WO2021057909A1 - 自主机器人及其行走路径规划方法、装置和存储介质 - Google Patents
自主机器人及其行走路径规划方法、装置和存储介质 Download PDFInfo
- Publication number
- WO2021057909A1 WO2021057909A1 PCT/CN2020/117800 CN2020117800W WO2021057909A1 WO 2021057909 A1 WO2021057909 A1 WO 2021057909A1 CN 2020117800 W CN2020117800 W CN 2020117800W WO 2021057909 A1 WO2021057909 A1 WO 2021057909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slope
- area
- distribution information
- path
- autonomous robot
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000003860 storage Methods 0.000 title claims abstract description 16
- 238000009826 distribution Methods 0.000 claims abstract description 72
- 230000008569 process Effects 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 7
- 238000012876 topography Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 15
- 230000009194 climbing Effects 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241001417527 Pempheridae Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
Definitions
- This specification relates to the field of robotics, in particular to an autonomous robot and its walking path planning method, device and storage medium.
- Autonomous robots are robots that are equipped with various necessary sensors and controllers in their body, and can complete certain tasks independently without external human information input and control during operation, that is, autonomous The robot can move autonomously and perform tasks in the work area.
- the autonomous robot In the full coverage operation mode, the autonomous robot will generally move along the planned full coverage walking path.
- the path planning algorithm based on the cattle cultivation method (bow-shaped) is widely used in actual production due to its simple principle and easy implementation.
- the purpose of the embodiments of this specification is to provide an autonomous robot and its walking path planning method, device and storage medium, so as to improve the job coverage rate of the autonomous robot in the full coverage mode.
- the embodiments of this specification provide a walking path planning method of an autonomous robot, which includes:
- the width value of the adjacent path section is determined according to the terrain distribution information, so as to make the operation coincidence degree of the adjacent path section Stay within the specified range.
- the embodiment of this specification also provides a walking path planning device for an autonomous robot, including:
- the terrain information acquisition module is used to acquire the terrain distribution information of the target work area
- a slope area determination module configured to determine whether there is a slope area in the target work area according to the terrain distribution information
- the walking path planning module is used to determine the width of adjacent path segments according to the terrain distribution information when planning the walking path in the slope area when the target work area has a slope area, so that the phase The job coincidence degree of adjacent path segments is kept within the specified range.
- the embodiment of the present specification also provides an autonomous robot equipped with the above-mentioned walking path planning device.
- the embodiment of the present specification also provides a computer storage medium on which a computer program is stored, and the computer program executes the above-mentioned walking path planning method when the computer program is run by the processor.
- the embodiment of this specification also provides another method for planning a walking path of an autonomous robot, which includes: automatically adjusting the job coincidence degree of adjacent path segments when planning the walking path of the target work area.
- the automatically adjusting the job coincidence degree of adjacent path segments includes:
- the job coincidence degree of adjacent path segments is automatically adjusted.
- the automatically adjusting the job coincidence degree of adjacent path segments according to the environment information of the autonomous robot includes:
- the width value of the adjacent path section is determined according to the terrain distribution information, so as to make the operation coincidence degree of the adjacent path section Stay within the specified range.
- the embodiment of this specification also provides another walking path planning device for an autonomous robot, which is used to automatically adjust the job coincidence degree of adjacent path segments when planning the walking path of the target work area. .
- the operation coincidence degree of adjacent path sections can be automatically adjusted to make the operation coincidence degree of adjacent path sections Keeping in a suitable range can effectively prevent the problem of missing work areas for autonomous robots in high-slope scenes, thereby improving the work coverage of autonomous robots in full coverage mode.
- Figure 1 is a schematic structural diagram of an autonomous robot provided by some embodiments of this specification.
- Figure 2 is a schematic diagram of job coincidence provided by an embodiment of this specification
- Fig. 3 is a schematic diagram of the change in the degree of overlap with the slope provided by an embodiment of the specification
- FIG. 4 is a structural block diagram of a walking path planning device for an autonomous robot provided by some embodiments of this specification;
- FIG. 5 is a schematic diagram of a two-dimensional map of a target work area provided by an embodiment of this specification
- Fig. 6 is a schematic diagram of the slope distribution of the target working area provided by an embodiment of the specification.
- FIG. 7 is a schematic diagram of the partition of the target work area provided by an embodiment of the specification.
- FIG. 8 is a schematic diagram of the walking path direction of the slope area in the target work area provided by an embodiment of the specification.
- FIG. 9 is a schematic diagram of a full coverage operation path plan for a target work area provided by an embodiment of this specification.
- Fig. 10 is a flowchart of a method for planning a walking path of an autonomous robot provided by some embodiments of this specification.
- the full-coverage working path is described by taking an arch-shaped path as an example.
- the full-coverage working path may also be a spiral path or a reciprocating path.
- the environmental information in this manual refers to terrain distribution environmental information (hereinafter referred to as terrain distribution information).
- terrain distribution information can be used to characterize the absolute height, relative height difference, or steepness of the slope.
- terrain distribution information is described by taking slope distribution information as an example. However, this specification is not limited to this. In other embodiments, the terrain distribution information may also be an absolute height distribution, a relative height difference distribution, or a height change rate distribution.
- the maps mentioned in this manual are two-dimensional maps. Specifically, the map mentioned in this specification may be a topographic map or a plan view.
- the slope area in this manual refers to the area within the target work area whose topography meets the set conditions.
- the area in the target work area where the slope angle value reaches the first slope angle value may be used as the slope area.
- the autonomous robot 100 can autonomously move in the work area 200 to automatically perform work tasks.
- the autonomous robot 100 may be, for example, an automatic lawn mower, an automatic cleaning device, an automatic watering device, or an automatic snow sweeper.
- the autonomous robot In the full coverage operation mode, the autonomous robot will generally move along the planned full coverage walking path.
- the working area is flat.
- the overlap degree of autonomous robots in adjacent path sections is fixed, and the coverage rate of full-coverage operations can be guaranteed.
- the job coincidence degree refers to the overlap of the working width of an autonomous robot working along one of the adjacent path sections and the working width of working along the other one of the adjacent path sections.
- the nth path segment is adjacent to the n+1th path segment.
- the working width of the autonomous robot working along the nth path segment is w
- the working width along the n+1th path segment is w.
- the overlap degree of the operations of two adjacent path sections is d (for example, as shown in the slashed part in Figure 2).
- the working area of an autonomous robot is sometimes not flat.
