WO2021057972A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021057972A1
WO2021057972A1 PCT/CN2020/118117 CN2020118117W WO2021057972A1 WO 2021057972 A1 WO2021057972 A1 WO 2021057972A1 CN 2020118117 W CN2020118117 W CN 2020118117W WO 2021057972 A1 WO2021057972 A1 WO 2021057972A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
vehicle
message
communication
scene
Prior art date
Application number
PCT/CN2020/118117
Other languages
English (en)
French (fr)
Inventor
殷佳欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021057972A1 publication Critical patent/WO2021057972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the embodiments of the present application relate to the technical field of Internet of Vehicles, and in particular, to a communication method and device.
  • terminal equipment communication includes sidelink (SL) communication and Uu air interface communication.
  • SL communication refers to the communication between terminal equipment and other terminal equipment
  • Uu air interface communication refers to the communication between terminal equipment and network equipment.
  • the terminal device is a motor vehicle
  • the SL communication may include direct communication between the vehicle and the vehicle, the vehicle and the infrastructure, and the vehicle and the non-motor vehicle.
  • the terminal device manages the other terminal devices around it in groups is a current research hotspot.
  • the embodiments of the present application provide a communication method and device, so that a terminal device can group and manage other terminal devices around it.
  • a communication method including: a first terminal device receives a status synchronization message sent by a second terminal device, the status synchronization message includes location information of the second terminal device; the first terminal device Determine the first scene grouping according to the location information of the second terminal device and the location information of the first terminal device; the first terminal device adds the identifier of the second terminal device to the first scene Grouping.
  • the first terminal device determines the business scenarios (for example, anti-collision, merging, left-turn blind zone or right-turn blindly, etc. business scenarios) according to the location information of the first terminal device and the second terminal device. And the identifier of the second terminal device is added to the corresponding business scenario group. Therefore, when a dangerous situation is triggered, a targeted message is sent in a timely manner, so that relevant vehicles can respond in time to prevent traffic accidents.
  • business scenarios for example, anti-collision, merging, left-turn blind zone or right-turn blindly, etc. business scenarios
  • the first scene grouping includes multiple subgroups
  • the first terminal device adds the identifier of the second terminal device to the first scene grouping, including: The first terminal device determines first information between the first terminal device and the second terminal device, where the first information includes the relative distance and relative speed between the first terminal device and the second terminal device Or at least one of the relative angles; the first terminal device determines a first subgroup according to the first information; the first terminal device adds the identifier of the second terminal device to the first subgroup Group.
  • the second terminal device can be added to different scene groups according to the difference in location information of the first terminal device and the second terminal device. For example, if the first terminal device and the second terminal device are adjacent vehicles in the front and rear of the same vehicle, the identifier of the second terminal device may be added to the AEB scene group. If the first terminal device and the second terminal device are left and right adjacent vehicles of adjacent vehicles, the identifier of the second terminal device can be added to the merge scene grouping, etc., so as to facilitate the management of the surrounding vehicles by the first terminal device.
  • the method further includes: the first terminal device determines the condition of the first subgroup; when the second terminal device does not meet the condition of the first subgroup, The first terminal device sends an alarm message to the second terminal device, and the alarm message is used to adjust the driving state of the second terminal device.
  • condition of the first subgroup includes at least one of communication delay, communication reliability, or vehicle control capability.
  • the state synchronization message also includes the communication delay between the first terminal device and the second terminal device, and the communication delay between the first terminal device and the second terminal device. Communication reliability, or at least one of the control capabilities of the second terminal device.
  • the method further includes: when the first terminal device performs the first action, the first terminal device determines the first scene grouping among a plurality of scene groups including the first scene grouping. Second scene grouping, the second scene grouping is the same or different from the first scene grouping; the first terminal device sends an early warning message to the vehicle corresponding to the second scene grouping.
  • the vehicles in the second scene group can adjust their actions, such as slowing down and waiting to avoid collisions with the first terminal device and reduce the occurrence of traffic accidents.
  • how many subgroups the second scene grouping includes and the first terminal device sends an early warning message to the vehicle corresponding to the second scene grouping, including: the first terminal device sends the Vehicles corresponding to different subgroups in the second scenario grouping send different warning messages.
  • the vehicles in the second scene group can adjust their actions, such as slowing down and waiting to avoid collisions with the first terminal device and reduce the occurrence of traffic accidents. For example, for high-risk sub-dangers, an early warning message for forced action can be sent, and for a sub-dangerous subgroup or alarm subgroup, an alarm message for warning can be sent.
  • the first terminal device determines the first scene grouping according to the location information of the second terminal device and the location information of the first terminal device, including: the first terminal device according to The location information of the first terminal device determines the location coordinates of the first terminal device on a map; the first terminal device determines the first terminal device on the map according to the location information of the second terminal device 2.
  • the position coordinates of the terminal device; the first terminal device determines the positions of the first terminal device and the second terminal device according to the position coordinates of the first terminal device and the position coordinates of the second terminal device Relationship; the first terminal device determines the first scene grouping according to the position relationship between the first terminal device and the second terminal device.
  • a communication method including: a second terminal device determines a trigger condition; the second terminal device sends a state synchronization message to the first terminal device, and the state synchronization message includes the information of the second terminal device location information.
  • the determination of the trigger condition by the second terminal device includes: the second terminal device receives a collaborative sensing message sent by the first terminal device, and the collaborative sensing message includes the first The location information of the terminal device; the second terminal device determines that the first terminal device and the second terminal device are physically based on the location information of the first terminal device and the location information of the second terminal device Adjacent vehicles.
  • the determination of the trigger condition by the second terminal device includes: the second terminal device determines the location information of the first terminal device through a detection device; the second terminal device determines the location information of the first terminal device according to the The location information of the first terminal device and the location information of the second terminal device determine that the first terminal device and the second terminal device are physically adjacent vehicles.
  • the determination of the trigger condition by the second terminal device includes: the second terminal device receives the first trigger message sent by the vehicle networking V2X server.
  • the method further includes: the second terminal device sends a query request to the V2X server, where the query request includes the identifier of the first terminal device; and the second terminal device receives the In the query response sent by the V2X server, the query response includes the communication reachable mode of the first terminal device; the second terminal device sends the information to the first terminal device according to the communication reachable mode of the first terminal device.
  • the terminal device sends a handshake message; the second terminal device receives a handshake response message sent by the first terminal device; the second terminal device determines the first terminal device according to the handshake message and the handshake response message The communication delay with the second terminal device, and/or the reliability of the first terminal device and the second terminal device.
  • the state synchronization message also includes the communication delay between the first terminal device and the second terminal device, and the communication delay between the first terminal device and the second terminal device. Reliability, or at least one of the control capabilities of the second terminal device.
  • the method further includes: the second terminal device receives the warning message sent by the first terminal device; the second terminal device adjusts the driving of the second terminal device according to the warning message status.
  • a communication method including: an edge server receives a vehicle message sent by a collection device; the edge server determines that a first terminal device and a second terminal device are physically adjacent vehicles according to the vehicle message; The edge server sends a second trigger message to the vehicle networking V2X server, where the second trigger message includes the identifier of the first terminal device and the identifier of the second terminal device.
  • an apparatus including: a communication module for receiving a status synchronization message sent by a second terminal device, where the status synchronization message includes location information of the second terminal device; and a processing module for receiving The location information of the second terminal device and the location information of the first terminal device determine the first scene group; the processing module is further configured to add the identifier of the second terminal device to the first scene group in.
  • an apparatus including: a memory for storing program instructions; a communication interface for receiving a status synchronization message sent by a second terminal device, the status synchronization message including the location of the second terminal device Information; a processor for determining a first scene grouping according to the location information of the second terminal device and the location information of the first terminal device, and adding the identifier of the second terminal device to the first scene grouping.
  • an apparatus including: a processing module, configured to determine a trigger condition; and a communication module, configured to send a state synchronization message to a first terminal device, where the state synchronization message includes location information of the second terminal device.
  • a device including: a memory, used to store program instructions; a processor, used to determine trigger conditions; a communication interface, used to send a state synchronization message to a first terminal device, the state synchronization message includes a second The identification of the terminal device.
  • a device including: a communication module for receiving vehicle messages sent by the collection device; a processing module for determining that the first terminal device and the second terminal device are physically adjacent vehicles based on the vehicle message The communication module is also used to send a second trigger message to the V2X server of the Internet of Vehicles, the second trigger message including the identity of the first terminal device and the identity of the second terminal device.
  • a device including: a memory, used to store program instructions; a communication interface, used to receive vehicle messages sent by the collection device; a processor, used to determine the first terminal device and the second terminal according to the vehicle message
  • the device is a physically adjacent vehicle.
  • the communication interface is also used to send a second trigger message to the V2X server of the Internet of Vehicles.
  • the second trigger message includes the identity of the first terminal device and the identity of the second terminal device.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the method of any one of the first to third aspects.
  • a chip system in an eleventh aspect, includes a processor and a memory, and is used to implement a possible method in any one of the first aspect to the third aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a computer program product including instructions, which when run on a computer, cause the computer to execute the possible method of any one of the first aspect to the third aspect.
  • a system including the first terminal device and the second terminal device described in any one of the foregoing aspects.
  • the system may also include at least one of a V2X server and an edge server.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of business scenario grouping provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the relative relationship between the first terminal device and the second terminal device according to an embodiment of the application
  • FIG. 6 is a schematic diagram of the relative relationship between the first terminal device and the second terminal device according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of the relative relationship between the first terminal device and the second terminal device according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of business scenario grouping provided by an embodiment of the application.
  • FIG. 9 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another structure of an apparatus provided by an embodiment of the application.
  • one of the network architectures applicable to this embodiment of the application includes: a first vehicle 101, a second vehicle 102, a road side unit (RSU) 103, a non-motor vehicle/pedestrian 104, and an edge One or more of the server 105, the vehicle to everything (V2X) server 106, or the network device 107.
  • the edge server 105 may also be referred to as a multi-access edge computing (multi-access edge computing, MEC) server.
  • the first vehicle 101 and the second vehicle 102 can be connected by a sidelink (SL), and the communication between the first vehicle 101 and the second vehicle 102 can be called vehicle to vehicle (vehicle to vehicle, V2V) communication.
  • the connection between the first vehicle 101 and the second vehicle 102 may be referred to as a V2V connection, and V2V represents a connection between different vehicles.
  • the first vehicle 101 and RSU103 can be connected through SL, the communication between the first vehicle 101 and RSU103 can be called vehicle to infrastructure (V2I) communication, the connection between the first vehicle 101 and RSU103, It can be called a V2I connection.
  • V2I represents the connection of a vehicle to a road infrastructure, for example, a vehicle to a traffic light.
  • the first vehicle 101 and the non-motorized vehicle/pedestrian 104 can be connected by SL.
  • the communication between the first vehicle 101 and the non-motorized vehicle/pedestrian 104 can be called vehicle to pedestrian (V2P) communication.
  • the connection between the vehicle 101 and the non-motorized vehicle/pedestrian 104 is called a V2P connection, and V2P can represent the connection of the vehicle to the pedestrian or non-motorized vehicle.
  • the first vehicle 101 is connected to the V2X server 106 through the network device 107.
  • the first vehicle 101 and the network device 107 can be connected through a Uu air interface, and the network device 107 and the V2X server 106 can be connected through a wired or wireless manner.
  • the wired manner may be an ethernet network or a fiber optic network, etc., and the wireless manner It can be Uu air interface, etc., without limitation.
  • the communication between the first vehicle 101 and the network device 107 can be referred to as vehicle to network (V2N) communication, and the connection between the first vehicle 101 and the network device 107 can be referred to as a V2N connection, and V2N can represent a vehicle Connection to the network.
  • V2N vehicle to network
  • the second vehicle 102 and the V2X server 106 may be connected through a network device 107.
  • the V2X server 106 can be connected to the RSU 103 and the edge server 105 in a wired or wireless manner, and the edge server 106 is used to manage and control the RSU 103.
  • FIG. 1 is only an exemplary illustration, and is not intended to limit the application.
  • RSU can be replaced with road infrastructure.
  • other numbers of vehicles, non-motorized vehicles/pedestrians, RSUs, etc. may also be included.
  • the V2X server can be directly connected to the first vehicle 101 and the second vehicle 102 through the Uu air interface, etc., which is not limited.
  • the second network architecture applicable to the embodiment of this application includes: V2X server 201, network equipment 202, road infrastructure 203, first vehicle 204, second vehicle 205, third vehicle 206, non-machine One or more of the motor vehicle/pedestrian 207 or the roadside camera 208.
  • the V2X server 201 can communicate with the network device 202, the roadside camera 208, and the RSU 203 through a wired or wireless manner, respectively.
  • Any two vehicles between the first vehicle 204, the second vehicle 205, and the third vehicle 206 may communicate through SL, and the communication method between the two vehicles may be referred to as V2V.
  • the first vehicle 204 and the network device 202 can communicate through the Uu air interface, and the communication method between the two can be called V2N.
  • the first vehicle 204 and the non-motor vehicle/pedestrian 207 can communicate with each other through SL, and the communication method between the two can be called V2P.
  • the roadside camera 208 can collect driving images of the first vehicle 204, the second vehicle 205, and the third vehicle 206, and upload the driving images of the aforementioned vehicles to the V2X server 201.
  • the second vehicle 205 can communicate with the RSU 203 through the SL, and the communication method between the two can be referred to as V2I.
  • FIG 2 is only an exemplary illustration, and is not intended to limit the application.
  • RSU203 can be replaced with roadside infrastructure.
  • other numbers of vehicles, RSUs, pedestrians/non-motorized vehicles, etc. may also be included, which are not limited.
  • SL is a short-distance communication method, and the general coverage distance is within 1000 meters, which can realize communication between vehicles, vehicles and RSUs, vehicles and pedestrians/non-motorized vehicles, etc. .
  • the Uu air interface is the communication interface between the vehicle and the network equipment or other entities, which can realize the communication between the vehicle and the network equipment.
  • the vehicle can communicate with the core network device through the access network device, the vehicle and the access network device can be connected through the Uu air interface, and the access network device and the core network device can be connected in a wired manner.
  • the core network equipment can communicate with any vehicle or roadside infrastructure, realizing a vehicle to network to everything (V2N2X) scenario.
  • V2N2X vehicle to network to everything
  • the first terminal device may be the first vehicle 101 in FIG. 1, and the second terminal device may be the first vehicle 101 in FIG. Or, the first terminal device and the second terminal device in the method may be any two of the first vehicle 204, the second vehicle 205, and the third vehicle 206 in FIG. 2 above.
  • the principle of the method is: the first terminal device determines the business scenarios (for example, anti-collision, merging, left-turn blind zone, or right-turn blindly, etc. business scenarios) according to the location information of the first terminal device and the second terminal device. ), and add the identifier of the second terminal device to the corresponding business scenario group. Therefore, when a dangerous situation is triggered, a targeted message is sent in a timely manner, so that relevant vehicles can respond in time to prevent traffic accidents.
  • the business scenarios for example, anti-collision, merging, left-turn blind zone, or right-turn blindly, etc. business scenarios
  • a terminal device can be referred to as a terminal for short. It is a device with wireless transceiver function.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed on In the air (for example, airplanes, balloons, satellites, etc.).
  • the terminal device may be a wireless terminal device in unmanned driving (self-driving), a wireless terminal device in transportation safety (transportation safety), or a wireless terminal device in a smart city (smart city), etc.
  • the terminal device may be a motor vehicle, a non-motor vehicle, a roadside infrastructure, a roadside unit (RSU), a roadside camera, or a roadside traffic light, etc.
  • the terminal device can also be a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, the terminal device in the 5th generation (5G) network in the future or the future Terminal equipment in the evolved public land mobile network (PLMN).
  • 5G 5th generation
  • PLMN evolved public land mobile network
  • Terminal equipment can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile. The embodiment of the present application does not limit this.
