WO2021059469A1 - Plasma generation device and plasma treatment method - Google Patents

Plasma generation device and plasma treatment method Download PDF

Info

Publication number
WO2021059469A1
WO2021059469A1 PCT/JP2019/038099 JP2019038099W WO2021059469A1 WO 2021059469 A1 WO2021059469 A1 WO 2021059469A1 JP 2019038099 W JP2019038099 W JP 2019038099W WO 2021059469 A1 WO2021059469 A1 WO 2021059469A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
nozzle
gas
cover
ejection port
Prior art date
Application number
PCT/JP2019/038099
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 池戸
卓也 岩田
聡一 白木
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2019/038099 priority Critical patent/WO2021059469A1/en
Priority to JP2021548108A priority patent/JP7461961B2/en
Priority to EP19947409.9A priority patent/EP4037440A4/en
Priority to CN201980100638.3A priority patent/CN114430935A/en
Publication of WO2021059469A1 publication Critical patent/WO2021059469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/341Arrangements for providing coaxial protecting fluids

Definitions

  • the present disclosure relates to a plasma generator or the like that ejects plasma gas.
  • Some plasma generators have a structure in which the processing gas is turned into plasma in the reaction chamber, and the turned plasma gas is ejected from a spout formed in a nozzle or the like.
  • the following patent documents describe an example of such a plasma generator.
  • An object of the present specification is to improve the practicality of a plasma generator having a structure in which plasma gas is ejected from an ejection port.
  • the present specification describes an apparatus main body in which a reaction chamber for converting a processing gas into plasma is formed, and a first ejection port for ejecting the plasma gas converted into plasma in the reaction chamber.
  • a ceramic nozzle formed with the plasma gas, and a metal nozzle cover formed so that a second ejection port for ejecting the gas so as to cover the plasma gas covers the first ejection port.
  • the plasma generator is disclosed.
  • the main body of the apparatus in which the reaction chamber for converting the processing gas into plasma is formed, and the first ejection port for ejecting the plasma gas converted into plasma in the reaction chamber are formed, and the apparatus is described.
  • a plasma generator in which the nozzle cover is composed of a ceramic cover body provided on the device body and a metal cover portion on which the second ejection port is formed and provided on the cover body.
  • the present specification is formed in a metal member in a plasma gas ejection step of ejecting plasma gas from the first ejection port toward the object to be processed and toward the plasma gas ejected from the first ejection port.
  • a plasma treatment method including a shield gas ejection step of shielding the plasma gas by ejecting the shield gas from the second ejection port is disclosed.
  • FIG. 1 It is a figure which shows the plasma apparatus. It is a perspective view which shows the plasma head. It is sectional drawing which cut the plasma head in the X direction and Z direction at the position of the electrode and the plasma passage on the main body side. It is sectional drawing in the AA line of FIG. It is a perspective view of a nozzle cover. It is a perspective view of a nozzle cover.
  • the plasma device 10 includes a plasma head 11, a robot 13, and a control box 15.
  • the plasma head 11 is attached to the robot 13.
  • the robot 13 is, for example, a serial link type robot (also called an articulated robot).
  • the plasma head 11 can irradiate plasma gas while being held at the tip of the robot 13.
  • the plasma head 11 can move three-dimensionally according to the drive of the robot 13.
  • the control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner.
  • the control box 15 has a power supply unit 15A for supplying electric power to the plasma head 11 and a gas supply unit 15B for supplying gas to the plasma head 11.
  • the power supply unit 15A is connected to the plasma head 11 via a power cable (not shown).
  • the power supply unit 15A changes the voltage applied to the electrodes 33 (see FIGS. 3 and 4) of the plasma head 11 based on the control of the control box 15.
  • the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas tubes 19.
  • the gas supply unit 15B supplies the reaction gas, the carrier gas, and the heat gas, which will be described later, to the plasma head 11 based on the control of the control box 15.
  • the control box 15 controls the gas supply unit 15B, and controls the amount of gas supplied from the gas supply unit 15B to the plasma head 11.
  • the robot 13 operates under the control of the control box 15 and irradiates the object W placed on the table 17 with plasma gas from the plasma head 11.
  • control box 15 includes an operation unit 15C having a touch panel and various switches.
  • the control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
  • the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, and the like.
  • the plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma.
  • the heat gas supply unit 23 heats the gas supplied from the gas supply unit 15B to generate heat gas.
  • the plasma head 11 of the present embodiment ejects the plasma gas generated by the plasma generation unit 21 together with the heat gas generated by the heat gas supply unit 23 to the object W to be processed shown in FIG.
  • the processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG.
  • the plasma head 11 may not be provided with the heat gas supply unit 23. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
  • the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a plasma irradiation unit 35, and the like.
  • 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • the head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31.
  • Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37.
  • the pair of electrodes 33 may be simply referred to as electrodes 33.
  • the direction in which the pair of electrodes 33 are arranged is referred to as the X direction
  • the direction in which the plasma generation unit 21 and the heat gas supply unit 23 are arranged is referred to as the Y direction
  • the axial direction of the cylindrical electrodes 33 is referred to as the Z direction.
  • the X direction, the Y direction, and the Z direction are directions orthogonal to each other.
  • the heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like.
  • the gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG.
  • the gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas tube 19 (see FIG. 1). Gas (for example, air) is supplied to the gas pipe 41 from the gas supply unit 15B.
  • the heater 43 is attached in the middle of the gas pipe 41. The heater 43 heats the gas flowing through the gas pipe 41 to generate heat gas.
  • the connecting portion 45 connects the gas pipe 41 to the plasma irradiation portion 35.
  • the connecting portion 45 is connected to the gas pipe 41 at one end and to the heat gas passage 51 formed in the plasma irradiation portion 35 at the other end. .. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
  • an electrode cover 53 made of an insulator such as ceramics.
  • the electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction.
  • the gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55.
  • the opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37.
  • the lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
  • a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31.
  • the reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31, is connected to the gas supply unit 15B via a gas tube 19 (see FIG. 1), and reacts with the reaction gas supplied from the gas supply unit 15B. It flows into the chamber 37.
  • the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via the gas tube 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B.
  • the carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55.
  • Oxygen (O2) can be used as the reaction gas (seed gas).
  • the gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61.
  • this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas.
  • Nitrogen can be used as the carrier gas.
  • the gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
  • AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15.
  • a voltage for example, as shown in FIG. 4
  • a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37.
  • the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
  • a plurality of plasmas on the main body side (six in this embodiment) formed by arranging them at intervals in the X direction and extending in the Z direction.