- the overlap between adjacent path segments (shown by the vertical dashed line in Figure 3) is the default value (as shown in Figure 3).
- the working width of the autonomous robot is determined by the working execution mechanism of the autonomous robot.
- the diameter of the cutter head of the intelligent lawn mower is the working width of the intelligent lawn mower.
- the autonomous robot in some embodiments of this specification is equipped with a walking path planning device.
- the walking path planning device can automatically adjust the operation overlap of adjacent path segments when planning the walking path of the target work area, so as to keep the operation overlap of adjacent path segments in a proper range, which can effectively prevent high-slope scenes.
- Autonomous robots have the problem of missing work areas, thus increasing the work coverage of autonomous robots in full coverage mode.
- the automatically adjusting the job coincidence degree of adjacent path segments may include: automatically adjusting the job coincidence degree of adjacent path segments according to the environment information of the autonomous robot.
- the walking path planning device may include a terrain information acquisition module 41, a gradient area determination module 42, and a walking path planning module 42.
- the terrain information acquisition module 41 may be used to acquire terrain distribution information of the target work area
- the slope area determination module 42 may be used to determine whether there is a gradient area in the target work area according to the terrain distribution information
- the walking path planning module 43 It can be used to determine the width value of adjacent path segments according to the terrain distribution information when planning the walking path of the slope area when there is a slope area in the target work area, so that the width of the adjacent path segment
- the job coincidence degree is kept within the specified range (for example, 1 to 5 cm).
- the autonomous robot in the full coverage mode, when there is a slope area in the target work area, when the autonomous robot is planning the walking path of the slope area, it can determine the width value of the adjacent path segment according to the terrain distribution information, so that The operation coincidence degree of adjacent path segments is maintained at a range of not less than zero, which can effectively prevent the problem of autonomous robots missing the operation area in high-slope scenarios.
- the distance from any position point x on the path segment n to the path segment m is that the path segment n is at the position point x
- the width between path segment m and path segment n in the area (generally the default value).
- the job coincidence degree should not be too large (for example, beyond the default job coincidence value), so as not to affect the work efficiency of the autonomous robot due to the large job coincidence degree. .
- the terrain information acquisition module 41 can make the autonomous robot traverse the target work area in advance, and in the process, call the inclination sensor or gyroscope of the autonomous robot to collect the slope distribution information of the target work area.
- the aforementioned traversal may be a traversal performed only for collecting slope distribution information.
- the aforementioned traversal may also be to perform a full-coverage work task once, and in the process of performing the work task, collect slope distribution information by the way.
- the autonomous robot can perform full coverage operation path planning according to the two-dimensional map generated during the mapping phase (for example, as shown in Figure 5) (it is understandable that the full coverage operation path planning in this case The terrain problem is not considered), so as to traverse the target work area according to the full coverage work path, so as to realize the slope distribution information collection of the target work area.
- the first slope angle value can be used as a dividing line to divide the flat area and the slope area, that is, the area in the target work area whose slope angle is less than the first slope angle value can be called the flat area, and the target work area The area where the slope angle reaches the first slope angle value is called the slope area.
- the slope distribution information of the target work area can be represented by the isoslope distribution map of the target work area.
- the slope area determination module 42 can determine whether there is a slope area in the target work area through the isoslope lines on the isoslope distribution map.
- the slope angle is 10° as the first slope angle value
- the contour lines of the flat area with the slope angle lower than 10° can be deleted or blanked, and Keep the part of the area where the slope angle is not less than 10°, so as to determine the slope area of the target work area.
- the walking path planning module 43 may first partition the target work area.
- the gradient area is a regular area (that is, the outer contour of the gradient area is a regular shape, such as a rectangle, etc.)
- the outer contour of the gradient area can be directly used as a dividing line for partitioning to facilitate subsequent walking path planning.
- the walking path planning module 43 may also perform virtual regularization on the gradient area to make it form a virtual area.
- the regular working area of the boundary which further facilitates the subsequent walking path planning.
- S1 and S2 there are two slope areas S1 and S2 in the target work area. Since both S1 and S2 are irregular regions, S1 and S2 can be virtually regularized by generating the minimum bounding rectangles of S1 and S2 (for example, as shown by the thin dashed line in FIG. 7).
- the entire target work area can be divided into seven work partitions, A, B, C, D, E, S1, and S2.
- the walking path planning module 43 can plan a full coverage work path for each work partition respectively.
- the walking path planning module 43 can plan each path segment according to the default path segment interval (that is, the width value of adjacent path segments).
- the walking path planning module 43 can adaptively adjust the adjacent path segments according to the slope angle value of each position point on the adjacent path segment and the working width of the autonomous robot. (For example, adjust L 2 and L 3 in Fig. 3) to keep the overlap between adjacent path segments within the specified range.
- the so-called adaptive adjustment refers to adjusting the width value between adjacent path segments according to the maximum slope angle value of different slope areas (for example, 0°, 20°, 30°, etc.), so that even at the maximum slope angle,
- the corresponding operation coincidence degree is also positive, that is, there is no missing operation area.
- the walking path planning module 43 can plan each path segment according to the default walking direction (for example, A, B, C, The walking directions of the five operation zones D and E are the default walking directions).
- the walking path planning module 43 should avoid the gradient direction of the slope area as much as possible when planning the walking direction of the work area in the slope area. Reduce the climbing difficulty of autonomous robots.
- the walking path planning module 43 may first determine the gradient direction of the gradient area (for example, as shown by the solid line with a double arrow in FIG. 8); and determine the gradient Whether the slope angle value corresponding to the direction exceeds the second slope angle value (the second slope angle value can be set based on the climbing limit of the autonomous robot); wherein, the second slope angle value is greater than the first slope angle value mentioned above. If the slope angle value corresponding to the gradient direction exceeds the second slope angle value, it indicates that the maximum slope angle of the slope area may affect the climbing of the autonomous robot. Therefore, when planning the walking path of the work zone in the slope area, The walking path planning module 43 can keep the angle between the walking direction of the walking path and the gradient direction within a specified angle range.
- the walking path planning module 43 can also make the walking path
- the angle between the walking direction and the gradient direction is a specified value.
- the specified value is larger, the climbing difficulty of the autonomous robot is lower. Therefore, when the specified value is 90° (for example, as shown by the dot-dash line with a double arrow in Figure 9), the climbing difficulty of the autonomous robot can be drop to lowest.
- the walking path planning module 43 may use the default walking direction as the walking direction of the walking path.
