WO2021059555A1 - 汚水濾過装置 - Google Patents

汚水濾過装置 Download PDF

Info

Publication number
WO2021059555A1
WO2021059555A1 PCT/JP2020/008880 JP2020008880W WO2021059555A1 WO 2021059555 A1 WO2021059555 A1 WO 2021059555A1 JP 2020008880 W JP2020008880 W JP 2020008880W WO 2021059555 A1 WO2021059555 A1 WO 2021059555A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sewage
lift pump
air lift
filtration device
Prior art date
Application number
PCT/JP2020/008880
Other languages
English (en)
French (fr)
Inventor
弘憲 角吉
浩成 飯野
Original Assignee
株式会社フジタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジタ filed Critical 株式会社フジタ
Priority to MX2022002281A priority Critical patent/MX2022002281A/es
Priority to JP2021548313A priority patent/JP7270051B2/ja
Publication of WO2021059555A1 publication Critical patent/WO2021059555A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/38Feed or discharge devices
    • B01D24/44Feed or discharge devices for discharging filter cake, e.g. chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/94Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging the filter cake, e.g. chutes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • One embodiment of the present invention relates to a sewage filtration device.
  • a biological filtration device using aerobic microorganisms and anaerobic microorganisms is known as a filtration device used for purification treatment of urine, domestic wastewater, etc.
  • a biological filtration device has a filtration layer formed by filling a treatment tank with a small filter medium that floats on water, and the sewage is purified by passing the sewage through the filtration layer.
  • sludge containing aerobic or anaerobic microorganisms is attached to the filtration layer. Therefore, the biological filtration device can simultaneously perform the decomposition treatment of the organic pollutant and the separation treatment of the suspended solid by supplying the sewage into the filtration layer.
  • the biological filtration device described in Patent Document 1 has a structure in which air is stored in the lower part of the treatment tank and the air is instantly removed to generate a rapid downward water flow in the treatment tank. ..
  • the downward water flow generated in the treatment tank causes the filtration layer in the treatment tank to drop sharply.
  • the lowered filter layer is separated into individual filter media from above, and rises while repeating vigorous exercise. As a result, some of the pollutants and suspended solids adhering to the individual filter media are separated from the filter media and settle toward the bottom of the treatment tank.
  • the filtration device described in Patent Document 1 is provided with a raw water supply pipe for supplying sewage into the treatment tank and a washing drain pipe for removing precipitated pollutants (sludge) from the treatment tank separately.
  • the structure became complicated, which led to an increase in the size of the device. Further, since the above-mentioned filtration device has only one washing drain pipe, there is room for improvement in sludge discharge performance.
  • An object of the embodiment of the present invention is to provide a sewage filtration device having a simple structure and improved sludge discharge performance in a treatment tank.
  • the sewage filtration device is provided in a treatment tank, a sewage treatment section provided inside the treatment tank, and the sewage treatment section, and has a specific gravity of 0.1 or more and 0.3 or less with respect to water.
  • a filtration layer composed of a floating filter medium (for example, an effervescent filter medium), an air holding section provided below the sewage treatment section, an air supply pipe communicating with the air holding section, and the sewage treatment section. It includes a first air lift pump extending from above through the filtration layer to the air holding portion, and a water sealing portion provided inside the air holding portion and communicating with the first air lift pump. ..
  • the first air lift pump also serves as a raw water supply pipe, an air discharge pipe, and a sludge discharge pipe.
  • the sewage filtration device further includes a second air lift pump that extends from above the sewage treatment section through the filtration layer to the air holding section.
  • the second air lift pump may be a sludge discharge pipe.
  • the sewage filtration device may further include a measuring device (specifically, a gas-liquid separation measuring device) connected to the first air lift pump and the second air lift pump.
  • a measuring device specifically, a gas-liquid separation measuring device
  • the sewage filtration device has an outer edge connected to the inner wall of the treatment tank, and has a partition member for partitioning the sewage treatment section and the air holding section, and the partition member via an opening provided in the partition member.
  • a tubular member that is connected to and extends toward the bottom of the processing tank may be further provided. At this time, the sewage treatment section and the air holding section may communicate with each other through a plurality of slits provided in the lower part of the tubular member.
  • the plurality of slits may be located below the break point of the water sealing portion. Further, the end portion of the first air lift pump in the processing tank may be located below the break point of the water sealing portion.
  • the air holding portion may be a space having an inner wall of the processing tank as an outer edge.
  • the bottom of the treatment tank may have an inclined surface so as to become higher from the outer edge toward the inside.
  • FIG. 1 is a diagram schematically showing the configuration of the sewage treatment device 100 of the first embodiment.
  • the sewage treatment apparatus 100 of the present embodiment includes a first anaerobic filter bed chamber 110, a second anaerobic filter bed chamber 120, a biological filtration chamber 130, and a treated water chamber 140.
  • the example shown in FIG. 1 is only an example, and is not limited to this example.
  • each treatment chamber is provided with a pump or the like for adjusting the amount of water or the flow rate.
  • the first anaerobic filter bed chamber 110 is an anaerobic treatment chamber in which the sewage supplied from the raw water supply port 105 first circulates.
  • the first anaerobic filter bed room 110 includes a first anaerobic filter bed 111.
  • the sewage flowing in from the raw water supply port 105 passes through the first anaerobic filter bed 111 in a downward flow.
  • solid matter in the sewage is removed, and organic substances contained in the sewage are decomposed by anaerobic microorganisms.
  • the insoluble solids and the like removed here are stored in the first anaerobic filter bed chamber 110 as sludge or scum.
  • the first anaerobic filter bed chamber 110 communicates with the second anaerobic filter bed chamber 120 through the opening 115a provided in the partition plate 115.
  • the sewage that has passed through the first anaerobic filter bed chamber 110 flows into the second anaerobic filter bed chamber 120 through the opening 115a.
  • the second anaerobic filter bed chamber 120 is an anaerobic treatment chamber that performs a secondary filtration treatment for further purifying the sewage that has been subjected to the primary filtration treatment by the first anaerobic filter bed chamber 110.
  • the second anaerobic filter bed chamber 120 includes a second anaerobic filter bed 121.
  • the sewage flowing from the first anaerobic filter bed chamber 110 through the opening 115a passes through the second anaerobic filter bed 121 in an upward flow.
  • solid matter in the sewage is removed, and organic substances contained in the sewage are decomposed by anaerobic microorganisms.
  • the insoluble solids and the like removed here are stored in the second anaerobic filter bed chamber 120 as sludge or scum.
  • the sewage that has passed through the second anaerobic filter bed chamber 120 is supplied to the raw water inlet 125 via a flow rate adjusting pump (not shown) and flows into the biological filtration chamber 130.
  • the biological filtration chamber 130 is a treatment chamber that performs a tertiary filtration treatment for further purifying the sewage that has been subjected to the secondary filtration treatment by the second anaerobic filtration bed chamber 120.
  • the biological filtration chamber 130 includes a filtration layer 131 composed of an aggregate of filter media (specifically, a floating filter medium). Further, the biological filtration chamber 130 includes a first air lift pump 132 and a second air lift pump 133. A water sealing portion 134 communicates with the first air lift pump 132.
  • the sewage that has flowed from the second anaerobic filter bed chamber 120 through the raw water inlet 125 into the biological filtration chamber 130 is sent to the lower part of the biological filtration chamber 130 via the pipe of the first air lift pump 132, and then flows upward. It passes through the filtration layer 131.
  • solid substances in the sewage are removed, and organic substances contained in the sewage are decomposed by microorganisms.
  • the insoluble solid matter removed here and the excess sludge separated from the filtration layer 131 are discharged by the first air lift pump 132 and the second air lift pump 133.
  • the specific configuration and operation of the biological filtration chamber 130 will be described later.
  • the treated water that has passed through the filtration layer 131 flows into the treated water chamber 140 from the treated water outlet 135 provided above the biological filtration chamber 130.
  • the treated water flowing into the treated water chamber 140 is disinfected in a disinfection chamber (not shown) and then discharged from the discharge port 145.
  • the water level of the first anaerobic filter bed chamber 110 and / or the second anaerobic filter bed chamber 120 is used to collect the treated water in the treated water chamber 140 by using an air lift pump, a flow rate regulator, or the like. It may be used for adjustment.
  • FIG. 2 is a diagram showing a configuration of a biological filtration chamber 130 in the sewage treatment device 100 of the first embodiment.
  • the biological filtration chamber 130 shown in FIG. 2 is an example of the sewage filtration device in the sewage treatment device 100 of the present embodiment.
  • the biological filtration chamber 130 of the present embodiment includes the raw water inlet 125, the filtration layer 131, the first air lift pump 132, the second air lift pump 133, the water seal portion 134, and the treated water outlet 135. Further, the biological filtration chamber 130 of the present embodiment includes a processing tank 30, an air supply pipe 31, a partition member 32, a tubular member 33, a filter medium stopper 34, and a measuring device 35.
  • the processing tank 30 is a cylindrical housing made of steel plate or synthetic resin.
  • the treatment tank 30 corresponds to the outer frame of the biological filtration chamber 130 of the present embodiment.
  • a partition member 32 and a tubular member 33 connected to the partition member 32 via an opening 32a provided in the partition member 32 are arranged.
