WO2021079420A1 - Plasma generation device and plasma processing method - Google Patents

Plasma generation device and plasma processing method Download PDF

Info

Publication number
WO2021079420A1
WO2021079420A1 PCT/JP2019/041419 JP2019041419W WO2021079420A1 WO 2021079420 A1 WO2021079420 A1 WO 2021079420A1 JP 2019041419 W JP2019041419 W JP 2019041419W WO 2021079420 A1 WO2021079420 A1 WO 2021079420A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
nozzle
gas
main body
passages
Prior art date
Application number
PCT/JP2019/041419
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 岩田
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2019/041419 priority Critical patent/WO2021079420A1/en
Priority to CN201980101498.1A priority patent/CN114586473A/en
Priority to JP2021553194A priority patent/JP7133724B2/en
Priority to EP19950060.4A priority patent/EP4050973A4/en
Publication of WO2021079420A1 publication Critical patent/WO2021079420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Definitions

  • the present disclosure relates to a plasma generator or the like that ejects plasma gas from an ejection passage.
  • Some plasma generators have a structure in which the processing gas is turned into plasma in the reaction chamber and the turned plasma gas is ejected from the ejection passage formed in the nozzle.
  • the following patent documents describe an example of such a plasma generator.
  • An object of the present specification is to improve the practicality of a plasma generator having a structure in which plasma gas is ejected from an ejection passage.
  • the present specification describes an apparatus main body in which a reaction chamber for converting a processing gas into plasma is formed, at least one discharge passage connected to the reaction chamber, and at least one discharge passage.
  • a diffusion chamber connected to the diffusion chamber and a plurality of ejection passages connected to the diffusion chamber, and the reaction in which a tapered surface is formed in the opening of at least one of the plurality of ejection passages to the diffusion chamber.
  • a plasma generator including a plurality of ejection passages for ejecting plasma gas turned into plasma in a chamber is disclosed.
  • the present specification includes an apparatus main body in which a reaction chamber for converting the processing gas into plasma is formed, and a nozzle mounted on the apparatus main body and ejecting the plasma gas converted into plasma in the reaction chamber.
  • the apparatus main body has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the device main body, and the nozzle opens the discharge passage to the outer wall surface of the device main body.
  • a diffusion chamber formed so as to cover the diffusion chamber and a plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and the diffusion chamber of one or more of the plurality of ejection passages.
  • a plasma generator having a plurality of ejection passages for ejecting plasma-generated plasma gas in the reaction chamber having a tapered surface formed in the opening to the plasma.
  • the present specification includes an apparatus main body in which a reaction chamber for converting the processing gas into plasma is formed, and a nozzle attached to the apparatus main body and ejecting the plasma gas converted into plasma in the reaction chamber.
  • the apparatus main body has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the device main body, and the nozzle opens the discharge passage to the outer wall surface of the device main body.
  • a diffusion chamber formed so as to cover the above, and a plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and the diffusion chamber of one or more of the plurality of ejection passages.
  • a plasma generator having a plurality of ejection passages for ejecting plasma gas turned into plasma in the reaction chamber having a tapered surface formed in the opening to the plasma gas
  • the plasma gas ejected from the plurality of ejection passages is treated.
  • a plasma treatment method for irradiating the body is disclosed.
  • the opening of the ejection passage by forming a tapered surface in the opening of the ejection passage to the diffusion chamber, for example, even if foreign matter adheres to the opening, the opening is less likely to be closed by the foreign matter.
  • FIG. 3 is an enlarged cross-sectional view of FIG. It is sectional drawing of the plasma head which attached the nozzle different from the nozzle of FIG.
  • the plasma device 10 includes a plasma head 11, a robot 13, and a control box 15.
  • the plasma head 11 is attached to the robot 13.
  • the robot 13 is, for example, a serial link type robot (also called an articulated robot).
  • the plasma head 11 can irradiate plasma gas while being held at the tip of the robot 13.
  • the plasma head 11 can move three-dimensionally according to the drive of the robot 13.
  • the control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner.
  • the control box 15 has a power supply unit 15A that supplies electric power to the plasma head 11 and a gas supply unit 15B that supplies gas to the plasma head 11.
  • the power supply unit 15A is connected to the plasma head 11 via a power cable (not shown).
  • the power supply unit 15A changes the voltage applied to the electrodes 33 (see FIGS. 3 and 4) of the plasma head 11 based on the control of the control box 15.
  • the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas tubes 19.
  • the gas supply unit 15B supplies the reaction gas, the carrier gas, and the heat gas, which will be described later, to the plasma head 11 based on the control of the control box 15.
  • the control box 15 controls the gas supply unit 15B, and controls the amount of gas supplied from the gas supply unit 15B to the plasma head 11.
  • the robot 13 operates under the control of the control box 15 and irradiates the object W placed on the table 17 with plasma gas from the plasma head 11.
  • control box 15 includes an operation unit 15C having a touch panel and various switches.
  • the control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
  • the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, and the like.
  • the plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma.
  • the heat gas supply unit 23 heats the gas supplied from the gas supply unit 15B to generate heat gas.
  • the plasma head 11 of the present embodiment ejects the plasma gas generated by the plasma generation unit 21 together with the heat gas generated by the heat gas supply unit 23 to the object W to be processed shown in FIG.
  • the processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG.
  • the plasma head 11 may not be provided with the heat gas supply unit 23. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
  • the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a plasma irradiation unit 35, and the like.
  • 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • the head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31.
  • Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37.
  • the pair of electrodes 33 may be simply referred to as electrodes 33.
  • the direction in which the pair of electrodes 33 are arranged is referred to as the X direction
  • the direction in which the plasma generation unit 21 and the heat gas supply unit 23 are arranged is referred to as the Y direction
  • the axial direction of the cylindrical electrodes 33 is referred to as the Z direction.
  • the X direction, the Y direction, and the Z direction are orthogonal to each other.
  • the heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like.
  • the gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG.
  • the gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas tube 19 (see FIG. 1). Gas (for example, air) is supplied to the gas pipe 41 from the gas supply unit 15B.
  • the heater 43 is attached in the middle of the gas pipe 41. The heater 43 heats the gas flowing through the gas pipe 41 to generate heat gas.
  • the connecting portion 45 connects the gas pipe 41 to the plasma irradiation portion 35.
  • the connecting portion 45 is connected to the gas pipe 41 at one end and to the heat gas passage 51 formed in the plasma irradiation portion 35 at the other end. .. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
  • an electrode cover 53 made of an insulator such as ceramics.
  • the electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction.
  • the gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55.
  • the opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37.
  • the lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
  • a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31.
  • the reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31 and is connected to the gas supply unit 15B via a gas tube 19 (see FIG. 1) to react the reaction gas supplied from the gas supply unit 15B. It flows into the chamber 37.
  • the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via the gas tube 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B.
  • the carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55.
  • Oxygen (O2) can be used as the reaction gas (seed gas).
  • the gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61.
  • this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas.
  • Nitrogen can be used as the carrier gas.
  • the gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
  • AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15.
  • a voltage for example, as shown in FIG. 4
  • a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37.
  • the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
  • a plurality of plasmas on the main body side (six in this embodiment) formed by arranging them at intervals in the X direction and extending in the Z direction.
  • a passage 71 is formed.
  • the upstream end of the plurality of main body side plasma passages 71 is open to the reaction chamber 37, and the downstream end of the plurality of main body side plasma passages 71 is opened to the lower end surface of the head main body 31.
  • the plasma irradiation unit 35 includes a nozzle 73, a nozzle cover 75, and the like.
  • the nozzle 73 is generally T-shaped when viewed from the side in the X direction, and is composed of a nozzle body 77 and a nozzle tip 79.
  • the nozzle 73 is an integral body of the nozzle body 77 and the nozzle tip 79, and is made of highly heat-resistant ceramic.
  • the nozzle body 77 generally has a flange shape, and is fixed to the lower surface of the head body 31 by bolts 80. Therefore, the nozzle 73 is detachable from the head main body 31, and can be changed to a different type of nozzle. Further, the nozzle tip 79 has a shape extending downward from the lower surface of the nozzle body 77.
  • the nozzle 73 is formed with a pair of grooves 81 that open on the upper end surface of the nozzle body 77.
  • the pair of grooves 81 are formed side by side in a row so as to extend in the X direction, and in a state where the nozzle 73 is mounted on the head main body 31, each of the pair of grooves 81 is under the head main body 31.
  • Three main body-side plasma passages 71 that open to the end face communicate with each other. That is, the openings at the lower ends of the three main body-side plasma passages 71 out of the six main body-side plasma passages 71 communicate with one of the pair of grooves 81, and the lower ends of the remaining three main body-side plasma passages 71. The opening communicates with the other of the pair of grooves 81.
  • the nozzle 73 is formed with a plurality of nozzle-side plasma passages 82 (10 in this embodiment) that penetrate the nozzle body 77 and the nozzle tip 79 in the vertical direction, that is, in the Z direction.
  • the plurality of nozzle-side plasma passages 82 are arranged at intervals in the X direction.
  • the upper ends of the five nozzle-side plasma passages 82 out of the ten nozzle-side plasma passages 82 are opened to the bottom surface of one of the pair of grooves 81, and the upper ends of the remaining five nozzle-side plasma passages 82 are open. , Is open to the other bottom surface of the pair of grooves 81.