- the corresponding bow-shaped path can be drawn (for example, as shown in Figure 9), so as to realize that the slope information of the target work area is considered In the case of complete coverage of the target work area, complete the job path planning. After the full coverage operation path of the target work area is planned, subsequent full coverage tasks can be executed according to the full coverage operation path.
- the walking path planning method of the autonomous robot in this specification may include: automatically adjusting the operation overlap of adjacent path segments when planning the walking path of the target work area.
- the automatically adjusting the job coincidence degree of adjacent path segments may include: automatically adjusting the job coincidence degree of adjacent path segments according to the environment information of the autonomous robot.
- the walking path planning method of an autonomous robot may include the following steps:
- the terrain distribution information includes at least one of the following: slope distribution information, absolute height distribution information, relative height difference distribution information, or height change rate distribution information.
- the judging whether there is a slope area in the target work area according to the terrain distribution information includes:
- the determining the width value of the adjacent path segment according to the slope distribution information includes:
- the width value of the adjacent path segment is determined according to the slope angle value of each position point on the adjacent path segment and the working width of the autonomous robot.
- the walking path planning method of some embodiments of the specification it further includes:
- the slope angle value corresponding to the gradient direction exceeds the second slope angle value, when planning the walking path of the slope area, the angle between the walking direction of the walking path and the gradient direction is kept within the specified range. Angular range.
- the step of making the angle between the walking direction of the walking path and the gradient direction within a preset angle range includes:
- the angle between the walking direction of the walking path and the gradient direction is a specified value.
- the walking path planning method of some embodiments of the specification it further includes:
- the default walking direction is used as the walking direction of the walking path.
- the acquiring topography distribution information of the target work area includes:
- the terrain distribution information of the target work area is collected.
- the terrain distribution information of the target working area includes:
- These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
- the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
- the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- the computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
- processors CPUs
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- the memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
- RAM random access memory
- ROM read-only memory
- flash RAM flash memory
- Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
- the information can be computer-readable instructions, data structures, program modules, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory or other memory technology
- CD-ROM compact disc
- this specification can be provided as a method, a system or a computer program product. Therefore, this specification may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this specification can take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