  • the device used to implement the function of the terminal may be various terminal devices as listed above; it may also be a device capable of supporting the terminal to implement the function, such as a chip system or a functional unit, which may be installed or integrated In the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal, and the terminal is a vehicle as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network device may be an access network device, and the access network device may also be referred to as a radio access network (radio access network, RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, for example, but is not limited to: next-generation base stations (generation nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • generation nodeB, gNB next-generation base stations
  • eNB evolved node B
  • RNC radio network controller
  • node B node B, NB
  • BSC base station controller
  • BTS base transceiver station
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports long term evolution (LTE), or can communicate with an access network device that supports 5G. , It can also be dual-connected with LTE-supporting access network equipment and 5G-supporting access network equipment.
  • LTE long term evolution
  • 5G 5G-supporting access network equipment
  • the embodiments of the present application are not limited.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is the base station as an example to describe the technical solutions provided in the embodiments of the present application.
  • the PC5 interface is used for communication between the terminal device and the terminal device, and the PC5 interface can also be referred to as PC5 for short.
  • the link for transmitting information between the terminal device and the terminal device can be called a sidelink (SL), and the sidelink can include a physical sidelink shared channel (PSSCH) and a physical sidelink shared channel (PSSCH).
  • the sidelink control channel (physical sidelink control channel, PSCCH).
  • PSSCH physical sidelink control channel
  • PSCCH physical sidelink control channel
  • the PSSCH is used to carry sidelink data (SL data)
  • the PSCCH is used to carry sidelink control information (SCI).
  • SCI may also be called sidelink scheduling assistance (SL).
  • SA sidelink scheduling assistance
  • SL SA is information related to data scheduling, such as resource allocation and/or modulation and coding scheme (MCS) information used to carry PSSCH.
  • MCS modulation and coding scheme
  • the sidelink communication may further include: a physical sidelink uplink control channel (PSUCCH).
  • PSDCH physical sidelink uplink control channel
  • the physical side link uplink control channel may also be referred to as a side link uplink control channel for short.
  • the physical sidelink uplink control channel may also be referred to as a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the physical side link feedback channel may also be referred to as a side link feedback channel for short.
  • the sidelink uplink control channel or the sidelink feedback channel can be used to transmit sidelink feedback control information (SFCI).
  • SFCI sidelink feedback control information
  • the sidelink feedback control information may also be referred to as sidelink feedback information for short, and may also be referred to as sidelink uplink control information (SL UCI).
  • the side link feedback control information may include at least one of channel state information (channel state information, CSI), hybrid automatic repeat request (HARQ) information, and the like.
  • the HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK).
  • V2X vehicle to X
  • X can refer to any object.
  • vehicle-to-vehicle communication can include vehicle to vehicle (V2V), vehicle to roadside infrastructure (V2I), vehicle to pedestrian (V2P), and vehicle to network (V2P). to network, V2N), etc.
  • V2V vehicle to vehicle
  • V2I vehicle to roadside infrastructure
  • V2P vehicle to pedestrian
  • V2P vehicle to network
  • the Internet of Vehicles may also be referred to as a cooperative-intelligent transport system (C-ITS), etc.
  • C-ITS cooperative-intelligent transport system
  • the Uu air interface is used for communication between the terminal equipment and the access network equipment, and the Uu air interface can also be referred to as Uu for short.
  • the channel through which the access network device sends information to the terminal device is called a downlink (DL) channel.
  • the downlink channel may include a physical downlink shared channel (PDSCH) and a physical downlink control channel (physical downlink shared channel, PDSCH). At least one channel in downlink control channel, PDCCH).
  • the PDCCH is used to carry downlink control information (DCI), and the PDSCH is used to carry downlink data (data).
  • the channel through which the terminal device sends information to the access network device is called the uplink (UL) channel
  • the uplink channel can include the physical uplink shared channel (PUSCH) and the physical uplink control channel (PUCCH)
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • At least one channel in. PUSCH is used to carry uplink data.
  • the uplink data may also be referred to as uplink data information.
  • the PUCCH is used to carry uplink control information (UCI) fed back by the terminal device.
  • UCI may include channel state information (CSI), ACK and/or NACK, etc. fed back by the terminal device.
  • Uu air interface transmission may include uplink transmission and downlink transmission.
  • Uplink transmission refers to the terminal device sending information to the access network device
  • downlink transmission refers to the access network device sending information to the terminal device.
  • the information transmitted in the uplink may be uplink information or uplink signals.
  • the uplink information or uplink signal may include at least one of PUSCH, PUCCH, and sounding reference signal (sounding reference signal, SRS).
  • the information transmitted in the downlink can be downlink information or downlink signals.
  • the downlink information or downlink signal may include at least one of PDSCH, PDCCH, channel state information reference signal (CSI-RS), and phase tracking reference signal (PTRS).
  • CSI-RS channel state information reference signal
  • PTRS phase tracking reference signal
  • first and second are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor as indicating or implying order.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c It can be single or multiple.
  • a flow of a communication method is provided, and the execution subject of the method may be a terminal device, or may be a chip in the terminal device.
  • the first terminal device in this method may be the first vehicle 101 in FIG. 1, and the second terminal device may be the second vehicle 102 in FIG. 1, or the first terminal device and the second terminal device in this method may be These are any two vehicles among the first vehicle 204, the second vehicle 205, and the third vehicle 206 in FIG. 2.
  • the method includes:
  • the second terminal device sends a state synchronization message, where the state synchronization signal at least includes location information of the second terminal device.
  • the first terminal device receives the status synchronization message.
  • the state synchronization message may also be referred to as a cooperative awareness message (CAM).
  • CAM cooperative awareness message
  • the state synchronization message can be transmitted between the first terminal device and the second terminal device in different ways, such as:
  • the state synchronization message can be transmitted between the first terminal device and the second terminal device through the PC5 interface.
  • the first terminal device sends a state synchronization message through the PC5 interface
  • the second terminal device receives a state synchronization message through the PC5 interface.
  • the first terminal device may send the state synchronization message to the edge server through the Uu air interface. Then the edge server forwards the state synchronization message to the second terminal device.
  • the first terminal device may send the state synchronization message to the V2X server through the Uu air interface, and then the V2X server forwards the state synchronization message to the second terminal device, etc.
  • Different transmission modes, different operator networks used, and different levels of congestion in the surrounding area will cause differences in the delay and reliability of the first terminal device sending the status synchronization message to the second terminal device.
  • the first terminal device determines the first scene group according to the location information of the second terminal device and the location information of the first terminal device.
  • a navigation map is installed inside the first terminal device.
  • the first terminal device determines the location coordinates of the second terminal device on the map according to the location information of the second terminal device. According to the location information of the first terminal device, it is also on the map.
  • the position coordinates of the first terminal device are determined, and the first scene grouping is determined according to the position coordinates of the first terminal device and the position coordinates of the second terminal device.
  • the first terminal device can maintain a scene grouping list, including automatic emergency braking (AEB) scene grouping, lane merge scene grouping, and left turn scene grouping And so on, the left-turn scene grouping can also be called the blind zone left-turn grouping.
  • AEB automatic emergency braking
  • the first terminal device determines that the relationship between the two is adjacent devices in the same lane according to the location coordinates of the first terminal device and the location coordinates of the second terminal device, it can determine that the first scene grouping is AEB scene grouping. As shown in Figure 6, if the first terminal device determines that the relationship between the two is the adjacent device on the adjacent lane according to the location coordinates of the first terminal device and the location coordinates of the second terminal device, then the first scene grouping can be determined Group the merge scenes.
  • the first terminal device determines that the relationship between the two is the adjacent vehicle at the intersection according to the location coordinates of the first terminal device and the location coordinates of the second terminal device, it can determine that the first scene is grouped as left Transfer scene grouping, etc.
  • the first terminal device adds the identifier of the second terminal device to the first scene group.
  • the first terminal device may maintain a scene grouping list inside, and the scene grouping list includes multiple scene groups.
  • the first scene grouping described in the process in FIG. 3 may be any one of the foregoing multiple scene groupings.
  • the identification of the corresponding terminal device is added to each scene group.
  • Each scene group corresponds to one or more actions of the first terminal device. For example, when the first terminal device performs a certain action, it sends an early warning message to the vehicles grouped in the scene corresponding to the action.
  • the scene groups maintained internally by the first terminal device include the AEB scene group, the merge scene group, and the left turn scene group.
  • the action corresponding to the AEB scene grouping is braking
  • the action corresponding to the merging scene grouping is merging driving
  • the action corresponding to the left-turning scene grouping is turning left, etc.
  • the first terminal device can send a braking warning message to the terminal devices in the AEB scene group, and the terminal device in the AEB scene group can adjust its actions after receiving the warning message. For example, driving at a reduced speed, etc., to avoid collisions with the first terminal device and reduce the occurrence of traffic accidents.
  • the first terminal device executes the merging action, it can send a warning message of merging to the terminal devices in the merging scene group.
  • the first terminal device When the first terminal device performs a left-turning action, it may send a left-turning warning message, etc., to the terminal devices in the left-turning scene group.
  • the multiple scene groups maintained by the first terminal device include a second scene group, the second scene group is the same as or different from the first scene group in S303, and the second scene group corresponds to the first action, or, It can be said that there is a correspondence between the second scene grouping and the first action.
  • the first terminal device may determine the second scene group, and send an alert message to the terminal device corresponding to the second scene group.
  • the first terminal device may maintain a scene grouping list internally.
  • the scene grouping list includes multiple scene groups.
  • the first scene grouping in the process shown in FIG. 3 is any of the above multiple scene groupings.
  • Each scene group can also include one or more subgroups.
  • the first scene grouping includes multiple subgroups as an example for description.
  • a specific implementation of the above S303 may be: the first terminal device determines the first information between the first terminal device and the second terminal device, and the first information includes the relative distance between the first terminal device and the second terminal device, and the relative distance between the first terminal device and the second terminal device. At least one of speed or relative angle. The first terminal device determines the first subgroup according to the relative information.
  • the first terminal device adds the identifier of the second terminal device to the first subgroup. Further, after the first terminal device adds the identifier of the second terminal device to the first subgroup, the first terminal device may also determine the condition of the first subgroup. For example, the conditions of the first subgroup may include at least one of communication delay, communication reliability, or terminal control capability. When the second terminal device does not meet the conditions of the first subgroup, an alarm message is sent to the second terminal device, where the alarm message is used to adjust the driving state of the second terminal device.
  • the state synchronization message in S301 may also include the communication delay between the first terminal device and the second terminal device, the communication reliability between the first terminal device and the second terminal device, or the second terminal device At least one of the control capabilities. If there is no additional description, the terminal control capability in the embodiment of the present application may indicate whether the terminal device has the capability of automatic control, for example, the ability to take over braking, steering wheel, or car lights.
  • the scene grouping list maintained internally by the first terminal device includes AEB scene grouping, merging scene grouping, and left turn scene grouping.
  • AEB scene grouping For each scene grouping, multiple subgroups can also be included.
  • grouping of AEB scenes may include high-risk sub-groups, secondary-risk sub-groups, and alarm sub-groups.
  • the first terminal device may add the identifier of the second terminal device to the high-risk sub-group, the secondary-risk sub-group, or the alarm sub-group according to the relative distance between the first terminal device and the second terminal device. For example, when the relative distance between the first terminal device and the second terminal device is less than 10 m, the identifier of the second terminal device may be added to the high-risk subgroup.
  • the identifier of the second terminal device may be added to the secondary critical subgroup.
  • the identifier of the second terminal device may be added to the alarm subgroup.
  • the first terminal device may determine the relative distance between the first terminal device and the location information of the second terminal device according to the location information of the first terminal device.
  • the first terminal device When the first terminal device adds the identification of the second vehicle to the high-risk subgroup or the secondary-risk subgroup, it can also determine the conditions of the high-risk or secondary-risk subgroup.
  • the conditions for the high-risk subgroup may be: the communication delay is less than 10 ms, the communication reliability is more than 99%, and the terminal device has the ability to take over control.
  • the conditions for the secondary critical subgroup can be: the communication delay is less than 100ms, and the communication reliability is above 90%.
  • the first terminal device may send an alarm message to the second terminal device. After receiving the warning message, the second terminal device can actively adjust its own driving state, for example, slowing down to increase the distance between the vehicle and the first terminal device.
  • the second terminal device when the distance between the first terminal device and the second terminal device is relatively close, the second terminal device can be added to the high-risk or secondary-risk subgroup. However, when the second terminal device does not meet the conditions of the high-risk/second-risk subgroup, it indicates that the current relative distance is relatively dangerous. Therefore, the second terminal device may be notified to adjust the driving state to increase the relative distance between the two. For example, if the relative distance between the first terminal device and the second terminal device is 10m, the second terminal device can be added to the high-risk subgroup according to the relative distance between the two, but the second terminal device cannot meet the requirements of high reliability and low latency. Communication indicates that such a short distance is very dangerous. Therefore, the second terminal device can be notified to adjust the driving state, such as slowing down, to increase the distance between the two vehicles and avoid traffic accidents.
  • each scene group includes multiple subgroups, and the first terminal device can send different warning messages to different subgroups in the scene group.
  • the description in the above example is still used, when the first terminal device executes the first action, the first terminal device determines the second scene group corresponding to the first action.
  • the second scenario grouping includes multiple subgroups, and the first terminal device can send different warning messages to different subgroups.
  • the second scenario grouping includes high-risk sub-groups, secondary-risk sub-groups, and alarm sub-groups.
  • the first terminal device can send a forced alert message to the terminal devices corresponding to the high-risk sub-group, and the terminal devices in the high-risk sub-group are receiving After the warning message, you can force yourself, such as force yourself to slow down/stop, etc.
  • the first terminal device can send a warning message to the terminal device corresponding to the sub-dangerous subgroup. After receiving the warning message, the terminal device of the sub-dangerous subgroup can pop up an alarm message on the man-machine interface or report the warning message through voice broadcast. To remind the driver to wait.
  • the first terminal device can send a prompt warning message to the terminal device corresponding to the alarm subgroup.
  • the execution process is the same as the execution process of the terminal device of the second critical subgroup. Similar. The difference is that the warning level of the warning message of the secondary critical subgroup is higher than the warning level of the warning message of the warning subgroup.
  • the first terminal device may maintain a scene grouping list, and the scene grouping list includes multiple scene groups. Using the process shown in FIG. 3 above, the first terminal device can add its surrounding vehicles to different scene groups, and send messages in a timely and targeted manner when a dangerous situation is triggered to prevent accidents.
  • the scene grouping in FIG. 3 is described as an example.
  • the car A in this example may correspond to the first terminal device in FIG. 3, and the car B may correspond to the second terminal in FIG. 3 above. equipment.
  • Car A maintains a grouping list.
  • the grouping list includes multiple scene groups.
  • AEB scene grouping is used to indicate vehicles that may have a rear-end collision.
  • the merging scene grouping is used to indicate that the two vehicles may collide when merging.
  • the left turn scene grouping is used to indicate the vehicles that may be scratched when the vehicle turns to the left.
  • car B is included in a certain scene group of car A, it means that car A's behavior will affect car B.
  • car A needs to trigger an early warning message to be sent to car B, instructing car B to take corresponding evasive or preventive actions.
  • including car B in the AEB scene grouping of car A indicates that when car A needs to brake due to an emergency, it will affect car B driving behind car A.
  • car A needs to send a warning message to car B.
  • the warning message includes the indication information that car A is braking urgently, and after receiving the indication information, car B can be used as a risk aversion action to prevent accidents.
  • car B can brake along with car A, or change lanes to another lane if conditions permit.
  • multiple sub-groups can be divided according to the delay and reliability of sending messages.
  • multiple sub-groups can be divided according to vehicle distance, communication delay, and reliability, as follows:
  • High-risk subgroup Within 10m, the communication delay is required to be less than 10ms, and the reliability is above 99%, and the vehicle can be added to take over the braking.
  • Secondary critical subgroup 10m to 50m, the communication delay is required to be less than 100ms, and the reliability is above 90%.
