WO2021057547A1 - 发起时间敏感通信业务的方法、终端和存储介质 - Google Patents

发起时间敏感通信业务的方法、终端和存储介质 Download PDF

Info

Publication number
WO2021057547A1
WO2021057547A1 PCT/CN2020/115303 CN2020115303W WO2021057547A1 WO 2021057547 A1 WO2021057547 A1 WO 2021057547A1 CN 2020115303 W CN2020115303 W CN 2020115303W WO 2021057547 A1 WO2021057547 A1 WO 2021057547A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
service
information
tsc
sensitive communication
Prior art date
Application number
PCT/CN2020/115303
Other languages
English (en)
French (fr)
Inventor
王涛
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to JP2021555878A priority Critical patent/JP7299333B2/ja
Priority to EP20868000.9A priority patent/EP3941109B1/en
Priority to KR1020217034163A priority patent/KR102719251B1/ko
Publication of WO2021057547A1 publication Critical patent/WO2021057547A1/zh
Priority to US17/499,054 priority patent/US11937119B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • the present disclosure relates to the field of wireless communication, and more specifically to a method, terminal, and storage medium for initiating a time-sensitive communication service.
  • the core network architecture of the 5G communication system has undergone major changes.
  • MME Mobility Management Entity
  • CPF Control Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SGW Serving GateWay
  • PDN Gateway PDN Gateway
  • the 5G communication system introduces Time Sensitive Communication (TSC) in Time Sensitive Networking (TSN) to support industrial automation manufacturing applications that require high time accuracy.
  • TSC Time Sensitive Communication
  • TSN Time Sensitive Networking
  • the 5G communication system can be integrated into the TSN as an Ethernet Bridge in the TSN.
  • the terminal in the 5G communication system communicates with one or more devices in the TSN through the Device-Side TSN Translator (DS-TT), and the UPF entity in the 5G communication system passes through the network side.
  • the TSN converter NetworkWork-side TSN Translator, NW-TT
  • NW-TT Network-side TSN Translator
  • the 5G communication system supports the terminal to initiate a new service
  • the new service is a non-TSC service.
  • the 5G communication system does not support the terminal to initiate TSC services.
  • the embodiments of the present disclosure propose a method, terminal and storage medium for initiating a time-sensitive communication service.
  • a method for initiating a time-sensitive communication service which is executed by a terminal, and includes: sending request information for a time-sensitive communication service to a network node, wherein the request information includes the time-sensitive communication service Receive response information from the network node, wherein the response information includes the modified time parameter; and perform the time-sensitive communication service according to the response information.
  • a method for initiating a time-sensitive communication service which is executed by a network node, and includes: receiving from a terminal its request information for a time-sensitive communication service, wherein the request information includes the time-sensitive communication service. Time parameter of the communication service; sending the request information to the network controller; receiving response information from the network controller, wherein the response information includes the modified time parameter; and sending the response information to the terminal , So that the terminal performs the time-sensitive communication service according to the response information.
  • a terminal for initiating a time-sensitive communication service including: a sending unit configured to send request information for a time-sensitive communication service to a network node, wherein the request information includes the time A time parameter of a sensitive communication service; a receiving unit configured to receive response information from the network node, wherein the response information includes the modified time parameter; and a processing unit configured to perform a response based on the response information Describes time-sensitive communication services.
  • a network node for initiating a time-sensitive communication service, including: a receiving unit configured to receive request information for the time-sensitive communication service from a terminal, wherein the request information includes the The time parameter of the time-sensitive communication service; the sending unit is configured to send the request information to the network controller; the receiving unit is further configured to receive response information from the network controller, wherein the response information includes the modified And the sending unit is further configured to send the response information to the terminal.
  • a terminal including a processor and a memory, wherein a computer executable program is stored in the memory, and the processor is configured to execute the computer executable program to execute the foregoing The method for initiating a time-sensitive communication service described in the embodiment.
  • a network node including: a processor and a memory, wherein a computer executable program is stored in the memory, and the processor is configured to execute the computer executable program to execute The method for initiating a time-sensitive communication service described in the foregoing embodiment.
  • the terminal can send request information for the time-sensitive communication service to the network node, and the request information can include the time-sensitive communication The time parameter of the service.
  • the network node can return response information to the terminal, and the response information can include the modified time parameter, so that the terminal can perform time-sensitive communication services based on the response information, thereby realizing the time initiated by the terminal Sensitive communication business.
  • Fig. 2 is a flowchart of a method for initiating a time-sensitive communication service according to an embodiment of the present disclosure.
  • Fig. 3 is a flowchart of another method for initiating a time-sensitive communication service according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of a method for initiating a time-sensitive communication service in a wireless time-sensitive communication system according to an embodiment of the present disclosure.
  • Fig. 5 is another schematic flowchart of a method for initiating a time-sensitive communication service in a wireless time-sensitive communication system according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a network node according to an embodiment of the present disclosure.
  • Fig. 8 shows a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • the terminal described herein may include various types of user equipment (User Equipment, UE), such as a mobile terminal or a fixed terminal.
  • UE User Equipment
  • UE and terminal are sometimes used interchangeably in the following.
  • the wireless time-sensitive communication system may include a 5G system or any other type of wireless communication system, such as a 6G communication system.
  • a 5G system is taken as an example to describe the embodiments of the present disclosure, but it should be appreciated that the following description can also be applied to other types of wireless communication systems.
  • the wireless time-sensitive communication system may also include Time Sensitive Networking (TSN).
  • TSN Time Sensitive Networking
  • the wireless time-sensitive communication system 100 includes UE 101, (Radio) Access Network ((Radio) Access Network, (R) AN) 102, and access and mobility management functions (Access and Mobility).
  • Management Function (AMF) entity 103 Session Management Function (SMF) entity 104, User Plane Function (UPF) entity 105, Time-sensitive network TSN 106, Policy Control Function (PCF)
  • (R)AN 102 may be an access network composed of base stations.
  • the base station here can be any type of base station, such as a 5G base station or a base station in a traditional communication system.
  • the AMF entity 103 can support UE access authentication, mobility management, registration management, connection management, legal answering, and support the transmission of session management information between the UE and the SMF entity, and so on.
  • the SMF entity 104 may support session management, where the session management may include session establishment, modification, and release.
  • the UPF entity 105 may have a data packet routing function, for example, it may obtain a data packet from the TSN 106, send a data packet to the (R)AN 102, and so on.
  • the UE 101 can be connected to the (R)AN 102 through the Uu interface, and connected to the AMF entity 103 through the N1 interface.
  • (R) AN 102 can be connected to the AMF entity 103 through the N2 interface, and connected to the UPF entity 105 through the N3 interface.
  • the UPF entity 105 can be connected to the SMF entity 104 through the N4 interface, and connected to the TSN 106 through the N6 interface.
  • the SMF entity 104 may be connected to the PCF entity 107 through Nsmf and Npcf interfaces.
  • the AMF entity 103 can be connected to the PCF entity 107 through Namf and Npcf interfaces.
  • the PCF entity 107 can be connected to the AF entity 108 through the N5 interface.
  • the 3GPP standard specifications have already defined the various interfaces mentioned here, so I will not repeat them.
  • the UE 101 can communicate with the terminal station 110 through DS-TT, and the UPF entity 105 can communicate with the T
  • NW-TT is integrated in the UPF entity 105.
  • the embodiments of the present disclosure are not limited thereto.
  • the NW-TT and UPF entity 105 may be two independent devices.
  • each entity described above may be one or more servers.
  • entities may also be referred to as nodes. For convenience, entities and nodes are sometimes used interchangeably below.
  • the terminal may send its request information for a Time Sensitive Communication (TSC) service to a network node (for example, an AMF entity), and the request information may include the time parameter of the TSC service.
  • a network node for example, an AMF entity
  • the request information may include the time parameter of the TSC service.
  • the network node may return response information to the terminal, and the response information may include a modified time parameter, so that the terminal performs the TSC service according to the response information, thereby realizing that the terminal initiates the TSC service.
  • the TSC service may also be referred to as the TSN service.
  • FIG. 2 is a flowchart of a method 200 for initiating a time-sensitive communication service according to an embodiment of the present disclosure.
  • the terminal sends request information for time-sensitive communication services to the network node.
  • the request information in step S201 may include first information and second information, where the first information may be information about time-sensitive attributes of a time-sensitive communication service, and the second information may be time-sensitive. Information about the requirements of communication services for QoS Flow.
  • the first information may include the time parameter of the time-sensitive communication service.
  • the time parameter may include at least the start time of the time-sensitive communication service, the transmission period of data in the time-sensitive communication service, and the time accuracy requirement of the time-sensitive communication service.
  • the start time of the TSC service can be a time period.
  • the start time of the TSC service may be a specific point in time.
  • the data transmission period in the TSC service may be the sending or receiving period of the data packet in the TSC service, for example, 5 ms.
  • the requirement of the TSC service for time accuracy may be a preset level, such as a nanosecond level.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 nanoseconds to 9:10 minutes 000000001 nanoseconds.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 nanoseconds.
  • the first information may also include the identification of the time-sensitive communication service.
  • the identifier of the TSC service can be used to identify the service type of the TSC service.
  • the identifier of the TSC service may be used to identify a specific TSC service among multiple TSC services.
  • the TSC service identifier can not only be used to identify the service type of the TSC service, but also can be used to identify a specific TSC service among multiple TSC services.
  • the identification of the TSC service may be the ID (Identification) of the TSC service.
  • the network side can identify the type of service initiated by the terminal, and can also identify each TSC service initiated by the terminal, so as to determine the network side's ability to support the service initiated by the terminal.
  • the first information may also be referred to as TSC service requirement information.
  • the TSC service requirement information can be encapsulated in a specific format.
  • the specific format may be a TSC Session Requirement Container (TSC Session Requirement Container).
  • TSC Session Requirement Container TSC Session Requirement Container
  • the TSC session requirement container may include TSC service requirement information.
  • the second information can be used to describe the configuration information of the QoS flow corresponding to the TSC service, such as the 5G QoS flow transmission processing scalar identifier (5QI), the guaranteed flow bit rate (Guaranteed Flow Bit Rate, GFBR) ), the maximum flow bit rate (Maximum Flow Bit Rate, MFBR), packet filter (packet filter) and other parameters.
  • the second information may be the requested QoS flow descriptions (Requested QoS flow descriptions) defined in the 3GPP standard specifications.
  • the terminal After the terminal initiates the TSC service, it can map the service flow corresponding to the TSC service (which can be referred to as TSC service flow) to an already established QoS flow according to the second information, or it can establish a new QoS flow according to the second information and The TSC service flow is mapped to the newly established QoS flow.
  • TSC service flow the service flow corresponding to the TSC service (which can be referred to as TSC service flow) to an already established QoS flow according to the second information, or it can establish a new QoS flow according to the second information and The TSC service flow is mapped to the newly established QoS flow.
  • the request information in step S201 may further include third information, where the third information may be about a service converter corresponding to the terminal (for example, a device-side TSC service converter (DS-TT) ) In the port information that can support the TSC service.
  • the third information may include the port set that can support the TSC service in the service converter (for example, DS-TT) corresponding to the terminal, the port identification (for example, port number), the information capacity that the port can support, and the port time. At least one of the extensions.
  • the "port set" here can include one or more ports.
  • the third information may also be referred to as port management information provided by the terminal.
  • a specific format may be used to encapsulate the port management information provided by the terminal.
  • the specific format may be a port management information container (Port Management Information Container).
  • the port management information container may include port management information provided by the terminal.
  • the terminal can respectively encode TSC service requirement information, requested QoS flow description, and port management information.
  • TSC service requirement information can be coded independently. In this way, the compatibility of the wireless time-sensitive communication system with various terminals is improved, and the complexity of information processing is reduced.
  • the terminal may send the above-described TSC service requirement information, the requested QoS flow description, and port management information to the network node through a single piece of signaling.
  • the terminal may also send the above-described TSC service requirement information, the requested QoS flow description, and port management information to the network node through multiple pieces of signaling.
  • the terminal may send TSC service requirement information to the network node through the first signaling, send the requested QoS flow description to the network node through the second signaling, and send the port management information to the network node through the third signaling .
  • step S202 the terminal receives response information from the network node.
  • the response information in step S202 may include a modified time parameter.
  • the time parameters provided by the terminal include the start time of the TSC service, the transmission period of data in the TSC service, and the time accuracy requirements of the TSC service
  • the network side can modify the start time of the TSC service and the transmission period of data in the TSC service.
  • the modified time parameter may include one or more of a modified start time, a modified data transmission period, and a modified time accuracy.
  • the network side may only modify the start time of the TSC service.
  • the network side may designate a time point in the time period as the start time of the TSC service.
  • the modified time parameter may include the designated time point.
  • the network side determines that the TSC service cannot be identified according to the TSC service identifier, it can only modify the start time of the TSC service, instead of modifying the data transmission period in the TSC service and the TSC service’s requirements for time accuracy. For example, you can specify the time period A point in time as the start time of the TSC service. Accordingly, the modified time parameter may include the designated time point.
  • the network side may not modify the start time of the TSC service.
  • the network side can modify the start time of the TSC service, the data transmission period in the TSC service, and the time accuracy requirements of the TSC service. For example, when the network side determines that the TSC service can be identified according to the TSC service identifier, it can modify the start time of the TSC service, the data transmission period in the TSC service, and the TSC service's requirements for time accuracy.
  • Parameters that have not been modified among the time parameters provided by the terminal may also be included in the modified time parameters. That is to say, when the network side has not modified some of the time parameters provided by the terminal, the modified time parameters may still include the original values of these parameters.
  • the response information in step S202 may further include information used to indicate the port used to perform the time-sensitive communication service in the service converter (for example, DS-TT) corresponding to the terminal.
  • the information may include the port set and port identifier used to perform the TSC service in the DS-TT corresponding to the terminal.
  • the port used for TSC service in the DS-TT corresponding to the terminal can be determined at least according to the time parameter provided by the terminal.
  • the port used to perform the TSC service in the DS-TT corresponding to the terminal can be determined according to the time parameter and port management information provided by the terminal.
  • the TSC service start time and port management information in the time parameters provided by the terminal can be used to determine the port set for the TSC service and the corresponding port identifier at the start time of the TSC service, so as to determine the DS-TT corresponding to the terminal Port used for TSC service.
  • the information used to indicate the port used to perform the time-sensitive communication service in the service converter corresponding to the terminal may be referred to as TSC Port Management Information (TSC Port Management Information), that is, provided by the network side Port management information.
  • TSC Port Management Information TSC Port Management Information
  • a specific format can be used to encapsulate the port management information provided by the network side.
  • the specific format may be the port management information container (Port Management Information Container) described above.
  • the response information in step S202 may also include TSC assistance information (TSC Assistance Information, TSCAI).
  • TSCAI may include one or more of information indicating the direction (for example, uplink or downlink) of the TSC service, the transmission period of the data in the TSC service, and the arrival time of the data in the TSC service.
  • the TSCAI can be generated according to the time parameter (that is, the modified time parameter) provided by the network side.
  • the arrival time of the data in the TSC service in the TSCAI can be determined according to the start time of the TSC service in the time parameter provided by the network side.
  • the communication system can perform time-accurate transmission control of the TSC service according to the TSCAI.
  • the terminal performs the time-sensitive communication service according to the response information. Specifically, the terminal can determine the start time of the TSC service determined by the network side, the data transmission period in the TSC service, and the time accuracy requirement of the TSC service according to the response information, and perform the TSC service accordingly.
  • the terminal can send request information for a time-sensitive communication service to a network node, and the request information can include the time parameter of the time-sensitive communication service.
  • the network node After the network node receives the request, it can The response information is returned to the terminal, and the response information may include a modified time parameter, so that the terminal performs a time-sensitive communication service according to the response information, thereby realizing that the terminal initiates the time-sensitive communication service.