  • the partition member 32 has an outer edge connected to the inner wall of the processing tank 30. That is, the partition member 32 has a role of separating the inside of the processing tank 30 into an upper portion and a lower portion.
  • the tubular member 33 is a cylindrical member extending from the partition member 32 toward the bottom 30a of the processing tank 30. Specifically, one end of the tubular member 33 is connected to the opening 32a of the partition member 32, and the other end is connected to the bottom portion 30a of the processing tank 30.
  • a plurality of slits 33a are provided in the lower portion of the tubular member 33 along the outer circumference of the tubular member 33.
  • the inside of the treatment tank 30 is divided into a sewage treatment section 40 and an air holding section 50 by the partition member 32 and the tubular member 33 described above.
  • the sewage treatment unit 40 is provided with a filtration layer 131 inside, and is an area for performing filtration treatment.
  • the air holding unit 50 is a region for holding the air supplied from the air supply pipe 31 in the filter medium cleaning process described later.
  • the sewage treatment unit 40 is provided with a filter medium stopper 34.
  • the filter medium stopper 34 is a disk-shaped member, and is provided with a plurality of slits (not shown) on the entire surface. Therefore, the filter medium stopper 34 passes the treated water that has passed through the filtration layer 131 and has flowed from below.
  • the filter medium stopper 34 plays a role of stopping the floating of the plurality of floating filter media constituting the filtration layer 131. That is, the plurality of floating filter media form a filtration layer 131 having a predetermined thickness (for example, 500 mm or more and 1500 mm or less) by being prevented from floating by the filter medium stopper 34.
  • the filtration layer 131 of the present embodiment is composed of a plurality of floating filter media (for example, a plurality of foaming filter media).
  • Each of the plurality of floating filter media is a porous material having a specific gravity of 0.1 or more and 0.3 or less with respect to water.
  • the filtration layer 131 is formed by using a floating filter medium having a particle size of 1 mm or more and 30 mm or less (preferably 1 mm or more and 15 mm or less).
  • a porous material such as foamable polystyrene, urethane resin, pumice stone, or shirasu balloon can be used.
  • the floating filter medium is preferably a spherical shape in consideration of fluidity in sewage and releasability of sludge, but a cube, a rectangular parallelepiped, an ellipsoid, or another three-dimensional shape is also possible.
  • the treated water that has passed through the filtration layer 131 and the filter medium stopper 34 and reached the upper part of the treatment tank 30 overflows from the treatment water outlet 135 and flows into the adjacent treatment water chamber 140. ..
  • the air holding unit 50 is provided below the sewage treatment unit 40, and is a space composed of an inner wall of the treatment tank 30, a bottom portion 30a of the treatment tank 30, and a partition member 32. That is, the air holding portion 50 is a space whose outer edge is the inner wall of the processing tank 30.
  • the air holding unit 50 communicates with the sewage treatment unit 40 through a plurality of slits 33a of the tubular member 33. Specifically, the air holding portion 50 communicates with the inner region of the tubular member 33 (the region forming a part of the sewage treatment portion 40) via the plurality of slits 33a. Further, an air supply pipe 31 communicates with the air holding portion 50 below the partition member 32. Therefore, the air holding portion 50 can hold air inside the processing tank 30 in the range from the partition member 32 to the upper ends of the plurality of slits 33a.
  • the first air lift pump 132 and the second air lift pump 133 extend from above the sewage treatment unit 40 through the filtration layer 131 to the air holding unit 50. Strictly speaking, the first air lift pump 132 and the second air lift pump 133 penetrate the filter medium stopper 34, the filtration layer 131, and the partition member 32 from above the sewage treatment unit 40 to reach the air holding unit 50. The lower ends of the first air lift pump 132 and the second air lift pump 133 are located in the vicinity of the bottom portion 30a of the processing tank 30. As a result, in the filter medium cleaning process described later, the sludge settled on the bottom 30a of the treatment tank 30 can be discharged by using the first air lift pump 132 and the second air lift pump 133.
  • the bottom portion 30a of the treatment tank 30 has an inclined surface so as to become higher from the outer edge toward the inside. Therefore, the sludge that has peeled off from the filtration layer 131 and descended in the filter medium cleaning process tends to collect near the outer edge of the bottom portion 30a of the treatment tank 30 along the inclined surface. As a result, it is possible to improve the discharge efficiency when the sludge settled on the bottom portion 30a of the treatment tank 30 is discharged by using the first air lift pump 132 and the second air lift pump 133.
  • a water sealing portion 134 is provided inside the air holding portion 50. Specifically, the water sealing portion 134 communicates with the portion of the first air lift pump 132 located at the air holding portion 50.
  • the specific structure of the water sealing portion 134 will be described later, but the water sealing portion 134 is a structure having a bent flow path.
  • the inside of the water sealing portion 134 is filled with sewage.
  • the water seal of the water sealing portion 134 is broken, and the air held in the air holding portion 50 instantly becomes the third. 1 It is discharged to the outside via the air lift pump 132. In this embodiment, this phenomenon is utilized in the filter medium cleaning process.
  • a gas-liquid separation measuring device is used as the measuring device 35.
  • the measuring device 35 is provided with a raw water inlet 125 connected from the second anaerobic filter bed chamber 120. That is, the sewage sent from the second anaerobic filter bed chamber 120 first flows into the inside of the measuring device 35. After that, the sewage flowing in from the raw water inlet 125 is sent to the vicinity of the bottom 30a of the treatment tank 30 via the first air lift pump 132.
  • FIG. 3 is a diagram showing a configuration of a measuring device 35 in the biological filtration chamber 130 of the first embodiment.
  • FIG. 3A is a cross-sectional view of the weighing device 35 as viewed from above.
  • FIG. 3B is a cross-sectional view of the weighing device 35 cut at AA'shown in FIG. 3A.
  • FIG. 3C is a cross-sectional view of the weighing device 35 cut at BB'shown in FIG. 3A.
  • the measuring device 35 includes a housing 21, a first pumping chamber 22, a second pumping chamber 23, a sludge discharge port 24, and a lid member 25.
  • the housing 21 is made of synthetic resin or the like, and the upper surface is covered with the lid member 25.
  • the first pumping room 22 is a room that communicates with the first air lift pump 132.
  • the bottom of the first pumping chamber 22 communicates with the first air lift pump 132. That is, the air or sludge sent from the treatment tank 30 through the first air lift pump 132 flows into the first pumping chamber 22.
  • the first pumping chamber 22 is provided with a raw water inlet 125 connected to the second anaerobic filter bed chamber 120. The sewage flowing in from the raw water inlet 125 flows into the first air lift pump 132 and is sent to the vicinity of the bottom 30a of the treatment tank 30.
  • the second pumping room 23 is a room that communicates with the second air lift pump 133.
  • the side portion of the second pumping chamber 23 communicates with the second air lift pump 133. That is, the sludge sent from the treatment tank 30 through the second air lift pump 133 flows into the second pumping chamber 23.
  • the sludge that has flowed into the first pumping chamber 22 gets over the straightening vane 26a and flows into the second pumping chamber 23. That is, the sludge sent from the first air lift pump 132 and the sludge sent from the second air lift pump 133 merge in the second pumping chamber 23.
  • a plurality of rectifying plates 26b to 26d are provided in the second pumping chamber 23, and the sludge that has flowed in is rectified. The sludge that has passed through the straightening vanes 26b to 26d is discharged from the sludge discharge port 24 of the second pumping chamber 23.
  • the above-mentioned straightening vane 26d has a measuring notch 27 having a predetermined angle ( ⁇ ).
  • a scale 27a is provided in the vicinity of the measuring notch 27.
  • the sludge can be weighed by reading the amount of sludge passing through the measuring notch 27 from the scale 27a.
  • the predetermined angle is set to, for example, 60 degrees, 90 degrees, or the like.
  • the first air lift pump 132 also serves as a raw water supply pipe and a sludge discharge pipe, the raw water inlet 125 and the first air lift are provided in one room (first pumping chamber 22). It has a structure in which both the discharge ports of the pump 132 communicate with each other. Further, in the weighing device 35 of the present embodiment, the first air lift pump 132 communicates with the first pumping chamber 22 in order to discharge the sludge after cleaning the filter medium by using both the first air lift pump 132 and the second air lift pump 133. However, it has a structure in which the second air lift pump 133 communicates with the second pumping chamber 23.
  • the biological filtration chamber 130 of the present embodiment can measure sludge and control the flow rate with a simple structure by using the measuring device 35 having the above-mentioned structure.
  • the first air lift pump 132 serves as a raw water supply pipe (sewage supply pipe), an air discharge pipe in the filter medium cleaning process, and a sludge discharge pipe after the filter medium cleaning. Also serves as a role.
  • the second air lift pump 133 has a role as a sludge discharge pipe after cleaning the filter medium. That is, in the present embodiment, the sludge settled on the bottom 30a of the treatment tank 30 is discharged by using both the first air lift pump 132 and the second air lift pump 133 while using the first air lift pump 132 for a plurality of purposes. Can be done. Therefore, according to the present embodiment, it is possible to provide a sewage filtration device having a simple structure and improved sludge discharge performance in the treatment tank.
  • the filter medium cleaning process is a cleaning process of the filtration layer 131 that is performed periodically. Specifically, by rapidly moving water from the sewage treatment section 40 to the air holding section 50 inside the treatment tank 30, the individual filter media (the above-mentioned floating filter medium) constituting the filtration layer 131 is washed. Refers to a series of steps to be performed.
  • FIG. 4 to 8 are diagrams for explaining the filter medium cleaning process in the biological filtration chamber 130 of the first embodiment.