  • car B When the vehicle meets the above conditions, it can join the subgroup. For example, car B is driving near car A. If car B can join the high-risk subgroup, it means that car B can keep 10m away from car A. If car B cannot join the high-risk subgroup, it can only join the second-risk subgroup, but the distance between it and car A reaches the level of the high-risk subgroup, that is, less than 10m. At this time, car A can send an alarm message to car B to Notify car B to increase the distance between car A and so on.
  • a flow of a communication method is provided.
  • the flow shown in FIG. 9 may be a specific implementation of the flow shown in FIG. 3 above.
  • the execution subjects of the process in FIG. 9 are the first vehicle and the second vehicle.
  • the first vehicle may be the first terminal device in FIG. 3 above, and the second vehicle may be the second terminal device in FIG. 3 above.
  • the first vehicle in the process of FIG. 9 is the first vehicle 101 in FIG. 1, and the second vehicle is the second vehicle 102 in FIG. 1.
  • the first vehicle in the process in FIG. 9 is any two of the first vehicle 204, the second vehicle 205, and the third vehicle 206 in FIG. 2, and the process includes:
  • S901 The second vehicle detects that the relative state of the second vehicle and the first vehicle has changed.
  • the second vehicle when the second vehicle detects a change in the positional relationship with the surrounding vehicles, it can trigger itself to be added to the grouping list of the first vehicle, and the surrounding vehicles of the second vehicle include the first vehicle. While the second vehicle is driving, it finds that its position and the positional relationship of other surrounding vehicles have changed, and this change may constitute a certain specific scene relationship. For example, when the second vehicle is in the same lane in front of the first vehicle, an AEB relationship is formed. When the second vehicle is within the three front and rear parking spaces of the side lane, a merge relationship is formed.
  • the method for the second vehicle to detect the state change including but not limited to:
  • the second vehicle may detect the first vehicle through a camera or radar.
  • the first vehicle periodically sends out a CAM message, and the CAM message includes the location of the first vehicle and the vehicle identifier.
  • the second vehicle determines the relative relationship between the two vehicles by comparing its position with the position of the first vehicle on the high-precision map.
  • the edge server is responsible for managing multiple roadside cameras, and the roadside cameras are placed on the side of the road to continuously monitor road surface information.
  • the edge server may send a notification message to the second vehicle.
  • the second vehicle can learn that the related state of itself and the first vehicle has changed.
  • the second vehicle determines the reachability mode between the two vehicles, and the time delay and reliability corresponding to the reachability mode.
  • the vehicles implemented in this application may include five attributes such as vehicle network identification, vehicle physical identification, reachability mode, grouping list, and capability profile.
  • vehicle network identifier refers to the vehicle identifier carried when the vehicles send messages to each other, and the identifier can uniquely identify a vehicle.
  • the physical identification of a vehicle can be a license plate or other features that can mark the vehicle, such as color, outline, location, and electronic identification.
  • the reachable mode represents the network addressing capability of the vehicle. Because the vehicle may have multiple network connections, there are multiple ways to reach the vehicle. For each reachability method, the quality of service (Qos) of the reachability method may also be included.
  • the Qos of the reachable mode indicates the QoS of the message sent when the vehicle sends a message in this reachable mode.
  • the capability profile indicates whether the vehicle has autonomous control functions, such as taking over braking, steering wheel, and car lights.
  • the vehicle After the vehicle leaves the factory, it can be registered in the V2X server to register vehicle identification, license plate number, vehicle characteristics, accessibility and other information to the V2X server. Therefore, the second vehicle can use the V2X server to determine the reachability of the second vehicle Way, specific:
  • the second vehicle recognizes the license plate number or other features of the first vehicle (such as body contour, body color, etc.) through the camera.
  • the second vehicle may send a request to the V2X server.
  • the request includes the license plate number or other characteristics of the first vehicle, and the identification and location of the second vehicle.
  • the V2X server can query the accessibility of the first vehicle based on the license plate number or other characteristics of the first vehicle in combination with the location of the second vehicle.
  • the second vehicle sends a query request to the V2X server according to the identity of the first vehicle in the received CAM message sent by the first vehicle, and submits the vehicle identity of the first vehicle.
  • the V2X server returns the reachability mode of the first vehicle.
  • the edge server After the edge server detects the change in the relative relationship between the two vehicles through the roadside camera, it sends the license plate number or vehicle characteristics to the V2X server, and the V2X server returns the reachability mode of the first vehicle. The edge server sends the reachability mode of the first vehicle to the second vehicle.
  • the Qos of the reachability mode of the first vehicle and the second vehicle can be obtained through measurement, and is continuously refreshed as the vehicle moves, until the binding relationship between the two vehicles is lifted.
  • the second vehicle sends a message to the first vehicle in accordance with the reachable mode of the first vehicle. After receiving the message, the first vehicle returns a response. In the request and response, the reliability and delay of the two are constantly calculated.
  • the second vehicle sends a message establishment request to the first vehicle.
  • the message creation request includes the location of the second vehicle, the network identification of the second vehicle, the capability profile of the second vehicle, the relative position, relative speed, and relative direction of the second vehicle and the first vehicle.
  • the second vehicle communicates with the first vehicle At least one of the delay measurement value or the reliability measurement value.
  • S904 The first vehicle determines the scene group and level subgroup to which the relative relationship between the two belongs according to the message establishment request message sent by the second vehicle.
  • S905 The first vehicle determines whether the second vehicle belongs to the danger level group according to the time delay reliability measurement value and the capability profile of the second vehicle.
  • execute S906 return a confirmation message. If it is confirmed that it does not belong to the danger level subgroup, execute S907: return an alarm message.
  • different vehicles may establish a binding relationship according to their driving position relationship.
  • the warning information of the second vehicle can be automatically triggered, so that the second vehicle can make a quick response according to the warning message and improve the safety of traffic driving.
  • the second terminal device may perform the step S301 in FIG. 3, that is, the step of sending a state synchronization message to the first terminal device under different conditions.
  • the first vehicle may periodically broadcast a cooperative awareness message (CAM) to the outside, and the CAM message includes at least the location information of the first vehicle.
  • the CAM message may also include status information of the second vehicle, and the status information of the second vehicle includes information such as the speed, acceleration, brakes, or lights of the second vehicle.
  • the second vehicle can obtain the location information of the first vehicle carried in the CAM message, and determine the relative relationship between the first vehicle and the second vehicle based on the location information of the first vehicle. If the relative relationship between the two is a physically adjacent terminal device, the step of S301 in FIG. 3 is executed, that is, the step of sending a state synchronization message to the first terminal device.
  • the second terminal device may pass through a detection device, the location information of the first terminal device, and the detection device may be a vehicle-mounted camera, or a vehicle-mounted radar.
  • the second terminal device determines that the two are physically adjacent terminal devices according to the location information of the first terminal device and the location information of the second terminal device, it executes the action in S301 in FIG. 3 above.
  • the collection device can collect the image information of the terminal device and report the image information of the terminal device to the edge server.
  • the collection device can be road infrastructure such as roadside cameras or RSU.
  • the edge server may send a trigger message to the V2X server, where the trigger message includes identification information of the physically adjacent terminal devices.
  • the trigger message may include information such as the identity of the first terminal device and the identity of the second terminal device.
  • the V2X server may send a second trigger message, etc. to the second terminal device, so as to trigger the second terminal device to perform the step of S301.
  • the second trigger message may also include a communication reachable manner of the second terminal device.
  • a flow of a communication method is provided.
  • the flow may be a specific implementation of the above-mentioned "first example + the flow shown in FIG. 3", and the first vehicle in the flow may correspond to the above-mentioned diagram. 3 and the first terminal device in the first example, the second vehicle may correspond to the second terminal device in the above-mentioned Fig. 3 and the first example, and the process includes:
  • S1001 The first vehicle sends a CAM message to the second vehicle.
  • the second vehicle receives the CAM message.
  • the CAM message includes the network identification, position, speed, acceleration and other information of the first vehicle.
  • the second vehicle can determine the relationship between the first vehicle and the second vehicle according to the CAM message.
  • the second vehicle can also assist the high-precision map to determine the relationship between the two. If the second vehicle determines that the relationship with the first vehicle is a physically adjacent vehicle, the following S1002 is executed.
  • neighboring vehicles are vehicles that have a direct relationship. In the embodiment of the present application, the focus is on the processing of neighboring vehicles.
  • S1002 Determine the reachability mode, reliability, and time delay between the first vehicle and the second vehicle, and establish a communication relationship through the V2X server.
  • the second vehicle sends a query request to the V2X server, and the query request includes the network identification of the first vehicle.
  • the V2X server queries the reachability mode of the first vehicle according to the network identification of the first vehicle.
  • V2X can determine the shared reachability mode between the first vehicle and the second vehicle.
  • the second vehicle supports PC5 interface communication
  • the first vehicle supports PC5 interface and Uu air interface communication.
  • the V2X server can use the PC5 interface communication mode as the reachable mode of the first vehicle, and send the reachable mode of the first vehicle to the second vehicle.
  • the V2X server may send the layer 2 address used by the first vehicle for unicast communication to the second vehicle.
  • the message may also include other information used to assist authentication and access control.
  • the second vehicle may send a handshake message to the second vehicle.
  • the handshake message is sent using the reachability mode returned by the V2X server, such as a layer 2 address used for unicast.
  • the handshake message may include information such as a timestamp.
  • the first vehicle sends a response to the second vehicle.
  • the response message includes the time when the first vehicle received the handshake message and the time when the response was sent.
  • the second vehicle calculates the communication delay between the first vehicle and the second vehicle. If the handshake message sent by the second vehicle does not get a response, the second vehicle may try to resend the handshake message, and update the communication reliability between the two according to the number of retries.
  • the second vehicle After the handshake link is over, the second vehicle sends a status synchronization message to the first vehicle.
  • the status synchronization message includes the absolute position of the second vehicle, the relative position between the second vehicle and the first vehicle, relative acceleration, relative angle, Information such as the network identification, reachability mode, communication delay measurement value, communication reliability measurement value, and capability profile of the second vehicle of the second vehicle.
  • the absolute position, relative position, relative acceleration, relative angle, etc. of the second vehicle are calculated by the second vehicle according to the CAM message.
  • the state synchronization message includes the reachability mode of the second vehicle, so that the first vehicle can send a message to itself through the reachability mode.
  • the first vehicle After receiving the status synchronization message sent by the second vehicle, the first vehicle can determine the relationship between the first vehicle and the second vehicle according to the information carried in the status synchronization message, and add the identity of the second vehicle to the corresponding scene In the corresponding subgroup in the group. For example, in the AEB scenario, the first vehicle determines that the second vehicle and the first vehicle belong to the same lane, and the distance is only 10m. The communication delay between the two vehicles is 50ms. The second vehicle does not support takeover braking. The first vehicle assigns the second vehicle to the AEB scene group based on the state that the second vehicle and it belong to the same lane and the distance between the front and rear is only 10m. High-risk subgroup.
  • S1005 The first vehicle determines the matching relationship between the time delay reliability condition of the second vehicle joining the group and the time delay reliability of the second vehicle. If it does not match, perform the following S1006.
  • the safe distance between the two vehicles should be within 10m to 50m.
  • S1006 The first vehicle sends an alarm message to the second vehicle, which includes a time delay mismatch warning.
  • S1007 The second vehicle adjusts the driving state according to the warning message.
  • the second vehicle after receiving the warning message sent by the first vehicle, the second vehicle sends a warning to the driver and reminds the driver that the safe distance between vehicles is 10 to 50 meters. If it is a self-driving vehicle, after receiving the warning message, control the vehicle to slow down to increase the distance from the vehicle ahead.
  • the second terminal device may continuously update the time delay and reliability according to the position change with the first vehicle. The above steps from S1003 to S1007 are executed in a loop until the relative relationship between the second vehicle and the first vehicle changes, for example, the second vehicle drives out of the surrounding area of the first vehicle, or the second vehicle and the first vehicle are no longer physically physical Adjacent and so on.
  • a trigger event occurs in the first vehicle, for example, the first vehicle brakes suddenly, changes lanes, or enters an intersection, etc.
  • the first vehicle sends an early warning message to the second vehicle.
  • the warning message includes the current state of the first vehicle, such as sudden braking, lane change, and so on.
  • the warning information sent may be different.
  • the warning information can be a mandatory action.
  • the warning message can be an alarm.
  • the warning message can be a reminder and so on.
  • the second vehicle After receiving the warning message, the second vehicle responds to the warning message. For example, forced action, or a warning message pops up on the man-machine interface to remind the driver. After the current step is over, the second vehicle confirms whether the current state is maintained between the second vehicle and the first vehicle. If yes, proceed to step 203.
  • the warning message For example, forced action, or a warning message pops up on the man-machine interface to remind the driver.
  • the second vehicle After the current step is over, the second vehicle confirms whether the current state is maintained between the second vehicle and the first vehicle. If yes, proceed to step 203.
  • the steps from S1003 to S1007 are performed cyclically, and the refresh is repeated at a frequency of at most 10 Hz or 20 Hz according to the speed of the vehicle.
  • Each message reflects the current vehicle, that is, the latest state of the second vehicle.
  • the first vehicle in this implementation can correspond to the first terminal device in Figure 3 and the second example
  • the second vehicle can correspond to
  • the implementation is specifically: when the second vehicle detects the first vehicle through the camera, calculate the distance between the first vehicle and the second vehicle, and determine both Whether it is in the same lane or adjacent lanes. At the same time, the license plate number of the first vehicle is recognized through the camera.
  • the second vehicle sends a query request to the V2X server, and the query request includes the license plate number of the first vehicle. Further, when the vehicle number of the first vehicle cannot be identified, the second vehicle can directly send the picture of the first vehicle to the V2X server.
  • the V2X server matches in the database according to the license plate number of the first vehicle or the photo of the first vehicle to determine the reachability mode of the first vehicle. Subsequently, the first terminal device and the second terminal device can obtain each other's reachability mode according to the method shown in FIG. 10, and can perform mutual relationship matching through the location information of both parties.
  • the relationship between the two vehicles can also be determined according to the camera of the second vehicle.
  • a specific implementation is provided for the above "third example + the process shown in Figure 3".
  • the first vehicle in this implementation can correspond to the first terminal device in Figure 3 and the third example, and the second vehicle can be Corresponding to the second terminal device in the foregoing Fig. 3 and the third example, the specific implementation is:
  • the adjacent relationship may be the front and rear adjacent relationship in the same lane in the AEB scene, or the adjacent lane adjacent relationship in the merged scene.
  • the edge computing server tries to identify the license plate number information based on the photos taken.
  • the edge server sends the relative relationship and license plate numbers of the two vehicles, and if the license plate numbers are not recognized, it sends pictures to the V2X Server.
  • the relative relationship between the two vehicles includes information such as the lane and the relative distance of the two vehicles.
  • the V2X Server matches the current vehicle and the target vehicle through feature recognition, and matches the reachability of the two vehicles. Send the relative relationship and the reachable way of the target vehicle to the current vehicle. The following steps after the current vehicle receives the information are the same as 203-209. Because the vehicle is moving, after the edge server captures the relationship between the two vehicles at this moment, at the next moment, it is possible that the two vehicles have already left the coverage area of the edge server. Therefore, it is more reasonable to let V2X Server complete the follow-up process through the cloud.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first terminal device, the second terminal device, the V2X server, and the edge server.
  • the first terminal device, the second terminal device, the V2X server, and/or the edge server may include a hardware structure and/or software module, which is added with a hardware structure, a software module or a hardware structure.
  • the form of software module realizes the above-mentioned functions. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 11 is a schematic block diagram of an apparatus 1100 provided by an embodiment of the present application, which is used to implement the functions of the first terminal device, the second terminal device, or the edge server in the foregoing method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1100 includes a communication module 1101 and may also include a processing module 1102.
  • the communication module 1101 can communicate with the outside.
  • the processing module 1102 is used for processing.
  • the communication module 1101 may also be called a communication interface, a transceiver module, an input/output interface, and so on.