  • the nozzle cover 75 is generally T-shaped when viewed from the side in the X direction, and is composed of a cover body 85 and a cover tip 87.
  • the nozzle cover 75 is an integral part of the cover body 85 and the cover tip 87, and is made of highly heat-resistant ceramic.
  • the cover main body 85 has a generally plate-shaped plate thickness, and the cover main body 85 is formed with a concave portion 89 having an opening on the upper surface and a concave shape in the Z direction.
  • the cover body 85 is fixed to the lower surface of the head body 31 by bolts 90 so that the nozzle body 77 of the nozzle 73 is housed in the recess 89.
  • the nozzle cover 75 is detachable from the head main body 31, and is removed from the head main body 31 when the nozzle 73 is replaced.
  • the cover body 85 is formed with a heat gas passage 51 so as to extend in the Y direction, one end of the heat gas passage 51 opens into the recess 89, and the other end of the heat gas passage 51 is the cover body. It is open to the side of 85. The end of the heat gas passage 51 that opens on the side surface of the cover body 85 is connected to the connecting portion 45 of the heat gas supply portion 23 described above.
  • the cover tip 87 extends downward from the lower surface of the cover body 85.
  • One through hole 93 penetrating in the Z direction is formed in the cover tip 87, and the upper end portion of the through hole 93 communicates with the recess 89 of the cover main body 85.
  • the nozzle tip 79 of the nozzle 73 is inserted into the through hole 93.
  • the nozzle 73 is entirely covered by the nozzle cover 75.
  • the lower end of the nozzle tip 79 of the nozzle 73 and the lower end of the cover tip 87 of the nozzle cover 75 are located at the same height.
  • the nozzle body 77 of the nozzle 73 is located inside the recess 89 of the nozzle cover 75, and the nozzle tip 79 of the nozzle 73 is inside the through hole 93 of the nozzle cover 75. Is located.
  • the plasma gas generated in the reaction chamber 37 is ejected into the groove 81 together with the carrier gas via the plasma passage 71 on the main body side. Then, the plasma gas diffuses inside the groove 81 and is ejected from the opening 82A at the lower end of the nozzle-side plasma passage 82 via the nozzle-side plasma passage 82. Further, the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas output passage 95. This heat gas functions as a shield gas that protects the plasma gas. The heat gas flows through the heat gas output passage 95 and is ejected from the opening 95A at the lower end of the heat gas output passage 95 along the plasma gas ejection direction.
  • the heat gas is ejected so as to surround the plasma gas ejected from the opening 82A of the nozzle-side plasma passage 82.
  • the effectiveness (wetting property, etc.) of the plasma gas can be enhanced.
  • the nozzle 73 may be removed from the head main body 31 and the opening to the inside of the groove 81 of the plasma passage 82 on the nozzle side may be cleaned. It needs to be stopped, which reduces productivity.
  • a tapered surface 100 is formed in the opening of the nozzle-side plasma passage 82 into the groove 81. That is, the opening to the inside of the groove 81 of the nozzle-side plasma passage 82 is chamfered, and the inner diameter of the end portion of the nozzle-side plasma passage 82 on the opening side to the inside of the groove 81 is gradually increased.
  • the inner diameter of the nozzle-side plasma passage 82 where the tapered surface 100 is not formed is made uniform.
  • the tapered surface 100 is not formed on all of the plurality of nozzle-side plasma passages 82, and the tapered surface is formed only on a part of the nozzle-side plasma passages 82 among the plurality of nozzle-side plasma passages 82. 100 is formed. Specifically, the plasma gas generated in the reaction chamber 37 flows into the inside of the groove 81 from the plasma passage 71 on the main body side and diffuses inside the groove 81. Then, it flows out from the inside of the groove 81 to the plurality of nozzle-side plasma passages 82.
  • the flow of plasma gas in the plasma head 11 is based on the dimensions, number, arrangement, flow rate of plasma gas, etc. of the main body side plasma passage 71, groove 81, nozzle side plasma passage 82, and the like. Simulated by computer analysis. At this time, in the simulated plasma gas flow, vortices are generated near the second and third openings from both ends in the X direction of the ten nozzle-side plasma passages 82. Therefore, the tapered surface 100 is formed in the openings to the grooves 81 of the four nozzle-side plasma passages 82 located second and third from both ends in the X direction among the ten nozzle-side plasma passages 82. To.
  • the openings to the grooves 81 of the four nozzle-side plasma passages 82 which are symmetrically located at the third and fourth positions from the center, centered on the center of the ten nozzle-side plasma passages 82 in the line-up direction.
  • the tapered surface 100 is formed.
  • the tapered surface 100 in the openings of some of the nozzle-side plasma passages 82 among the plurality of nozzle-side plasma passages 82 the openings of the nozzle-side plasma passages 82 where foreign matter is likely to accumulate become large. ..
  • the difference in the flow rate of the plasma gas from the side plasma passage 82 becomes small, and appropriate plasma processing is ensured.
  • the nozzle 73 can be replaced.
  • the nozzle 110 shown in FIG. 6 can be mounted on the head main body 31. It is possible.
  • the nozzle 110 is formed with a pair of grooves 112 and six nozzle-side plasma passages 114. Then, three nozzle-side plasma passages 114 out of the six nozzle-side plasma passages 114 open in one of the pair of grooves 112, and the remaining three nozzle-side plasma passages 114 form a pair of grooves. It is open to the other side of 112.
  • the flow of plasma gas in the plasma head 11 is based on the dimensions, number, arrangement, flow rate of plasma gas, etc. of the main body side plasma passage 71, groove 112, nozzle side plasma passage 114, and the like. Is simulated by computer analysis. At this time, in the simulated plasma gas flow, a vortex is generated near the second opening from both ends in the X direction of the six nozzle-side plasma passages 114. Therefore, the tapered surface 120 is formed in the opening of the two nozzle-side plasma passages 114 located second from both ends in the X direction among the six nozzle-side plasma passages 114 to the groove 112.
  • a tapered surface is formed at the opening of the two nozzle-side plasma passages 114, which are symmetrically located second from the center of the six nozzle-side plasma passages 114 in the direction in which they are lined up, into the groove 112. 120 is formed.
  • the tapered surfaces 100 and 120 are formed in the openings of some of the nozzle-side plasma passages 82 and 114 among the plurality of nozzle-side plasma passages 82 and 114 for each type of nozzles 73 and 110.
  • the plasma device 10 is an example of a plasma generator.
  • the head main body 31 is an example of the device main body.
  • the reaction chamber 37 is an example of the reaction chamber.
  • the nozzle 73 is an example of a nozzle.
  • the main body side plasma passage 71 is an example of a discharge passage.
  • the groove 81 is an example of a diffusion chamber.
  • the nozzle-side plasma passage 82 is an example of an ejection passage.
  • the tapered surface 100 is an example of a tapered surface.
  • the nozzle 110 is an example of a nozzle.
  • the groove 112 is an example of a diffusion chamber.
  • the nozzle-side plasma passage 114 is an example of an ejection passage.
  • the tapered surface 120 is an example of a tapered surface.
  • tapered surfaces 100 and 120 are formed in the openings of one or more nozzle-side plasma passages 82 and 114 among the plurality of nozzle-side plasma passages 82 and 114. As a result, it is possible to reduce the frequency of cleaning the opening of the plasma passage 82 on the nozzle side, and it is possible to suppress a decrease in productivity.
  • the tapered surfaces 100 and 120 are not formed on all of the plurality of nozzle-side plasma passages 82 and 114, and some of the plurality of nozzle-side plasma passages 82 and 114 are nozzle-side plasma passages. Tapered surfaces 100 and 120 are formed only on 82 and 114. As a result, the difference in the flow rate of plasma gas between the nozzle-side plasma passages 82 and 114 of the opening where foreign matter is likely to accumulate and the nozzle-side plasma passages 82 and 114 of the opening where foreign matter is difficult to accumulate is reduced, and appropriate plasma treatment is performed. It is possible to secure it.
  • tapered surfaces 100 and 120 are formed so as to be symmetrically located about the center in the direction in which the plurality of nozzle-side plasma passages 82 and 114 are arranged. As a result, nozzle clogging can be suitably suppressed in the entire plurality of nozzle-side plasma passages 82 and 114.
  • the nozzles 73 and 110 are relatively immovably mounted on the head main body 31.
  • the plasma gas can be stably ejected to the object W to be processed.
  • the heat gas is ejected so as to surround the plasma gas to be ejected. Therefore, by mounting the nozzles 73 and 110 relatively immovably on the head body 31, the plasma gas can be ejected in a state of being appropriately covered with the heat gas.
  • the tapered surfaces 100 and 120 are formed only in some of the nozzle-side plasma passages 82 and 114 among the plurality of nozzle-side plasma passages 82 and 114. Tapered surfaces 100 and 120 may be formed on all of the nozzle-side plasma passages 82 and 114.
  • the groove 81 is adopted as the diffusion chamber, but if it communicates with the plasma passage 71 on the main body side, various things such as a recess, a passage, and a partitioned space can be used as the diffusion chamber. It is possible to adopt it.
  • the main body side plasma passage 71 is formed in the head main body portion 31, and the groove 81 and the nozzle side plasma passage 82 are formed in the nozzle 73, but the main body side plasma is formed in the head main body portion 31.
  • the passage 71 and the groove 81 may be formed, and the nozzle-side plasma passage 82 may be formed in the nozzle 73.
  • the head main body 31 and the nozzle 73 are detachable, but the head main body 31 and the nozzle 73 may be integrally formed. That is, the reaction chamber 37, the main body side plasma passage 71, the groove 81, and the nozzle side plasma passage 82 may be formed inside the integrated apparatus main body.
  • the flow of plasma gas is simulated, and the nozzle-side plasma passage on which the tapered surface is formed is determined based on the simulated flow of plasma gas, but based on another method. Therefore, the nozzle-side plasma passage in which the tapered surface is formed may be determined. For example, based on an empirical rule, the nozzle-side plasma passage at a position where foreign matter is likely to accumulate may be determined as the nozzle-side plasma passage on which the tapered surface is formed.
  • Plasma device plasma generator
  • 31 Head body (device body)
  • 37 Reaction chamber
  • 71 Main body side plasma passage (discharge passage)
  • 73 Nozzle
  • 81 Groove (diffusion chamber)
  • 82 Nozzle side plasma passage (spout passage)
  • 100 tapered surface
  • 110 nozzle
  • 112 groove (diffusion chamber)
  • 114 nozzle side plasma passage (spout passage)
  • 120 tapered surface

Abstract

A plasma generation device comprising: a device body in which a reaction chamber for converting a processing gas into plasma is formed; at least one discharge passage connected to the reaction chamber; a diffusion chamber connected to the at least one discharge passage; and a plurality of ejection passages that is connected to the diffusion chamber and ejects plasma gas obtained by conversion into plasma in the reaction chamber having a tapered surface formed in the opening of at least one of the plurality of ejection passages to the diffusion chamber.