  • FIG. 3 is a flowchart of a method 300 for initiating a time-sensitive communication service according to an embodiment of the present disclosure.
  • the network node here may be the AMF entity 103 in FIG. 1. Since the specific details of the following operations performed according to the method 300 are the same as those described above with reference to FIG. 2, the repeated description of the same details is omitted here to avoid repetition.
  • step S301 the network node receives its request information for time-sensitive communication services from the terminal.
  • the request information in step S301 may include first information and second information, where the first information may be information about time-sensitive attributes of a time-sensitive communication service, and the second information may be time-sensitive. Information about the requirements of communication services for QoS Flow.
  • the first information may include the time parameter of the time-sensitive communication service.
  • the time parameter may include at least the start time of the time-sensitive communication service, the transmission period of data in the time-sensitive communication service, and the time accuracy requirement of the time-sensitive communication service.
  • the start time of the TSC service can be a time period.
  • the start time of the TSC service may be a specific point in time.
  • the data transmission period in the TSC service may be the sending or receiving period of the data packet in the TSC service, for example, 5 ms.
  • the requirement of the TSC service for time accuracy may be a preset level, such as a nanosecond level.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 ns to 9:10 min 000000001 ns.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 nanoseconds.
  • the second information can be used to describe the configuration information of the QoS flow corresponding to the TSC service, such as 5G QoS flow transmission processing scalar identification (5G QoS Identification, 5QI), guaranteed flow bit rate (Guaranteed Flow Bit Rate, GFBR) ), the maximum flow bit rate (Maximum Flow Bit Rate, MFBR), packet filter (packet filter) and other parameters.
  • 5G QoS flow transmission processing scalar identification 5G QoS Identification, 5QI
  • guaranteed flow bit rate (Guaranteed Flow Bit Rate, GFBR)
  • the maximum flow bit rate Maximum Flow Bit Rate, MFBR
  • packet filter packet filter
  • the request information in step S301 may further include third information, where the third information may be about a port that can support TSC services in a service converter (for example, DS-TT) corresponding to the terminal.
  • the third information may include the port set that can support the TSC service in the service converter (for example, DS-TT) corresponding to the terminal, the port identification (for example, port number), the information capacity that the port can support, and the port time. At least one of the extensions.
  • the method 300 may include step S302: the network node sends the request information to the network controller.
  • the network node may transparently transmit the request information to the network controller.
  • the network node may send the request information to the network controller without any modification to the specific content of the request information.
  • the network node may transparently send the request information to the SMF entity 104 in FIG. 1. Then, the SMF entity 104 can transparently send the request information to the PCF entity 107 in FIG. 1. Then, the PCF entity 107 can transparently send the request information to the AF entity 108 in FIG. 1. Then, the AF entity 108 can transparently send the request information to the network controller.
  • the network controller may be a time-sensitive network controller.
  • the network controller may be a Center Network Controller (CNC) in the TSN network.
  • CNC Center Network Controller
  • the IEEE standard specification has defined the CNC mentioned here, so I won't repeat it.
  • the method 300 may include step S303: the network node receives response information from the network controller.
  • the network controller may generate response information according to the received request information, and send the generated response information to the network node.
  • the response information in step S303 may include a modified time parameter.
  • the time parameters provided by the terminal include the start time of the TSC service, the transmission period of data in the TSC service, and the time accuracy requirements of the TSC service
  • the network controller can modify the start time of the TSC service and the transmission of data in the TSC service.
  • the modified time parameter may include one or more of a modified start time, a modified data transmission period, and a modified time accuracy.
  • the network controller may modify the start time of the TSC service, the data transmission period in the TSC service, and the time accuracy requirements of the TSC service. For example, when the network controller determines that the TSC service can be identified according to the TSC service identifier, it can modify the start time of the TSC service, the data transmission period in the TSC service, and the TSC service's requirements for time accuracy.
  • the response information in step S303 may further include information used to indicate the port used to perform the time-sensitive communication service in the service converter (for example, DS-TT) corresponding to the terminal.
  • the information may include the port set and port identifier used to perform the TSC service in the DS-TT corresponding to the terminal.
  • the network controller may determine the port used for TSC service in the DS-TT corresponding to the terminal at least according to the time parameter provided by the terminal. Specifically, the network controller may determine the port used to perform the TSC service in the DS-TT corresponding to the terminal according to the time parameter and port management information provided by the terminal. For example, the network controller can determine the port set for TSC service at the start time of the TSC service and the identification of the corresponding port according to the start time of the TSC service and the port management information in the time parameters provided by the terminal, thereby determining the DS corresponding to the terminal -Port used for TSC service in TT.
  • the information used to indicate the port used for the time-sensitive communication service in the service converter corresponding to the terminal may be called TSC Port Management Information (TSC Port Management Information), that is, the network controller provides Port management information.
  • TSC Port Management Information TSC Port Management Information
  • the response information in step S303 may further include TSC assistance information (TSC Assistance Information, TSCAI).
  • TSCAI may include one or more of information indicating the direction (for example, uplink or downlink) of the TSC service, the transmission period of the data in the TSC service, and the arrival time of the data in the TSC service.
  • the network controller can send the modified time parameter, TSC port management information and TSCAI described above to the network node through a piece of signaling, and then the network node can transmit these information to the UE and its DS -TT.
  • the signaling interaction in the wireless time-sensitive communication system can be reduced, the signaling optimization in the wireless time-sensitive communication system can be realized, and the signaling overhead can be reduced.
  • the network controller may send the modified time parameters, TSC port management information, and TSCAI described above to the network node through multiple pieces of signaling, and then the network node may transmit these information to the UE and its DS-TT.
  • the network controller may send the modified time parameter to the network node through the fourth signaling, and then the network node may transmit the information to the UE and its DS-TT; send the TSC port management information to the network through the fifth signaling Then the network node can transmit this information to the UE and its DS-TT; and send the TSCAI to the network node through the sixth signaling, and then the network node can transmit this information to the NG RAN.
  • step S304 the network node sends response information to the terminal.
  • the terminal can perform time-sensitive communication services according to the received response information. Specifically, the terminal can determine the start time of the TSC service determined by the network side, the data transmission period in the TSC service, and the time accuracy requirement of the TSC service according to the response information, and perform the TSC service accordingly.
  • the network node can receive its request information for the time-sensitive communication service from the terminal, and the request information can include the time parameter of the time-sensitive communication service.
  • the network node may return response information to the terminal, and the response information may include modified time parameters, so that the terminal can perform a time-sensitive communication service according to the response information, thereby realizing that the terminal initiates a time-sensitive communication service.
  • FIG. 4 is a schematic flowchart of a method for initiating a time-sensitive communication service in a wireless time-sensitive communication system according to an embodiment of the present disclosure.
  • the example shown in FIG. 4 is based on a scenario where the UE is not roaming and maps the TSC service flow to an established QoS flow.
  • the UE can send a PDU Session Modification Request (PDU Session Modification Request) to the AMF.
  • the PDU Session Modification Request includes the TSC Session Requirement Container (TSC Session Requirement Container). Simplified representation) and requested QoS flow descriptions (Requested QoS flow descriptions).
  • step S2 the AMF sends a PDU session_update SM content (Nsmf_PDUSession_UpdateSMContext) to the SMF through the Nsmf interface.
  • the Nsmf_PDUSession_UpdateSMContext includes the N1SM container (Container), and the N1SM Container includes the TSC session requirement container and the requested QoS flow description.
  • step S3 the SMF sends an SM policy control_update request (Npcf_SMPolicyControl_Update request) to the PCF through the Npcf interface.
  • the Npcf_SMPolicyControl_Update request includes the TSC session requirement container and the requested QoS flow description.
  • step S4 the PCF sends a policy authorization_notification (Npcf_PolicyAuthorization_Notify) to the AF, and the Npcf_PolicyAuthorization_Notify includes the TSC session requirement container.
  • Npcf_PolicyAuthorization_Notify a policy authorization_notification
  • step S5 the AF notifies the CNC of the TSC session demand container.
  • CNC can generate modified TSC session demand container, TSC port management information, and TSCAI according to the received information.
  • step S6 the CNC sends a request to the AF.
  • the request includes the TSC session demand container generated by the CNC, the TSC port management information, and the TSCAI.
  • the PCF may determine the QoS policy (Policy) of the UE according to the "requested QoS flow description" in step S3.
  • Policy QoS policy
  • the PCF sends the SM policy control_update notification response (Npcf_SMPolicyControl_UpdateNotify response) to the SMF, through which the Npcf_SMPolicyControl_UpdateNotify response will QoS policy and TSC session demand container , TSC port management information, and TSCAI are sent to SMF.
  • the SMF sends a communication message transfer (Namf_Communication_N1N2MessageTransfer) to the AMF.
  • the Namf_Communication_N1N2MessageTransfer includes N1 SM Container and N2 SM information, where N1 SM Container includes TSC session requirement container and TSC port management information, and N2 SM information includes TSCAI information.
  • the SMF can map the QoS policy to the QoS profile of the N2 SM, and include it and the TSCAI information in the N2 SM information.
  • the SMF maps the QoS policy to the QoS Rules of the N1 SM, and includes the demand container and TSC port management information for its session with the TSC in the N1 SM container (Container), and then sends it to the AMF.
  • the TSCAI provided by CNC is based on the parameter value of the external TSN clock domain, and SMF needs to convert it to the parameter value of the clock domain of the 5G system.
  • the 3GPP standard specification has already defined the conversion process, so it will not be repeated.
  • the AMF may send a PDU session resource setup/modification request (N2 PDU Session Resource Setup/Modification Request) to the 5G RAN (for example, New Radio RAN (NR RAN)) through the N2 interface.
  • the N2 PDU Session Resource Setup/Modification Request /Modification Request includes QoS configuration and TACAI.
  • the AMF sends a PDU Session Modification Response (PDU Session Modification Response) to the UE.
  • PDU Session Modification Response includes the TSC session requirement container, TSC port management information, and QoS rules.
  • the UE can configure the TSC service flow according to the received information to perform the TSC service.
  • the TSC port management information provided by the CNC may include the configuration information of the port in the DS-TT on the UE side and the configuration information of the port in the NW-TT on the UPF side.
  • the TSC port management information in the above steps S9 and S11 may only include the configuration information of the port in the DS-TT on the UE side.
  • the above schematic diagram does not show the transmission process of the port in the NW-TT on the UPF side.
  • SMF can identify the port in DS-TT and the port in NW-TT through the Port Number (for example, the Ethernet MAC address of the port).
  • the TSC session request container and its parameters are transparently transmitted from the UE to AMF, from AMF to SMF, from SMF to PCF, from PCF to AF, and from AF. To CNC.
  • FIG. 5 is another schematic flowchart of a method for initiating a time-sensitive communication service in a wireless time-sensitive communication system according to an embodiment of the present disclosure.
  • the example shown in Figure 5 is based on a scenario where the UE roams and maps the TSC service flow to an established QoS flow.
  • the UE can send a PDU Session Modification Request (PDU Session Modification Request) to the AMF.
  • the PDU Session Modification Request includes the TSC Session Requirement Container (TSC Session Requirement Container). Simplified representation) and requested QoS flow descriptions (Requested QoS flow descriptions).
  • step S2 the AMF sends the PDU session_update SM content (Nsmf_PDUSession_UpdateSMContext) to the V-SMF (A SMF in the VPLMN (Visited Public Land Mobile Network)) through the Nsmf interface, and the Nsmf_PDUSession_UpdateSMContext includes the TSC The session requirement container and the requested QoS flow description.
  • Nsmf_PDUSession_UpdateSMContext includes the TSC The session requirement container and the requested QoS flow description.
  • step S3 the V-SMF sends the PDU session_update SM content (Nsmf_PDUSession_UpdateSMContext) to the H-SMF (A SMF in the HPLMN (Home Public Land Mobile Network, local public land mobile network)) through the Nsmf interface.
  • Nsmf_PDUSession_UpdateSMContext Including the TSC session requirement container and the requested QoS flow description.
  • step S4 the H-SMF sends an SM policy control_update request (Npcf_SMPolicyControl_Update request) to the PCF through the Npcf interface.
  • the Npcf_SMPolicyControl_Update request includes the TSC session requirement container and the requested QoS flow description.
  • step S5 the PCF sends a policy authorization_notification (Npcf_PolicyAuthorization_Notify) to the AF, and the Npcf_PolicyAuthorization_Notify includes the TSC session requirement container.
  • Npcf_PolicyAuthorization_Notify a policy authorization_notification
  • step S6 the AF notifies the CNC of the TSC session demand container.
  • CNC can generate modified TSC session demand container, TSC port management information, and TSCAI according to the received information.
  • step S7 the CNC sends a request to the AF.
  • the request includes the TSC session demand container generated by the CNC, the TSC port management information, and the TSCAI.
  • step S8 the AF sends a Policy Authorization_Create Request (Npcf_PolicyAuthorization_Create Request) to the PCF through the N5 interface.
  • the Npcf_PolicyAuthorization_Create Request includes the TSC session requirement container generated by the CNC, the TSC port management information, and the TSCAI.
  • the PCF may determine the QoS policy (Policy) of the UE according to the "requested QoS flow description" in step S4.
  • Policy QoS policy
  • the PCF sends the SM policy control_update notification response (Npcf_SMPolicyControl_UpdateNotify response) to the H-SMF, and through the Npcf_SMPolicyControl_UpdateNotify response, the QoS policy and TSC session
  • Npcf_SMPolicyControl_UpdateNotify response the QoS policy and TSC session
  • the demand container, TSC port management information, and TSCAI are sent to H-SMF.
  • the H-SMF may send an SM policy control_update notification response (Npcf_SMPolicyControl_UpdateNotify response) to the V-SMF, and send the QoS policy, TSC session requirement container, TSC port management information, and TSCAI to the Npcf_SMPolicyControl_UpdateNotify response through the Npcf_SMPolicyControl_UpdateNotify response V-SMF.
  • Npcf_SMPolicyControl_UpdateNotify response SM policy control_update notification response
  • the V-SMF sends a communication message transfer (Namf_Communication_N1N2MessageTransfer) to the AMF.
  • the Namf_Communication_N1N2MessageTransfer includes N1 SM Container and N2 SM information, where N1 SM Container includes TSC session demand container and TSC port management information, and N2 SM information includes TSCAI information.
  • the V-SMF can map the QoS policy to the QoS profile of the N2 SM, and include it and the TSCAI information in the N2 SM information.
  • the V-SMF maps the QoS policy to the QoS Rules of the N1 SM, and includes the demand container and TSC port management information for its session with the TSC in the N1 SM container (Container), and then sends it to the AMF.
  • the TSCAI provided by CNC is based on the parameter value of the external TSN clock domain, and H-SMF needs to convert it to the parameter value of the clock domain of the 5G system.
  • V-SMF and H-SMF may be time synchronized.
  • V-SMF and H-SMF may not be synchronized in time.
  • V-SMF can convert TSCAI based on the 5G clock domain where the H-SMF is located into TSCAI based on the 5G clock domain where the V-SMF is located.
  • V-SMF can convert the parameter values in TSCAI based on the 5G clock domain where H-SMF is located to the parameter values based on the 5G clock domain where V-SMF is located .
  • the parameter value can be the "time of arrival of data in the TSC service" in TSCAI.
  • the "time of arrival of data in the TSC service” in the TSCAI received by V-SMF from H-SMF is based on the 5G clock domain where H-SMF is located, and V-SMF can convert it to based on V-SMF.
  • the parameter value of the 5G clock domain is the "time of arrival of data in the TSC service" in TSCAI received by V-SMF from H-SMF.
  • the AMF may send a PDU session resource setup/modification request (N2 PDU Session Resource Setup/Modification Request) to the 5G RAN (for example, New Radio RAN (NR RAN)) through the N2 interface.
  • the N2 PDU Session Resource Setup/Modification Request /Modification Request includes QoS configuration and TACAI.
  • the AMF sends a PDU Session Modification Response (PDU Session Modification Response) to the UE.
  • PDU Session Modification Response includes the TSC session requirement container, TSC port management information, and QoS rules.
  • the UE can configure the TSC service flow according to the received information to perform the TSC service.
  • the TSC port management information provided by the CNC may include the configuration information of the port in the DS-TT on the UE side and the configuration information of the port in the NW-TT on the UPF side.
  • the TSC port management information in the above steps S11 and S13 may only include the configuration information of the port in the DS-TT on the UE side.
  • the above schematic diagram does not show the transmission process of the port in the NW-TT on the UPF side.
  • H-SMF can identify the port in DS-TT and the port in NW-TT through the Port Number (for example, the Ethernet MAC address of the port), and can combine the DS-TT with V-SMF and AMF.
  • the configuration information of the port in the TT is sent to the UE, and the configuration information of the port in the NW-TT is sent to the H-UPF (a UPF in the HPLMN) through the N4 interface.
  • the TSC session request container and its parameters are transparently transmitted from the UE to AMF, from AMF to V-SMF, from V-SMF to H-SMF, and from H-SMF Transfer to PCF, transfer from PCF to AF, and transfer from AF to CNC.
  • the wireless time-sensitive communication system can also implement the method for initiating a time-sensitive communication service in the embodiments of the present disclosure.
  • the specific process of the wireless time-sensitive communication system implementing the method for initiating a time-sensitive communication service of the embodiment of the present disclosure is basically similar to that in Figs.
  • step S1 the UE can send a PDU Session Establishment Request to the AMF.
  • the PDU Session Establishment Request includes the TSC Session Requirement Container (TSC Session Requirement Container, which is used to simplify the representation in the process).
  • TSC Session Requirement Container which is used to simplify the representation in the process.
  • the requested QoS flow descriptions Requested QoS flow descriptions.
  • the UE non-roaming (similar to FIG. 4) and UE roaming (similar to FIG. 5) states can also be supported.