- This specification can also be practiced in distributed computing environments. In these distributed computing environments, tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Medical Informatics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
一种自主机器人及其行走路径规划方法、装置和存储介质,方法包括:获取目标工作区域的地势分布信息(S101);根据地势分布信息判断目标工作区域内是否存在坡度区(S102);如果目标工作区域存在坡度区,则在规划坡度区部分的行走路径时,根据地势分布信息确定相邻路径段的宽度值,以使相邻路径段的作业重合度保持在指定范围内(S103)。本方法可以提高自主机器人在全覆盖模式下的作业覆盖率。
Description
本申请要求了申请日为2019年9月27日,申请号为201910924785.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本说明书涉及机器人技术领域,尤其是涉及一种自主机器人及其行走路径规划方法、装置和存储介质。
自主机器人(或称为自移动机器人)是其本体自带各种必要的传感器、控制器,在运行过程中无外界人为信息输入和控制的条件下,可以独立完成一定的任务的机器人,即自主机器人可以在工作区域内自主移动并执行作业任务。
在全覆盖作业模式,自主机器人一般会着沿规划好的全覆盖行走路径移动作业。目前,在现有的全覆盖行走路径规划算法中,基于牛耕法(弓字形)的路径规划算法,由于其原理简单、便于实现,而被广泛应用于实际生产中。
在现有技术中,当自主机器人基于牛耕法规划作业路径时,一般是默认工作区域是平整的。在平整工作区域下,自主机器人在相邻路径段的作业重合度是固定的,全覆盖作业的覆盖率能够得到保证。然而实际情况下,整个工作区域或其一部分,往往可能会是高低不平或有坡度的。在此情况下,当自主机器人沿规划路径行走在高低不平区域时,相邻路径段的作业重合度一般会发生变化,从而容易出现遗漏作业区域,进而容易影响自主机器人在全覆盖模式下的作业覆盖率。
发明内容
本说明书实施例的目的在于提供一种自主机器人及其行走路径规划方法、装置和存储介质,以提高自主机器人在全覆盖模式下的作业覆盖率。
为达到上述目的,一方面,本说明书实施例提供了一种自主机器人的行走路径规 划方法,包括:
获取目标工作区域的地势分布信息;
根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;
如果所述目标工作区域存在坡度区,则在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
另一方面,本说明书实施例还提供了一种自主机器人的行走路径规划装置,包括:
地势信息获取模块,用于获取目标工作区域的地势分布信息;
坡度区域确定模块,用于根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;
行走路径规划模块,用于当所述目标工作区域存在坡度区时,在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
另一方面,本说明书实施例还提供了一种自主机器人,所述自主机器人配置有上述的行走路径规划装置。
另一方面,本说明书实施例还提供了一种计算机存储介质,其上存储有计算机程序,所述计算机程序被所述处理器运行时执上述的行走路径规划方法。
另一方面,本说明书实施例还提供了另一种自主机器人的行走路径规划方法,包括:在规划目标工作区域的行走路径时,自动调整相邻路径段的作业重合度。
在一个实施例中,所述自动调整相邻路径段的作业重合度,包括:
根据所述自主机器人的环境信息自动调整相邻路径段的作业重合度。
在一个实施例中,所述根据所述自主机器人的环境信息自动调整相邻路径段的作业重合度,包括:
获取目标工作区域的地势分布信息;
根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;
如果所述目标工作区域存在坡度区,则在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
另一方面,本说明书实施例还提供了另一种自主机器人的行走路径规划装置,所 述行走路径规划装置用于在规划目标工作区域的行走路径时,自动调整相邻路径段的作业重合度。
由以上本说明书实施例提供的技术方案可见,本说明书实施例中,在规划目标工作区域的行走路径时,可以自动调整相邻路径段的作业重合度,以使相邻路径段的作业重合度保持在合适范围,从而可以有效防止高坡场景下自主机器人出现遗漏作业区域的问题,因而提高了自主机器人在全覆盖模式下的作业覆盖率。
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本说明书一些实施例提供的自主机器人的结构示意图;
图2为本说明书一实施例提供的作业重合度示意图;
图3为本说明书一实施例提供的作业重合度随坡度变化示意图;
图4为本说明书一些实施例提供的自主机器人的行走路径规划装置的结构框图;
图5为本说明书一实施例提供的目标工作区域的二维地图示意图;
图6为本说明书一实施例提供的目标工作区域的坡度分布示意图;
图7为本说明书一实施例提供的目标工作区域的分区示意图;
图8为本说明书一实施例提供的目标工作区域内坡度区的行走路径方向示意图;
图9为本说明书一实施例提供的目标工作区域的全覆盖作业路径规划示意图;
图10为本说明书一些实施例提供的自主机器人的行走路径规划方法的流程图。
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
为了便于描述,在下文所述的一些实施例中,全覆盖作业路径是以弓字形路径为例进行说明的。但是,本领域技术人员应当理解,本说明书不限于此,在其他实施例中,所述全覆盖作业路径也可以是螺旋线路径或回字形路径等。
本说明书的环境信息是指地势分布环境信息(以下简称地势分布信息)。地势分布信息可以用于表征地表形态的绝对高度、相对高差或坡度的陡缓程度。为了便于描述,在下文所述的一些实施例中,地势分布信息是以坡度分布信息为例进行说明的。但本说明书不限于此,在其他实施例中,所述地势分布信息还可以是绝对高度分布、相对高差分布或高度变化率分布等。
本说明书中提及的地图均为二维地图。具体而言,本说明书中提及的地图可以为地形图或平面图。
本说明书中的坡度区是指在目标工作区域内,其地势分布满足设定条件的区域。例如本说明书一些实施例中,以坡度分布信息为例,目标工作区域内坡角值达到第一坡角值的区域可以作为坡度区。
参考图1所示,本说明书一些实施例的自主机器人100可以在工作区域200内自主移动,以自动执行作业任务。在一些示例性实施例中,所述自主机器人100例如可以为自动割草机、自动清洁设备、自动浇灌设备或自动扫雪机等。
在全覆盖作业模式下,自主机器人一般会着沿规划好的全覆盖行走路径移动作业。
当自主机器人基于牛耕法等规划全覆盖作业路径时,一般是默认工作区域是平整的。在平整工作区域下,自主机器人在相邻路径段的作业重合度是固定的,全覆盖作业的覆盖率可以得到保证。在本说明书的实施例中,所述作业重合度是指:自主机器人沿相邻路径段中一条路径段作业的作业宽度,与其沿相邻路径段中另一条路径段作业的作业宽度的重叠部分。例如在图2中,第n条路径段与第n+1条路径段相邻,自主机器人沿第n条路径段作业的作业宽度为w,沿第n+1条路径段的作业宽度为w,这两条相邻路径段的作业重合度为d(例如图2中画斜线部分所示)。
然而,实际上自主机器人的工作区域有时并不平整。例如在图3所示的场景下,当自主机器人在平整区域作业时,相邻路径段(如图3中的竖向虚线所示)之间的作业重合度为默认值(如图3中的Δ
1),当自主机器人在坡度1区域作业时,相邻路径段之间的作业重合度为Δ
2-A-(A-Δ
1))/cosα,其中,A为自主机器人的作业宽度,α为坡度1的坡角,且cosα=L
1/L
2,L
1为平整区域相邻路径段之间的宽度,L
2为坡度1 区域相邻路径段之间的宽度。由于L
2>L
1,自主机器人的作业宽度固定的,因此,Δ
2<Δ
1。当自主机器人在坡角更大的坡度2作业时,相邻路径段之间的作业重合度为Δ
3=A-(A-Δ
1))/cosβ,β为坡度2的坡角,且cosβ=L
1/L
3,L
3为坡度2区域相邻路径段之间的宽度。由于L
3>L
2>L
1,自主机器人的作业宽度固定,因此,Δ
3<Δ
2<Δ
1。
一般地,自主机器人的作业宽度是由自主机器人的作业执行机构确定的。例如,在一示例性实施例中,当自主机器人为智能割草机时,智能割草机的刀盘直径即为智能割草机的作业宽度。
由此可见,相邻路径段之间的作业重合度,会随着坡角的增大而减小,当坡角大于一定值(例如图3中的β角所示)时,就出现遗漏作业区域的现象,从而降低了自主机器人在全覆盖模式下的作业覆盖率。