Description

プラズマ発生装置、およびプラズマ処理方法Plasma generator and plasma processing method
 本開示は、噴出通路からプラズマガスを噴出するプラズマ発生装置等に関するものである。 The present disclosure relates to a plasma generator or the like that ejects plasma gas from an ejection passage.
 プラズマ発生装置には、反応室において処理ガスをプラズマ化させ、プラズマ化されたプラズマガスを、ノズルに形成された噴出通路から噴出する構造のものがある。下記特許文献には、そのようなプラズマ発生装置の一例が記載されている。 Some plasma generators have a structure in which the processing gas is turned into plasma in the reaction chamber and the turned plasma gas is ejected from the ejection passage formed in the nozzle. The following patent documents describe an example of such a plasma generator.
特開2001-068298号公報Japanese Unexamined Patent Publication No. 2001-066298
 本明細書は、プラズマガスを噴出通路から噴出する構造のプラズマ発生装置の実用性を向上させることを課題とする。 An object of the present specification is to improve the practicality of a plasma generator having a structure in which plasma gas is ejected from an ejection passage.
 上記課題を解決するために、本明細書は、処理ガスをプラズマ化させるための反応室が形成された装置本体と、前記反応室に接続する少なくとも一つの排出通路と、前記少なくとも一つの排出通路に接続する拡散室と、前記拡散室に接続する複数の噴出通路であって、それら複数の噴出通路のうちの少なくとも一つの噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、を備えるプラズマ発生装置を開示する。 In order to solve the above problems, the present specification describes an apparatus main body in which a reaction chamber for converting a processing gas into plasma is formed, at least one discharge passage connected to the reaction chamber, and at least one discharge passage. A diffusion chamber connected to the diffusion chamber and a plurality of ejection passages connected to the diffusion chamber, and the reaction in which a tapered surface is formed in the opening of at least one of the plurality of ejection passages to the diffusion chamber. A plasma generator including a plurality of ejection passages for ejecting plasma gas turned into plasma in a chamber is disclosed.
 また、本明細書は、処理ガスをプラズマ化させるための反応室が形成された装置本体と、前記装置本体に装着され、前記反応室においてプラズマ化されたプラズマガスを噴出するノズルと、を備え、前記装置本体は、前記反応室においてプラズマ化されたプラズマガスを前記装置本体の外部に排出するための排出通路を有し、前記ノズルは、前記排出通路の前記装置本体の外壁面への開口を覆うように形成される拡散室と、前記拡散室を経由してプラズマガスを噴出するための複数の噴出通路であって、それら複数の噴出通路のうちの1以上の噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、を有するプラズマ発生装置を開示する。 Further, the present specification includes an apparatus main body in which a reaction chamber for converting the processing gas into plasma is formed, and a nozzle mounted on the apparatus main body and ejecting the plasma gas converted into plasma in the reaction chamber. The apparatus main body has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the device main body, and the nozzle opens the discharge passage to the outer wall surface of the device main body. A diffusion chamber formed so as to cover the diffusion chamber and a plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and the diffusion chamber of one or more of the plurality of ejection passages. Disclosed is a plasma generator having a plurality of ejection passages for ejecting plasma-generated plasma gas in the reaction chamber having a tapered surface formed in the opening to the plasma.
 また、本明細書は、処理ガスをプラズマ化させるための反応室が形成された装置本体と、前記装置本体に装着され、前記反応室においてプラズマ化されたプラズマガスを噴出するノズルと、を備え、前記装置本体は、前記反応室においてプラズマ化されたプラズマガスを前記装置本体の外部に排出するための排出通路を有し、前記ノズルは、前記排出通路の前記装置本体の外壁面への開口を覆うように形成される拡散室と、前記拡散室を経由してプラズマガスを噴出するための複数の噴出通路であって、それら複数の噴出通路のうちの1以上の噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、を有するプラズマ発生装置において、前記複数の噴出通路から噴出されるプラズマガスを被処理体に照射するプラズマ処理方法を開示する。 Further, the present specification includes an apparatus main body in which a reaction chamber for converting the processing gas into plasma is formed, and a nozzle attached to the apparatus main body and ejecting the plasma gas converted into plasma in the reaction chamber. The apparatus main body has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the device main body, and the nozzle opens the discharge passage to the outer wall surface of the device main body. A diffusion chamber formed so as to cover the above, and a plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and the diffusion chamber of one or more of the plurality of ejection passages. In a plasma generator having a plurality of ejection passages for ejecting plasma gas turned into plasma in the reaction chamber having a tapered surface formed in the opening to the plasma gas, the plasma gas ejected from the plurality of ejection passages is treated. A plasma treatment method for irradiating the body is disclosed.
 本開示によれば、噴出通路の拡散室への開口にテーパ面が形成されることで、例えば、その開口に異物が付着した場合であっても、その開口が異物により塞がれ難くなる。これにより、噴出通路からのプラズマガスの噴出を担保することが可能なり、プラズマガスを噴出通路から噴出する構造のプラズマ発生装置の実用性を向上させることができる。 According to the present disclosure, by forming a tapered surface in the opening of the ejection passage to the diffusion chamber, for example, even if foreign matter adheres to the opening, the opening is less likely to be closed by the foreign matter. As a result, it is possible to secure the ejection of the plasma gas from the ejection passage, and it is possible to improve the practicality of the plasma generator having a structure in which the plasma gas is ejected from the ejection passage.
プラズマ装置を示す図である。It is a figure which shows the plasma apparatus. プラズマヘッドを示す斜視図である。It is a perspective view which shows the plasma head. 電極及び本体側プラズマ通路の位置においてX方向及びZ方向にプラズマヘッドを切断した断面図である。It is sectional drawing which cut the plasma head in the X direction and Z direction at the position of the electrode and the plasma passage on the main body side. 図3のAA線における断面図である。It is sectional drawing in the AA line of FIG. 図3の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of FIG. 図3のノズルと異なるノズルが装着されたプラズマヘッドの断面図である。It is sectional drawing of the plasma head which attached the nozzle different from the nozzle of FIG.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1に示すように、プラズマ装置10は、プラズマヘッド11、ロボット13、制御ボックス15を備えている。プラズマヘッド11は、ロボット13に取り付けられている。ロボット13は、例えば、シリアルリンク型ロボット(多関節型ロボットと呼ぶこともできる)である。プラズマヘッド11は、ロボット13の先端に保持された状態でプラズマガスを照射可能となっている。プラズマヘッド11は、ロボット13の駆動に応じて3次元的に移動可能となっている。 As shown in FIG. 1, the plasma device 10 includes a plasma head 11, a robot 13, and a control box 15. The plasma head 11 is attached to the robot 13. The robot 13 is, for example, a serial link type robot (also called an articulated robot). The plasma head 11 can irradiate plasma gas while being held at the tip of the robot 13. The plasma head 11 can move three-dimensionally according to the drive of the robot 13.
 制御ボックス15は、コンピュータを主体として構成され、プラズマ装置10を統括的に制御する。制御ボックス15は、プラズマヘッド11に電力を供給する電源部15A及びプラズマヘッド11へガスを供給するガス供給部15Bを有している。電源部15Aは、電源ケーブル(図示略)を介してプラズマヘッド11と接続されている。電源部15Aは、制御ボックス15の制御に基づいて、プラズマヘッド11の電極33(図3及び図4参照)に印加する電圧を変更する。 The control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner. The control box 15 has a power supply unit 15A that supplies electric power to the plasma head 11 and a gas supply unit 15B that supplies gas to the plasma head 11. The power supply unit 15A is connected to the plasma head 11 via a power cable (not shown). The power supply unit 15A changes the voltage applied to the electrodes 33 (see FIGS. 3 and 4) of the plasma head 11 based on the control of the control box 15.
 また、ガス供給部15Bは、複数(本実施形態では4本)のガスチューブ19を介してプラズマヘッド11と接続されている。ガス供給部15Bは、制御ボックス15の制御に基づいて、後述する反応ガス、キャリアガス、ヒートガスをプラズマヘッド11へ供給する。制御ボックス15は、ガス供給部15Bを制御し、ガス供給部15Bからプラズマヘッド11へ供給するガスの量などを制御する。これにより、ロボット13は、制御ボックス15の制御に基づいて動作し、テーブル17の上に載置された被処理物Wに対してプラズマヘッド11からプラズマガスを照射する。 Further, the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas tubes 19. The gas supply unit 15B supplies the reaction gas, the carrier gas, and the heat gas, which will be described later, to the plasma head 11 based on the control of the control box 15. The control box 15 controls the gas supply unit 15B, and controls the amount of gas supplied from the gas supply unit 15B to the plasma head 11. As a result, the robot 13 operates under the control of the control box 15 and irradiates the object W placed on the table 17 with plasma gas from the plasma head 11.
 また、制御ボックス15は、タッチパネルや各種スイッチを有する操作部15Cを備えている。制御ボックス15は、各種の設定画面や動作状態(例えば、ガス供給状態など)等を操作部15Cのタッチパネルに表示する。また、制御ボックス15は、操作部15Cに対する操作入力により各種の情報を受け付ける。 Further, the control box 15 includes an operation unit 15C having a touch panel and various switches. The control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
 図2に示すように、プラズマヘッド11は、プラズマ生成部21、ヒートガス供給部23等を備えている。プラズマ生成部21は、制御ボックス15のガス供給部15B(図1参照)から供給された処理ガスをプラズマ化して、プラズマガスを生成する。ヒートガス供給部23は、ガス供給部15Bから供給されたガスを加熱してヒートガスを生成する。本実施形態のプラズマヘッド11は、プラズマ生成部21において生成したプラズマガスを、ヒートガス供給部23によって生成したヒートガスとともに、図1に示す被処理物Wへ噴出する。プラズマヘッド11には、図2に示す矢印の方向に上流側から下流側へと処理ガスが供給される。なお、プラズマヘッド11は、ヒートガス供給部23を備えない構成でも良い。即ち、本開示のプラズマ装置は、ヒートガスを用いない構成でも良い。 As shown in FIG. 2, the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, and the like. The plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma. The heat gas supply unit 23 heats the gas supplied from the gas supply unit 15B to generate heat gas. The plasma head 11 of the present embodiment ejects the plasma gas generated by the plasma generation unit 21 together with the heat gas generated by the heat gas supply unit 23 to the object W to be processed shown in FIG. The processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG. The plasma head 11 may not be provided with the heat gas supply unit 23. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