  • a passage 71 is formed. The upstream ends of the plurality of main body-side plasma passages 71 are connected to the reaction chamber 37.
  • the plasma irradiation unit 35 includes a nozzle 73, a nozzle cover 75, and the like.
  • the nozzle 73 is generally T-shaped when viewed from the side in the X direction, and is composed of a nozzle body 77 and a nozzle tip 79.
  • the nozzle 73 is an integral body of the nozzle body 77 and the nozzle tip 79, and is made of highly heat-resistant ceramic.
  • the nozzle body 77 generally has a flange shape, and is fixed to the lower surface of the head body 31 by bolts 80. Further, the nozzle tip 79 has a shape extending downward from the lower surface of the nozzle body 77.
  • the nozzle 73 is formed with a plurality of nozzle-side plasma passages 81 (six in this embodiment) that penetrate the nozzle body 77 and the nozzle tip 79 in the vertical direction, that is, in the Z direction.
  • the plurality of nozzle-side plasma passages 81 are arranged at intervals in the X direction.
  • the plurality of nozzle-side plasma passages 81 are formed at the same positions as the plurality of main body-side plasma passages 71 in the Z direction. Therefore, the plasma passage 71 on the main body side and the plasma passage 81 on the nozzle side communicate with each other.
  • the nozzle cover 75 generally has a T-shape when viewed from the side in the X direction, and includes a cover main body 85 and a cover tip 87.
  • the cover body 85 and the cover tip 87 are separate members, the cover body 85 is molded of ceramic, and the cover tip 87 is molded of metal, specifically stainless steel.
  • the cover main body 85 has a generally plate-shaped plate thickness, and the cover main body 85 is formed with a concave portion 89 having an opening on the upper surface and a concave shape in the Z direction.
  • the cover body 85 is fixed to the lower surface of the head body 31 by bolts 90 so that the nozzle body 77 of the nozzle 73 is housed in the recess 89.
  • the cover body 85 is formed with a heat gas passage 51 so as to extend in the Y direction, one end of the heat gas passage 51 opens into the recess 89, and the other end of the heat gas passage 51 is the cover body. It is open to the side of 85.
  • the end of the heat gas passage 51 that opens on the side surface of the cover body 85 is connected to the connecting portion 45 of the heat gas supply portion 23 described above.
  • the cover tip 87 has a plate shape similar to the thickness of the cover body 85, and is fixed to the lower surface of the cover body 85 by bolts 91 so as to extend downward from the lower surface of the cover body 85. ing.
  • One through hole 93 penetrating in the Z direction is formed in the cover tip 87, and the upper end portion of the through hole 93 communicates with the recess 89 of the cover main body 85.
  • the nozzle tip 79 of the nozzle 73 is inserted into the through hole 93.
  • the nozzle 73 is entirely covered by the nozzle cover 75.
  • the lower end of the nozzle tip 79 of the nozzle 73 and the lower end of the cover tip 87 of the nozzle cover 75 are located at the same height.
  • the nozzle body 77 of the nozzle 73 is located inside the recess 89 of the nozzle cover 75, and the nozzle tip 79 of the nozzle 73 is inside the through hole 93 of the nozzle cover 75. Is located.
  • the plasma gas generated in the reaction chamber 37 flows through the main body side plasma passage 71 and the nozzle side plasma passage 81 together with the carrier gas, and is ejected from the opening 81A at the lower end of the nozzle side plasma passage 81.
  • the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas output passage 95.
  • This heat gas functions as a shield gas that protects the plasma gas.
  • the heat gas flows through the heat gas output passage 95 and is ejected from the opening 95A at the lower end of the heat gas output passage 95 along the plasma gas ejection direction. At this time, the heat gas is ejected so as to surround the plasma gas ejected from the opening 81A of the nozzle-side plasma passage 81.
  • the plasma device 10 is an example of a plasma generator.
  • the heat gas supply unit 23 is an example of an ejection device.
  • the head main body 31 is an example of the device main body.
  • the reaction chamber 37 is an example of the reaction chamber.
  • the nozzle 73 is an example of a nozzle.
  • the nozzle cover 75 is an example of a nozzle cover.
  • the nozzle body 77 is an example of a nozzle body.
  • the nozzle tip 79 is an example of the nozzle tip.
  • the opening 81A of the nozzle-side plasma passage 81 is an example of the first ejection port.
  • the cover body 85 is an example of the cover body.
  • the cover tip 87 is an example of the cover portion.
  • the opening 95A of the heat gas output passage 95 is an example of the second ejection port.
  • the heat gas is an example of a seal gas.
  • the ceramic nozzle 73 is covered with a nozzle cover 75 having a metal cover tip 87.
  • the cover tip 87 which is the tip of the nozzle cover 75, is molded of metal and is not easily damaged. Therefore, even if the tip of the plasma head 11 comes into contact with the object W or the like during plasma irradiation by the plasma head 11, the nozzle 73 is protected by the metal nozzle cover 75, so that the nozzle 73 Damage is prevented.
  • ceramics are relatively expensive, while metals are inexpensive. Therefore, even if the cover tip 87 is damaged or deformed, the cover tip 87 can be replaced at a low cost.
  • the nozzle cover 75 is composed of a cover main body 85 and a cover tip 87, the cover main body 85 is molded of ceramic, and the cover tip 87 is molded of stainless steel.
  • the cover main body 85 is molded of ceramic
  • the cover tip 87 is molded of stainless steel.
  • the metal cover tip 87 has a shape that extends away from the cover body 85. That is, the metal cover tip 87 has a shape extending in a direction away from the reaction chamber 37. As a result, it becomes possible to more preferably prevent the discharge outside the reaction chamber 37, and it is possible to further ensure appropriate plasma formation.
  • the nozzle tip 79 of the nozzle 73 also has a shape that extends away from the nozzle body 77, that is, downward, like the cover tip 87 of the nozzle cover 75.
  • the nozzle tip 79 extending downward is inserted inside the cover tip 87 extending downward.
  • the plasma gas ejected from the opening 81A of the nozzle tip 79 can be appropriately ejected to the outside of the nozzle cover 75.
  • heated heat gas is flowed between the nozzle 73 and the nozzle cover 75, and the heated heat gas is ejected around the plasma gas.
  • the efficacy (wetting property, etc.) of the plasma gas can be enhanced.
  • the present disclosure is not limited to the above embodiment, and can be implemented in various modes with various changes and improvements based on the knowledge of those skilled in the art.
  • heat gas is flowed between the nozzle 73 and the nozzle cover 75, but the heat gas does not have to flow. That is, the nozzle cover 75 may be arranged only as a cover for protecting the nozzle 73.
  • the plasma gas and the heat gas are ejected from one plasma head 11, but the plasma gas and the heat gas may be ejected from the two heads. That is, plasma gas may be ejected from one head, and heat gas may be ejected from a head different from that head. Further, the nozzle-side plasma passage 81 and the heat gas output passage 95 may be formed at different positions in one head, and the plasma gas and the heat gas may be ejected from the respective passages.
  • the nozzle 73 and the nozzle cover 75 are fixed to the head main body 31, but they may be simply provided. That is, the nozzle body 77 may be provided on the head body 31. Further, the nozzle tip 79 may also be provided on the nozzle body 77.
  • Plasma device plasma generator
  • 23 Heat gas supply unit (spouting device)
  • 31 Head body (device body)
  • 37 Reaction chamber
  • 73 Nozzle
  • 75 Nozzle cover
  • 77 Nozzle body
  • 79 Nozzle tip
  • 81A Opening (first spout)
  • 85 Cover body
  • 87 Cover tip (cover part)
  • 95A Opening (second spout)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

A plasma generation device provided with: a device body in which a reaction chamber for generating plasma from a process gas is formed; a ceramic nozzle having a first jetting port for jetting the plasma gas generated in the reaction chamber; and a metal nozzle cover formed such that a second jetting port for jetting a gas so as to cover the plasma gas covers the first jetting port.