  • the communication module may include a sending module and a receiving module, which are respectively used to execute the sending or receiving by the first terminal device, the second terminal device, the V2X server or the edge server in the process of Figure 3, Figure 9 or Figure 10 above. step.
  • the apparatus 1100 can implement the steps of the first terminal device in the process shown in FIG. 3 above, and the apparatus 1100 can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication module 1101 is configured to perform transceiving-related operations on the first terminal device side in the above method embodiment.
  • the processing module 1102 is configured to perform processing related operations of the first terminal device in the above embodiment.
  • the communication module 1101 is configured to receive a status synchronization message sent by a second terminal device, and the status synchronization message includes the location information of the second terminal device; the processing module 1102 is configured to The location information and the location information of the first terminal device determine the first scene group; the processing module 1102 is further configured to add the identifier of the second terminal device to the first scene group.
  • the first scene grouping includes multiple subgroups, and when the processing module 1102 adds the identifier of the second terminal device to the first scene grouping, it is specifically used to:
  • the processing module 1102 is further configured to: determine the condition of the first sub-group; when the second terminal device does not meet the condition of the first sub-group, control the communication module 1101 to report to the second The terminal device sends an alarm message, where the alarm message is used to adjust the driving state of the second terminal device.
  • condition of the first subgroup includes at least one of communication delay, communication reliability, or vehicle control capability.
  • the state synchronization message further includes the communication delay between the first terminal device and the second terminal device, and the communication reliability between the first terminal device and the second terminal device, Or, at least one of the control capabilities of the second terminal device.
  • the processing module 1102 is further configured to: when the first terminal device executes the first action, determine a second scene group from among a plurality of scene groups including the first scene group, and the second scene group The scene group is the same as or different from the first scene group; the communication module 1101 is controlled to send an early warning message to the vehicle corresponding to the second scene group.
  • the communication module 1101 sends an alert message to the vehicles corresponding to the second scene grouping, specifically including: to the vehicles corresponding to different subgroups in the second scene grouping To send different warning messages.
  • the processing module 1101 is specifically configured to: according to the location information of the first terminal device , Determine the position coordinates of the first terminal device on a map; determine the position coordinates of the second terminal device on the map according to the position information of the second terminal device; determine the position coordinates of the second terminal device on the map; The location coordinates and the location coordinates of the second terminal device determine the location relationship between the first terminal device and the second terminal device; determine the location relationship between the first terminal device and the second terminal device The first scene grouping.
  • the apparatus 1100 may implement the steps of the second terminal device in the process shown in FIG. 3 above, and the apparatus 1100 may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication module 1101 is configured to perform transceiving-related operations on the second terminal device side in the above method embodiment.
  • the processing module 1102 is configured to perform processing related operations of the second terminal device in the above embodiment.
  • the processing module 1102 is used to determine the trigger condition; the communication module 1101 is used to send a state synchronization message to the first terminal device, where the state synchronization message includes the location information of the second terminal device.
  • the processing module 1102 is specifically configured to: control the communication module 1101 to receive a cooperative sensing message sent by the first terminal device, where the cooperative sensing message includes location information of the first terminal device ; According to the location information of the first terminal device and the location information of the second terminal device, it is determined that the first terminal device and the second terminal device are physically adjacent vehicles.
  • the processing module 1102 is specifically configured to: determine the location information of the first terminal device through the detection device; and determine the location information of the first terminal device according to the location information of the first terminal device and the second terminal device.
  • the location information determines that the first terminal device and the second terminal device are physically adjacent vehicles.
  • the processing module 1102 is specifically configured to: control the communication module 1101 to receive the first trigger message sent by the vehicle networking V2X server.
  • the communication module 1101 is further configured to send a query request to the V2X server, the query request includes the identification of the first terminal device; the communication module 1101 is further configured to receive a query response sent by the V2X server, The query response includes the communication accessible mode of the first terminal device; the processing module 1102 is further configured to control the communication module 1101 to send to the first terminal device according to the communication accessible mode of the first terminal device A handshake message and receiving a handshake response message sent by the first terminal device; the processing module 1101 is further configured to determine the first terminal device and the second terminal device according to the handshake message and the handshake response message The communication delay of, and/or the reliability of the first terminal device and the second terminal device.
  • the state synchronization message further includes the communication delay between the first terminal device and the second terminal device, the reliability between the first terminal device and the second terminal device, or , At least one of the control capabilities of the second terminal device.
  • the communication module 1101 is further configured to receive an alarm message sent by the first terminal device; the processing module 1102 is further configured to adjust the driving state of the second terminal device according to the alarm message.
  • the device 1100 may implement the steps of the edge server above, and the device 1100 may be an edge server, or a chip or circuit configured in the edge server.
  • the communication module 1101 is configured to perform the transceiving-related operations on the edge server side in the above method embodiment.
  • the processing module 1102 is configured to perform processing related operations of the edge server in the above embodiment.
  • the communication module 1101 is used to receive the vehicle message sent by the collection device; the processing module 1102 is used to determine that the first terminal device and the second terminal device are physically adjacent vehicles according to the vehicle message; the communication module 1101, It is also used to send a second trigger message to the vehicle networking V2X server, where the second trigger message includes the identifier of the first terminal device and the identifier of the second terminal device.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • the function of the communication module in the foregoing embodiment may be realized by a transceiver, and the function of the processing module may be realized by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., which are used to implement the functions of the sending module and/or the receiving module, respectively. The following description will be given in conjunction with FIG.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 provided by an embodiment of the present application.
  • the apparatus 1200 shown in FIG. 12 may be a method for implementing a hardware circuit of the apparatus shown in FIG. 11, and the apparatus may be applicable to the foregoing FIGS. 3 and 9 Or in the process shown in FIG. 10, the functions of the first terminal device, the second terminal device, the V2X server, or the edge server in the foregoing method embodiment are performed.
  • FIG. 12 only shows the main components of the device.
  • the apparatus 1200 shown in FIG. 12 includes at least one processor 1201.
  • the device 1200 may further include at least one memory 1202 for storing program instructions and/or data.
  • the memory 1202 is coupled with the processor 1201.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which can be electrical, mechanical, or other forms, and is used for information exchange between devices, units, or modules.
  • the processor 1201 may operate in cooperation with the memory 1202, the processor 1201 may execute program instructions stored in the memory 1202, and at least one of the at least one memory 1202 may be included in the processor 1201.
  • the apparatus 1200 may further include a communication interface 1203 for communicating with other devices through a transmission medium, so that the communication apparatus 1200 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • connection medium between the processor 1201, the memory 1202, and the communication interface 1203 is not limited in the embodiment of the present application.
  • the memory 1202, the processor 1201, and the communication interface 1203 are connected by a communication bus 1204.
  • the bus is represented by a thick line in FIG. 12, and the connection mode between other components is only a schematic illustration. , Not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and so on. For ease of presentation, only a thick line is used in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the apparatus 1200 may be used to implement the steps performed by the first terminal device in the process shown in FIG. 3 above.
  • the apparatus 1200 may be a first terminal device, or a chip or circuit in the first terminal device, and the first terminal device may be a vehicle or the like.
  • the communication interface is used to perform the related operations of receiving and sending on the first terminal device side in the above embodiment, and the processor is used to perform the processing related operations of the first terminal device in the above method embodiment.
  • the communication interface 1203 is configured to receive a status synchronization message sent by a second terminal device, where the status synchronization message includes location information of the second terminal device; the processor 1201 is configured to The location information and the location information of the first terminal device determine a first scene group; the processor 1201 is further configured to add the identifier of the second terminal device to the first scene group.
  • the first scene grouping includes multiple subgroups, and when the processor 1201 adds the identifier of the second terminal device to the first scene grouping, it is specifically configured to:
  • the processor 1201 is further configured to: determine the condition of the first sub-group; when the second terminal device does not meet the condition of the first sub-group, control the communication interface 1203 to report to the second sub-group The terminal device sends an alarm message, where the alarm message is used to adjust the driving state of the second terminal device.
  • condition of the first subgroup includes at least one of communication delay, communication reliability, or vehicle control capability.
  • the state synchronization message further includes the communication delay between the first terminal device and the second terminal device, and the communication reliability between the first terminal device and the second terminal device, Or, at least one of the control capabilities of the second terminal device.
  • the processor 1201 is further configured to: when the first terminal device executes the first action, determine a second scene group from among a plurality of scene groups including the first scene group, and the second scene group The scene group is the same as or different from the first scene group; the communication interface 1203 is controlled to send an early warning message to the vehicle corresponding to the second scene group.
  • how many subgroups the second scene grouping includes and the communication interface 1203 sends an alert message to the vehicles corresponding to the second scene grouping, specifically including: to vehicles corresponding to different subgroups in the second scene grouping To send different warning messages.
  • the processor 1201 determines the first scene grouping according to the location information of the second terminal device and the location information of the first terminal device, it is specifically configured to: according to the location information of the first terminal device , Determine the position coordinates of the first terminal device on a map; determine the position coordinates of the second terminal device on the map according to the position information of the second terminal device; determine the position coordinates of the second terminal device on the map; The location coordinates and the location coordinates of the second terminal device determine the location relationship between the first terminal device and the second terminal device; determine the location relationship between the first terminal device and the second terminal device The first scene grouping.
  • the apparatus 1200 may be used to implement the steps performed by the second terminal device in the process shown in FIG. 3 above.
  • the apparatus 1200 may be a second terminal device, or a chip or a circuit in the second terminal device, and the second terminal device may be a vehicle or the like.
  • the communication interface is used to perform the related operations of receiving and sending on the second terminal device side in the above embodiment, and the processor is used to perform the processing related operations of the second terminal device in the above method embodiment.
  • the processor 1201 is configured to determine a trigger condition; the communication interface 1203 is configured to send a state synchronization message to the first terminal device, where the state synchronization message includes the location information of the second terminal device.
  • the processor 1201 when determining the trigger condition, is specifically configured to: control the communication interface 1203 to receive a cooperative sensing message sent by the first terminal device, where the cooperative sensing message includes location information of the first terminal device ; According to the location information of the first terminal device and the location information of the second terminal device, it is determined that the first terminal device and the second terminal device are physically adjacent vehicles.
  • the processor 1201 determines the trigger condition, it is specifically configured to: determine the location information of the first terminal device through a detection device; and determine the location information of the first terminal device according to the location information of the first terminal device and the second terminal device.
  • the location information determines that the first terminal device and the second terminal device are physically adjacent vehicles.
  • the processor 1201 when determining the trigger condition, is specifically configured to: control the communication interface 1203 to receive the first trigger message sent by the vehicle networking V2X server.
  • the communication interface 1203 is also used to send a query request to the V2X server, where the query request includes the identification of the first terminal device; the communication interface 1203 is also used to receive a query response sent by the V2X server, The query response includes the communication accessible mode of the first terminal device; the processor 1201 is further configured to control the communication interface 1203 to send to the first terminal device according to the communication accessible mode of the first terminal device A handshake message and receiving a handshake response message sent by the first terminal device; the processing module 1101 is further configured to determine the first terminal device and the second terminal device according to the handshake message and the handshake response message The communication delay of, and/or the reliability of the first terminal device and the second terminal device.
  • the state synchronization message further includes the communication delay between the first terminal device and the second terminal device, the reliability between the first terminal device and the second terminal device, or , At least one of the control capabilities of the second terminal device.
  • the communication interface 1203 is further configured to receive an alarm message sent by the first terminal device; the processor 1201 is further configured to adjust the driving state of the second terminal device according to the alarm message.
  • the device 1200 can implement the steps of the edge server above, and the device 1200 can be an edge server, or a chip or circuit configured in an edge server, or a chip or circuit in a vehicle, or the like.
  • the communication interface 1203 is used to perform the transceiving-related operations on the edge server side in the above method embodiment.
  • the processor 1201 is configured to perform processing related operations of the edge server in the above embodiment.