 図3及び図4に示すように、プラズマ生成部21は、ヘッド本体部31、一対の電極33、プラズマ照射部35等を含む。なお、図3は、一対の電極33及び後述する複数の本体側プラズマ通路71の位置に合わせて切断した断面図であり、図4は、図3のAA線における断面図である。ヘッド本体部31は、耐熱性の高いセラミックにより成形されており、そのヘッド本体部31の内部には、プラズマガスを発生させる反応室37が形成されている。一対の電極33の各々は、例えば、円柱形状をなしており、その先端部を反応室37に突出させた状態で固定されている。以下の説明では、一対の電極33を、単に電極33と称する場合がある。また、一対の電極33が並ぶ方向をX方向、プラズマ生成部21とヒートガス供給部23とが並ぶ方向をY方向、円柱形状の電極33の軸方向をZ方向と称して説明する。なお、本実施形態では、X方向、Y方向、Z方向は互いに直交する方向である。 As shown in FIGS. 3 and 4, the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a plasma irradiation unit 35, and the like. 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later, and FIG. 4 is a cross-sectional view taken along the line AA of FIG. The head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31. Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37. In the following description, the pair of electrodes 33 may be simply referred to as electrodes 33. Further, the direction in which the pair of electrodes 33 are arranged is referred to as the X direction, the direction in which the plasma generation unit 21 and the heat gas supply unit 23 are arranged is referred to as the Y direction, and the axial direction of the cylindrical electrodes 33 is referred to as the Z direction. In this embodiment, the X direction, the Y direction, and the Z direction are orthogonal to each other.
 ヒートガス供給部23は、ガス管41、ヒータ43、連結部45等を備えている。ガス管41及びヒータ43は、ヘッド本体部31の外周面に取り付けられ、図4に示すカバー47によって覆われている。ガス管41は、ガスチューブ19(図1参照)を介して、制御ボックス15のガス供給部15Bに接続されている。ガス管41には、ガス供給部15Bからガス(例えば、空気)が供給される。ヒータ43は、ガス管41の途中に取り付けられている。ヒータ43は、ガス管41を流れるガスを温めてヒートガスを生成する。 The heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like. The gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG. The gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas tube 19 (see FIG. 1). Gas (for example, air) is supplied to the gas pipe 41 from the gas supply unit 15B. The heater 43 is attached in the middle of the gas pipe 41. The heater 43 heats the gas flowing through the gas pipe 41 to generate heat gas.
 図4に示すように、連結部45は、ガス管41をプラズマ照射部35に連結するものである。プラズマ照射部35がヘッド本体部31に取り付けられた状態では、連結部45は、一端部をガス管41に接続され、他端部をプラズマ照射部35に形成されたヒートガス通路51に接続される。ヒートガス通路51には、ガス管41を介してヒートガスが供給される。 As shown in FIG. 4, the connecting portion 45 connects the gas pipe 41 to the plasma irradiation portion 35. In the state where the plasma irradiation unit 35 is attached to the head main body 31, the connecting portion 45 is connected to the gas pipe 41 at one end and to the heat gas passage 51 formed in the plasma irradiation portion 35 at the other end. .. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
 図4に示すように電極33の一部の外周部は、セラミックス等の絶縁体で製造された電極カバー53によって覆われている。電極カバー53は、略中空筒状をなし、長手方向の両端部に開口が形成されている。電極カバー53の内周面と電極33の外周面との間の隙間は、ガス通路55として機能する。電極カバー53の下流側の開口は、反応室37に接続されている。電極33の下端は、電極カバー53の下流側の開口から突出している。 As shown in FIG. 4, a part of the outer peripheral portion of the electrode 33 is covered with an electrode cover 53 made of an insulator such as ceramics. The electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction. The gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55. The opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37. The lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
 また、ヘッド本体部31の内部には、反応ガス流路61と、一対のキャリアガス流路63とが形成されている。反応ガス流路61は、ヘッド本体部31の略中央部に設けられ、ガスチューブ19(図1参照)を介してガス供給部15Bと接続され、ガス供給部15Bから供給される反応ガスを反応室37へ流入させる。また、一対のキャリアガス流路63は、X方向において反応ガス流路61を間に挟んだ位置に配置されている。一対のキャリアガス流路63の各々は、ガスチューブ19(図1参照)を介してガス供給部15Bと接続され、ガス供給部15Bからキャリアガスが供給される。キャリアガス流路63は、ガス通路55を介してキャリアガスを反応室37へ流入させる。 Further, a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31. The reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31 and is connected to the gas supply unit 15B via a gas tube 19 (see FIG. 1) to react the reaction gas supplied from the gas supply unit 15B. It flows into the chamber 37. Further, the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via the gas tube 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B. The carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55.
 反応ガス(種ガス)としては、酸素(O2)を採用できる。ガス供給部15Bは、例えば、反応ガス流路61を介して、酸素と窒素(N2)との混合気体(例えば、乾燥空気(Air))を、反応室37の電極33の間に流入させる。以下、この混合気体を、便宜的に反応ガスと呼び、酸素を種ガスと呼ぶ場合がある。キャリアガスとしては、窒素を採用できる。ガス供給部15Bは、ガス通路55の各々から、一対の電極33の各々を取り巻くようにキャリアガスを流入させる。 Oxygen (O2) can be used as the reaction gas (seed gas). The gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61. Hereinafter, this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas. Nitrogen can be used as the carrier gas. The gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
 一対の電極33には、制御ボックス15の電源部15Aから交流の電圧が印加される。電圧を印加することによって、例えば、図4に示すように、反応室37内において、一対の電極33の下端の間に、擬似アークAが発生する。この擬似アークAを反応ガスが通過する際に、反応ガスは、プラズマ化される。従って、一対の電極33は、擬似アークAの放電を発生させ、反応ガスをプラズマ化し、プラズマガスを発生させる。 AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15. By applying a voltage, for example, as shown in FIG. 4, a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37. When the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
 また、ヘッド本体部31における反応室37の下流側の部分には、X方向に間隔を隔てて並び、Z方向に伸びて形成された複数(本実施例においては、6本)の本体側プラズマ通路71が形成されている。複数の本体側プラズマ通路71の上流側の端部は、反応室37に開口しており、複数の本体側プラズマ通路71の下流側の端部は、ヘッド本体部31の下端面に開口している。 Further, in the portion of the head main body 31 on the downstream side of the reaction chamber 37, a plurality of plasmas on the main body side (six in this embodiment) formed by arranging them at intervals in the X direction and extending in the Z direction. A passage 71 is formed. The upstream end of the plurality of main body side plasma passages 71 is open to the reaction chamber 37, and the downstream end of the plurality of main body side plasma passages 71 is opened to the lower end surface of the head main body 31. There is.
 プラズマ照射部35は、ノズル73、ノズルカバー75等を備えている。ノズル73は、X方向からの側面視において概してT字形をなし、ノズル本体77とノズル先端79とにより構成されている。なお、ノズル73は、ノズル本体77とノズル先端79とによる一体物であり、耐熱性の高いセラミックにより成形されている。ノズル本体77は、概してフランジ形状をなし、ボルト80により、ヘッド本体部31の下面に固定されている。このため、ノズル73は、ヘッド本体部31に着脱可能とされており、種類の異なるノズルに変更することができる。また、ノズル先端79は、ノズル本体77の下面から下方に向って延び出す形状とされている。 The plasma irradiation unit 35 includes a nozzle 73, a nozzle cover 75, and the like. The nozzle 73 is generally T-shaped when viewed from the side in the X direction, and is composed of a nozzle body 77 and a nozzle tip 79. The nozzle 73 is an integral body of the nozzle body 77 and the nozzle tip 79, and is made of highly heat-resistant ceramic. The nozzle body 77 generally has a flange shape, and is fixed to the lower surface of the head body 31 by bolts 80. Therefore, the nozzle 73 is detachable from the head main body 31, and can be changed to a different type of nozzle. Further, the nozzle tip 79 has a shape extending downward from the lower surface of the nozzle body 77.
 ノズル73には、ノズル本体77の上端面に開口する一対の溝81が形成されている。一対の溝81は、X方向に延びるように1列に並んで形成されており、ノズル73がヘッド本体部31に装着された状態において、一対の溝81の各々に、ヘッド本体部31の下端面に開口する3本の本体側プラズマ通路71が連通している。つまり、6本の本体側プラズマ通路71のうちの3本の本体側プラズマ通路71の下端の開口が、一対の溝81の一方に連通し、残りの3本の本体側プラズマ通路71の下端の開口が、一対の溝81の他方に連通している。 The nozzle 73 is formed with a pair of grooves 81 that open on the upper end surface of the nozzle body 77. The pair of grooves 81 are formed side by side in a row so as to extend in the X direction, and in a state where the nozzle 73 is mounted on the head main body 31, each of the pair of grooves 81 is under the head main body 31. Three main body-side plasma passages 71 that open to the end face communicate with each other. That is, the openings at the lower ends of the three main body-side plasma passages 71 out of the six main body-side plasma passages 71 communicate with one of the pair of grooves 81, and the lower ends of the remaining three main body-side plasma passages 71. The opening communicates with the other of the pair of grooves 81.
 さらに、ノズル73には、ノズル本体77とノズル先端79とを上下方向、つまり、Z方向に貫通する複数(本実施例においては、10本)のノズル側プラズマ通路82が形成されており、それら複数のノズル側プラズマ通路82は、X方向に間隔を隔てて並んでいる。なお、10本のノズル側プラズマ通路82のうちの5本のノズル側プラズマ通路82の上端が、一対の溝81の一方の底面に開口し、残りの5本のノズル側プラズマ通路82の上端が、一対の溝81の他方の底面に開口している。 Further, the nozzle 73 is formed with a plurality of nozzle-side plasma passages 82 (10 in this embodiment) that penetrate the nozzle body 77 and the nozzle tip 79 in the vertical direction, that is, in the Z direction. The plurality of nozzle-side plasma passages 82 are arranged at intervals in the X direction. The upper ends of the five nozzle-side plasma passages 82 out of the ten nozzle-side plasma passages 82 are opened to the bottom surface of one of the pair of grooves 81, and the upper ends of the remaining five nozzle-side plasma passages 82 are open. , Is open to the other bottom surface of the pair of grooves 81.
 ノズルカバー75は、X方向からの側面視において概してT字形をなし、カバー本体85とカバー先端87とにより構成されている。なお、ノズルカバー75は、カバー本体85とカバー先端87とによる一体物であり、耐熱性の高いセラミックにより成形されている。カバー本体85は、板厚の概して板形状とされており、カバー本体85には、上面に開口するとともに、Z方向に凹んだ形状の凹部89が形成されている。そして、その凹部89にノズル73のノズル本体77が収納されるように、カバー本体85が、ボルト90によりヘッド本体部31の下面に固定されている。このため、ノズルカバー75は、ヘッド本体部31に着脱可能とされており、ノズル73の交換時などに、ヘッド本体部31から取り外される。さらに、カバー本体85には、Y方向に延びるように、ヒートガス通路51が形成されており、そのヒートガス通路51の一端部が、凹部89に開口し、ヒートガス通路51の他端部が、カバー本体85の側面に開口している。そして、カバー本体85の側面に開口するヒートガス通路51の端部が、上記したヒートガス供給部23の連結部45に連結されている。 The nozzle cover 75 is generally T-shaped when viewed from the side in the X direction, and is composed of a cover body 85 and a cover tip 87. The nozzle cover 75 is an integral part of the cover body 85 and the cover tip 87, and is made of highly heat-resistant ceramic. The cover main body 85 has a generally plate-shaped plate thickness, and the cover main body 85 is formed with a concave portion 89 having an opening on the upper surface and a concave shape in the Z direction. The cover body 85 is fixed to the lower surface of the head body 31 by bolts 90 so that the nozzle body 77 of the nozzle 73 is housed in the recess 89. Therefore, the nozzle cover 75 is detachable from the head main body 31, and is removed from the head main body 31 when the nozzle 73 is replaced. Further, the cover body 85 is formed with a heat gas passage 51 so as to extend in the Y direction, one end of the heat gas passage 51 opens into the recess 89, and the other end of the heat gas passage 51 is the cover body. It is open to the side of 85. The end of the heat gas passage 51 that opens on the side surface of the cover body 85 is connected to the connecting portion 45 of the heat gas supply portion 23 described above.
 カバー先端87は、カバー本体85の下面から下方に向って延び出している。カバー先端87には、Z方向に貫通する1つの貫通孔93が形成されており、その貫通孔93の上端部は、カバー本体85の凹部89に連通している。そして、その貫通孔93に、ノズル73のノズル先端79が挿入されている。これにより、ノズル73は、ノズルカバー75により全体的に覆われている。なお、ノズル73のノズル先端79の下端と、ノズルカバー75のカバー先端87の下端とは、同じ高さに位置している。 The cover tip 87 extends downward from the lower surface of the cover body 85. One through hole 93 penetrating in the Z direction is formed in the cover tip 87, and the upper end portion of the through hole 93 communicates with the recess 89 of the cover main body 85. Then, the nozzle tip 79 of the nozzle 73 is inserted into the through hole 93. As a result, the nozzle 73 is entirely covered by the nozzle cover 75. The lower end of the nozzle tip 79 of the nozzle 73 and the lower end of the cover tip 87 of the nozzle cover 75 are located at the same height.
 また、ノズル73がノズルカバー75により覆われた状態において、ノズルカバー75の凹部89の内部にノズル73のノズル本体77が位置し、ノズルカバー75の貫通孔93の内部にノズル73のノズル先端79が位置する。このような状態において、凹部89とノズル本体77との間及び、貫通孔93とノズル先端79との間に隙間が存在し、その隙間がヒートガス出力通路95として機能する。ヒートガス出力通路95には、ヒートガス通路51を経てヒートガスが供給される。 Further, in a state where the nozzle 73 is covered with the nozzle cover 75, the nozzle body 77 of the nozzle 73 is located inside the recess 89 of the nozzle cover 75, and the nozzle tip 79 of the nozzle 73 is inside the through hole 93 of the nozzle cover 75. Is located. In such a state, there is a gap between the recess 89 and the nozzle body 77 and between the through hole 93 and the nozzle tip 79, and the gap functions as a heat gas output passage 95. Heat gas is supplied to the heat gas output passage 95 via the heat gas passage 51.
 このような構造により、反応室37で発生したプラズマガスは、キャリアガスとともに、本体側プラズマ通路71を経由して溝81の内部に噴出される。そして、プラズマガスは、溝81の内部において拡散し、ノズル側プラズマ通路82を経由して、ノズル側プラズマ通路82の下端の開口82Aから噴出される。また、ガス管41からヒートガス通路51へ供給されたヒートガスは、ヒートガス出力通路95を流れる。このヒートガスは、プラズマガスを保護するシールドガスとして機能するものである。ヒートガスは、ヒートガス出力通路95を流れ、ヒートガス出力通路95の下端の開口95Aからプラズマガスの噴出方向に沿って噴出される。この際、ヒートガスは、ノズル側プラズマ通路82の開口82Aから噴出されるプラズマガスの周囲を取り巻くように噴出される。このように、加熱したヒートガスをプラズマガスの周囲に噴出することで、プラズマガスの効能(濡れ性など)を高めることができる。 With such a structure, the plasma gas generated in the reaction chamber 37 is ejected into the groove 81 together with the carrier gas via the plasma passage 71 on the main body side. Then, the plasma gas diffuses inside the groove 81 and is ejected from the opening 82A at the lower end of the nozzle-side plasma passage 82 via the nozzle-side plasma passage 82. Further, the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas output passage 95. This heat gas functions as a shield gas that protects the plasma gas. The heat gas flows through the heat gas output passage 95 and is ejected from the opening 95A at the lower end of the heat gas output passage 95 along the plasma gas ejection direction. At this time, the heat gas is ejected so as to surround the plasma gas ejected from the opening 82A of the nozzle-side plasma passage 82. By ejecting the heated heat gas around the plasma gas in this way, the effectiveness (wetting property, etc.) of the plasma gas can be enhanced.
 このように、プラズマヘッド11では、反応室37において放電が生じ、プラズマが発生することで、そのプラズマガスがノズル73の先端から噴出され、被処理物Wに対してプラズマ処理が施される。ただし、反応室37での放電により、反応室37を区画するヘッド本体部31の内壁面,電極33等が炭化し、異物が生じる。このように、反応室37において異物が生じると、その異物は、本体側プラズマ通路71を経由して、溝81に排出される。この際、溝81の内部において、その溝81に開口するノズル側プラズマ通路82の開口に、異物が付着し、堆積していく。そして、そのノズル側プラズマ通路82の開口に堆積した異物が、ノズル側プラズマ通路82の開口を塞ぐ場合があり、そのような場合には、反応室37の内部圧力が上昇し、適切な放電を担保することができなくなる。このようなことを防ぐためには、ノズル73をヘッド本体部31から取り外し、ノズル側プラズマ通路82の溝81の内部への開口を清掃すればよいが、清掃の度に、プラズマヘッド11の作動を停止させる必要があり、生産性が低下する。 In this way, in the plasma head 11, a discharge is generated in the reaction chamber 37, and when plasma is generated, the plasma gas is ejected from the tip of the nozzle 73, and the plasma treatment is applied to the object W to be processed. However, due to the electric discharge in the reaction chamber 37, the inner wall surface of the head main body 31 that partitions the reaction chamber 37, the electrode 33, and the like are carbonized, and foreign matter is generated. In this way, when foreign matter is generated in the reaction chamber 37, the foreign matter is discharged into the groove 81 via the plasma passage 71 on the main body side. At this time, inside the groove 81, foreign matter adheres to and accumulates in the opening of the nozzle-side plasma passage 82 that opens in the groove 81. Then, foreign matter accumulated in the opening of the nozzle-side plasma passage 82 may block the opening of the nozzle-side plasma passage 82, and in such a case, the internal pressure of the reaction chamber 37 rises to generate an appropriate discharge. It will not be possible to secure it. In order to prevent such a situation, the nozzle 73 may be removed from the head main body 31 and the opening to the inside of the groove 81 of the plasma passage 82 on the nozzle side may be cleaned. It needs to be stopped, which reduces productivity.
 そこで、プラズマヘッド11では、図5に示すように、ノズル側プラズマ通路82の溝81の内部への開口にテーパ面100が形成されている。つまり、ノズル側プラズマ通路82の溝81の内部への開口が面取りされており、ノズル側プラズマ通路82の溝81の内部への開口側の端部の内径が徐々に大きくされている。なお、ノズル側プラズマ通路82のテーパ面100が形成されていない箇所の内径は均一とされている。このように、ノズル側プラズマ通路82の溝81への開口にテーパ面100が形成されることで、異物がノズル側プラズマ通路82の開口に付着し、堆積した場合であっても、その開口が塞がれ難くなる。これにより、ノズル側プラズマ通路82の開口の清掃頻度を少なくすることが可能となり、生産性の低下を抑制することができる。 Therefore, in the plasma head 11, as shown in FIG. 5, a tapered surface 100 is formed in the opening of the nozzle-side plasma passage 82 into the groove 81. That is, the opening to the inside of the groove 81 of the nozzle-side plasma passage 82 is chamfered, and the inner diameter of the end portion of the nozzle-side plasma passage 82 on the opening side to the inside of the groove 81 is gradually increased. The inner diameter of the nozzle-side plasma passage 82 where the tapered surface 100 is not formed is made uniform. By forming the tapered surface 100 in the opening of the nozzle-side plasma passage 82 to the groove 81 in this way, even if foreign matter adheres to the opening of the nozzle-side plasma passage 82 and accumulates, the opening is opened. It becomes difficult to be blocked. As a result, it is possible to reduce the frequency of cleaning the opening of the plasma passage 82 on the nozzle side, and it is possible to suppress a decrease in productivity.
 また、プラズマヘッド11では、複数のノズル側プラズマ通路82の全てにテーパ面100は形成されておらず、複数のノズル側プラズマ通路82のうちの一部のノズル側プラズマ通路82にのみ、テーパ面100が形成されている。詳しくは、反応室37で生じたプラズマガスが、本体側プラズマ通路71から溝81の内部に流入し、溝81の内部において拡散する。そして、溝81の内部から複数のノズル側プラズマ通路82に流出する。この際に、溝81の内部でのプラズマガスの拡散時、及び、溝81から複数のノズル側プラズマ通路82の各々へのプラズマガスの流入時において、プラズマガスの流れが異なるため、プラズマガスの流れによって渦が発生する箇所に異物が留まり易いことが判明している。 Further, in the plasma head 11, the tapered surface 100 is not formed on all of the plurality of nozzle-side plasma passages 82, and the tapered surface is formed only on a part of the nozzle-side plasma passages 82 among the plurality of nozzle-side plasma passages 82. 100 is formed. Specifically, the plasma gas generated in the reaction chamber 37 flows into the inside of the groove 81 from the plasma passage 71 on the main body side and diffuses inside the groove 81. Then, it flows out from the inside of the groove 81 to the plurality of nozzle-side plasma passages 82. At this time, since the flow of the plasma gas is different when the plasma gas is diffused inside the groove 81 and when the plasma gas flows from the groove 81 into each of the plurality of nozzle-side plasma passages 82, the plasma gas is charged. It has been found that foreign matter tends to stay in places where vortices are generated by the flow.
 そこで、ノズル73の製造時において、本体側プラズマ通路71,溝81,ノズル側プラズマ通路82等の寸法,数,配置、プラズマガスの流量などに基づいて、プラズマヘッド11でのプラズマガスの流れがコンピュータ解析によりシミュレートされる。この際、シミュレートされたプラズマガスの流れにおいて、10本のノズル側プラズマ通路82のうちのX方向での両端から2番目および3番目の開口付近に渦が生じる。このため、10本のノズル側プラズマ通路82のうちのX方向での両端から2番目および3番目に位置する4本のノズル側プラズマ通路82の溝81への開口に、テーパ面100が形成される。つまり、10本のノズル側プラズマ通路82の並ぶ方向での中央を中心として、対称的に、その中心から3番目および4番目に位置する4本のノズル側プラズマ通路82の溝81への開口に、テーパ面100が形成される。 Therefore, at the time of manufacturing the nozzle 73, the flow of plasma gas in the plasma head 11 is based on the dimensions, number, arrangement, flow rate of plasma gas, etc. of the main body side plasma passage 71, groove 81, nozzle side plasma passage 82, and the like. Simulated by computer analysis. At this time, in the simulated plasma gas flow, vortices are generated near the second and third openings from both ends in the X direction of the ten nozzle-side plasma passages 82. Therefore, the tapered surface 100 is formed in the openings to the grooves 81 of the four nozzle-side plasma passages 82 located second and third from both ends in the X direction among the ten nozzle-side plasma passages 82. To. That is, the openings to the grooves 81 of the four nozzle-side plasma passages 82, which are symmetrically located at the third and fourth positions from the center, centered on the center of the ten nozzle-side plasma passages 82 in the line-up direction. , The tapered surface 100 is formed.
 このように、複数のノズル側プラズマ通路82のうちの一部のノズル側プラズマ通路82の開口にテーパ面100が形成されることで、異物が堆積しやすいノズル側プラズマ通路82の開口が大きくなる。これにより、ノズル側プラズマ通路82の溝81への開口に経時的に異物が堆積した場合であっても、異物が堆積し易い開口のノズル側プラズマ通路82と、異物が堆積し難い開口のノズル側プラズマ通路82とにおいてプラズマガスの流量の差が小さくなり、適切なプラズマ処理が担保される。 In this way, by forming the tapered surface 100 in the openings of some of the nozzle-side plasma passages 82 among the plurality of nozzle-side plasma passages 82, the openings of the nozzle-side plasma passages 82 where foreign matter is likely to accumulate become large. .. As a result, even if foreign matter accumulates in the opening of the nozzle-side plasma passage 82 to the groove 81 over time, the nozzle-side plasma passage 82 of the opening where the foreign matter easily accumulates and the nozzle of the opening where the foreign matter does not easily accumulate. The difference in the flow rate of the plasma gas from the side plasma passage 82 becomes small, and appropriate plasma processing is ensured.
 また、プラズマヘッド11では、上述したように、ノズル73を交換することが可能とされており、例えば、ノズル73の代わりに、図6に示すノズル110を、ヘッド本体部31に装着することが可能とされている。ノズル110には、1対の溝112と、6本のノズル側プラズマ通路114とが形成されている。そして、6本のノズル側プラズマ通路114のうちの3本のノズル側プラズマ通路114が、1対の溝112の一方に開口し、残りの3本のノズル側プラズマ通路114が、1対の溝112の他方に開口している。 Further, in the plasma head 11, as described above, the nozzle 73 can be replaced. For example, instead of the nozzle 73, the nozzle 110 shown in FIG. 6 can be mounted on the head main body 31. It is possible. The nozzle 110 is formed with a pair of grooves 112 and six nozzle-side plasma passages 114. Then, three nozzle-side plasma passages 114 out of the six nozzle-side plasma passages 114 open in one of the pair of grooves 112, and the remaining three nozzle-side plasma passages 114 form a pair of grooves. It is open to the other side of 112.
 また、ノズル110の製造時においても、本体側プラズマ通路71,溝112,ノズル側プラズマ通路114等の寸法,数,配置、プラズマガスの流量などに基づいて、プラズマヘッド11でのプラズマガスの流れがコンピュータ解析によりシミュレートされている。この際、シミュレートされたプラズマガスの流れにおいて、6本のノズル側プラズマ通路114のうちのX方向での両端から2番目の開口付近に渦が生じる。このため、6本のノズル側プラズマ通路114のうちのX方向での両端から2番目に位置する2本のノズル側プラズマ通路114の溝112への開口に、テーパ面120が形成される。つまり、6本のノズル側プラズマ通路114の並ぶ方向での中央を中心として、対称的に、その中心から2番目に位置する2本のノズル側プラズマ通路114の溝112への開口に、テーパ面120が形成される。 Further, even when the nozzle 110 is manufactured, the flow of plasma gas in the plasma head 11 is based on the dimensions, number, arrangement, flow rate of plasma gas, etc. of the main body side plasma passage 71, groove 112, nozzle side plasma passage 114, and the like. Is simulated by computer analysis. At this time, in the simulated plasma gas flow, a vortex is generated near the second opening from both ends in the X direction of the six nozzle-side plasma passages 114. Therefore, the tapered surface 120 is formed in the opening of the two nozzle-side plasma passages 114 located second from both ends in the X direction among the six nozzle-side plasma passages 114 to the groove 112. That is, a tapered surface is formed at the opening of the two nozzle-side plasma passages 114, which are symmetrically located second from the center of the six nozzle-side plasma passages 114 in the direction in which they are lined up, into the groove 112. 120 is formed.
 このように、ノズル73,110の種類毎に、複数のノズル側プラズマ通路82,114のうちの一部のノズル側プラズマ通路82,114の開口にテーパ面100,120が形成されている。これにより、複数種類のノズル73,110の各々において、異物の堆積による生産性の低下の防止,適切なプラズマ処理の担保などが図られている。 As described above, the tapered surfaces 100 and 120 are formed in the openings of some of the nozzle- side plasma passages 82 and 114 among the plurality of nozzle- side plasma passages 82 and 114 for each type of nozzles 73 and 110. As a result, in each of the plurality of types of nozzles 73 and 110, it is possible to prevent a decrease in productivity due to the accumulation of foreign matter, and to ensure appropriate plasma treatment.
 因みに、プラズマ装置10は、プラズマ発生装置の一例である。ヘッド本体部31は、装置本体の一例である。反応室37は、反応室の一例である。ノズル73は、ノズルの一例である。本体側プラズマ通路71は、排出通路の一例である。溝81は、拡散室の一例である。ノズル側プラズマ通路82は、噴出通路の一例である。テーパ面100は、テーパ面の一例である。ノズル110は、ノズルの一例である。溝112は、拡散室の一例である。ノズル側プラズマ通路114は、噴出通路の一例である。テーパ面120は、テーパ面の一例である。 By the way, the plasma device 10 is an example of a plasma generator. The head main body 31 is an example of the device main body. The reaction chamber 37 is an example of the reaction chamber. The nozzle 73 is an example of a nozzle. The main body side plasma passage 71 is an example of a discharge passage. The groove 81 is an example of a diffusion chamber. The nozzle-side plasma passage 82 is an example of an ejection passage. The tapered surface 100 is an example of a tapered surface. The nozzle 110 is an example of a nozzle. The groove 112 is an example of a diffusion chamber. The nozzle-side plasma passage 114 is an example of an ejection passage. The tapered surface 120 is an example of a tapered surface.
 以上、上記した本実施形態では、以下の効果を奏する。 As described above, the above-described embodiment has the following effects.
 プラズマヘッド11では、複数のノズル側プラズマ通路82,114のうちの1以上のノズル側プラズマ通路82,114の開口にテーパ面100,120が形成されている。これにより、ノズル側プラズマ通路82の開口の清掃頻度を少なくすることが可能となり、生産性の低下を抑制することができる。 In the plasma head 11, tapered surfaces 100 and 120 are formed in the openings of one or more nozzle- side plasma passages 82 and 114 among the plurality of nozzle- side plasma passages 82 and 114. As a result, it is possible to reduce the frequency of cleaning the opening of the plasma passage 82 on the nozzle side, and it is possible to suppress a decrease in productivity.
 また、プラズマヘッド11では、複数のノズル側プラズマ通路82,114の全てにテーパ面100,120は形成されておらず、複数のノズル側プラズマ通路82,114のうちの一部のノズル側プラズマ通路82,114にのみ、テーパ面100,120が形成されている。これにより、異物が堆積し易い開口のノズル側プラズマ通路82,114と、異物が堆積し難い開口のノズル側プラズマ通路82,114とにおいてプラズマガスの流量の差を小さくし、適切なプラズマ処理を担保することが可能とされている。 Further, in the plasma head 11, the tapered surfaces 100 and 120 are not formed on all of the plurality of nozzle- side plasma passages 82 and 114, and some of the plurality of nozzle- side plasma passages 82 and 114 are nozzle-side plasma passages. Tapered surfaces 100 and 120 are formed only on 82 and 114. As a result, the difference in the flow rate of plasma gas between the nozzle- side plasma passages 82 and 114 of the opening where foreign matter is likely to accumulate and the nozzle- side plasma passages 82 and 114 of the opening where foreign matter is difficult to accumulate is reduced, and appropriate plasma treatment is performed. It is possible to secure it.
 また、プラズマヘッド11では、複数のノズル側プラズマ通路82,114の並ぶ方向での中央を中心として、対称的に位置するように、テーパ面100,120が形成されている。これにより、複数のノズル側プラズマ通路82,114の全体において好適にノズル詰まりを抑制することができる。 Further, in the plasma head 11, tapered surfaces 100 and 120 are formed so as to be symmetrically located about the center in the direction in which the plurality of nozzle- side plasma passages 82 and 114 are arranged. As a result, nozzle clogging can be suitably suppressed in the entire plurality of nozzle- side plasma passages 82 and 114.
 また、プラズマヘッド11では、ノズル73,110がヘッド本体部31に相対的に移動不能に装着されている。これにより、安定的にプラズマガスを被処理物Wに噴出することができる。さらに言えば、プラズマヘッド11では、上述したように、ヒートガスが、噴出されるプラズマガスの周囲を取り巻くように噴出される。このため、ノズル73,110がヘッド本体部31に相対的に移動不能に装着されることで、プラズマガスをヒートガスにより適切に覆われた状態で噴出することができる。 Further, in the plasma head 11, the nozzles 73 and 110 are relatively immovably mounted on the head main body 31. As a result, the plasma gas can be stably ejected to the object W to be processed. Furthermore, in the plasma head 11, as described above, the heat gas is ejected so as to surround the plasma gas to be ejected. Therefore, by mounting the nozzles 73 and 110 relatively immovably on the head body 31, the plasma gas can be ejected in a state of being appropriately covered with the heat gas.
 尚、本開示は、上記実施形態に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、プラズマヘッド11では、複数のノズル側プラズマ通路82,114のうちの一部のノズル側プラズマ通路82,114にのみ、テーパ面100,120が形成されているが、複数のノズル側プラズマ通路82,114の全てにテーパ面100,120が形成されてもよい。 Note that the present disclosure is not limited to the above embodiment, and can be implemented in various modes with various changes and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the plasma head 11, the tapered surfaces 100 and 120 are formed only in some of the nozzle- side plasma passages 82 and 114 among the plurality of nozzle- side plasma passages 82 and 114. Tapered surfaces 100 and 120 may be formed on all of the nozzle- side plasma passages 82 and 114.
 また、上記実施形態では、拡散室として溝81が採用されているが、本体側プラズマ通路71に連通するものであれば、凹部,通路,区画された空間など、種々のものを、拡散室として採用することが可能である。 Further, in the above embodiment, the groove 81 is adopted as the diffusion chamber, but if it communicates with the plasma passage 71 on the main body side, various things such as a recess, a passage, and a partitioned space can be used as the diffusion chamber. It is possible to adopt it.
 また、上記実施形態では、ヘッド本体部31に、本体側プラズマ通路71が形成され、ノズル73に溝81とノズル側プラズマ通路82とが形成されているが、ヘッド本体部31に、本体側プラズマ通路71と溝81とが形成され、ノズル73にノズル側プラズマ通路82が形成されてもよい。 Further, in the above embodiment, the main body side plasma passage 71 is formed in the head main body portion 31, and the groove 81 and the nozzle side plasma passage 82 are formed in the nozzle 73, but the main body side plasma is formed in the head main body portion 31. The passage 71 and the groove 81 may be formed, and the nozzle-side plasma passage 82 may be formed in the nozzle 73.
 また、上記実施形態では、ヘッド本体部31とノズル73とが着脱可能とされているが、ヘッド本体部31とノズル73とが一体的に形成されていてもよい。つまり、一体的な装置本体の内部に、反応室37と本体側プラズマ通路71と溝81とノズル側プラズマ通路82とが形成されていてもよい。 Further, in the above embodiment, the head main body 31 and the nozzle 73 are detachable, but the head main body 31 and the nozzle 73 may be integrally formed. That is, the reaction chamber 37, the main body side plasma passage 71, the groove 81, and the nozzle side plasma passage 82 may be formed inside the integrated apparatus main body.
 また、プラズマヘッド11では、プラズマガスの流れがシミュレートされ、シミュレートされたプラズマガスの流れに基づいて、テーパ面が形成されるノズル側プラズマ通路が決定されているが、別の手法に基づいて、テーパ面が形成されるノズル側プラズマ通路が決定されてもよい。例えば、経験則に基づいて、異物が堆積しやすい位置のノズル側プラズマ通路を、テーパ面が形成されるノズル側プラズマ通路に決定してもよい。 Further, in the plasma head 11, the flow of plasma gas is simulated, and the nozzle-side plasma passage on which the tapered surface is formed is determined based on the simulated flow of plasma gas, but based on another method. Therefore, the nozzle-side plasma passage in which the tapered surface is formed may be determined. For example, based on an empirical rule, the nozzle-side plasma passage at a position where foreign matter is likely to accumulate may be determined as the nozzle-side plasma passage on which the tapered surface is formed.
 10:プラズマ装置(プラズマ発生装置)、31:ヘッド本体部(装置本体)、37:反応室、71:本体側プラズマ通路(排出通路)、73:ノズル、81:溝(拡散室)、82:ノズル側プラズマ通路(噴出通路)、100:テーパ面、110:ノズル、112:溝(拡散室)、114:ノズル側プラズマ通路(噴出通路)、120:テーパ面 10: Plasma device (plasma generator), 31: Head body (device body), 37: Reaction chamber, 71: Main body side plasma passage (discharge passage), 73: Nozzle, 81: Groove (diffusion chamber), 82: Nozzle side plasma passage (spout passage), 100: tapered surface, 110: nozzle, 112: groove (diffusion chamber), 114: nozzle side plasma passage (spout passage), 120: tapered surface

Claims (6)

  1.  処理ガスをプラズマ化させるための反応室が形成された装置本体と、
     前記反応室に接続する少なくとも一つの排出通路と、
     前記少なくとも一つの排出通路に接続する拡散室と、
     前記拡散室に接続する複数の噴出通路であって、それら複数の噴出通路のうちの少なくとも一つの噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、
     を備えるプラズマ発生装置。
    The main body of the device, which has a reaction chamber for turning the processing gas into plasma,
    With at least one discharge passage connected to the reaction chamber,
    A diffusion chamber connected to the at least one discharge passage and
    A plurality of ejection passages connected to the diffusion chamber, and plasma converted into plasma in the reaction chamber in which a tapered surface is formed at an opening of at least one of the plurality of ejection passages to the diffusion chamber. Multiple ejection passages that eject gas and
    A plasma generator equipped with.
  2.  処理ガスをプラズマ化させるための反応室が形成された装置本体と、
     前記装置本体に装着され、前記反応室においてプラズマ化されたプラズマガスを噴出するノズルと、
     を備え、
     前記装置本体は、
     前記反応室においてプラズマ化されたプラズマガスを前記装置本体の外部に排出するための排出通路を有し、
     前記ノズルは、
     前記排出通路の前記装置本体の外壁面への開口を覆うように形成される拡散室と、
     前記拡散室を経由してプラズマガスを噴出するための複数の噴出通路であって、それら複数の噴出通路のうちの1以上の噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、
     を有するプラズマ発生装置。
    The main body of the device, which has a reaction chamber for turning the processing gas into plasma,
    A nozzle mounted on the main body of the apparatus and ejecting plasma gas turned into plasma in the reaction chamber,
    With
    The device body
    It has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the main body of the apparatus.
    The nozzle
    A diffusion chamber formed so as to cover the opening of the discharge passage to the outer wall surface of the apparatus main body,
    A plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and a tapered surface is formed in an opening of one or more of the plurality of ejection passages to the diffusion chamber. Multiple ejection passages that eject plasma gas turned into plasma in the reaction chamber,
    Plasma generator with.
  3.  前記複数の噴出通路の全ての噴出通路の前記拡散室への開口にテーパ面が形成されず、前記複数の噴出通路のうちの一部の噴出通路の前記拡散室への開口にテーパ面が形成された請求項2に記載のプラズマ発生装置。 No tapered surface is formed in the openings of all the ejection passages of the plurality of ejection passages to the diffusion chamber, and a tapered surface is formed in the openings of some of the plurality of ejection passages to the diffusion chamber. The plasma generator according to claim 2.
  4.  前記ノズルに複数の噴出通路が1列に並んで形成されており、
     前記テーパ面が、前記複数の噴出通路の1列に並ぶ方向での中央を中心として対称的に位置するように形成された請求項3に記載のプラズマ発生装置。
    A plurality of ejection passages are formed in a row in the nozzle.
    The plasma generator according to claim 3, wherein the tapered surfaces are formed so as to be symmetrically positioned with respect to a center in a direction in which the plurality of ejection passages are arranged in a row.
  5.  前記ノズルが、
     前記装置本体に相対的に移動不能に装着された請求項2ないし請求項4のいずれか1つに記載のプラズマ発生装置。
    The nozzle
    The plasma generator according to any one of claims 2 to 4, which is mounted on the main body of the device so as to be relatively immovable.
  6.  処理ガスをプラズマ化させるための反応室が形成された装置本体と、
     前記装置本体に装着され、前記反応室においてプラズマ化されたプラズマガスを噴出するノズルと、
     を備え、
     前記装置本体は、
     前記反応室においてプラズマ化されたプラズマガスを前記装置本体の外部に排出するための排出通路を有し、
     前記ノズルは、
     前記排出通路の前記装置本体の外壁面への開口を覆うように形成される拡散室と、
     前記拡散室を経由してプラズマガスを噴出するための複数の噴出通路であって、それら複数の噴出通路のうちの1以上の噴出通路の前記拡散室への開口にテーパ面が形成された前記反応室においてプラズマ化されたプラズマガスを噴出する複数の噴出通路と、
     を有するプラズマ発生装置において、
     前記複数の噴出通路から噴出されるプラズマガスを被処理体に照射するプラズマ処理方法。
    The main body of the device, which has a reaction chamber for turning the processing gas into plasma,
    A nozzle mounted on the main body of the apparatus and ejecting plasma gas turned into plasma in the reaction chamber,
    With
    The device body
    It has a discharge passage for discharging the plasma gas converted into plasma in the reaction chamber to the outside of the main body of the apparatus.
    The nozzle
    A diffusion chamber formed so as to cover the opening of the discharge passage to the outer wall surface of the apparatus main body,
    A plurality of ejection passages for ejecting plasma gas via the diffusion chamber, and a tapered surface is formed in an opening of one or more of the plurality of ejection passages to the diffusion chamber. Multiple ejection passages that eject plasma gas turned into plasma in the reaction chamber,
    In a plasma generator with
    A plasma treatment method for irradiating an object to be treated with plasma gas ejected from the plurality of ejection passages.
PCT/JP2019/041419 2019-10-22 2019-10-22 Plasma generation device and plasma processing method WO2021079420A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/041419 WO2021079420A1 (en) 2019-10-22 2019-10-22 Plasma generation device and plasma processing method
CN201980101498.1A CN114586473A (en) 2019-10-22 2019-10-22 Plasma generating apparatus and plasma processing method
JP2021553194A JP7133724B2 (en) 2019-10-22 2019-10-22 Plasma generator and plasma processing method
EP19950060.4A EP4050973A4 (en) 2019-10-22 2019-10-22 Plasma generation device and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041419 WO2021079420A1 (en) 2019-10-22 2019-10-22 Plasma generation device and plasma processing method

