WO2021057800A1 - 一种溢流砖及其槽底曲线设计优化方法 - Google Patents

一种溢流砖及其槽底曲线设计优化方法 Download PDF

Info

Publication number
WO2021057800A1
WO2021057800A1 PCT/CN2020/117168 CN2020117168W WO2021057800A1 WO 2021057800 A1 WO2021057800 A1 WO 2021057800A1 CN 2020117168 W CN2020117168 W CN 2020117168W WO 2021057800 A1 WO2021057800 A1 WO 2021057800A1
Authority
WO
WIPO (PCT)
Prior art keywords
overflow
overflow brick
brick
groove bottom
bottom curve
Prior art date
Application number
PCT/CN2020/117168
Other languages
English (en)
French (fr)
Inventor
李淼
李孟虎
徐莉华
王答成
Original Assignee
彩虹显示器件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩虹显示器件股份有限公司 filed Critical 彩虹显示器件股份有限公司
Priority to JP2022520028A priority Critical patent/JP2022549960A/ja
Publication of WO2021057800A1 publication Critical patent/WO2021057800A1/zh
Priority to US17/687,713 priority patent/US20220188484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the field of glass substrate manufacturing, and relates to an overflow brick and a groove bottom curve design optimization method.
  • the overflow brick is one of the core components of the glass substrate manufacturing and molding equipment.
  • the control of the thickness uniformity of the glass substrate is one of the particularly important process technologies. Taking the 0.7mm glass substrate as an example, the thickness fluctuation must be about 20um or 30um Within.
  • the structural design of the overflow brick and the size of the process margin are one of the key factors for the stability of the forming process.
  • the forming process is adjusted according to the flow and balance control of the far and near ends of the overflow brick and the initial distribution of the overall thickness, such as flow rate, temperature, etc.
  • the overflow down-draw method is used to manufacture glass substrates with strict requirements for stress, warpage, thickness and sheet bending and stable performance, and the thickness of the glass substrate and its consistency control It is one of very important design and process technology. Because the glass substrate is very thin, any process fluctuations in the production process, including air flow, thermal field, etc., will affect the thickness of the formed glass substrate, causing the thickness distribution of the glass substrate produced to not meet the demand, which will negatively affect the quality of the display. Therefore, the design of the overflow brick should consider the influence of these complex factors on the thickness distribution of the glass substrate, that is, increase the production margin from the design, corresponding to the general requirement that the thickness of the glass substrate is less than 15 ⁇ m.
  • the purpose of the present invention is to overcome the defect that the thickness distribution of the glass substrate produced by the overflow down-draw method in the prior art often does not meet the requirements, and to provide an overflow brick and a method for optimizing the design of the groove bottom curve.
  • a method for designing and optimizing the bottom curve of overflow brick grooves including the following steps:
  • the design parameters of the overflow brick in the S1 are obtained through production line and product design, including the height of the inlet groove bottom of the overflow brick, the width of the inlet groove, the length of the overflow surface, the inclination angle of the overflow weir, and the designed extraction volume.
  • the specific method for obtaining the standard extraction amount of the overflow brick in the S1 is:
  • is the density of the glass, the unit is Kg/m 3 ; g is the acceleration of gravity, the unit is m/s 2 ; ⁇ is the molding viscosity of the glass, the unit is poise;
  • j is the glass surface tension angle
  • Q s is the standard extraction quantity of overflow brick, the unit is kg/s;
  • L is the length of the overflow surface, the unit is mm;
  • H is the height of the inlet groove bottom of the overflow brick
  • W is the width of the inlet groove of the overflow brick
  • S301 Divide the overflow surface length L of the overflow brick into two sections according to the length L 0 of the overflow brick divider block, which are respectively 0 to LL 0 and LL 0 to L;
  • S302 Divide the initial overflow brick groove bottom curve obtained by S2 into two segments from 0 to LL 0 and LL 0 to L.
  • the fluid software FLUENT is used for overflow simulation, and the thickness difference ⁇ of the formed glass substrate is obtained.
  • the overflow brick groove bottom curve and the design parameters of the overflow brick are used to process the overflow brick;
  • the inlet groove width W of the overflow brick and repeat S4 adjust the height H of the inlet groove bottom of the overflow brick and repeat S1 ⁇ S4 or adjust the inlet groove of the overflow brick Width W and height H of the inlet groove bottom of the overflow brick and repeat S1 ⁇ S4.
  • the present invention has the following beneficial effects:
  • This method first determines the design parameters of the overflow brick according to the production line and product design; then calculates the standard extraction volume of the overflow brick, and combines the overflow fluid parameters related to the glass viscosity and density, the glass surface tension parameters, and the overflow
  • the overflow height related to the weir glass overflow thickness, etc., design and calculate the groove bottom curve use the fluid software to perform overflow simulation, verify and optimize the design, so that the initial thickness of the overflow brick is extremely poor and finally meet the design goal, effectively solving the glass substrate
  • the problem of forming thickness fluctuations has increased the production margin from the design, so that the thickness of the glass substrate can be formed to meet the demand, thereby reducing the complex requirements for process adjustment, and further maintaining the stability of the production line.
  • Figure 1 is a schematic diagram of the structure of the overflow system
  • Figure 2 is a schematic diagram of the outline structure of the overflow brick
  • Figure 3 is a schematic diagram of the structure of the overflow groove in the overflow brick
  • Fig. 5 is an optimized embodiment of the curve design of the overflow brick groove bottom provided by the present invention.
  • 1- overflow brick 2- overflow tank; 3- glass liquid feeding device; 4- overflow brick root; 5- shunt block; 6-initial overflow brick groove bottom curve; 7- overflow brick groove Bottom curve.
  • FIG. 1 is a schematic diagram of the structure of the overflow system.
  • the overflow system is constituted by the connection of the overflow brick 1 and the molten glass supply device 3.
  • the overflow brick 1 is provided with an overflow groove 2, and the bottom of the overflow brick 1 is the root of the overflow brick 1.
  • the liquid is supplied to the molten glass supply device 3 in the molten overflow molding device, and overflows along the overflow groove 2 through the two sides of the overflow brick 1 to form a glass substrate from the overflow brick root 4 of the overflow brick 1.
  • Figure 2 is a schematic diagram of the outline structure of the overflow brick used to manufacture the glass substrate by the overflow down-draw method
  • Figure 3 is a schematic diagram of the structure of the overflow groove in the overflow brick, and the key structural design dimensions are given in the figure.
  • the overflow height of the overflow tank, the length L 0 of the overflow brick dividing block 5 and the overflow groove height h of the overflow brick includes the above parameters, and of course the overflow groove bottom curve .
  • FIG 4 is a block diagram of the optimization flow chart of the overflow brick groove bottom curve design provided by the present invention. It includes the following steps: firstly, according to the production line and product design, determine the inlet groove bottom height H, the inlet groove width W, Length of overflow surface L, inclination angle of overflow weir Design the extraction quantity Q d, etc.; then calculate the standard extraction quantity Q s of the overflow brick, and combine the overflow fluid parameters related to the viscosity and density of the glass, the surface tension parameters of the glass, and the overflow height related to the overflow thickness of the overflow weir.
  • design and calculate the groove bottom curve use professional fluid software (such as FLUENT) to perform overflow simulation, verify and optimize the design, so that the initial thickness difference ⁇ of the overflow brick finally meets the design goal. specific:
  • the design parameters of the overflow brick 1 are obtained through the production line and product design, including the height H of the inlet groove bottom of the overflow brick 1, the width W of the inlet groove, the length of the overflow surface L, and the inclination angle of the overflow weir. And the design lead Q d .
  • is the density of the glass, the unit is Kg/m 3 ; g is the acceleration of gravity, the unit is m/s 2 ; ⁇ is the molding viscosity of the glass, the unit is poise, the design value is generally 35000 poise, and other design values can also be used ;
  • j is the glass surface tension angle, generally 21.7°, and different tension angles can also be used according to the specific glass;
  • Q s is the standard extraction quantity of overflow brick, the unit is kg/s;
  • L is the length of the overflow surface, the unit is mm;
  • H is the height of the inlet groove bottom of the overflow brick
  • W is the width of the inlet groove of the overflow brick
  • S302 Divide the initial overflow brick groove bottom curve obtained by S2 into two segments from 0 to LL 0 and LL 0 to L.
  • the inlet groove width W of the overflow brick and repeat S4 adjust the height H of the inlet groove bottom of the overflow brick and repeat S1 ⁇ S4 or adjust the inlet groove of the overflow brick Width W and height H of the inlet groove bottom of the overflow brick and repeat S1 ⁇ S4.
  • This method first determines the design parameters of the overflow brick 1 according to the production line and product design; then calculates the standard extraction volume of the overflow brick 1, and combines the overflow fluid parameters related to the glass viscosity and density, the glass surface tension parameters, and the
  • the overflow height related to the overflow thickness of the overflow weir glass is designed and calculated, the groove bottom curve is designed and calculated, the overflow simulation is carried out with the fluid software, and the design is verified and optimized, so that the extremely poor initial thickness of the overflow brick finally meets the design goal, which effectively solves the problem
  • the problem of the thickness fluctuation of the glass substrate is designed to increase the production margin, so that the thickness of the glass substrate can meet the demand, thereby reducing the complex requirements for process adjustment, and further maintaining the stability of the production line.
  • Fig. 5 is an embodiment of the optimization of the design with reference to the bottom curve of the overflow brick groove provided by the present invention.
  • the optimized inlet groove bottom height H of the overflow brick is 259.254mm
  • the inlet groove width W is 200.032mm
  • the overflow surface length L is 2973mm
  • the overflow weir inclination angle It is 6.0°
  • the designed extraction quantity Q d is 20 tons/day
  • the thickness range target is less than 70 ⁇ m.
  • the initial overflow brick groove bottom curve 6 and overflow brick groove bottom curve 7 in Fig. 5 are simulated by FLUENT fluid software.
  • the thickness range is 68.52 ⁇ m, which fully meets the design goal.
  • the optimized inlet groove bottom height H of the overflow brick is 265.308mm, the inlet groove width W is 204.855mm, the overflow surface length L is 2973mm, and the overflow weir inclination angle It is 6.0°, the designed extraction Q d is 22 tons/day; the thickness range target is less than 70 ⁇ m. Using FLUENT fluid software to simulate and simulate, the thickness range is 67.95 ⁇ m, which fully meets the design goal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明属于玻璃基板制造领域,公开了一种溢流砖及其槽底曲线设计优化方法,包括:S1根据溢流砖的设计参数,得到溢流砖的标准引出量;S2根据溢流砖的标准引出量,得到初始溢流砖槽底曲线;S3根据溢流砖分流块的长度对初始溢流砖槽底曲线进行直线修正,得到溢流砖槽底曲线;S4根据溢流砖槽底曲线和溢流砖的设计参数,通过溢流模拟得到成型玻璃基板的厚度极差;S5当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;当成型玻璃基板的厚度极差>预设阈值时,调节溢流砖的设计参数并重复S1~S4。解决了玻璃基板成型厚度波动问题,从设计上增加了生产裕量,使得玻璃基板成型的厚度能够满足需求。

Description

一种溢流砖及其槽底曲线设计优化方法 技术领域
本发明属于玻璃基板制造领域,涉及一种溢流砖及其槽底曲线设计优化方法。
背景技术
一般的TFT-LCD(薄膜晶体管显示器)、PDP(等离子体显示屏)等平板显示器制造领域所用的玻璃基板以溢流下拉的方式制造,在成型工序中将由玻璃熔化炉熔化了的玻璃液供给到熔融溢流下拉成型装置来制造。
显示器制造要求越来越大的玻璃基板以提高生产效率和降低成本,但越大的玻璃基板其生产难度更大,玻璃基板的质量控制更复杂。溢流砖是玻璃基板制造成型装置的核心部件之一,其中,玻璃基板厚度均匀性的控制是特别重要的工艺技术之一,以0.7mm玻璃基板为例,其厚度波动必须在大约20um或30um以内。溢流砖结构设计好坏和工艺裕度大小是成型工艺稳定的关键因素之一,根据溢流砖远近端边板流量与平衡控制、整体厚度初始分布来进行成型工艺调整,如流量、温度等,以免玻璃引出质量分布和热量分布的瞬时变化,即,使用溢流下拉法制造对应力、翘曲、厚度和板材弯曲等特性严格要求和性能稳定的玻璃基板,玻璃基板厚度及其一致性控制是非常重要的设计和工艺技术之一。由于玻璃基板很薄,生产过程的任何工艺波动,包括气流、热场等,都会对成型玻璃基板的厚度产生影响,造成生产的玻璃基板厚度分布不满足需求,进而对显示器的质量造成负面影响,所以溢流砖设计时要考虑这些复杂因素对玻璃基板厚度分布的影响,也就是从设计上增加生产裕量,相对应一般要求玻璃基板全板厚度极差<15μm。
如何保证玻璃基板厚度分布满足需求是玻璃基板制造的重要工艺控制和质 量管理项目之一,已成为玻璃基板制造中最棘手的问题之一。
发明内容
本发明的目的在于克服上述现有技术中溢流下拉法制作的玻璃基板厚度分布经常不满足需求的缺点,提供一种溢流砖及其槽底曲线设计优化方法。
为达到上述目的,本发明采用以下技术方案予以实现:
一种溢流砖槽底曲线设计优化方法,包括以下步骤:
S1:根据溢流砖的设计参数,得到溢流砖的标准引出量;
S2:根据溢流砖的设计参数和溢流砖的标准引出量,得到初始溢流砖槽底曲线;
S3:根据溢流砖分流块的长度对初始溢流砖槽底曲线进行直线修正,得到溢流砖槽底曲线;
S4:根据溢流砖槽底曲线和溢流砖的设计参数,通过溢流模拟得到成型玻璃基板的厚度极差;
S5:当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;
当成型玻璃基板的厚度极差>预设阈值时,调节溢流砖的设计参数并重复S1~S4。
本发明进一步的改进在于:
所述S1中溢流砖的设计参数通过产线和产品设计得到,包括溢流砖的入口槽底高度、入口槽宽、溢流面长度、溢流堰倾角和设计引出量。
所述S1中得到溢流砖的标准引出量的具体方法为:
S101:通过式(1)计算玻璃溢流流体参数A:
Figure PCTCN2020117168-appb-000001
其中,ρ为玻璃的密度,单位为Kg/m 3;g为重力加速度,单位为m/s 2;η为玻璃的成型粘度,单位为poise;
S102:通过式(2)计算玻璃表面张力参数B:
B=Sin(j)  (2)
其中,j为玻璃表面张力角;
S103:通过式(3)计算溢流砖单位长度溢流面的标准流量C:
Figure PCTCN2020117168-appb-000002
其中,Q s为溢流砖的标准引出量,单位为kg/s;L为溢流面长度,单位为mm;
S104:通过式(4)计算溢流槽的溢位高度D:
Figure PCTCN2020117168-appb-000003
S105:通过式(5)计算溢流槽的高宽比E:
Figure PCTCN2020117168-appb-000004
其中,H为溢流砖的入口槽底高度,W为溢流砖的入口槽宽;
S106:通过式(6)计算溢流槽截面函数F,计算公式如下所示:
Figure PCTCN2020117168-appb-000005
S107:通过式(7)计算溢流砖的标准引出量Q s
Q s=A×tanφ×[W×(H+D) 3-2×F×(H+D) 4]  (7)
S108:联立式(1)~(7)得到溢流砖的标准引出量Q s
所述溢流砖的标准引出量Q s>溢流砖的设计引出量Q d
所述玻璃表面张力角j=21.7°,玻璃的成型粘度η=35000poise。
所述S2的具体方法为:
S201:将溢流砖的溢流面长度L划分为n等份且n≥5,每一等份分别对应一个槽底位置Z值,Z值为0到L的n等分值;
S202:联立式(1)~(8),得到溢流砖的溢流面长度L的n等份中每一份对应的Z值所对应的溢流砖的溢流槽高度h并记录,得到初始溢流砖槽底曲线:
Figure PCTCN2020117168-appb-000006
其中,
Figure PCTCN2020117168-appb-000007
为溢流砖的溢流堰倾角。
所述S3的具体方法为:
S301:根据溢流砖分流块的长度L 0,将溢流砖溢流面长度L分为两段,分别为0到L-L 0段及L-L 0到L段;
S302:将S2得到的初始溢流砖槽底曲线也划分为0到L-L 0段及L-L 0到L段两段,
Figure PCTCN2020117168-appb-000008
对应的槽底高度为
Figure PCTCN2020117168-appb-000009
Z=L对应的槽底高度为h=0;
S303:将
Figure PCTCN2020117168-appb-000010
对应的槽底高度
Figure PCTCN2020117168-appb-000011
与Z=L对应的槽底高度h=0连成直线,进行直线修正,得到溢流砖槽底曲线。
所述S4的具体方法为:
根据溢流砖槽底曲线和溢流砖的设计参数,采用流体软件FLUENT进行溢流模拟,得到成型玻璃基板的厚度极差Δ。
所述S5的具体方法为:
当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;
当成型玻璃基板的厚度极差>预设阈值时,调整溢流砖的入口槽宽W并重复S4、调整溢流砖的入口槽底高度H并重复S1~S4或调整溢流砖的入口槽宽W和溢流砖的入口槽底高度H并重复S1~S4。
与现有技术相比,本发明具有以下有益效果:
本方法首先根据产线和产品设计,确定溢流砖的设计参数;然后计算溢流砖的标准引出量,并结合与玻璃粘度和密度相关的溢流流体参数、玻璃表面张力参数、与溢流堰玻璃溢出厚度相关的溢位高度等,设计计算槽底曲线,利用流体软件进行溢流模拟,验证并优化设计,使溢流砖的初始厚度极差最终满足设计目标,有效地解决了玻璃基板成型厚度波动的问题,从设计上增加了生产裕量,使得玻璃基板成型的厚度能够满足需求,进而减少对工艺调整的复杂要求,进一步的维持产线稳定性。
附图说明
图1为溢流系统结构示意图;
图2为溢流砖外形结构示意图;
图3为溢流砖内溢流槽的结构示意图;
图4为本发明提供的一种溢流砖槽底曲线设计优化方法流程框图;
图5为本发明提供的一种溢流砖槽底曲线设计优化实施例。
其中:1-溢流砖;2-溢流槽;3-玻璃液供料装置;4-溢流砖根部;5-分流块;6-初始溢流砖槽底曲线;7-溢流砖槽底曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
参见图1,图1为溢流系统结构示意图,溢流系统由溢流砖1和玻璃液供料装置3连接构成。溢流砖1内开设有溢流槽2,溢流砖1的底部为溢流砖1的根部;在玻璃基板以熔融溢流的方式制造时,在成型工序中将由玻璃熔化炉熔化了的玻璃液供给到熔融溢流成型装置中的玻璃液供料装置3,并沿溢流槽2通过溢流砖1两侧溢流,从溢流砖1的溢流砖根部4以下形成玻璃基板。
参见图2和图3,图2为溢流下拉法制造玻璃基板所用溢流砖的外形结构示意图,图3为溢流砖内溢流槽的结构示意图,图中给出了关键的结构设计尺寸,包括溢流砖的入口槽底高度H、入口槽宽W、溢流面长度L、溢流堰倾角
Figure PCTCN2020117168-appb-000012
溢流槽的溢位高度、溢流砖分流块5的长度L 0和溢流砖的溢流槽高度h,在实际生产中,溢流砖都包括以上参数,当然还包括溢流槽底曲线。
参见图4,图4为本发明提供的溢流砖槽底曲线设计优化流程框图,包括以下步骤:首先根据产线和产品设计,确定溢流砖的入口槽底高度H、入口槽宽W、溢流面长度L、溢流堰倾角
Figure PCTCN2020117168-appb-000013
设计引出量Q d等;然后计算溢流砖的标准引出量Q s, 并结合与玻璃粘度和密度相关的溢流流体参数、玻璃表面张力参数、与溢流堰玻璃溢出厚度相关的溢位高度等,设计计算槽底曲线,利用专业的流体软件(如FLUENT)进行溢流模拟,验证并优化设计,使溢流砖的初始厚度极差Δ最终满足设计目标。具体的:
S1:根据溢流砖的设计参数,得到溢流砖的标准引出量。
其中,溢流砖1的设计参数通过产线和产品设计得到,包括溢流砖1的入口槽底高度H、入口槽宽W、溢流面长度L、溢流堰倾角
Figure PCTCN2020117168-appb-000014
和设计引出量Q d
得到溢流砖的标准引出量的具体方法为:
S101:通过式(1)计算玻璃溢流流体参数A:
Figure PCTCN2020117168-appb-000015
其中,ρ为玻璃的密度,单位为Kg/m 3;g为重力加速度,单位为m/s 2;η为玻璃的成型粘度,单位为poise,设计值一般为35000poise,也可以是其它设计值;
S102:通过式(2)计算玻璃表面张力参数B:
B=Sin(j)  (2)
其中,j为玻璃表面张力角,一般为21.7°,也可以根据具体玻璃采用不同的张力角;
S103:通过式(3)计算溢流砖单位长度溢流面的标准流量C:
Figure PCTCN2020117168-appb-000016
其中,Q s为溢流砖的标准引出量,单位为kg/s;L为溢流面长度,单位为mm;
S104:通过式(4)计算溢流槽的溢位高度D:
Figure PCTCN2020117168-appb-000017
S105:通过式(5)计算溢流槽的高宽比E:
Figure PCTCN2020117168-appb-000018
其中,H为溢流砖的入口槽底高度,W为溢流砖的入口槽宽;
S106:通过式(6)计算溢流槽截面函数F,计算公式如下所示:
Figure PCTCN2020117168-appb-000019
S107:通过式(7)计算溢流砖的标准引出量Q s
Q s=A×tanφ×[W×(H+D) 3-2×F×(H+D) 4]  (7)
S108:联立式(1)~(7)得到溢流砖的标准引出量Q s,溢流砖的标准引出量Q s>溢流砖的设计引出量Q d
S2:根据溢流砖的设计参数和溢流砖的标准引出量设计,得到初始溢流砖槽底曲线。
S201:将溢流砖的溢流面长度L划分为n等份且n≥5,每一等份分别对应一个槽底位置Z值,Z值为0到L的n等分值;
S202:联立式(1)~(8),得到溢流砖的溢流面长度L的n等份中每一份对应的Z值所对应的溢流砖的溢流槽高度h并记录,得到初始溢流砖槽底曲线:
Figure PCTCN2020117168-appb-000020
其中,
Figure PCTCN2020117168-appb-000021
为溢流砖的溢流堰倾角。
S3:根据溢流砖分流块5的长度对初始溢流砖槽底曲线进行直线修正,得到溢流砖槽底曲线。
S301:根据溢流砖分流块5的长度L 0,将溢流砖溢流面长度L分为两段,分别为0到L-L 0段及L-L 0到L段;
S302:将S2得到的初始溢流砖槽底曲线也划分为0到L-L 0段及L-L 0到L段两段,
Figure PCTCN2020117168-appb-000022
对应的槽底高度为
Figure PCTCN2020117168-appb-000023
Z=L对应的槽底高度为h=0;
S303:将
Figure PCTCN2020117168-appb-000024
对应的槽底高度
Figure PCTCN2020117168-appb-000025
与Z=L对应的槽底高度h=0连成直线,进行直线修正,得到溢流砖槽底曲线。
S4:根据溢流砖槽底曲线和溢流砖的设计参数,采用流体软件FLUENT进行溢流模拟,得到成型玻璃基板的厚度极差Δ。
S5:当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;
当成型玻璃基板的厚度极差>预设阈值时,调整溢流砖的入口槽宽W并重复S4、调整溢流砖的入口槽底高度H并重复S1~S4或调整溢流砖的入口槽宽W和溢流砖的入口槽底高度H并重复S1~S4。
本方法首先根据产线和产品设计,确定溢流砖1的设计参数;然后计算溢流砖1的标准引出量,并结合与玻璃粘度和密度相关的溢流流体参数、玻璃表面张力参数、与溢流堰玻璃溢出厚度相关的溢位高度等,设计计算槽底曲线,利用流体软件进行溢流模拟,验证并优化设计,使溢流砖的初始厚度极差最终满足设计目标,有效地解决了玻璃基板成型厚度波动的问题,从设计上增加了生产裕量,使得玻璃基板成型的厚度能够满足需求,进而减少对工艺调整的复杂要求,进一步的维持产线稳定性。
参见图5,图5为本发明提供的一种参考溢流砖槽底曲线设计优化的实施例。本溢流砖优化后的入口槽底高度H为259.254mm、入口槽宽W为200.032mm、溢流面长度L为2973mm、溢流堰倾角
Figure PCTCN2020117168-appb-000026
为6.0°、设计引出量Q d为20吨/天;厚度极差目标为小于70μm。图5中的初始溢流砖槽底曲线6和溢流砖槽底曲线7,利用FLUENT流体软件仿真模拟,厚度极差为68.52μm,完全满足设计目标。另一个实施例,溢流砖优化后的入口槽底高度H为265.308mm、入口槽宽W为 204.855mm、溢流面长度L为2973mm、溢流堰倾角
Figure PCTCN2020117168-appb-000027
为6.0°、设计引出量Q d为22吨/天;厚度极差目标为小于70μm。利用FLUENT流体软件仿真模拟,厚度极差为67.95μm,完全满足设计目标。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种溢流砖槽底曲线设计优化方法,其特征在于,包括以下步骤:
    S1:根据溢流砖的设计参数,得到溢流砖的标准引出量;
    S2:根据溢流砖的设计参数和溢流砖的标准引出量,得到初始溢流砖槽底曲线;
    S3:根据溢流砖分流块的长度对初始溢流砖槽底曲线进行直线修正,得到溢流砖槽底曲线;
    S4:根据溢流砖槽底曲线和溢流砖的设计参数,通过溢流模拟得到成型玻璃基板的厚度极差;
    S5:当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;
    当成型玻璃基板的厚度极差>预设阈值时,调节溢流砖的设计参数并重复S1~S4。
  2. 根据权利要求1所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S1中溢流砖的设计参数通过产线和产品设计得到,包括溢流砖的入口槽底高度、入口槽宽、溢流面长度、溢流堰倾角和设计引出量。
  3. 根据权利要求1所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S1中得到溢流砖的标准引出量的具体方法为:
    S101:通过式(1)计算玻璃溢流流体参数A:
    Figure PCTCN2020117168-appb-100001
    其中,ρ为玻璃的密度,单位为Kg/m 3;g为重力加速度,单位为m/s 2;η为玻璃的成型粘度,单位为poise;
    S102:通过式(2)计算玻璃表面张力参数B:
    B=Sin(j) (2)
    其中,j为玻璃表面张力角;
    S103:通过式(3)计算溢流砖单位长度溢流面的标准流量C:
    Figure PCTCN2020117168-appb-100002
    其中,Q s为溢流砖的标准引出量,单位为kg/s;L为溢流面长度,单位为mm;
    S104:通过式(4)计算溢流槽的溢位高度D:
    Figure PCTCN2020117168-appb-100003
    S105:通过式(5)计算溢流槽的高宽比E:
    Figure PCTCN2020117168-appb-100004
    其中,H为溢流砖的入口槽底高度,W为溢流砖的入口槽宽;
    S106:通过式(6)计算溢流槽截面函数F,计算公式如下所示:
    Figure PCTCN2020117168-appb-100005
    S107:通过式(7)计算溢流砖的标准引出量Q s
    Q s=A×tanφ×[W×(H+D) 3-2×F×(H+D) 4] (7)
    S108:联立式(1)~(7)得到溢流砖的标准引出量Q s
  4. 根据权利要求3所述的溢流砖槽底曲线设计优化方法,其特征在于,所述溢流砖的标准引出量Q s>溢流砖的设计引出量Q d
  5. 根据权利要求3所述的溢流砖槽底曲线设计优化方法,其特征在于,所述玻璃表面张力角j=21.7°,玻璃的成型粘度η=35000poise。
  6. 根据权利要求3所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S2的具体方法为:
    S201:将溢流砖的溢流面长度L划分为n等份且n≥5,每一等份分别对应一个 槽底位置Z值,Z值为0到L的n等分值;
    S202:联立式(1)~(8),得到溢流砖的溢流面长度L的n等份中每一份对应的Z值所对应的溢流砖的溢流槽高度h并记录,得到初始溢流砖槽底曲线:
    Figure PCTCN2020117168-appb-100006
    其中,
    Figure PCTCN2020117168-appb-100007
    为溢流砖的溢流堰倾角。
  7. 根据权利要求6所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S3的具体方法为:
    S301:根据溢流砖分流块的长度L 0,将溢流砖溢流面长度L分为两段,分别为0到L-L 0段及L-L 0到L段;
    S302:将S2得到的初始溢流砖槽底曲线也划分为0到L-L 0段及L-L 0到L段两段,
    Figure PCTCN2020117168-appb-100008
    对应的槽底高度为
    Figure PCTCN2020117168-appb-100009
    Z=L对应的槽底高度为h=0;
    S303:将
    Figure PCTCN2020117168-appb-100010
    对应的槽底高度
    Figure PCTCN2020117168-appb-100011
    与Z=L对应的槽底高度h=0连成直线,进行直线修正,得到溢流砖槽底曲线。
  8. 根据权利要求7所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S4的具体方法为:
    根据溢流砖槽底曲线和溢流砖的设计参数,采用流体软件FLUENT进行溢流模拟,得到成型玻璃基板的厚度极差Δ。
  9. 根据权利要求8所述的溢流砖槽底曲线设计优化方法,其特征在于,所述S5的具体方法为:
    当成型玻璃基板的厚度极差≤预设阈值时,采用溢流砖槽底曲线和溢流砖的设计参数进行溢流砖加工;
    当成型玻璃基板的厚度极差>预设阈值时,调整溢流砖的入口槽宽W并重复 S4、调整溢流砖的入口槽底高度H并重复S1~S4或调整溢流砖的入口槽宽W和溢流砖的入口槽底高度H并重复S1~S4。
  10. 一种溢流砖,其特征在于,按照由权利要求1-9任意一项所述的设计优化方法得到的溢流砖槽底曲线和溢流砖的设计参数加工而成。
PCT/CN2020/117168 2019-09-29 2020-09-23 一种溢流砖及其槽底曲线设计优化方法 WO2021057800A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022520028A JP2022549960A (ja) 2019-09-29 2020-09-23 オーバーフローれんが及びその溝底曲線設計最適化方法
US17/687,713 US20220188484A1 (en) 2019-09-29 2022-03-07 Overflow brick and groove bottom curve design optimization method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910937080.6A CN110750883B (zh) 2019-09-29 2019-09-29 一种溢流砖槽底曲线设计优化方法
CN201910937080.6 2019-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/687,713 Continuation US20220188484A1 (en) 2019-09-29 2022-03-07 Overflow brick and groove bottom curve design optimization method therefor

Publications (1)

Publication Number Publication Date
WO2021057800A1 true WO2021057800A1 (zh) 2021-04-01

Family

ID=69277475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117168 WO2021057800A1 (zh) 2019-09-29 2020-09-23 一种溢流砖及其槽底曲线设计优化方法

Country Status (4)

Country Link
US (1) US20220188484A1 (zh)
JP (1) JP2022549960A (zh)
CN (1) CN110750883B (zh)
WO (1) WO2021057800A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062562A (zh) * 2022-08-11 2022-09-16 锦浪科技股份有限公司 一种电源设备的风冷系统设计方法
CN115611499A (zh) * 2022-11-01 2023-01-17 湖南邵虹特种玻璃股份有限公司 一种玻璃基板成型尺寸调节装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750883B (zh) * 2019-09-29 2021-08-03 彩虹显示器件股份有限公司 一种溢流砖槽底曲线设计优化方法
CN111580473B (zh) * 2020-04-10 2021-05-28 彩虹集团有限公司 一种液晶基板玻璃引出量自动控制的方法
CN111807684B (zh) * 2020-07-01 2023-07-07 彩虹显示器件股份有限公司 一种溢流砖成型质量稳定的控制方法
CN113735419A (zh) * 2021-08-05 2021-12-03 甘肃旭盛显示科技有限公司 一种玻璃生产方法和装置
CN113771199B (zh) * 2021-09-17 2023-03-21 甘肃光轩高端装备产业有限公司 溢流砖的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955315A (zh) * 2009-05-20 2011-01-26 康宁股份有限公司 控制玻璃板厚度的方法
TWM450568U (zh) * 2012-07-06 2013-04-11 Fu Qiao Business Man Consulting Co Ltd 溢流槽之流道曲率的模擬及分析系統
CN109657263A (zh) * 2018-10-29 2019-04-19 彩虹显示器件股份有限公司 一种溢流砖入口槽宽、槽高及槽壁厚度的设计方法
CN110750883A (zh) * 2019-09-29 2020-02-04 彩虹显示器件股份有限公司 一种溢流砖槽底曲线设计优化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268659A1 (en) * 2004-06-02 2005-12-08 Rhoads Randy L Defect reduction in manufacture glass sheets by fusion process
US7748236B2 (en) * 2005-12-27 2010-07-06 Corning Incorporated Overflow downdraw glass forming method and apparatus
US9716010B2 (en) * 2013-11-12 2017-07-25 Globalfoundries Inc. Handle wafer
WO2016054130A1 (en) * 2014-09-30 2016-04-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
CN108996894B (zh) * 2018-07-27 2021-08-03 彩虹显示器件股份有限公司 一种控制边板平均厚度的溢流砖有效面宽度设计方法
CN110174256B (zh) * 2019-06-24 2021-08-17 科立视材料科技有限公司 溢流砖模流试验装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955315A (zh) * 2009-05-20 2011-01-26 康宁股份有限公司 控制玻璃板厚度的方法
TWM450568U (zh) * 2012-07-06 2013-04-11 Fu Qiao Business Man Consulting Co Ltd 溢流槽之流道曲率的模擬及分析系統
CN109657263A (zh) * 2018-10-29 2019-04-19 彩虹显示器件股份有限公司 一种溢流砖入口槽宽、槽高及槽壁厚度的设计方法
CN110750883A (zh) * 2019-09-29 2020-02-04 彩虹显示器件股份有限公司 一种溢流砖槽底曲线设计优化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062562A (zh) * 2022-08-11 2022-09-16 锦浪科技股份有限公司 一种电源设备的风冷系统设计方法
CN115611499A (zh) * 2022-11-01 2023-01-17 湖南邵虹特种玻璃股份有限公司 一种玻璃基板成型尺寸调节装置
CN115611499B (zh) * 2022-11-01 2023-11-17 湖南邵虹特种玻璃股份有限公司 一种玻璃基板成型尺寸调节装置

Also Published As

Publication number Publication date
JP2022549960A (ja) 2022-11-29
US20220188484A1 (en) 2022-06-16
CN110750883A (zh) 2020-02-04
CN110750883B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2021057800A1 (zh) 一种溢流砖及其槽底曲线设计优化方法
WO2021057801A1 (zh) 一种溢流砖及其薄板成型厚度控制方法
CN108996894B (zh) 一种控制边板平均厚度的溢流砖有效面宽度设计方法
CN202038965U (zh) 用于传送熔融玻璃的设备
JP5352728B2 (ja) ガラス基板の製造方法
CN101381195A (zh) 玻璃板生产中熔融玻璃流量控制装置及控制方法
TWI519492B (zh) Manufacture of glass plates
CN110746095B (zh) 一种精细化温度调整的基板玻璃生产成型设备
CN109657263B (zh) 一种溢流砖入口槽宽、槽高及槽壁厚度的设计方法
JP6189584B2 (ja) ガラス板の製造方法
WO2014157649A1 (ja) ガラス基板製造方法及びガラス基板製造装置
US20050268657A1 (en) Isopipe mass distribution for forming glass substrates
CN103261106B (zh) 玻璃板的制造方法及玻璃板制造装置
JP2015105215A (ja) ガラス基板製造装置及びガラス基板の製造方法
CN206438032U (zh) 一种溢流砖前挡板导流控制装置
CN108052701B (zh) 一种基板玻璃应力和翘曲控制方法
JP5549674B2 (ja) 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法
CN201837906U (zh) 一种tft玻璃基板成型温度控制设备
CN207998550U (zh) 玻璃基板生产设备与生产系统
CN103553301B (zh) 一种高斑马角的两毫米汽车浮法玻璃生产方法
CN108793688B (zh) 一种玻璃基板成型厚度控制方法
CN111807684B (zh) 一种溢流砖成型质量稳定的控制方法
CN116282849A (zh) 一种溢流砖引出量提升边板控制方法及系统
CN115099003A (zh) 一种玻璃基板成型质量评价方法
CN108996892A (zh) 一种基板玻璃生产用引流板及其构建方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867191

Country of ref document: EP

Kind code of ref document: A1