  • FIG. 6 is a schematic structural diagram of a terminal 600 according to an embodiment of the present disclosure. Since the function of the terminal 600 is the same as the function of the terminal in the method described above with reference to FIG. 2, a detailed description of the same content is omitted here for the sake of simplicity.
  • the terminal 600 includes: a sending unit 610, a receiving unit 620, and a processing unit 630.
  • the sending unit 610 is configured to send request information for a time-sensitive communication service to a network node, where the request information includes a time parameter of the time-sensitive communication service.
  • the receiving unit 620 is configured to receive response information from the network node, where the response information includes the modified time parameter.
  • the processing unit 630 is configured to perform the time-sensitive communication service according to the response information.
  • the terminal 600 may also include other components. However, since these components are not related to the content of the embodiments of the present disclosure, their illustrations and descriptions are omitted here.
  • the request information sent by the sending unit 610 may include first information and second information, where the first information may be information about time-sensitive attributes of a time-sensitive communication service, and the second information may be time-sensitive information.
  • Sensitive communication services require QoS Flow (QoS Flow) information.
  • the first information may include the time parameter of the time-sensitive communication service.
  • the time parameter may include at least the start time of the time-sensitive communication service, the transmission period of data in the time-sensitive communication service, and the time accuracy requirement of the time-sensitive communication service.
  • the start time of the TSC service can be a time period.
  • the start time of the TSC service may be a specific point in time.
  • the data transmission period in the TSC service may be the sending or receiving period of the data packet in the TSC service, for example, 5 ms.
  • the requirement of the TSC service for time accuracy may be a preset level, such as a nanosecond level.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 nanoseconds to 9:10 minutes 000000001 nanoseconds.
  • the start time of the TSC service may be, for example, 9:00 am 000000001 nanoseconds.
  • the second information may be used to describe the configuration information of the QoS flow corresponding to the TSC service, such as the 5G QoS Identifier (5QI) of the 5G QoS flow transmission processing scalar, and the guaranteed flow bit rate (Guaranteed Flow Bit Rate, GFBR). ), the maximum flow bit rate (Maximum Flow Bit Rate, MFBR), packet filter (packet filter) and other parameters.
  • the second information may be the requested QoS flow descriptions (Requested QoS flow descriptions) defined in the 3GPP standard specifications.
  • the terminal After the terminal initiates the TSC service, it can map the service flow corresponding to the TSC service (which can be referred to as TSC service flow) to an already established QoS flow according to the second information, or it can establish a new QoS flow according to the second information and The TSC service flow is mapped to the newly established QoS flow.
  • TSC service flow the service flow corresponding to the TSC service (which can be referred to as TSC service flow) to an already established QoS flow according to the second information, or it can establish a new QoS flow according to the second information and The TSC service flow is mapped to the newly established QoS flow.
  • the request information sent by the sending unit 610 may further include third information, where the third information may be about a service converter corresponding to the terminal (for example, a device-side TSC service converter (DS-TT) )) Port information that can support the TSC service.
  • the third information may include the port set that can support the TSC service in the service converter (for example, DS-TT) corresponding to the terminal, the port identification (for example, port number), the information capacity that the port can support, and the port time. At least one of the extensions.
  • the "port set" here can include one or more ports.
  • the third information may also be referred to as port management information provided by the terminal.
  • a specific format may be used to encapsulate the port management information provided by the terminal.
  • the specific format may be a port management information container (Port Management Information Container).
  • the port management information container may include port management information provided by the terminal.
  • the sending unit 610 may encode the TSC service requirement information, the requested QoS flow description, and port management information described above before sending it to the network node. Specifically, in the encoding process, the sending unit 610 may respectively encode the TSC service requirement information, the requested QoS flow description, and the port management information.
  • the sending unit 610 may respectively encode the TSC service requirement information, the requested QoS flow description, and the port management information.
  • TSC service requirement information can be coded independently. In this way, the compatibility of the wireless time-sensitive communication system with various terminals is improved, and the complexity of information processing is reduced.
  • the sending unit 610 may send the above-described TSC service requirement information, the requested QoS flow description, and port management information to the network node through a piece of signaling. In this way, the signaling interaction in the wireless time-sensitive communication system can be reduced, the signaling optimization in the wireless time-sensitive communication system can be realized, and the signaling overhead can be reduced. It should be understood that the embodiments of the present disclosure are not limited thereto.
  • the sending unit 610 may also send the above-described TSC service requirement information, the requested QoS flow description, and port management information to the network node through multiple pieces of signaling.
  • the sending unit 610 may send the TSC service requirement information to the network node through the first signaling, send the requested QoS flow description to the network node through the second signaling, and send the port management information to the network node through the third signaling Network node.
  • the response information received by the receiving unit 620 may include a modified time parameter.
  • the time parameters provided by the terminal include the start time of the TSC service, the transmission period of data in the TSC service, and the time accuracy requirements of the TSC service
  • the network side can modify the start time of the TSC service and the transmission period of data in the TSC service.
  • the modified time parameter may include one or more of a modified start time, a modified data transmission period, and a modified time accuracy.
  • the network side may only modify the start time of the TSC service.
  • the network side may designate a time point in the time period as the start time of the TSC service.
  • the modified time parameter may include the designated time point.
  • the network side determines that the TSC service cannot be identified according to the TSC service identifier, it can only modify the start time of the TSC service, instead of modifying the data transmission period in the TSC service and the TSC service’s requirements for time accuracy. For example, you can specify the time period A point in time as the start time of the TSC service. Accordingly, the modified time parameter may include the designated time point.
  • the network side may not modify the start time of the TSC service.
  • the network side can modify the start time of the TSC service, the data transmission period in the TSC service, and the time accuracy requirements of the TSC service. For example, when the network side determines that the TSC service can be identified according to the TSC service identifier, it can modify the start time of the TSC service, the data transmission period in the TSC service, and the TSC service's requirements for time accuracy.
  • Parameters that have not been modified among the time parameters provided by the terminal may also be included in the modified time parameters. That is to say, when the network side has not modified some of the time parameters provided by the terminal, the modified time parameters may still include the original values of these parameters.
  • the response information received by the receiving unit 620 may further include information for indicating a port for performing the time-sensitive communication service in a service converter (for example, DS-TT) corresponding to the terminal.
  • the information may include the port set and port identifier used to perform the TSC service in the DS-TT corresponding to the terminal.
  • the port used for TSC service in the DS-TT corresponding to the terminal can be determined at least according to the time parameter provided by the terminal.
  • the port used to perform the TSC service in the DS-TT corresponding to the terminal can be determined according to the time parameter and port management information provided by the terminal.
  • the TSC service start time and port management information in the time parameters provided by the terminal can be used to determine the port set for the TSC service and the corresponding port identifier at the start time of the TSC service, so as to determine the DS-TT corresponding to the terminal Port used for TSC service.
  • the information used to indicate the port used for the time-sensitive communication service in the service converter corresponding to the terminal may be referred to as TSC Port Management Information, that is, provided by the network side Port management information.
  • the response information received by the receiving unit 620 may also include TSC Assistance Information (TSCAI).
  • TSCAI may include one or more of information indicating the direction (for example, uplink or downlink) of the TSC service, the transmission period of the data in the TSC service, and the arrival time of the data in the TSC service.
  • the TSCAI can be generated according to the time parameter (that is, the modified time parameter) provided by the network side.
  • the arrival time of the data in the TSC service in the TSCAI can be determined according to the start time of the TSC service in the time parameter provided by the network side.
  • the communication system can perform time-accurate transmission control of the TSC service according to the TSCAI.
  • the terminal can send request information for a time-sensitive communication service to the network node, and the request information can include the time parameter of the time-sensitive communication service, and the network node can return response information to the terminal after receiving the request.
  • the response information may include a modified time parameter, so that the terminal can perform a time-sensitive communication service according to the response information, thereby realizing that the terminal initiates a time-sensitive communication service.
  • FIG. 7 is a schematic structural diagram of a network node 700 according to an embodiment of the present disclosure. Since the function of the network node 700 is the same as the function of the network node in the method described above with reference to FIG. 3, a detailed description of the same content is omitted here for the sake of simplicity.
  • the network node 700 includes: a receiving unit 710 and a sending unit 720.
  • the receiving unit 710 is configured to receive request information for the time-sensitive communication service from the terminal, where the request information includes the time parameter of the time-sensitive communication service.
  • the sending unit 720 is configured to send the request information to the network controller.
  • the receiving unit 710 is further configured to receive response information from the network controller, wherein the response information includes the modified time parameter.
  • the sending unit 720 is further configured to send the response information to the terminal.
  • the network node 700 may also include other components. However, since these components have nothing to do with the content of the embodiments of the present disclosure, their illustrations and descriptions are omitted here.
  • the request information received by the receiving unit 710 may include first information and second information, where the first information may be information about the time-sensitive attribute of a time-sensitive communication service, and the second information may be time.
  • Sensitive communication services require QoS Flow (QoS Flow) information.
  • the request information received by the receiving unit 710 may further include third information, where the third information may be related to the service converter (for example, DS-TT) corresponding to the terminal that can support the TSC service.
  • the third information may include the port set that can support the TSC service in the service converter (for example, DS-TT) corresponding to the terminal, the port identification (for example, port number), the information capacity that the port can support, and the port time. At least one of the extensions.
  • the "port set" here can include one or more ports.
  • the sending unit 720 may transparently transmit the request information to the network controller.
  • the network node may send the request information to the network controller without any modification to the specific content of the request information. Device.
  • the sending unit 720 may transparently send the request information to the SMF entity 104 in FIG. 1. Then, the SMF entity 104 can transparently send the request information to the PCF entity 107 in FIG. 1. Then, the PCF entity 107 can transparently send the request information to the AF entity 108 in FIG. 1. Then, the AF entity 108 can transparently send the request information to the network controller.
  • the network controller may generate response information according to the received request information, and send the generated response information to the network node.
  • the response information received by the receiving unit 710 may include a modified time parameter.
  • the time parameters provided by the terminal include the start time of the TSC service, the transmission period of data in the TSC service, and the time accuracy requirements of the TSC service
  • the network controller can modify the start time of the TSC service and the transmission of data in the TSC service.
  • the modified time parameter may include one or more of a modified start time, a modified data transmission period, and a modified time accuracy.
  • the response information received by the receiving unit 710 may further include information for indicating a port for performing the time-sensitive communication service in a service converter (for example, DS-TT) corresponding to the terminal.
  • the information may include the port set and port identifier used to perform the TSC service in the DS-TT corresponding to the terminal.
  • the network controller may determine the port used for TSC service in the DS-TT corresponding to the terminal at least according to the time parameter provided by the terminal. Specifically, the network controller may determine the port used to perform the TSC service in the DS-TT corresponding to the terminal according to the time parameter and port management information provided by the terminal. For example, the network controller can determine the port set for TSC service at the start time of the TSC service and the identification of the corresponding port according to the start time of the TSC service and the port management information in the time parameters provided by the terminal, thereby determining the DS corresponding to the terminal -Port used for TSC service in TT.
  • the response information received by the receiving unit 710 may also include TSC Assistance Information (TSCAI).
  • TSCAI may include one or more of information indicating the direction (for example, uplink or downlink) of the TSC service, the transmission period of the data in the TSC service, and the arrival time of the data in the TSC service.
  • the network controller can generate the TSCAI according to the time parameter provided by itself (that is, the modified time parameter). For example, the network controller may determine the arrival time of data in the TSC service in the TSCAI according to the start time of the TSC service in the time parameter provided by the network controller.
  • the communication system can perform time-accurate transmission control of the TSC service according to the TSCAI.
  • the network controller can send the modified time parameter, TSC port management information, and TSCAI described above to the receiving unit 710 through a single piece of signaling, and then the sending unit 720 can transmit these information to the UE and Its DS-TT.
  • the signaling interaction in the wireless time-sensitive communication system can be reduced, the signaling optimization in the wireless time-sensitive communication system can be realized, and the signaling overhead can be reduced.
  • the network controller may send the modified time parameters, TSC port management information, and TSCAI described above to the receiving unit 710 through multiple pieces of signaling, and then the sending unit 720 may transmit these information to the UE and its DS-TT .
  • the network controller may send the modified time parameters to the receiving unit 710 through the fourth signaling, and then the sending unit 720 may transmit the information to the UE and its DS-TT; send the TSC port management information through the fifth signaling To the receiving unit 710, then the sending unit 720 can transmit the information to the UE and its DS-TT; and send the TSCAI to the receiving unit 710 through the sixth signaling, and then the sending unit 720 can transmit the information to the NGRAN.
  • the network node can receive its request information for a time-sensitive communication service from the terminal, and the request information can include the time parameter of the time-sensitive communication service.
  • the network node may return response information to the terminal, and the response information may include modified time parameters, so that the terminal can perform a time-sensitive communication service according to the response information, thereby realizing that the terminal initiates a time-sensitive communication service.
  • the embodiment of the present disclosure provides a terminal, including a processor and a memory, wherein a computer executable program is stored in the memory, and the processor is configured to execute the computer executable program to execute the above-mentioned embodiments.
  • a terminal including a processor and a memory, wherein a computer executable program is stored in the memory, and the processor is configured to execute the computer executable program to execute the above-mentioned embodiments.
  • the embodiment of the present disclosure provides a network node, including: a processor and a memory, wherein a computer executable program is stored in the memory, and the processor is configured to execute the computer executable program to execute the foregoing embodiments The described method for initiating time-sensitive communication services.
  • the devices for example, terminals, network nodes, etc.
  • the computing device 800 may include a bus 810, one or more CPUs 820, a read only memory (ROM) 830, a random access memory (RAM) 840, a communication port 850 connected to a network, and input/output components. 860, hard disk 870, etc.
  • the storage devices in the computing device 800 such as the ROM 830 and the hard disk 870, can store various data or files used for computer processing and/or communication and program instructions executed by the CPU.
  • the computing device 800 may also include a user interface 880.
  • the architecture shown in FIG. 8 is only exemplary. When implementing different devices, one or more components in the computing device shown in FIG. 8 may be omitted according to actual needs.
  • the embodiments of the present disclosure also provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method for initiating a time-sensitive communication service provided in the foregoing various implementation manners.
  • the embodiments of the present disclosure can also be implemented as a computer-readable storage medium.
  • the computer-readable storage medium of the embodiment of the present disclosure stores computer-readable instructions. When the computer-readable instructions are executed by one or more processors, the methods of the embodiments of the present disclosure described with reference to the above drawings can be executed.
  • the computer-readable storage medium includes, but is not limited to, for example, volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), for example.
  • the non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the words “a”, “an”, “an” and/or “the” do not specifically refer to the singular, but may also include plural.
  • the “first”, “second” and similar words used in the embodiments of the present disclosure do not indicate any order, quantity, or importance, but are only used to distinguish different components.
  • “including” or “including” and other similar words mean that the element or item appearing before the word covers the element or item listed after the word and their equivalents, but does not exclude other elements or items. Similar words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • flowcharts are used in the embodiments of the present disclosure to illustrate the operations performed by the wireless time-sensitive communication system of the embodiments of the present disclosure. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the various steps can be processed in reverse order or in synchronization. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种发起时间敏感通信业务的方法、终端和存储介质。该方法由终端执行,包括:向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及根据所述响应信息进行所述时间敏感通信业务。