Publications (1)

Publication Number Publication Date
WO2021079420A1 true WO2021079420A1 (en) 2021-04-29

Family

ID=75619936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041419 WO2021079420A1 (en) 2019-10-22 2019-10-22 Plasma generation device and plasma processing method

Country Status (4)

Country Link
EP (1) EP4050973A4 (en)
JP (1) JP7133724B2 (en)
CN (1) CN114586473A (en)
WO (1) WO2021079420A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3621622Y1 (en) * 1959-02-03 1961-08-21
JP2001068298A (en) 1999-07-09 2001-03-16 Agrodyn Hochspannungstechnik Gmbh Plasma nozzle
JP2005302681A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP2015144078A (en) * 2014-01-31 2015-08-06 富士機械製造株式会社 Air-pressure plasma generator
WO2016194138A1 (en) * 2015-06-02 2016-12-08 富士機械製造株式会社 Plasma generating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461983B2 (en) * 2014-09-16 2019-01-30 株式会社Fuji Plasma gas irradiation device
JP6534745B2 (en) * 2015-09-29 2019-06-26 株式会社Fuji Plasma generator
EP3432691B1 (en) * 2016-03-14 2020-06-24 Fuji Corporation Plasma generator
DE102016125699A1 (en) * 2016-12-23 2018-06-28 Plasmatreat Gmbh A nozzle assembly, apparatus for producing an atmospheric plasma jet, use thereof, method for plasma treatment of a cloth or a plastic film, plasma-treated nonwoven fabric and use thereof
CN111480393B (en) * 2018-01-30 2023-03-21 株式会社富士 Plasma processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3621622Y1 (en) * 1959-02-03 1961-08-21
JP2001068298A (en) 1999-07-09 2001-03-16 Agrodyn Hochspannungstechnik Gmbh Plasma nozzle
JP2005302681A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP2015144078A (en) * 2014-01-31 2015-08-06 富士機械製造株式会社 Air-pressure plasma generator
WO2016194138A1 (en) * 2015-06-02 2016-12-08 富士機械製造株式会社 Plasma generating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050973A4

Also Published As

Publication number Publication date
EP4050973A1 (en) 2022-08-31
JP7133724B2 (en) 2022-09-08
CN114586473A (en) 2022-06-03
JPWO2021079420A1 (en) 2021-04-29
EP4050973A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US10716200B2 (en) Plasma arc cutting system, including retaining caps, and other consumables, and related operational methods
CN101530000B (en) Contoured shield orifice for plasma arc torch
JP2010539644A (en) Surface treatment or surface coating method and apparatus
WO2005025022A1 (en) Ionizer
JP6605598B2 (en) Plasma generator
WO2017158671A1 (en) Plasma generator
WO2021079420A1 (en) Plasma generation device and plasma processing method
JP2006277953A (en) Plasma formation device and plasma treatment device as well as plasma formation method and plasma treatment method
WO2021229633A1 (en) Plasma generator, plasma generation method, and control device
JPWO2007046151A1 (en) Electrostatic removal apparatus for semiconductor substrate and liquid crystal substrate surface in semiconductor and liquid crystal manufacturing process
WO2020084762A1 (en) Plasma generating device
JP7461961B2 (en) Plasma generating device and plasma processing method
JP6482014B2 (en) Plasma surface treatment apparatus and plasma surface treatment system
WO2023058215A1 (en) Nozzle, plasma processing device, and gas jetting method
KR20160128304A (en) Atmospheric pressure plasma generator, and workpiece pair processing machine
JP6768133B2 (en) Plasma generator
JP6242946B2 (en) Carbon fiber surface treatment method
JP5645157B2 (en) Plasma device
JP7168792B2 (en) Plasma generator
KR101030712B1 (en) Plasma processing device
JPS61104625A (en) Plasma processing apparatus
WO2021166029A1 (en) Workpiece surface modification method and workpiece surface modification apparatus
CN101437352B (en) Plasma relay apparatus
JP7268932B1 (en) plasma injector
WO2017037885A1 (en) Atmospheric-pressure plasma generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950060

Country of ref document: EP

Effective date: 20220523