例如,以自动割草机的工作区域为例,由于用户住宅环境或花园中的特殊布局,真实的草坪往往存在高坡等地势不一的场景。自动割草机在全覆盖切割模式下,若始终依据以二维地图为基础实施规划的全覆盖作业路径进行覆盖切割,则在高坡场景下,就容易出现漏切割问题。
有鉴于此,为了解决自主机器人在高坡场景下容易出现遗漏作业区域的问题,本说明书一些实施例的自主机器人中配置有行走路径规划装置。该行走路径规划装置可以在规划目标工作区域的行走路径时,自动调整相邻路径段的作业重合度,以使相邻路径段的作业重合度保持在合适范围,从而可以有效防止高坡场景下自主机器人出现遗漏作业区域的问题,因而提高了自主机器人在全覆盖模式下的作业覆盖率。
在本说明书一些实施例中,所述自动调整相邻路径段的作业重合度可以包括:根据自主机器人的环境信息自动调整相邻路径段的作业重合度。
例如,参考图4所示,在本说明书一些实施例中,行走路径规划装置可以包括地势信息获取模块41、坡度区域确定模块42和行走路径规划模块42。其中,地势信息获取模块41可以用于获取目标工作区域的地势分布信息;坡度区域确定模块42可以用于根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;行走路径规划模块43可以用于当所述目标工作区域存在坡度区时,在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围(例如1~5cm)内。
基于上述的行走路径规划装置,在全覆盖模式下,当目标工作区域存在坡度区, 自主机器人在规划坡度区部分的行走路径时,可以根据地势分布信息确定相邻路径段的宽度值,以使相邻路径段的作业重合度保持在不小于零的范围,从而可以有效防止高坡场景下自主机器人出现遗漏作业区域的问题。
在本说明书的一些实施例中,假设路径段m和路径段n为相邻路径段,则路径段n上任意一位置点x到路径段m的距离,即为路径段n在位置点x处与路径段m的宽度(例如图3中的L
1、L
2和L
3所示)。因此,路径段n在位置点x处与路径段m的宽度L
x可以根据公式L
x=L
0/cosθ计算得到,其中,θ为位置点x所在坡面的坡角,L
0为位于平整区域内时路径段m和路径段n之间的宽度(一般为默认值)。
在本说明书另一些实施例中,在不小于零的范围前提下,作业重合度也不宜过大(例如超出默认的作业重合度值),以免因作业重合度较大而影响自主机器人的作业效率。
在本说明书一些实施例中,地势信息获取模块41可以使自主机器人预先遍历目标工作区域,并在此过程中,调用自主机器人自带的倾角传感器或陀螺仪等采集目标工作区域的坡度分布信息。例如,在一示例性实施例中,上述的遍历可以是仅为了采集坡度分布信息而实施的遍历。而在另一示例性实施例中,上述的遍历也可以是执行一次全覆盖式作业任务,并在执行该作业任务的过程中,顺便采集坡度分布信息。当然,在进行上述遍历之前,自主机器人可以根据建图阶段生成的二维地图(例如图5所示),进行全覆盖作业路径规划(可以理解的是,此种情况下的全覆盖作业路径规划并未考虑地势问题),以便于根据该全覆盖作业路径遍历目标工作区域,从而实现目标工作区域的坡度分布信息采集。
实验和研究表明,当坡角达到一定值(以下称为第一坡角值)时,才可能会实质性影响自主机器人在全覆盖模式下的作业覆盖率。因此,可以将该第一坡角值作为分界线来划分平坦区和坡度区,即可以将目标工作区域内坡角小于该第一坡角值的区域称为平坦区,并将目标工作区域内坡角达到该第一坡角值的区域称为坡度区。一般地,目标工作区域的坡度分布信息可用目标工作区域的等坡度分布图表示,因此,坡度区域确定模块42可以通过等坡度分布图上的等坡度线,判断出目标工作区域内是否存在坡度区。例如,在如图6所示的示例性实施例中,假设以坡角为10°作为第一坡角值,则可以删除或消隐坡角低于10°的平坦区的等高线,并保留坡角不低于10°的区域部分,从而确定出目标工作区域的坡度区。
在目标工作区域内存在坡度区时,为了合理规划坡度区部分的行走路径,行走路径规划模块43可以先对目标工作区域进行分区。例如,当坡度区为规则区域(即坡度区的外轮廓为规则形状,例如矩形等)时,可以直接以坡度区的外轮廓作为分界线进行分区,以方便后续的行走路径规划。
在本说明书另一些实施例中,当坡度区为非规则区域(即坡度区的外轮廓为非规则形状)时,行走路径规划模块43还可以对坡度区进行虚拟规整,以使其形成具有虚拟边界的规则工作区域,从而进一步方便后续的行走路径规划。例如,在图7所示的示例性实施例中,目标工作区域内存在S1和S2两个坡度区。由于S1和S2均为非规则区域,因此可以通过生成S1和S2的最小外接矩形(例如图7中的细点划线所示)等方式,将S1和S2进行虚拟规整。在进行虚拟规整后,以S1和S2的虚拟边界及目标工作区域的边界为基础,从而可以将整个目标工作区域划分为A、B、C、D、E、S1和S2共七个作业分区。
在将整个目标工作区域划分为多个作业分区的基础上,行走路径规划模块43就可以分别对每个作业分区进行全覆盖作业路径规划了。一般情况下,对于位于平坦区的作业分区,在进行弓字形路径规划时,行走路径规划模块43可以按照默认的路径段间隔(即相邻路径段的宽度值)来规划各个路径段。而对于位于坡度区的作业分区,为了避免出现遗漏作业区域,行走路径规划模块43可以根据相邻路径段上各个位置点的坡角值及自主机器人的作业宽度,自适应调整相邻路径段之间的宽度值(例如调整图3中的L
2和L
3),以使相邻路径段之间的作业重合度始终保持在指定范围内。其中,所谓的自适应调整是指,根据不同坡度区的最大坡角值(例如0°、20°、30°等)调整相邻路径段之间的宽度值,使得即使在最大坡角处,其对应的作业重合度也是正值,即不存在遗漏作业区域的情况。
以弓字形路径为例,对于位于平坦区的作业分区,在进行弓字形路径规划时,行走路径规划模块43可以按照默认的行走方向来规划各个路径段(例如图9中A、B、C、D、E五个作业分区的行走方向,均为默认的行走方向)。而对于位于坡度区的作业分区,考虑到自主机器人的爬坡极限等因素,行走路径规划模块43在规划位于坡度区的作业分区的行走方向,应尽量避开坡度区的梯度方向,从而有利于降低自主机器人的爬坡难度。
例如,在本说明书一实施例中,在目标工作区域存在坡度区时,行走路径规划模 块43可以先确定坡度区的梯度方向(例如图8中带双箭头的实线所示);并判断梯度方向对应的坡角值是否超出第二坡角值(该第二坡角值可以基于自主机器人的爬坡极限设定);其中,该第二坡角值大于上述的第一坡角值。如果梯度方向对应的坡角值超出所述第二坡角值,则表明该坡度区的最大坡角可能会影响自主机器人的爬坡,因此,在规划位于坡度区的作业分区的行走路径时,行走路径规划模块43可以使行走路径的行走方向与梯度方向的夹角保持在指定夹角范围内。
在本说明书另一实施例中,如果梯度方向对应的坡角值超出所述第二坡角值,则在规划位于坡度区的作业分区的行走路径时,行走路径规划模块43也可以使行走路径的行走方向与所述梯度方向的夹角呈指定值。当该指定值越大,自主机器人的爬坡难度就越低,因此,当该指定值为90°(例如图9中带双箭头的点划线所示)时,自主机器人的爬坡难度可以降到最低。
当然,在本说明书另一实施例中,如果梯度方向对应的坡角值未超出所述第二坡角值,表明该坡度区的最大坡角不会影响自主机器人的爬坡,因此,在规划所述坡度区部分的行走路径时,行走路径规划模块43可以以默认行走方向作为行走路径的行走方向。
在确定了每个作业分区中各个路径段的行走方向及路径段间隔的基础上,就可以绘制相应的弓字形路径了(例如图9所示),从而实现在考虑了目标工作区域的坡度信息的情况下,完成对目标工作区域的全覆盖作业路径规划。在规划好目标工作区域的全覆盖作业路径后,后续就可以按照该全覆盖作业路径执行各次的全覆盖作业任务。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
与上述的自主机器人的行走路径规划装置对应,本说明书的自主机器人的行走路径规划方法可以包括:在规划目标工作区域的行走路径时,自动调整相邻路径段的作业重合度。
在本说明书一些实施例中,所述自动调整相邻路径段的作业重合度可以包括:根据所述自主机器人的环境信息自动调整相邻路径段的作业重合度。
例如,参考图10所示,在本说明书一些实施例中,自主机器人的行走路径规划方法可以包括如下步骤:
S101、获取目标工作区域的地势分布信息。
S102、根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;所述坡度区的坡角值达到第一坡角值。
S103、如果所述目标工作区域存在坡度区,则在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
在说明书一些实施例的行走路径规划方法中,所述地势分布信息包括以下至少之一:坡度分布信息、绝对高度分布信息、相对高差分布信息或高度变化率分布信息。
在说明书一些实施例的行走路径规划方法中,所述根据所述地势分布信息判断所述目标工作区域内是否存在坡度区,包括:
