before the dicing process, and the work W in the processing unit 20 is measured based on the measurement result of the measurement of the shape of the work W. The jig J1 is aligned with the jig groove G1 (see FIGS. 7 to 11).
 プリアライメント部10へのワークWの搬入、プリアライメント部10と加工部20との間のワークWの移動、加工部20からのワークWの搬出は、ハンドラ50を用いて行われる。ハンドラ50は、ハンドラ軸52、ハンドラアーム54及びハンドラ駆動部56を含んでいる。ハンドラ軸52は、Y方向に伸びており、ハンドラアーム54をY方向及びZ方向に沿って移動可能に保持する。ハンドラアーム54は、ワークWを吸着して保持する。ハンドラ駆動部56は、ハンドラアーム54をY方向に移動させるための動力源(例えば、モータ)を含んでいる。ハンドラアーム54をY方向に移動させるための機構としては、ハンドラ軸52にボールねじを設けて、ハンドラアーム54にボールねじと螺合するナット等を設けたボールねじ機構、又はラックアンドピニオン機構等の往復直線運動が可能な機構を用いることが可能である。 The handler 50 is used to carry the work W into the pre-alignment unit 10, move the work W between the pre-alignment unit 10 and the processing unit 20, and carry out the work W from the processing unit 20. The handler 50 includes a handler axis 52, a handler arm 54, and a handler drive unit 56. The handler axis 52 extends in the Y direction and holds the handler arm 54 so as to be movable along the Y direction and the Z direction. The handler arm 54 attracts and holds the work W. The handler drive unit 56 includes a power source (for example, a motor) for moving the handler arm 54 in the Y direction. As a mechanism for moving the handler arm 54 in the Y direction, a ball screw mechanism in which the handler shaft 52 is provided with a ball screw and the handler arm 54 is provided with a nut or the like to be screwed with the ball screw, a rack and pinion mechanism, or the like. It is possible to use a mechanism capable of reciprocating linear motion.
 図2に示すように、本実施形態に係るダイシング装置1の制御系は、制御部100、入力部102及び表示部104を含んでいる。ダイシング装置1の制御系は、例えば、パーソナルコンピュータ、マイクロコンピュータ等の汎用のコンピュータによって実現可能である。 As shown in FIG. 2, the control system of the dicing device 1 according to the present embodiment includes a control unit 100, an input unit 102, and a display unit 104. The control system of the dicing device 1 can be realized by a general-purpose computer such as a personal computer or a microcomputer.
 制御部100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、ストレージデバイス(例えば、ハードディスク等)等を含んでいる。制御部100では、ROMに記憶されている制御プログラム等の各種プログラムがRAMに展開され、RAMに展開されたプログラムがCPUによって実行されることにより、ダイシング装置1の各部の機能が実現される。 The control unit 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device (for example, a hard disk, etc.) and the like. In the control unit 100, various programs such as a control program stored in the ROM are expanded in the RAM, and the program expanded in the RAM is executed by the CPU to realize the functions of each unit of the dicing device 1.
 入力部102は、ユーザからの操作入力を受け付けるための操作部材(例えば、キーボード、ポインティングデバイス等)を含んでいる。 The input unit 102 includes an operation member (for example, a keyboard, a pointing device, etc.) for receiving an operation input from the user.
 表示部104は、ダイシング装置1の操作のためのGUI(Graphical User Interface)等を表示する装置であり、例えば、液晶ディスプレイを含んでいる。 The display unit 104 is a device that displays a GUI (Graphical User Interface) or the like for operating the dicing device 1, and includes, for example, a liquid crystal display.
 以下に、ダイシング装置1のプリアライメント部10及び加工部20について説明する。なお、以下の説明では、便宜上3次元直交座標系を用いる。 The prealigned portion 10 and the processed portion 20 of the dicing apparatus 1 will be described below. In the following description, a three-dimensional Cartesian coordinate system will be used for convenience.
 (プリアライメント部)
 プリアライメント部10では、ダイシング加工の前に、プリアライメント部10においてワークWの形状の測定が行われる。プリアライメント部10は、プリアライメントステージST0、顕微鏡MS1、プリアライメントステージ駆動部12及びMS駆動部14を含んでいる。
(Prealignment part)
In the pre-alignment unit 10, the shape of the work W is measured in the pre-alignment unit 10 before the dicing process. The prealignment unit 10 includes a prealignment stage ST0, a microscope MS1, a prealignment stage drive unit 12, and an MS drive unit 14.
 ワークWは、ハンドラアーム54により吸着保持されてプリアライメント部10に搬入され、プリアライメントステージST0に載置される。プリアライメントステージST0の表面には、ワークWを吸着保持するための治具J1(図7から図11参照)が設けられており、ワークWは、この治具J1によりプリアライメントステージST0に吸着保持される。 The work W is attracted and held by the handler arm 54, carried into the prealignment unit 10, and placed on the prealignment stage ST0. A jig J1 (see FIGS. 7 to 11) for sucking and holding the work W is provided on the surface of the prealignment stage ST0, and the work W is sucked and held on the prealignment stage ST0 by the jig J1. Will be done.
 プリアライメントステージ駆動部12は、プリアライメントステージST0をθ0方向に回転させるモータと、空気を吸引してワークWをプリアライメントステージST0に吸着するための真空源(真空発生器。例えば、エジェクタ、ポンプ等)とを含んでいる。 The prealignment stage drive unit 12 includes a motor that rotates the prealignment stage ST0 in the θ0 direction, and a vacuum source (vacuum generator, for example, an ejector, a pump) for sucking air and attracting the work W to the prealignment stage ST0. Etc.) and is included.
 MS駆動部14は、顕微鏡MS1をX0軸及びMS1軸に沿って移動させるための動力源(例えば、モータ)を含んでいる。顕微鏡MS1を移動させるための機構としては、例えば、ボールねじ又はラックアンドピニオン機構等の往復直線運動が可能な機構を用いることが可能である。 The MS drive unit 14 includes a power source (for example, a motor) for moving the microscope MS1 along the X0 axis and the MS1 axis. As a mechanism for moving the microscope MS1, for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
 顕微鏡MS1は、プリアライメントステージST0に吸着保持されたワークWの表面の画像を撮影する。顕微鏡MS1によって撮影されたワークWの表面画像は、制御部100に送信される。 The microscope MS1 captures an image of the surface of the work W adsorbed and held by the prealignment stage ST0. The surface image of the work W taken by the microscope MS1 is transmitted to the control unit 100.
 なお、本実施形態では、顕微鏡MS1をX0軸及びMS1軸に沿って移動させるようにしたが、プリアライメントステージST0を移動させるようにしてもよいし、顕微鏡MS1及びプリアライメントステージST0の両方を移動させるようにしてもよい。 In the present embodiment, the microscope MS1 is moved along the X0 axis and the MS1 axis, but the prealignment stage ST0 may be moved, or both the microscope MS1 and the prealignment stage ST0 are moved. You may let it.
 制御部100は、顕微鏡MS1から受信したワークWの表面画像に対して画像処理を行って、ワークWの分割予定ラインの位置を測定する。例えば、制御部100は、顕微鏡MS1から受信したワークWの表面画像に対してパターンマッチングを行う。そして、制御部100は、ワークWの表面に形成された半導体装置又は電子部品等の繰り返しパターン若しくはアライメントマーク(以下、パターンM1という。)を検出することにより、ワークWの分割予定ラインの位置(例えば、交点、端点の座標)を測定する。これにより、ワークWの形状が測定される。 The control unit 100 performs image processing on the surface image of the work W received from the microscope MS1 and measures the position of the scheduled division line of the work W. For example, the control unit 100 performs pattern matching on the surface image of the work W received from the microscope MS1. Then, the control unit 100 detects the repeating pattern or alignment mark (hereinafter referred to as pattern M1) of the semiconductor device or electronic component formed on the surface of the work W, thereby detecting the position of the scheduled division line of the work W (hereinafter referred to as the pattern M1). For example, the coordinates of the intersection and the end point) are measured. As a result, the shape of the work W is measured.
 図3及び図4は、ワークの形状の測定におけるパターンマッチングを説明するための平面図である。 3 and 4 are plan views for explaining pattern matching in measuring the shape of the work.
 図3に示す例では、顕微鏡MS1により撮影した画像に対するパターンマッチングにより、ワークWの略すべての分割予定ラインCL1の交点(パターンM1)の検出を行うものである。図3に示す例によれば、ワークWの分割予定ラインCL1と、治具J1の治具溝G1のアライメントを高精度で行うことが可能になる。 In the example shown in FIG. 3, the intersection (pattern M1) of substantially all scheduled division lines CL1 of the work W is detected by pattern matching with respect to the image taken by the microscope MS1. According to the example shown in FIG. 3, it is possible to align the work W scheduled division line CL1 and the jig groove G1 of the jig J1 with high accuracy.
 図4に示す例では、ワークWのパターンM1のうちの一部(例えば、4隅の点)の検出を行うものである。図4に示す例でも、分割予定ラインCL1に沿ってダイシング加工を行った場合に、分割予定ラインCL1と治具J1の治具溝G1とが干渉しないようにアライメントを行うことが可能になる。なお、パターンM1は、要求されるアライメントの精度に応じて増減させることが可能である。 In the example shown in FIG. 4, a part of the work W pattern M1 (for example, points at four corners) is detected. Also in the example shown in FIG. 4, when the dicing process is performed along the scheduled division line CL1, the alignment can be performed so that the scheduled division line CL1 and the jig groove G1 of the jig J1 do not interfere with each other. The pattern M1 can be increased or decreased according to the required alignment accuracy.
 特許文献1及び2では、置き直しの前後で少なくとも2回アライメントのためのパターンマッチングを行う必要があるため、ワークWのアライメントに要する時間が長くなる。特に、図3に示すように、検出対象のパターンM1が多く設定された場合には、ダイシング加工の効率が顕著に低下する。これに対して、本実施形態によれば、検出対象のパターンM1が多く設定された場合であっても、プリアライメント部10においてワークWの形状の測定を1回行うだけなので、パターンマッチングの時間を短縮することができ、ダイシング加工の効率の低下を抑えることができる。 In Patent Documents 1 and 2, since it is necessary to perform pattern matching for alignment at least twice before and after repositioning, the time required for alignment of the work W becomes long. In particular, as shown in FIG. 3, when a large number of patterns M1 to be detected are set, the efficiency of dicing processing is significantly reduced. On the other hand, according to the present embodiment, even when a large number of patterns M1 to be detected are set, the shape of the work W is measured only once in the prealignment unit 10, so that the pattern matching time is required. Can be shortened, and a decrease in the efficiency of dicing processing can be suppressed.
 図5は、顕微鏡を用いたパターンの探索方法(スパイラル探索動作)を説明するための平面図である。 FIG. 5 is a plan view for explaining a pattern search method (spiral search operation) using a microscope.
 ワークWの歪が大きい場合には、ワークWの設計上のパターンM1の位置に顕微鏡MS1を移動させた場合に、顕微鏡MS1の視野V1の中にパターンM1が入らない場合がある。この場合、図5に示すように、顕微鏡MS1をX0方向及びMS1方向に移動させて、視野V1の周辺を順次探索する。これにより、パターンM1の検出が可能になる。 When the strain of the work W is large, the pattern M1 may not be included in the field of view V1 of the microscope MS1 when the microscope MS1 is moved to the position of the pattern M1 on the design of the work W. In this case, as shown in FIG. 5, the microscope MS1 is moved in the X0 direction and the MS1 direction to sequentially search the periphery of the field of view V1. This makes it possible to detect the pattern M1.
 後述の加工部20では、顕微鏡MS2を用いてパターンM1の検出を行うときに、プリアライメント部10において測定した形状の測定結果を用いて顕微鏡MS2を移動させる。これにより、加工部20では、上記のようなスパイラル探索動作を行うことなく、アライメントを行うことが可能になる。 In the processing section 20, which will be described later, when the pattern M1 is detected using the microscope MS2, the microscope MS2 is moved using the measurement result of the shape measured by the prealignment section 10. As a result, the processing unit 20 can perform alignment without performing the spiral search operation as described above.
 (加工部)
 加工部20では、ワークWの形状の測定の測定結果に基づいて、ワークWのアライメントが行われ、ブレードダイシングが行われる。加工部20は、第1ステージST1、第2ステージST2、第1ステージ駆動部22-1、第2ステージ駆動部22-2、加工駆動部26、顕微鏡MS2、MS駆動部28、第1スピンドル30-1、第2スピンドル30-2、第1ブレード32-1及び第2ブレード32-2を含んでいる。
(process section)
In the processing unit 20, the work W is aligned and the blade dicing is performed based on the measurement result of the measurement of the shape of the work W. The processing unit 20 includes a first stage ST1, a second stage ST2, a first stage drive unit 22-1, a second stage drive unit 22-2, a processing drive unit 26, a microscope MS2, an MS drive unit 28, and a first spindle 30. -1, 2nd spindle 30-2, 1st blade 32-1 and 2nd blade 32-2 are included.
 プリアライメント部10において形状の測定が行われたワークWは、ハンドラアーム54により吸着保持されて加工部20に搬入され、第1ステージST1又は第2ステージST2に載置される。第1ステージST1又は第2ステージST2の表面には、プリアライメントステージST0と同様に、ワークWを吸着保持するための治具が設けられている。なお、以下の説明では、搬送中のワークをW、プリアライメントステージST0、第1ステージST1及び第2のステージST2に吸着保持されたワークをそれぞれW0、W1及びW2と記載する。 The work W whose shape has been measured in the pre-alignment unit 10 is attracted and held by the handler arm 54, carried into the processing unit 20, and placed on the first stage ST1 or the second stage ST2. Similar to the prealignment stage ST0, a jig for sucking and holding the work W is provided on the surface of the first stage ST1 or the second stage ST2. In the following description, the workpieces being conveyed are referred to as W, and the workpieces adsorbed and held by the prealignment stage ST0, the first stage ST1 and the second stage ST2 are referred to as W0, W1 and W2, respectively.
