WO2021057651A1 - 衍射光学组件的设计方法及衍射光学组件 - Google Patents

衍射光学组件的设计方法及衍射光学组件 Download PDF

Info

Publication number
WO2021057651A1
WO2021057651A1 PCT/CN2020/116475 CN2020116475W WO2021057651A1 WO 2021057651 A1 WO2021057651 A1 WO 2021057651A1 CN 2020116475 W CN2020116475 W CN 2020116475W WO 2021057651 A1 WO2021057651 A1 WO 2021057651A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive optical
light field
optical element
doe
difference
Prior art date
Application number
PCT/CN2020/116475
Other languages
English (en)
French (fr)
Inventor
王燚言
尹晓东
Original Assignee
杭州驭光光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州驭光光电科技有限公司 filed Critical 杭州驭光光电科技有限公司
Priority to US17/763,474 priority Critical patent/US11740483B2/en
Priority to EP20867345.9A priority patent/EP4030220B1/en
Publication of WO2021057651A1 publication Critical patent/WO2021057651A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Definitions

  • the present disclosure generally relates to the technical field of optical devices, and specifically relates to a design method of a diffractive optical component and a diffractive optical component.
  • Diffractive Optical Element is an optical element designed using the principle of diffractive optics.
  • the surface micro-nano structure is designed for the incident laser of a specific wavelength, and the energy and phase of the laser are modulated to achieve the required output. Diffraction pattern.
  • the beam splitting dot matrix is a type of diffractive optical element (DOE), whose function is to split an incident laser beam into multiple uniformly emitted laser beams through diffraction according to the target diffraction pattern (regular or irregular dot matrix).
  • DOE diffractive optical element
  • the spectroscopic dot matrix plays an important role in many fields, such as unmanned driving, security monitoring, and face recognition. In these fields, there are high requirements for the uniformity of DOE beam splitting. Uniformity reflects the consistency of energy (or light intensity) between laser points after DOE beam splitting.
  • the commonly used beam splitting DOE design method can be designed according to the scalar diffraction theory or the vector diffraction theory.
  • Scalar diffraction theory is an approximate analysis method that only considers a transverse complex amplitude of the electromagnetic field component and assumes that any other related components can be processed in the same way.
  • DOE analysis and design must meet the following conditions (1) The characteristic size of the diffraction element is much larger than the wavelength; (2) The observation diffraction field is sufficiently far away from the diffraction element. When the above conditions cannot be met, vector diffraction theory is needed.
  • One of the objectives of the technical solutions described in the present disclosure is to improve the performance of the designed DOE, or to provide a high-performance DOE design method.
  • the present disclosure provides a method for designing a diffractive optical component, including:
  • S110 Design the first diffractive optical element according to the target light field
  • S120 Obtain a first light field difference between the light field of the first diffractive optical element and the target light field by measuring or simulating the first diffractive optical element;
  • S130 Design a second diffractive optical element according to the first light field difference.
  • the design method further includes: combining the first diffractive optical element and the second diffractive optical element to form a first diffractive optical component.
  • the design method further includes:
  • the second light between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is obtained.
  • the first diffractive optical element, the second diffractive optical element, and the third diffractive optical element are combined to form a second diffractive optical component.
  • the design method further includes:
  • M is a positive integer greater than equal to 3.
  • the target light field is a uniform light splitting lattice
  • the first light field difference is a uniformity difference
  • the step S110 includes: designing a phase distribution diagram of the first diffractive optical element according to the scalar diffraction theory;
  • the step S120 includes: simulating the first diffractive optical element according to the vector diffraction theory, and obtaining the first light field difference between the simulated light field of the first diffractive optical element and the target light field.
  • the second light field difference between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is smaller than the first light field difference.
  • the present disclosure also relates to a diffractive optical component, including a first diffractive optical element and a second diffractive optical element combined together, wherein the second diffractive optical element is configured to at least partially compensate for the light of the first diffractive optical element.
  • the first diffractive optical element is designed according to a target light field
  • the second optical element is designed according to the difference between the light field of the first diffractive optical element and the target light field.
  • the first light field difference is designed.
  • the diffractive optical component further includes a third diffractive optical element, the third diffractive optical element is based on the superposition of the light field of the first diffractive optical element and the second diffractive optical element and the The second light field difference between the target light fields is designed.
  • the diffractive optical component further includes an Nth diffractive optical element, and the Nth diffractive optical element is based on the superimposed light field of the first to N-1th diffractive optical elements and the target The N-1th light field difference between the light fields is obtained by design, where N is a positive integer greater than or equal to 4.
  • the target light field is a uniform light splitting lattice
  • the first light field difference is a uniformity difference
  • the second light field difference between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is smaller than the first light field difference.
  • the diffractive optical component is formed by designing a first DOE and a second DOE having a complementary light field, and combining the first DOE and the second DOE,
  • the performance of the diffractive optical component involved can be improved.
  • the laser light source irradiates the first DOE and the second DOE (or more DOE), and the first DOE and the second DOE (or more DOE) modulate the incident light to form respective target light fields,
  • the formed two (or more) target light fields are superimposed on each other to synthesize a light field that is more in line with the target light field.
  • FIG. 1 illustrates a flowchart of a design method of a diffractive optical component according to an embodiment of the present invention
  • FIG. 2 illustrates a flowchart of a design method of a diffractive optical component according to another embodiment of the present invention
  • Fig. 3 illustrates a schematic diagram of a target light field of a DOE of a desired design according to an embodiment
  • FIG. 4 illustrates a schematic diagram of the phase distribution of the first DOE designed according to the target light field of FIG. 3;
  • FIG. 5 illustrates a schematic diagram of the actual light field distribution of the first DOE designed according to the target light field of FIG. 3;
  • FIG. 6 illustrates the expected target light field of the second DOE to be designed, which is calculated considering the actual light field distribution of the first DOE shown in FIG. 5;
  • FIG. 7 illustrates a schematic diagram of the phase distribution of the second DOE designed according to the target light field of FIG. 6;
  • FIG. 8 illustrates a schematic diagram of the actual light field distribution of the second DOE designed according to the target light field of FIG. 6;
  • FIG. 9 illustrates a schematic diagram of a laser light source irradiating a first diffractive optical component formed by using a first DOE and a second DOE in combination according to an embodiment of the present disclosure
  • FIG. 10 illustrates a schematic diagram of the actual light field distribution of the first diffractive optical component shown in FIG. 9;
  • FIG. 11 illustrates an expected target light field of the third DOE to be designed calculated in consideration of the actual light field distribution shown in FIG. 10 according to another embodiment
  • FIG. 12 illustrates a schematic diagram of the phase distribution of the third DOE designed according to the target light field of FIG. 11;
  • FIG. 13 illustrates a schematic diagram of a laser light source irradiated on a second diffractive optical assembly formed by using the first DOE, the second DOE, and the third DOE in combination according to another embodiment of the present disclosure
  • FIG. 14 illustrates a schematic diagram of the actual light field distribution of the second diffractive optical component shown in FIG. 13.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more predetermined logics. Executable instructions for the function.
  • the functions marked in the block may also occur in a different order than the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations, or It can be realized by a combination of dedicated hardware and computer instructions.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “plurality” means two or more than two unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, etc. should be understood in a broad sense, for example, it may be a fixed connection or an optional Disassembly connection, or integral connection: it can be mechanical connection, it can be electrical connection or it can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the mutual communication of two components Role relationship.
  • installed e.g., it may be a fixed connection or an optional Disassembly connection, or integral connection: it can be mechanical connection, it can be electrical connection or it can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the mutual communication of two components Role relationship.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature has a lower level than the second feature.
  • FIG. 1 illustrates a flowchart of a design method 100 of a diffractive optical component according to an embodiment of the present invention. The detailed description is given below with reference to FIG. 1.
  • the design method 100 includes the following steps.
  • a first diffractive optical element is designed according to the target light field.
  • the target light field may be the desired target light field of the diffractive optical component to be designed.
  • step S120 by measuring or simulating the first diffractive optical element, the first light field difference between the light field of the first diffractive optical element and the target light field is obtained.
  • the light field of the first diffractive optical element obtained here can be the actual light field obtained by actually measuring the manufactured first diffractive optical element, or it can be obtained by simulating the designed first diffractive optical element. The resulting simulated light field.
  • step S130 a second diffractive optical element is designed according to the first light field difference.
  • the real light field and the desired target light field formed by the designed DOE in specific use usually exist more or less Deviation.
  • the deviation is relatively large.
  • the first DOE is first designed according to the desired target light field, and then the first DOE is measured or simulated to obtain the light field between the light field of the first DOE and the desired target light field.
  • the second DOE is designed.
  • the first DOE and the complementary second DOE can be used in combination to eliminate as much as possible the light field difference between the real light field of the formed diffractive optical component and the desired target light field, or make the former Approach the latter as much as possible.
  • first DOE first diffractive optical element
  • second DOE second diffractive optical element
  • FIG. 2 illustrates a flowchart of a design method 200 of a diffractive optical component according to another embodiment of the present invention.
  • the method 200 includes the following steps.
  • step S210 the first diffractive optical element is designed according to the target light field.
  • step S220 by measuring or simulating the first diffractive optical element, the first light field difference between the light field of the first diffractive optical element and the target light field is obtained.
  • the light field of the first diffractive optical element obtained here can be the actual light field obtained by actually measuring the manufactured first diffractive optical element, or it can be obtained by simulating the designed first diffractive optical element. The resulting simulated light field.
  • step S230 a second diffractive optical element is designed according to the first light field difference.
  • step S240 by measuring or simulating the combined DOE of the first diffractive optical element and the second diffractive optical element, the difference between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is obtained.
  • the superimposed light field of the first diffractive optical element and the second diffractive optical element obtained here can be obtained by actual measurement of the combined DOE of the first diffractive optical element and the second diffractive optical element manufactured.
  • the actual light field can also be a simulated light field obtained by simulating the designed first diffractive optical element and the second diffractive optical element.
  • step S250 a third diffractive optical element is designed according to the second light field difference.
  • step S260 the first diffractive optical element, the second diffractive optical element, and the third diffractive optical element are combined to form a second diffractive optical component.
  • the steps S210, S220, and S230 in the method 200 are basically the same as the steps S110, S120, and S130 in the method 100, and will not be repeated here.
  • steps S240, S250 and S260 for the first diffractive optical component formed by combining the first DOE and the second DOE, the light field difference between the light field of the diffractive optical component and the desired target light field is obtained through measurement or simulation,
  • a complementary third DOE is designed.
  • the first DOE, the second DOE, and the third DOE are used in combination to form a second diffractive optical component, and the real light field of the second diffractive optical component further approaches the target light field.
  • the second light field difference between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is generally smaller than the first light field difference.
  • the M-th light field difference between the superimposed light field of the first to M-th diffractive optical elements and the target light field is obtained.
  • the M+1-th diffractive optical element is designed.
  • the first to M+1th diffractive optical elements are combined to form an Mth diffractive optical component.
  • M is a positive integer greater than 3.
  • the second diffractive optical component can be further measured or simulated to obtain the light field difference between the real light field of the diffractive optical component and the desired target light field, and a complementary fourth DOE can be designed for the light field difference. .
  • a diffractive optical component that further approximates the target light field can be obtained.
  • a target light field with a uniformly distributed lattice of 5 ⁇ 5 target light field.
  • Fig. 3 it illustrates the target light field of the DOE according to the desired design of the first embodiment.
  • the phase distribution of the first DOE can be calculated, and thus the first DOE can be designed (including manufactured).
  • FIG. 4 it illustrates a schematic diagram of the phase distribution of the first DOE according to the first embodiment.
  • the phase distribution map of DOE can be calculated by scalar diffraction theory.
  • the actual light field distribution of the first DOE can be obtained.
  • the present invention is not limited to this, and the actual light field of the first DOE can also be obtained by manufacturing the designed first DOE and then performing actual measurement.
  • FIG. 5 it illustrates a schematic diagram of the actual light field distribution of the first DOE according to the first embodiment. As shown in Figure 5, it can be seen that there is a large difference in the light intensity at each point.
  • the uniformity error For the light intensity value of each point obtained by the DOE vector simulation, the uniformity error can be calculated by the following formula:
  • Uniformity error (maximum light intensity value-minimum light intensity value)/(maximum light intensity value + minimum light intensity value)
  • the desired target light field can offset the uniformity difference in the light field energy distribution of the first DOE, and thus, ideally, combined use
  • the diffractive optical component formed by the first DOE and the second DOE can generate the desired target light field as shown in FIG. 3.
  • the design goal of the second DOE is no longer a uniform light splitting lattice, but to superimpose the light field distribution of the second DOE and the light field distribution of the first DOE to form a light splitting lattice light field with uniform light field distribution.
  • the light intensity of this point should be relatively high in the target light field diagram of the second DOE.
  • the light intensity of this point should be relatively low in the target light field diagram of the second DOE.
  • FIG. 6 it schematically shows the target light field of the second DOE to be designed in consideration of the actual light field distribution of the first DOE shown in FIG. 5.
  • Figure 3 is the desired design of the DOE's target light field
  • Figure 5 is the designed real light field distribution of the first DOE. Taking these two factors into account, the deviation of the light field distribution between the two can be calculated, that is, the second DOE's Target light field.
  • the light intensity of each light spot in the target light field can be normalized to 1, and then the average light intensity of the actual light field of the first DOE can be calculated and normalized to 0.5, thus Obtain the normalized value of each light point in the actual light field of the first DOE, and then subtract the normalized value of each light point of the first DOE calculated above with 1 to obtain the second DOE
  • the normalized distribution data of the target light field is not limited to this.
  • Those skilled in the art can also calculate the target light field of the second DOE according to other methods, as long as the second DOE can be designed to compensate for the unevenness of the light field distribution of the first DOE. can.
  • the phase distribution of the second DOE can be calculated, and thus the second DOE can be designed (manufactured).
  • FIG. 7 it illustrates a schematic diagram of the phase distribution of the second DOE according to the first embodiment.
  • the phase distribution map of DOE can be calculated by scalar diffraction theory.
  • the actual light field distribution of the second DOE can be obtained.
  • the present invention is not limited to this, and the actual light field of the second DOE can also be obtained by manufacturing the designed second DOE and then performing actual measurement.
  • FIG. 8 it illustrates a schematic diagram of the actual light field distribution of the second DOE according to the first embodiment.
  • the first DOE and the second DOE are combined to form a combined first diffractive optical component.
  • FIG. 9 it illustrates a schematic diagram of the laser light source irradiated on the first diffractive optical component formed by using the first DOE and the second DOE in combination according to the first embodiment.
  • the rectangle 901 in the left half represents the first DOE
  • the rectangle 902 in the right half represents the second DOE
  • the irradiation area of the laser light source is shown by a circle 903.
  • the shown combination of the first DOE and the second DOE is left and right splicing, and the light beam emitted by the laser light source needs to cover the first DOE and the second DOE during use.
  • the DOE design method of the present disclosure is also feasible for any other possible combinations of the first DOE and the second DOE, such as splicing up and down, stacking back and forth, and so on.
  • the first DOE and the second DOE can be manufactured separately and then combined into the first diffractive optical component through left and right or up and down splicing, or the first and second DOE can be processed on the left and right or up and down parts of the same substrate.
  • the phase distribution structure is thus integrally processed and manufactured to obtain the first diffractive optical component.
  • the actual light field distribution of the first diffractive optical component can be obtained .
  • the present invention is not limited to this, and the actual light field can also be obtained by manufacturing the first diffractive optical component and then performing actual measurement.
  • FIG. 10 it illustrates a schematic diagram of the actual light field distribution of the first diffractive optical component according to the first embodiment.
  • the third DOE can be further designed so that the first DOE, the second DOE and the third DOE are combined to form the second diffractive optical component
  • the actual light field distribution of the component is closer to the target light field distribution.
  • the third DOE When designing the third DOE, consider the actual light field distribution of the first diffractive optical component formed by the combination of the first DOE and the second DOE (as shown in FIG. 10). As shown in FIG. 11, it schematically shows the target light field of the third DOE to be designed in consideration of the actual light field distribution of the first diffractive optical component shown in FIG. 10.
  • Figure 3 is the target light field of the DOE that is expected to be designed
  • Figure 10 is the real light field distribution of the first diffractive optical component designed. Considering these two factors, the deviation of the light field distribution between the two can be calculated, that is, the third The target light field of the DOE.
  • the phase distribution of the third DOE can be calculated, and thus the third DOE can be designed (manufactured).
  • FIG. 12 it illustrates a schematic diagram of the phase distribution of the third DOE according to the second embodiment.
  • the phase distribution map of DOE can be calculated by scalar diffraction theory.
  • FIG. 13 it illustrates a schematic diagram of a laser light source irradiated on a second diffractive optical assembly formed by using the first DOE, the second DOE, and the third DOE in combination according to the second embodiment.
  • the trapezoid 1301 in the upper left part represents the first DOE
  • the trapezoid 1302 in the upper right part represents the second DOE
  • the pentagon 1303 in the lower part represents the third DOE.
  • the irradiation area of the laser light source is shown by a circle 1304.
  • Fig. 14 shows the actual light field distribution of the second diffractive optical assembly formed by the combination of the first DOE, the second DOE and the third DOE (calculated through the simulation process), and the uniformity error is reduced to about 21% by calculation.
  • the design of the diffractive optical assembly of the present disclosure can be further improved, and the final DOE may not be limited to two parts or three parts, but may be composed of more parts.
  • the more sub-DOEs composed the better the uniformity of the final light field.
  • the target light field may be a uniformly distributed lattice, and the light field difference may be a uniformity difference.
  • the embodiments of the present disclosure are also applicable to any other forms of target light field and other appropriate parameters for evaluating the uniformity of the light field.
  • the diffraction pattern used to describe the target light field is a two-dimensional lattice, but it should be understood that any other form of diffraction pattern target light field is possible, and the embodiments of the present invention are not limited to two.
  • the target light field of the three-dimensional lattice is not limited to two.
  • the phase distribution diagram of the first diffractive optical element can be designed according to the scalar diffraction theory.
  • the first diffractive optical element can be simulated according to the vector diffraction theory, and the first light field between the simulated light field of the first diffractive optical element and the target light field can be obtained. difference.
  • a diffractive optical component as shown in FIG. 9, for example, comprising a first diffractive optical element 901 and a second diffractive optical element 902 combined together, wherein the second diffractive optical element 902 is configured to at least partially compensate for the first light field difference between the light field of the first diffractive optical element 901 and the target light field of the diffractive optical component.
  • the first diffractive optical element 901 is designed according to the target light field
  • the second optical element 902 is designed according to the first light field difference between the light field of the first diffractive optical element and the target light field. owned.
  • the diffractive optical component further includes a third diffractive optical element, and the third diffractive optical element is based on the superposition of the light field of the first diffractive optical element and the second diffractive optical element and the The second light field difference between the target light fields is designed.
  • the diffractive optical assembly further includes an Nth diffractive optical element, and the Nth diffractive optical element is based on the first to N-1th diffractive optical element superimposed light field and the target light field.
  • N-1 light field difference design where N is a positive integer greater than or equal to 4.
  • the target light field may be a uniform light splitting lattice, and the first light field difference is a uniformity difference.
  • the second light field difference between the superimposed light field of the first diffractive optical element and the second diffractive optical element and the target light field is smaller than the first light field difference.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种衍射光学组件的设计方法及衍射光学组件。设计方法包括:S110:根据目标光场,设计第一衍射光学元件;S120:通过对第一衍射光学元件进行仿真,获取第一衍射光学元件的仿真光场与目标光场之间的第一光场差异;和S130:根据第一光场差异,设计第二衍射光学元件。能够改善衍射光学组件的性能。

Description

衍射光学组件的设计方法及衍射光学组件 技术领域
本公开内容总体上涉及光学器件的技术领域,具体而言,涉及衍射光学组件的设计方法及衍射光学组件。
背景技术
衍射光学元件(DOE,Diffractive Optical Element)是利用衍射光学原理设计的一种光学元件,通常对特定波长的入射激光,设计表面微纳结构,对激光的能量和相位进行调制,达到所需要的输出衍射图案。分光点阵是衍射光学元件(DOE)的一种,其作用是根据目标衍射图案(规则或无规则的点阵)通过衍射作用将一束入射激光分束成多束均匀的出射激光。分光点阵在诸多领域有着重要作用,如无人驾驶、安防监控、以及人脸识别等。在这些领域对于DOE分束的均匀性有着很高要求。均匀性反映的是经过DOE分束后激光点之间的能量(或者光强)之间的一致性。
目前常用的分束DOE设计方法可以根据标量衍射理论或矢量衍射理论来进行设计。标量衍射理论是一种近似分析方法,即只考虑电磁场分量的一个横向复振幅,并假设任何其他的有关分量可以以同样的方式处理。根据标量衍射理论进行DOE分析与设计必须满足以下条件(1)衍射元件特征尺寸远大于波长;(2)观察衍射场处离衍射元件足够远。当无法满足以上条件的时候,需要用到矢量衍射理论,其特点是考虑光的偏振特性和不同偏振光之间的相互作用对衍射结果的影响,需要严格求解麦克斯韦方程组。根据矢量衍射理论进行DOE分析与设计的缺点是计算量大,计算时间长。标量衍射理论因为是近似理论,因而其与实际结果差异较大;矢量衍射理论因为计算量大,在设计时有一定的局限性,一般用于验证标量设计的结果。基于这些因素,再加上DOE加工误差的影响,仅根据标量衍射理论设计最终得到的DOE的性能往往并不理想。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现 有技术。
发明内容
本公开描述的技术方案的目的之一在于提高所设计的DOE的性能,或者提供高性能的DOE的设计方法。
在一个方面,本公开提供一种衍射光学组件的设计方法,包括:
S110:根据目标光场,设计第一衍射光学元件;
S120:通过对所述第一衍射光学元件进行测量或仿真,获取所述第一衍射光学元件的光场与所述目标光场之间的第一光场差异;和
S130:根据所述第一光场差异,设计第二衍射光学元件。
根据本公开的一个方面,所述设计方法还包括:将所述第一衍射光学元件和第二衍射光学元件组合形成第一衍射光学组件。
根据本公开的一个方面,所述的设计方法还包括:
通过对所述第一衍射光学元件和第二衍射光学元件进行测量或仿真,获取所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异;
根据所述第二光场差异,设计第三衍射光学元件;
将所述第一衍射光学元件、第二衍射光学元件和第三衍射光学元件组合形成第二衍射光学组件。
根据本公开的一个方面,所述的设计方法还包括:
通过对所述第一至第M衍射光学元件进行测量或仿真,获取所述第一至第M衍射光学元件叠加光场与所述目标光场之间的第M光场差异;
根据所述第M光场差异,设计第M+1衍射光学元件;
将所述第一至第M+1衍射光学元件组合形成第M衍射光学组件,
其中M为大于等3的正整数。
根据本公开的一个方面,所述目标光场为均匀分光点阵,所述第一光场差异为均匀性差异。
根据本公开的一个方面,所述步骤S110包括:根据标量衍射理论设计所述第一衍射光学元件的相位分布图;
所述步骤S120包括:根据矢量衍射理论对所述第一衍射光学元件进行仿真,获取所述第一衍射光学元件的仿真光场与所述目标光场之间的所述第一光场差异。
根据本公开的一个方面,所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的所述第二光场差异,小于所述第一光场差异。
本公开还涉及一种衍射光学组件,包括组合在一起的第一衍射光学元件和第二衍射光学元件,其中所述第二衍射光学元件配置成可至少部分弥补所述第一衍射光学元件的光场与所述衍射光学组件的目标光场之间的第一光场差异。
根据本公开的一个方面,所述第一衍射光学元件是根据目标光场设计得到的,所述第二光学元件是根据所述第一衍射光学元件的光场与所述目标光场之间的第一光场差异设计得到的。
根据本公开的一个方面,所述的衍射光学组件还包括第三衍射光学元件,所述第三衍射光学元件是根据所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异设计得到的。
根据本公开的一个方面,所述的衍射光学组件还包括第N衍射光学元件,所述第N衍射光学元件是根据所述第一至第N-1衍射光学元件的叠加光场与所述目标光场之间的第N-1光场差异设计得到的,其中N为大于等于4的正整数。
根据本公开的一个方面,所述目标光场为均匀分光点阵,所述第一光场差异为均匀性差异。
根据本公开的一个方面,所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的所述第二光场差异,小于所述第一光场差异。
根据本发明的实施方式,针对具有目标光场的待设计的衍射光学组件,通过设计第一DOE和具有互补光场的第二DOE,组合第一DOE和第二DOE来形成该衍射光学组件,从而,可以改善所涉及的衍射光学组件的性能。以及类推,可以进一步组合更多个DOE。使用过程中,激光光源照射在第一DOE和第二DOE(或者更多个DOE)上,第一DOE和第二DOE(或者更多个DOE)对入射光进行调制形成 各自的目标光场,所形成的两个(或者多个)目标光场互相叠加,合成一个更为符合目标光场的光场。
在说明书中所描述的特点和优点并非全部,尤其是,结合附图和说明书,许多附加的特征和优点将对于本领域普通技术人员而言将是明显的。此外,应当指出的是,本说明书中所使用的用语主要是出于可读性和指导性的目的而被选择的,并且可能不是被选择以描述或限制创造性的技术方案。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1图示了根据本发明一个实施方式的衍射光学组件的设计方法的流程图;
图2图示了根据本发明另一个实施方式的衍射光学组件的设计方法的流程图;
图3图示了根据一种实施方式的期望设计的DOE的目标光场的示意图;
图4图示了根据图3的目标光场设计出的第一DOE的相位分布的示意图;
图5图示了根据图3的目标光场设计出的第一DOE的实际光场分布的示意图;
图6图示出了考虑了图5所示的第一DOE的实际光场分布而计算出的要设计出的第二DOE的期望目标光场;
图7图示了根据图6的目标光场设计出的第二DOE的相位分布的示意图;
图8图示了根据图6的目标光场设计出的第二DOE的实际光场分布的示意图;
图9图示出了一个激光光源照射在根据本公开一种实施方式的组合使用第一DOE和第二DOE所形成的第一衍射光学组件上的示意图;
图10图示出了图9所示的第一衍射光学组件的实际光场分布的示意图;
图11图示出了根据另一种实施方式的考虑了图10所示的实际光场分布而计算出的要设计出的第三DOE的期望目标光场;
图12图示了根据图11的目标光场设计出的第三DOE的相位分布的示意图;
图13图示出了一个激光光源照射在根据本公开另一种实施方式的组合使用第一DOE、第二DOE和第三DOE所形成的第二衍射光学组件上的示意图;以及
图14图示出了图13所示的第二衍射光学组件的实际光场分布的示意图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
现在将详细参照本发明的若干实施例,在附图中示出了其示例。应当注意到,只要可行,在附图中可以使用相似或者相同的附图标记,并且它们可以用以指示相似或者相同的功能。附图仅出于说明的目的而描述本发明的若干实施例。本领域技术人员将很容易从下面的描述中认识到此处说明的结构和方法的备选实施例可以在不脱离此处描述的实施例的原理的情况下而被使用。只要可行,下面所述的方法步骤未必按所例示的顺序执行。
附图中的流程图和框图,图示了按照本发明各种实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分包含一个或多个用于实现预定的逻辑功能的可执行指令。应当注意,在有些作为备选的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也应当注意,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“坚直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指 示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本公开的具体实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
图1图示了根据本发明一个实施方式的衍射光学组件的设计方法100的流程图。以下参考图1进行详细描述。
如图1所示,根据本实施方式的设计方法100包括如下步骤。
在步骤S110,根据目标光场,设计第一衍射光学元件(DOE)。目标光场可以是待设计的衍射光学组件的期望目标光场。
在步骤S120,通过对第一衍射光学元件进行测量或仿真,获取第一衍射光学元件的光场与目标光场之间的第一光场差异。在此获取的第一衍射光学元件的光场可以是通过对生产制造出来的第一衍射光学元件进行实际测量得到的实际光场,也可以是通过对设计得到的第一衍射光学元件进行仿真而得到的仿真光场。
在步骤S130,根据第一光场差异,设计第二衍射光学元件。
在根据期望的目标光场来设计DOE时,由于DOE的精密性和DOE设计的复杂性,所设计的DOE在具体使用时形成的真实光场与期望的目标光场通常存在或多或少的偏差,在一些情况下,偏差较大,例如,通过DOE设计实现分光点阵时,光点间的均匀性的偏差较大。根据本发明的上述实施方式,首先根据该期望的目标光场来设计第一DOE,然后对第一DOE进行测量或仿真,获得第一DOE的光场与期望的目标光场之间的光场差异,并根据该光场差异,设计第二DOE。在使用时,可以组合使用该第一DOE和与其互补的第二DOE,以尽可能地消除所形成的衍射光学组件的真实光场与期望的目标光场之间的光场差异,或者使得前者尽可能逼近后者。通过组合使用第一衍射光学元件(第一DOE)和第二衍射光学元件(第二DOE),可以得到待设计的衍射光学组件,所得到的衍射光学组件能够产生的光场与期望的目标光场之间的差异被进一步缩小了。
图2图示了根据本发明另一个实施方式的衍射光学组件的设计方法200的流程图。结合图2,该方法200包括如下步骤。
在步骤S210,根据目标光场,设计第一衍射光学元件。
在步骤S220,通过对第一衍射光学元件进行测量或仿真,获取第一衍射光学元件的光场与目标光场之间的第一光场差异。在此获取的第一衍射光学元件的光场可以是通过对生产制造出来的第一衍射光学元件进行实际测量得到的实际光场,也可以是通过对设计得到的第一衍射光学元件进行仿真而得到的仿真光场。
在步骤S230,根据第一光场差异,设计第二衍射光学元件。
在步骤S240,通过对第一衍射光学元件和第二衍射光学元件的组合DOE进行测量或仿真,获取所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异。和步骤S220类似,在此获取的第一衍射光学元件和第二衍射光学元件的叠加光场可以是通过对生产制造出来的第一衍射光学元件和第二衍射光学元件的组合DOE进行实际测量得到的实际光场,也可以是通过对设计得到的第一衍射光学元件和第二衍射光学元件进行仿真而得到的仿真光场。
在步骤S250,根据所述第二光场差异,设计第三衍射光学元件。
在步骤S260,将所述第一衍射光学元件、第二衍射光学元件和第三衍射光学元件组合形成第二衍射光学组件。
方法200中的步骤S210、S220和S230与方法100中的步骤S110、S120和S130基本相同,在此不再赘述。通过步骤S240、S250和S260,针对第一DOE和第二DOE组合形成的第一衍射光学组件,通过测量或仿真得到该衍射光学组件的光场与期望的目标光场之间的光场差异,并针对该光场差异,设计互补的第三DOE。组合使用第一DOE、第二DOE和第三DOE,形成第二衍射光学组件,该第二衍射光学组件的真实光场进一步逼近目标光场。第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异,一般小于所述第一光场差异。
进一步,通过对所述第一至第M衍射光学元件进行测量或仿真,获取所述第一至第M衍射光学元件叠加光场与所述目标光场之间的第M光场差异。根据所述第M光场差异,设计第M+1衍射光学元件。将所述第一至第M+1衍射光学元件组合形成第M衍射光学组件。M为大于等3的正整数。例如,可以进一步针对该第二衍射光学组件,测量或仿真得到该衍射光学组件的真实光场与期望的目标光场之间的光场差异,并针对该光场差异,设计互补的第四DOE。从而,可以得到进一步逼近目标光场的衍射光学组件。
实施例一
期望设计一种目标光场为5×5的均匀分布点阵的目标光场。如图3所示,其 图示了根据实施例一的期望设计的DOE的目标光场。
根据如图3所示的目标光场,可以计算出第一DOE的相位分布,并且从而设计(包括制造)出第一DOE。如图4所示,其图示了根据实施例一的第一DOE的相位分布的示意图。DOE的相位分布图可以通过标量衍射理论计算得到。
通过对第一DOE的相位分布图进行矢量仿真,例如利用严格耦合波分析(RCWA,Rigorous Coupled Wave Analysis),可以得到第一DOE的实际光场分布。但本发明并不仅限于此,也可以通过生产制造设计的第一DOE,然后进行实际测量来得到第一DOE的实际光场。如图5所示,其图示了根据实施例一的第一DOE的实际光场分布的示意图。如图5所示,可以看出,其中每个点处的光强存在较大的差异。
在图5所示的实际光场分布中,第一DOE的光场能量分布情况与均匀的目标光场存在一定差距。光场分布的均匀性可以通过均匀性误差来表示,对于DOE矢量仿真得各点光强值,可以通过下列公式来计算均匀性误差:
均匀性误差=(最大光强值-最小光强值)/(最大光强值+最小光强值)
在图5所示的实际光场分布中,实际计算得到的均匀性误差约为48%。
期望是设计出光场的均匀性一致的衍射光学组件,因此,设计第二DOE,其期望的目标光场能够抵消第一DOE的光场能量分布中的均匀性差异,从而,理想地,组合使用第一DOE和第二DOE形成的衍射光学组件可以产生出期望的如图3所示的目标光场。
在设计第二DOE时,要考虑第一DOE的实际光场分布情况(如图5所示)。第二DOE的设计目标不再是均匀的分光点阵,而是要使第二DOE的光场分布与第一DOE的光场分布相叠加,形成光场分布均匀的分光点阵光场。例如,第一DOE光场分布中光强比较低的点,在第二DOE的目标光场图中,该点的光强应比较高。同理,第一DOE光场分布中光强比较高的点,在第二DOE的目标光场图中,该点的光强应比较低。如图6所示,其示意性示出了考虑了图5所示的第一DOE的实际光场分布而待设计的第二DOE的目标光场。图3是期望设计的DOE的目标光场,图5是设计出的第一DOE的真实光场分布,考虑这两个因素,可以计算出二者的 偏差的光场分布,即第二DOE的目标光场。例如,可以将目标光场中每一路光点的光强归一化设定为1,然后计算得到第一DOE的实际光场的光强平均值并将其归一化设定为0.5,从而得到第一DOE的实际光场中各路光点的归一化数值,之后用1分别减去以上计算得到的第一DOE的各路光点的归一化数值,从而得出第二DOE的目标光场的归一化分布数据。但本发明并不仅限于此,本领域技术人员也可以根据其它方法计算得出第二DOE的目标光场,只要能通过设计第二DOE来实现补偿第一DOE的光场分布的不均匀性即可。
根据如图6所示的第二DOE的目标光场,可以计算出第二DOE的相位分布,并且从而可以设计(制造)出第二DOE。如图7所示,其图示了根据实施例一的第二DOE的相位分布的示意图。DOE的相位分布图可以通过标量衍射理论计算得到。
通过对第二DOE的相位分布图进行矢量仿真,例如利用严格耦合波分析(RCWA,Rigorous Coupled Wave Analysis),可以得到第二DOE的实际光场分布。但本发明并不仅限于此,也可以通过生产制造设计的第二DOE,然后进行实际测量来得到第二DOE的实际光场。如图8所示,其图示了根据实施例一的第二DOE的实际光场分布的示意图。
通过组合使用第一DOE和第二DOE,将第一DOE和第二DOE组合形成一个所组合的第一衍射光学组件。如图9所示,其图示了激光光源照射在根据实施例一的组合使用第一DOE和第二DOE所形成的第一衍射光学组件上的示意图。如图9所示,左半部分的矩形901代表第一DOE,右半部分的矩形902代表第二DOE,激光光源的照射区域由圆903示出。所示出的第一DOE和第二DOE的组合方式是左右拼接,在使用过程中激光光源所发射的光束需要覆盖到第一DOE和第二DOE。应当理解,本公开的DOE设计方法对于第一DOE和第二DOE的其他任何可能的组合方式也是可行的,例如上下拼接、前后叠放等。另外,第一DOE和第二DOE可以是分别加工制造然后通过左右或上下拼接组合成第一衍射光学组件,也可以是在同一基底的左右或上下两部分分别加工第一DOE和第二DOE的相位分布结构从而一体加工制造得到第一衍射光学组件。
通过对第一DOE和第二DOE相组合形成的第一衍射光学组件进行矢量仿真,例如利用严格耦合波分析(RCWA,Rigorous Coupled Wave Analysis),可以得到该第一衍射光学组件的实际光场分布。但本发明并不仅限于此,也可以通过生产制造第一衍射光学组件,然后进行实际测量来得到其实际光场。如图10所示,其图示了根据实施例一的该第一衍射光学组件的实际光场分布的示意图。
从图9中可以看到目标光场的均匀性有了很大改善,计算得出该第一衍射光学组件的均匀性误差减小到约30%。
实施例二
在实施例一的基础上,对于第一DOE和第二DOE组合形成第一衍射光学组件,可以进一步设计第三DOE,以使得第一DOE、第二DOE和第三DOE组合形成第二衍射光学组件的实际光场分布更加逼近目标光场分布。
在设计第三DOE时,要考虑第一DOE和第二DOE组合形成的第一衍射光学组件的实际光场分布情况(如图10所示)。如图11所示,其示意性示出了考虑了图10所示的第一衍射光学组件的实际光场分布而要设计的第三DOE的目标光场。图3是期望设计的DOE的目标光场,图10是设计出的第一衍射光学组件的真实光场分布,考虑这两个因素,可以计算出二者的偏差的光场分布,即第三DOE的目标光场。
根据如图11所示的第三DOE的目标光场,可以计算出第三DOE的相位分布,并且从而可以设计(制造)出第三DOE。如图12所示,其图示了根据实施例二的第三DOE的相位分布的示意图。DOE的相位分布图可以通过标量衍射理论计算得到。
如图13所示,其图示了激光光源照射在根据实施例二的组合使用第一DOE、第二DOE和第三DOE所形成的第二衍射光学组件上的示意图。如图13所示,左上部分的梯形1301代表第一DOE,右上部分的梯形1302代表第二DOE,下部的五边形1303代表第三DOE,激光光源的照射区域由圆1304示出。
图14示出了第一DOE、第二DOE和第三DOE组合形成第二衍射光学组件的 实际光场分布(通过仿真过程来计算),计算得出均匀性误差减小到了约21%。
进一步地,当照射到DOE上的光斑足够大时,本公开的衍射光学组件的设计方案可进一步改进,最终的DOE可以不局限于两部分或者三部分组成,可以由更多部分组成。理论上,组成的子DOE越多,最终的光场均匀性越好。
在上文所描述的实施方式中,目标光场可以是均匀分布点阵,光场差异可以是均匀性差异。但是应当理解,本公开的实施方式也同样适用于任何其他形式的目标光场形式以及评价光场均匀性的其他适当的参数。
在上文所描述的实施方式中,用来描述目标光场的衍射图案为二维点阵,但是应当理解其他任何形式衍射图案的目标光场都是可能的,本发明的实施方式不限于二维点阵的目标光场。
根据本发明的实施方式,可以根据标量衍射理论来设计所述第一衍射光学元件的相位分布图。根据本发明的实施方式,可以根据矢量衍射理论对所述第一衍射光学元件进行仿真,获取所述第一衍射光学元件的仿真光场与所述目标光场之间的所述第一光场差异。
在本公开的另一方面,还提供一种衍射光学组件,例如如图9所示,包括组合在一起的第一衍射光学元件901和第二衍射光学元件902,其中所述第二衍射光学元件902配置成可至少部分弥补所述第一衍射光学元件901的光场与所述衍射光学组件的目标光场之间的第一光场差异。
进一步地,第一衍射光学元件901是根据目标光场设计得到的,第二光学元件902是根据所述第一衍射光学元件的光场与所述目标光场之间的第一光场差异设计得到的。
进一步地,如图13所示,该衍射光学组件还包括第三衍射光学元件,所述第三衍射光学元件是根据所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异设计得到的。
进一步地,该衍射光学组件还包括第N衍射光学元件,所述第N衍射光学 元件是根据所述第一至第N-1衍射光学元件的叠加光场与所述目标光场之间的第N-1光场差异设计得到的,其中N为大于等于4的正整数。
进一步地,目标光场可以为均匀分光点阵,所述第一光场差异为均匀性差异。
进一步地,第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的所述第二光场差异,小于所述第一光场差异。
虽然已经参考目前考虑到的实施方式描述了本发明,但是应该理解本发明不限于所公开的实施方式。相反,本发明旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。以下权利要求的范围符合最广泛解释,以便包含所有这样的修改及等同结构和功能。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种衍射光学组件的设计方法,包括:
    S110:根据目标光场,设计第一衍射光学元件;
    S120:通过对所述第一衍射光学元件进行测量或仿真,获取所述第一衍射光学元件的光场与所述目标光场之间的第一光场差异;和
    S130:根据所述第一光场差异,设计第二衍射光学元件。
  2. 根据权利要求1所述的设计方法,还包括:将所述第一衍射光学元件和第二衍射光学元件组合形成第一衍射光学组件。
  3. 根据权利要求1或2所述的设计方法,还包括:
    通过对所述第一衍射光学元件和第二衍射光学元件进行测量或仿真,获取所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异;
    根据所述第二光场差异,设计第三衍射光学元件;
    将所述第一衍射光学元件、第二衍射光学元件和第三衍射光学元件组合形成第二衍射光学组件。
  4. 根据权利要求3所述的设计方法,还包括:
    通过对所述第一至第M衍射光学元件进行测量或仿真,获取所述第一至第M衍射光学元件叠加光场与所述目标光场之间的第M光场差异;
    根据所述第M光场差异,设计第M+1衍射光学元件;
    将所述第一至第M+1衍射光学元件组合形成第M衍射光学组件,
    其中M为大于等3的正整数。
  5. 根据权利要求1或2所述的设计方法,其中所述目标光场为均匀分 光点阵,所述第一光场差异为均匀性差异。
  6. 根据权利要求1或2所述的设计方法,其中所述步骤S110包括:根据标量衍射理论设计所述第一衍射光学元件的相位分布图;
    所述步骤S120包括:根据矢量衍射理论对所述第一衍射光学元件进行仿真,获取所述第一衍射光学元件的仿真光场与所述目标光场之间的所述第一光场差异。
  7. 根据权利要求3所述的设计方法,其中所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的所述第二光场差异,小于所述第一光场差异。
  8. 一种衍射光学组件,包括组合在一起的第一衍射光学元件和第二衍射光学元件,其中所述第二衍射光学元件配置成可至少部分弥补所述第一衍射光学元件的光场与所述衍射光学组件的目标光场之间的第一光场差异。
  9. 根据权利要求8所述的衍射光学组件,其中所述第一衍射光学元件是根据目标光场设计得到的,所述第二光学元件是根据所述第一衍射光学元件的光场与所述目标光场之间的第一光场差异设计得到的。
  10. 根据权利要求8或9所述的衍射光学组件,还包括第三衍射光学元件,所述第三衍射光学元件是根据所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的第二光场差异设计得到的。
  11. 根据权利要求10所述的衍射光学组件,还包括第N衍射光学元件, 所述第N衍射光学元件是根据所述第一至第N-1衍射光学元件的叠加光场与所述目标光场之间的第N-1光场差异设计得到的,其中N为大于等于4的正整数。
  12. 根据权利要求8或9所述的衍射光学组件,其中所述目标光场为均匀分光点阵,所述第一光场差异为均匀性差异。
  13. 根据权利要求9所述的衍射光学组件,其中所述第一衍射光学元件和第二衍射光学元件的叠加光场与所述目标光场之间的所述第二光场差异,小于所述第一光场差异。
PCT/CN2020/116475 2019-09-24 2020-09-21 衍射光学组件的设计方法及衍射光学组件 WO2021057651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/763,474 US11740483B2 (en) 2019-09-24 2020-09-21 Method of diffractive optical assembly, and diffractive optical assembly
EP20867345.9A EP4030220B1 (en) 2019-09-24 2020-09-21 Design method of diffractive optical assembly, and diffractive optical assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910906655.8A CN110824721B (zh) 2019-09-24 2019-09-24 衍射光学组件的设计方法及衍射光学组件
CN201910906655.8 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057651A1 true WO2021057651A1 (zh) 2021-04-01

Family

ID=69548259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116475 WO2021057651A1 (zh) 2019-09-24 2020-09-21 衍射光学组件的设计方法及衍射光学组件

Country Status (4)

Country Link
US (1) US11740483B2 (zh)
EP (1) EP4030220B1 (zh)
CN (1) CN110824721B (zh)
WO (1) WO2021057651A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194857A1 (en) * 2020-06-09 2023-06-22 Jiaxing Uphoton Optoelectronics Technology Co., Ltd. Method for designing diffractive optical element, diffractive optical element, and system for designing diffractive optical element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824721B (zh) 2019-09-24 2021-11-23 杭州驭光光电科技有限公司 衍射光学组件的设计方法及衍射光学组件
CN111736336B (zh) * 2020-07-03 2021-08-03 杭州驭光光电科技有限公司 衍射光学元件的周期优化方法
CN111781665B (zh) * 2020-07-06 2023-05-12 嘉兴驭光光电科技有限公司 光学组件、光学组件的设计方法以及光学系统
CN114371554A (zh) * 2021-12-31 2022-04-19 嘉兴驭光光电科技有限公司 用于分束的衍射光学元件及其设计方法、结构光投射器
CN115016202B (zh) * 2022-06-28 2024-03-26 嘉兴驭光光电科技有限公司 提升散斑点密度的方法、衍射光学元件及投射器
CN116224607B (zh) * 2023-05-09 2023-08-11 深圳市安思疆科技有限公司 结构光投射器及3d结构光模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496616A (en) * 1994-12-27 1996-03-05 Xerox Corporation Optical element for correcting non-uniform diffraction efficiency in a binary diffractive optical element
CN101813797A (zh) * 2010-03-03 2010-08-25 长春理工大学 多层衍射光学元件的优化设计方法
US20100284082A1 (en) * 2008-01-21 2010-11-11 Primesense Ltd. Optical pattern projection
CN102763021A (zh) * 2009-12-16 2012-10-31 数字光学东方公司 选择性衍射光学元件和包括该选择性衍射光学元件的系统
CN104793336A (zh) * 2015-04-17 2015-07-22 中国科学院光电技术研究所 一种适用于多波长的衍射光学元件设计方法
CN105511084A (zh) * 2015-08-24 2016-04-20 无锡奥普顿光电子有限公司 一种衍射光学元件
CN109814256A (zh) * 2019-02-25 2019-05-28 中国科学院光电技术研究所 一种单片式强度修正型点阵结构光doe器件及设计方法
CN110824721A (zh) * 2019-09-24 2020-02-21 杭州驭光光电科技有限公司 衍射光学组件的设计方法及衍射光学组件