Description

プラズマ発生装置、およびプラズマ処理方法Plasma generator and plasma processing method
 本開示は、プラズマガスを噴出するプラズマ発生装置等に関するものである。 The present disclosure relates to a plasma generator or the like that ejects plasma gas.
 プラズマ発生装置には、反応室において処理ガスをプラズマ化させ、プラズマ化されたプラズマガスを、ノズルなどに形成された噴出口から噴出する構造のものがある。下記特許文献には、そのようなプラズマ発生装置の一例が記載されている。 Some plasma generators have a structure in which the processing gas is turned into plasma in the reaction chamber, and the turned plasma gas is ejected from a spout formed in a nozzle or the like. The following patent documents describe an example of such a plasma generator.
国際公開第2015/141768号International Publication No. 2015/141768
 本明細書は、プラズマガスを噴出口から噴出する構造のプラズマ発生装置の実用性を向上させることを課題とする。 An object of the present specification is to improve the practicality of a plasma generator having a structure in which plasma gas is ejected from an ejection port.
 上記課題を解決するために、本明細書は、処理ガスをプラズマ化させるための反応室が形成された装置本体と、前記反応室においてプラズマ化されたプラズマガスを噴出するための第1噴出口が形成されたセラミック製のノズルと、前記プラズマガスを覆うようにガスを噴出するための第2噴出口が前記第1噴出口を覆うように形成された金属製のノズルカバーと、を備えたプラズマ発生装置を開示する。 In order to solve the above problems, the present specification describes an apparatus main body in which a reaction chamber for converting a processing gas into plasma is formed, and a first ejection port for ejecting the plasma gas converted into plasma in the reaction chamber. A ceramic nozzle formed with the plasma gas, and a metal nozzle cover formed so that a second ejection port for ejecting the gas so as to cover the plasma gas covers the first ejection port. The plasma generator is disclosed.
 また、本明細書は、処理ガスをプラズマ化させるための反応室が形成された装置本体と、前記反応室においてプラズマ化されたプラズマガスを噴出するための第1噴出口が形成され、前記装置本体に設けられたノズルと、前記ノズルを覆うように前記装置本体に設けられ、前記第1噴出口から噴出されたプラズマガスを外部に噴出するための第2噴出口が形成されたノズルカバーとを備え、前記ノズルカバーが、前記装置本体に設けられるセラミック製のカバー本体と、前記第2噴出口が形成され、前記カバー本体に設けられる金属製のカバー部とにより構成されるプラズマ発生装置を開示する。 Further, in the present specification, the main body of the apparatus in which the reaction chamber for converting the processing gas into plasma is formed, and the first ejection port for ejecting the plasma gas converted into plasma in the reaction chamber are formed, and the apparatus is described. A nozzle provided in the main body and a nozzle cover provided in the device main body so as to cover the nozzle and formed with a second ejection port for ejecting plasma gas ejected from the first ejection port to the outside. A plasma generator in which the nozzle cover is composed of a ceramic cover body provided on the device body and a metal cover portion on which the second ejection port is formed and provided on the cover body. Disclose.
 また、本明細書は、第1噴出口からプラズマガスを被処理体に向って噴出するプラズマガス噴出工程と、前記第1噴出口から噴出されたプラズマガスに向って、金属製の部材に形成された第2噴出口からシールドガスを噴出することで、プラズマガスをシールドするシールドガス噴出工程とを含むプラズマ処理方法を開示する。 Further, the present specification is formed in a metal member in a plasma gas ejection step of ejecting plasma gas from the first ejection port toward the object to be processed and toward the plasma gas ejected from the first ejection port. A plasma treatment method including a shield gas ejection step of shielding the plasma gas by ejecting the shield gas from the second ejection port is disclosed.
 本開示によれば、プラズマガスを噴出口から噴出する構造のプラズマ発生装置の実用性を向上させることができる。 According to the present disclosure, it is possible to improve the practicality of a plasma generator having a structure in which plasma gas is ejected from an ejection port.
プラズマ装置を示す図である。It is a figure which shows the plasma apparatus. プラズマヘッドを示す斜視図である。It is a perspective view which shows the plasma head. 電極及び本体側プラズマ通路の位置においてX方向及びZ方向にプラズマヘッドを切断した断面図である。It is sectional drawing which cut the plasma head in the X direction and Z direction at the position of the electrode and the plasma passage on the main body side. 図3のAA線における断面図である。It is sectional drawing in the AA line of FIG. ノズルカバーの斜視図である。It is a perspective view of a nozzle cover. ノズルカバーの斜視図である。It is a perspective view of a nozzle cover.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1に示すように、プラズマ装置10は、プラズマヘッド11、ロボット13、制御ボックス15を備えている。プラズマヘッド11は、ロボット13に取り付けられている。ロボット13は、例えば、シリアルリンク型ロボット(多関節型ロボットと呼ぶこともできる)である。プラズマヘッド11は、ロボット13の先端に保持された状態でプラズマガスを照射可能となっている。プラズマヘッド11は、ロボット13の駆動に応じて3次元的に移動可能となっている。 As shown in FIG. 1, the plasma device 10 includes a plasma head 11, a robot 13, and a control box 15. The plasma head 11 is attached to the robot 13. The robot 13 is, for example, a serial link type robot (also called an articulated robot). The plasma head 11 can irradiate plasma gas while being held at the tip of the robot 13. The plasma head 11 can move three-dimensionally according to the drive of the robot 13.
 制御ボックス15は、コンピュータを主体として構成され、プラズマ装置10を統括的に制御する。制御ボックス15は、プラズマヘッド11に電力を供給する電源部15A及びプラズマヘッド11へガスを供給するガス供給部15Bを有している。電源部15Aは、電源ケーブル(図示略)を介してプラズマヘッド11と接続されている。電源部15Aは、制御ボックス15の制御に基づいて、プラズマヘッド11の電極33(図3及び図4参照)に印加する電圧を変更する。 The control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner. The control box 15 has a power supply unit 15A for supplying electric power to the plasma head 11 and a gas supply unit 15B for supplying gas to the plasma head 11. The power supply unit 15A is connected to the plasma head 11 via a power cable (not shown). The power supply unit 15A changes the voltage applied to the electrodes 33 (see FIGS. 3 and 4) of the plasma head 11 based on the control of the control box 15.
 また、ガス供給部15Bは、複数(本実施形態では4本)のガスチューブ19を介してプラズマヘッド11と接続されている。ガス供給部15Bは、制御ボックス15の制御に基づいて、後述する反応ガス、キャリアガス、ヒートガスをプラズマヘッド11へ供給する。制御ボックス15は、ガス供給部15Bを制御し、ガス供給部15Bからプラズマヘッド11へ供給するガスの量などを制御する。これにより、ロボット13は、制御ボックス15の制御に基づいて動作し、テーブル17の上に載置された被処理物Wに対してプラズマヘッド11からプラズマガスを照射する。 Further, the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas tubes 19. The gas supply unit 15B supplies the reaction gas, the carrier gas, and the heat gas, which will be described later, to the plasma head 11 based on the control of the control box 15. The control box 15 controls the gas supply unit 15B, and controls the amount of gas supplied from the gas supply unit 15B to the plasma head 11. As a result, the robot 13 operates under the control of the control box 15 and irradiates the object W placed on the table 17 with plasma gas from the plasma head 11.
 また、制御ボックス15は、タッチパネルや各種スイッチを有する操作部15Cを備えている。制御ボックス15は、各種の設定画面や動作状態(例えば、ガス供給状態など)等を操作部15Cのタッチパネルに表示する。また、制御ボックス15は、操作部15Cに対する操作入力により各種の情報を受け付ける。 Further, the control box 15 includes an operation unit 15C having a touch panel and various switches. The control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