根据所述坡度区的坡角值是否达到第一坡角值判断所述目标工作区域内是否存在坡度区。
在说明书一些实施例的行走路径规划方法中,所述根据所述坡度分布信息确定相邻路径段的宽度值,包括:
根据相邻路径段上各个位置点的坡角值及所述自主机器人的作业宽度,确定所述相邻路径段的宽度值。
在说明书一些实施例的行走路径规划方法中,还包括:
在所述目标工作区域存在坡度区时,确定所述坡度区的梯度方向;
判断所述梯度方向对应的坡角值是否超出第二坡角值;所述第二坡角值大于所述第一坡角值;
如果所述梯度方向对应的坡角值超出所述第二坡角值,则在规划所述坡度区部分的行走路径时,使行走路径的行走方向与所述梯度方向的夹角保持在指定夹角范围内。
在说明书一些实施例的行走路径规划方法中,所述使行走路径的行走方向与所述梯度方向的夹角位于预设夹角范围内,包括:
使行走路径的行走方向与所述梯度方向的夹角呈指定值。
在说明书一些实施例的行走路径规划方法中,还包括:
如果所述梯度方向对应的坡角值未超出所述第二坡角值,则在规划所述坡度区部分的行走路径时,以默认行走方向作为行走路径的行走方向。
在说明书一些实施例的行走路径规划方法中,所述获取目标工作区域的地势分布信息,包括:
在使所述自主机器人遍历所述目标工作区域的过程中,采集所述目标工作区域的地势分布信息。
在说明书一些实施例的行走路径规划方法中,所述目标工作区域的地势分布信息,包括:
所述目标工作区域的等坡度分布图。
虽然上文描述的过程流程包括以特定顺序出现的多个操作,但是,应当清楚了解,这些过程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行(例如使用并行处理器或多线程环境)。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘式存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于装置实施例,所以描述的比较简单,相关之处参见装置实施例的部分说明即可。
以上所述仅为本说明书的实施例而已,并不用于限制本说明书。对于本领域技术 人员来说,本说明书可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。
Claims (13)
- 一种自主机器人的行走路径规划方法,其特征在于,包括:获取目标工作区域的地势分布信息,所述地势分布信息包括以下至少之一:坡度分布信息、绝对高度分布信息、等坡度分布图、相对高差分布信息或高度变化率分布信息;根据所述目标工作区域的坡角值是否达到第一坡角值判断所述目标工作区域内是否存在坡度区;如果所述目标工作区域存在坡度区,则在规划所述坡度区部分的行走路径时,根据相邻路径段上各个位置点的坡角值及所述自主机器人的作业宽度,确定所述相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内;在所述目标工作区域存在坡度区时,确定所述坡度区的梯度方向;判断所述梯度方向对应的坡角值是否超出第二坡角值;所述第二坡角值大于所述第一坡角值;如果所述梯度方向对应的坡角值超出所述第二坡角值,则在规划所述坡度区部分的行走路径时,使行走路径的行走方向与所述梯度方向的夹角保持在指定夹角范围内。
- 一种自主机器人的行走路径规划方法,其特征在于,包括:获取目标工作区域的地势分布信息;根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;如果所述目标工作区域存在坡度区,则在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
- 如权利要求2所述的自主机器人的行走路径规划方法,其特征在于,所述地势分布信息包括以下至少之一:坡度分布信息、绝对高度分布信息、相对高差分布信息或高度变化率分布信息。
- 如权利要求2所述的自主机器人的行走路径规划方法,其特征在于,所述根据所述地势分布信息判断所述目标工作区域内是否存在坡度区,包括:根据所述目标工作区域的坡角值是否达到第一坡角值判断所述目标工作区域内是否存在坡度区。
- 如权利要求4所述的自主机器人的行走路径规划方法,其特征在于,所述根 据所述坡度分布信息确定相邻路径段的宽度值,包括:根据相邻路径段上各个位置点的坡角值及所述自主机器人的作业宽度,确定所述相邻路径段的宽度值。
- 如权利要求4所述的自主机器人的行走路径规划方法,其特征在于,还包括:在所述目标工作区域存在坡度区时,确定所述坡度区的梯度方向;判断所述梯度方向对应的坡角值是否超出第二坡角值;所述第二坡角值大于所述第一坡角值;如果所述梯度方向对应的坡角值超出所述第二坡角值,则在规划所述坡度区部分的行走路径时,使行走路径的行走方向与所述梯度方向的夹角保持在指定夹角范围内。
- 如权利要求6所述的自主机器人的行走路径规划方法,其特征在于,所述使行走路径的行走方向与所述梯度方向的夹角位于预设夹角范围内,包括:使行走路径的行走方向与所述梯度方向的夹角呈指定值。
- 如权利要求6所述的自主机器人的行走路径规划方法,其特征在于,还包括:如果所述梯度方向对应的坡角值未超出所述第二坡角值,则在规划所述坡度区部分的行走路径时,以默认行走方向作为行走路径的行走方向。
- 如权利要求2所述的自主机器人的行走路径规划方法,其特征在于,所述获取目标工作区域的地势分布信息,包括:在使所述自主机器人遍历所述目标工作区域的过程中,采集所述目标工作区域的地势分布信息。
- 如权利要求2所述的自主机器人的行走路径规划方法,其特征在于,所述目标工作区域的地势分布信息,包括:所述目标工作区域的等坡度分布图。
- 一种自主机器人的行走路径规划装置,其特征在于,包括:地势信息获取模块,用于获取目标工作区域的地势分布信息;坡度区域确定模块,用于根据所述地势分布信息判断所述目标工作区域内是否存在坡度区;行走路径规划模块,用于当所述目标工作区域存在坡度区时,在规划所述坡度区部分的行走路径时,根据所述地势分布信息确定相邻路径段的宽度值,以使所述相邻路径段的作业重合度保持在指定范围内。
- 一种自主机器人,其特征在于,所述自主机器人配置有权利要求11所述的行走路径规划装置。
- 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时执行权利要求2-10任意一项所述的行走路径规划方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20867377.2A EP4036679B1 (en) | 2019-09-27 | 2020-09-25 | Autonomous robot, travel path planning method and apparatus thereof, and storage medium |
US17/764,138 US20220390953A1 (en) | 2019-09-27 | 2020-09-25 | Autonomous robot, moving path planning method and apparatus therefor, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910924785.4 | 2019-09-27 | ||
CN201910924785.4A CN112578777A (zh) | 2019-09-27 | 2019-09-27 | 自主机器人及其行走路径规划方法、装置和存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021057909A1 true WO2021057909A1 (zh) | 2021-04-01 |
Family
ID=75109873
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120181 WO2021056789A1 (zh) | 2019-09-27 | 2019-11-22 | 自主机器人及其行走路径规划方法、装置和存储介质 |
PCT/CN2020/117800 WO2021057909A1 (zh) | 2019-09-27 | 2020-09-25 | 自主机器人及其行走路径规划方法、装置和存储介质 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120181 WO2021056789A1 (zh) | 2019-09-27 | 2019-11-22 | 自主机器人及其行走路径规划方法、装置和存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220390953A1 (zh) |
EP (1) | EP4036679B1 (zh) |
CN (1) | CN112578777A (zh) |