 第1ステージ駆動部22-1は、第1ステージST1をθ1方向に回転させるモータと、空気を吸引してワークWを第1ステージST1に吸着するためのポンプとを含んでいる。第2ステージ駆動部22-2は、第2ステージST2をθ2方向に回転させるモータと、空気を吸引してワークWを第2ステージST2に吸着するためのポンプとを含んでいる。 The first stage drive unit 22-1 includes a motor for rotating the first stage ST1 in the θ1 direction and a pump for sucking air and sucking the work W to the first stage ST1. The second stage drive unit 22-2 includes a motor for rotating the second stage ST2 in the θ2 direction and a pump for sucking air and sucking the work W to the second stage ST2.
 なお、本実施形態では、加工部20に2つのステージ(第1ステージST1及び第2ステージST2)を設けたが、加工部20のステージは1つであってもよい。 In the present embodiment, the processing unit 20 is provided with two stages (first stage ST1 and second stage ST2), but the processing unit 20 may have one stage.
 また、本実施形態では、形状測定専用のプリアライメント部10を加工部20とは別に設けたが、本発明はこれに限定されない。例えば、加工部20が2つのステージを有する場合には、形状測定専用のプリアライメント部10を設けずに、加工部20のステージのうちの1つをプリアライメント部10として兼用してもよい。 Further, in the present embodiment, the pre-alignment unit 10 dedicated to shape measurement is provided separately from the processing unit 20, but the present invention is not limited to this. For example, when the processing unit 20 has two stages, one of the stages of the processing unit 20 may also be used as the pre-alignment unit 10 without providing the pre-alignment unit 10 dedicated to shape measurement.
 第1ステージST1をプリアライメント部10として兼用する場合、第1ステージST1ではワークW1-1の形状の測定が終了しているにも関わらず、第2ステージST2でワークの加工が完了していない状況が考えられる。この場合、ハンドラアーム54にワークを1枚しか保持できないとすると、第2ステージST2が空くまで形状の測定が終了したワークW1-1の加工を行うことができない。このため、第1ステージST1における形状の測定後から第2ステージST2における加工の開始までの間に待ち時間が発生し、タクトの低下の原因となる。 When the first stage ST1 is also used as the prealignment unit 10, the machining of the work is not completed in the second stage ST2 even though the shape measurement of the work W1-1 is completed in the first stage ST1. The situation is possible. In this case, if only one work can be held by the handler arm 54, the work W1-1 whose shape has been measured cannot be processed until the second stage ST2 becomes empty. Therefore, a waiting time occurs between the measurement of the shape in the first stage ST1 and the start of machining in the second stage ST2, which causes a decrease in tact.
 そこで、図6に示すように、複数(2枚)のワークW1-1、W1-2を保持する機構を備えるハンドラアーム54Aを用いることで、ワークW-1の形状の測定後に空いている第1ステージST1において、ワークW-2の形状の測定を実施可能にする。その結果、ワークの形状測定を一括でまとめて行うことができ、空きステージが生じないので、ステージの有効活用が可能となる。 Therefore, as shown in FIG. 6, by using the handler arm 54A provided with a mechanism for holding a plurality of (two pieces) of the workpieces W1-1 and W1-2, the work W-1 is vacant after the shape is measured. In the 1st stage ST1, the shape of the work W-2 can be measured. As a result, the shape of the work can be measured all at once, and no empty stage is generated, so that the stage can be effectively used.
 第1スピンドル30-1及び第2スピンドル30-2には、それぞれ第1ブレード32-1及び第2ブレード32-2が取り付けられている。第1スピンドル30-1及び第2スピンドル30-2は、それぞれ第1ブレード32-1及び第2ブレード32-2を高速回転させるための高周波モータを含んでいる。 The first blade 32-1 and the second blade 32-2 are attached to the first spindle 30-1 and the second spindle 30-2, respectively. The first spindle 30-1 and the second spindle 30-2 include a high frequency motor for rotating the first blade 32-1 and the second blade 32-2 at high speed, respectively.
 第1ブレード32-1及び第2ブレード32-2は、例えば、円盤状の切削刃である。第1ブレード32-1及び第2ブレード32-2としては、例えば、ダイヤモンド砥粒又はCBN(Cubic Boron Nitride)砥粒をニッケルで電着した電着ブレード、あるいは樹脂で結合したレジンブレード等を用いることが可能である。第1ブレード32-1及び第2ブレード32-2は、加工対象のワークWの種類及びサイズ並びに加工内容等に応じて交換可能である。 The first blade 32-1 and the second blade 32-2 are, for example, disk-shaped cutting blades. As the first blade 32-1 and the second blade 32-2, for example, a diamond abrasive grain or an electrodeposition blade obtained by electrodepositing CBN (Cubic Boron Nitride) abrasive grains with nickel, a resin blade obtained by bonding with a resin, or the like is used. It is possible. The first blade 32-1 and the second blade 32-2 can be replaced according to the type and size of the work W to be processed, the processing content, and the like.
 上記の通り、第1ステージST1及び第2ステージST2は、同様の構成を有している。このため、以下の説明では、第1ステージ駆動部22-1及び第2ステージ駆動部22-2を加工ステージ駆動部22、第1スピンドル30-1及び第2スピンドル30-2をスピンドル30、第1ブレード32-1及び第2ブレード32-2をブレード32と総称する場合がある。 As described above, the first stage ST1 and the second stage ST2 have the same configuration. Therefore, in the following description, the first stage drive unit 22-1 and the second stage drive unit 22-2 are the machining stage drive unit 22, the first spindle 30-1 and the second spindle 30-2 are the spindle 30, and the second spindle 30-2. The 1st blade 32-1 and the 2nd blade 32-2 may be collectively referred to as the blade 32.
 加工駆動部26は、第1スピンドル30-1及び第2スピンドル30-2を加工軸(Y軸)に沿って移動させるためのモータを含んでいる。 The machining drive unit 26 includes a motor for moving the first spindle 30-1 and the second spindle 30-2 along the machining axis (Y axis).
 MS駆動部28は、顕微鏡MS2をX1軸、X2軸及びMS2軸に沿って移動させるための動力源(例えば、モータ)を含んでいる。顕微鏡MS2を移動させるための機構としては、例えば、ボールねじ又はラックアンドピニオン機構等の往復直線運動が可能な機構を用いることが可能である。 The MS drive unit 28 includes a power source (for example, a motor) for moving the microscope MS2 along the X1 axis, the X2 axis, and the MS2 axis. As a mechanism for moving the microscope MS2, for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
 顕微鏡MS2は、第1ステージST1及び第2ステージST2に吸着保持されたワークW1及びW2の表面の画像を撮影する。顕微鏡MS2によって撮影されたワークW1及びW2の表面画像は、制御部100に送信される。 The microscope MS2 captures images of the surfaces of the workpieces W1 and W2 adsorbed and held in the first stage ST1 and the second stage ST2. The surface images of the works W1 and W2 taken by the microscope MS2 are transmitted to the control unit 100.
 なお、本実施形態では、顕微鏡MS2をX1軸、X2軸及びMS2軸に沿って移動させるようにしたが、第1ステージST1及び第2ステージST2を移動させるようにしてもよいし、顕微鏡MS2、第1ステージST1及び第2ステージST2を移動させるようにしてもよい。以下の説明では、第1ステージST1及び第2ステージST2を加工ステージSTと記載する場合がある。 In the present embodiment, the microscope MS2 is moved along the X1 axis, the X2 axis, and the MS2 axis, but the first stage ST1 and the second stage ST2 may be moved, or the microscope MS2, The first stage ST1 and the second stage ST2 may be moved. In the following description, the first stage ST1 and the second stage ST2 may be referred to as a machining stage ST.
 制御部100は、顕微鏡MS2から受信したワークW1及びW2の表面画像に対して画像処理を行って、ワークW1及びW2の分割予定ラインと、第1ステージST1及び第2ステージST2の表面に設けられた治具とのアライメントを行う。 The control unit 100 performs image processing on the surface images of the workpieces W1 and W2 received from the microscope MS2, and is provided on the planned division lines of the workpieces W1 and W2 and the surfaces of the first stage ST1 and the second stage ST2. Align with the jig.
 なお、本実施形態では、簡単のため、X0、X1軸及びX2軸をX軸に平行とし、ハンドラ軸52、MS1軸、MS2軸及び加工軸をY軸と平行としたが、本発明はこれに限定されない。例えば、プリアライメント部10のX0軸及びMS1軸と、加工部20のX1軸及びX2軸並びにMS2軸とは、それぞれ独立に設けることが可能である。 In the present embodiment, for the sake of simplicity, the X0, X1 and X2 axes are parallel to the X axis, and the handler axis 52, MS1 axis, MS2 axis and processing axis are parallel to the Y axis. Not limited to. For example, the X0 axis and the MS1 axis of the prealignment unit 10 and the X1 axis and the X2 axis and the MS2 axis of the processing unit 20 can be provided independently of each other.
 (アライメント)
 まず、ワークWを吸着するための加工ステージST及び治具J1の構成について説明する。
(alignment)
First, the configuration of the processing stage ST and the jig J1 for sucking the work W will be described.
 図7及び図8は、加工ステージとワークを示す平面図である。図7及び図8は、加工ステージSTとワークWとのアライメントが行われる前後の状態をそれぞれ示している。また、図9は、加工ステージの表面に設けられた治具を拡大して示す斜視図である。 7 and 8 are plan views showing a machining stage and a work. 7 and 8 show the states before and after the alignment between the machining stage ST and the work W is performed, respectively. Further, FIG. 9 is an enlarged perspective view showing a jig provided on the surface of the processing stage.
 図7に示すように、ワークWの表面には、ワークWに形成された半導体装置又は電子部品等を個別のチップに分割するための分割予定ラインCL1が設けられている。加工ステージSTの表面には、ワークWのチップと一対一対応となるように治具(吸着パッド)J1が設けられている。治具J1は、加工ステージSTの表面に、所定の間隔Wを空けて、XY方向に沿って並べて取り付けられている(接着されている)。以下の説明では、治具J1の間のスペースを治具溝G1という。ここで、治具J1は、加工対象のワークWの種類及びサイズ並びに加工内容等に応じて交換され、治具溝G1の幅Wがブレード32の幅(刃厚)Wよりも広いものが用いられる。 As shown in FIG. 7, a division schedule line CL1 for dividing a semiconductor device, an electronic component, or the like formed on the work W into individual chips is provided on the surface of the work W. A jig (suction pad) J1 is provided on the surface of the processing stage ST so as to have a one-to-one correspondence with the tip of the work W. Jig J1 is the surface of the work stage ST, at predetermined intervals W G, (it is bonded) by being mounted side by side along the XY direction. In the following description, the space between the jigs J1 is referred to as a jig groove G1. Here, the jig J1 is replaced according to the type of workpiece W to be processed and the size and contents of the machining or the like, the width W G is the width (edge thickness) of the blade 32 of Chigumizo G1 wider than W B Is used.
 治具J1の平面形状は、図7及び図8に示す例では略矩形であるが、チップの形状に対応して変更することが可能である。図8に示すように、治具J1の平面視のサイズは、チップのサイズよりも小さくなっている。 The planar shape of the jig J1 is substantially rectangular in the examples shown in FIGS. 7 and 8, but it can be changed according to the shape of the chip. As shown in FIG. 8, the size of the jig J1 in a plan view is smaller than the size of the chip.
 治具J1は、例えば、ラバー(ゴム)製であり、図9に示すように、上方(+Z側)が開放され、底部が閉じた筒状(角筒状)である。治具J1の底面には、吸引孔H1が形成されており、第1ステージ駆動部22-1又は第2ステージ駆動部22-2のポンプを用いて、ワークWと治具J1との間の空気を吸引することにより、ワークWが加工ステージSTに吸着保持される。 The jig J1 is made of rubber, for example, and has a tubular shape (square tubular shape) with the upper side (+ Z side) open and the bottom closed, as shown in FIG. A suction hole H1 is formed on the bottom surface of the jig J1 and is used between the work W and the jig J1 by using the pump of the first stage drive unit 22-1 or the second stage drive unit 22-2. By sucking air, the work W is attracted and held on the processing stage ST.
 なお、治具J1の形状は、筒状に限定されるものではない。治具J1は、例えば、吸引孔H1が複数形成された板状のラバーをダイシング加工することにより作成するようにしてもよい。 The shape of the jig J1 is not limited to the tubular shape. The jig J1 may be created, for example, by dicing a plate-shaped rubber having a plurality of suction holes H1 formed therein.
 ワークWを加工ステージSTにロードする場合には、図8に示すように、プリアライメント部10において測定した分割予定ラインCL1の位置に基づいてアライメントが行われる。具体的には、制御部100は、プリアライメント部10において測定した分割予定ラインCL1に沿う太さWのラインがすべて対応する治具溝G1の中に収まるようなワークWのX、Y座標及び加工ステージSTの回転角(θ1又はθ2)を算出する。そして、制御部100は、算出したX、Y座標及び回転角(θ1又はθ2)に基づいてハンドラアーム54と加工ステージSTとの相対位置を調整して、ワークWと治具溝G1とのアライメントを行って、ワークWを治具J1に吸着させる。 When the work W is loaded on the machining stage ST, alignment is performed based on the position of the scheduled division line CL1 measured by the pre-alignment unit 10 as shown in FIG. More specifically, the control unit 100, X of the workpiece W to fit into the line of the thickness W B along the dividing lines CL1 measured in the pre-alignment unit 10 all corresponding Chigumizo G1, Y coordinates And the rotation angle (θ1 or θ2) of the machining stage ST is calculated. Then, the control unit 100 adjusts the relative position between the handler arm 54 and the machining stage ST based on the calculated X and Y coordinates and the rotation angle (θ1 or θ2), and aligns the work W with the jig groove G1. To attract the work W to the jig J1.