 図2に示すように、プラズマヘッド11は、プラズマ生成部21、ヒートガス供給部23等を備えている。プラズマ生成部21は、制御ボックス15のガス供給部15B(図1参照)から供給された処理ガスをプラズマ化して、プラズマガスを生成する。ヒートガス供給部23は、ガス供給部15Bから供給されたガスを加熱してヒートガスを生成する。本実施形態のプラズマヘッド11は、プラズマ生成部21において生成したプラズマガスを、ヒートガス供給部23によって生成したヒートガスとともに、図1に示す被処理物Wへ噴出する。プラズマヘッド11には、図2に示す矢印の方向に上流側から下流側へと処理ガスが供給される。なお、プラズマヘッド11は、ヒートガス供給部23を備えない構成でも良い。即ち、本開示のプラズマ装置は、ヒートガスを用いない構成でも良い。 As shown in FIG. 2, the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, and the like. The plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma. The heat gas supply unit 23 heats the gas supplied from the gas supply unit 15B to generate heat gas. The plasma head 11 of the present embodiment ejects the plasma gas generated by the plasma generation unit 21 together with the heat gas generated by the heat gas supply unit 23 to the object W to be processed shown in FIG. The processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG. The plasma head 11 may not be provided with the heat gas supply unit 23. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
 図3及び図4に示すように、プラズマ生成部21は、ヘッド本体部31、一対の電極33、プラズマ照射部35等を含む。なお、図3は、一対の電極33及び後述する複数の本体側プラズマ通路71の位置に合わせて切断した断面図であり、図4は、図3のAA線における断面図である。ヘッド本体部31は、耐熱性の高いセラミックにより成形されており、そのヘッド本体部31の内部には、プラズマガスを発生させる反応室37が形成されている。一対の電極33の各々は、例えば、円柱形状をなしており、その先端部を反応室37に突出させた状態で固定されている。以下の説明では、一対の電極33を、単に電極33と称する場合がある。また、一対の電極33が並ぶ方向をX方向、プラズマ生成部21とヒートガス供給部23とが並ぶ方向をY方向、円柱形状の電極33の軸方向をZ方向と称して説明する。また、本実施形態では、X方向、Y方向、Z方向は互いに直交する方向である。 As shown in FIGS. 3 and 4, the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a plasma irradiation unit 35, and the like. 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later, and FIG. 4 is a cross-sectional view taken along the line AA of FIG. The head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31. Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37. In the following description, the pair of electrodes 33 may be simply referred to as electrodes 33. Further, the direction in which the pair of electrodes 33 are arranged is referred to as the X direction, the direction in which the plasma generation unit 21 and the heat gas supply unit 23 are arranged is referred to as the Y direction, and the axial direction of the cylindrical electrodes 33 is referred to as the Z direction. Further, in the present embodiment, the X direction, the Y direction, and the Z direction are directions orthogonal to each other.
 ヒートガス供給部23は、ガス管41、ヒータ43、連結部45等を備えている。ガス管41及びヒータ43は、ヘッド本体部31の外周面に取り付けられ、図4に示すカバー47によって覆われている。ガス管41は、ガスチューブ19(図1参照)を介して、制御ボックス15のガス供給部15Bに接続されている。ガス管41には、ガス供給部15Bからガス(例えば、空気)が供給される。ヒータ43は、ガス管41の途中に取り付けられている。ヒータ43は、ガス管41を流れるガスを温めてヒートガスを生成する。 The heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like. The gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG. The gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas tube 19 (see FIG. 1). Gas (for example, air) is supplied to the gas pipe 41 from the gas supply unit 15B. The heater 43 is attached in the middle of the gas pipe 41. The heater 43 heats the gas flowing through the gas pipe 41 to generate heat gas.
 図4に示すように、連結部45は、ガス管41をプラズマ照射部35に連結するものである。プラズマ照射部35がヘッド本体部31に取り付けられた状態では、連結部45は、一端部をガス管41に接続され、他端部をプラズマ照射部35に形成されたヒートガス通路51に接続される。ヒートガス通路51には、ガス管41を介してヒートガスが供給される。 As shown in FIG. 4, the connecting portion 45 connects the gas pipe 41 to the plasma irradiation portion 35. In the state where the plasma irradiation unit 35 is attached to the head main body 31, the connecting portion 45 is connected to the gas pipe 41 at one end and to the heat gas passage 51 formed in the plasma irradiation portion 35 at the other end. .. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
 図4に示すように電極33の一部の外周部は、セラミックス等の絶縁体で製造された電極カバー53によって覆われている。電極カバー53は、略中空筒状をなし、長手方向の両端部に開口が形成されている。電極カバー53の内周面と電極33の外周面との間の隙間は、ガス通路55として機能する。電極カバー53の下流側の開口は、反応室37に接続されている。電極33の下端は、電極カバー53の下流側の開口から突出している。 As shown in FIG. 4, a part of the outer peripheral portion of the electrode 33 is covered with an electrode cover 53 made of an insulator such as ceramics. The electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction. The gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55. The opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37. The lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
 また、ヘッド本体部31の内部には、反応ガス流路61と、一対のキャリアガス流路63とが形成されている。反応ガス流路61は、ヘッド本体部31の略中央部に設けられ、ガスチューブ19(図1参照)を介してガス供給部15Bと接続され、ガス供給部15Bから供給される反応ガスを反応室37へ流入させる。また、一対のキャリアガス流路63は、X方向において反応ガス流路61を間に挟んだ位置に配置されている。一対のキャリアガス流路63の各々は、ガスチューブ19(図1参照)を介してガス供給部15Bと接続され、ガス供給部15Bからキャリアガスが供給される。キャリアガス流路63は、ガス通路55を介してキャリアガスを反応室37へ流入させる。 Further, a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31. The reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31, is connected to the gas supply unit 15B via a gas tube 19 (see FIG. 1), and reacts with the reaction gas supplied from the gas supply unit 15B. It flows into the chamber 37. Further, the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via the gas tube 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B. The carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55.
 反応ガス(種ガス)としては、酸素(O2)を採用できる。ガス供給部15Bは、例えば、反応ガス流路61を介して、酸素と窒素(N2)との混合気体(例えば、乾燥空気(Air))を、反応室37の電極33の間に流入させる。以下、この混合気体を、便宜的に反応ガスと呼び、酸素を種ガスと呼ぶ場合がある。キャリアガスとしては、窒素を採用できる。ガス供給部15Bは、ガス通路55の各々から、一対の電極33の各々を取り巻くようにキャリアガスを流入させる。 Oxygen (O2) can be used as the reaction gas (seed gas). The gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61. Hereinafter, this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas. Nitrogen can be used as the carrier gas. The gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
 一対の電極33には、制御ボックス15の電源部15Aから交流の電圧が印加される。電圧を印加することによって、例えば、図4に示すように、反応室37内において、一対の電極33の下端の間に、擬似アークAが発生する。この擬似アークAを反応ガスが通過する際に、反応ガスは、プラズマ化される。従って、一対の電極33は、擬似アークAの放電を発生させ、反応ガスをプラズマ化し、プラズマガスを発生させる。 AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15. By applying a voltage, for example, as shown in FIG. 4, a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37. When the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
 また、ヘッド本体部31における反応室37の下流側の部分には、X方向に間隔を隔てて並び、Z方向に伸びて形成された複数(本実施例においては、6本)の本体側プラズマ通路71が形成されている。複数の本体側プラズマ通路71の上流側の端部は、反応室37に接続されている。 Further, in the portion of the head main body 31 on the downstream side of the reaction chamber 37, a plurality of plasmas on the main body side (six in this embodiment) formed by arranging them at intervals in the X direction and extending in the Z direction. A passage 71 is formed. The upstream ends of the plurality of main body-side plasma passages 71 are connected to the reaction chamber 37.
 プラズマ照射部35は、ノズル73、ノズルカバー75等を備えている。ノズル73は、X方向からの側面視において概してT字形をなし、ノズル本体77とノズル先端79とにより構成されている。なお、ノズル73は、ノズル本体77とノズル先端79とによる一体物であり、耐熱性の高いセラミックにより成形されている。ノズル本体77は、概してフランジ形状をなし、ボルト80により、ヘッド本体部31の下面に固定されている。また、ノズル先端79は、ノズル本体77の下面から下方に向って延び出す形状とされている。そして、ノズル73には、ノズル本体77とノズル先端79とを上下方向、つまり、Z方向に貫通する複数(本実施例においては、6本)のノズル側プラズマ通路81が形成されており、それら複数のノズル側プラズマ通路81は、X方向に間隔を隔てて並んでいる。なお、複数のノズル側プラズマ通路81は、Z方向において複数の本体側プラズマ通路71と同じ位置に形成されている。このため、本体側プラズマ通路71とノズル側プラズマ通路81とは連通している。 The plasma irradiation unit 35 includes a nozzle 73, a nozzle cover 75, and the like. The nozzle 73 is generally T-shaped when viewed from the side in the X direction, and is composed of a nozzle body 77 and a nozzle tip 79. The nozzle 73 is an integral body of the nozzle body 77 and the nozzle tip 79, and is made of highly heat-resistant ceramic. The nozzle body 77 generally has a flange shape, and is fixed to the lower surface of the head body 31 by bolts 80. Further, the nozzle tip 79 has a shape extending downward from the lower surface of the nozzle body 77. The nozzle 73 is formed with a plurality of nozzle-side plasma passages 81 (six in this embodiment) that penetrate the nozzle body 77 and the nozzle tip 79 in the vertical direction, that is, in the Z direction. The plurality of nozzle-side plasma passages 81 are arranged at intervals in the X direction. The plurality of nozzle-side plasma passages 81 are formed at the same positions as the plurality of main body-side plasma passages 71 in the Z direction. Therefore, the plasma passage 71 on the main body side and the plasma passage 81 on the nozzle side communicate with each other.
 ノズルカバー75は、図4~図6に示すように、X方向からの側面視において概してT字形をなし、カバー本体85、カバー先端87を備えている。カバー本体85とカバー先端87とは別部材であり、カバー本体85はセラミックにより成形されており、カバー先端87は金属、具体的には、ステンレスにより成形されている。 As shown in FIGS. 4 to 6, the nozzle cover 75 generally has a T-shape when viewed from the side in the X direction, and includes a cover main body 85 and a cover tip 87. The cover body 85 and the cover tip 87 are separate members, the cover body 85 is molded of ceramic, and the cover tip 87 is molded of metal, specifically stainless steel.
 カバー本体85は、板厚の概して板形状とされており、カバー本体85には、上面に開口するとともに、Z方向に凹んだ形状の凹部89が形成されている。そして、その凹部89にノズル73のノズル本体77が収納されるように、カバー本体85が、ボルト90によりヘッド本体部31の下面に固定されている。さらに、カバー本体85には、Y方向に延びるように、ヒートガス通路51が形成されており、そのヒートガス通路51の一端部が、凹部89に開口し、ヒートガス通路51の他端部が、カバー本体85の側面に開口している。そして、カバー本体85の側面に開口するヒートガス通路51の端部が、上記したヒートガス供給部23の連結部45に連結されている。 The cover main body 85 has a generally plate-shaped plate thickness, and the cover main body 85 is formed with a concave portion 89 having an opening on the upper surface and a concave shape in the Z direction. The cover body 85 is fixed to the lower surface of the head body 31 by bolts 90 so that the nozzle body 77 of the nozzle 73 is housed in the recess 89. Further, the cover body 85 is formed with a heat gas passage 51 so as to extend in the Y direction, one end of the heat gas passage 51 opens into the recess 89, and the other end of the heat gas passage 51 is the cover body. It is open to the side of 85. The end of the heat gas passage 51 that opens on the side surface of the cover body 85 is connected to the connecting portion 45 of the heat gas supply portion 23 described above.
 カバー先端87は、カバー本体85の厚さ寸法と同程度の板形状とされており、カバー本体85の下面から下方に向って延び出すように、そのカバー本体85の下面にボルト91により固定されている。カバー先端87には、Z方向に貫通する1つの貫通孔93が形成されており、その貫通孔93の上端部は、カバー本体85の凹部89に連通している。そして、その貫通孔93に、ノズル73のノズル先端79が挿入されている。これにより、ノズル73は、ノズルカバー75により全体的に覆われている。なお、ノズル73のノズル先端79の下端と、ノズルカバー75のカバー先端87の下端とは、同じ高さに位置している。 The cover tip 87 has a plate shape similar to the thickness of the cover body 85, and is fixed to the lower surface of the cover body 85 by bolts 91 so as to extend downward from the lower surface of the cover body 85. ing. One through hole 93 penetrating in the Z direction is formed in the cover tip 87, and the upper end portion of the through hole 93 communicates with the recess 89 of the cover main body 85. Then, the nozzle tip 79 of the nozzle 73 is inserted into the through hole 93. As a result, the nozzle 73 is entirely covered by the nozzle cover 75. The lower end of the nozzle tip 79 of the nozzle 73 and the lower end of the cover tip 87 of the nozzle cover 75 are located at the same height.
 また、ノズル73がノズルカバー75により覆われた状態において、ノズルカバー75の凹部89の内部にノズル73のノズル本体77が位置し、ノズルカバー75の貫通孔93の内部にノズル73のノズル先端79が位置する。このような状態において、凹部89とノズル本体77との間及び、貫通孔93とノズル先端79との間に隙間が存在し、その隙間がヒートガス出力通路95として機能する。ヒートガス出力通路95には、ヒートガス通路51を経てヒートガスが供給される。 Further, in a state where the nozzle 73 is covered with the nozzle cover 75, the nozzle body 77 of the nozzle 73 is located inside the recess 89 of the nozzle cover 75, and the nozzle tip 79 of the nozzle 73 is inside the through hole 93 of the nozzle cover 75. Is located. In such a state, there is a gap between the recess 89 and the nozzle body 77 and between the through hole 93 and the nozzle tip 79, and the gap functions as a heat gas output passage 95. Heat gas is supplied to the heat gas output passage 95 via the heat gas passage 51.
 このような構造により、反応室37で発生したプラズマガスは、キャリアガスとともに、本体側プラズマ通路71及びノズル側プラズマ通路81を流れ、ノズル側プラズマ通路81の下端の開口81Aから噴出される。また、ガス管41からヒートガス通路51へ供給されたヒートガスは、ヒートガス出力通路95を流れる。このヒートガスは、プラズマガスを保護するシールドガスとして機能するものである。ヒートガスは、ヒートガス出力通路95を流れ、ヒートガス出力通路95の下端の開口95Aからプラズマガスの噴出方向に沿って噴出される。この際、ヒートガスは、ノズル側プラズマ通路81の開口81Aから噴出されるプラズマガスの周囲を取り巻くように噴出される。このように、加熱したヒートガスをプラズマガスの周囲に噴出することで、プラズマガスの効能(濡れ性など)を高めることができる。 With such a structure, the plasma gas generated in the reaction chamber 37 flows through the main body side plasma passage 71 and the nozzle side plasma passage 81 together with the carrier gas, and is ejected from the opening 81A at the lower end of the nozzle side plasma passage 81. Further, the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas output passage 95. This heat gas functions as a shield gas that protects the plasma gas. The heat gas flows through the heat gas output passage 95 and is ejected from the opening 95A at the lower end of the heat gas output passage 95 along the plasma gas ejection direction. At this time, the heat gas is ejected so as to surround the plasma gas ejected from the opening 81A of the nozzle-side plasma passage 81. By ejecting the heated heat gas around the plasma gas in this way, the efficacy (wetting property, etc.) of the plasma gas can be enhanced.
 因みに、プラズマ装置10は、プラズマ発生装置の一例である。ヒートガス供給部23は、噴出装置の一例である。ヘッド本体部31は、装置本体の一例である。反応室37は、反応室の一例である。ノズル73は、ノズルの一例である。ノズルカバー75は、ノズルカバーの一例である。ノズル本体77は、ノズル本体の一例である。ノズル先端79は、ノズル先端の一例である。ノズル側プラズマ通路81の開口81Aは、第1噴出口の一例である。カバー本体85は、カバー本体の一例である。カバー先端87は、カバー部の一例である。ヒートガス出力通路95の開口95Aは、第2噴出口の一例である。ヒートガスは、シールガスの一例である。 By the way, the plasma device 10 is an example of a plasma generator. The heat gas supply unit 23 is an example of an ejection device. The head main body 31 is an example of the device main body. The reaction chamber 37 is an example of the reaction chamber. The nozzle 73 is an example of a nozzle. The nozzle cover 75 is an example of a nozzle cover. The nozzle body 77 is an example of a nozzle body. The nozzle tip 79 is an example of the nozzle tip. The opening 81A of the nozzle-side plasma passage 81 is an example of the first ejection port. The cover body 85 is an example of the cover body. The cover tip 87 is an example of the cover portion. The opening 95A of the heat gas output passage 95 is an example of the second ejection port. The heat gas is an example of a seal gas.
 以上、上記した本実施形態では、以下の効果を奏する。 As described above, the above-described embodiment has the following effects.
 プラズマヘッド11では、セラミック製のノズル73が、金属製のカバー先端87を有するノズルカバー75により覆われている。これにより、ノズル73の破損を防止することができる。つまり、ノズル73は、セラミックにより成形されているため、脆く破損しやすい。一方、ノズルカバー75の先端部であるカバー先端87は、金属により成形されており、破損し難い。このため、プラズマヘッド11によるプラズマ照射時などにおいて、プラズマヘッド11の先端が被処理物Wなどに接触しても、ノズル73は、金属製のノズルカバー75により保護されることで、ノズル73の破損が防止される。また、セラミックは比較的高価であるが、金属は安価である。このため、カバー先端87が破損,変形等しても、コストを抑えてカバー先端87を交換することができる。 In the plasma head 11, the ceramic nozzle 73 is covered with a nozzle cover 75 having a metal cover tip 87. This makes it possible to prevent the nozzle 73 from being damaged. That is, since the nozzle 73 is made of ceramic, it is brittle and easily damaged. On the other hand, the cover tip 87, which is the tip of the nozzle cover 75, is molded of metal and is not easily damaged. Therefore, even if the tip of the plasma head 11 comes into contact with the object W or the like during plasma irradiation by the plasma head 11, the nozzle 73 is protected by the metal nozzle cover 75, so that the nozzle 73 Damage is prevented. Also, ceramics are relatively expensive, while metals are inexpensive. Therefore, even if the cover tip 87 is damaged or deformed, the cover tip 87 can be replaced at a low cost.
 また、ノズルカバー75は、上述したように、カバー本体85とカバー先端87とにより構成されており、カバー本体85はセラミックにより成形され、カバー先端87はステンレスにより成形されている。これにより、適切なプラズマ化を担保するとともに、コストダウンを図ることができる。つまり、ノズルカバー全体を金属により成形すれば、コストダウンを図ることができるが、ヘッド本体部31の反応室37に近いノズルカバーの上端部、つまり、カバー本体85が金属製であると、反応室37での電極33への印加により、カバー本体85の周辺において放電が生じる場合がある。このような場合には、反応室37以外での放電により、適切なプラズマ化を担保することができない。そこで、反応室37に近いカバー本体85がセラミックにより成形され、反応室37から離れているカバー先端87は金属により成形されている。これにより、適切なプラズマ化を担保するとともに、コストダウンを図ることができる。 Further, as described above, the nozzle cover 75 is composed of a cover main body 85 and a cover tip 87, the cover main body 85 is molded of ceramic, and the cover tip 87 is molded of stainless steel. As a result, it is possible to ensure appropriate plasma conversion and reduce costs. That is, if the entire nozzle cover is molded from metal, the cost can be reduced, but if the upper end of the nozzle cover near the reaction chamber 37 of the head body 31, that is, the cover body 85 is made of metal, the reaction will occur. The application to the electrode 33 in the chamber 37 may cause an electric discharge in the vicinity of the cover body 85. In such a case, proper plasma formation cannot be ensured by discharge in a place other than the reaction chamber 37. Therefore, the cover body 85 near the reaction chamber 37 is molded of ceramic, and the cover tip 87 away from the reaction chamber 37 is molded of metal. As a result, it is possible to ensure appropriate plasma conversion and reduce costs.
 さらに言えば、金属製のカバー先端87は、カバー本体85から離れる方向に延び出す形状とされている。つまり、金属製のカバー先端87は、反応室37から離れる方向に延び出す形状とされている。これにより、反応室37以外での放電を更に好適に防止することが可能となり、適切なプラズマ化を更に担保することができる。 Furthermore, the metal cover tip 87 has a shape that extends away from the cover body 85. That is, the metal cover tip 87 has a shape extending in a direction away from the reaction chamber 37. As a result, it becomes possible to more preferably prevent the discharge outside the reaction chamber 37, and it is possible to further ensure appropriate plasma formation.
 また、ノズル73のノズル先端79も、ノズルカバー75のカバー先端87と同様に、ノズル本体77から離れる方向、つまり、下方に延び出す形状とされている。そして、下方に延び出すノズル先端79は、下方に延び出すカバー先端87の内部に挿入されている。これにより、ノズル先端79の開口81Aから噴出されるプラズマガスを適切にノズルカバー75の外部に噴出することができる。 Further, the nozzle tip 79 of the nozzle 73 also has a shape that extends away from the nozzle body 77, that is, downward, like the cover tip 87 of the nozzle cover 75. The nozzle tip 79 extending downward is inserted inside the cover tip 87 extending downward. As a result, the plasma gas ejected from the opening 81A of the nozzle tip 79 can be appropriately ejected to the outside of the nozzle cover 75.
 また、プラズマヘッド11では、ノズル73とノズルカバー75との間に加熱したヒートガスが流されており、その加熱したヒートガスがプラズマガスの周囲に噴出される。これにより、上述したように、プラズマガスの効能(濡れ性など)を高めることができる。 Further, in the plasma head 11, heated heat gas is flowed between the nozzle 73 and the nozzle cover 75, and the heated heat gas is ejected around the plasma gas. Thereby, as described above, the efficacy (wetting property, etc.) of the plasma gas can be enhanced.
 尚、本開示は、上記実施形態に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、プラズマヘッド11では、ノズル73とノズルカバー75との間にヒートガスが流されているが、ヒートガスを流さなくてもよい。つまり、ノズルカバー75を、ノズル73を保護するためのカバーとしてのみ配設してもよい。 Note that the present disclosure is not limited to the above embodiment, and can be implemented in various modes with various changes and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the plasma head 11, heat gas is flowed between the nozzle 73 and the nozzle cover 75, but the heat gas does not have to flow. That is, the nozzle cover 75 may be arranged only as a cover for protecting the nozzle 73.
 また、上記実施形態では、1台のプラズマヘッド11からプラズマガスとヒートガスとが噴出されているが、2台のヘッドからプラズマガスとヒートガスとが噴出されてもよい。つまり、1台のヘッドからプラズマガスを噴出し、そのヘッドと異なるヘッドからヒートガスを噴出してもよい。また、1台のヘッドに、ノズル側プラズマ通路81とヒートガス出力通路95とを異なる位置に形成し、それぞれの通路から、プラズマガスとヒートガスとを噴出してもよい。 Further, in the above embodiment, the plasma gas and the heat gas are ejected from one plasma head 11, but the plasma gas and the heat gas may be ejected from the two heads. That is, plasma gas may be ejected from one head, and heat gas may be ejected from a head different from that head. Further, the nozzle-side plasma passage 81 and the heat gas output passage 95 may be formed at different positions in one head, and the plasma gas and the heat gas may be ejected from the respective passages.
 また、上記実施形態では、ノズル73及び、ノズルカバー75がヘッド本体部31に固定されているが、単に設けられていてもよい。つまり、ノズル本体77が、ヘッド本体部31に設けられていればよい。また、ノズル先端79もノズル本体77に設けられていればよい。 Further, in the above embodiment, the nozzle 73 and the nozzle cover 75 are fixed to the head main body 31, but they may be simply provided. That is, the nozzle body 77 may be provided on the head body 31. Further, the nozzle tip 79 may also be provided on the nozzle body 77.
 10:プラズマ装置(プラズマ発生装置)、23:ヒートガス供給部(噴出装置)、31:ヘッド本体部(装置本体)、37:反応室、73:ノズル、75:ノズルカバー、77:ノズル本体、79:ノズル先端、81A:開口(第1噴出口)、85:カバー本体、87:カバー先端(カバー部)、95A:開口(第2噴出口) 10: Plasma device (plasma generator), 23: Heat gas supply unit (spouting device), 31: Head body (device body), 37: Reaction chamber, 73: Nozzle, 75: Nozzle cover, 77: Nozzle body, 79 : Nozzle tip, 81A: Opening (first spout), 85: Cover body, 87: Cover tip (cover part), 95A: Opening (second spout)

Claims (6)

  1.  処理ガスをプラズマ化させるための反応室が形成された装置本体と、
     前記反応室においてプラズマ化されたプラズマガスを噴出するための第1噴出口が形成されたセラミック製のノズルと、
     前記プラズマガスを覆うようにガスを噴出するための第2噴出口が前記第1噴出口を覆うように形成された金属製のノズルカバーと、
     を備えたプラズマ発生装置。
    The main body of the device, which has a reaction chamber for turning the processing gas into plasma,
    A ceramic nozzle in which a first ejection port for ejecting plasma gas turned into plasma is formed in the reaction chamber, and a nozzle made of ceramic.
    A metal nozzle cover formed so that a second ejection port for ejecting gas so as to cover the plasma gas covers the first ejection port, and a metal nozzle cover.
    Plasma generator equipped with.
  2.  処理ガスをプラズマ化させるための反応室が形成された装置本体と、
     前記反応室においてプラズマ化されたプラズマガスを噴出するための第1噴出口が形成され、前記装置本体に設けられたノズルと、
     前記ノズルを覆うように前記装置本体に設けられ、前記第1噴出口から噴出されたプラズマガスを外部に噴出するための第2噴出口が形成されたノズルカバーと
     を備え、
     前記ノズルカバーが、
     前記装置本体に設けられるセラミック製のカバー本体と、
     前記第2噴出口が形成され、前記カバー本体に設けられる金属製のカバー部と
     により構成されるプラズマ発生装置。
    The main body of the device, which has a reaction chamber for turning the processing gas into plasma,
    A first ejection port for ejecting plasma gas turned into plasma is formed in the reaction chamber, and a nozzle provided in the main body of the apparatus and a nozzle
    It is provided with a nozzle cover provided on the main body of the apparatus so as to cover the nozzle and formed with a second nozzle for ejecting plasma gas ejected from the first nozzle to the outside.
    The nozzle cover
    A ceramic cover body provided on the device body and
    A plasma generator in which the second ejection port is formed and is composed of a metal cover portion provided on the cover body.
  3.  前記カバー部が、
     前記カバー本体から離れる方向に延び出す形状とされた請求項2に記載のプラズマ発生装置。
    The cover part
    The plasma generator according to claim 2, which has a shape extending in a direction away from the cover main body.
  4.  前記ノズルが、
     前記装置本体に固定されるノズル本体と、
     前記第1噴出口が形成され、前記ノズル本体に固定されるノズル先端と
     により構成されており、
     前記ノズル先端が、
     前記ノズル本体から離れる方向に延び出す形状とされており、前記カバー部の内部に挿入された請求項2または請求項3に記載のプラズマ発生装置。
    The nozzle
    The nozzle body fixed to the device body and
    The first nozzle is formed and is composed of a nozzle tip fixed to the nozzle body.
    The tip of the nozzle
    The plasma generator according to claim 2 or 3, which has a shape extending in a direction away from the nozzle body and is inserted inside the cover portion.
  5.  前記ノズルカバーの内部にシールドガスを噴出する噴出装置を備え、
     前記第2噴出口から前記ノズルカバーの外部に噴出されるプラズマガスをシールガスによりシールドする請求項2乃至請求項4のいずれか1つに記載のプラズマ発生装置。
    An ejection device for ejecting shield gas is provided inside the nozzle cover.
    The plasma generator according to any one of claims 2 to 4, wherein the plasma gas ejected from the second ejection port to the outside of the nozzle cover is shielded by a seal gas.
  6.  第1噴出口からプラズマガスを被処理体に向って噴出するプラズマガス噴出工程と、
     前記第1噴出口から噴出されたプラズマガスに向って、金属製の部材に形成された第2噴出口からシールドガスを噴出することで、プラズマガスをシールドするシールドガス噴出工程と
     を含むプラズマ処理方法。
    A plasma gas ejection process in which plasma gas is ejected from the first ejection port toward the object to be processed, and
    Plasma treatment including a shield gas ejection step that shields the plasma gas by ejecting the shield gas from the second ejection port formed on the metal member toward the plasma gas ejected from the first ejection port. Method.
PCT/JP2019/038099 2019-09-27 2019-09-27 Plasma generation device and plasma treatment method WO2021059469A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/038099 WO2021059469A1 (en) 2019-09-27 2019-09-27 Plasma generation device and plasma treatment method
JP2021548108A JP7461961B2 (en) 2019-09-27 2019-09-27 Plasma generating device and plasma processing method
EP19947409.9A EP4037440A4 (en) 2019-09-27 2019-09-27 Plasma generation device and plasma treatment method
CN201980100638.3A CN114430935A (en) 2019-09-27 2019-09-27 Plasma generating apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038099 WO2021059469A1 (en) 2019-09-27 2019-09-27 Plasma generation device and plasma treatment method