Description

发起时间敏感通信业务的方法、终端和存储介质
本申请要求于2019年9月27日提交中国专利局、申请号为201910932087.9、发明名称为“终端执行的方法以及相应的终端、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信领域,并且更具体地涉及一种发起时间敏感通信业务的方法、终端和存储介质。
背景技术
相对于传统的通信系统,5G通信系统的核心网架构发生了较大的改变。具体地,传统通信系统的核心网中的移动性管理实体(Mobility Management Entity,MME)被控制平面功能(Control Plane Function,CPF)实体替代,例如,其功能被分解到接入和移动性管理功能(Access and Mobility management Function,AMF)实体和会话管理功能(Session Management Function,SMF)实体。此外,传统通信系统的核心网中的服务网关(Serving GateWay,SGW)和PDN网关(PDN GateWay,PGW)被用户平面功能(User Plane Function,UPF)实体替代。
此外,5G通信系统引入了时间敏感网络(Time Sensitive Networking,TSN)中的时间敏感通信(Time Sensitive Communication,TSC),以支持对时间精度要求较高的工业自动化制造应用。具体地,5G通信系统可以作为TSN中的一个以太网桥(Ethernet Bridge)整合到TSN中。在这种情形下,5G通信系统中的终端通过设备侧TSN转换器(Device-Side TSN Translator,DS-TT)与TSN中的一个或多个设备通信,5G通信系统中的UPF实体通过网络侧TSN转换器(NetWork-side TSN Translator,NW-TT)与TSN相连,并且由TSN网络侧发起TSC业务。
此外,虽然5G通信系统支持终端发起一个新的业务,但该新的业务是非TSC业务。也就是说,5G通信系统不支持终端发起TSC业务。
发明内容
为了克服现有技术中存在的缺陷,本公开实施例提出了一种发起时间敏感通信业务的方法、终端和存储介质。
根据本公开的一个方面,提供了一种发起时间敏感通信业务的方法,由终端执行,包括:向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及根据所述响应信息进行所述时间敏感通信业务。
根据本公开的另一方面,提供了一种发起时间敏感通信业务的方法,由网络节点执行,包括:从终端接收其对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;向网络控制器发送所述请求信息;从所述网络控制器接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及向所述终端发送所述响应信息,使得所述终端根据所述响应信息进行所述时间敏感通信业务。
根据本公开的另一方面,提供了一种发起时间敏感通信业务的终端,包括:发送单元,被配置为向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;接收单元,被配置为从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及处理单元,被配置为根据所述响应信息进行所述时间敏感通信业务。
根据本公开的另一方面,提供了一种发起时间敏感通信业务的网络节点,包括:接收单元,被配置为从终端接收其对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;发送单元,被配置为向网络控制器发送所述请求信息;所述接收单元还被配置为从所述网络控制器接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及所述发送单元还被配置为向所述终端发送所述响应信息。
根据本公开的另一方面,提供了一种终端,包括:处理器和存储器,其中,所述存储器中存储有计算机可执行程序,所述处理器用于执行所述计算机可执行程序,以执行上述实施例所述的发起时间敏感通信业务的方法。
根据本公开的另一方面,提供了一种网络节点,包括:处理器和存储器,其中,所述存储器中存储有计算机可执行程序,所述处理器用于执行所述计算机可执行程序,以执行上述实施例所述的发起时间敏感通信业务的方法。
根据本公开的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令在被一个或多个处理器执行时,执行上述实施例所述的发起时间敏感通信业务的方法。
根据本公开实施例的发起时间敏感通信业务的方法、终端、网络节点和计算机可读存储介质,终端可以向网络节点发送对时间敏感通信业务的请求信息,并且该请求信息可以包括该时间敏感通信业务的时间参数,网络节点接收到请求后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息来进行时间敏感通信业务,从而实现了由终端发起时间敏感通信业务。
附图简要说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是根据本公开实施例的无线时间敏感通信系统的架构示意图。
图2是根据本公开实施例的一种发起时间敏感通信业务的方法的流程图。
图3是根据本公开实施例的另一种发起时间敏感通信业务的方法的流程图。
图4是根据本公开实施例的无线时间敏感通信系统中发起时间敏感通信业务的方法的示意流程图。
图5是根据本公开实施例的无线时间敏感通信系统中发起时间敏感通信业务的方法的另一示意流程图。
图6是根据本公开实施例的终端的结构示意图。
图7是根据本公开实施例的网络节点的结构示意图。
图8示出了根据本公开实施例的设备的架构示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。此外,这里所述的终端可以包括各种类型的用户终端(User Equipment,UE),例如移动终端或者固定终端。为方便起见,在下文中有时候可互换地使用UE和终端。
首先,参照图1,其描述了根据本公开实施例的无线时间敏感通信系统的架构。该无线时间敏感通信系统可以包括5G系统,也可以包括任何其他类型的无线通信系统,比如6G通信系统等。在下文中,以5G系统为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信系统。此外,该无线时间敏感通信系统还可以包括时间敏感网络(Time Sensitive Networking,TSN)。
具体地,如图1所示,无线时间敏感通信系统100包括UE 101、(无线)接入网络((Radio)Access Network,(R)AN)102、接入和移动性管理功能(Access and Mobility management Function,AMF)实体103、会话管理功能(Session Management Function,SMF)实体104、用户平面功能(User Plane Function,UPF)实体105、时间敏感网络TSN 106、策略控制功能(Policy Control Function,PCF)实体107以及应用功能(Application Function,AF)实体108、与UE 101对应的业务转换器109、终端站(end station)110、与UPF实体105对应的业务转换器111等。
在本公开实施例中,(R)AN 102可以是由基站构成的接入网络。这里的基站可以是任何类型的基站,例如5G基站或者传统通信系统中的基站。此外,AMF实体103可以支持UE的接入认证、移动管理、注册管理、连接管理、合法接听,支持传输UE和SMF实体之间的会话管理信息等。SMF实体104可以支持会话管理,其中该会话管理可以包括会话建立、修改和释放。UPF实体105可以具有数据包的路由功能,例如,可以从TSN 106获取数据包、向(R)AN 102发送数据包等。PCF实体107可以支持统一的策略框架来管理网络行为、提供策略规则来控制控制平面等。AF实体108可以支持对业务路径的应用影响、与用于策略控制的测量框架相互影响等。与UE 101对应的业务转换器109可以是 时间敏感业务转换器,例如设备侧TSN转换器(Device-Side TSN Translator,DS-TT)。DS-TT可以支持用于消除抖动的保持和转发功能、链路层连接性发现和报告等。与UPF实体105对应的业务转换器111也可以是时间敏感业务转换器,例如网络侧TSN转换器(NetWork-side TSN Translator,NW-TT)。NW-TT和DS-TT类似,也可以支持用于消除抖动的保持和转发功能、链路层连接性发现和报告等。
此外,UE 101可以通过Uu接口与(R)AN 102相连,通过N1接口与AMF实体103相连。(R)AN 102可以通过N2接口与AMF实体103相连,通过N3接口与UPF实体105相连。UPF实体105可以通过N4接口与SMF实体104相连,通过N6接口与TSN 106相连。SMF实体104可以通过Nsmf、Npcf接口与PCF实体107相连。AMF实体103可以通过Namf、Npcf接口与PCF实体107相连。PCF实体107可以通过N5接口与AF实体108相连。3GPP标准规范已经定义了这里所提到的各种接口,因此不再赘述。此外,UE 101可以通过DS-TT与终端站110通信,而UPF实体105可以通过NW-TT与TSN 106通信。
此外,在图1的示例中,NW-TT被集成在UPF实体105中。然而本公开实施例不限于此。例如,NW-TT和UPF实体105可以是两个独立的设备。
此外,上面所描述的各个实体可以是一个或多个服务器。在本公开实施例中,“实体”也可以称为节点。为方便起见,在下文中有时候可互换地使用实体和节点。
在本公开实施例中,终端可以向网络节点(例如,AMF实体)发送其对时间敏感通信(Time Sensitive Communication,TSC)业务的请求信息,并且该请求信息可以包括该TSC业务的时间参数。网络节点接收到该请求信息后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息来进行TSC业务,从而实现了由终端发起TSC业务。在本公开实施例中,TSC业务也可以称为TSN业务。
下面,将参照图2,其描述了根据本公开实施例的发起时间敏感通信业务的方法,该方法由终端执行。图2是根据本公开实施例的发起时间敏感通信业务的方法200的流程图。如图2所示,在步骤S201中,终端向网络节点发送对时间敏感通信业务的请求信息。
根据本公开的一个示例,步骤S201中的请求信息可以包括第一信息和第二信息,其中该第一信息可以是关于时间敏感通信业务的时间敏感属性的信息,该第二信息可以是时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
在该示例中,第一信息可以包括时间敏感通信业务的时间参数。例如,时间参数至少可以包括时间敏感通信业务的开始时间、时间敏感通信业务中数据的传输周期、以及时间敏感通信业务对时间精度的要求。TSC业务的开始时间可以是一个时间段。可替换地,TSC业务的开始时间可以是一个特定时间点。TSC业务中数据的传输周期可以是TSC业务中数据包的发送或接收周期,例如5ms。TSC业务对时间精度的要求可以是预设等级,例如纳秒等级。在TSC业务的开始时间是时间段且时间精度为纳秒的示例中,TSC业务的开始时间例如可以是上午9点00分000000001纳秒至9点10分000000001纳秒。在TSC业务的开始时间是特定时间点且时间精度为纳秒的示例中,TSC业务的开始时间例如可以是上午9点00分000000001纳秒。
在该示例中,第一信息还可以包括时间敏感通信业务的标识。该TSC业务的标识可以用于标识TSC业务的业务类型。可替换地,该TSC业务的标识可以用于标识多个TSC业务中的一个特定TSC业务。可替换地,该TSC业务的标识不仅可以用于标识TSC业务的业务类型,而且还可以用于标识多个TSC业务中的一个特定TSC业务。例如,该TSC业务的标识可以是该TSC业务的ID(Identification)。通过该示例,网络侧能够识别终端发起的业务的类型,还能够识别终端发起的各个TSC业务,从而能够确定网络侧对终端发起的业务的支持能力。
在本公开实施例中,第一信息还可以称为TSC业务需求信息。在本公开实施例中,可以使用特定格式对TSC业务需求信息进行封装。例如,该特定格式可以是TSC会话需求容器(TSC Session Requirement Container)。在这种情形下,TSC会话需求容器可以包括TSC业务需求信息。
在该示例中,第二信息可以用于说明TSC业务对应的QoS流的配置信息,例如5G QoS流传输处理标量的标识(5G QoS Identifier,5QI)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、包过滤器(packet filter)等参数。该第二信息可以是3GPP标准规范中定义的所请求的QoS流描述(Requested QoS flow descriptions)。终端发起TSC业务后,可以根据第二信息将与TSC业务对应的业务流(可以简称为TSC业务流)映射到已经建立的一个QoS流,或者可以根据第二信息建立一个新的QoS流并将TSC业务流映射到新建立的QoS流。
根据本公开的另一示例,步骤S201中的请求信息还可以包括第三信息,其中该第三信息可以是关于与终端对应的业务转换器(例如,设备侧TSC业务转换器(DS-TT))中能够支持TSC业务的端口的信息。第三信息可以包括与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口集、端口标识(例如,端口号(port number))、端口可支持的信息容量、端口时延等中的至少一个。这里的“端口集”可以包括一个或多个端口。
在本公开实施例中,第三信息还可以称为终端提供的端口管理信息。在本公开实施例中,可以使用特定格式对终端提供的端口管理信息进行封装。例如,该特定格式可以是端口管理信息容器(Port Management Information Container)。在这种情形下,端口管理信息容器可以包括终端提供的端口管理信息。
需要认识到,上面所描述的TSC业务需求信息、所请求的QoS流描述和端口管理信息可以在编码后再发送给网络节点。具体地,在编码过程中,终端可以分别编码TSC业务需求信息、所请求的QoS流描述和端口管理信息。这是因为,各种终端对不同业务的支持能力不同,例如,有的终端支持TSC业务和非TSC业务二者,而有的终端仅支持非TSC业务,因此,与TSC业务相关的信息(例如,TSC业务需求信息)可以被独立地编码。通过这种方式,提升了无线时间敏感通信系统对各种终端的兼容性,降低了信息处理的复杂度。
此外,在本公开实施例中,终端可以通过一条信令将上面所描述的TSC业务需求信息、所请求的QoS流描述和端口管理信息发送给网络节点。通过这种方式,可以减少无线时间 敏感通信系统中的信令交互,实现无线时间敏感通信系统中的信令优化,减少信令开销。应该理解,本公开实施例不限于此。例如,终端也可以通过多条信令分别将上面所描述的TSC业务需求信息、所请求的QoS流描述和端口管理信息发送给网络节点。例如,终端可以通过第一信令将TSC业务需求信息发送给网络节点,通过第二信令将所请求的QoS流描述发送给网络节点,以及通过第三信令将端口管理信息发送给网络节点。
返回图2,在步骤S202中,终端从网络节点接收响应信息。
根据本公开的一个示例,步骤S202中的响应信息可以包括经修改的时间参数。在终端提供的时间参数包括TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求的示例中,网络侧可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求中的一个或多个。相应地,经修改的时间参数可以包括经修改的开始时间、经修改的数据传输周期、以及经修改的时间精度中的一个或多个。
例如,网络侧可以仅修改TSC业务的开始时间。在终端提供的时间参数中的TSC业务的开始时间为一个时间段的示例中,网络侧可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。网络侧根据TSC业务的标识确定不能识别此TSC业务时,可以只修改TSC业务的开始时间,而不修改TSC业务中数据的传输周期以及TSC业务对时间精度的要求,例如可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。然而,在终端提供的时间参数中的TSC业务的开始时间为特定时间点的示例中,网络侧可以不修改TSC业务的开始时间。
又例如,网络侧可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。例如,网络侧根据TSC业务的标识确定能够识别TSC业务时,可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。
对于终端提供的时间参数中未被修改的参数,也可以包含在经修改的时间参数中。也就是说,当网络侧未对终端提供的时间参数中的某些参数进行修改时,经修改的时间参数仍然可以包括这些参数的原始值。
根据本公开的另一示例,步骤S202中的响应信息还可以包括用于指示与终端对应的业务转换器(例如,DS-TT)中用于进行所述时间敏感通信业务的端口的信息。例如,该信息可以包括与终端对应的DS-TT中用于进行TSC业务的端口集和端口标识。
在该示例中,与终端对应的DS-TT中用于进行TSC业务的端口至少可以根据终端提供的时间参数来确定。具体地,可以根据终端提供的时间参数和端口管理信息来确定与终端对应的DS-TT中用于进行TSC业务的端口。例如,可以根据终端提供的时间参数中的TSC业务的开始时间和端口管理信息来确定在TSC业务的开始时间进行TSC业务的端口集和相应端口的标识,从而确定与终端对应的DS-TT中用于进行TSC业务的端口。
在本公开实施例中,用于指示与终端对应的业务转换器中用于进行所述时间敏感通信 业务的端口的信息可以称为TSC端口管理信息(TSC Port Management Information),也即网络侧提供的端口管理信息。在本公开实施例中,可以使用特定格式对网络侧提供的端口管理信息进行封装。例如,该特定格式可以是上面所描述的端口管理信息容器(Port Management Information Container)。
根据本公开的另一示例,步骤S202中的响应信息还可以包括TSC辅助信息(TSC Assistance Information,TSCAI)。TSCAI可以包括指示TSC业务的方向(例如,上行链路或下行链路)的信息、TSC业务中数据的传输周期、以及TSC业务中数据的到达时间等中的一个或多个。
在该示例中,可以根据网络侧提供的时间参数(即经修改的时间参数)来生成TSCAI。例如,可以根据网络侧提供的时间参数中的TSC业务的开始时间来确定TSCAI中的TSC业务中数据的到达时间。通过该示例,通信系统可以根据TSCAI对TSC业务进行时间精确的传输控制。
返回图2,在步骤S203中,终端根据所述响应信息进行所述时间敏感通信业务。具体地,终端可以根据响应信息确定网络侧为其确定的TSC业务的开始时间、TSC业务中数据的传输周期以及TSC业务对时间精度的要求,并以此来进行TSC业务。
通过本实施例的发起时间敏感通信业务的方法,终端可以向网络节点发送对时间敏感通信业务的请求信息,并且该请求信息可以包括该时间敏感通信业务的时间参数,网络节点接收到请求后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息来进行时间敏感通信业务,从而实现了由终端发起时间敏感通信业务。
下面,将参照图3,其描述了根据本公开实施例的发起时间敏感通信业务的方法,该方法由网络节点执行。图3是根据本公开实施例的发起时间敏感通信业务的方法300的流程图。这里的网络节点可以是图1中的AMF实体103。由于根据方法300执行的下述操作的具体细节与在上文中参照图2描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
如图3所示,在步骤S301中,网络节点从终端接收其对时间敏感通信业务的请求信息。
根据本公开的一个示例,步骤S301中的请求信息可以包括第一信息和第二信息,其中该第一信息可以是关于时间敏感通信业务的时间敏感属性的信息,该第二信息可以是时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