 なお、本実施形態では、分割予定ラインCL1に沿う太さWのラインがすべて対応する治具溝G1の中に収まるようにアライメントを行うようにしたが、本発明はこれに限定されない。例えば、分割予定ラインCL1の一部のみ(例えば、ワークWのX方向両端の対向する2辺に最も近い2本の分割予定ラインCLX11及びCLX42、ワークWのY方向両端の対向する2辺に最も近い2本の分割予定ライン(図8に示す例では、ワークWは、4つの分割エリアA1からA4に分かれているため、合計8本の分割予定ラインCLY11、CLY12、CLY21、CLY22、CLY31、CLY32、CLY41及びCLY42)、又はこれらを含む複数本)についてその位置を算出し、算出した分割予定ラインが対応する治具溝G1の中に収まるようにアライメントを行ってもよい。 In the present embodiment, although the line of the thickness W B along the dividing lines CL1 has to perform the alignment to fit into all the corresponding Chigumizo G1, the present invention is not limited thereto. For example, only a part of the planned division line CL1 (for example, the two planned division lines CL X11 and CL X42 closest to the two opposing sides of the work W in the X direction, and the two opposing sides of the work W in the Y direction). The two planned division lines closest to (In the example shown in FIG. 8, since the work W is divided into four division areas A1 to A4, a total of eight planned division lines CL Y11 , CL Y12 , CL Y21 , Calculate the positions of CL Y22 , CL Y31 , CL Y32 , CL Y41 and CL Y42 ), or a plurality of lines including these), and align them so that the calculated division schedule line fits in the corresponding jig groove G1. You may go.
 一般に、ワークWは、均一な材料により形成されるため、ワークWの変形は略リニアに発生すると考えられる。この場合、分割予定ラインCL1は、ワークWの歪にしたがって略リニアに分布する。したがって、例えば、ワークWのY方向両端の対向する2辺に最も近い2本分割予定ラインCL1が対応する治具溝G1に収まるようにアライメントを行うだけでも、ほかの分割予定ラインCL1が対応する治具溝G1に収まるようにすることが可能である。 Generally, since the work W is formed of a uniform material, it is considered that the deformation of the work W occurs substantially linearly. In this case, the scheduled division line CL1 is distributed substantially linearly according to the strain of the work W. Therefore, for example, even if the alignment is performed so that the two scheduled division lines CL1 closest to the two opposite sides of the work W in the Y direction fit into the corresponding jig groove G1, the other scheduled division lines CL1 correspond. It is possible to fit in the jig groove G1.
 図10は、ワークの切削状況を示す平面図であり、図11は、図10のXI-XI断面図である。図12は、比較例を示す平面図である。 FIG. 10 is a plan view showing a cutting state of the work, and FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. FIG. 12 is a plan view showing a comparative example.
 図10に示す例では、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントが行われている。この場合、図11に示すように、ブレード32によりワークWのダイシング加工を行うと、ブレード32が治具J1に干渉しない。 In the example shown in FIG. 10, the alignment as lines CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1 is being performed. In this case, as shown in FIG. 11, when the work W is diced by the blade 32, the blade 32 does not interfere with the jig J1.
 一方、図12に示す例では、分割予定ラインCL2に沿う太さWのラインCT2の一部が対応する治具溝G1の外に達している。この場合、ブレード32によりワークWのダイシング加工を行うと、図中の領域E1においてブレード32が治具J1と干渉する。このため、ブレード32が治具J1に切り込んで治具J1が破損する。 On the other hand, in the example shown in FIG. 12, a portion of the line CT2 Thickness W B along the dividing lines CL2 has reached the outside of the corresponding Chigumizo G1. In this case, when the work W is diced by the blade 32, the blade 32 interferes with the jig J1 in the region E1 in the drawing. Therefore, the blade 32 cuts into the jig J1 and the jig J1 is damaged.
 本実施形態によれば、分割予定ラインCL1の位置を予め測定しておき、この分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行う。これにより、ブレード32と治具J1との干渉を防止することができる。 According to this embodiment, measured in advance the position of the dividing line CL1, the alignment as lines CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1 Do. Thereby, the interference between the blade 32 and the jig J1 can be prevented.
 (ダイシング方法)
 図13は、本発明の第1の実施形態に係るダイシング方法を示すフローチャートである。
(Dicing method)
FIG. 13 is a flowchart showing a dicing method according to the first embodiment of the present invention.
 まず、制御部100は、ハンドラアーム54を制御して、プリアライメント部10に搬入する。そして、制御部100は、プリアライメントステージST0にワークWをロードし、プリアライメントステージ駆動部12のポンプによりプリアライメントステージST0にワークWを吸着保持させる。 First, the control unit 100 controls the handler arm 54 and carries it into the prealignment unit 10. Then, the control unit 100 loads the work W on the prealignment stage ST0, and the pump of the prealignment stage drive unit 12 sucks and holds the work W on the prealignment stage ST0.
 次に、制御部100は、顕微鏡MS1を用いてワークWの画像を撮影し、ワークWの画像のパターンマッチングを行って、ワークWのパターンM1を検出する。そして、制御部100は、パターンM1の位置(分布)に基づいてワークWの形状の測定を行う(ステップS10:形状測定ステップ)。 Next, the control unit 100 takes an image of the work W using the microscope MS1 and performs pattern matching of the image of the work W to detect the pattern M1 of the work W. Then, the control unit 100 measures the shape of the work W based on the position (distribution) of the pattern M1 (step S10: shape measurement step).
 次に、制御部100は、プリアライメントステージ駆動部12を制御して、ワークWの吸着状態を解除する。そして、制御部100は、ハンドラアーム54を制御して、プリアライメント部10からワークWを搬出して、加工部20の加工ステージSTにワークWをロードする。このとき、制御部100は、ステップS10におけるワークWの形状の測定結果を用いて、ワークWと治具J1の治具溝G1とのアライメントを行い、加工ステージ駆動部22を制御して、加工ステージSTにワークWを吸着保持させる(ステップS12:アライメントステップ)。ステップS12におけるアライメントは、例えば、下記の(A)から(C)のいずれかにより行う。 Next, the control unit 100 controls the prealignment stage drive unit 12 to release the suction state of the work W. Then, the control unit 100 controls the handler arm 54 to carry out the work W from the pre-alignment unit 10 and load the work W into the processing stage ST of the processing unit 20. At this time, the control unit 100 aligns the work W with the jig groove G1 of the jig J1 using the measurement result of the shape of the work W in step S10, controls the machining stage drive unit 22, and performs machining. The work W is sucked and held on the stage ST (step S12: alignment step). The alignment in step S12 is performed by, for example, any of the following (A) to (C).
 (A)制御部100は、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行う。 (A) the control unit 100 performs alignment to fit into line CT1 Thickness W B along the dividing lines CL1 are all corresponding Chigumizo G1.
 (B)制御部100は、(B1)ワークWのX方向両端の対向する2辺に最も近い2本の分割予定ラインCLX11及びCLX42(図8参照)、又は(B2)ワークWのY方向両端の対向する2辺に最も近い分割予定ライン(図8に示す例では、ワークWは、4つの分割エリアA1からA4に分かれているため、合計8本の分割予定ラインCLY11、CLY12、CLY21、CLY22、CLY31、CLY32、CLY41及びCLY42)に沿う太さWのラインCT1が対応する治具溝G1の中に収まるようにアライメントを行う。なお、分割予定ラインCLY11、CLY21、CLY31及びCLY41と、分割予定ラインCLY12、CLY22、CLY32及びCLY42とは、それぞれ1回の走査で切削されるため、それぞれ1本の分割予定ラインとして扱ってもよい。 (B) The control unit 100 is the two lines CL X11 and CL X42 (see FIG. 8) closest to the two opposite sides of the work W in the X direction, or the Y of the work W (B2). Scheduled division lines closest to the two opposite sides at both ends of the direction (In the example shown in FIG. 8, since the work W is divided into four division areas A1 to A4, a total of eight scheduled division lines CL Y11 and CL Y12 , alignment to fit into the CL Y21, CL Y22, CL Y31 , CL Y32, CL Y41 and CL Y42) the line CT1 of thickness W B along the corresponding Chigumizo G1. The planned division lines CL Y11 , CL Y21 , CL Y31 and CL Y41 and the planned division lines CL Y12 , CL Y22 , CL Y32 and CL Y42 are each cut by one scan, so that each line is one. It may be treated as a planned division line.
 (C)制御部100は、上記の一部の分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようなアライメントが可能か否かを判定する。ここで、一部の分割予定ラインCL1とは、例えば、(C1)ワークWの四辺に最も近い分割予定ライン(CLX11及びCLX42並びにCLY11、CLY12、CLY21、CLY22、CLY31、CLY32、CLY41及びCLY42、(C2)ワークWのX方向両端の対向する2辺に最も近い2本の分割予定ラインCLX11及びCLX42を含む複数本の分割予定ラインCL1、若しくは(C3)ワークWのY方向両端の対向する2辺に最も近い分割予定ラインCLY11、CLY12、CLY21、CLY22、CLY31、CLY32、CLY41及びCLY42を含む複数本の分割予定ラインCL1である。 (C) the control unit 100 determines whether it is possible to alignment to fit into Chigumizo G1 which line CT1 of thickness W B along the dividing lines CL1 of the part of the all corresponding. Here, the part of the planned division line CL1 is, for example, (C1) the planned division lines (CL X11 and CL X42 and CL Y11 , CL Y12 , CL Y21 , CL Y22 , CL Y31 , which are closest to the four sides of the work W. CL Y32 , CL Y41 and CL Y42 , (C2) Two scheduled split lines CL1 or (C3) including the two scheduled split lines CL X11 and CL X42 closest to the two opposite sides of the work W in the X direction. ) Multiple scheduled division lines CL1 including CL Y11 , CL Y12 , CL Y21 , CL Y22 , CL Y31 , CL Y32 , CL Y41 and CL Y42, which are the closest to the two opposite sides of the work W in the Y direction. Is.
 次に、制御部100は、加工ステージSTに吸着保持されたワークWの分割予定ラインCL1に沿ってブレード32を移動させてダイシング加工を行う(ステップS14)。 Next, the control unit 100 moves the blade 32 along the scheduled division line CL1 of the work W attracted and held by the machining stage ST to perform dicing machining (step S14).
 本実施形態によれば、ワークWの歪に起因する分割予定ラインCL1のずれが発生している場合であっても、分割予定ラインCL1の位置を予め測定してアライメントを行うことにより、ブレード32と治具J1との干渉を防止することができる。 According to the present embodiment, even when the scheduled division line CL1 is displaced due to the distortion of the work W, the blade 32 is aligned by measuring the position of the scheduled division line CL1 in advance. And the jig J1 can be prevented from interfering with each other.
 (分割予定ラインの位置の算出)
 次に、本実施形態に係る分割予定ラインの位置の算出方法の例(形状測定ステップの一例)について説明する。以下の説明では、ワークWの表面のパターンと分割予定ライン及びクロスマークとの間に距離がある場合について説明する。
(Calculation of the position of the planned division line)
Next, an example of a method for calculating the position of the planned division line (an example of the shape measurement step) according to the present embodiment will be described. In the following description, a case where there is a distance between the pattern on the surface of the work W and the planned division line and the cross mark will be described.
 図14は、分割予定ライン上のクロスマークがパターンに対してY方向に離れて配置されている場合を示す平面図であり、図15は、図14の例に対して分割予定ラインが傾いた例を示す平面図である。なお、図15では、図示の便宜上クロスマークを省略している。 FIG. 14 is a plan view showing a case where the cross marks on the planned division line are arranged apart from the pattern in the Y direction, and FIG. 15 is a plan view in which the planned division line is tilted with respect to the example of FIG. It is a top view which shows an example. In FIG. 15, the cross mark is omitted for convenience of illustration.
 図14に示す例では、分割予定ラインCL1はX軸に平行になっており、ワークWの表面において、分割予定ラインCL1に対して-Y側にdY離れた(オフセットした)位置に、略十字形状のパターンP1が配置されている。分割予定ラインCL1は、2つのパターンP1の中心点(クロスポイント)をそれぞれ中心とする径dYの円C1に接する接線であり、分割予定ラインCL1と円C1との接点が、XY方向の分割予定ラインCL1の交点であるクロスマークCM1となる。 In the example shown in FIG. 14, the scheduled division line CL1 is parallel to the X-axis, and a substantially cross is formed on the surface of the work W at a position dY away (offset) from the scheduled division line CL1 to the −Y side. The shape pattern P1 is arranged. The planned division line CL1 is a tangent line tangent to a circle C1 having a diameter dY centered on the center point (cross point) of each of the two patterns P1, and the contact point between the planned division line CL1 and the circle C1 is scheduled to be divided in the XY direction. It becomes the cross mark CM1 which is the intersection of the lines CL1.
 図15に示すように、ワークWの歪等に起因して、分割予定ラインCL1が図14に示す例からdθ回転した場合でも、図14に示す例と同様に、分割予定ラインCL1は、パターンP1のクロスポイントを中心とする半径dYの円C1の接線として定義される。 As shown in FIG. 15, even when the scheduled division line CL1 is rotated by dθ from the example shown in FIG. 14 due to the distortion of the work W or the like, the scheduled division line CL1 has a pattern as in the example shown in FIG. It is defined as the tangent of the circle C1 with radius dY centered on the cross point of P1.
 このときのパターンP1の座標を(pX,pY)とすると、クロスマークCM1の座標(X,Y)は、下記の式(1)及び(2)により表される。 Assuming that the coordinates of the pattern P1 at this time are (pX, pY), the coordinates (X, Y) of the cross mark CM1 are represented by the following equations (1) and (2).
 Y=pY+dY・cos(dθ) …(1)
 X=pX+dY・sin(dθ) …(2)
 一方、2つのパターンを1視野の検査対象画像として撮像してパターンマッチングを行った場合、角度成分が不明となるため、分割予定ラインCLE1上のクロスマークCME1の座標(X,Y)は、下記の式により表される。
Y = pY + dY · cos (dθ)… (1)
X = pX + dY · sin (dθ)… (2)