  • FIG. 4 shows the normal state of the filter media cleaning process.
  • FIG. 5 shows the first step (air supply step) of the filter medium cleaning process.
  • FIG. 6 shows the second step (air discharge and cleaning step) of the filter medium cleaning process.
  • FIG. 7 shows a third step (standing and settling step) of the filter medium cleaning process.
  • FIG. 8 shows a fourth step (sludge discharge step) of the filter medium cleaning process.
  • the inside of the treatment tank 30 is filled with sewage.
  • the region above the filtration layer 131 is filled with the treated water purified by the filtration treatment, and when the treated water exceeds a certain amount, it is continuously discharged from the discharge port 145.
  • the shaded area below the filtration layer 131 indicates that it is filled with sewage.
  • an upward flow is constantly generated, and sewage continues to be supplied via the first air lift pump 132.
  • the inflow of sewage from the raw water inlet 125 is stopped, and air is supplied from the air supply pipe 31 into the treatment tank 30. Therefore, an air reservoir 50a is formed in the air holding portion 50.
  • the sewage inside the air holding portion 50 passes through the plurality of slits 33a provided in the tubular member 33 and flows into the sewage treatment portion 40.
  • the water surface 51 of the sewage is lowered in the air holding unit 50, and the amount of treated water is increased in the sewage treatment unit 40.
  • the position of the water surface 52 of the treated water does not change.
  • the position of the filtration layer 131 does not change because the filter medium stopper 34 is provided.
  • the water sealing portion 134 includes a plurality of partition plates 134a and 134b, and by combining these, a bent flow path is formed.
  • the water surface 51 exceeds (falls below) the end (break point 53) of the partition plate 134b of the water sealing portion 134, the air in the air pool formed in the air holding portion 50 instantly becomes the first air lift pump 132. It is released to the outside via.
  • the filter medium cleaning process shifts to the second step shown in FIG.
  • the break point 53 can be changed to an arbitrary position by making the partition plate 134b removable and preparing a plurality of partition plates 134b having different lengths.
  • the biological filtration chamber 130 needs to hold air in the air holding portion 50 until the water sealing of the water sealing portion 134 is broken. Therefore, the plurality of slits 33a of the tubular member 33 are located below the break point 53 of the water sealing portion 134. For the same reason, the ends of the first air lift pump 132 and the second air lift pump 133 in the processing tank 30 are located below the break point 53 of the water sealing portion 134.
  • the air in the air holding section 50 is instantly released to the outside, so that the sewage stored in the sewage treatment section 40 is passed through the plurality of slits 33a of the tubular member 33 to the air holding section. Inflow to 50.
  • the water surface 51 of the sewage in the air holding section 50 rises, and the water surface 52 of the treated water in the sewage treatment section 40 falls.
  • the treated water stored above the filtration layer 131 is instantly drawn toward the lower side of the sewage treatment section 40 (the direction in which the tubular member 33 is located).
  • the plurality of filter media constituting the filtration layer 131 are also drawn together below the sewage treatment section 40. After that, due to the buoyancy of the filter media, the individual filter media move upward of the sewage treatment unit 40 while repeating the movement.
  • the inside of the treatment tank 30 is maintained in a state in which the supply and discharge of sewage are stopped until the filtration layer 131 moves to the upper side of the sewage treatment unit 40 (directly below the filter medium stopper 34) again. Will be done.
  • the filtration layer 131 actually floats when the individual filter media constituting the filtration layer 131 individually ascend while repeating vigorous movement. As the individual filter media move violently in this way, the sludge adhering to the surface of the filter media is exfoliated and settles as excess sludge 71 up to the bottom 30a of the treatment tank 30.
  • the excess sludge 71 settled on the bottom 30a of the processing apparatus 30 is discharged to the outside of the biological filtration chamber 130 by using the first air lift pump 132 and the second air lift pump 133.
  • the first air lift pump 132 and the second air lift pump 133 are provided at positions facing each other with the tubular member 33 interposed therebetween, excess sludge 71 can be efficiently discharged.
  • the first to fourth steps described with reference to FIGS. 5 to 8 are regarded as one cycle, and by repeating this cycle 3 to 4 times, the individual filter media constituting the filtration layer 131 can be used. A cleaning process is carried out.
  • FIG. 9 and 10 are diagrams for explaining the behavior of the filter medium in the filter medium cleaning process of the first embodiment. Specifically, FIG. 9A shows the behavior of the filter medium in the first step. FIG. 9B shows the behavior of the filter medium in the second step. 10 (A) and 10 (B) show the behavior of the filter medium in the third step.
  • a plurality of filter media 131a are individually separated and float as shown in FIG. 10A.
  • the filter medium 131a floats while repeating a violent spiral motion, for example, and colliding with each other. Therefore, the sludge adhering to each filter medium 131a is peeled off and settles as an aggregate.
  • the aggregate of the exfoliated sludge is referred to as surplus sludge 71.
  • Separation of the filter layer 131 into individual filter media 131a proceeds from above the filter layer 131 as shown in FIG. 10 (A) and gradually moves downward of the filter layer 131 as shown in FIG. 10 (B). proceed.
  • the separated individual filter media 131a are reassembled directly under the filter media stopper 34 to form the filtration layer 131 by being blocked from floating by the filter media stopper 34. By such a behavior, the filter medium 131a constituting the filtration layer 131 is totally washed.
  • the cleaning process of the filtration layer 131 is performed by the stirring motion of the filter medium 131a as the water moves inside the treatment tank 30.
  • the plurality of filter media 131a are washed by the treated water drawn downward by the second step, it is not necessary to separately prepare water for washing the filter media 131a, and the sewage treatment apparatus 100 can be miniaturized. Can be done.
  • a control unit (not shown) for controlling the cleaning time and the cleaning timing is connected to the biological filtration chamber 130 of the present embodiment.
  • the control unit determines the cleaning time and the cleaning timing by monitoring the fluctuation of the water level in the biological filtration chamber 130.
  • the control unit uses AI (Artificial Intelligence) in determining the cleaning time and the cleaning timing. Specifically, the control unit performs calculations based on the machine learning model with the speed of water level fluctuation, the cleaning time, and the cleaning timing as input parameters, and provides the cleaning time and the cleaning timing as output parameters.
  • AI Artificial Intelligence
  • the rate of water level fluctuation is used as a parameter for predicting the degree of clogging of the biological filtration chamber 130.
  • one of the causes of clogging of the biological filtration chamber 130 is deterioration of the filtration layer 131.
  • a sensor is provided inside the first pumping chamber 22 of the measuring device 35, and the speed of the water level fluctuation is measured by measuring the time required for the water level fluctuation between any two points.
  • the cleaning time is the time required for one cleaning. In the case of the present embodiment, the cleaning time corresponds to the number of times the cycle from the first step to the fourth step described above is repeated.
  • the cleaning timing is the frequency with which the cleaning process is performed. For example, the cleaning timing corresponds to the number of runs per day or the time between cleaning processes.
  • the control unit controls the cleaning process so as to increase the cleaning time or shorten the cleaning timing when the second fluctuation speed is smaller than the first fluctuation speed (when the water level fluctuation is slow). That is, the control unit increases the processing time or the processing frequency of the cleaning process when the water level fluctuation is slow and it is predicted that the biological filtration chamber 130 is clogged.
  • the control unit controls so that the difference between the first fluctuation speed and the second fluctuation speed is almost eliminated (for example, the difference is within ⁇ 5%) by the calculation based on the machine learning model described above.
  • the control unit of the biological filtration chamber 130 of the present embodiment monitors the water level fluctuation of the biological filtration chamber 130 (specifically, the first pumping chamber 22) and inputs the value into the machine learning model. Thereby, an appropriate cleaning time and cleaning timing are determined. Further, the control unit causes the determined cleaning time and cleaning timing to be machine-learned again by using deep learning or the like, and reflects them in the above-mentioned machine learning model. As described above, in the present embodiment, the control unit determines an appropriate cleaning time and cleaning timing using AI, and manages the biological filtration chamber 130 so that it operates normally.
  • Modification example 1 In the present embodiment, an example in which the second air lift pump 133 is provided as a sludge discharge pipe in addition to the first air lift pump 132 has been shown, but the present invention is not limited to this example, and more air lift pumps (for example, two or more air lift pumps) are provided. ) May be provided as a sludge discharge pipe. In this case, since the sludge discharge rate is improved, the time required for the filter medium cleaning process can be shortened.
  • Modification 2 In the present embodiment, an example in which the second air lift pump 133 is provided as a sludge discharge pipe has been shown, but the present invention is not limited to this example, and the second air lift pump 133 may also serve as a raw water supply pipe. In this case, since the speed of raw water supply is improved, it is possible to improve the processing amount of the biological filtration chamber 130 per unit time.
  • Raw water supply port 110 ... First anaerobic filter Bed chamber, 111 ... First anaerobic filter Floor, 115 ... Partition plate, 115a ... Opening, 120 ... Second anaerobic filter bed chamber, 121 ... Second anaerobic filter bed, 125 ... Raw water inlet, 130 ... Biological filtration chamber, 131 ... Filter layer, 131a ... Filter material, 132 ... 1st air lift pump 133 ... 2nd air lift pump, 134 ... water seal, 134a, 134b ... partition plate, 135 ... treated water outlet, 140 ... treated water chamber, 145 ... discharge port