Publications (1)

Publication Number Publication Date
WO2021059469A1 true WO2021059469A1 (en) 2021-04-01

Family

ID=75165628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038099 WO2021059469A1 (en) 2019-09-27 2019-09-27 Plasma generation device and plasma treatment method

Country Status (4)

Country Link
EP (1) EP4037440A4 (en)
JP (1) JP7461961B2 (en)
CN (1) CN114430935A (en)
WO (1) WO2021059469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021008341T5 (en) 2021-10-08 2024-07-18 Fuji Corporation Nozzle, plasma treatment device and gas ejection process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126981U (en) * 1980-02-22 1981-09-26
JPS57165370U (en) * 1981-04-09 1982-10-18
JPH05174994A (en) * 1991-12-24 1993-07-13 Origin Electric Co Ltd Plasma arc device and method for generating pilot arc
WO2015141768A1 (en) 2014-03-19 2015-09-24 大陽日酸株式会社 Non-transferred plasma arc system, conversion adapter kit, and non-transferred plasma arc torch
WO2019180839A1 (en) * 2018-03-20 2019-09-26 株式会社Fuji Plasma device, plasma generation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795891A (en) * 1972-02-23 1973-06-18 Electricity Council PLASMA TORCH IMPROVEMENTS
US5220150A (en) * 1991-05-03 1993-06-15 Regents Of The University Of Minnesota Plasma spray torch with hot anode and gas shroud
JPH08294779A (en) * 1995-04-21 1996-11-12 Koike Sanso Kogyo Co Ltd Nozzle for plasma torch
US7737383B2 (en) * 2006-08-25 2010-06-15 Thermal Dynamics Corporation Contoured shield orifice for a plasma arc torch
JP2008153147A (en) * 2006-12-20 2008-07-03 Seiko Epson Corp Plasma treatment device
JP5275092B2 (en) * 2009-03-12 2013-08-28 長野日本無線株式会社 Plasma processing equipment
US11295932B2 (en) * 2016-08-11 2022-04-05 Fuji Corporation Plasma generation device and plasma irradiation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126981U (en) * 1980-02-22 1981-09-26
JPS57165370U (en) * 1981-04-09 1982-10-18
JPH05174994A (en) * 1991-12-24 1993-07-13 Origin Electric Co Ltd Plasma arc device and method for generating pilot arc
WO2015141768A1 (en) 2014-03-19 2015-09-24 大陽日酸株式会社 Non-transferred plasma arc system, conversion adapter kit, and non-transferred plasma arc torch
WO2019180839A1 (en) * 2018-03-20 2019-09-26 株式会社Fuji Plasma device, plasma generation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037440A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021008341T5 (en) 2021-10-08 2024-07-18 Fuji Corporation Nozzle, plasma treatment device and gas ejection process

Also Published As

Publication number Publication date
EP4037440A4 (en) 2022-11-16
JP7461961B2 (en) 2024-04-04
CN114430935A (en) 2022-05-03
EP4037440A1 (en) 2022-08-03
JPWO2021059469A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
CA2240219A1 (en) Tig welding method and welding apparatus
US20180084631A1 (en) Plasma arc cutting system, including retaining caps, and other consumables, and related operational methods
JP6890689B2 (en) Plasma processing machine
US11731216B2 (en) Device for working a surface of a workpiece by means of a laser beam and method for operating the device
JP2010539644A (en) Surface treatment or surface coating method and apparatus
JP6605598B2 (en) Plasma generator
WO2021059469A1 (en) Plasma generation device and plasma treatment method
WO2021229633A1 (en) Plasma generator, plasma generation method, and control device
JP2019050216A (en) Plasma gas irradiation device
US4101751A (en) Apparatus and method for inert gas arc welding
US20060289391A1 (en) Arc spraying torch head
JPH031110B2 (en)
WO2023058215A1 (en) Nozzle, plasma processing device, and gas jetting method
WO2021079420A1 (en) Plasma generation device and plasma processing method
WO2022149258A1 (en) Protective cover and plasma generation device
JPH10330919A (en) Plasma burner
JP6944066B2 (en) Plasma generator
JP2007190609A (en) Method for supplying shielding gas for narrow groove and shielding gas supplying wedge
JP3564814B2 (en) TIG welding equipment
WO2022123674A1 (en) Fastened structure and plasma generation device
JP7066827B2 (en) Dummy nozzle for plasma equipment and plasma head
WO2023127626A1 (en) Welding torch
WO2017037885A1 (en) Atmospheric-pressure plasma generation device
KR20080098234A (en) Apparatus for generating plasma
KR101468393B1 (en) Torch for TIG welding self-feeding of flux and weld method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019947409

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019947409

Country of ref document: EP

Effective date: 20220428