WO (2) | WO2021056789A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113534823A (zh) * | 2021-09-16 | 2021-10-22 | 季华实验室 | 种植机器人路径规划方法、装置、电子设备和存储介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113221856B (zh) * | 2021-06-11 | 2022-12-27 | 石家庄铁道大学 | 人群拥挤危险度检测方法、装置及设备 |
CN114442616A (zh) * | 2022-01-05 | 2022-05-06 | 中联重科土方机械有限公司 | 用于挖掘机的控制方法、装置、处理器及挖掘机 |
CN115032995B (zh) | 2022-06-17 | 2023-07-14 | 未岚大陆(北京)科技有限公司 | 运动控制方法、装置、电子设备及计算机存储介质 |
CN115291605A (zh) * | 2022-07-22 | 2022-11-04 | 松灵机器人(深圳)有限公司 | 路径规划方法、装置、割草机器人以及存储介质 |
CN115033110B (zh) * | 2022-08-09 | 2022-10-25 | 环球数科集团有限公司 | 一种虚拟人步态模拟与三维场景路径规划系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106239507A (zh) * | 2016-08-16 | 2016-12-21 | 成都市和平科技有限责任公司 | 一种自动寻路机器人系统及方法 |
CN107402570A (zh) * | 2016-05-19 | 2017-11-28 | 科沃斯机器人股份有限公司 | 自移动机器人、其控制方法及其组合机器人 |
CN108732590A (zh) * | 2018-05-16 | 2018-11-02 | 重庆邮电大学 | 一种双足机器人及一种斜坡角度测量方法 |
CN108958066A (zh) * | 2017-05-19 | 2018-12-07 | 百度在线网络技术(北京)有限公司 | 仿真测试方法和装置 |
CN108981726A (zh) * | 2018-06-09 | 2018-12-11 | 安徽宇锋智能科技有限公司 | 基于感知定位监测的无人车语义地图建模及构建应用方法 |
CN109834711A (zh) * | 2019-02-21 | 2019-06-04 | 山东职业学院 | 一种四足机器人运动控制方法、系统及机器人 |
CN208953962U (zh) * | 2018-12-05 | 2019-06-07 | 苏州博众机器人有限公司 | 一种机器人感知系统及机器人 |
EP3521965A1 (en) * | 2018-02-02 | 2019-08-07 | LG Electronics Inc. | Moving robot |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6837033B2 (en) * | 2002-05-23 | 2005-01-04 | Deere & Company | Agricultural bi-mower with cantilever beam suspension |
US6907336B2 (en) * | 2003-03-31 | 2005-06-14 | Deere & Company | Method and system for efficiently traversing an area with a work vehicle |
CA2590382C (en) * | 2007-05-28 | 2012-11-13 | Stanley J. Boyko | Castering wheel assembly for rotary mowers |
CN201178584Y (zh) * | 2008-04-10 | 2009-01-14 | 河南农业大学 | 单牵引斜坡专用割草机 |
DE102011082416A1 (de) * | 2011-09-09 | 2013-03-14 | Robert Bosch Gmbh | Autonomes Arbeitsgerät |
US10149430B2 (en) * | 2013-02-20 | 2018-12-11 | Husqvarna Ab | Robotic work tool configured for improved turning in a slope, a robotic work tool system, and a method for use in the robot work tool |
CN103125202B (zh) * | 2013-03-15 | 2016-03-30 | 中国农业大学 | 一种旋转式割草机的刈割方式及装置 |
JP5336672B1 (ja) * | 2013-04-24 | 2013-11-06 | 有限会社渥美不動産アンドコーポレーション | 自走式草刈り機 |
KR102140854B1 (ko) * | 2014-02-06 | 2020-08-03 | 얀마 파워 테크놀로지 가부시키가이샤 | 자율 주행 작업 차량의 주행 경로 설정 방법 |
DE102014113965A1 (de) * | 2014-09-26 | 2016-03-31 | Claas Selbstfahrende Erntemaschinen Gmbh | Mähdrescher mit Fahrerassistenzsystem |
JP6977000B2 (ja) * | 2016-03-18 | 2021-12-08 | ヤンマーパワーテクノロジー株式会社 | 作業車両用経路生成システム |
KR102548019B1 (ko) * | 2016-03-30 | 2023-06-26 | 얀마 파워 테크놀로지 가부시키가이샤 | 경로 생성 장치 및 작업차 |
EP3459334B1 (en) * | 2016-05-19 | 2022-09-07 | Positec Power Tools (Suzhou) Co., Ltd. | Self-moving device and control method thereof |
CN107643750B (zh) * | 2016-07-21 | 2020-05-22 | 苏州宝时得电动工具有限公司 | 智能行走设备斜坡的识别方法及其智能行走设备 |
CN106760261B (zh) * | 2016-11-25 | 2022-11-11 | 美建建筑系统(中国)有限公司 | 屋面扫雪机器人 |
KR102700830B1 (ko) * | 2016-12-26 | 2024-09-02 | 삼성전자주식회사 | 무인 이동체를 제어하기 위한 방법 및 전자 장치 |
CN109425352A (zh) * | 2017-08-25 | 2019-03-05 | 科沃斯机器人股份有限公司 | 自移动机器人路径规划方法 |
CN107509443B (zh) * | 2017-09-05 | 2020-01-17 | 惠州市蓝微电子有限公司 | 一种智能割草机的坡地行驶控制方法及系统 |
CN109496287A (zh) * | 2017-10-31 | 2019-03-19 | 深圳市大疆创新科技有限公司 | 可移动设备作业控制方法及装置、路径规划方法及装置 |
WO2019096263A1 (zh) * | 2017-11-16 | 2019-05-23 | 南京德朔实业有限公司 | 智能割草系统 |
CN108113583B (zh) * | 2017-12-30 | 2020-07-14 | 珠海市一微半导体有限公司 | 清洁机器人的清洁方法和系统 |
CN110093955A (zh) * | 2018-01-30 | 2019-08-06 | 岭东核电有限公司 | 用于隧洞的清理收集系统及其控制方法 |
RU2758225C1 (ru) * | 2018-06-29 | 2021-10-26 | Ниссан Мотор Ко., Лтд. | Способ помощи при движении и устройство помощи при движении |
CN109006783A (zh) * | 2018-08-01 | 2018-12-18 | 牛贞伟 | 一种拔草装置、农田智能拔草机器人 |
CN109041755A (zh) * | 2018-09-27 | 2018-12-21 | 山东拜罗智能科技有限公司 | 一种陡坡智能割草机器人及控制方法 |