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

汚水濾過装置は、処理槽と、前記処理槽の内部に設けられた汚水処理部と、前記汚水処理部に設けられ、水に対する比重が0.1以上0.3以下の浮上濾材により構成された濾過層と、前記汚水処理部の下方に設けられた空気保持部と、前記空気保持部に連通する空気供給管と、前記汚水処理部の上方から前記濾過層を貫通して前記空気保持部に至るまで延在する第1エアリフトポンプと、前記空気保持部の内部に設けられ、前記第1エアリフトポンプに連通する水封部と、を備え、前記第1エアリフトポンプは、原水供給管、空気排出管及び汚泥排出管を兼ねる。

Description

汚水濾過装置
 本発明の一実施形態は、汚水濾過装置に関する。
 従来、屎尿、家庭用排水等の浄化処理に使用する濾過装置として、好気性微生物及び嫌気性微生物を用いた生物濾過装置が知られている。通常、このような生物濾過装置は、水に浮く小さな濾材を処理槽内に充填して形成された濾過層を有し、この濾過層を汚水が通過することにより汚水の浄化処理が行われる。例えば、特許文献1に記載された生物濾過装置では、濾過層に対し、好気性又は嫌気性の微生物を含む汚泥を付着させてある。したがって、上記生物濾過装置は、汚水を濾過層内に供給することにより、有機性汚濁物質の分解処理と浮遊物質の分離処理とを同時に行うことができる。
 上述の構成の濾過装置は、浄化処理が続くと徐々に濾過層内に汚濁物質の一部及び浮遊物質が固着して濾過層としての処理能力が低下する。したがって、濾過層の処理能力を維持するためには、濾材の定期的な洗浄が必要である。そのため、特許文献1に記載された生物濾過装置は、処理槽内の下部に空気を溜め、その空気を瞬時に抜くことにより、処理槽内に急激な下方向への水流を発生させる構造を有する。処理槽内で発生した下方向への水流は、処理槽内の濾過層を急激に下降させる。下降した濾過層は、上方から個々の濾材に分離し、激しい運動を繰り返しながら上昇する。その結果、個々の濾材に固着した汚濁物質の一部及び浮遊物質は、濾材から剥離して処理槽の底部に向かって沈殿する。
特開平8-132082号公報
 特許文献1に記載された濾過装置は、汚水を処理槽内に供給する原水供給管と、沈殿した汚濁物質等(汚泥)を処理槽内から除去する洗浄排水管とが別々に設けられていたため、構造が複雑となり、装置の大型化を招いていた。また、上記濾過装置は、洗浄排水管が1本であるため、汚泥の排出性能に改善の余地があった。
 本発明の一実施形態の課題は、簡易な構造で処理槽内の汚泥の排出性能を向上させた汚水濾過装置を提供することにある。
 本発明の一実施形態における汚水濾過装置は、処理槽と、前記処理槽の内部に設けられた汚水処理部と、前記汚水処理部に設けられ、水に対する比重が0.1以上0.3以下の浮上濾材(例えば、発泡性濾材)により構成された濾過層と、前記汚水処理部の下方に設けられた空気保持部と、前記空気保持部に連通する空気供給管と、前記汚水処理部の上方から前記濾過層を貫通して前記空気保持部に至るまで延在する第1エアリフトポンプと、前記空気保持部の内部に設けられ、前記第1エアリフトポンプに連通する水封部と、を備える。前記第1エアリフトポンプは、原水供給管、空気排出管及び汚泥排出管を兼ねる。
 上記汚水濾過装置は、前記汚水処理部の上方から前記濾過層を貫通して前記空気保持部に至るまで延在する第2エアリフトポンプをさらに備える。前記第2エアリフトポンプは、汚泥排出管であってもよい。
 上記汚水濾過装置は、前記第1エアリフトポンプ及び前記第2エアリフトポンプに連結された計量装置(具体的には、気液分離計量装置)をさらに備えてもよい。
 上記汚水濾過装置は、前記処理槽の内壁に接続された外縁を有し、前記汚水処理部と前記空気保持部とを仕切る仕切り部材と、前記仕切り部材に設けられた開口を介して前記仕切り部材に接続され、前記処理槽の底部に向かって延在する筒状部材と、をさらに備えてもよい。このとき、前記汚水処理部と前記空気保持部とは、前記筒状部材の下部に設けられた複数のスリットを介して連通してもよい。
 前記複数のスリットは、前記水封部のブレイク点よりも下方に位置してもよい。また、前記第1エアリフトポンプの前記処理槽内の端部は、前記水封部のブレイク点よりも下方に位置してもよい。
 前記空気保持部は、前記処理槽の内壁を外縁とする空間であってもよい。
 前記処理槽の底部は、外縁から内側に進むにつれて高くなるように傾斜面を有してもよい。
第1実施形態の汚水処理装置の構成を模式的に示す図である。 第1実施形態の汚水処理装置における生物濾過室の構成を示す図である。 第1実施形態の生物濾過室における計量装置の構成を示す図である。 第1実施形態の生物濾過室における濾材洗浄プロセスを説明するための図である。 第1実施形態の生物濾過室における濾材洗浄プロセスを説明するための図である。 第1実施形態の生物濾過室における濾材洗浄プロセスを説明するための図である。 第1実施形態の生物濾過室における濾材洗浄プロセスを説明するための図である。 第1実施形態の生物濾過室における濾材洗浄プロセスを説明するための図である。 第1実施形態の濾材洗浄プロセスにおける濾材の挙動を説明するための図である。 第1実施形態の濾材洗浄プロセスにおける濾材の挙動を説明するための図である。
 以下、本発明の実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図面において、既出の図面に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
(第1実施形態)
[汚水処理装置の構成]
 図1は、第1実施形態の汚水処理装置100の構成を模式的に示す図である。図1に示すように、本実施形態の汚水処理装置100は、第1嫌気濾床室110、第2嫌気濾床室120、生物濾過室130、及び、処理水室140を含む。ただし、図1に示す例は一例に過ぎず、この例に限られるものではない。例えば、説明の便宜上、図1では図示を省略しているが、各処理室には、水量又は流量を調整するポンプ等が設けられている。
 第1嫌気濾床室110は、原水供給口105から供給された汚水が最初に流通する嫌気処理室である。第1嫌気濾床室110は、第1嫌気濾床111を備える。原水供給口105から流入した汚水は、下向流で第1嫌気濾床111を通過する。第1嫌気濾床111では、汚水中の固形物が取り除かれるとともに、嫌気性微生物によって汚水に含まれる有機物質が分解される。ここで取り除かれた不溶性の固形物等は、汚泥またはスカムとして第1嫌気濾床室110に貯められる。
 第1嫌気濾床室110は、仕切り板115に設けられた開口115aを介して、第2嫌気濾床室120と連通する。第1嫌気濾床室110を通過した汚水は、開口115aを通って第2嫌気濾床室120へと流入する。
 第2嫌気濾床室120は、第1嫌気濾床室110によって一次濾過処理が行われた汚水をさらに浄化するための二次濾過処理を行う嫌気処理室である。第2嫌気濾床室120は、第2嫌気濾床121を備える。第1嫌気濾床室110から開口115aを通って流入した汚水は、上向流で第2嫌気濾床121を通過する。第2嫌気濾床121では、汚水中の固形物が取り除かれるとともに、嫌気性微生物によって汚水に含まれる有機物質が分解される。ここで取り除かれた不溶性の固形物等は、汚泥またはスカムとして第2嫌気濾床室120に貯められる。
 第2嫌気濾床室120を通過した汚水は、図示しない流量調整ポンプを介して原水入口125に供給され、生物濾過室130へと流入する。生物濾過室130は、第2嫌気濾床室120によって二次濾過処理が行われた汚水をさらに浄化するための三次濾過処理を行う処理室である。生物濾過室130は、濾材(具体的には、浮上濾材)の集合体で構成される濾過層131を備える。また、生物濾過室130は、第1エアリフトポンプ132及び第2エアリフトポンプ133を備える。第1エアリフトポンプ132には、水封部134が連通する。