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737480B2 (ja) * 2000-12-28 2011-08-03 コニカミノルタホールディングス株式会社 光学素子の製造方法
US7804646B2 (en) * 2006-01-31 2010-09-28 Asml Masktools B.V. Method for decomposition of a customized DOE for use with a single exposure into a set of multiple exposures using standard DOEs with optimized exposure settings
EP2235584B1 (en) * 2008-01-21 2020-09-16 Apple Inc. Optical designs for zero order reduction
WO2012089224A1 (en) 2010-12-28 2012-07-05 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
CN102109676B (zh) * 2011-02-25 2012-05-23 中国科学院上海光学精密机械研究所 用于光刻照明的多分区光学位相板的设计方法
US9052512B2 (en) * 2011-03-03 2015-06-09 Asahi Glass Company, Limited Diffractive optical element and measuring apparatus
CN103676498B (zh) * 2013-11-18 2017-04-05 中国科学院上海光学精密机械研究所 光刻机光瞳整形单元结构及其衍射光学元件设计方法
WO2015184413A1 (en) * 2014-05-30 2015-12-03 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
JP6487195B2 (ja) 2014-12-09 2019-03-20 日本オクラロ株式会社 半導体光集積素子、半導体光集積素子の製造方法及び光モジュール
CN105321959B (zh) * 2015-09-10 2018-10-12 京东方科技集团股份有限公司 阵列基板及其制作方法、液晶显示面板和显示装置
CN105372826A (zh) * 2015-12-11 2016-03-02 杭州东尚光电科技有限公司 用激光光源与衍射光学元件实现的交通信号灯光学系统
CN105511086A (zh) * 2015-12-11 2016-04-20 杭州东尚光电科技有限公司 采用衍射光学元件与激光器结合的激光照明光学系统
CN105911703B (zh) * 2016-06-24 2019-08-09 上海图漾信息科技有限公司 线形激光投射装置和方法、及激光测距装置和方法
EP3333633A1 (en) 2016-12-09 2018-06-13 ASML Netherlands B.V. Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
CN106918906B (zh) * 2017-03-07 2019-12-03 湖北航天技术研究院总体设计所 基于双振幅型衍射元件的强激光艾里光束调制方法及装置
CN108152949B (zh) * 2017-11-23 2019-07-30 北京理工大学 一种基于空间部分相干光的衍射光学元件的设计方法
CN208013572U (zh) * 2018-04-08 2018-10-26 迪鹏光电科技股份有限公司 多点光源式图案投射器
CN108919487A (zh) * 2018-08-22 2018-11-30 中国科学院重庆绿色智能技术研究院 成像曲面非均匀采样方法及doe元件设计方法和曲面成像方法
CN109188711B (zh) * 2018-09-17 2020-11-03 深圳奥比中光科技有限公司 屏下光学系统、衍射光学元件的设计方法及电子设备
CN109143607B (zh) 2018-09-17 2020-09-18 深圳奥比中光科技有限公司 补偿显示屏、屏下光学系统及电子设备
CN109669271A (zh) * 2019-02-14 2019-04-23 杭州驭光光电科技有限公司 分束光学模组及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496616A (en) * 1994-12-27 1996-03-05 Xerox Corporation Optical element for correcting non-uniform diffraction efficiency in a binary diffractive optical element
US20100284082A1 (en) * 2008-01-21 2010-11-11 Primesense Ltd. Optical pattern projection
CN102763021A (zh) * 2009-12-16 2012-10-31 数字光学东方公司 选择性衍射光学元件和包括该选择性衍射光学元件的系统
CN101813797A (zh) * 2010-03-03 2010-08-25 长春理工大学 多层衍射光学元件的优化设计方法
CN104793336A (zh) * 2015-04-17 2015-07-22 中国科学院光电技术研究所 一种适用于多波长的衍射光学元件设计方法
CN105511084A (zh) * 2015-08-24 2016-04-20 无锡奥普顿光电子有限公司 一种衍射光学元件
CN109814256A (zh) * 2019-02-25 2019-05-28 中国科学院光电技术研究所 一种单片式强度修正型点阵结构光doe器件及设计方法
CN110824721A (zh) * 2019-09-24 2020-02-21 杭州驭光光电科技有限公司 衍射光学组件的设计方法及衍射光学组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230194857A1 (en) * 2020-06-09 2023-06-22 Jiaxing Uphoton Optoelectronics Technology Co., Ltd. Method for designing diffractive optical element, diffractive optical element, and system for designing diffractive optical element
US11796795B2 (en) * 2020-06-09 2023-10-24 Jiaxing Uphoton Optoelectronics Technology Co., Ltd. Method for designing diffractive optical element, diffractive optical element, and system for designing diffractive optical element

Also Published As

Publication number Publication date
US11740483B2 (en) 2023-08-29
EP4030220B1 (en) 2023-11-15
EP4030220A1 (en) 2022-07-20
EP4030220C0 (en) 2023-11-15
CN110824721B (zh) 2021-11-23
EP4030220A4 (en) 2022-11-16
US20220357586A1 (en) 2022-11-10
CN110824721A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021057651A1 (zh) 衍射光学组件的设计方法及衍射光学组件
JP6720156B2 (ja) 材料をパターニングするためのマイクロマシニング方法及びシステム、並びに1つのこのようなマイクロマシニングシステムを使用する方法。
US10802440B2 (en) Dynamic holography non-scanning printing device
DE202016008701U1 (de) Dynamische holografieorientierte Tiefendruckvorrichtung
CN111650681A (zh) 衍射光学元件、tof深度传感器、光学系统及装置
Maktoobi et al. Diffractive coupling for photonic networks: how big can we go?
CN107329274B (zh) 基于g-s算法产生艾里光束的装置及其方法
CN108427204B (zh) 一种产生各向同性扭曲高斯谢尔模光束的方法和系统
CN105372818A (zh) 用于发散激光束的光束整形方法
JP2004536350A (ja) 空間的に部分的にコヒーレントな光ビームの強度分布の回折成形
TW200900734A (en) Random phase mask for light pipe homogenizer
CN103592768A (zh) 余弦-高斯关联光束的产生系统、产生方法及其测量装置
US9575389B2 (en) Light modulator and exposure head
US20200324367A1 (en) Method for aligning a plurality of laser lines
CN110133849B (zh) 一种点扩散函数重建方法
CN105204168B (zh) 一种基于双波前校正器的无波前探测器远场激光束整形装置及方法
CN103885190A (zh) 一种亚微米光子晶体位相阵列光分束器的制作方法
WO2023097850A1 (zh) 衍射光学元件及其制备方法、母版衍射图案的设计方法
US11668928B2 (en) Diffractive optical element capable of being used for projecting oblique line, projection apparatus, and design method therefor
CN210427972U (zh) 一种灰度图像光阑衍射成像装置
WO2021238678A1 (zh) 衍射光学元件、分区匀光投射系统、电子设备及设计方法
CN109709671B (zh) 光束偏转装置及其空间光调制器的驱动方法和驱动装置
TW201037355A (en) Apparatus for homogenizing coherent radiation
TW202045290A (zh) 具有向量路徑規劃功能之雷射加工系統
Heki Design and Optimization of Phased-Array Metasurfaces for Applications in Light Emission and Quantum Optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867345

Country of ref document: EP

Effective date: 20220412