在该示例中,第一信息可以包括时间敏感通信业务的时间参数。例如,时间参数至少可以包括时间敏感通信业务的开始时间、时间敏感通信业务中数据的传输周期、以及时间敏感通信业务对时间精度的要求。TSC业务的开始时间可以是一个时间段。可替换地,TSC业务的开始时间可以是一个特定时间点。TSC业务中数据的传输周期可以是TSC业务中数据包的发送或接收周期,例如5ms。TSC业务对时间精度的要求可以是预设等级,例如纳秒等级。在TSC业务的开始时间是时间段且时间精度为纳秒的示例中,TSC业务的开始时 间例如可以是上午9点00分000000001纳秒至9点10分000000001纳秒。在TSC业务的开始时间是特定时间点且时间精度为纳秒的示例中,TSC业务的开始时间例如可以是上午9点00分000000001纳秒。
在该示例中,第一信息还可以包括时间敏感通信业务的标识。例如,该TSC业务的标识可以是该TSC业务的ID(Identification)。通过该示例,网络侧能够识别终端发起的业务的类型,还能够识别终端发起的各个TSC业务,从而能够确定网络侧对终端发起的业务的支持能力。
在本公开实施例中,第一信息还可以称为TSC业务需求信息。在本公开实施例中,可以使用特定格式对TSC业务需求信息进行封装。例如,该特定格式可以是TSC会话需求容器(TSC Session Requirement Container)。在这种情形下,TSC会话需求容器可以包括TSC业务需求信息。
在该示例中,第二信息可以用于说明TSC业务对应的QoS流的配置信息,例如5G QoS流传输处理标量的标识(5G QoS Identification,5QI)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、包过滤器(packet filter)等参数。
根据本公开的另一示例,步骤S301中的请求信息还可以包括第三信息,其中该第三信息可以是关于与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口的信息。第三信息可以包括与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口集、端口标识(例如,端口号(port number))、端口可支持的信息容量、端口时延等中的至少一个。
在本公开实施例中,第三信息还可以称为终端提供的端口管理信息。在本公开实施例中,可以使用特定格式对终端提供的端口管理信息进行封装。例如,该特定格式可以是端口管理信息容器(Port Management Information Container)。在这种情形下,端口管理信息容器可以包括终端提供的端口管理信息。
在步骤S301后,方法300可以包括步骤S302:网络节点向网络控制器发送所述请求信息。例如,网络节点可以将所述请求信息透明地传输给网络控制器,比如,网络节点可以不对所述请求信息的具体内容进行任何修改而将所述请求信息发送给网络控制器。
具体地,网络节点可以将所述请求信息透明地发送给图1中的SMF实体104。然后,SMF实体104可以将所述请求信息透明地发送给图1中的PCF实体107。然后,PCF实体107可以将所述请求信息透明地发送给图1中的AF实体108。然后,AF实体108可以将所述请求信息透明地发送给网络控制器。
在本公开实施例中,网络控制器可以是时间敏感网络控制器。例如,网络控制器可以是TSN网络中的中心网络控制器(Center Network Controller,CNC)。IEEE标准规范已经定义了这里所提到的CNC,因此不再赘述。
在步骤S302后,方法300可以包括步骤S303:网络节点从所述网络控制器接收响应信息。例如,网络控制器可以根据所接收的请求信息生成响应信息,并向网络节点发送所 生成的响应信息。
根据本公开的一个示例,步骤S303中的响应信息可以包括经修改的时间参数。在终端提供的时间参数包括TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求的示例中,网络控制器可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求中的一个或多个。相应地,经修改的时间参数可以包括经修改的开始时间、经修改的数据传输周期、以及经修改的时间精度中的一个或多个。
例如,网络控制器可以仅修改TSC业务的开始时间。在终端提供的时间参数中的TSC业务的开始时间为一个时间段的示例中,网络控制器可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。网络控制器根据TSC业务的标识确定不能识别此TSC业务时,可以只修改TSC业务的开始时间,而不修改TSC业务中数据的传输周期、以及TSC业务对时间精度的要求,例如可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。然而,在终端提供的时间参数中的TSC业务的开始时间为特定时间点的示例中,网络控制器可以不修改TSC业务的开始时间。
又例如,网络控制器可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。例如,网络控制器根据TSC业务的标识确定能够识别此TSC业务时,可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。
根据本公开的另一示例,步骤S303中的响应信息还可以包括用于指示与终端对应的业务转换器(例如,DS-TT)中用于进行所述时间敏感通信业务的端口的信息。例如,该信息可以包括与终端对应的DS-TT中用于进行TSC业务的端口集和端口标识。
在该示例中,网络控制器可以至少根据终端提供的时间参数来确定与终端对应的DS-TT中用于进行TSC业务的端口。具体地,网络控制器可以根据终端提供的时间参数和端口管理信息来确定与终端对应的DS-TT中用于进行TSC业务的端口。例如,网络控制器可以根据终端提供的时间参数中的TSC业务的开始时间和端口管理信息来确定在TSC业务的开始时间进行TSC业务的端口集和相应端口的标识,从而确定与终端对应的DS-TT中用于进行TSC业务的端口。
在本公开实施例中,用于指示与终端对应的业务转换器中用于进行所述时间敏感通信业务的端口的信息可以称为TSC端口管理信息(TSC Port Management Information),即网络控制器提供的端口管理信息。
根据本公开的另一示例,步骤S303中的响应信息还可以包括TSC辅助信息(TSC Assistance Information,TSCAI)。TSCAI可以包括指示TSC业务的方向(例如,上行链路或下行链路)的信息、TSC业务中数据的传输周期、以及TSC业务中数据的到达时间等中的一个或多个。
在该示例中,网络控制器可以根据自身提供的时间参数(即经修改的时间参数)来生 成TSCAI。例如,网络控制器可以根据自身提供的时间参数中的TSC业务的开始时间来确定TSCAI中的TSC业务中数据的到达时间。通过该示例,通信系统可以根据TSCAI对TSC业务进行时间精确的传输控制。
在本公开实施例中,网络控制器可以通过一条信令来将上面所描述的修改的时间参数、TSC端口管理信息和TSCAI发送给网络节点,然后网络节点可以将这些信息传送给UE及其DS-TT。通过这种方式,可以减少无线时间敏感通信系统中的信令交互,实现无线时间敏感通信系统中的信令优化,减少信令开销。此外,通过这种方式,可以实现TSC业务流对应的QoS流的建立与端口管理之间的协同,从而实现了5G网络的高度协作。应该理解,本公开实施例不限于此。例如,网络控制器可以通过多条信令分别将上面所描述的修改的时间参数、TSC端口管理信息和TSCAI发送给网络节点,然后网络节点可以将这些信息传送给UE及其DS-TT。例如,网络控制器可以通过第四信令将修改的时间参数发送给网络节点,然后网络节点可以将这些信息传送给UE及其DS-TT;通过第五信令将TSC端口管理信息发送给网络节点,然后网络节点可以将这些信息传送给UE及其DS-TT;以及通过第六信令将TSCAI发送给网络节点,然后网络节点可以将这些信息传给NG RAN。
在步骤S304中,网络节点向所述终端发送响应信息。相应地,终端可以根据接收到的响应信息进行时间敏感通信业务。具体地,终端可以根据响应信息确定网络侧为其确定的TSC业务的开始时间、TSC业务中数据的传输周期以及TSC业务对时间精度的要求,并以此来进行TSC业务。
通过本实施例的由网络节点执行的方法,网络节点可以从终端接收其对时间敏感通信业务的请求信息,并且该请求信息可以包括该时间敏感通信业务的时间参数。网络节点接收到请求信息后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息进行时间敏感通信业务,从而实现了由终端发起时间敏感通信业务。
下面将结合图4来描述无线时间敏感通信系统中发起时间敏感通信业务的方法的具体流程。图4是根据本公开实施例的无线时间敏感通信系统中发起时间敏感通信业务的方法的示意流程图。图4所示的示例基于UE非漫游且将TSC业务流映射到已经建立的一个QoS流的场景。
如图4所示,在步骤S1中,UE可以向AMF发送PDU会话修改请求(PDU Session Modification Request),该PDU会话修改请求包括TSC会话需求容器(TSC Session Requirement Container,在流程中用T.S.R.Container来简化表示)以及所请求的QoS流描述(Requested QoS flow descriptions)。
然后,在步骤S2中,AMF通过Nsmf接口向SMF发送PDU会话_更新SM内容(Nsmf_PDUSession_UpdateSMContext),该Nsmf_PDUSession_UpdateSMContext包括N1SM容器(Container),该N1 SM Container包括TSC会话需求容器以及所请求的QoS流描述。
然后,在步骤S3中,SMF通过Npcf接口向PCF发送SM策略控制_更新请求 (Npcf_SMPolicyControl_Update request),该Npcf_SMPolicyControl_Update request包括TSC会话需求容器以及所请求的QoS流描述。
然后,在步骤S4中,PCF向AF发送策略授权_通知(Npcf_PolicyAuthorization_Notify),该Npcf_PolicyAuthorization_Notify包括TSC会话需求容器。
然后,在步骤S5中,AF向CNC通知TSC会话需求容器。CNC可以根据接收到的信息生成修改后的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
然后,在步骤S6中,CNC向AF发送一个请求,该请求包括CNC生成的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
然后,在步骤S7中,AF通过N5接口向PCF发送策略授权_创建请求(Npcf_PolicyAuthorization_Create Request),该Npcf_PolicyAuthorization_Create Request包括CNC生成的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
此外,PCF可以根据步骤S3中的“所请求的QoS流描述”确定UE的QoS策略(Policy)。同时,根据AF在步骤S7中的事务(Transaction)ID等参数,在步骤S8中,PCF向SMF发送SM策略控制_更新通知响应(Npcf_SMPolicyControl_UpdateNotify response),通过该Npcf_SMPolicyControl_UpdateNotify response将QoS策略、TSC会话需求容器、TSC端口管理信息、以及TSCAI发送给SMF。
然后,在步骤S9中,SMF向AMF发送通信消息传输(Namf_Communication_N1N2MessageTransfer),该Namf_Communication_N1N2MessageTransfer包括N1 SM Container和N2 SM信息,其中N1 SM Container包括TSC会话需求容器和TSC端口管理信息,N2 SM信息包括TSCAI信息。具体地,SMF可以将QoS策略映射到N2 SM的QoS配置(QoS Profile),并将其与TSCAI信息包含在N2 SM信息中。此外,SMF将QoS策略映射到N1 SM的QoS规则(QoS Rules),并将其与TSC会话需求容器和TSC端口管理信息包含在N1 SM容器(Container)中,然后发送给AMF。应该注意,CNC提供的TSCAI是基于外部TSN时钟域的参数值,SMF需要将其转换到5G系统的时钟域的参数值。3GPP标准规范已经定义了该转换过程,因此,不再赘述。
然后,在步骤S10中,AMF可以通过N2接口向5G RAN(例如New Radio RAN(NR RAN))发送PDU会话资源建立/修改请求(N2 PDU Session Resource Setup/Modification Request),该N2 PDU Session Resource Setup/Modification Request包括QoS配置和TACAI。
然后,在步骤S11中,AMF向UE发送PDU会话修改响应(PDU Session Modification Response),该PDU会话修改响应包括TSC会话需求容器、TSC端口管理信息、以及QoS规则。相应地,UE可以根据接收到的信息配置TSC业务流,以进行TSC业务。
应该注意,在上述步骤S6至S8中,CNC所提供的TSC端口管理信息可以包括UE侧的DS-TT中的端口的配置信息以及UPF侧的NW-TT中的端口的配置信息。然而,在上述步骤S9和S11中TSC端口管理信息可以只包含UE侧的DS-TT中的端口的配置信息。为了简单起见,上述示意图没有示出UPF侧NW-TT中的端口的传输过程。此外,SMF可 以通过端口号(Port Number)(例如,端口的以太网MAC地址)来识别出DS-TT中的端口和NW-TT中的端口。
此外,在上述步骤中,TSC会话需求容器及其所包含的各个参数都是透明地由UE传输至AMF,由AMF传输至SMF,由SMF传输至PCF,由PCF传输至AF,以及由AF传输至CNC。
下面将结合图5来描述无线时间敏感通信系统中发起时间敏感通信业务的方法的另一个具体流程。图5是根据本公开实施例的无线时间敏感通信系统中发起时间敏感通信业务的方法的另一示意流程图。图5所示的示例基于UE漫游且将TSC业务流映射到已经建立的一个QoS流的场景。
如图5所示,在步骤S1中,UE可以向AMF发送PDU会话修改请求(PDU Session Modification Request),该PDU会话修改请求包括TSC会话需求容器(TSC Session Requirement Container,在流程中用T.S.R.Container来简化表示)以及所请求的QoS流描述(Requested QoS flow descriptions)。
然后,在步骤S2中,AMF通过Nsmf接口向V-SMF(A SMF in the VPLMN(Visited Public Land Mobile Network,拜访公用陆地移动网))发送PDU会话_更新SM内容(Nsmf_PDUSession_UpdateSMContext),该Nsmf_PDUSession_UpdateSMContext包括TSC会话需求容器以及所请求的QoS流描述。
然后,在步骤S3中,V-SMF通过Nsmf接口向H-SMF(A SMF in the HPLMN(Home Public Land Mobile Network,本地公用陆地移动网))发送PDU会话_更新SM内容(Nsmf_PDUSession_UpdateSMContext),该Nsmf_PDUSession_UpdateSMContext包括TSC会话需求容器以及所请求的QoS流描述。
然后,在步骤S4中,H-SMF通过Npcf接口向PCF发送SM策略控制_更新请求(Npcf_SMPolicyControl_Update request),该Npcf_SMPolicyControl_Update request包括TSC会话需求容器以及所请求的QoS流描述。
然后,在步骤S5中,PCF向AF发送策略授权_通知(Npcf_PolicyAuthorization_Notify),该Npcf_PolicyAuthorization_Notify包括TSC会话需求容器。
然后,在步骤S6中,AF向CNC通知TSC会话需求容器。CNC可以根据接收到的信息生成修改后的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
然后,在步骤S7中,CNC向AF发送一个请求,该请求包括CNC生成的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
然后,在步骤S8中,AF通过N5接口向PCF发送策略授权_创建请求(Npcf_PolicyAuthorization_Create Request),该Npcf_PolicyAuthorization_Create Request包括CNC生成的TSC会话需求容器、TSC端口管理信息、以及TSCAI。
此外,PCF可以根据步骤S4中的“所请求的QoS流描述”确定UE的QoS策略(Policy)。同时,根据AF在步骤S8中的事务(Transaction)ID等参数,在步骤S9中,PCF向H-SMF发送SM策略控制_更新通知响应(Npcf_SMPolicyControl_UpdateNotify response),通过该 Npcf_SMPolicyControl_UpdateNotify response将QoS策略、TSC会话需求容器、TSC端口管理信息、以及TSCAI发送给H-SMF。
然后,在步骤S10中,H-SMF可以向V-SMF发送SM策略控制_更新通知响应(Npcf_SMPolicyControl_UpdateNotify response),通过该Npcf_SMPolicyControl_UpdateNotify response将QoS策略、TSC会话需求容器、TSC端口管理信息、以及TSCAI发送给V-SMF。
然后,在步骤S11中,V-SMF向AMF发送通信消息传输(Namf_Communication_N1N2MessageTransfer),该Namf_Communication_N1N2MessageTransfer包括N1 SM Container和N2 SM信息,其中N1 SM Container包括TSC会话需求容器和TSC端口管理信息,N2 SM信息包括TSCAI信息。具体地,V-SMF可以将QoS策略映射到N2 SM的QoS配置(QoS Profile),并将其与TSCAI信息包含在N2 SM信息中。此外,V-SMF将QoS策略映射到N1 SM的QoS规则(QoS Rules),并将其与TSC会话需求容器和TSC端口管理信息包含在N1 SM容器(Container)中,然后发送给AMF。应该注意,CNC提供的TSCAI是基于外部TSN时钟域的参数值,H-SMF需要将其转换到5G系统的时钟域的参数值。在本公开实施例中,V-SMF和H-SMF可以是时间同步的。
应该认识到,本公开实施例不限于此。例如,V-SMF和H-SMF在时间上可能不同步。例如,若V-SMF与H-SMF处于不同的时间域,V-SMF可以将基于H-SMF所在的5G时钟域的TSCAI转换为基于V-SMF所在的5G时钟域的TSCAI。具体地,若V-SMF与H-SMF处于不同的时间域,V-SMF可以将TSCAI中基于H-SMF所在的5G时钟域的参数值转换到基于V-SMF所在的5G时钟域的参数值。该参数值可以是TSCAI中的“TSC业务中数据的到达时间”。也就是说,V-SMF从H-SMF接收的TSCAI中的“TSC业务中数据的到达时间”是基于H-SMF所在的5G时钟域的,V-SMF可以将其转换为基于V-SMF所在的5G时钟域的参数值。
然后,在步骤S12中,AMF可以通过N2接口向5G RAN(例如New Radio RAN(NR RAN))发送PDU会话资源建立/修改请求(N2 PDU Session Resource Setup/Modification Request),该N2 PDU Session Resource Setup/Modification Request包括QoS配置和TACAI。