 第2嫌気濾床室120から原水入口125を介して生物濾過室130に流入した汚水は、第1エアリフトポンプ132の配管を介して生物濾過室130の下方に送られた後、上向流で濾過層131を通過する。濾過層131では、汚水中の固形物が取り除かれるとともに、微生物によって汚水に含まれる有機物質が分解される。ここで取り除かれた不溶性の固形物及び濾過層131から剥離した余剰汚泥等は、第1エアリフトポンプ132及び第2エアリフトポンプ133により排出される。生物濾過室130の具体的な構成及び動作については後述する。
 濾過層131を通過した処理水は、生物濾過室130の上方に設けられた処理水出口135から処理水室140へ流入する。処理水室140に流入した処理水は、図示しない消毒室で消毒された後、放流口145から放出される。また、図1には図示していないが、エアリフトポンプ及び流量調整器などを用いて、処理水室140の処理水を第1嫌気濾床室110及び/又は第2嫌気濾床室120の水位調整に利用してもよい。
[生物濾過装置の構成]
 図2は、第1実施形態の汚水処理装置100における生物濾過室130の構成を示す図である。図2に示す生物濾過室130は、本実施形態の汚水処理装置100における汚水濾過装置の一例である。
 前述のとおり、本実施形態の生物濾過室130は、前述の原水入口125、濾過層131、第1エアリフトポンプ132、第2エアリフトポンプ133、水封部134、及び処理水出口135を含む。さらに、本実施形態の生物濾過室130は、処理槽30、空気供給管31、仕切り部材32、筒状部材33、濾材止め34、及び計量装置35を含む。
 処理槽30は、鋼板または合成樹脂により形成された円筒状の筐体である。処理槽30は、本実施形態の生物濾過室130の外枠に相当する。処理槽30の内部には、仕切り部材32と、仕切り部材32に設けられた開口32aを介して仕切り部材32に連結された筒状部材33とが配置されている。
 仕切り部材32は、処理槽30の内壁に接続された外縁を有する。すなわち、仕切り部材32は、処理槽30の内部を上部と下部とに分離する役割を有する。筒状部材33は、仕切り部材32から処理槽30の底部30aに向かって延在する円筒状の部材である。具体的には、筒状部材33は、一端が仕切り部材32の開口32aに接続され、他端が処理槽30の底部30aに接続される。筒状部材33の下部には、筒状部材33の外周に沿って複数のスリット33aが設けられている。
 処理槽30の内部は、上述の仕切り部材32及び筒状部材33により、汚水処理部40と空気保持部50とに区分される。汚水処理部40は、内部に濾過層131が設けられており、濾過処理を行う領域である。空気保持部50は、後述する濾材洗浄プロセスにおいて、空気供給管31から供給された空気を保持する領域である。
 汚水処理部40には、濾材止め34が設けられている。濾材止め34は、円板状の部材であり、全面に複数のスリット(図示せず)が設けられている。そのため、濾材止め34は、濾過層131を通過して下方から流れてきた処理水を通過させる。他方、濾材止め34は、濾過層131を構成する複数の浮上濾材の浮上を止める役割を果たす。つまり、複数の浮上濾材は、濾材止め34によって浮上を妨げられることにより、所定の厚さ(例えば、500mm以上1500mm以下)の濾過層131を構成する。
 このように、本実施形態の濾過層131は、複数の浮上濾材(例えば、複数の発泡性濾材)により構成されている。複数の浮上濾材は、それぞれ水に対する比重が0.1以上0.3以下の多孔質材である。本実施形態では、粒径が1mm以上30mm以下(好ましくは、1mm以上15mm以下)の浮上濾材を用いて濾過層131を構成する。具体的には、浮上濾材として、発泡性ポリスチロール、ウレタン樹脂、軽石、シラスバルーンなどの多孔質材を用いることが可能である。なお、浮上濾材は、汚水の中での流動性及び汚泥の剥離性を考慮すると球状体が好ましいが、立方体、直方体、楕円体その他の立体形状とすることも可能である。
 本実施形態の生物濾過室130では、濾過層131及び濾材止め34を通過して処理槽30の上部に至った処理水が、処理水出口135から溢れて隣接する処理水室140へと流入する。
 空気保持部50は、汚水処理部40の下方に設けられ、処理槽30の内壁、処理槽30の底部30a、及び仕切り部材32で構成される空間である。すなわち、空気保持部50は、処理槽30の内壁を外縁とする空間である。空気保持部50は、筒状部材33の複数のスリット33aを介して汚水処理部40と連通する。具体的には、空気保持部50は、筒状部材33の内側の領域(汚水処理部40の一部を構成する領域)に複数のスリット33aを介して連通する。また、空気保持部50には、仕切り部材32の下方において空気供給管31が連通している。したがって、空気保持部50は、仕切り部材32から複数のスリット33aの上端に至る範囲において処理槽30の内部に空気を保持することができる。
 第1エアリフトポンプ132及び第2エアリフトポンプ133は、汚水処理部40の上方から濾過層131を貫通して空気保持部50に至るまで延在する。より厳密に言えば、第1エアリフトポンプ132及び第2エアリフトポンプ133は、汚水処理部40の上方から、濾材止め34、濾過層131、及び仕切り部材32を貫通して空気保持部50に至る。第1エアリフトポンプ132及び第2エアリフトポンプ133の下端部は、処理槽30の底部30aの近傍に位置する。これにより、後述する濾材洗浄プロセスにおいて、処理槽30の底部30aに沈殿した汚泥を第1エアリフトポンプ132及び第2エアリフトポンプ133を用いて排出することができる。
 なお、処理槽30の底部30aは、外縁から内側に進むにつれて高くなるように傾斜面を有している。したがって、濾材洗浄プロセスにおいて濾過層131から剥離して下降してきた汚泥は、傾斜面に沿って処理槽30の底部30aにおける外縁付近に集まりやすくなる。これにより、処理槽30の底部30aに沈殿した汚泥を第1エアリフトポンプ132及び第2エアリフトポンプ133を用いて排出する際の排出効率を向上させることができる。
 空気保持部50の内部には、水封部134が設けられている。具体的には、水封部134は、第1エアリフトポンプ132のうち空気保持部50に位置する部分に連通している。水封部134の具体的な構造については後述するが、水封部134は、屈曲した流路を有する構造体である。通常、水封部134の内部は、汚水で満たされている。しかし、空気保持部50に保持された空気が一定量を超える(後述するブレイク点53を超える)と、水封部134の水封が破れ、空気保持部50に保持された空気が瞬時に第1エアリフトポンプ132を介して外部に放出される。本実施形態では、この現象を濾材の洗浄プロセスに利用する。
 上述の第1エアリフトポンプ132及び第2エアリフトポンプ133は、いずれも計量装置35に連通している。本実施形態では、計量装置35として、気液分離計量装置を用いる。本実施形態において、計量装置35には、第2嫌気濾床室120から繋がる原水入口125が設けられている。つまり、第2嫌気濾床室120から送られた汚水は、まず計量装置35の内部に流入する。その後、原水入口125から流入した汚水は、第1エアリフトポンプ132を介して処理槽30の底部30a近傍まで送られる。
 図3は、第1実施形態の生物濾過室130における計量装置35の構成を示す図である。具体的には、図3(A)は、計量装置35の上方から見た断面図である。図3(B)は、計量装置35を図3(A)に示すA-A’で切断した断面図である。図3(C)は、計量装置35を図3(A)に示すB-B’で切断した断面図である。計量装置35は、筐体21、第1揚水室22、第2揚水室23、汚泥放出口24、及び蓋部材25を含む。筐体21は、合成樹脂等で構成され、上面は、蓋部材25で覆われている。