  • the communication interface 1203 is used to receive a vehicle message sent by the collection device; the processor 1201 is used to determine that the first terminal device and the second terminal device are physically adjacent vehicles according to the vehicle message; the communication interface 1203, It is also used to send a second trigger message to the vehicle networking V2X server, where the second trigger message includes the identifier of the first terminal device and the identifier of the second terminal device.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一终端设备根据第一终端设备与第二终端设备的位置信息,确定两者符合的业务场景(例如,防追尾、并道、左转盲区或右转盲区等业务场景),且将第二终端设备的标识加入至对应的业务场景分组中。从而在危险情况触发时,有针对性的及时发送消息,从而让相关车辆及时响应,防止交通事故的发生。

Description

一种通信方法及装置
本申请要求于2019年9月29日提交中国国家知识产权局、申请号为201910936260.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车联网技术领域,尤其涉及一种通信方法及装置。
背景技术
在新空口(new radio,NR)通信系统中,终端设备的通信包括旁链路(sidelink,SL)通信和Uu空口通信。其中,SL通信指终端设备和其它终端设备间的通信,Uu空口通信指终端设备和网络设备之间的通信。当终端设备为机动车辆时,SL通信可包括车与车、车与基础设备、车与非机动车辆之间的直接通信等。目前,终端设备周边可能存在大量与之有通信需求的其它终端设备,终端设备如何对周边的其它终端设备进行分组管理,是当前的研究热点。
发明内容
本申请实施例提供一种通信方法及装置,以实现终端设备对其周边的其它终端设备进行分组管理。
第一方面,提供一种通信方法,包括:第一终端设备接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;所述第一终端设备根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组;所述第一终端设备将所述第二终端设备的标识,加入至所述第一场景分组中。
通过上述方法,第一终端设备根据第一终端设备与第二终端设备的位置信息,确定两者符合的业务场景(例如,防追尾、并道、左转盲区或右转盲目等业务场景),且将第二终端设备的标识加入至对应的业务场景分组中。从而在危险情况触发时,有针对性的及时发送消息,从而让相关车辆及时响应,防止交通事故的发生。
在一种可能的设计中,所述第一场景分组中包括多个子组,所述第一终端设备将所述第二终端设备的标识,加入至所述第一场景分组中,包括:所述第一终端设备确定所述第一终端设备与所述第二终端设备间的第一信息,所述第一信息包括所述第一终端设备与所述第二终端设备间的相对距离、相对速度或相对角度中的至少一个;所述第一终端设备根据所述第一信息,确定第一子组;所述第一终端设备将所述第二终端设备的标识,加入至所述第一子组中。
通过上述方法,可根据第一终端设备和第二终端设备的位置信息不同,将第二终端设备加入至不同的场景分组中。比如,若第一终端设备和第二终端设备为同一车辆的前后相邻车辆,则可将第二终端设备的标识加入至AEB场景分组中。若第一终端设备和第二终端设备为相邻车辆的左右相邻车辆,则可将第二终端设备的标识加入至并道场景分组等,从而便于第一终端设备对周边车辆进行管理。
在一种可能的设计中,所述方法还包括:所述第一终端设备确定所述第一子组的条件;当所述第二终端设备不满足所述第一子组的条件时,所述第一终端设备向所述第二终端设备发送告警消息,所述告警消息用于调整所述第二终端设备的行驶状态。
在一种可能的设计中,所述第一子组的条件包括通信时延、通信可靠性,或者,车辆的控制能力中的至少一个。
在一种可能的设计中,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的通信可靠性,或者,所述第二终端设备的控制能力中的至少一个。
在一种可能的设计中,所述方法还包括:当所述第一终端设备执行第一动作时,所述第一终端设备在包括所述第一场景分组的多个场景分组中,确定第二场景分组,所述第二场景分组与所述第一场景分组相同或不同;所述第一终端设备向所述第二场景分组对应的车辆,发送预警消息。
通过上述方法,第二场景分组的车辆在接收到预警消息后,可调整自己的动作,比如减速行驶待,以避免与第一终端设备发送碰撞,减少交通事故的发生。
在一种可能的设计中,所述第二场景分组包括多少子组,所述第一终端设备向所述第二场景分组对应的车辆,发送预警消息,包括:所述第一终端设备向所述第二场景分组中不同子组对应的车辆,发送不同的预警消息。
通过上述方法,第二场景分组的车辆在接收到预警消息后,可调整自己的动作,比如减速行驶待,以避免与第一终端设备发送碰撞,减少交通事故的发生。比如,针对高危子危可发送用于强制动的预警消息,对于次危子组或告警子组,可发送用于警告的告警消息等。
在一种可能的设计中,所述第一终端设备根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组,包括:所述第一终端设备根据所述第一终端设备的位置信息,在地图上确定所述第一终端设备的位置坐标;所述第一终端设备根据所述第二终端设备的位置信息,在所述地图上确定所述第二终端设备的位置坐标;所述第一终端设备根据所述第一终端设备的位置坐标和所述第二终端设备的位置坐标,确定所述第一终端设备和所述第二终端设备的位置关系;所述第一终端设备根据所述第一终端设备和所述第二终端设备的位置关系,确定所述第一场景分组。
第二方面,提供一种通信方法,包括:第二终端设备确定触发条件;所述第二终端设备向第一终端设备发送状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息。
在一种可能的设计中,所述第二终端设备确定触发条件,包括:所述第二终端设备接收所述第一终端设备发送的协同感知消息,所述协同感知消息中包括所述第一终端设备的位置信息;所述第二终端设备根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
在一种可能的设计中,所述第二终端设备确定触发条件,包括:所述第二终端设备通过探测装置,确定所述第一终端设备的位置信息;所述第二终端设备根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
在一种可能的设计中,所述第二终端设备确定触发条件,包括:所述第二终端设备接收车联网V2X服务器发送的第一触发消息。
在一种可能的设计中,所述方法还包括:所述第二终端设备向V2X服务器发送查询请求, 所述查询请求中包括所述第一终端设备的标识;所述第二终端设备接收所述V2X服务器发送的查询响应,所述查询响应中包括所述第一终端设备的通信可达方式;所述第二终端设备根据所述第一终端设备的通信可达方式,向所述第一终端设备发送握手消息;所述第二终端设备接收所述第一终端设备发送的握手响应消息;所述第二终端设备根据所述握手消息和所述握手响应消息,确定所述第一终端设备与所述第二终端设备的通信时延,和/或,所述第一终端设备与所述第二终端设备的可靠性。
在一种可能的设计中,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的可靠性,或者,所述第二终端设备的控制能力中的至少一个。
在一种可能的设计中,还包括:所述第二终端设备接收所述第一终端设备发送的告警消息;所述第二终端设备根据所述告警消息,调整所述第二终端设备的行驶状态。
第三方面,提供一种通信方法,包括:边缘服务器接收采集装置发送的车辆消息;所述边缘服务器根据所述车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆;所述边缘服务器向车联网V2X服务器发送第二触发消息,所述第二触发消息中包括所述第一终端设备的标识和所述第二终端设备的标识。
第四方面,提供一种装置,包括:通信模块,用于接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;处理模块,用于根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组;处理模块,还用于将所述第二终端设备的标识,加入至所述第一场景分组中。
关于处理模块和通信模块的具体执行过程,可参见上述第一方面的记载,在此不再说明。
第五方面,提供一种装置,包括:存储器,用于存储程序指令;通信接口,用于接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;处理器,用于根据第二终端设备的位置信息以及第一终端设备的位置信息,确定第一场景分组,且将第二终端设备的标识,加入至第一场景分组中。
关于通信接口和处理器的具体执行过程,可参见上述第一方面的记载,在此不再说明。
第六方面,提供一种装置,包括:处理模块,用于确定触发条件;通信模块,用于向第一终端设备发送状态同步消息,所述状态同步消息中包括第二终端设备的位置信息。
关于处理模块和通信模块的具体执行过程,可参见上述第二方面的记载,在此不再说明。
第七方面,提供一种装置,包括:存储器,用于存储程序指令;处理器,用于确定触发条件;通信接口,用于向第一终端设备发送状态同步消息,状态同步消息中包括第二终端设备的标识。
关于通信接口和处理器的具体执行过程,可参见上述第二方面的记载,在此不再说明。
第八方面,提供一种装置,包括:通信模块,用于接收采集装置发送的车辆消息;处理模块,用于根据车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆;通信模块,还用于向车联网V2X服务器发送第二触发消息,所述第二触发消息中包括第一终端设备的标识和第二终端设备的标识。
关于处理模块和通信模块的具体执行过程,可参见上述第三方面的记载,在此不再说明。
第九方面,提供一种装置,包括:存储器,用于存储程序指令;通信接口,用于接收采集装置发送的车辆消息;处理器,用于根据车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆。通信接口,还用于向车联网V2X服务器发送第二触发消息,第二触发消 息中包括第一终端设备的标识和第二终端设备的标识。
关于通信接口和处理器的具体执行过程,可参见上述第三方面的记载,在此不再说明。
第十方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面,任一方面的方法。
第十一方面,提供一种芯片系统,该芯片系统包括处理器和存储器,用于实现第一方面至第三方面任一方面可能的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面至第三方面任一方面可能的方法。
第十三方面,提供一种系统,包括上述任一方面所述的第一终端设备和第二终端设备。可选的,该系统中还可包括V2X服务器和边缘服务器中的至少一个。
附图说明
图1为本申请实施例提供的网络架构的一示意图;
图2为本申请实施例提供的网络架构的一示意图;
图3为本申请实施例提供的通信方法的一流程图;
图4为本申请实施例提供的业务场景分组的一示意图;
图5为本申请实施例提供的第一终端设备和第二终端设备相对关系的一示意图;
图6为本申请实施例提供的第一终端设备和第二终端设备相对关系的一示意图;
图7为本申请实施例提供的第一终端设备和第二终端设备相对关系的一示意图;
图8为本申请实施例提供的业务场景分组的一示意图;
图9为本申请实施例提供的通信方法的一流程图;
图10为本申请实施例提供的通信方法的一流程图;
图11为本申请实施例提供的装置的一结构示意图;
图12为本申请实施例提供的装置的另一结构示意图。
具体实施方式
如图1所示,为本申请实施例适用的网络架构之一,包括:第一车辆101、第二车辆102、路测单元(road side unit,RSU)103、非机动车/行人104、边缘服务器105、车联网(vehicle to everything,V2X)服务器106或网络设备107中的一个或多个。边缘服务器105还可称为多接入边缘计算(multi-access edge computing,MEC)服务器。
其中,第一车辆101与第二车辆102之间可通过旁链路(sidelink,SL)连接,第一车辆101与第二车辆102之间的通信,可称为车到车(vehicle to vehicle,V2V)通信,第一车辆101与第二车辆102之间的连接,可称为V2V连接,V2V表示不同车辆之间的连接。第一车辆101与RSU103之间可通过SL连接,第一车辆101与RSU103之间的通信可称为车到基础设施(vehicle to infrastructure,V2I)通信,第一车辆101与RSU103之间的连接,可称为V2I连接,V2I表示车辆到道路基础设施的连接,例如,车辆到红绿灯等。第一车辆101与非机动车/行人104之间可通过SL连接,第一车辆101与非机动车/行人104之间的通信可称为车到行人(vehicle to pedestrian,V2P)通信,第一车辆101与非机动车/行人104之间的连接,称为V2P连接,V2P可表示车辆到行人、非机动车的连接。第一车辆101通过网 络设备107与V2X服务器106连接。例如,第一车辆101与网络设备107可通过Uu空口连接,网络设备107与V2X服务器106之间可通过有线或无线方式相连,有线方式可为太网(ethernet)网络或光纤网络等,无线方式可为Uu空口等,不作限定。第一车辆101与网络设备107之间的通信可称为车到网络(vehicle to network,V2N)通信,第一车辆101与网络设备107之间的连接,可称为V2N连接,V2N可表示车辆到网络的连接。
可选的,在图1所示的网络架构中,第二车辆102与V2X服务器106之间可通过网络设备107连接。V2X服务器106可通过有线方式或无线方式与RSU103和边缘服务器105连接,边缘服务器106用于对RSU103进行管理和控制。
图1仅为示例性说明,并不作为对本申请的限定。比如,图1所示的架构中,RSU可替换为道路基础设施等。或者,还可包括其它数量的车辆、非机动车/行人和RSU等。或者,V2X服务器可通过Uu空口直接和第一车辆101和第二车辆102连接等,不作限定。
如图2所示,为本申请实施例适用的网络架构之二,包括:V2X服务器201、网络设备202、道路基础设施203、第一车辆204、第二车辆205、第三车辆206、非机动车/行人207或路侧摄像头208中的一个或多个。
其中,V2X服务器201可通过有线或无线方式,分别与网络设备202、路侧摄像头208和RSU203通信。第一车辆204、第二车辆205以及第三车辆206之间的任两个车辆,可通过SL通信,两两之间的通信方式可称为V2V。第一车辆204与网络设备202之间可通过Uu空口通信,两者之间的通信方式可称为V2N。第一车辆204与非机动车/行人207之间可通过SL通信,两者之间的通信方式可称为V2P。路侧摄像头208可采集第一车辆204、第二车辆205以及第三车辆206的行驶图像,且上传上述车辆的行驶图像至V2X服务器201。第二车辆205可通过SL与RSU203通信,两者之间的通信方式可称为V2I。
图2仅为示例性说明,并不作为对本申请的限定。比如,图1所示的架构中,RSU203可替换为路侧基础设施等。或者,还可包括其它数量的车辆、RSU和行人/非机动车等,不作限定。
在图1或图2所示的网络架构中,SL为短距离通信方式,一般覆盖距离为1000米以内,可实现车辆之间、车辆与RSU、车辆与行人/非机动车等之间的通信。Uu空口是车辆与网络设备或其它实体之间的通信接口,可以实现车辆与网络设备的通信。比如,车辆可通过接入网络设备与核心网设备进行通信,车辆与接入网设备之间可通过Uu空口进行连接,接入网设备与核心网设备之间可通过有线方式进行连接。通过接入网设备,核心网设备可以实现和任一车辆或路边基础设施之间的通信,实现车到网络到一切(vehicle to network to everything,V2N2X)的场景。
基于图1或图2所示的网络架构,提供一种通信方法及装置,该方法中的第一终端设备可以是上述图1中的第一车辆101,第二终端设备可以是上述图1中的第二车辆102,或者,该方法中的第一终端设备和第二终端设备可以是上述图2中第一车辆204、第二车辆205和第三车辆206中的任两个车辆。该方法的原理为:第一终端设备根据第一终端设备与第二终端设备的位置信息,确定两者符合的业务场景(例如,防追尾、并道、左转盲区或右转盲目等业务场景),且将第二终端设备的标识加入至对应的业务场景分组中。从而在危险情况触发时,有针对性的及时发送消息,从而让相关车辆及时响应,防止交通事故的发生。
为了便于理解,对本申请实施例涉及到的术语或名词进行解释说明,该术语或名词的解释说明也作为发明内容的一部分。
一、终端设备
终端设备可以简称为终端,是一种具有无线收发功能的设备,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是无人驾驶(self driving)中的无线终端设备、运输安全(transportation safety)中的无线终端设备或智慧城市(smart city)中的无线终端设备等。比如,所述终端设备可以是机动车辆、非机动车辆、路侧基础设施、路测单元(road side unit,RSU)、路侧摄像头或路侧红绿灯等。终端设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是如上列举的各种终端设备;也可以是能够支持终端实现该功能的装置,例如芯片系统或功能单元,该装置可以被安装或集成在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。以车辆为例,车辆中一个或多个如下装置执行本申请实施例中终端相关的方法流程,如车载盒子(Telematics BOX,T-Box),域控制器(Domian Controller,DC),多域控制器(Multi-Domian Controller,MDC),车载单元(On board Unit,OBU),车联网芯片等。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是车辆为例,描述本申请实施例提供的技术方案。
二、网络设备
网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站 为例,描述本申请实施例提供的技术方案。
三、PC5接口
PC5接口用于终端设备和终端设备之间的通信,PC5接口也可简称为PC5。在PC5通信中,终端设备与终端设备之间传输信息的链路可称为旁链路(sidelink,SL),旁链路可以包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)和物理旁链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于承载旁链路数据(SL data),PSCCH用于承载旁链路控制信息(sidelink control information,SCI),所述SCI也可以称为旁链路调度分配(sidelink scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,用于承载PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS)等信息。