然后,在步骤S13中,AMF向UE发送PDU会话修改响应(PDU Session Modification Response),该PDU会话修改响应包括TSC会话需求容器、TSC端口管理信息、以及QoS规则。相应地,UE可以根据接收到的信息配置TSC业务流,以进行TSC业务。
应该注意,在上述步骤S7至S10中,CNC所提供的TSC端口管理信息可以包括UE侧的DS-TT中的端口的配置信息以及UPF侧的NW-TT中的端口的配置信息。然而,在上述步骤S11和S13中TSC端口管理信息可以只包含UE侧的DS-TT中的端口的配置信息。为了简单起见,上述示意图没有示出UPF侧NW-TT中的端口的传输过程。此外,H-SMF可以通过端口号(Port Number)(例如,端口的以太网MAC地址)来识别出DS-TT中的端口和NW-TT中的端口,并且可以通过V-SMF和AMF将DS-TT中的端口的配置信息发 送给UE,以及通过N4接口将NW-TT中的端口的配置信息发送给H-UPF(a UPF in the HPLMN)。
此外,在上述步骤中,TSC会话需求容器及其所包含的各个参数都是透明地由UE传输至AMF,由AMF传输至V-SMF,由V-SMF传输至H-SMF,由H-SMF传输至PCF,由PCF传输至AF,以及由AF传输至CNC。
上文已经结合图4-5描述了在将TSC业务流映射到已经建立的一个QoS流的场景下,在无线时间敏感通信系统中发起时间敏感通信业务的方法的具体流程。然而,本公开实施例不限于此。在建立一个新的会话及新的QoS流并将TSC业务流映射到新建立的QoS流的场景下,无线时间敏感通信系统也可以实现本公开实施例的发起时间敏感通信业务的方法。具体地,在这种情形下,无线时间敏感通信系统实现本公开实施例的发起时间敏感通信业务的方法的具体流程与图4-5基本类似。区别主要在于:在步骤S1中,UE可以向AMF发送PDU会话建立请求(PDU Session Establishment Request),该PDU会话建立请求包括TSC会话需求容器(TSC Session Requirement Container,在流程中用T.S.R.Container来简化表示)以及所请求的QoS流描述(Requested QoS flow descriptions)。在这种情形下,也可以支持UE非漫游(与图4类似)和UE漫游(与图5类似)的状态。
以下,参照图6来描述根据本公开实施例的与图2所示的发起时间敏感通信业务的方法对应的终端。图6是根据本公开实施例的终端600的结构示意图。由于终端600的功能与上文中参照图2描述的方法中的终端的功能相同,因此这里为了简单起见,省略对相同内容的详细描述。如图6所示,终端600包括:发送单元610、接收单元620以及处理单元630。发送单元610,被配置为向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数。接收单元620,被配置为从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数。处理单元630,被配置为根据所述响应信息进行所述时间敏感通信业务。除了这三个单元以外,终端600还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,发送单元610发送的请求信息可以包括第一信息和第二信息,其中该第一信息可以是关于时间敏感通信业务的时间敏感属性的信息,该第二信息可以是时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
在该示例中,第一信息可以包括时间敏感通信业务的时间参数。例如,时间参数至少可以包括时间敏感通信业务的开始时间、时间敏感通信业务中数据的传输周期、以及时间敏感通信业务对时间精度的要求。TSC业务的开始时间可以是一个时间段。可替换地,TSC业务的开始时间可以是一个特定时间点。TSC业务中数据的传输周期可以是TSC业务中数据包的发送或接收周期,例如5ms。TSC业务对时间精度的要求可以是预设等级,例如纳秒等级。在TSC业务的开始时间是时间段且时间精度为纳秒的示例中,TSC业务的开始时间例如可以是上午9点00分000000001纳秒至9点10分000000001纳秒。在TSC业务的开始时间是特定时间点且时间精度为纳秒的示例中,TSC业务的开始时间例如可以是上午 9点00分000000001纳秒。
在该示例中,第一信息还可以包括时间敏感通信业务的标识。该TSC业务的标识可以用于标识TSC业务的业务类型。可替换地,该TSC业务的标识可以用于标识多个TSC业务中的一个特定TSC业务。可替换地,该TSC业务的标识不仅可以用于标识TSC业务的业务类型,而且还可以用于标识多个TSC业务中的一个特定TSC业务。该TSC业务的标识例如可以是该TSC业务的ID(Identification)。通过该示例,网络侧能够识别终端发起的业务的类型,还能够识别终端发起的各个TSC业务,从而能够确定网络侧对终端发起的业务的支持能力。
在本公开实施例中,第一信息还可以称为TSC业务需求信息。在本公开实施例中,可以使用特定格式对TSC业务需求信息进行封装。例如,该特定格式可以是TSC会话需求容器(TSC Session Requirement Container)。在这种情形下,TSC会话需求容器可以包括TSC业务需求信息。
在该示例中,第二信息可以用于说明TSC业务对应的QoS流的配置信息,例如5G QoS流传输处理标量的标识(5G QoS Identifier,5QI)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、包过滤器(packet filter)等参数。该第二信息可以是3GPP标准规范中定义的所请求的QoS流描述(Requested QoS flow descriptions)。终端发起TSC业务后,可以根据第二信息将与TSC业务对应的业务流(可以简称为TSC业务流)映射到已经建立的一个QoS流,或者可以根据第二信息建立一个新的QoS流并将TSC业务流映射到新建立的QoS流。
根据本公开的另一示例,发送单元610发送的请求信息还可以包括第三信息,其中该第三信息可以是关于与终端对应的业务转换器(例如,设备侧TSC业务转换器(DS-TT))中能够支持TSC业务的端口的信息。第三信息可以包括与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口集、端口标识(例如,端口号(port number))、端口可支持的信息容量、端口时延等中的至少一个。这里的“端口集”可以包括一个或多个端口。
在本公开实施例中,第三信息还可以称为终端提供的端口管理信息。在本公开实施例中,可以使用特定格式对终端提供的端口管理信息进行封装。例如,该特定格式可以是端口管理信息容器(Port Management Information Container)。在这种情形下,端口管理信息容器可以包括终端提供的端口管理信息。
需要认识到,发送单元610可以对上面所描述的TSC业务需求信息、所请求的QoS流描述和端口管理信息进行编码后再发送给网络节点。具体地,在编码过程中,发送单元610可以分别编码TSC业务需求信息、所请求的QoS流描述和端口管理信息。这是因为,各种终端对不同业务的支持能力不同,例如,有的终端支持TSC业务和非TSC业务二者,而有的终端仅支持非TSC业务,因此,与TSC业务相关的信息(例如,TSC业务需求信息)可以被独立地编码。通过这种方式,提升了无线时间敏感通信系统对各种终端的兼容性,降低了信息处理的复杂度。
此外,在本公开实施例中,发送单元610可以通过一条信令将上面所描述的TSC业务 需求信息、所请求的QoS流描述和端口管理信息发送给网络节点。通过这种方式,可以减少无线时间敏感通信系统中的信令交互,实现无线时间敏感通信系统中的信令优化,减少信令开销。应该理解,本公开实施例不限于此。例如,发送单元610也可以通过多条信令分别将上面所描述的TSC业务需求信息、所请求的QoS流描述和端口管理信息发送给网络节点。例如,发送单元610可以通过第一信令将TSC业务需求信息发送给网络节点,通过第二信令将所请求的QoS流描述发送给网络节点,以及通过第三信令将端口管理信息发送给网络节点。
根据本公开的一个示例,接收单元620接收的响应信息可以包括经修改的时间参数。在终端提供的时间参数包括TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求的示例中,网络侧可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求中的一个或多个。相应地,经修改的时间参数可以包括经修改的开始时间、经修改的数据传输周期、以及经修改的时间精度中的一个或多个。
例如,网络侧可以仅修改TSC业务的开始时间。在终端提供的时间参数中的TSC业务的开始时间为一个时间段的示例中,网络侧可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。网络侧根据TSC业务的标识确定不能识别此TSC业务时,可以只修改TSC业务的开始时间,而不修改TSC业务中数据的传输周期以及TSC业务对时间精度的要求,例如可以指定该时间段中的一个时间点作为TSC业务的开始时间。相应地,经修改的时间参数可以包括所指定的时间点。然而,在终端提供的时间参数中的TSC业务的开始时间为特定时间点的示例中,网络侧可以不修改TSC业务的开始时间。
又例如,网络侧可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。例如,网络侧根据TSC业务的标识确定能够识别TSC业务时,可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求三者。
对于终端提供的时间参数中未被修改的参数,也可以包含在经修改的时间参数中。也就是说,当网络侧未对终端提供的时间参数中的某些参数进行修改时,经修改的时间参数仍然可以包括这些参数的原始值。
根据本公开的另一示例,接收单元620接收的响应信息还可以包括用于指示与终端对应的业务转换器(例如,DS-TT)中用于进行所述时间敏感通信业务的端口的信息。例如,该信息可以包括与终端对应的DS-TT中用于进行TSC业务的端口集和端口标识。
在该示例中,与终端对应的DS-TT中用于进行TSC业务的端口至少可以根据终端提供的时间参数来确定。具体地,可以根据终端提供的时间参数和端口管理信息来确定与终端对应的DS-TT中用于进行TSC业务的端口。例如,可以根据终端提供的时间参数中的TSC业务的开始时间和端口管理信息来确定在TSC业务的开始时间进行TSC业务的端口集和相应端口的标识,从而确定与终端对应的DS-TT中用于进行TSC业务的端口。
在本公开实施例中,用于指示与终端对应的业务转换器中用于进行所述时间敏感通信业务的端口的信息可以称为TSC端口管理信息(TSC Port Management Information),也即网络侧提供的端口管理信息。
根据本公开的另一示例,接收单元620接收的响应信息还可以包括TSC辅助信息(TSC Assistance Information,TSCAI)。TSCAI可以包括指示TSC业务的方向(例如,上行链路或下行链路)的信息、TSC业务中数据的传输周期、以及TSC业务中数据的到达时间等中的一个或多个。
在该示例中,可以根据网络侧提供的时间参数(即经修改的时间参数)来生成TSCAI。例如,可以根据网络侧提供的时间参数中的TSC业务的开始时间来确定TSCAI中的TSC业务中数据的到达时间。通过该示例,通信系统可以根据TSCAI对TSC业务进行时间精确的传输控制。
通过本实施例的终端,终端可以向网络节点发送对时间敏感通信业务的请求信息,并且该请求信息可以包括该时间敏感通信业务的时间参数,网络节点接收到请求后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息来进行时间敏感通信业务,从而实现了由终端发起时间敏感通信业务。
以下,参照图7来描述根据本公开实施例的与图3所示的发起时间敏感通信业务的方法对应的网络节点。图7是根据本公开实施例的网络节点700的结构示意图。由于网络节点700的功能与上文中参照图3描述的方法中的网络节点的功能相同,因此这里为了简单起见,省略对相同内容的详细描述。如图7所示,网络节点700包括:接收单元710和发送单元720。接收单元710,被配置为从终端接收其对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数。发送单元720,被配置为向网络控制器发送所述请求信息。所述接收单元710还被配置为从所述网络控制器接收响应信息,其中所述响应信息包括经修改的所述时间参数。所述发送单元720还被配置为向所述终端发送所述响应信息。除了这两个单元以外,网络节点700还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,接收单元710接收的请求信息可以包括第一信息和第二信息,其中该第一信息可以是关于时间敏感通信业务的时间敏感属性的信息,该第二信息可以是时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
根据本公开的另一示例,接收单元710接收的请求信息还可以包括第三信息,其中该第三信息可以是关于与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口的信息。第三信息可以包括与终端对应的业务转换器(例如,DS-TT)中能够支持TSC业务的端口集、端口标识(例如,端口号(port number))、端口可支持的信息容量、端口时延等中的至少一个。这里的“端口集”可以包括一个或多个端口。
在本公开实施例中,发送单元720可以将所述请求信息透明地传输给网络控制器,比如,网络节点可以不对所述请求信息的具体内容进行任何修改而将所述请求信息发送给网络控制器。
具体地,发送单元720可以将所述请求信息透明地发送给图1中的SMF实体104。然后,SMF实体104可以将所述请求信息透明地发送给图1中的PCF实体107。然后,PCF实体107可以将所述请求信息透明地发送给图1中的AF实体108。然后,AF实体108可以将所述请求信息透明地发送给网络控制器。
在本公开实施例中,网络控制器可以根据所接收的请求信息生成响应信息,并向网络节点发送所生成的响应信息。
根据本公开的一个示例,接收单元710接收的响应信息可以包括经修改的时间参数。在终端提供的时间参数包括TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求的示例中,网络控制器可以修改TSC业务的开始时间、TSC业务中数据的传输周期、以及TSC业务对时间精度的要求中的一个或多个。相应地,经修改的时间参数可以包括经修改的开始时间、经修改的数据传输周期、以及经修改的时间精度中的一个或多个。
根据本公开的另一示例,接收单元710接收的响应信息还可以包括用于指示与终端对应的业务转换器(例如,DS-TT)中用于进行所述时间敏感通信业务的端口的信息。例如,该信息可以包括与终端对应的DS-TT中用于进行TSC业务的端口集和端口标识。
在该示例中,网络控制器可以至少根据终端提供的时间参数来确定与终端对应的DS-TT中用于进行TSC业务的端口。具体地,网络控制器可以根据终端提供的时间参数和端口管理信息来确定与终端对应的DS-TT中用于进行TSC业务的端口。例如,网络控制器可以根据终端提供的时间参数中的TSC业务的开始时间和端口管理信息来确定在TSC业务的开始时间进行TSC业务的端口集和相应端口的标识,从而确定与终端对应的DS-TT中用于进行TSC业务的端口。
此外,根据本公开的另一示例,接收单元710接收的响应信息还可以包括TSC辅助信息(TSC Assistance Information,TSCAI)。TSCAI可以包括指示TSC业务的方向(例如,上行链路或下行链路)的信息、TSC业务中数据的传输周期、以及TSC业务中数据的到达时间等中的一个或多个。
在该示例中,网络控制器可以根据自身提供的时间参数(即经修改的时间参数)来生成TSCAI。例如,网络控制器可以根据自身提供的时间参数中的TSC业务的开始时间来确定TSCAI中的TSC业务中数据的到达时间。通过该示例,通信系统可以根据TSCAI对TSC业务进行时间精确的传输控制。
在本公开实施例中,网络控制器可以通过一条信令来将上面所描述的修改的时间参数、TSC端口管理信息和TSCAI发送给接收单元710,然后发送单元720可以将这些信息传送给UE及其DS-TT。通过这种方式,可以减少无线时间敏感通信系统中的信令交互,实现无线时间敏感通信系统中的信令优化,减少信令开销。此外,通过这种方式,可以实现TSC业务流对应的QoS流的建立与端口管理之间的协同,从而实现了5G网络的高度协作。应该理解,本公开实施例不限于此。例如,网络控制器可以通过多条信令分别将上面所描述的修改的时间参数、TSC端口管理信息和TSCAI发送给接收单元710,然后发送单 元720可以将这些信息传送给UE及其DS-TT。例如,网络控制器可以通过第四信令将修改的时间参数发送给接收单元710,然后发送单元720可以将这些信息传送给UE及其DS-TT;通过第五信令将TSC端口管理信息发送给接收单元710,然后发送单元720可以将这些信息传送给UE及其DS-TT;以及通过第六信令将TSCAI发送给接收单元710,然后发送单元720可以将这些信息传给NG RAN。
通过本实施例的网络节点,网络节点可以从终端接收其对时间敏感通信业务的请求信息,并且该请求信息可以包括该时间敏感通信业务的时间参数。网络节点接收到请求信息后可以向终端返回响应信息,并且该响应信息可以包括经修改的时间参数,以便终端根据该响应信息进行时间敏感通信业务,从而实现了由终端发起时间敏感通信业务。
本公开的实施例提供了一种终端,包括:处理器和存储器,其中,所述存储器中存储有计算机可执行程序,所述处理器用于执行所述计算机可执行程序,以执行上述实施例所述的发起时间敏感通信业务的方法。
本公开的实施例提供了一种网络节点,包括:处理器和存储器,其中,所述存储器中存储有计算机可执行程序,所述处理器用于执行所述计算机可执行程序,以执行上述实施例所述的发起时间敏感通信业务的方法。
此外,本公开实施例的设备(例如,终端、网络节点等)也可以借助于图8所示的计算设备的架构来实现。图8示出了该计算设备的架构。如图8所示,计算设备800可以包括总线810、一个或多个CPU 820、只读存储器(ROM)830、随机存取存储器(RAM)840、连接到网络的通信端口850、输入/输出组件860、硬盘870等。计算设备800中的存储设备,例如ROM 830和硬盘870可以存储计算机处理和/或通信使用的各种数据或文件以及CPU所执行的程序指令。计算设备800还可以包括用户界面880。当然,图8所示的架构只是示例性的,在实现不同的设备时,根据实际需要,可以省略图8示出的计算设备中的一个或多个组件。
本公开的实施例还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种实现方式中提供的发起时间敏感通信业务的方法。
本公开的实施例也可以被实现为计算机可读存储介质。本公开实施例的计算机可读存储介质上存储有计算机可读指令。当所述计算机可读指令由一个或多个处理器运行时,可以执行参照以上附图描述的本公开实施例的方法。所述计算机可读存储介质包括但不限于例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
本领域技术人员能够理解,本公开实施例所披露的内容可以出现多种变形和改进。例如,以上所描述的各种设备或组件可以通过硬件实现,也可以通过软件、固件、或者三者中的一些或全部的组合实现。
此外,如本公开实施例和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
此外,本公开实施例中使用了流程图用来说明本公开实施例的无线时间敏感通信系统所执行的操作。应当理解的是,前面或下面的操作不一定按照顺序来精确地执行。相反,可以按照倒序或同步处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
除非另有定义,这里使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
以上对本公开实施例进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (15)