 第1揚水室22は、第1エアリフトポンプ132と連通する部屋である。第1揚水室22の底部は、第1エアリフトポンプ132と連通している。すなわち、第1エアリフトポンプ132を通って処理槽30から送られた空気又は汚泥は、第1揚水室22に流入する。さらに、第1揚水室22には、第2嫌気濾床室120から繋がる原水入口125が設けられている。原水入口125から流入した汚水は、第1エアリフトポンプ132に流れ込み、処理槽30の底部30a近傍まで送られる。
 第2揚水室23は、第2エアリフトポンプ133と連通する部屋である。第2揚水室23の側部は、第2エアリフトポンプ133と連通している。すなわち、第2エアリフトポンプ133を通って処理槽30から送られた汚泥は、第2揚水室23に流入する。なお、第1揚水室22に流入した汚泥は、整流板26aを乗り越えて第2揚水室23に流入する。つまり、第1エアリフトポンプ132から送られた汚泥と第2エアリフトポンプ133から送られた汚泥は、第2揚水室23で合流する。さらに、第2揚水室23には、複数の整流板26b~26dが設けられ、流入した汚泥が整流される。整流板26b~26dを通過した汚泥は、第2揚水室23の汚泥放出口24から放出される。
 上述の整流板26dは、図3(C)に示すように、所定の角度(θ)を有する計量ノッチ27を有する。計量ノッチ27の近傍には、目盛り27aが設けられている。本実施形態では、計量ノッチ27を通過する汚泥の量を目盛り27aから読み取ることにより汚泥の計量を行うことができる。所定の角度は、例えば、60度、90度などに設定される。
 上述したように、本実施形態の計量装置35は、第1エアリフトポンプ132が原水供給管と汚泥排出管とを兼ねるため、1つの部屋(第1揚水室22)に原水入口125と第1エアリフトポンプ132の排出口の両方が連通しているという構造を有している。また、本実施形態の計量装置35は、第1エアリフトポンプ132及び第2エアリフトポンプ133の両方を用いて濾材洗浄後の汚泥を排出するため、第1揚水室22に第1エアリフトポンプ132が連通し、第2揚水室23に第2エアリフトポンプ133が連通するという構造を有する。本実施形態の生物濾過室130は、上述の構造の計量装置35を用いることにより、簡易な構造で汚泥の計量と流量制御を行うことが可能である。
 以上説明したように、本実施形態の生物濾過室130において、第1エアリフトポンプ132は、原水供給管(汚水供給管)、濾材洗浄プロセスにおける空気排出管、及び濾材洗浄後の汚泥排出管としての役割を兼ねている。他方、第2エアリフトポンプ133は、濾材洗浄後の汚泥排出管としての役割を有する。すなわち、本実施形態では、第1エアリフトポンプ132を複数の用途に利用しつつ第1エアリフトポンプ132及び第2エアリフトポンプ133の両方を用いて処理槽30の底部30aに沈殿した汚泥を排出することができる。したがって、本実施形態によれば、簡易な構造で処理槽内の汚泥の排出性能を向上させた汚水濾過装置を提供することができる。
[濾材洗浄プロセスの構成]
 次に、濾材洗浄プロセスについて説明する。濾材洗浄プロセスとは、定期的に実行される濾過層131の洗浄プロセスである。具体的には、処理槽30の内部において、汚水処理部40から空気保持部50に対して急激に水を移動させることにより、濾過層131を構成する個々の濾材(前述の浮上濾材)を洗浄する一連の工程を指す。
 図4~図8は、第1実施形態の生物濾過室130における濾材洗浄プロセスを説明するための図である。具体的には、図4は、濾材洗浄プロセスの通常状態を示している。図5は、濾材洗浄プロセスの第1工程(空気供給工程)を示している。図6は、濾材洗浄プロセスの第2工程(空気排出及び洗浄工程)を示している。図7は、濾材洗浄プロセスの第3工程(静置及び沈殿工程)を示している。図8は、濾材洗浄プロセスの第4工程(汚泥排出工程)を示している。
 図4に示すように、通常状態、すなわち汚水の濾過処理を行っている状態では、処理槽30の内部は、汚水で満たされている。ただし、濾過層131よりも上方の領域は、濾過処理によって浄化された処理水が満たされており、処理水が一定量を超えると放流口145から継続的に放出される。図4において、濾過層131より下方の領域における斜線は、汚水で満たされていることを示している。図4に示す通常状態では、常時、上向流が発生しており、第1エアリフトポンプ132を介して汚水が供給され続けている。
図5に示す第1工程では、原水入口125からの汚水の流入が止められ、空気供給管31から処理槽30内に空気が供給される。そのため、空気保持部50には、空気溜まり50aが形成される。このとき、空気溜まり50aの形成に伴い、空気保持部50の内部の汚水が筒状部材33に設けられた複数のスリット33aを通過して汚水処理部40へと流入する。これにより、空気保持部50では汚水の水面51が下降し、汚水処理部40では処理水の水量が増加する。ただし、処理水は、増加した分だけ放流口145から放出されるため、処理水の水面52の位置は変化しない。また、濾過層131を通過する汚水の量が増加するものの、濾材止め34が設けられているため、濾過層131の位置は変化しない。
 ここで、図5に示すように、空気溜まり50aの体積が増加するにつれて空気保持部50の汚水の水面51が下降すると、水封部134の内部における汚水の水面51も下降する。図5に示す例では、水封部134は、複数の仕切り板134a及び134bを含み、これらを組み合わせることにより、屈曲した流路を形成している。このとき、水面51が水封部134の仕切り板134bの端部(ブレイク点53)を超えると(下回ると)、空気保持部50に形成された空気溜まりの空気が瞬時に第1エアリフトポンプ132を介して外部に放出される。このように、空気保持部50の汚水の水面51が水封部134のブレイク点53を超えた時点で、濾材洗浄プロセスは、図6に示す第2工程に移行する。なお、仕切り板134bを着脱可能とし、長さの異なる仕切り板134bを複数用意することにより、ブレイク点53を任意の位置に変更することが可能である。
 生物濾過室130は、水封部134の水封が破れるまでは空気保持部50に空気を保持しておく必要がある。そのため、筒状部材33の複数のスリット33aは、水封部134のブレイク点53よりも下方に位置する。また、同様の理由により、第1エアリフトポンプ132及び第2エアリフトポンプ133の処理槽30内の端部は、水封部134のブレイク点53よりも下方に位置する。
 図6に示す第2工程では、空気保持部50の空気が瞬時に外部に抜けることにより、汚水処理部40に蓄えられた汚水が、筒状部材33の複数のスリット33aを介して空気保持部50に流入する。空気保持部50への汚水の流入に伴い、空気保持部50における汚水の水面51は上昇し、汚水処理部40における処理水の水面52は下降する。このとき、濾過層131の上方に蓄えられていた処理水は、瞬時に汚水処理部40の下方(筒状部材33の位置する方向)に向かって引き込まれる。その際、濾過層131を構成する複数の濾材も一緒に汚水処理部40の下方に引き込まれる。その後、濾材の浮力により、個々の濾材は、運動を繰り返しながら汚水処理部40の上方へと移動する。
 図7に示す第3工程では、濾過層131が再び汚水処理部40の上方(濾材止め34の直下)に移動するまで、処理槽30の内部は、汚水の供給及び排出が停止した状態に維持される。濾過層131は、実際には、濾過層131を構成する個々の濾材が激しく運動を繰り返しながら個々に浮上することにより浮上する。このように個々の濾材が激しく運動することにより、濾材表面に付着した汚泥が剥離し、余剰汚泥71として処理槽30の底部30aまで沈殿する。