CN109634285B (zh) * | 2019-01-14 | 2022-03-11 | 傲基科技股份有限公司 | 割草机器人及其控制方法 |
CN109729814A (zh) * | 2019-02-26 | 2019-05-10 | 北斗万春(重庆)智能机器人研究院有限公司 | 刀盘上下自适应调节装置及智能割草机 |
CN110132215B (zh) * | 2019-04-29 | 2021-08-10 | 丰疆智能科技研究院(常州)有限公司 | 农机作业幅宽自动获取方法和农机作业面积获取方法 |
-
2019
- 2019-09-27 CN CN201910924785.4A patent/CN112578777A/zh active Pending
- 2019-11-22 WO PCT/CN2019/120181 patent/WO2021056789A1/zh active Application Filing
-
2020
- 2020-09-25 WO PCT/CN2020/117800 patent/WO2021057909A1/zh active Application Filing
- 2020-09-25 EP EP20867377.2A patent/EP4036679B1/en active Active
- 2020-09-25 US US17/764,138 patent/US20220390953A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107402570A (zh) * | 2016-05-19 | 2017-11-28 | 科沃斯机器人股份有限公司 | 自移动机器人、其控制方法及其组合机器人 |
CN106239507A (zh) * | 2016-08-16 | 2016-12-21 | 成都市和平科技有限责任公司 | 一种自动寻路机器人系统及方法 |
CN108958066A (zh) * | 2017-05-19 | 2018-12-07 | 百度在线网络技术(北京)有限公司 | 仿真测试方法和装置 |
EP3521965A1 (en) * | 2018-02-02 | 2019-08-07 | LG Electronics Inc. | Moving robot |
CN108732590A (zh) * | 2018-05-16 | 2018-11-02 | 重庆邮电大学 | 一种双足机器人及一种斜坡角度测量方法 |
CN108981726A (zh) * | 2018-06-09 | 2018-12-11 | 安徽宇锋智能科技有限公司 | 基于感知定位监测的无人车语义地图建模及构建应用方法 |
CN208953962U (zh) * | 2018-12-05 | 2019-06-07 | 苏州博众机器人有限公司 | 一种机器人感知系统及机器人 |
CN109834711A (zh) * | 2019-02-21 | 2019-06-04 | 山东职业学院 | 一种四足机器人运动控制方法、系统及机器人 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4036679A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113534823A (zh) * | 2021-09-16 | 2021-10-22 | 季华实验室 | 种植机器人路径规划方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20220390953A1 (en) | 2022-12-08 |
WO2021056789A1 (zh) | 2021-04-01 |
CN112578777A (zh) | 2021-03-30 |
EP4036679B1 (en) | 2024-09-04 |
EP4036679A4 (en) | 2023-08-30 |
EP4036679A1 (en) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057909A1 (zh) | 自主机器人及其行走路径规划方法、装置和存储介质 | |
US20210150184A1 (en) | Target region operation planning method and apparatus, storage medium, and processor | |
US11044842B2 (en) | Path planning for area coverage | |
US9274524B2 (en) | Method for machine coordination which maintains line-of-site contact | |
WO2021114989A1 (zh) | 自主机器人及其控制方法、计算机存储介质 | |
US10197407B2 (en) | Method and robot system for autonomous control of a vehicle | |
CN106643719A (zh) | 一种智能割草车的路径规划算法 | |
CN110955262B (zh) | 光伏组件清洁机器人的路径规划与跟踪的控制方法及系统 | |
CN110262487B (zh) | 一种障碍物检测方法、终端及计算机可读存储介质 | |
CN108490932A (zh) | 一种割草机器人的控制方法及自动控制割草系统 | |
GB2615724A (en) | System and method for surface feature detection and traversal | |
CN112306049B (zh) | 自主机器人及其避障方法、装置和存储介质 | |
CN117635719B (zh) | 基于多传感器融合的除草机器人定位方法、系统及装置 | |
EP3695694A1 (en) | Robotic vehicle for movable operation in a work area | |
Linker et al. | Path-planning algorithm for vehicles operating in orchards | |
BR112021023303B1 (pt) | Faixa de atividade determinante de dados trabalhados coletados por máquina | |
US11882787B1 (en) | Automatic sensitivity adjustment for an autonomous mower | |
CN116576859A (zh) | 路径导航方法、作业控制方法及相关装置 | |
EP3696640A1 (en) | Robotic vehicle for movable operation in a work area | |
EP3696639B1 (en) | Robotic vehicle for movable operation in a work area | |
Fei | Autonomous Co-Robotic Orchard Platform for Improved Fruit Harvesting Efficiency | |
Li et al. | Low-altitude remote sensing-based global 3D path planning for precision navigation of agriculture vehicles-beyond crop row detection | |
CN114047755B (zh) | 农药喷洒机器人导航规划方法、计算机装置 | |
Cernicchiaro et al. | Fast return path planning for agricultural autonomous terrestrial robot in a known field | |
WO2023160606A1 (zh) | 基于栅格地图的机器人寻路方法、装置、机器人及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20867377 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020867377 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020867377 Country of ref document: EP Effective date: 20220428 |