可选的,旁链路通信还可以包括:物理旁链路上行控制信道(physical sidelink uplink control channel,PSUCCH)。物理旁链路上行控制信道也可以简称为旁链路上行控制信道。物理旁链路上行控制信道也可以称为物理旁链路反馈信道(physical sidelink feedback channel,PSFCH)。物理旁链路反馈信道也可以简称为旁链路反馈信道。其中,旁链路上行控制信道或旁链路反馈信道可以用于传输旁链路反馈控制信息(sidelink feedback control information,SFCI)。旁链路反馈控制信息也可以简称为旁链路反馈信息,也可以称为旁链路上行控制信息(sidelink uplink control information,SL UCI)。其中,旁链路反馈控制信息可以包括信道状态信息(channel state information,CSI),混合自动重传请求(hybrid automatic repeat request,HARQ)信息等中的至少一种信息。其中,HARQ信息可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)。PC5接口可应用于车联网(vehicle to X,V2X)场景,X可以指任意的对象。比如,车联网通信可包括车到车(vehicle to vehicle,V2V)、车到路侧基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P),以及,车到网络(vehicle to network,V2N)等。所述车联网还可称为协作智能交通系统(cooperative-intelligent transport system,C-ITS)等。
四、Uu空口
Uu空口用于终端设备与接入网设备之间的通信,Uu空口也可以简称为Uu。在Uu空口通信中,接入网设备向终端设备发送信息的信道称为下行(downlink,DL)信道,下行信道可以包括物理下行数据信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)中至少一种信道。所述PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据(data)。终端设备向接入网设备发送信息的信道称为上行(uplink,UL)信道,上行信道可以包括物理上行数据信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)中至少一种信道。PUSCH用于承载上行数据。其中,上行数据也可以称为上行数据信息。PUCCH用于承载终端设备反馈的上行控制信息(uplink control information,UCI),比如UCI中可以包括终端设备反馈的信道状态信息(channel state information,CSI)、ACK和/或NACK等。Uu空口的传输可以包括上行传输和下行传输,其中上行传输是指终端设备向接入网设备发送信息,下行传输是指接入网设备向终端设备发送信息。上行传输的信息可以为上行信息或上行信号。其中,上行信息或上行信号可以包括PUSCH,PUCCH,探测参考信号(sounding reference signal,SRS)中至少一种。下行 传输的信息可以为下行信息或下行信号。其中,下行信息或下行信号可以包括PDSCH,PDCCH,信道状态信息参考信号(channel state information reference signal,CSI-RS),相位跟踪参考信号(phase tracking reference signal,PTRS)中至少一种。
需要指出的是,“第一”、“第二”等词汇。例如,第一终端设备和第二终端设备等,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a、b、c、a和b、a和c、b和c,或a和b和c,其中a、b、c可以是单个,也可以是多个。
如图3所示,提供一种通信方法的流程,该方法的执行主体可以为终端设备,或者可以是终端设备中的芯片。该方法中的第一终端设备可以是图1中的第一车辆101、第二终端设备可以是图1中的第二车辆102,或者,该方法中的第一终端设备和第二终端设备可以是图2中的第一车辆204、第二车辆205和第三车辆206中的任两个车辆。所述方法包括:
S301:第二终端设备发送状态同步消息,所述状态同步信号中至少包括第二终端设备的位置信息。相应的,第一终端设备接收状态同步消息。所述状态同步消息也可称为协同感知消息(cooperative awareness message,CAM)。第一终端设备与第二终端设备间可通过不同的方式传输状态同步消息,比如:
第一终端设备和第二终端设备间可通过PC5接口传输状态同步消息。比如,第一终端设备通过PC5接口发送状态同步消息,第二终端设备通过PC5接口接收状态同步消息等。或者,第一终端设备可通过Uu空口,将状态同步消息发送至边缘服务器。然后由边缘服务器将状态同步消息转发给第二终端设备。或者,第一终端设备可通过Uu空口,将状态同步消息发送至V2X服务器,然后由V2X服务器将状态同步消息转发给第二终端设备等。发送的方式不同、使用的运营商网络不同、周边的拥塞程度不同等,都会造成第一终端设备发送状态同步消息到第二终端设备的时延和可靠性有差别。
S302:第一终端设备根据第二终端设备的位置信息和第一终端设备的位置信息,确定第一场景分组。
例如,第一终端设备内部安装有导航地图,第一终端设备根据第二终端设备的位置信息,在地图上确定第二终端设备的位置坐标,根据第一终端设备的位置信息,同样在地图上确定第一终端设备的位置坐标,根据第一终端设备的位置坐标和第二终端设备的位置坐标,确定第一场景分组。如图4所示,第一终端设备内部可维护一个场景分组列表,包括自动紧急制动(automatic emergency braking,AEB)场景分组、并道(lane merge)场景分组和左转(left turn)场景分组等,左转场景分组也可称为盲区左转分组。如图5所示,若第一终端设备根据第一终端设备的位置坐标和第二终端设备的位置坐标,确定两者的关系为同一车道中的相邻设备,则可确定第一场景分组为AEB场景分组。如图6所示,若第一终端设备根据第一终端设备的位置坐标和第二终端设备的位置坐标,确定两者的关系为相邻车道上的相邻设备,则可确定第一场景分组为并道场景分组。如图7所示,若第一终端设备根据第一终端设备的位置坐标和第二终端设备的位置坐标,确定两者的关系为交叉路口的相邻车辆,则可确定第一场景分组为左转场景分组等。
S303:第一终端设备将第二终端设备的标识,加入至第一场景分组中。
一种示例中,第一终端设备内部可维护一个场景分组列表,所述场景分组列表中包括多个场景分组。图3流程中所述的第一场景分组可为上述多个场景分组中的任一场景分组,按 照图3流程所示的方法,在每个场景分组中加入对应终端设备的标识。每个场景分组对应于第一终端设备的一种或多种动作。比如,当第一终端设备执行某种动作时,则向该动作对应场景分组的车辆,发送预警消息。仍沿用上述图4的举例,第一终端设备内部维护的场景分组包括AEB场景分组、并道场景分组和左转场景分组。AEB场景分组对应的动作为刹车,并道场景分组对应的动作为并道行驶,左转场景分组对应的动作为左转弯等。当第一终端设备执行刹车的动作时,第一终端设备可向AEB场景分组中的终端设备发送刹车的预警消息,AEB场景分组中的终端设备接收到该预警消息后,可调整自己的动作,比如,减速行驶等,以避免与第一终端设备发送碰撞,减少交通事故的发生。同理,当第一终端设备执行并道的动作时,可向并道场景分组中的终端设备发送并道的预警消息。当第一终端设备执行左转弯的动作时,可向左转弯场景分组中的终端设备发送左转弯的预警消息等。示例的,第一终端设备所维护的多个场景分组中包括第二场景分组,第二场景分组与上述S303中的第一场景分组相同或不同,第二场景分组对应于第一动作,或者,可称为第二场景分组与第一动作存在对应关系。当第一终端设备执行第一动作时,第一终端设备可确定第二场景分组,且向第二场景分组对应的终端设备,发送预警消息。
另一示例中,第一终端设备内部可维护一个场景分组列表,所述场景分组列表中包括多个场景分组,上述图3所示流程中的第一场景分组为上述多个场景分组中的任一场景分组。每个场景分组,还可包括一个或多个子组。为了便于理解,以第一场景分组包括多个子组为例进行说明。上述S303的一种具体实现可为:第一终端设备确定第一终端设备与第二终端设备的第一信息,所述第一信息包括第一终端设备与第二终端设备间的相对距离、相对速度或相对角度中的至少一个。第一终端设备根据相对信息,确定第一子组。第一终端设备将第二终端设备的标识,加入至第一子组中。进一步,当第一终端设备将第二终端设备的标识,加入至第一子组之后,第一终端设备还可确定第一子组的条件。比如,第一子组的条件可包括通信时延、通信可靠性或终端控制能力中的至少一项。当第二终端设备不满足第一子组的条件时,向第二终端设备发送告警消息,所述告警消息用于调整第二终端设备的行驶状态。可选的,上述S301中的状态同步消息中还可包括第一终端设备与第二终端设备的通信时延、第一终端设备与第二终端设备间的通信可靠性,或者,第二终端设备的控制能力中的至少一个。如无额外说明,本申请实施例中的终端控制能力,可表示终端设备是否具有自动控制的能力,比如,接管制动、接管方向盘或接管车灯等能力。
如图8所示,沿用上述举例,第一终端设备内部维护的场景分组列表中,包括AEB场景分组、并道场景分组和左转场景分组。针对每个场景分组,还可包括多个子组。比如,对于AEB场景分组可包括高危子组、次危子组和告警子组。第一终端设备可根据第一终端设备与第二终端设备的相对距离,将第二终端设备的标识,加入至高危子组、次危子组或告警子组中。比如,当第一终端设备与第二终端设备的相对距离小于10m时,可将第二终端设备的标识加入至高危子组内。当第一终端设备与第二终端设备的相对距离为10m至50m时,可将第二终端设备的标识加入至次危子组内。而当第一终端设备与第二终端设备的相对距离大于50m时,可将第二终端设备的标识加入至告警子组内。可选的,第一终端设备可根据第一终端设备的位置信息和第二终端设备的位置信息,确定两者的相对距离。
第一终端设备在将第二车辆的标识,加入至高危子组或次危子组时,还可确定高危或次危子组的条件。比如,对于高危子组的条件可为:通信时延小于10ms,99%以上的通信可靠性,终端设备具有接管控制能力。对于次危子组的条件可为:通信时延小于100ms,90%以上 的通信可靠性。当第二终端设备不满足高危/次危子组的条件时,第一终端设备可向第二终端设备发送告警消息。第二终端设备在接收到所述告警消息后,可主动调整自己的行驶状态,比如,减速行驶,以增加与第一终端设备的车间距等。
通过上述描述可知,当第一终端设备和第二终端设备的距离较近时,可将第二终端设备加入至高危或次危子组内。但当第二终端设备不满足高危/次危子组的条件时,说明当前相对距离是比较危险的,因此可通知第二终端设备调整行驶状态,以增加两者的相对距离。比如,第一终端设备与第二终端设备的相对距离为10m,可根据两者的相对距离将第二终端设备加入至高危子组内,但第二终端设备不能满足高可靠、低时延的通信,说明当前这么近的距离是很危险的,因此可通知第二终端设备调整行驶状态,比如,减速行驶等,以增加两者之间的车间距,避免交通事故的发生。
与上述示例相同,第一终端设备在执行某些动作时,可向该动作对应场景分组中的终端设备发送预警消息。不同的是,在该示例中,每个场景分组中包括多个子组,第一终端设备可向该场景分组中不同的子组发送不同的预警消息。比如,仍沿用上述示例中的描述,当第一终端设备执行第一动作时,第一终端设备确定第一动作对应的第二场景分组。第二场景分组中包括多个子组,第一终端设备可向不同的子组发送不同的预警消息。比如,第二场景分组中包括高危子组、次危子组和告警子组,第一终端设备可向高危子组对应的终端设备发送强制动的预警消息,高危子组的终端设备在接收到预警消息后,可强制动自己,比如强制动自己减速/停车等。第一终端设备可向次危子组对应的终端设备发送警示的预警消息,次危子组的终端设备在接收到预警消息后,可在人机界面上弹出告警消息,或者语音播报告警消息,以提醒驾驶员等。第一终端设备可向告警子组对应的终端设备发送提示的预警消息,告警子组的终端设备在接收到用于提示的预警消息后,执行过程与上述次危子组的终端设备的执行过程相似。不同的是,次危子组的预警消息的告警级别高于告警子组的预警消息的告警级别。
在本申请实施例中,第一终端设备可维护场景分组列表,该场景分组列表中包括多个场景分组。采用上述图3所示的流程,第一终端设备可将其周边的车辆,加入至不同的场景分组,在危险状况触发时,及时针对性的发送消息,防止事故发生。
为了便于理解,对上述图3中的场景分组,进行示例性说明,该示例中的车A可对应于上述图3中的第一终端设备,车B可对应于上述图3中的第二终端设备。车A维护一个分组列表。
首先,针对该分组列表,包括多个场景分组。比如,AEB场景分组,用来表示可能发生追尾的车辆。并道场景分组,用来表示两车有可能在并道的时候可能发生剐蹭的车辆。左转场景分组,用来表示车辆左边转时有可能发生剐蹭的车辆。当车A的某一场景分组中包括车B时,表示车A的行为会影响车B。车A在特定情况下,需要触发预警消息发送到车B,指示车B进行相应的规避或者预防动作。例如,在车A的AEB场景分组中包括车B,表示当车A因为紧急情况需要刹车时,将会影响车A后面行驶的车B。所以需要车A发送预警消息到车B。比如,预警消息中包括车A正在紧急刹车的指示信息,车B在接收到该指示信息后,可作为规避风险的动作,防止事故的发生。比如,车B可以随车A一起刹车,或者在条件允许的情况下,变道到另一车道等。
进一步的,针对每个场景分组,可根据发送消息的时延和可靠性等不同,划分多个子组。比如,对于AEB场景分组,可以按照车距、通信时延和可靠性等,划分多个子组,具体如下:
高危子组:10m以内,要求通信时延小于10ms,可靠性达到99%以上,加入车辆可以接 管制动。
次危子组:10m到50m,要求通信时延小于100ms,可靠性达到90%以上。
告警子组:50m以上。
通过以上可以看出,不同子组对车辆的要求不同。当车辆满足以上条件时,才可以加入子组。比如,车B行驶在车A附近。如果车B可以加入高危子组,则表示车B可以和车A保持10m的车距行驶。如果车B不可以加入高危子组,仅能加入次危子组,但其和车A的间距却达到高危子组的级别,即小于10m,此时车A可向车B发送告警消息,以通知车B增加与车A的车间距等。
如图9所示,提供一种通信方法的流程,该图9所示的流程可为上述图3所示流程的一种具体实现。图9流程的执行主体为第一车辆和第二车辆,第一车辆可以是上述图3中的第一终端设备,第二车辆可以是上述图3中的第二终端设备。或者,图9流程中的第一车辆为图1中的第一车辆101,第二车辆为图1中的第二车辆102。或者,图9流程中的第一车辆为图2中的第一车辆204、第二车辆205和第三车辆206中的任两个车辆,该流程包括:
S901:第二车辆检测到第二车辆和第一车辆的相对状态发生变化。
在本申请实施例中,当第二车辆检测到和周边车辆的位置关系发生变化时,可触发自己加入到第一车辆的分组列表中,所述第二车辆的周边车辆中包括第一车辆。第二车辆在行驶的过程中,发现自己的位置和周边其它车辆的位置关系发生变化,这种变化可能构成某种特定的场景关系。例如,当第二车辆在第一车辆前方同一车道时,构成AEB关系。当第二车辆在侧面车道前后三个车位范围内时,构成并道关系。第二车辆检测状态发生变化的方法,包括但不限于:
1)通过车载摄像头或雷达确定。例如,第二车辆在行驶过程中逐渐接近同一车道的第一车辆,第二车辆可通过摄像头或雷达检测到第一车辆。
2)通过接收CAM确定,第一车辆周期性的向外发送CAM消息,所述CAM消息中包括第一车辆的位置和车辆标识。第二车辆通过在高精度地图中,对比自己的位置和第一车辆的位置,确定两车之间的相对关系。
3)通过路侧摄像头确定。边缘服务器负责管理多个路侧摄像头,路侧摄像头部置在路边不断监控路面信息。当路侧摄像头检测到第一车辆和第二车辆的相关状态发生变化时,边缘服务器可发送通知消息至第二车辆。第二车辆可得知自己和第一车辆的相关状态发生变化。
S902:第二车辆确定两车之间的可达方式,以及可达方式对应的时延和可靠性等。
本申请实施的车辆,例如第一车辆或第二车辆等,可包括车辆网络标识、车辆物理标识、可达方式、分组列表、能力轮廓等五个属性。其中,车辆网络标识,指车辆在互相发送消息时携带的车辆标识,该标识可唯一标识一个车辆。车辆的物理标识,可以是车辆牌照,也可以是其它可以标记车辆的特征,例如颜色、轮廓、位置和电子标识等。可达方式表示该车辆的网络寻址能力。因为车辆可能有多种网络联接,因此车辆有多种可达方式。针对每种可达方式,还可包括该可达方式的服务质量(quality of service,Qos)。可达方式的Qos表示当车辆以此种可达方式发送消息时,发送消息的QoS。能力轮廓表示车辆是否具有自主控制的功能,比如,接管制动、接管方向盘和接管车灯等。
由于车辆在出厂后,可在V2X服务器中进行注册,注册车辆标识、车牌号、车辆特征、可达方式等信息至V2X服务器,因此,第二车辆可通过V2X服务器,确定第二车辆的可达方式,具体的:
1)、第二车辆通过摄像头识别第一车辆的车牌号或者其它特征(例如车身轮廓,车身颜色等)。第二车辆可发送请求到V2X服务器,所述请求中包括第一车辆的车牌号或者其它特征,以及第二车辆的标识和位置等。V2X服务器可根据第一车辆的车牌号或者其它特征,结合第二车辆的位置,查询第一车辆的可达方式。
2)、第二车辆根据接收的第一车辆发送的CAM消息中的第一车辆的标识,发送查询请求到V2X服务器,提交第一车辆的车辆标识。V2X服务器返回第一车辆的可达方式。
3)、边缘服务器通过路侧摄像头检测到两车的相对关系发生变化以后,发送车牌号或车辆特征到V2X服务器,V2X服务器返回第一车辆的可达方式。边缘服务器发送第一车辆的可达方式到第二车辆。
第一车辆和第二车辆的可达方式的Qos可通过测量获得,并且随着车辆的行驶,不断刷新,一直到两车之间的绑定关系解除为止。第二车辆按照第一车辆的可达方式,向第一车辆发送消息。第一车辆在接收到消息后,返回响应。在请求和响应中不断推算两者的可靠性和时延。
S903:第二车辆发送消息建立请求到第一车辆。消息建立请求中包括第二车辆的位置、第二车辆的网络标识、第二车辆的能力轮廓、第二车辆与第一车辆的相对位置、相对速度、相对方向,第二车辆与第一车辆通信的时延测量值或可靠性测量值中的至少一个。
S904:第一车辆根据第二车辆发送的消息建立请求消息,确定两者的相对关系归属的场景分组和等级子组。
S905:第一车辆根据时延可靠性测量值和第二车辆的能力轮廓,确定第二车辆是否属于该危险等级分组。
如果确定属于该危险等级子组,则执行S906:返回确认消息。如果确认不属于该危险等级子组,则执行S907:返回告警消息。
在本申请实施例中,不同车辆之间可根据行驶的位置关系,建立绑定关系。当第一车辆的状态发生变化时,可以自动触发到第二车辆的预警信息,从而让第二车辆根据预警消息作出快速响应,提升交通行驶的安全性。
在本申请实施例中,第二终端设备可在不同的条件下,执行上述图3中S301的步骤,即向第一终端设备发送状态同步消息的步骤。
在第一种示例中,第一车辆可周期性的对外广播协同感知消息(cooperative awareness message,CAM),所述CAM消息中至少包括第一车辆的位置信息。可选的,所述CAM消息中还可包括第二车辆的状态信息,第二车辆的状态信息包括第二车辆的速度、加速度、刹车或车灯等信息。第二车辆在接收到第一车辆的CAM消息后,可获取CAM消息中携带的第一车辆的位置信息,根据第一车辆的位置信息和第二车辆的位置信息,确定两者的相对关系。若两者的相对关系为物理上的相邻终端设备,则执行上述图3中的S301的步骤,即向第一终端设备发送状态同步消息的步骤。
在第二种示例中,第二终端设备可通过探测装置,所述第一终端设备的位置信息,所述探测装置可为车载摄像头,或车载雷达等。同样,第二终端设备根据第一终端设备的位置信息和第二终端设备的位置信息,确定二者为物理上的相邻终端设备时,则执行上述图3中的S301中的动作。
在第三种示例中,采集装置可采集终端设备的图像信息,且上报终端设备的图像信息至 边缘服务器。采集装置可为路侧摄像头等道路基础设施或RSU等。当边缘服务器根据采集装置采集的终端设备图像信息确定存在物理相邻的两个终端设备时,边缘服务器可向V2X服务器发送触发消息,所述触发消息包括物理相邻终端设备的标识信息。比如,物理相邻上的终端设备为上述第一终端设备和第二终端设备,则上述触发消息中可包括第一终端设备的标识和第二终端设备的标识等信息。V2X服务器在接收到所述触发消息时,可向第二终端设备发送第二触发消息等,以触发第二终端设备执行上述S301的步骤。可选的,第二触发消息还可包括第二终端设备的通信可达方式。
如图10所示,提供一种通信方法的流程,该流程可具体为上述“第一种示例+图3所示流程”的一种具体实现,该流程中的第一车辆可对应于上述图3和第一种示例中的第一终端设备,第二车辆可对应于上述图3和第一种示例中的第二终端设备,该流程包括:
S1001:第一车辆向第二车辆发送CAM消息。相应的,第二车辆接收CAM消息。
其中,所述CAM消息中包括第一车辆的网络标识、位置、速度、加速度等信息。第二车辆可根据CAM消息,确定第一车辆和第二车辆的关系。可选的,第二车辆还可协助高精度地图确定两者之间的关系。若第二车辆确定与第一车辆的关系是物理上的相邻车辆,则执行下述S1002。在交通行为中,相邻车辆是直接发生关系的车辆,在本申请实施例中,重点关注相邻车辆的处理。
S1002:确定第一车辆与第二车辆间的可达方式、可靠性和时延等,且通过V2X服务器建立通信关系。
例如,第二车辆发送查询请求到V2X服务器,所述查询请求中包括第一车辆的网络标识。V2X服务器根据第一车辆的网络标识,查询第一车辆的可达方式。第一目标的可达方式可能存在多种。V2X可确定第一车辆和第二车辆两者之间共享的可达方式。比如,第二车辆支持PC5接口通信,第一车辆支持PC5接口和Uu空口通信。V2X服务器可将PC5接口通信方式作为第一车辆的可达方式,且发送第一车辆的可达方式至第二车辆。具体的,V2X服务器可发送第一车辆用于单播通信的层2地址给第二车辆。可选的,所述消息中还可包括其他用于辅助认证鉴权和访问控制的信息等。
第二车辆在接收到第一车辆的可达方式以后,可发送握手消息至第二车辆,所述握手消息使用V2X服务器返回的可达方式发送,例如用于单播的层2地址等。所述握手消息中可包括时间戳等信息。第一车辆在接收到握手消息后,发送响应至第二车辆。所述响应消息中包括第一车辆收到握手消息的时间以及发送响应的时间等。第二车辆在接收到第一车辆的响应消息后,计算第一车辆与第二车辆之间的通信时延。如果第二车辆发送的握手消息,没有得到响应,则第二车辆可尝试重新发送握手消息,并根据重试的次数,更新两者之间的通信可靠性。
S1003:握手环节结束后,第二车辆发送状态同步消息至第一车辆,状态同步消息中包括第二车辆的绝对位置、第二车辆和第一车辆之间的相对位置、相对加速度、相对角度、第二车辆的网络标识、可达方式、通信时延测量值、通信可靠性测量值和第二车辆的能力轮廓等信息。其中,第二车辆的绝对位置、相对位置、相对加速度、相对角度等是第二车辆根据CAM消息计算得到的。所述状态同步消息中包括第二车辆的可达方式,以便于第一车辆通过该可达方式发送消息给自己。
S1004:第一车辆在接收到第二车辆发送的状态同步消息后,可根据状态同步消息中携带的信息,确定第一车辆和第二车辆的关系,且将第二车辆的标识加入至对应场景分组中的对 应子组中。例如,在AEB场景中,第一车辆确定第二车辆和第一车辆属于同一车道,且距离只有10m。两车之间的通信时延为50ms,第二车辆不支持接管制动,第一车辆根据第二车辆和它属于同一车道且前后距离只有10m的状态,把第二车辆分配到AEB场景分组的高危子组中。
S1005:第一车辆确定第二车辆加入分组的时延可靠性条件和第二车辆的时延可靠性的匹配关系。若不匹配,则行下述S1006。
比如,第一车辆确认两者之间的时延为50ms,且第二车辆不支持接管制动,确定当前车辆不能分配在高危子组中,按照50ms的时延,两车的安全距离应该在10m到50m。
S1006:第一车辆发送告警消息到第二车辆,其中包括时延不匹配预警。
S1007:第二车辆根据告警消息,调整驾驶状态。
比如,第二车辆在接收到第一车辆发送的告警消息后,发送告警给驾驶员,并提示驾驶员注意安全车距为10至50米。如果是自动驾驶车辆,收到告警信息后,控制车辆减速,以增加和前车的间距。可选的,在上述S1007中,第二终端设备可根据与第一车辆的位置变化,不断刷新时延和可靠性等。上述S1003至S1007的步骤是循环执行的,直至第二车辆与第一车辆的相对关系发生变化,比如,第二车辆驶出第一车辆的周边范围,或者第二车辆与第一车辆不再物理相邻等。
S1008:第一车辆发生触发事件,例如,第一车辆急刹车、变道或驶入路口等。
S1009:第一车辆发送预警消息给第二车辆。预警消息中包括第一车辆的当前状态,例如急刹车、变道等。根据第二车辆所处的危险等级子组的不同,发送的预警信息可能不同。比如,对于高危子组,预警信息可以为强制动。对于次危子组,预警消息可以为告警。对于其它子组,预警消息可以是提示等。
S1010:第二车辆收到预警消息后,针对预警消息做出响应。例如,强制动,或者在人机界面上弹出告警信息,提醒驾驶员。当前步骤结束以后,第二车辆确认和第一车辆之间是否还维持当前状态。如果是,则继续执行203的步骤。
需要说明的是,在本申请实施例中,S1003至S1007的步骤是循环周期进行的,按照车辆行驶的速度,以最多10Hz或者20Hz的频率重复刷新。每条消息都反应当前车辆,即第二车辆的最新状态。
针对上述“第二种示例+图3所示流程”提供一种具体实现,该实现中的第一车辆可对应于上述图3和第二种示例中的第一终端设备,第二车辆可对应于上述图3和第二种示例中的第二终端设备,该实现具体为:当第二车辆通过摄像头检测到第一车辆时,计算第一车辆和第二车辆之间的距离,判断两者是否在相同车道或相邻车道。同时通过摄像头识别第一车辆的车牌号码。第二车辆发送查询请求至V2X服务器,查询请求中包括第一车辆的车牌号码。进一步的,当第一车辆的车辆号码无法识别时,第二车辆可直接送第一车辆的图片到V2X服务器。V2X服务器根据第一车辆的车牌号码或者第一车辆的照片,在数据库中匹配,确定第一车辆的可达方式。后续,第一终端设备和第二终端设备,可按照上述图10所示的方法,获取对方的可达方式,可通过双方的位置信息来进行相互关系匹配。
针对上述示例,提供一种具体的应用场景:在实际情况中,可能存在车辆不能对外发送CAM消息,或者,根据CAM消息中的位置信息不准确的情况。在这种情况下,第二车辆很难确定和第一车辆之间的关系。因此在本申请实施例中,还可根据第二车辆的摄像头来确定两车的关系。
针对上述“第三种示例+图3所示流程”提供的一种具体实现,该实现中的第一车辆可对应于上述图3和第三种示例中的第一终端设备,第二车辆可对应于上述图3和第三种示例中的第二终端设备,该实现具体为:
路侧摄像头在检测到第一车辆和第二车辆的相邻关系,该相邻关系可能是AEB场景的同车道前后相邻关系,或者,并道场景的相邻车道相邻关系。边缘计算服务器根据拍摄的照片尝试识别车牌号信息。边缘服务器发送两车的相对关系、车牌号,如果没有识别车牌号则之间发送图片给V2X Server。两车的相对关系包括两车所处的车道、相对距离等信息。
V2X Server根据边缘服务器发送的信息,通过特征识别的方法匹配当前车辆和目标车辆,匹配两车的可达方式。发送相对关系和目标车辆的可达方式到当前车辆。当前车辆收到信息后续的步骤和203-209相同。因为车辆在移动过程中,边缘服务器在这一时刻捕捉到两车之间的相互关系之后,在下一时刻,有可能两车已经驶离边缘服务器的覆盖范围。所以让V2X Server通过云端完成后续过程更加合理。
上述本申请提供的实施例中,分别从第一终端设备、第二终端设备、V2X服务器和边缘服务器之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述实施例提供的方法中的各功能,第一终端设备、第二终端设备、V2X服务器和/或边缘服务器可以包括硬件结构和/或软件模块,以硬件结构、软件模块或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块,还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
以上,结合图1至图10详细说明了本申请实施例提供的方法。以下结合图11和图12详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可参见上文方法实施例中的描述。
图11是本申请实施例提供的装置1100的示意性框图,用于实现上述方法中第一终端设备、第二终端设备或边缘服务器的功能。例如,该装置可以是软件模块或芯片系统。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。该装置1100包括通信模块1101,还可包括处理模块1102。通信模块1101,可以与外部进行通信。处理模块1102,用于进行处理。通信模块1101,还可以称为通信接口、收发模块、输入\输出接口等。例如,通信模块可以包括发送模块和接收模块待,分别用于执行上文图3、图9或图10流程中由第一终端设备、第二终端设备、V2X服务器或边缘服务器的发送或接收的步骤。
在一种示例中,装置1100可实现上文图3所示流程中第一终端设备的步骤,装置1100可以是终端设务,或者配置于终端设备中的芯片或电路。通信模块1101,用于执行上文方法实施例中第一终端设备侧的收发相关操作。处理模块1102用于执行上文实施例中第一终端设备的处理相关操作。
比如,通信模块1101,用于接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;处理模块1102,用于根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组;处理模块1102,还用于将所述第二终端设备的标识,加入至所述第一场景分组中。
可选的,所述第一场景分组中包括多个子组,处理模块1102在将所述第二终端设备的标识,加入至所述第一场景分组中时,具体用于:
确定所述第一终端设备与所述第二终端设备间的第一信息,所述第一信息包括所述第一终端设备与所述第二终端设备间的相对距离、相对速度或相对角度中的至少一个;根据所述 第一信息,确定第一子组;将所述第二终端设备的标识,加入至所述第一子组中。
可选的,处理模块1102,还用于:确定所述第一子组的条件;当所述第二终端设备不满足所述第一子组的条件时,控制通信模块1101向所述第二终端设备发送告警消息,所述告警消息用于调整所述第二终端设备的行驶状态。
可选的,所述第一子组的条件包括通信时延、通信可靠性,或者,车辆的控制能力中的至少一个。
可选的,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的通信可靠性,或者,所述第二终端设备的控制能力中的至少一个。
可选的,处理模块1102,还用于:当所述第一终端设备执行第一动作时,在包括所述第一场景分组的多个场景分组中,确定第二场景分组,所述第二场景分组与所述第一场景分组相同或不同;控制通信模块1101向所述第二场景分组对应的车辆,发送预警消息。
可选的,所述第二场景分组包括多少子组,通信模块1101向所述第二场景分组对应的车辆,发送预警消息,具体包括:向所述第二场景分组中不同子组对应的车辆,发送不同的预警消息。
可选的,处理模块1101在根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组时,具体用于:根据所述第一终端设备的位置信息,在地图上确定所述第一终端设备的位置坐标;根据所述第二终端设备的位置信息,在所述地图上确定所述第二终端设备的位置坐标;根据所述第一终端设备的位置坐标和所述第二终端设备的位置坐标,确定所述第一终端设备和所述第二终端设备的位置关系;根据所述第一终端设备和所述第二终端设备的位置关系,确定所述第一场景分组。
在一种示例中,装置1100可实现上文图3所示流程中第二终端设备的步骤,装置1100可以是终端设备,或者配置于终端设备中的芯片或电路。通信模块1101,用于执行上文方法实施例中第二终端设备侧的收发相关操作。处理模块1102用于执行上文实施例中第二终端设备的处理相关操作。
比如,处理模块1102,用于确定触发条件;通信模块1101,用于向第一终端设备发送状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息。
可选的,处理模块1102在确定触发条件时,具体用于:控制通信模块1101接收所述第一终端设备发送的协同感知消息,所述协同感知消息中包括所述第一终端设备的位置信息;根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
可选的,处理模块1102在确定触发条件时,具体用于:通过探测装置,确定所述第一终端设备的位置信息;根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
可选的,处理模块1102在确定触发条件时,具体用于:控制通信模块1101接收车联网V2X服务器发送的第一触发消息。
可选的,通信模块1101,还用于向V2X服务器发送查询请求,所述查询请求中包括所述第一终端设备的标识;通信模块1101,还用于接收所述V2X服务器发送的查询响应,所述查询响应中包括所述第一终端设备的通信可达方式;处理模块1102,还用于根据所述第一终端设备的通信可达方式,控制通信模块1101向所述第一终端设备发送握手消息,以及接收所述 第一终端设备发送的握手响应消息;处理模块1101,还用于根据所述握手消息和所述握手响应消息,确定所述第一终端设备与所述第二终端设备的通信时延,和/或,所述第一终端设备与所述第二终端设备的可靠性。
可选的,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的可靠性,或者,所述第二终端设备的控制能力中的至少一个。
可选的,通信模块1101,还用于接收所述第一终端设备发送的告警消息;处理模块1102,还用于根据所述告警消息,调整所述第二终端设备的行驶状态。
在一种示例中,装置1100可实现上文边缘服务器的步骤,装置1100可以是边缘服务器,或者配置于边缘服务器中的芯片或电路。通信模块1101,用于执行上文方法实施例中边缘服务器侧的收发相关操作。处理模块1102用于执行上文实施例中边缘服务器的处理相关操作。
比如,通信模块1101,用于接收采集装置发送的车辆消息;处理模块1102,用于根据所述车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆;通信模块1101,还用于向车联网V2X服务器发送第二触发消息,所述第二触发消息中包括所述第一终端设备的标识和所述第二终端设备的标识。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
可以理解的是,上述实施例中的通信模块的功能可以由收发器实现,处理模块的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送模块和/或接收模块的功能。以下结合图11举例进行说明。
图12是本申请实施例提供的装置1200的示意性框图,图12所示的装置1200可以为图11所示的装置的一种硬件电路的实现方法,该装置可适用上述图3、图9或图10所示的流程中,执行上述方法实施例中第一终端设备、第二终端设备、V2X服务器或边缘服务器的功能。为了便于说明,图12仅示出了该装置的主要部件。
图12所示的装置1200包括至少一个处理器1201。装置1200还可包括至少一个存储器1202,用于存储程序指令和/或数据。存储器1202和处理器1201耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1201可以和存储器1202协同操作,处理器1201可以执行存储器1202中存储的程序指令,所述至少一个存储器1202中的至少一个可以包括于处理器1201中。
装置1200还可包括通信接口1203,用于通过传输介质和其它设备进行通信,从而用于通信装置1200可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
应理解,本申请实施例中不限定上述处理器1201、存储器1202以及通信接口1203之间的连接介质。本申请实施例在图12中以存储器1202、处理器1201以及通信接口1203之间通过通信总线1204连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表 示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1200可以用于实现上述图3所示流程中第一终端设备执行的步骤。装置1200可以是第一终端设备,或者第一终端设备内的芯片或电路,第一终端设备可以为车辆等。通信接口用于执行上文实施例中第一终端设备侧收发的相关操作,处理器用于执行上文方法实施例中第一终端设备的处理相关操作。
比如,通信接口1203,用于接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;处理器1201,用于根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组;处理器1201,还用于将所述第二终端设备的标识,加入至所述第一场景分组中。
可选的,所述第一场景分组中包括多个子组,处理器1201在将所述第二终端设备的标识,加入至所述第一场景分组中时,具体用于:
确定所述第一终端设备与所述第二终端设备间的第一信息,所述第一信息包括所述第一终端设备与所述第二终端设备间的相对距离、相对速度或相对角度中的至少一个;根据所述第一信息,确定第一子组;将所述第二终端设备的标识,加入至所述第一子组中。
可选的,处理器1201,还用于:确定所述第一子组的条件;当所述第二终端设备不满足所述第一子组的条件时,控制通信接口1203向所述第二终端设备发送告警消息,所述告警消息用于调整所述第二终端设备的行驶状态。
可选的,所述第一子组的条件包括通信时延、通信可靠性,或者,车辆的控制能力中的至少一个。
可选的,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的通信可靠性,或者,所述第二终端设备的控制能力中的至少一个。
可选的,处理器1201,还用于:当所述第一终端设备执行第一动作时,在包括所述第一场景分组的多个场景分组中,确定第二场景分组,所述第二场景分组与所述第一场景分组相同或不同;控制通信接口1203向所述第二场景分组对应的车辆,发送预警消息。
可选的,所述第二场景分组包括多少子组,通信接口1203向所述第二场景分组对应的车辆,发送预警消息,具体包括:向所述第二场景分组中不同子组对应的车辆,发送不同的预警消息。
可选的,处理器1201在根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组时,具体用于:根据所述第一终端设备的位置信息,在地图上确定所述第一终端设备的位置坐标;根据所述第二终端设备的位置信息,在所述地图上确定所述第二终端设备的位置坐标;根据所述第一终端设备的位置坐标和所述第二终端设备的位置坐标,确定所述第一终端设备和所述第二终端设备的位置关系;根据所述第一终端设备和所述第二终端设备的位置关系,确定所述第一场景分组。
在一种示例中,装置1200可以用于实现上述图3所示流程中第二终端设备执行的步骤。装置1200可以是第二终端设备,或者,第二终端设备中的芯片或电路,所述第二终端设备可以为车辆等。通信接口用于执行上文实施例中第二终端设备侧收发的相关操作,处理器用于执行上文方法实施例中第二终端设备的处理相关操作。