 図8に示す第4工程では処理装置30の底部30aに沈殿した余剰汚泥71を、第1エアリフトポンプ132及び第2エアリフトポンプ133を用いて生物濾過室130の外部へと排出する。本実施形態では、第1エアリフトポンプ132と第2エアリフトポンプ133とが、筒状部材33を挟んで対向する位置に設けられているため、余剰汚泥71を効率良く排出することができる。
 本実施形態では、図5~図8を用いて説明した第1工程から第4工程までを1つのサイクルとし、このサイクルを3~4回繰り返すことにより、濾過層131を構成する個々の濾材の洗浄プロセスが行われる。
 図9及び図10は、第1実施形態の濾材洗浄プロセスにおける濾材の挙動を説明するための図である。具体的には、図9(A)は、第1工程における濾材の挙動を示している。図9(B)は、第2工程における濾材の挙動を示している。図10(A)及び図10(B)は、第3工程における濾材の挙動を示している。
 図9(A)に示すように、第1工程において空気保持部50から汚水処理部40に対して汚水が流入すると、空気保持部50に蓄えられる汚水量が減り、汚水処理部40に蓄えられる汚水量が増加する。このとき、濾過層131を構成する個々の濾材131aは、濾材止め34に遮られて上方へ移動しないため、濾過層131の位置に変化はない。
 その後、図9(B)に示すように、第2工程において汚水処理部40から空気保持部50に対して瞬時に汚水が流入すると、汚水処理部40に蓄えられる汚水量が急激に減り、空気保持部50に蓄えられる汚水量が急激に増加する。このとき、図9(B)に示すように、濾過層131を構成する個々の濾材131aは、一斉に汚水処理部40の下方へと移動する。
 図9(B)の状態で処理槽30の内部をそのままの状態に維持すると、図10(A)に示すように、複数の濾材131aが個々に分離して浮上する。その際、濾材131aは、例えば渦巻状の激しい運動を繰り返し、相互に衝突しながら浮上する。そのため、それぞれの濾材131aに付着していた汚泥が剥離し、集合体となって沈殿する。本実施形態では、この剥離した汚泥の集合体を余剰汚泥71と称する。
 濾過層131の個々の濾材131aへの分離は、図10(A)に示すように濾過層131の上方から進行し、図10(B)に示すように、徐々に濾過層131の下方へと進行する。分離した個々の濾材131aは、濾材止め34に浮上が遮られることにより濾材止め34の直下において再集合して濾過層131を形成する。このような挙動により、濾過層131を構成する濾材131aが全体的に洗浄される。
 以上のように、本実施形態の生物濾過室130において、濾過層131の洗浄プロセスは、処理槽30の内部における水の移動に伴い、濾材131aの攪拌運動によって行われる。このとき、第2工程によって下方に引き込まれた処理水によって複数の濾材131aが洗浄されるため、濾材131aを洗浄するための水を別に用意する必要がなく、汚水処理装置100を小型化することができる。
[生物濾過装置の制御]
 本実施形態の生物濾過室130には、洗浄時間と洗浄タイミングとを制御するための制御部(図示せず)が接続されている。制御部は、生物濾過室130の水位変動を監視することにより、洗浄時間と洗浄タイミングとを決定する。制御部は、洗浄時間と洗浄タイミングとを決定するにあたり、AI(Artificial Intelligence)を用いる。具体的には、制御部は、水位変動の速度、洗浄時間、及び洗浄タイミングを入力パラメータとして機械学習モデルに基づく演算を行い、洗浄時間及び洗浄タイミングを出力パラメータとして提供する。
 上記水位変動の速度は、生物濾過室130の目詰まりの程度を予測するパラメータとして利用される。例えば、生物濾過室130の目詰まりの要因としては、濾過層131の劣化が挙げられる。本実施形態では、計量装置35の第1揚水室22の内部にセンサを設け、任意の二点間の水位変動に要する時間を測定することにより、水位変動の速度を測定する。洗浄時間は、1回の洗浄に要する時間である。本実施形態の場合、洗浄時間は、前述の第1工程から第4工程までのサイクルを繰り返す回数に対応する。洗浄タイミングは、洗浄プロセスを実行する頻度である。例えば、洗浄タイミングは、1日に実行する回数、又は、洗浄プロセス間に空ける期間に対応する。
 本実施形態では、制御部が、洗浄プロセスを終了した直後における水位変動の速度(以下「第1変動速度」という)と、洗浄プロセスを実行する直前における水位変動の速度(以下「第2変動速度」という)を比較し、その結果に基づいて、洗浄時間及び/又は洗浄タイミングを決定する。例えば、制御部は、第1変動速度に比べて第2変動速度が小さい場合(水位変動が遅い場合)、洗浄時間を増加する、又は、洗浄タイミングを短くするように洗浄プロセスを制御する。すなわち、制御部は、水位変動が遅く、生物濾過室130に目詰まりが発生していると予測される場合に、洗浄プロセスの処理時間又は処理頻度を増加させる。このとき、制御部は、前述の機械学習モデルに基づく演算により、第1変動速度と第2変動速度との差分がほぼ無くなる(例えば、差分が±5%以内に収まる)ように制御を行う。
 以上のように、本実施形態の生物濾過室130の制御部は、生物濾過室130(具体的には、第1揚水室22)の水位変動を監視し、その値を機械学習モデルに入力することにより、適切な洗浄時間及び洗浄タイミングを決定する。また、制御部は、決定した洗浄時間及び洗浄タイミングを、再びディープラーニング等を用いて機械学習させ、前述の機械学習モデルに反映させる。このように、本実施形態では、制御部が、AIを用いて適切な洗浄時間及び洗浄タイミングを決定し、生物濾過室130が正常に稼働するように管理している。
(変形例1)
 本実施形態では、第1エアリフトポンプ132に加えて、第2エアリフトポンプ133を汚泥排出管として設ける例を示したが、この例に限らず、さらに多くのエアリフトポンプ(例えば、2以上のエアリフトポンプ)を汚泥排出管として設けてもよい。この場合、汚泥排出の速度が向上するため、濾材洗浄プロセスに要する時間を短縮することが可能である。
(変形例2)
 本実施形態では、第2エアリフトポンプ133を汚泥排出管として設ける例を示したが、この例に限らず、第2エアリフトポンプ133が原水供給管を兼ねていてもよい。この場合、原水供給の速度が向上するため、生物濾過室130の単位時間当たりの処理量を向上させることが可能である。
 本発明の実施形態及びその変形例は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。上述した実施形態の汚水濾過装置及び濾材洗浄プロセスを基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
21…筐体、22…第1揚水室、23…第2揚水室、24…汚泥放出口、25…蓋部材、26a~26d…整流板、27…計量ノッチ、27a…目盛り、30…処理槽、30a…底部、31…空気供給管、32…仕切り部材、32a…開口、33…筒状部材、33a…スリット、34…濾材止め、35…計量装置、40…汚水処理部、50…空気保持部、50a…空気溜まり、51、52…水面、53…ブレイク点、71…余剰汚泥、100…汚水処理装置、105…原水供給口、110…第1嫌気濾床室、111…第1嫌気濾床、115…仕切り板、115a…開口、120…第2嫌気濾床室、121…第2嫌気濾床、125…原水入口、130…生物濾過室、131…濾過層、131a…濾材、132…第1エアリフトポンプ、133…第2エアリフトポンプ、134…水封部、134a、134b…仕切り板、135…処理水出口、140…処理水室、145…放流口

Claims (8)

  1.  処理槽と、
     前記処理槽の内部に設けられた汚水処理部と、
     前記汚水処理部に設けられ、水に対する比重が0.1以上0.3以下の浮上濾材により構成された濾過層と、
     前記汚水処理部の下方に設けられた空気保持部と、
     前記空気保持部に連通する空気供給管と、
     前記汚水処理部の上方から前記濾過層を貫通して前記空気保持部に至るまで延在する第1エアリフトポンプと、
     前記空気保持部の内部に設けられ、前記第1エアリフトポンプに連通する水封部と、
     を備え、
     前記第1エアリフトポンプは、原水供給管、空気排出管及び汚泥排出管を兼ねる、
     汚水濾過装置。
  2.  前記汚水処理部の上方から前記濾過層を貫通して前記空気保持部に至るまで延在する第2エアリフトポンプをさらに備え、
     前記第2エアリフトポンプは、汚泥排出管である、請求項1に記載の汚水濾過装置。
  3.  前記第1エアリフトポンプ及び前記第2エアリフトポンプに連結された計量装置をさらに備える、請求項2に記載の汚水濾過装置。
  4.  前記処理槽の内壁に接続された外縁を有し、前記汚水処理部と前記空気保持部とを仕切る仕切り部材と、
     前記仕切り部材に設けられた開口を介して前記仕切り部材に接続され、前記処理槽の底部に向かって延在する筒状部材と、
     をさらに備え、
     前記汚水処理部と前記空気保持部とは、前記筒状部材の下部に設けられた複数のスリットを介して連通する、請求項1乃至3のいずれか一項に記載の汚水濾過装置。
  5.  前記複数のスリットは、前記水封部のブレイク点よりも下方に位置する、請求項4に記載の汚水濾過装置。
  6.  前記第1エアリフトポンプの前記処理槽内の端部は、前記水封部のブレイク点よりも下方に位置する、請求項1乃至5のいずれか一項に記載の汚水濾過装置。
  7.  前記空気保持部は、前記処理槽の内壁を外縁とする空間である、請求項1乃至6のいずれか一項に記載の汚水濾過装置。
  8.  前記処理槽の底部は、外縁から内側に進むにつれて高くなるように傾斜面を有する、請求項1乃至7のいずれか一項に記載の汚水濾過装置。
PCT/JP2020/008880 2019-09-27 2020-03-03 汚水濾過装置 WO2021059555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2022002281A MX2022002281A (es) 2019-09-27 2020-03-03 Dispositivo de filtracion de aguas residuales.
JP2021548313A JP7270051B2 (ja) 2019-09-27 2020-03-03 汚水濾過装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177664 2019-09-27
JP2019177664 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059555A1 true WO2021059555A1 (ja) 2021-04-01

Family

ID=75166910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008880 WO2021059555A1 (ja) 2019-09-27 2020-03-03 汚水濾過装置

Country Status (3)

Country Link
JP (1) JP7270051B2 (ja)
MX (1) MX2022002281A (ja)
WO (1) WO2021059555A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7566667B2 (ja) 2021-03-03 2024-10-15 水ing株式会社 ろ過装置の洗浄監視方法および洗浄監視システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350969Y2 (ja) * 1986-07-14 1991-10-31
JPH08132082A (ja) * 1994-11-16 1996-05-28 Best Kogyo Kk 生物濾過装置用浮上濾材の洗浄方法
US5770080A (en) * 1997-04-23 1998-06-23 Malone; Ronald F. Air charged backwashing bioclarifier
JP2010184210A (ja) * 2009-02-13 2010-08-26 Best Plant Ltd Co 生物濾過処理用浮上濾材層の自動洗浄装置
JP2010207662A (ja) * 2009-03-06 2010-09-24 Kubota Corp 浄化槽及び浄化槽の運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350969Y2 (ja) * 1986-07-14 1991-10-31
JPH08132082A (ja) * 1994-11-16 1996-05-28 Best Kogyo Kk 生物濾過装置用浮上濾材の洗浄方法
US5770080A (en) * 1997-04-23 1998-06-23 Malone; Ronald F. Air charged backwashing bioclarifier
JP2010184210A (ja) * 2009-02-13 2010-08-26 Best Plant Ltd Co 生物濾過処理用浮上濾材層の自動洗浄装置
JP2010207662A (ja) * 2009-03-06 2010-09-24 Kubota Corp 浄化槽及び浄化槽の運転方法

Also Published As

Publication number Publication date
JPWO2021059555A1 (ja) 2021-04-01
MX2022002281A (es) 2022-03-22
JP7270051B2 (ja) 2023-05-09
TW202112679A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
US10421669B2 (en) Dissolved air flotation device
AU2014352938B2 (en) Biofiltration with enhanced sludge handling
US10252190B2 (en) Method for maximizing uniform effluent flow through a waste water treatment system
EP0977713A1 (en) Air charged backwashing bioclarifier
EP2889068A1 (en) Method and apparatus for using air scouring of a screen in a water treatment facility
WO2021059555A1 (ja) 汚水濾過装置
RU2310726C1 (ru) Плавающий водозабор-осветлитель
KR20140101346A (ko) 침지식 스크린 및 작동 방법
TWI853003B (zh) 汙水過濾裝置
KR101460958B1 (ko) 화력발전소 회사장 폐수처리장치
JP2019058845A (ja) 排水処理装置
RU2372967C2 (ru) Способ фильтрации и самоочищающийся фильтр булыжева для его реализации
JP2011251234A (ja) 塗料廃水分離装置
RU2612724C1 (ru) Способ очистки сточных вод
RU162802U1 (ru) Устройство для очистки сточных вод
KR101761254B1 (ko) 모듈형 선회식 가압부상장치
JP6851608B2 (ja) 排水処理装置
JPH0350969Y2 (ja)
KR20190030551A (ko) 부유물 및 스컴제거 효율이 개선된 하폐수처리장치
KR101847926B1 (ko) 다공격판을 이용한 하폐수처리장치
KR101991816B1 (ko) 개선된 처리수 배출효율을 갖는 다공격판을 이용한 하폐수처리장치
RU2617156C1 (ru) Устройство для очистки сточных вод
RU2611507C1 (ru) Установка для очистки сточных вод от нефтепродуктов
KR200252228Y1 (ko) 공기용존장치
JP2021115543A (ja) 脱窒処理装置および脱窒処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868893

Country of ref document: EP

Kind code of ref document: A1