  1. 一种发起时间敏感通信业务的方法,由终端执行,包括:
    向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;
    从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及
    根据所述响应信息进行所述时间敏感通信业务。
  2. 如权利要求1所述的方法,其中,所述时间参数至少包括所述时间敏感通信业务的开始时间、所述时间敏感通信业务中数据的传输周期以及所述时间敏感通信业务对时间精度的要求。
  3. 如权利要求1所述的方法,其中,所述请求信息还包括所述时间敏感通信业务的标识。
  4. 如权利要求1至3任一项所述的方法,其中,所述请求信息还包括所述时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
  5. 如权利要求1至3任一项所述的方法,其中,所述响应信息还包括用于指示与所述终端对应的业务转换器中用于进行所述时间敏感通信业务的端口的信息,其中所述端口至少根据所述时间参数来确定。
  6. 一种发起时间敏感通信业务的方法,由网络节点执行,包括:
    从终端接收其对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;
    向网络控制器发送所述请求信息;
    从所述网络控制器接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及
    向所述终端发送所述响应信息,使得所述终端根据所述响应信息进行所述时间敏感通信业务。
  7. 如权利要求6所述的网络节点,其中所述时间参数至少包括所述时间敏感通信业务的开始时间、所述时间敏感通信业务中数据的传输周期以及所述时间敏感通信业务对时间精度的要求。
  8. 一种发起时间敏感通信业务的终端,包括:
    发送单元,被配置为向网络节点发送对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;
    接收单元,被配置为从所述网络节点接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及
    处理单元,被配置为根据所述响应信息进行所述时间敏感通信业务。
  9. 如权利要求8所述的终端,其中所述时间参数至少包括所述时间敏感通信业务的开始时间、所述时间敏感通信业务中数据的传输周期以及所述时间敏感通信业务对时间精度的要求。
  10. 如权利要求8所述的终端,其中所述请求信息还包括所述时间敏感通信业务的标识。
  11. 如权利要求8至10任一项所述的终端,其中所述请求信息还包括所述时间敏感通信业务对服务质量流(QoS Flow)的需求信息。
  12. 如权利要求8至10任一项所述的终端,其中所述响应信息还包括用于指示与所述终端对应的业务转换器中用于进行所述时间敏感通信业务的端口的信息,其中所述端口至少根据所述时间参数来确定。
  13. 一种网络节点,包括:
    接收单元,被配置为从终端接收其对时间敏感通信业务的请求信息,其中所述请求信息包括所述时间敏感通信业务的时间参数;
    发送单元,被配置为向网络控制器发送所述请求信息;
    所述接收单元还被配置为从所述网络控制器接收响应信息,其中所述响应信息包括经修改的所述时间参数;以及
    所述发送单元还被配置为向所述终端发送所述响应信息,使得所述终端根据所述响应信息进行所述时间敏感通信业务。
  14. 一种终端,包括:处理器和存储器,其中
    所述存储器中存储有计算机可执行程序,所述处理器用于执行所述计算机可执行程序,以执行权利要求1-5中任一项所述的方法。
  15. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令在被一个或多个处理器执行时,执行如权利要求1-5中任一项所述的方法或者执行如权利要求6-7中任一项所述的方法。
PCT/CN2020/115303 2019-09-27 2020-09-15 发起时间敏感通信业务的方法、终端和存储介质 WO2021057547A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021555878A JP7299333B2 (ja) 2019-09-27 2020-09-15 時間に敏感な通信サービスを開始する方法、端末、ネットワークノード及びコンピュータプログラム
EP20868000.9A EP3941109B1 (en) 2019-09-27 2020-09-15 Method for initiating time-sensitive communication service, terminal and storage medium
KR1020217034163A KR102719251B1 (ko) 2019-09-27 2020-09-15 시간-민감형 통신 서비스를 착수하기 위한 방법, 단말, 및 저장 매체
US17/499,054 US11937119B2 (en) 2019-09-27 2021-10-12 Method and terminal for initiating time sensitive communication service, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910932087.9A CN110636547B (zh) 2019-09-27 2019-09-27 终端执行的方法以及相应的终端、计算机可读存储介质
CN201910932087.9 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/499,054 Continuation US11937119B2 (en) 2019-09-27 2021-10-12 Method and terminal for initiating time sensitive communication service, and storage medium