比如,处理器1201,用于确定触发条件;通信接口1203,用于向第一终端设备发送状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息。
可选的,处理器1201在确定触发条件时,具体用于:控制通信接口1203接收所述第一终端设备发送的协同感知消息,所述协同感知消息中包括所述第一终端设备的位置信息;根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
可选的,处理器1201在确定触发条件时,具体用于:通过探测装置,确定所述第一终端设备的位置信息;根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
可选的,处理器1201在确定触发条件时,具体用于:控制通信接口1203接收车联网V2X服务器发送的第一触发消息。
可选的,通信接口1203,还用于向V2X服务器发送查询请求,所述查询请求中包括所述第一终端设备的标识;通信接口1203,还用于接收所述V2X服务器发送的查询响应,所述查询响应中包括所述第一终端设备的通信可达方式;处理器1201,还用于根据所述第一终端设备的通信可达方式,控制通信接口1203向所述第一终端设备发送握手消息,以及接收所述第一终端设备发送的握手响应消息;处理模块1101,还用于根据所述握手消息和所述握手响应消息,确定所述第一终端设备与所述第二终端设备的通信时延,和/或,所述第一终端设备与所述第二终端设备的可靠性。
可选的,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的可靠性,或者,所述第二终端设备的控制能力中的至少一个。
可选的,通信接口1203,还用于接收所述第一终端设备发送的告警消息;处理器1201,还用于根据所述告警消息,调整所述第二终端设备的行驶状态。
在一种示例中,装置1200可实现上文边缘服务器的步骤,装置1200可以是边缘服务器,或者配置于边缘服务器中的芯片或电路,或者车辆中的芯片或电路等。通信接口1203,用于执行上文方法实施例中边缘服务器侧的收发相关操作。处理器1201用于执行上文实施例中边缘服务器的处理相关操作。
比如,通信接口1203,用于接收采集装置发送的车辆消息;处理器1201,用于根据所述车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆;通信接口1203,还用于向车联网V2X服务器发送第二触发消息,所述第二触发消息中包括所述第一终端设备的标识和所述第二终端设备的标识。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备接收第二终端设备发送的状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息;
    所述第一终端设备根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组;
    所述第一终端设备将所述第二终端设备的标识,加入至所述第一场景分组中。
  2. 如权利要求1所述的方法,其特征在于,所述第一场景分组中包括多个子组,所述第一终端设备将所述第二终端设备的标识,加入至所述第一场景分组中,包括:
    所述第一终端设备确定所述第一终端设备与所述第二终端设备间的第一信息,所述第一信息包括所述第一终端设备与所述第二终端设备间的相对距离、相对速度或相对角度中的至少一个;
    所述第一终端设备根据所述第一信息,确定第一子组;
    所述第一终端设备将所述第二终端设备的标识,加入至所述第一子组中。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备确定所述第一子组的条件;
    当所述第二终端设备不满足所述第一子组的条件时,所述第一终端设备向所述第二终端设备发送告警消息,所述告警消息用于调整所述第二终端设备的行驶状态。
  4. 如权利要求3所述的方法,其特征在于,所述第一子组的条件包括通信时延、通信可靠性,或者,车辆的控制能力中的至少一个。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的通信可靠性,或者,所述第二终端设备的控制能力中的至少一个。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一终端设备执行第一动作时,所述第一终端设备在包括所述第一场景分组的多个场景分组中,确定第二场景分组,所述第二场景分组与所述第一场景分组相同或不同;
    所述第一终端设备向所述第二场景分组对应的车辆,发送预警消息。
  7. 如权利要求6所述的方法,其特征在于,所述第二场景分组包括多少子组,所述第一终端设备向所述第二场景分组对应的车辆,发送预警消息,包括:
    所述第一终端设备向所述第二场景分组中不同子组对应的车辆,发送不同的预警消息。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述第一终端设备根据所述第二终端设备的位置信息和所述第一终端设备的位置信息,确定第一场景分组,包括:
    所述第一终端设备根据所述第一终端设备的位置信息,在地图上确定所述第一终端设备的位置坐标;
    所述第一终端设备根据所述第二终端设备的位置信息,在所述地图上确定所述第二终端设备的位置坐标;
    所述第一终端设备根据所述第一终端设备的位置坐标和所述第二终端设备的位置坐标,确定所述第一终端设备和所述第二终端设备的位置关系;
    所述第一终端设备根据所述第一终端设备和所述第二终端设备的位置关系,确定所述第一场景分组。
  9. 一种通信方法,其特征在于,包括:
    第二终端设备确定触发条件;
    所述第二终端设备向第一终端设备发送状态同步消息,所述状态同步消息中包括所述第二终端设备的位置信息。
  10. 如权利要求9所述的方法,其特征在于,所述第二终端设备确定触发条件,包括:
    所述第二终端设备接收所述第一终端设备发送的协同感知消息,所述协同感知消息中包括所述第一终端设备的位置信息;
    所述第二终端设备根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
  11. 如权利要求9所述的方法,其特征在于,所述第二终端设备确定触发条件,包括:
    所述第二终端设备通过探测装置,确定所述第一终端设备的位置信息;
    所述第二终端设备根据所述第一终端设备的位置信息和所述第二终端设备的位置信息,确定所述第一终端设备与所述第二终端设备为物理上的相邻车辆。
  12. 如权利要求9所述的方法,其特征在于,所述第二终端设备确定触发条件,包括:
    所述第二终端设备接收车联网V2X服务器发送的第一触发消息。
  13. 如权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向V2X服务器发送查询请求,所述查询请求中包括所述第一终端设备的标识;
    所述第二终端设备接收所述V2X服务器发送的查询响应,所述查询响应中包括所述第一终端设备的通信可达方式;
    所述第二终端设备根据所述第一终端设备的通信可达方式,向所述第一终端设备发送握手消息;
    所述第二终端设备接收所述第一终端设备发送的握手响应消息;
    所述第二终端设备根据所述握手消息和所述握手响应消息,确定所述第一终端设备与所述第二终端设备的通信时延,和/或,所述第一终端设备与所述第二终端设备的可靠性。
  14. 如权利要求9至13任一项所述的方法,其特征在于,所述状态同步消息中还包括所述第一终端设备与所述第二终端设备间的通信时延、所述第一终端设备与所述第二终端设备间的可靠性,或者,所述第二终端设备的控制能力中的至少一个。
  15. 如权利要求9至14任一项所述的方法,其特征在于,还包括:
    所述第二终端设备接收所述第一终端设备发送的告警消息;
    所述第二终端设备根据所述告警消息,调整所述第二终端设备的行驶状态。
  16. 一种通信方法,其特征在于,包括:
    边缘服务器接收采集装置发送的车辆消息;
    所述边缘服务器根据所述车辆消息,确定第一终端设备和第二终端设备为物理上的相邻车辆;
    所述边缘服务器向车联网V2X服务器发送第二触发消息,所述第二触发消息中包括所述第一终端设备的标识和所述第二终端设备的标识。
  17. 一种装置,其特征在于,用于实现如权利要求1至16任一项所述的方法。
  18. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1至16任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令被运行时,使得通信设备执行权利要求1至16任一项所述的方法。
PCT/CN2020/118117 2019-09-29 2020-09-27 一种通信方法及装置 WO2021057972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936260.2A CN112583872B (zh) 2019-09-29 2019-09-29 一种通信方法及装置
CN201910936260.2 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021057972A1 true WO2021057972A1 (zh) 2021-04-01

Family

ID=75111152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118117 WO2021057972A1 (zh) 2019-09-29 2020-09-27 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112583872B (zh)
WO (1) WO2021057972A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173293B (zh) * 2021-12-09 2023-04-18 南京领行科技股份有限公司 网约车消息通知方法、装置、系统、服务器及存储介质
WO2024000236A1 (zh) * 2022-06-29 2024-01-04 Oppo广东移动通信有限公司 感知节点的确定方法、装置、设备、系统及介质
CN117979231A (zh) * 2022-10-26 2024-05-03 中信科智联科技有限公司 位置确定方法、信息发送方法、坐标转换方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160063858A1 (en) * 2014-08-29 2016-03-03 Honda Research Institute Europe Gmbh Method and system for using global scene context for adaptive prediction and corresponding program, and vehicle equipped with such system
CN105513423A (zh) * 2015-11-30 2016-04-20 惠州华阳通用电子有限公司 一种车辆超车预警方法及装置
CN107170290A (zh) * 2017-06-23 2017-09-15 深圳市盛路物联通讯技术有限公司 一种在雾霾天智能行驶的方法及装置
CN107346612A (zh) * 2016-05-06 2017-11-14 中国科学院微电子研究所 一种基于车联网的车辆防碰撞方法和系统
CN108180915A (zh) * 2017-12-14 2018-06-19 北京汽车集团有限公司 车辆位置分类方法、装置、车辆及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485947A (zh) * 2015-08-25 2017-03-08 中兴通讯股份有限公司 一种车辆控制方法、装置及车联网系统
CN107027159B (zh) * 2016-01-29 2022-05-20 中兴通讯股份有限公司 一种按需加入车联网的方法及终端
US20170227470A1 (en) * 2016-02-04 2017-08-10 Proxy Technologies, Inc. Autonomous vehicle, system and method for structural object assessment and manufacture thereof
CN106781692B (zh) * 2016-12-01 2020-09-04 东软集团股份有限公司 车辆碰撞预警的方法、装置及系统
CN106851590B (zh) * 2017-01-22 2020-07-03 哈尔滨工业大学 一种VANETs中V2V多跳警告广播方法
CN108632888B (zh) * 2017-03-24 2023-04-07 中兴通讯股份有限公司 一种车辆群组的建立、更新方法及其装置
CN108696896B (zh) * 2017-04-12 2022-02-18 中国移动通信有限公司研究院 一种服务质量控制方法及装置
US10549762B2 (en) * 2017-07-31 2020-02-04 GM Global Technology Operations LLC Distinguish between vehicle turn and lane change
CN107993485B (zh) * 2017-10-30 2019-11-26 惠州市德赛西威汽车电子股份有限公司 一种基于车联网的自适应预警方法以及装置
CN108495330B (zh) * 2018-03-09 2019-11-08 清华大学 一种车-车信息交互通信的碰撞预警可靠性测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160063858A1 (en) * 2014-08-29 2016-03-03 Honda Research Institute Europe Gmbh Method and system for using global scene context for adaptive prediction and corresponding program, and vehicle equipped with such system
CN105513423A (zh) * 2015-11-30 2016-04-20 惠州华阳通用电子有限公司 一种车辆超车预警方法及装置
CN107346612A (zh) * 2016-05-06 2017-11-14 中国科学院微电子研究所 一种基于车联网的车辆防碰撞方法和系统
CN107170290A (zh) * 2017-06-23 2017-09-15 深圳市盛路物联通讯技术有限公司 一种在雾霾天智能行驶的方法及装置
CN108180915A (zh) * 2017-12-14 2018-06-19 北京汽车集团有限公司 车辆位置分类方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN112583872A (zh) 2021-03-30
CN112583872B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
KR102241296B1 (ko) 자율주행시스템에서 mec 서버를 통한 데이터 공유 방법 및 이를 위한 장치
US11382107B2 (en) Method and apparatus for performing sidelink communication by UE in NR V2X
US11672035B2 (en) Method and apparatus for performing sidelink communication by UE in NR V2X
WO2021057972A1 (zh) 一种通信方法及装置
US20200028736A1 (en) Method and apparatus for determining an error of a vehicle in autonomous driving system
US20200033845A1 (en) Method and apparatus for controlling by emergency step in autonomous driving system
US20200004268A1 (en) Method and apparatus for determining validity of message received by vehicle in automated vehicle & highway systems
US11412570B2 (en) Method and apparatus for reporting cast type by UE in NR V2X
KR102237421B1 (ko) 자율 주행 시스템에서 데이터 기반의 어플레이케이션 갱신방법 및 이를 위한 장치
KR102519896B1 (ko) 차량의 환경 모델을 업데이트하기 위한 방법, 컴퓨터 프로그램, 장치, 차량, 및 교통 엔티티
US20200005642A1 (en) Method and apparatus for moving a parked vehicle for an emergency vehicle in autonomous driving system
US20210058899A1 (en) Method and device for adjusting transmission parameter by sidelink terminal in nr v2x
KR20190100107A (ko) 자율 주행 시스템에서 차량의 무선 통신을 위한 방법 및 장치
WO2019141093A1 (zh) 选择通信方式的方法、装置及车辆
US20210118293A1 (en) Method for controlling a vehicle in an autonoumous drving system
KR102205794B1 (ko) 자율주행시스템에서 서버브릿지를 설정하는 방법 및 이를 위한 장치
KR20210055116A (ko) 자율주행시스템에서 원격제어 서비스를 위한 원격제어장치
US10833737B2 (en) Method and apparatus for controlling multi-antenna of vehicle in autonomous driving system
KR20230022424A (ko) 지능적인 빔 예측 방법
KR20190106844A (ko) 입력 신호 우선 순위에 따른 자율 주행 제어 방법 및 이를 이용한 자율 주행 시스템
KR102430690B1 (ko) 차량의 환경 모델을 업데이트하기 위한 방법, 컴퓨터 프로그램, 장치, 차량 및 교통 엔티티
KR20210098071A (ko) 자율주행시스템에서 차량의 데이터 비교방법
EP4210359A1 (en) Broadcast-based unicast session method and apparatus
WO2021103022A1 (zh) 一种通信方法及装置
KR20210055231A (ko) 자율주행시스템에서 차량의 공익미션 수행방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868897

Country of ref document: EP

Kind code of ref document: A1