On the other hand, when two patterns are imaged as an inspection target image in one field of view and pattern matching is performed, the angle component becomes unknown, so the coordinates (X E , Y E ) of the cross mark CME 1 on the scheduled division line CLE1 are set. , Expressed by the following formula.
 Y=pY+dY
 X=pX
 すなわち、分割予定ラインCLE1及びクロスマークCME1はカメラを位置づけた位置により、パターンP1に対して+Y方向にdYオフセットされた位置に決定される。
Y E = pY + dY
X E = pX
That is, the scheduled division line CLE1 and the cross mark CME1 are determined at positions offset by dY in the + Y direction with respect to the pattern P1 depending on the position where the camera is positioned.
 したがって、分割予定ラインCL1とCLE1との間には、あらかじめ角度成分dθを求めた場合と比較して、下記の誤差が生じる。 Therefore, the following error occurs between the scheduled division lines CL1 and CLE1 as compared with the case where the angle component dθ is obtained in advance.
 (Y誤差)=Y-Y=dY{1-cos(dθ)}
 (X誤差)=X-X=-dY・sin(dθ)
 上記の誤差のため、1視野の画像を用いてパターンマッチングを行った場合、高精度な加工位置計算は実現することができない。これに対して、本実施形態では、あらかじめ角度成分dθを求めることにより、分割予定ラインCL1を精度よく求めることができる。
(Y error) = Y E- Y = dY {1-cos (dθ)}
(X error) = X E −X = −dY · sin (dθ)
Due to the above error, high-precision machining position calculation cannot be realized when pattern matching is performed using an image of one field of view. On the other hand, in the present embodiment, the planned division line CL1 can be accurately obtained by obtaining the angle component dθ in advance.
 図16は、分割予定ライン上のクロスマークがパターンに対してXY方向に離れて配置されている場合を示す平面図であり、図17は、図16の例に対して分割予定ラインが傾いた例を示す平面図である。 FIG. 16 is a plan view showing a case where the cross marks on the planned division line are arranged apart from the pattern in the XY direction, and FIG. 17 shows the planned division line tilted with respect to the example of FIG. It is a top view which shows an example.
 図16に示す例では、分割予定ラインCL1はX軸に平行になっており、ワークWの表面において、分割予定ラインCL1に対して-X側にdX、-Y側にdY離れた(オフセットした)位置に、略十字形状のパターンP1が配置されている。分割予定ラインCL1は、2つのパターンP1の中心点(クロスポイント)をそれぞれ中心とする径dYの円C1に接する接線であり、分割予定ラインCL1と円C1との接点から+X方向にdX離れた位置がクロスマークCM1となる。 In the example shown in FIG. 16, the scheduled division line CL1 is parallel to the X axis, and on the surface of the work W, dX is separated (offset) from the planned division line CL1 to the −X side and the −Y side. A substantially cross-shaped pattern P1 is arranged at the position). The planned division line CL1 is a tangent line tangent to a circle C1 having a diameter dY centered on the center point (cross point) of each of the two patterns P1, and is dX away from the contact point between the planned division line CL1 and the circle C1 in the + X direction. The position is the cross mark CM1.
 図17に示すように、ワークWの歪等に起因して、分割予定ラインCL1が図16に示す例からdθ回転した場合でも、図16に示す例と同様に、分割予定ラインCL1は、パターンP1のクロスポイントを中心とする半径dYの円C1の接線として定義される。 As shown in FIG. 17, even when the scheduled division line CL1 is rotated by dθ from the example shown in FIG. 16 due to the distortion of the work W or the like, the scheduled division line CL1 has a pattern as in the example shown in FIG. It is defined as the tangent of the circle C1 with radius dY centered on the cross point of P1.
 このときのパターンP1の座標を(pX,pY)とすると、クロスマークCM1の座標(X,Y)は、下記の式により表される。 Assuming that the coordinates of the pattern P1 at this time are (pX, pY), the coordinates (X, Y) of the cross mark CM1 are expressed by the following formula.
 Y=pY + dY・cos(dθ) + dX・sin(dθ)
 X=pX + dY・sin(dθ) + dX・cos(dθ)
 一方、2つのパターンを1視野の検査対象画像として撮像してパターンマッチングを行った場合、角度成分が不明となるため、分割予定ラインCLE1上のクロスマークCME1の座標(X,Y)は、下記の式により表される。
Y = pY + dY · cos (dθ) + dX · sin (dθ)
X = pX + dY · sin (dθ) + dX · cos (dθ)
On the other hand, when two patterns are imaged as an inspection target image in one field of view and pattern matching is performed, the angle component becomes unknown, so the coordinates (X E , Y E ) of the cross mark CME 1 on the scheduled division line CLE1 are set. , Expressed by the following formula.
 Y=pY+dY
 X=pX+dX
 すなわち、分割予定ラインCLE1及びクロスマークCME1はカメラを位置づけた位置により、パターンP1から-Y方向にdY、-X方向にdXオフセットされた位置に決定される。
Y E = pY + dY
X E = pX + dX
That is, the scheduled division line CLE1 and the cross mark CME1 are determined to be dY offset in the −Y direction and dX offset in the −X direction from the pattern P1 depending on the position where the camera is positioned.
 したがって、分割予定ラインCL1とCLE1との間には、あらかじめ角度成分dθを求めた場合と比較して、下記の誤差が生じる。 Therefore, the following error occurs between the scheduled division lines CL1 and CLE1 as compared with the case where the angle component dθ is obtained in advance.
 (Y誤差)=Y-Y=dY{1-cos(dθ)}-dX・sin(dθ)
 (X誤差)=X-X=dX{1-cos(dθ)}-dY・sin(dθ)
 上記の誤差のため、1視野の画像を用いてパターンマッチングを行った場合、高精度な加工位置計算は実現することができない。これに対して、本実施形態では、あらかじめ角度成分dθを求めることにより、分割予定ラインCL1を精度よく求めることができる。
(Y error) = Y E -Y = dY { 1-cos (dθ)} - dX · sin (dθ)
(X error) = X E- X = dX {1-cos (dθ)}-dY · sin (dθ)
Due to the above error, high-precision machining position calculation cannot be realized when pattern matching is performed using an image of one field of view. On the other hand, in the present embodiment, the planned division line CL1 can be accurately obtained by obtaining the angle component dθ in advance.
 本実施形態では、上記のようにして、複数の分割予定ラインCL1を求める。すなわち、分割予定ラインCL1に対応する少なくとも2つのパターンP1を検出して、角度成分dθを求め、この角度成分dθに基づいて分割予定ラインCL1を求める。 In the present embodiment, a plurality of scheduled division lines CL1 are obtained as described above. That is, at least two patterns P1 corresponding to the scheduled division line CL1 are detected to obtain the angle component dθ, and the planned division line CL1 is obtained based on the angle component dθ.
 次に、複数の分割ラインについて求めたクロスマークCM1の座標(X,Y)(以下、基準座標という。)に基づいて、ワークWの歪量を算出する。具体的には、複数の分割ラインCL1について求めた基準座標(X,Y)と設計座標から基準座標に対する補正量の2次元マップを作成する。そして、内挿法等により、各基準座標に対するワークWの歪量を算出する。 Next, the strain amount of the work W is calculated based on the coordinates (X, Y) (hereinafter referred to as reference coordinates) of the cross mark CM1 obtained for the plurality of dividing lines. Specifically, a two-dimensional map of the correction amount with respect to the reference coordinates is created from the reference coordinates (X, Y) obtained for the plurality of division lines CL1 and the design coordinates. Then, the strain amount of the work W for each reference coordinate is calculated by the interpolation method or the like.
 なお、本実施形態では、複数の分割予定ラインCL1の基準座標(X,Y)及び傾きdθからワークWの歪量を算出するようにしたが、本発明はこれに限定されない。例えば、各パターンP1の座標の設計値と実測値からパターンP1のXY座標に対する2次元マップを作成し、内挿法等により、各基準座標に対するワークWの歪量を算出してもよい。 In the present embodiment, the strain amount of the work W is calculated from the reference coordinates (X, Y) and the slope dθ of the plurality of scheduled division lines CL1, but the present invention is not limited to this. For example, a two-dimensional map for the XY coordinates of the pattern P1 may be created from the design value and the measured value of the coordinates of each pattern P1, and the strain amount of the work W for each reference coordinate may be calculated by an interpolation method or the like.
 次に、各基準座標における歪量を、パターンP1とクロスマークCM1との間のオフセット量に加算して、基準位置(X,Y)の再計算を行う。 Next, the amount of distortion at each reference coordinate is added to the amount of offset between the pattern P1 and the cross mark CM1, and the reference position (X, Y) is recalculated.
 本実施形態によれば、分割予定ラインCL1の傾きdθを求めた後にクロスマークCM1を求めることにより、分割予定ラインCL1の加工位置の検出を高精度で行うことができる。これにより、ブレード32と治具J1との干渉のチェックを高精度で行うことができる。 According to this embodiment, the machining position of the scheduled division line CL1 can be detected with high accuracy by obtaining the cross mark CM1 after obtaining the slope dθ of the scheduled division line CL1. As a result, the interference between the blade 32 and the jig J1 can be checked with high accuracy.
 次に、分割予定ラインの位置の算出について、図18を参照して説明する。図18は、分割予定ラインの位置の算出手順を示すフローチャートである。 Next, the calculation of the position of the planned division line will be described with reference to FIG. FIG. 18 is a flowchart showing a procedure for calculating the position of the scheduled division line.
 まず、制御部100は、顕微鏡MS1を用いてワークWの画像を撮影する。そして、制御部100は、ワークWの画像のパターンマッチングを行って、顕微鏡MS1により撮像した画像から、分割予定ラインCL1ごとに少なくとも2つ(1対)のパターンP1を検出し、分割予定ラインCL1の傾きdθを検出する(ステップS100)。 First, the control unit 100 takes an image of the work W using the microscope MS1. Then, the control unit 100 performs pattern matching of the image of the work W, detects at least two (one pair) patterns P1 for each scheduled division line CL1 from the image captured by the microscope MS1, and detects the scheduled division line CL1. The slope dθ of is detected (step S100).
 次に、制御部100は、上記の式(1)及び(2)により分割予定ラインCL1のクロスマークCM1の基準座標(X,Y)を算出する(ステップS102)。 Next, the control unit 100 calculates the reference coordinates (X, Y) of the cross mark CM1 of the scheduled division line CL1 by the above equations (1) and (2) (step S102).
 次に、複数の分割予定ラインCL1の基準座標(X,Y)及び傾きdθからワークWの歪量を算出する(ステップS104)。 Next, the amount of strain of the work W is calculated from the reference coordinates (X, Y) and the slope dθ of the plurality of scheduled division lines CL1 (step S104).
 次に、ステップS104で求めたワークWの歪量に基づいて、各分割予定ラインCL1の位置の再計算を行い、加工位置を正確に求める(ステップS106)。 Next, based on the strain amount of the work W obtained in step S104, the position of each scheduled division line CL1 is recalculated to accurately obtain the machining position (step S106).
 本実施形態に係る分割予定ラインの位置の算出方法の例では、分割予定ライン上のクロスマークCM1がパターンP1に対してY方向又はXY方向に離れて配置されている場合について説明したが、X方向に離れて配置されている場合にも適用可能である。すなわち、図15において、パターンP1のクロスポイントを中心とする円C1の半径をゼロと考えて、2つのクロスポイントを結ぶ線分の傾きdθを計算する。そして、θ方向にdθ回転したX軸に沿ってdX離れた位置にクロスマークCM1があるとして、クロスマークCM1の座標を求めることにより、クロスマークCM1の位置の算出を高精度で実現することができる。 In the example of the method of calculating the position of the scheduled division line according to the present embodiment, the case where the cross mark CM1 on the scheduled division line is arranged apart from the pattern P1 in the Y direction or the XY direction has been described. It is also applicable when they are arranged apart in the direction. That is, in FIG. 15, the slope dθ of the line segment connecting the two cross points is calculated assuming that the radius of the circle C1 centered on the cross point of the pattern P1 is zero. Then, assuming that the cross mark CM1 is located at a position dX away from the X axis rotated by dθ in the θ direction, the position of the cross mark CM1 can be calculated with high accuracy by obtaining the coordinates of the cross mark CM1. it can.
 また、上記の例では、左右のパターンP1とクロスマークCM1までの距離が一致している例について説明したが、左右のパターンP1とクロスマークCM1までの距離が異なる場合であっても、上記の演算方法を適用することができる。すなわち、図19及び図20に示すように、左右のパターンP1及びP2のクロスポイントをそれぞれ中心とする円C1(半径dY1)及びC2(半径dY2(≠dY1))の接線CL1を求めることにより、クロスマークCM1及びCM2の位置を同様にして求めることができる。 Further, in the above example, an example in which the distances to the left and right patterns P1 and the cross mark CM1 are the same has been described, but even if the distances to the left and right patterns P1 and the cross mark CM1 are different, the above is described. The calculation method can be applied. That is, as shown in FIGS. 19 and 20, by obtaining the tangent CL1 of the circles C1 (radius dY1) and C2 (radius dY2 (≠ dY1)) centered on the cross points of the left and right patterns P1 and P2, respectively. The positions of the cross marks CM1 and CM2 can be obtained in the same manner.
 [第2の実施形態]
 第1の実施形態では、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行った。これに対して、本実施形態では、分割予定ラインCL1に沿う太さWのラインCT1のうちの一部のラインCT1のみが治具溝G1の中に収まるようなアライメントを繰り返すものである。
[Second Embodiment]
In the first embodiment, the line CT1 of thickness W B along the dividing lines CL1 performs an alignment to fit into all the corresponding Chigumizo G1. In contrast, in the present embodiment, in which only a part of the line CT1 of the lines CT1 Thickness W B along the dividing lines CL1 repeats alignment to fit into the Chigumizo G1.
 図21は、本発明の第2の実施形態に係るダイシング方法を説明するための平面図である。 FIG. 21 is a plan view for explaining the dicing method according to the second embodiment of the present invention.
 図21に示す例では、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようなアライメントを行うことができない。このため、ワークWを複数の分割エリアA1からA4に分け、分割エリアA1からA4ごとに、アライメントとダイシング加工を行う。 In the example shown in FIG. 21, line CT1 of thickness W B along the dividing lines CL1 can not perform an alignment to fit into all the corresponding Chigumizo G1. Therefore, the work W is divided into a plurality of divided areas A1 to A4, and alignment and dicing are performed for each of the divided areas A1 to A4.
 具体的には、まず、図21に示すように、分割エリアA1に含まれる分割予定ラインCL1について、治具J1の治具溝G1とのアライメントを行う。このとき、分割エリアA2からA4では、分割予定ラインCL1に沿う太さWのラインCT1の一部が治具J1と干渉している。そして、分割エリアA1に含まれる分割予定ラインCL1に対してダイシング加工を行う。これにより、分割エリアA1に含まれるチップがワークWから切り離される。 Specifically, first, as shown in FIG. 21, the scheduled division line CL1 included in the division area A1 is aligned with the jig groove G1 of the jig J1. At this time, in the divided area A2 A4, a portion of the line CT1 of thickness W B along the dividing lines CL1 is interfering with the jig J1. Then, dicing processing is performed on the scheduled division line CL1 included in the division area A1. As a result, the chip included in the divided area A1 is separated from the work W.
 次に、ワークWの吸着状態を解除して、分割エリアA2からA4からなるワークWをハンドラアーム54により引き上げて吸着保持する。そして、分割エリアA2に含まれる分割予定ラインCL1について、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具群JG2の治具溝G1の中に収まるようなアライメントを行う。そして、分割エリアA2に含まれる分割予定ラインCL1に対してダイシング加工を行う。これにより、分割エリアA2に含まれるチップがワークWから切り離される。 Next, the suction state of the work W is released, and the work W composed of the divided areas A2 to A4 is pulled up by the handler arm 54 to be sucked and held. Then, the dividing lines CL1 included in divided area A2, the alignment such as lines CT1 Thickness W B along the dividing lines CL1 falls in all jig groove of the corresponding tool group JG2 G1. Then, dicing processing is performed on the scheduled division line CL1 included in the division area A2. As a result, the chip included in the divided area A2 is separated from the work W.
 以下、分割エリアA3及びA4についても順次アライメントとダイシング加工を行う。これにより、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようなアライメントを行うことができない場合であっても、ブレード32と治具J1との干渉を防止しながら、ダイシング加工を行うことができる。 Hereinafter, the division areas A3 and A4 are also sequentially aligned and diced. Accordingly, even when the line CT1 of thickness W B along the dividing lines CL1 can not perform an alignment to fit into all the corresponding Chigumizo G1, the blade 32 and the jig J1 Dicing can be performed while preventing interference.
 各分割エリアA1からA4と治具J1の治具溝G1とのアライメントは、下記の<A>から<C>により行うことができる。 Alignment of each divided area A1 to A4 with the jig groove G1 of the jig J1 can be performed by the following <A> to <C>.
 <A>分割エリアA1からA4ごとに、分割エリアA1からA4内のすべての分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行う。 From <A> divided area A1 for each A4, performing alignment as the line CT1 Thickness W B from the divided area A1 along all the dividing lines CL1 in A4 falls in all corresponding Chigumizo G1 ..
 <B>分割エリアA1からA4ごとに、<B1>X方向の両端の2本の分割予定ラインCLX11及びCLX12、CLX21及びCLX22、CLX31及びCLX32並びにCLX41及びCLX42、若しくは<B2>Y方向の両端の2本の分割予定ラインCLY11及びCLY12、CLY21及びCLY22、CLY31及びCLY32並びにCLY41及びCLY42に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行う。 <B> For each division area A1 to A4, two planned division lines CL X11 and CL X12 , CL X21 and CL X22 , CL X31 and CL X32 , and CL X41 and CL X42 , or CL X41 and CL X42 at both ends in the <B1> X direction. <B2> 2 this dividing line CL in the Y direction across Y11 and CL Y12, CL Y21 and CL Y22, CL Y31 and CL Y32 and CL Y41 and the line CT1 of thickness W B along the CL Y42 all corresponding Align so that it fits in the jig groove G1.
 <C>分割エリアA1からA4ごとに、一部の分割予定ラインCL1を含む複数本の分割予定ラインCL1)に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようにアライメントを行う。ここで、一部の分割予定ラインCL1とは、例えば、<C1>分割エリアA1からA4において、四辺に最も近い各4本の分割予定ライン(CLX11、CLX12、CLY11及びCLY12、CLX21、CLX22、CLY21及びCLY22、CLX31、CLX32、CLY31及びCLY32並びにCLX41、CLX42、CLY41及びCLY42)、<C2>分割エリアA1からA4において、X方向両端の対向する2辺に最も近い分割予定ライン(CLX11及びCLX12、CLX21及びCLX22、CLX31及びCLX32並びにCLX41及びCLX42)を含む複数本の分割予定ラインCL1、若しくは<C3>分割エリアA1からA4において、Y方向両端の対向する2辺に最も近い分割予定ライン(CLY11及びCLY12、CLY21及びCLY22、CLY31及びCLY32並びにCLY41及びCLY42)を含む複数本の分割予定ラインCL1である。 <C> from the divided area A1 for each A4, so that the line CT1 of thickness W B along the plurality of division lines CL1) including a part of dividing lines CL1 falls in all corresponding Chigumizo G1 Align to. Here, the part of the planned division lines CL1 is, for example, in the <C1> division areas A1 to A4, each of the four planned division lines (CL X11 , CL X12 , CL Y11 and CL Y12 , CL) closest to the four sides. X21, CL X22, CL Y21 and CL Y22, CL X31, CL X32 , CL Y31 and CL Y32 and CL X41, CL X42, CL Y41 and CL Y42), the A4 from <C2> divided area A1, the X-direction end Multiple planned division lines CL1 or <C3> including the planned division lines (CL X11 and CL X12 , CL X21 and CL X22 , CL X31 and CL X32 , and CL X41 and CL X42 ) closest to the two opposite sides. Multiple lines in areas A1 to A4, including the planned division lines (CL Y11 and CL Y12 , CL Y21 and CL Y22 , CL Y31 and CL Y32 , and CL Y41 and CL Y42) that are closest to the two opposite sides in the Y direction. This is the planned division line CL1.
 ここで、加工ステージ駆動部22は、例えば、分割エリアA1からA4ごとに吸着状態を解除可能としてもよい。例えば、分割エリアA1のダイシング加工が完了した場合に、分割エリアA1に対応する治具群JG1については、チップを吸着保持したままにしておく。一方、分割エリアA2からA4に対応する治具群JG2からJG4については、吸着状態を解除して、分割エリアA2からA4からなるワークWをハンドラアーム54により加工ステージSTから引き上げる。そして、残りの分割エリアA2からA4についても同様の手順でダイシング加工を行い、すべての分割領域A1からA4のダイシング加工が完了した場合に、チップを回収するようにしてもよい。 Here, the machining stage drive unit 22 may be able to release the suction state for each of the divided areas A1 to A4, for example. For example, when the dicing process of the divided area A1 is completed, the tip of the jig group JG1 corresponding to the divided area A1 is kept sucked and held. On the other hand, for the jig groups JG2 to JG4 corresponding to the divided areas A2 to A4, the suction state is released, and the work W composed of the divided areas A2 to A4 is pulled up from the machining stage ST by the handler arm 54. Then, the remaining divided areas A2 to A4 may be diced in the same procedure, and the chips may be collected when all the divided areas A1 to A4 are diced.
 また、この方法によると、ワークWの歪が大きい場合に、分割エリアA2からA4を個別にアライメントし、冶具J1に合わせた位置調整を行うことになる。このことは、ワークWの歪の矯正を実施していることになり、湾曲した分割予定ラインCL1の修正を実施することになる。その結果、加工精度の向上につながる二次的な効果も得ることができる。 Further, according to this method, when the distortion of the work W is large, the division areas A2 to A4 are individually aligned and the position is adjusted according to the jig J1. This means that the distortion of the work W is being corrected, and the curved division schedule line CL1 is being corrected. As a result, a secondary effect leading to improvement in processing accuracy can be obtained.
 また、各分割エリアA1からA4のダイシング加工が完了するごとに、ダイシング加工によりワークWから切り離されたチップを回収するようにしてもよい。 Further, each time the dicing process of each of the divided areas A1 to A4 is completed, the chip separated from the work W by the dicing process may be collected.
 なお、本実施形態では、分割エリアを4つとしたが、本発明はこれに限定されない。例えば、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるような最大の領域にワークWを分割するようにしてもよい。また、ワークWをX方向に沿って分割するようにしたが、Y方向又はX方向及びY方向の両方向に分割するようにしてもよい。ワークWを分割エリアに分割する場合には、例えば、歪がより大きい方向に分割するようにしてもよい。 In the present embodiment, the number of divided areas is four, but the present invention is not limited to this. For example, it is also possible to split the workpiece W to the maximum area, such as line CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1. Further, although the work W is divided along the X direction, it may be divided in the Y direction or both the X direction and the Y direction. When the work W is divided into division areas, for example, the work W may be divided in a direction in which the distortion is larger.
 図22は、本発明の第2の実施形態に係るダイシング方法を示すフローチャートである。図23は、図22における分割エリアごとのダイシング工程を示すフローチャートである。 FIG. 22 is a flowchart showing a dicing method according to the second embodiment of the present invention. FIG. 23 is a flowchart showing a dicing process for each divided area in FIG. 22.
 次に、制御部100は、顕微鏡MS1を用いてワークWの画像を撮影し、ワークWの画像のパターンマッチングを行って、ワークWのパターンM1を検出する。そして、制御部100は、パターンM1の位置(分布)に基づいてワークWの形状の測定を行う(ステップS20)。 Next, the control unit 100 takes an image of the work W using the microscope MS1 and performs pattern matching of the image of the work W to detect the pattern M1 of the work W. Then, the control unit 100 measures the shape of the work W based on the position (distribution) of the pattern M1 (step S20).
 次に、制御部100は、ワークWの形状の測定結果に基づいて、ワークWのすべての分割予定ラインCL1と治具溝G1との位置合わせが可能か否かを判定する(ステップS22)。ステップS22では、分割予定ラインCL1に沿う太さWのラインCT1がすべて対応する治具溝G1の中に収まるようなアライメントを行うことができるか否かを判定する。ステップS22において、ワークWのすべての分割予定ラインCL1と治具溝G1との位置合わせが可能と判定した場合には、制御部100は、ワークWの分割予定ラインCL1と治具溝G1とのアライメント(ステップS24)とダイシング加工(ステップS26)を行う。ステップS24及びS26は、それぞれ図13のステップS12及びS14と同様であるため、説明を省略する。 Next, the control unit 100 determines whether or not it is possible to align all the scheduled division lines CL1 of the work W with the jig groove G1 based on the measurement result of the shape of the work W (step S22). In step S22, it is determined whether it is possible to perform the alignment as lines CT1 Thickness W B along the dividing lines CL1 falls in all corresponding Chigumizo G1. When it is determined in step S22 that all the scheduled division lines CL1 of the work W and the jig groove G1 can be aligned, the control unit 100 connects the scheduled division line CL1 of the work W and the jig groove G1. Alignment (step S24) and dicing (step S26) are performed. Since steps S24 and S26 are the same as steps S12 and S14 in FIG. 13, the description thereof will be omitted.
 一方、ステップS22において、ワークWのすべての分割予定ラインCL1と治具溝G1との位置合わせが不可能と判定した場合には、分割エリアごとにダイシング加工を行う(ステップS28)。 On the other hand, if it is determined in step S22 that it is impossible to align all the scheduled division lines CL1 of the work W with the jig groove G1, dicing is performed for each division area (step S28).
 なお、ステップS22では、図13のステップS12の(A)のアライメントが可能か否かを判定したが、(B)又は(C)のアライメントが可能か否かを判定するようにしてもよい。 In step S22, it was determined whether or not the alignment of (A) in step S12 of FIG. 13 was possible, but it may be determined whether or not the alignment of (B) or (C) is possible.
 分割エリアごとにダイシング加工を行う場合、まず、制御部100は、ステップS20における形状の測定結果に基づいて、ワークWを複数(N個)の分割エリアA1,…,ANに分割する(ステップS280)。 When dicing is performed for each division area, the control unit 100 first divides the work W into a plurality of (N) division areas A1, ..., AN based on the shape measurement result in step S20 (step S280). ).
 次に、制御部100は、i=1(ステップS282)から、分割エリアAiのアライメント(ステップS284)及びダイシング(ステップS286)を繰り返し行う(ステップS288及びS290)。そして、i=Nとなり(ステップS288)、すべての分割エリアAiのダイシング加工が完了すると、処理を終了する。 Next, the control unit 100 repeatedly performs alignment (step S284) and dicing (step S286) of the division area Ai from i = 1 (step S282) (steps S288 and S290). Then, i = N (step S288), and when the dicing process of all the divided areas Ai is completed, the process ends.
 本実施形態によれば、ワークWの全体のアライメントを行うことができない場合であっても、複数の分割エリアごとにアライメントとダイシング加工とを繰り返し行うことにより、ブレード32と治具J1との干渉を防止しながら、ダイシング加工を行うことができる。 According to the present embodiment, even if the entire work W cannot be aligned, the blade 32 and the jig J1 interfere with each other by repeatedly performing the alignment and the dicing process for each of the plurality of divided areas. Dicing can be performed while preventing the above.
 [第3の実施形態]
 上記の各実施形態では、ダイシング装置1がワークWの形状の測定を行うプリアライメント部10を備えているが、本発明はこれに限定されず、プリアライメント部10はダイシング装置1とは別の外部装置であってもよい。
[Third Embodiment]
In each of the above embodiments, the dicing device 1 includes a pre-alignment unit 10 for measuring the shape of the work W, but the present invention is not limited to this, and the pre-alignment unit 10 is different from the dicing device 1. It may be an external device.
 図24は、本発明の第3の実施形態に係るダイシング装置を示す平面図であり、図25は、本発明の第3の実施形態に係るダイシング装置の制御系を示すブロック図である。以下の説明では、上記の実施形態と同様の構成については、同一の符号を付して説明を省略する。 FIG. 24 is a plan view showing the dicing device according to the third embodiment of the present invention, and FIG. 25 is a block diagram showing a control system of the dicing device according to the third embodiment of the present invention. In the following description, the same reference numerals will be given to the same configurations as those in the above embodiment, and the description thereof will be omitted.
 図24及び図25に示すように、本実施形態に係るダイシング装置1-2は、上記の実施形態に係るダイシング装置1からプリアライメント部10を除いた構成となっている。そして、本実施形態では、プリアライメント用の外部装置70を用いてワークWの形状の測定を行う。 As shown in FIGS. 24 and 25, the dicing device 1-2 according to the present embodiment has a configuration in which the prealignment unit 10 is removed from the dicing device 1 according to the above embodiment. Then, in the present embodiment, the shape of the work W is measured by using the external device 70 for prealignment.
 (外部装置)
 図25に示すように、外部装置70は、プリアライメントステージST3、顕微鏡MS3、プリアライメントステージ駆動部72、MS駆動部74及び制御装置76を含んでいる。
(External device)
As shown in FIG. 25, the external device 70 includes a pre-alignment stage ST3, a microscope MS3, a pre-alignment stage drive unit 72, an MS drive unit 74, and a control device 76.
 制御装置76は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、ストレージデバイス(例えば、ハードディスク等)、入出力装置(例えば、操作入力を受け付ける操作部及び表示部等)等を含んでいる。 The control device 76 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device (for example, a hard disk, etc.), and an input / output device (for example, an operation unit and a display unit for receiving operation input). Etc.) etc. are included.
 ワークWは、外部装置70に搬入され、プリアライメントステージST3に載置される。プリアライメントステージST3の表面には、ワークWを吸着保持するための治具J1(図7から図11参照)が設けられており、ワークWは、この治具J1によりプリアライメントステージST3に吸着保持される。 The work W is carried into the external device 70 and placed on the prealignment stage ST3. A jig J1 (see FIGS. 7 to 11) for sucking and holding the work W is provided on the surface of the prealignment stage ST3, and the work W is sucked and held on the prealignment stage ST3 by the jig J1. Will be done.
 プリアライメントステージ駆動部72は、プリアライメントステージST0をθ0方向に回転させるモータと、空気を吸引してワークWをプリアライメントステージST3に吸着するための真空源(真空発生器。例えば、エジェクタ、ポンプ等)とを含んでいる。 The prealignment stage drive unit 72 includes a motor that rotates the prealignment stage ST0 in the θ0 direction, and a vacuum source (vacuum generator, for example, an ejector, a pump) for sucking air and attracting the work W to the prealignment stage ST3. Etc.) and is included.
 MS駆動部74は、顕微鏡MS3をX0軸及びMS1軸に沿って移動させるための動力源(例えば、モータ)を含んでいる。顕微鏡MS3を移動させるための機構としては、例えば、ボールねじ又はラックアンドピニオン機構等の往復直線運動が可能な機構を用いることが可能である。 The MS drive unit 74 includes a power source (for example, a motor) for moving the microscope MS3 along the X0 axis and the MS1 axis. As a mechanism for moving the microscope MS3, for example, a mechanism capable of reciprocating linear motion such as a ball screw or a rack and pinion mechanism can be used.
 顕微鏡MS3は、プリアライメントステージST3に吸着保持されたワークWの表面の画像を撮影する。顕微鏡MS3によって撮影されたワークWの表面画像は、制御装置76に送信される。 The microscope MS3 captures an image of the surface of the work W adsorbed and held by the prealignment stage ST3. The surface image of the work W taken by the microscope MS3 is transmitted to the control device 76.
 なお、本実施形態では、顕微鏡MS3をX0軸及びMS3軸に沿って移動させるようにしたが、プリアライメントステージST3を移動させるようにしてもよいし、顕微鏡MS3及びプリアライメントステージST3の両方を移動させるようにしてもよい。あるいはラインスキャンカメラでワークWの全域の画像を取り込み、ワーク形状測定を行うようにしてもよい。 In the present embodiment, the microscope MS3 is moved along the X0 axis and the MS3 axis, but the prealignment stage ST3 may be moved, or both the microscope MS3 and the prealignment stage ST3 are moved. You may let it. Alternatively, the line scan camera may capture an image of the entire area of the work W to measure the shape of the work.
 制御装置76は、顕微鏡MS3から受信したワークWの表面画像に対して画像処理を行って、ワークWの分割予定ラインの位置を測定する。例えば、制御装置76は、顕微鏡MS3から受信したワークWの表面画像に対してパターンマッチングを行う。そして、制御装置76は、ワークWの表面に形成された半導体装置又は電子部品等の繰り返しパターン若しくはアライメントマーク(以下、パターンM1という。)を検出することにより、ワークWの分割予定ラインの位置(例えば、交点、端点の座標)を測定する。これにより、ワークWの形状が測定される。制御装置76は、ワークWの形状の測定結果のデータを、ワークWの識別情報(例えば、ID(Identification)、製造番号等)と関連づけて保存する。 The control device 76 performs image processing on the surface image of the work W received from the microscope MS3, and measures the position of the scheduled division line of the work W. For example, the control device 76 performs pattern matching on the surface image of the work W received from the microscope MS3. Then, the control device 76 detects the repeating pattern or alignment mark (hereinafter referred to as pattern M1) of the semiconductor device or electronic component formed on the surface of the work W, thereby detecting the position of the scheduled division line of the work W (hereinafter referred to as pattern M1). For example, the coordinates of the intersection and the end point) are measured. As a result, the shape of the work W is measured. The control device 76 stores the data of the measurement result of the shape of the work W in association with the identification information of the work W (for example, ID (Identification), serial number, etc.).
 制御装置76は、ネットワーク(例えば、LAN(Local Area Network)等)を介して、ダイシング装置1-2の制御部100と通信可能となっている。制御装置76は、ワークWの形状の測定結果のデータを制御部100に送信する。ここで、制御装置76は、ワークWの形状の測定結果のデータを送信する際に、ワークWの識別情報を付して送信する。 The control device 76 can communicate with the control unit 100 of the dicing device 1-2 via a network (for example, LAN (Local Area Network)). The control device 76 transmits the data of the measurement result of the shape of the work W to the control unit 100. Here, when transmitting the data of the measurement result of the shape of the work W, the control device 76 attaches the identification information of the work W and transmits the data.
 (ダイシング装置)
 次に、ダイシング装置1-2において、ワークWの形状の測定結果のデータを用いて、ワークWのダイシング加工を行う。
(Dicing device)
Next, in the dicing apparatus 1-2, the dicing process of the work W is performed using the data of the measurement result of the shape of the work W.
 制御部100は、ネットワークを介して、外部装置70の制御装置76から、ワークWの形状の測定結果を取得する。 The control unit 100 acquires the measurement result of the shape of the work W from the control device 76 of the external device 70 via the network.
 制御部100は、ダイシング加工時に、ハンドラアーム54を制御して、加工部20の加工ステージSTに加工対象のワークWをロードする。 The control unit 100 controls the handler arm 54 at the time of dicing, and loads the work W to be processed into the processing stage ST of the processing unit 20.
 本実施形態に係るダイシング装置1-2は、ワーク照合部60を備えている。ワーク照合部60は、加工ステージSTにロードされたワークWに付された識別情報を読み取る。なお、ワークWに付された識別情報を読み取る手段は特に限定されない。ワークWに付された識別情報を読み取る手段としては、例えば、ワークWに識別情報を含む2次元コード(例えば、QRコード(登録商標)等)を付して、この2次元コードを読み取る2次元コードリーダを用いてもよい。また、ワークWに識別情報を記録したIC(Integrated Circuit)タグを付して、このICタグを読み取るようにしてもよい。また、ワークWに付された識別情報(番号等)をOCR(Optical Character Reader)により読み取るようにしてもよい。 The dicing device 1-2 according to the present embodiment includes a work collating unit 60. The work collating unit 60 reads the identification information attached to the work W loaded on the machining stage ST. The means for reading the identification information attached to the work W is not particularly limited. As a means for reading the identification information attached to the work W, for example, a two-dimensional code (for example, a QR code (registered trademark)) including the identification information is attached to the work W, and the two-dimensional code is read. A code reader may be used. Further, an IC (Integrated Circuit) tag in which identification information is recorded may be attached to the work W so that the IC tag can be read. Further, the identification information (number or the like) attached to the work W may be read by OCR (Optical Character Reader).
 制御部100は、ワークWの識別情報に基づいて外部装置70から取得したワークWの形状の測定結果の中から、加工対象のワークWの形状の測定結果のデータを読み出す。そして、制御部100は、その測定結果のデータを用いて、第1及び第2の実施形態と同様に、ワークWと治具J1の治具溝G1とのアライメントを行い、加工ステージ駆動部22を制御して、加工ステージSTにワークWを吸着保持させる。 The control unit 100 reads out the data of the measurement result of the shape of the work W to be machined from the measurement result of the shape of the work W acquired from the external device 70 based on the identification information of the work W. Then, the control unit 100 aligns the work W with the jig groove G1 of the jig J1 by using the measurement result data as in the first and second embodiments, and the machining stage drive unit 22 To attract and hold the work W on the machining stage ST.
 本実施形態によれば、プリアライメントとダイシング加工とを別の装置で行うことになるため、ダイシング加工とプリアライメントの時間差異(加工部20又は外部装置70が遊んでいる時間)を気にすることなく処理することができ、CoO(Cost of Ownership)を最大化することができる。 According to this embodiment, since the prealignment and the dicing process are performed by different devices, the time difference between the dicing process and the prealignment process (the time during which the processing unit 20 or the external device 70 is idle) is taken into consideration. It can be processed without any problem, and CoO (Cost of Ownership) can be maximized.
 なお、本実施形態では、ダイシング装置1-2の制御部100と、外部装置70の制御装置76とをネットワークを介して通信可能としたが、本発明はこれに限定されない。ダイシング装置1-2の制御部100と、外部装置70の制御装置76とは、例えば、ケーブル(例えば、USB(Universal Serial Bus)等)により直接接続されていてもよいし、クラウドストレージ又はリムーバブルメディアを介して測定結果のデータのやりとりを行ってもよい。 In the present embodiment, the control unit 100 of the dicing device 1-2 and the control device 76 of the external device 70 can communicate with each other via a network, but the present invention is not limited to this. The control unit 100 of the dicing device 1-2 and the control device 76 of the external device 70 may be directly connected by, for example, a cable (for example, USB (Universal Serial Bus) or the like), or cloud storage or removable media. The data of the measurement result may be exchanged via.
 本実施形態において、上記の分割予定ラインの位置の算出(図14から図20参照)を行う場合には、外部装置70において、分割予定ラインCL1ごとに少なくとも2つのパターンP1を検出した検出結果を、ダイシング装置1-2の制御部100に送信し、制御部100において、図18の演算を行うようにすればよい。 In the present embodiment, when the position of the planned division line is calculated (see FIGS. 14 to 20), the detection result of detecting at least two patterns P1 for each scheduled division line CL1 in the external device 70 is obtained. , It may be transmitted to the control unit 100 of the dicing device 1-2, and the control unit 100 may perform the calculation shown in FIG.
 1、1-2…ダイシング装置、10…プリアライメント部、12…プリアライメントステージ駆動部、14…MS駆動部、20…加工部、22-1…第1ステージ駆動部、22-2…第2ステージ駆動部、26…加工駆動部、28…MS駆動部、30-1…第1スピンドル、30-2…第2スピンドル、32-1…第1ブレード、32-2…第2ブレード、50…ハンドラ、52…ハンドラ軸、54…ハンドラアーム、56…ハンドラ駆動部、70…外部装置、72…プリアライメントステージ駆動部、74…MS駆動部、76…制御装置、ST0、ST3…プリアライメントステージ、ST1…第1ステージ、ST2…第2ステージ、MS1、MS2、MS3…顕微鏡、100…制御部、102…入力部、104…表示部 1, 1-2 ... Dicing device, 10 ... Pre-alignment unit, 12 ... Pre-alignment stage drive unit, 14 ... MS drive unit, 20 ... Machining unit, 22-1 ... First stage drive unit, 22-2 ... Second Stage drive unit, 26 ... Processing drive unit, 28 ... MS drive unit, 30-1 ... 1st spindle, 30-2 ... 2nd spindle, 32-1 ... 1st blade, 32-2 ... 2nd blade, 50 ... Handler, 52 ... Handler axis, 54 ... Handler arm, 56 ... Handler drive unit, 70 ... External device, 72 ... Prealignment stage drive unit, 74 ... MS drive unit, 76 ... Control device, ST0, ST3 ... Prealignment stage, ST1 ... 1st stage, ST2 ... 2nd stage, MS1, MS2, MS3 ... Microscope, 100 ... Control unit, 102 ... Input unit, 104 ... Display unit

Claims (8)

  1.  ワークを吸着保持するための治具と、前記治具により吸着保持されたワークに対して分割予定ラインに沿ってダイシング加工を行って分割するためのブレードとを含む加工部と、
     前記ダイシング加工を行う前に、前記ワークの形状の測定結果を取得し、前記測定結果に基づいて、前記分割予定ラインに沿う前記ブレードの刃厚に対応する太さのラインが前記治具の治具溝に収まるように、前記ワークと前記治具とのアライメントを行う制御部とを備え、
     前記制御部は、前記ワークの表面において、前記分割予定ラインのクロスポイントから離れた位置に形成された少なくとも2つのパターンの検出結果から分割予定ラインの傾きを検出し、前記分割予定ラインの傾きから、前記クロスポイントの位置を算出し、前記分割予定ラインの傾き及び前記クロスポイントの位置から前記ワークの歪量を算出する、
     ダイシング装置。
    A processing portion including a jig for sucking and holding the work, and a blade for dicing and dividing the work sucked and held by the jig along a planned division line.
    Before performing the dicing process, the measurement result of the shape of the work is acquired, and based on the measurement result, a line having a thickness corresponding to the blade thickness of the blade along the planned division line is used to cure the jig. It is provided with a control unit that aligns the work and the jig so that it fits in the tool groove.
    The control unit detects the inclination of the planned division line from the detection results of at least two patterns formed at positions away from the cross point of the planned division line on the surface of the work, and from the inclination of the planned division line. , The position of the cross point is calculated, and the strain amount of the work is calculated from the inclination of the planned division line and the position of the cross point.
    Dicing device.
  2.  前記ワークの形状を測定するためのプリアライメント部をさらに備え、
     前記制御部は、前記プリアライメント部から、前記ワークの形状の測定結果を取得する、請求項1記載のダイシング装置。
    Further provided with a pre-alignment unit for measuring the shape of the work,
    The dicing apparatus according to claim 1, wherein the control unit acquires a measurement result of the shape of the work from the prealignment unit.
  3.  前記制御部は、前記ワークの形状を測定するためのプリアライメント用の外部装置から、前記ワークの形状の測定結果を取得する、請求項1記載のダイシング装置。 The dicing device according to claim 1, wherein the control unit acquires a measurement result of the shape of the work from an external device for prealignment for measuring the shape of the work.
  4.  前記制御部は、前記分割予定ラインに沿う前記ブレードの刃厚に対応する太さのラインがすべて前記治具の治具溝に収まるように、前記ワークと前記治具とのアライメントを行う、請求項1から3のいずれか1項記載のダイシング装置。 The control unit aligns the work with the jig so that all the lines having a thickness corresponding to the blade thickness of the blade along the planned division line fit in the jig groove of the jig. Item 3. The dicing apparatus according to any one of Items 1 to 3.
  5.  前記制御部は、前記ワーク上に設けられた複数の分割エリアごとに、前記分割エリアに含まれる前記分割予定ラインに沿う前記ブレードの刃厚に対応する太さのラインが前記治具の治具溝に収まるように、前記ワークと前記治具とのアライメントを行う、請求項1から3のいずれか1項記載のダイシング装置。 In the control unit, for each of the plurality of division areas provided on the work, a line having a thickness corresponding to the blade thickness of the blade along the division schedule line included in the division area is a jig of the jig. The dicing apparatus according to any one of claims 1 to 3, which aligns the work with the jig so as to fit in the groove.
  6.  ワークの形状を測定する形状測定ステップと、
     前記ワークの形状の測定結果を取得し、前記測定結果に基づいて、前記ワークの分割予定ラインに沿うラインであって、前記ワークのダイシング加工を行うためのブレードの刃厚に対応する太さのラインが治具の治具溝に収まるように、前記ワークと前記治具とのアライメントを行うアライメントステップと、
     前記ワークを治具により吸着保持して、前記ワークに対して分割予定ラインに沿ってダイシング加工を行うステップとを含み、
     前記形状測定ステップは、
     前記ワークの表面において、前記分割予定ラインのクロスポイントから離れた位置に形成された少なくとも2つのパターンの検出結果から分割予定ラインの傾きを検出するステップと、
     前記分割予定ラインの傾きから、前記クロスポイントの位置を算出するステップと、
     前記分割予定ラインの傾き及び前記クロスポイントの位置から前記ワークの歪量を算出するステップと、
     を含むダイシング方法。
    A shape measurement step to measure the shape of the work and
    The measurement result of the shape of the work is acquired, and based on the measurement result, the line is along the planned division line of the work and has a thickness corresponding to the blade thickness of the blade for dicing the work. An alignment step for aligning the work and the jig so that the line fits in the jig groove of the jig.
    The work includes a step of sucking and holding the work with a jig and dicing the work along a planned division line.
    The shape measurement step
    A step of detecting the inclination of the planned division line from the detection results of at least two patterns formed on the surface of the work at positions separated from the cross point of the planned division line.
    The step of calculating the position of the cross point from the inclination of the planned division line and
    A step of calculating the strain amount of the work from the inclination of the planned division line and the position of the cross point, and
    Dicing method including.
  7.  前記形状測定ステップでは、ダイシング装置に備えられたプリアライメント部により、前記ワークの形状を測定し、
     前記アライメントステップでは、前記プリアライメント部から、前記ワークの形状の測定結果を取得する、請求項6記載のダイシング方法。
    In the shape measurement step, the shape of the work is measured by the pre-alignment unit provided in the dicing device.
    The dicing method according to claim 6, wherein in the alignment step, a measurement result of the shape of the work is acquired from the pre-alignment unit.
  8.  前記形状測定ステップでは、ダイシング装置とは別のプリアライメント用の外部装置により、前記ワークの形状を測定し、
     前記アライメントステップでは、前記外部装置から、前記ワークの形状の測定結果を取得する、請求項6記載のダイシング方法。
    In the shape measurement step, the shape of the work is measured by an external device for prealignment different from the dicing device.
    The dicing method according to claim 6, wherein in the alignment step, a measurement result of the shape of the work is acquired from the external device.
PCT/JP2020/033741 2019-09-27 2020-09-07 Dicing device and method WO2021059937A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080061320.1A CN114340846B (en) 2019-09-27 2020-09-07 Cutting device and method
KR1020217041965A KR102411860B1 (en) 2019-09-27 2020-09-07 Dicing apparatus and method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-177265 2019-09-27
JP2019177265 2019-09-27
JP2020-090657 2020-05-25
JP2020090657 2020-05-25
JP2020149028A JP6912745B1 (en) 2019-09-27 2020-09-04 Dicing equipment and method
JP2020-149028 2020-09-04

Publications (1)

Publication Number Publication Date
WO2021059937A1 true WO2021059937A1 (en) 2021-04-01

Family

ID=75165677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033741 WO2021059937A1 (en) 2019-09-27 2020-09-07 Dicing device and method

Country Status (3)

Country Link
KR (1) KR102411860B1 (en)
CN (1) CN114340846B (en)
WO (1) WO2021059937A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033295A (en) * 2000-07-14 2002-01-31 Disco Abrasive Syst Ltd Alignment method and aligner
JP2006253466A (en) * 2005-03-11 2006-09-21 Disco Abrasive Syst Ltd Alignment method
JP2009170501A (en) * 2008-01-11 2009-07-30 Disco Abrasive Syst Ltd Cutting apparatus
JP2011114070A (en) * 2009-11-25 2011-06-09 Disco Abrasive Syst Ltd Processing device
JP2012138548A (en) * 2010-12-28 2012-07-19 Mitsuboshi Diamond Industrial Co Ltd Substrate processing method
JP2012256796A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Scheduled division line detection method
JP2016181640A (en) * 2015-03-25 2016-10-13 Towa株式会社 Cutting device and cutting method
JP2018148023A (en) * 2017-03-06 2018-09-20 株式会社ディスコ Processing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927338B2 (en) * 2005-02-21 2012-05-09 住友重機械工業株式会社 STAGE DEVICE, GANTRY TYPE STAGE DEVICE, AND STAGE DEVICE CONTROL METHOD
JP5947010B2 (en) 2011-09-15 2016-07-06 株式会社ディスコ Splitting device
KR101607226B1 (en) * 2014-04-14 2016-03-29 주식회사 레이저앱스 system and method for cutting using laser
JP6212507B2 (en) 2015-02-05 2017-10-11 Towa株式会社 Cutting apparatus and cutting method
JP6607639B2 (en) * 2015-12-24 2019-11-20 株式会社ディスコ Wafer processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033295A (en) * 2000-07-14 2002-01-31 Disco Abrasive Syst Ltd Alignment method and aligner
JP2006253466A (en) * 2005-03-11 2006-09-21 Disco Abrasive Syst Ltd Alignment method
JP2009170501A (en) * 2008-01-11 2009-07-30 Disco Abrasive Syst Ltd Cutting apparatus
JP2011114070A (en) * 2009-11-25 2011-06-09 Disco Abrasive Syst Ltd Processing device
JP2012138548A (en) * 2010-12-28 2012-07-19 Mitsuboshi Diamond Industrial Co Ltd Substrate processing method
JP2012256796A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Scheduled division line detection method
JP2016181640A (en) * 2015-03-25 2016-10-13 Towa株式会社 Cutting device and cutting method
JP2018148023A (en) * 2017-03-06 2018-09-20 株式会社ディスコ Processing device

Also Published As

Publication number Publication date
KR20220002695A (en) 2022-01-06
CN114340846A (en) 2022-04-12
KR102411860B1 (en) 2022-06-23
CN114340846B (en) 2022-11-29

Similar Documents

Publication Publication Date Title
JP4640715B2 (en) Alignment method and alignment apparatus
TWI715566B (en) Substrate processing apparatus and substrate processing method
KR102228487B1 (en) Workpiece cutting method
TWI408776B (en) Cutting machine and aligning method
KR102320062B1 (en) Dressing board, dressing method of cutting blade, and cutting apparatus
CN107768242B (en) Cutting method for workpiece
TW202117909A (en) Center positioning method which is applied to semiconductors for cutting and polishing a wafer into chips with reduced errors
JP4612441B2 (en) Alignment method
JP5215159B2 (en) Alignment mechanism, grinding apparatus, alignment method and grinding method
JP6912745B1 (en) Dicing equipment and method
WO2021059937A1 (en) Dicing device and method
JP5121390B2 (en) Wafer processing method
JP5588748B2 (en) Grinding equipment
JP2016153154A (en) Wafer positioning method
JP7390574B2 (en) Dicing equipment and method
JP2848185B2 (en) Semiconductor manufacturing apparatus with self-diagnosis function and self-diagnosis method therefor
TWI759394B (en) transfer mechanism
KR102550583B1 (en) Processing and checking methods by auto alignment after loading substrate
US11935227B2 (en) Notch detecting method
JP2019147210A (en) Machine tool having rotatable table, and processing method by machine tool
TWI830921B (en) Processing equipment
JP5538015B2 (en) Method of determining machining movement amount correction value in machining apparatus
JP5114153B2 (en) Wafer processing method
JP5577158B2 (en) Correction value acquisition method
JP2017028100A (en) Alignment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217041965

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868491

Country of ref document: EP

Kind code of ref document: A1