Publications (1)

Publication Number Publication Date
WO2021057547A1 true WO2021057547A1 (zh) 2021-04-01

Family

ID=68974719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115303 WO2021057547A1 (zh) 2019-09-27 2020-09-15 发起时间敏感通信业务的方法、终端和存储介质

Country Status (5)

Country Link
US (1) US11937119B2 (zh)
EP (1) EP3941109B1 (zh)
JP (2) JP7299333B2 (zh)
CN (2) CN110636547B (zh)
WO (1) WO2021057547A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607560A (en) * 2021-04-06 2022-12-14 Nokia Technologies Oy Joining multicast sessions
EP4268520A4 (en) * 2021-04-05 2024-07-03 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR SUPPORTING CLOCK SYNCHRONIZATION OF A USER DEVICE IN A WIRELESS COMMUNICATIONS SYSTEM

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636547B (zh) * 2019-09-27 2022-03-22 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质
CN111490841B (zh) * 2020-03-23 2024-05-31 腾讯科技(深圳)有限公司 用于实现时间同步的方法及相关设备
CN113518419B (zh) * 2020-04-09 2022-11-22 华为技术有限公司 处理时间同步报文的方法和装置
CN113518421A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 处理时间同步报文的方法和装置
CN113709802A (zh) * 2020-05-21 2021-11-26 维沃移动通信有限公司 支持数据传输的方法及设备
CN112822770B (zh) * 2020-06-18 2022-03-29 中兴通讯股份有限公司 业务处理、发起方法、处理节点、发起节点、系统及介质
CA3190818A1 (en) * 2020-08-06 2022-02-10 Huawei Technologies Co., Ltd. Method and communications apparatus for configuring assistance information
WO2022027666A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种时间同步方法及装置
CN114501528B (zh) * 2020-10-23 2024-03-26 大唐移动通信设备有限公司 时延抖动同步方法、装置及存储介质
CN116868620A (zh) * 2021-01-14 2023-10-10 苹果公司 对调度的优化
EP4381708A1 (en) * 2021-08-03 2024-06-12 Ofinno, LLC Timing service type for timing resiliency service
CN116744358A (zh) * 2022-03-04 2023-09-12 维沃移动通信有限公司 QoS控制方法及通信设备
CN115396865B (zh) * 2022-09-02 2023-06-16 广州爱浦路网络技术有限公司 终端漫游数据处理方法及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140109209A1 (en) * 2012-10-15 2014-04-17 Cellco Partnership D/B/A Verizon Wireless Hosted ims instance with authentication framework for network-based applications
CN110072258A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 用于确定性传输的通信方法和相关装置
WO2019166081A1 (en) * 2018-02-28 2019-09-06 Nokia Technologies Oy Transparent integration of 3gpp network into tsn based industrial network
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964572B2 (en) * 2012-09-26 2015-02-24 Calix, Inc. Determining quality of experience with a network device
US10952176B2 (en) * 2017-03-17 2021-03-16 Samsung Electronics Co., Ltd. AF influenced PDU session management and subscription procedures
CN107302586B (zh) * 2017-07-12 2020-06-26 深信服科技股份有限公司 一种Webshell检测方法以及装置、计算机装置、可读存储介质
US10764789B2 (en) * 2017-08-11 2020-09-01 Comcast Cable Communications, Llc Application-initiated network slices in a wireless network
US11039497B2 (en) * 2017-09-18 2021-06-15 Qualcomm Incorporated User plane based small data service
CN110167068A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种处理服务质量QoS参数的方法、网元、系统及存储介质
CN108668282B (zh) * 2018-03-29 2021-01-15 努比亚技术有限公司 一种信息处理方法、终端及计算机可读存储介质
US20210400524A1 (en) * 2018-11-19 2021-12-23 Nokia Technologies Oy Method to support 5g time sensitive communications
EP3963829A1 (en) * 2019-05-02 2022-03-09 Nokia Technologies Oy Integration of communication network in time sensitive networking system
CN110267312B (zh) * 2019-06-17 2023-09-19 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质
EP4005171B1 (en) * 2019-07-23 2023-05-10 Nokia Technologies Oy Integration of communication network in time sensitive networking system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140109209A1 (en) * 2012-10-15 2014-04-17 Cellco Partnership D/B/A Verizon Wireless Hosted ims instance with authentication framework for network-based applications
CN110072258A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 用于确定性传输的通信方法和相关装置
WO2019166081A1 (en) * 2018-02-28 2019-09-06 Nokia Technologies Oy Transparent integration of 3gpp network into tsn based industrial network
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "3GPP TSG-SA WG2 Meeting #132 S2-1903378", SUPPORT FOR IEEE 802.1QBV SCHEDULING, 12 April 2019 (2019-04-12), XP051719540 *
See also references of EP3941109A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4268520A4 (en) * 2021-04-05 2024-07-03 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR SUPPORTING CLOCK SYNCHRONIZATION OF A USER DEVICE IN A WIRELESS COMMUNICATIONS SYSTEM
GB2607560A (en) * 2021-04-06 2022-12-14 Nokia Technologies Oy Joining multicast sessions

Also Published As

Publication number Publication date
JP2023107995A (ja) 2023-08-03
CN110636547B (zh) 2022-03-22
EP3941109A1 (en) 2022-01-19
EP3941109A4 (en) 2022-07-06
JP7299333B2 (ja) 2023-06-27
US11937119B2 (en) 2024-03-19
KR20210138752A (ko) 2021-11-19
CN113645661A (zh) 2021-11-12
US20220030460A1 (en) 2022-01-27
EP3941109B1 (en) 2023-06-21
CN110636547A (zh) 2019-12-31
CN113645661B (zh) 2024-07-23
JP2022525899A (ja) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2021057547A1 (zh) 发起时间敏感通信业务的方法、终端和存储介质
US11909652B2 (en) Method, device and storage medium for quality of service (QoS) flow management of time sensitive data for transmission of ethernet packet filter sets
WO2020200066A1 (zh) 获取数据包延迟参数的方法、系统和装置
WO2021057522A1 (zh) 时钟同步的方法、网络节点和存储介质
WO2022222745A1 (zh) 一种通信方法及装置
JP2021524204A (ja) サービス品質監視方法、及びシステム、並びに装置
JP2022530333A (ja) 通信方法、通信装置、及び通信システム
WO2022237505A1 (zh) 一种通信方法、设备及系统
WO2022143395A1 (zh) 一种冗余路径创建方法、装置及系统
WO2024051313A1 (zh) 通信资源管理方法、装置、系统及存储介质
KR20230085108A (ko) DetNet 트래픽을 처리하는 방법 및 장치
TWI836328B (zh) 通信方法及裝置
WO2022067736A1 (zh) 一种通信方法及装置
WO2021169644A1 (zh) 家庭网关接入网络的方法和通信装置
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置
WO2021147105A1 (zh) 通信方法及装置
KR102719251B1 (ko) 시간-민감형 통신 서비스를 착수하기 위한 방법, 단말, 및 저장 매체
WO2024032290A1 (zh) 会话建立方法、装置、网络设备及存储介质
WO2024027299A1 (zh) 消息路由方法和装置
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
CN113727329B (zh) 一种通信方法及装置
WO2023231450A1 (zh) 一种时间同步方法及通信装置
WO2023231465A1 (zh) 一种时间同步方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555878

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020868000

Country of ref document: EP

Effective date: 20211013

ENP Entry into the national phase

Ref document number: 20217034163

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE