WO2023231450A1 - 一种时间同步方法及通信装置 - Google Patents

一种时间同步方法及通信装置 Download PDF

Info

Publication number
WO2023231450A1
WO2023231450A1 PCT/CN2023/075611 CN2023075611W WO2023231450A1 WO 2023231450 A1 WO2023231450 A1 WO 2023231450A1 CN 2023075611 W CN2023075611 W CN 2023075611W WO 2023231450 A1 WO2023231450 A1 WO 2023231450A1
Authority
WO
WIPO (PCT)
Prior art keywords
round
access network
delay
information
trip delay
Prior art date
Application number
PCT/CN2023/075611
Other languages
English (en)
French (fr)
Inventor
臧昕
周润泽
王远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231450A1 publication Critical patent/WO2023231450A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular, to a time synchronization method and communication device.
  • the current synchronization method is that the terminal device receives the system information block (SIB) message broadcasted by the access network device.
  • SIB system information block
  • the SIB message carries the timing information of the access network device, and the terminal device obtains the timing information from the SIB message. , and perform time synchronization with the access network equipment based on the timing information.
  • Embodiments of the present application provide a time synchronization method and a communication device to implement time synchronization between terminal equipment and access network equipment.
  • embodiments of the present application provide a time synchronization method, which can be executed by an access network device or a module in the access network device.
  • the method includes: the access network device obtains the first round-trip delay information between the access network device and the terminal device, the third round-trip delay information between the access network device and the reference device. The second round-trip delay information and the third round-trip delay information between the reference device and the terminal device; the access network device calculates the first round-trip delay information, the second round-trip delay information and the third round-trip delay information.
  • Delay information is used to determine the delay from the access network device to the terminal device; the access network device sends the delay or the deviation value between the access network device and the terminal device to the terminal device.
  • the offset value is used for time synchronization of the terminal device, and the offset value is determined based on the first round-trip delay information and the delay.
  • the access network equipment can accurately determine the deviation value or delay and send the deviation value or delay to the terminal device, so that the terminal device performs time synchronization based on the deviation or delay, which can reduce the impact of path asymmetry on base station timing. influence, thereby achieving precise time synchronization between terminal equipment and access network equipment, helping to improve the communication capabilities of terminal equipment.
  • the access network device receives a notification message, the notification message includes identification information of the reference device, identification information of the terminal device and indication information, and the indication information instructs to perform a timing error elimination operation.
  • the instruction information in the notification message triggers the access network device to perform a timing error elimination operation when providing timing services for the terminal device, thereby realizing the connection between the terminal device and the access network device. precise time synchronization.
  • the access network device sends the identification information of the terminal device and the indication information to the reference device.
  • the access network device determines the time from the access network device to the terminal device based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information.
  • Delay includes: the access network device determines the delay from the access network device to the terminal device based on the objective function, the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information. .
  • the objective function is preconfigured in the access network device, or comes from an application function network element or a clock management network element.
  • the access network device determines the distance from the access network device to the terminal based on the objective function, the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information.
  • the delay of the device includes: the access network device determines the limiting conditions of the objective function based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information; the access network device According to the limiting conditions of the objective function and the objective function, the delay from the access network device to the terminal device is determined.
  • the objective function is a minimum value function or a minimum mean square error function with the limiting condition as the solution space bias.
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference device
  • d is The delay from the reference device to the access network device
  • e is the delay from the reference device to the terminal device
  • f is the delay from the terminal device to the reference device
  • D1 is determined based on the first round-trip delay information
  • D2 is determined based on the second round-trip delay information
  • D3 is determined based on the third round-trip delay information
  • D4 is determined based on the first round-trip delay information, the second round-trip delay information and the third round-trip delay information.
  • Delay information is determined.
  • the objective function is min(abs(a-b)+abs(d-c)+abs(f-e)) or min(min(abs(a-b)+abs(d-c)+abs(f-e))) ;
  • min() represents the minimum value function
  • abs() represents the absolute value function.
  • the objective function is MSE(a-a'), MSE(b-b') or MSE((a-a')+(b-b')); where, MSE() Represents the minimum mean square error function.
  • the reference device is a reference terminal device, and the terminal device is connected to the reference terminal device using optical fiber;
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference terminal device
  • d is The delay from the reference terminal equipment to the access network equipment
  • e is the delay from the reference terminal equipment to the terminal equipment
  • D1 is determined based on the first round-trip delay information
  • D2 is determined based on the second round-trip delay
  • D4 is determined based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information.
  • the objective function is min(abs(a-b)+abs(d-c)); where min() represents the minimum value function and abs() represents the absolute value function.
  • the reference device is a reference access network device, and the access network device is connected to the reference access network device using optical fiber;
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference access network device
  • e is the delay from the reference access network equipment to the terminal equipment
  • f is the delay from the terminal equipment to the reference access network equipment
  • D1 is determined based on the first round-trip delay information
  • D3 is determined based on the first round-trip delay information.
  • Three round-trip delay information are determined, and D4 is determined based on the first round-trip delay information, the second round-trip delay information and the third round-trip delay information.
  • the objective function is min(abs(a-b)+abs(f-e)); where min() represents the minimum value function and abs() represents the absolute value function.
  • embodiments of the present application provide a time synchronization method, which can be executed by a clock management network element or a module in the clock management network element.
  • the method includes: the clock management network element receives a timing request message, the timing request message includes identification information of the terminal device, identification information of the reference device and indication information, and the indication information instructs to perform timing Error elimination operation; the clock management network element selects an access network device that provides timing services for the terminal device; the clock management network element sends a notification message to the policy control network element or the mobility management network element, and the notification message includes the terminal device The identification information, the identification information of the reference device, the identification information of the access network device and the indication information.
  • the clock management network element sends a notification message to the policy control network element or the mobility management network element based on the timing request, so that the policy control network element or the mobility management network element can send the notification message to the access network device to trigger the access.
  • the network access equipment provides timing services to the terminal equipment, it performs timing error elimination operations to achieve precise time synchronization between the terminal equipment and the access network equipment.
  • the clock management network element sends a query message to the unified database network element.
  • the query message includes the identification information of the terminal device.
  • the query message requests to obtain the policy control network element or network element that provides services for the terminal device.
  • Mobility management network element; the clock management network element receives the identification information of the policy control network element or the identification information of the mobility management network element from the unified database network element.
  • the clock management network element sends a request message to the unified data management network element.
  • the request message includes the identification information of the terminal device.
  • the request message is used to query whether the terminal device is authorized to provide timing services;
  • the clock management network element receives a response message from the unified data management network element, and the response message indicates that the terminal device is authorized to provide timing services.
  • the timing service is provided for the terminal device, thereby avoiding providing timing service to the terminal device that is not authorized and avoiding waste of resources.
  • the clock management network element receiving the timing request message includes: the clock management network element receiving the timing request message from the terminal device or application function network element.
  • embodiments of the present application provide a time synchronization method, which can be executed by a mobility management network element, a policy control network element, a module in a mobility management network element, or a module in a policy control network element.
  • the method includes: receiving a first notification message, where the first notification message includes identification information of a terminal device, identification information of a reference device, and indication information. information, identification information of multiple access network devices, and capability information of the multiple access network devices.
  • the capability information indicates whether the access network device can serve the timing, and the indication information indicates the timing error elimination operation; according to the multiple access network devices Based on the location information of the access network device and the capability information of the multiple access network devices, select the access network device that provides timing services for the terminal device; send a second notification message to the selected access network device, the second notification The message includes the identification information of the terminal device, the identification information of the reference device and the indication information.
  • the policy control network element or the mobility management network element sends a notification message to the access network device to trigger the access network device to perform timing error elimination operation when providing timing services for the terminal device, so as to realize the communication between the terminal device and the access network. Precise time synchronization between devices.
  • selecting an access network device that provides timing services for the terminal device based on the location information of the multiple access network devices and the capability information of the multiple access network devices includes: based on the multiple access network devices. Based on the capability information of each access network device, select at least one access network device capable of timing service from the plurality of access network devices; and select an access network device that provides timing service for the terminal device based on the location information of the at least one access network device. Access network equipment.
  • embodiments of the present application provide a communication device, which may be an access network device or a module in the access network device.
  • the device has the function of implementing any implementation method of the above-mentioned first aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • embodiments of the present application provide a communication device, which may be a clock management network element or a module in the clock management network element.
  • the device has the function of implementing any implementation method of the above second aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • embodiments of the present application provide a communication device, which may be a mobility management network element, a policy control network element, a module in a mobility management network element, or a module in a policy control network element.
  • the device has the function of implementing any implementation method of the above third aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • embodiments of the present application provide a communication device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory to cause the device to execute Any implementation method in the above first to third aspects.
  • embodiments of the present application provide a communication device, including units or means (means) for executing each step of any implementation method in the above-mentioned first to third aspects.
  • embodiments of the present application provide a communication device, including a processor coupled to a memory.
  • the processor is configured to call a program stored in the memory to execute any implementation method in the above first to third aspects.
  • the memory may be located within the device or external to the device.
  • the processor can be one or more.
  • embodiments of the present application provide a communication device, including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute any implementation method in the above-mentioned first to third aspects.
  • the processor includes one or more.
  • embodiments of the present application further provide a computer program product.
  • the computer program product includes a computer program or instructions.
  • the computer program or instructions are run by a communication device, any one of the above-mentioned first to third aspects is enabled.
  • the implementation method is executed.
  • embodiments of the present application further provide a computer-readable storage medium, in which instructions are stored, and when run on a communication device, the instructions in the first to third aspects are implemented. any implementation of The method is executed.
  • embodiments of the present application further provide a chip system, including: a processor configured to execute any implementation method in the above first to third aspects.
  • embodiments of the present application further provide a communication system, including an access network device for performing any method of the second aspect, and a policy control network element or a mobility management network element, where the policy control network element Or the mobility management network element is used to send a notification message to the access network device.
  • the notification message includes identification information of the terminal device, identification information of the reference device and indication information, and the indication information instructs to perform a timing error elimination operation.
  • the policy control network element or the mobility management network element is also used to receive the identification information of the terminal device, the identification information of the reference device, the indication information, and the identification information of multiple access network devices. Identification information and capability information of the multiple access network devices, the capability information indicating whether the access network device can serve time; and based on the location information of the multiple access network devices and the capability information of the multiple access network devices , select the access network device that provides timing services for the terminal device.
  • the policy control network element or the mobility management network element is specifically used to select at least one capable of timing service from the multiple access network devices based on the capability information of the multiple access network devices.
  • Figure 1(a) is a schematic diagram of the 5G network architecture based on service-based architecture
  • Figure 1(b) is a schematic diagram of the 5G network architecture based on point-to-point interface
  • Figure 2 is a flow chart of a time synchronization method provided by an embodiment of the present application.
  • Figure 3(a) is an example diagram of time synchronization provided by the embodiment of the present application.
  • Figure 3(b) is another example diagram of time synchronization provided by the embodiment of the present application.
  • Figure 4 is a flow chart of a time synchronization method provided by an embodiment of the present application.
  • Figure 5 is a flow chart of a time synchronization method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 1(a) is a schematic diagram of the 5G network architecture based on service-based architecture.
  • the 5G network architecture shown in Figure 1(a) includes a data network (DN) and an operator network.
  • DN data network
  • Operator network operator network
  • the operator network includes one or more of the following network elements: Authentication Server Function (AUSF) network element (not shown in the figure), unified data management (UDM) network element, unified database (Unified Data Repository, UDR) network element, Network Repository Function (NRF) network element (not shown in the figure), Network exposure function (NEF) network element (not shown in the figure), Application function (AF) network element, policy control function (PCF) network element, access and mobility management function (AMF) network element, session management function (session management function) , SMF) network elements, UPF network elements, access network (AN) equipment (radio access network (RAN) equipment is used as an example in the figure), time-sensitive communication and time synchronization functions (Time Sensitive Communication and Time Synchronization Function, TSCTSF) network element, etc.
  • AUSF Authentication Server Function
  • UDM unified data management
  • UDR Unified Data Repository
  • NEF Network Expogen
  • AF policy control function
  • AMF access and mobility management function
  • Access network equipment includes wired access network equipment and wireless access network equipment.
  • the wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or a next generation base station (next generation NodeB) in the 5G mobile communication system.
  • gNB evolved base station
  • 6th generation, 6G sixth generation
  • Modules or units with some functions of the base station for example, can be a centralized unit (CU) or a distributed unit (DU).
  • the wireless access network equipment can be a macro base station, a micro base station or an indoor station, or a relay node or a donor node, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
  • Terminal equipment that communicates with RAN includes terminals, user equipment (UE), mobile stations, mobile terminals, etc.
  • the terminal device is a UE as an example.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), and the Internet of Things (Internet of things, IoT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • Access network equipment and terminal equipment can be fixed-position or removable. Access network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. The embodiments of this application do not limit the application scenarios of access network equipment and terminal equipment.
  • the mobility management network element is a control plane network element provided by the operator's network. It is responsible for access control and mobility management of terminal devices accessing the operator's network. For example, it includes mobility status management, assigning user temporary identities, authenticating and authorizing users. and other functions.
  • the mobility management network element can be an AMF network element.
  • future communications such as the 6th generation (6G)
  • the mobility management network element can still be an AMF network element, or have other names. There are no restrictions on application.
  • the session management network element is a control plane network element provided by the operator network and is responsible for managing the protocol data unit (PDU) session of the terminal device.
  • a PDU session is a channel used to transmit PDUs. Terminal devices need to transmit PDUs to each other through the PDU session and the DN.
  • the SMF network element is responsible for establishing, maintaining and deleting PDU sessions.
  • Session management network elements include session management (such as session establishment, modification and release, including tunnel maintenance between user plane network elements and access network equipment), selection and control of user plane network elements, service and session continuity (Service and Session Continuity (SSC) mode selection, roaming and other session-related functions.
  • the session management network element can be an SMF network element.
  • future communications such as 6G, the session management network element can still be an SMF network element, or have other names. This application does not limit it.
  • the user plane network element is a gateway provided by the operator, and is the gateway for communication between the operator's network and the DN.
  • UPF network elements include user plane-related functions such as data packet routing and transmission, packet detection, business usage reporting, Quality of Service (QoS) processing, legal interception, uplink packet detection, and downlink data packet storage.
  • QoS Quality of Service
  • the user plane network element can be a UPF network element.
  • future communications such as 6G, the user plane network element can still be a UPF network element, or have other names. This application does not limit it.
  • the data management network element is a control plane network element provided by the operator. It is responsible for storing the users of contracted users in the operator's network. Permanent identifier (subscriber permanent identifier, SUPI), credential, security context, contract data and other information. This information stored in the data management network element can be used for authentication and authorization of terminal devices accessing the operator's network.
  • the contract users of the above-mentioned operator network can specifically be users who use services provided by the operator network, such as users who use China Telecom's mobile phone chip cards, or users who use China Mobile's mobile phone chip cards, etc.
  • the permanent subscription identifier (Subscription Permanent Identifier, SUPI) of the above-mentioned subscriber can be the number of the mobile phone chip card, etc.
  • the trust certificate and security context of the above-mentioned contract user can be a small file stored in the encryption key of the mobile phone chip card or information related to the encryption of the mobile phone chip card, for authentication and/or authorization.
  • the above security context may be data (cookie) or token stored on the user's local terminal (such as a mobile phone).
  • the contract data of the above-mentioned contract users can be the supporting services of the mobile phone chip card, such as the traffic package or network usage of the mobile phone chip card. It should be noted that permanent identifiers, credentials, security contexts, authentication data (cookies), and information related to token equivalent authentication and authorization are not distinguished or restricted in this application document for the convenience of description.
  • the embodiments of this application will be described using security context as an example, but the embodiments of this application are also applicable to authentication and/or authorization information expressed in other ways.
  • the data management network element can be a UDM network element.
  • future communications such as 6G, the data management network element can still be a UDM network element, or have other names. This application does not limit it.
  • the unified database network element is a control plane network element provided by the operator, and includes access functions for executing contract data, policy data, application data and other types of data.
  • the unified database network element can be a UDR network element.
  • future communications such as 6G, the unified database network element can still be a UDR network element, or have other names. This application does not limit it.
  • Network open network elements are control plane network elements provided by operators.
  • the network opening network element opens the external interface of the operator's network to third parties in a secure manner.
  • the network open network element can serve as a relay for the communication between the session management network element and the third-party network element.
  • the network open network element serves as a relay, it can be used to translate the identification information of the subscriber and the identification information of the third-party network element. For example, when the network opening network element sends the SUPI of the subscriber from the operator network to a third party, it can translate the SUPI into its corresponding external identity.
  • network opening network element when the network opening network element sends the external ID (the third-party network element ID) to the operator network, it can be translated into SUPI.
  • network open network elements can be NEF network elements.
  • future communications such as 6G, network open network elements can still be NEF network elements, or have other names. This application does not limit it.
  • the application function network element is used to transmit the requirements of the application side to the network side, such as QoS requirements or user status event subscriptions.
  • the application function network element can be a third-party functional entity or an application server deployed by the operator.
  • the application function network element can be an AF network element.
  • future communications such as 6G, the application function network element can still be an AF network element, or have other names. This application does not limit it.
  • the policy control network element is a control plane function provided by the operator and is used to provide PDU session policies to the session management network element. Policies may include accounting-related policies, QoS-related policies, authorization-related policies, etc.
  • the policy control network element can be a PCF network element.
  • future communications such as 6G, the policy control network element can still be a PCF network element, or have other names. This application does not limit it.
  • Network storage function network elements can be used to provide network element discovery functions and provide network element information corresponding to network element types based on requests from other network elements.
  • the network storage function network element also provides network element management services, such as network element registration, update, de-registration, network element status subscription and push, etc.
  • the network storage function network element can be an NRF network element.
  • future communications such as 6G, the network storage function network element can still be an NRF network element, or have other names. This application does not limit it.
  • the clock management network element can be used to manage the clock information of one or more clock sources in the 5G network. It can provide the clock information of the clock source externally through its own port, such as directly or indirectly to terminal equipment, access network equipment, core network equipment or Third-party application function network elements provide clock information. Among them, the clock information represents the time, moment or time point of the clock; The clock management network element can also select the corresponding timing network element according to the timing request of the timing requester.
  • the timing network element can be a UPF network element, access network equipment, etc., or it can be the clock management network element itself, and then the clock The management network element instructs the timing network element to provide timing services to the timing requester.
  • the clock management network element can be a TSCTSF network element defined by 3GPP. In future communications such as 6G, the clock management network element can still be a TSCTSF network element, or have other names. This application does not limit it.
  • DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs.
  • a variety of services can be deployed on the DN, which can provide data and/or voice services to terminal devices.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is the internal office network of a company.
  • the mobile phones or computers of employees of the company can be used as terminal devices.
  • the employees' mobile phones or computers can access information and data resources on the company's internal office network.
  • Npcf, Nudr, Nudm, Naf, Namf, Nsmf, and Ntsctsf are respectively provided by the above-mentioned PCF network element, UDR network element, UDM network element, AF network element, AMF network element, SMF network element, and TSCTSF network element.
  • the service interface is used to call the corresponding service operation.
  • N1, N2, N3, N4 and N6 are interface serial numbers. The meanings of these interface serial numbers are as follows:
  • N1 The interface between the AMF network element and the UE, which can be used to transmit non-access stratum (NAS) signaling (such as QoS rules from the AMF network element) to the UE.
  • NAS non-access stratum
  • N2 The interface between the AMF network element and the wireless access network equipment, which can be used to transmit wireless bearer control information from the core network side to the wireless access network equipment, etc.
  • N3 The interface between the wireless access network equipment and the UPF network element, mainly used to transmit uplink user plane data and/or downlink user plane data between the wireless access network equipment and the UPF network element.
  • N4 The interface between the SMF network element and the UPF network element can be used to transfer information between the control plane and the user plane, including controlling the delivery of user-oriented forwarding rules, QoS rules, traffic statistics rules, etc. Report information on the user interface.
  • N6 The interface between the UPF network element and the DN, used to transmit the uplink user data flow and/or the downlink user data flow between the UPF network element and the DN.
  • Figure 1(b) is a schematic diagram of the 5G network architecture based on point-to-point interfaces.
  • the interfaces between the control plane network elements in Figure 1(a) are service-oriented interfaces. The interface between them is a point-to-point interface.
  • N1, N2, N3, N4 and N6 interfaces can refer to the previous description.
  • N5 The interface between the AF network element and the PCF network element, which can be used to deliver application service requests and report network events.
  • N7 The interface between PCF network element and SMF network element can be used to deliver protocol data unit (PDU) session granularity and service data flow granularity control policy.
  • PDU protocol data unit
  • N8 The interface between AMF network elements and UDM network elements, which can be used by AMF network elements to obtain access and mobility management-related subscription data and authentication data from UDM network elements, and for AMF network elements to register with UDM network elements. Information related to terminal device mobility management, etc.
  • N9 User plane interface between UPF network elements and UPF network elements, used to transmit uplink user data flow and/or downlink user data flow between UPF network elements.
  • N10 The interface between the SMF network element and the UDM network element, which can be used for the SMF network element to obtain session management-related contract data from the UDM network element, and for the SMF network element to register terminal device session-related information with the UDM network element.
  • N11 The interface between SMF network element and AMF network element can be used to transmit PDU session tunnel information between wireless access network equipment and UPF network element, control messages sent to terminal equipment, and control messages sent to Wireless resource control information of wireless access network equipment, etc.
  • N15 The interface between the PCF network element and the AMF network element, which can be used to deliver terminal device policies and access control-related policies.
  • N35 The interface between UDM network element and UDR network element, which can be used by UDM network element to obtain user subscription data information from UDR network element.
  • N36 The interface between PCF network element and UDR network element, which can be used by PCF network element to obtain policy-related contract data and application data-related information from UDR network element.
  • the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the above network element or function can be implemented by one device, or can be implemented by multiple devices together, or can be a functional module in one device, which is not specifically limited in the embodiments of this application.
  • UE, base station, AMF, PCF, NEF, AF, TSCTSF, UDM, and UDR are used as terminal equipment, access network equipment, mobility management network element, policy control network element, and network opening network element respectively.
  • AMF Access Mobility Management Function
  • PCF Packet Control Function
  • NEF Access Network Equipment
  • AF AF
  • TSCTSF TSCTSF
  • UDM User Data Management Function
  • UDR User Data Management Function
  • Figure 2 is a flow chart of a time synchronization method provided by an embodiment of the present application. The method includes the following steps:
  • Step 201 The base station obtains the first round-trip delay information between the base station and the UE, the second round-trip delay information between the base station and the reference device, and the third round-trip delay information between the reference device and the UE.
  • the reference device is a device used to assist in determining the delay between the base station and the UE. That is, with the assistance of the reference device, the delay between the base station and the UE can be accurately determined, specifically including the delay from the base station to the UE, and the UE Delay to base station. Currently, the reference device can also assist in determining the delay between the base station and the reference device, and the delay between the reference device and the UE.
  • the reference device may be another UE (called a reference UE), or another base station (called a reference base station).
  • the first round-trip delay information is used to represent the message sending and receiving time between the base station and the UE.
  • the first round-trip delay information includes the time when the base station sends the message and the time when the message reaches the UE, and also includes the time when the UE sends the message. time and the time when the message arrives at the base station.
  • the second round-trip delay information is used to represent the message sending and receiving time between the base station and the reference device.
  • the second round-trip delay information includes the time when the base station sends the message and the time when the message reaches the reference device, and also includes the time when the base device sends the message. The time of the message and the time when the message arrives at the base station.
  • the third round-trip delay information is used to represent the message sending and receiving time between the reference device and the UE.
  • the third round-trip delay information includes the time when the reference device sends the message and the time when the message reaches the UE, and also includes the time when the UE sends the message. The time of the message and the time when the message reaches the reference device.
  • the base station before step 201, receives a notification message.
  • the notification message includes identification information of the reference device, identification information of the UE and indication information.
  • the indication information instructs the timing error elimination operation, and the indication information triggers the execution of the timing error elimination operation. Step 201 and subsequent steps.
  • the base station can also send the identification information and indication information of the UE to the reference device, thereby triggering the reference device to obtain the third round-trip delay information between the reference device and the UE, and then the reference device sends the third round-trip to the UE. Delay information.
  • Step 202 The base station determines the delay from the base station to the UE based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information.
  • the delay from the base station to the UE refers to the time it takes for the message sent by the base station to reach the UE, that is, the time difference between the base station sending the message and the message arriving at the UE.
  • the base station can determine the delay from the base station to the UE based on the objective function, the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information. For example, the base station first determines the limiting conditions of the objective function based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information, and then determines the delay from the base station to the UE based on the limiting conditions of the objective function and the objective function. .
  • This objective function is preconfigured at the base station, or comes from the AF or TSCTSF.
  • the objective function is the minimum value function or the minimum mean square error function with the limiting condition as the solution space bias. That is, the base station constructs a solution space based on the limiting conditions, and obtains the minimum value or minimum mean square error of the objective function from the solution space.
  • Step 203 The base station sends the delay or the deviation value between the base station and the UE to the UE.
  • Time synchronization refers to keeping the time of the UE and the base station the same.
  • the deviation value is determined based on the first round-trip delay information and the delay.
  • the base station When the base station sends the delay to the UE, the base station also sends the time on the base station while sending the delay.
  • Step 204 The UE performs time synchronization based on the delay or the deviation value between the base station and the UE.
  • the UE takes the sum of the time of the base station and the delay as the current time of the UE to achieve time synchronization.
  • the UE updates the UE's time to the sum of the time when the UE received the deviation and the deviation. For example, if the UE receives the deviation at time T, the UE will use the sum of T and the deviation as the UE the current time.
  • the base station can accurately determine the deviation value or delay and send the deviation value or delay to the UE, so that the UE performs time synchronization based on the deviation or delay, which can reduce the impact of path asymmetry on the base station timing, thereby achieving Precise time synchronization between the UE and the base station helps improve the communication capabilities of the UE.
  • Figure 3(a) is an example diagram of the delay between devices provided by the embodiment of the present application.
  • a is the delay from the base station to the UE
  • b is the delay from the UE to the base station
  • c is the delay from the base station to the reference equipment
  • d is the delay from the reference equipment to the base station
  • e is the time delay from the reference equipment to the UE.
  • Delay f is the delay from UE to reference equipment.
  • the reference device may be another UE or another base station.
  • Wireless communication is established between the UE and the base station through the air interface.
  • the reference device is a UE
  • wireless communication can be established between the UE and the reference device, or wired communication can be established through optical fiber.
  • the reference device is a base station
  • wireless communication can be established between the base station and the reference device, or wired communication can be established through optical fiber.
  • Figure 3(b) is an example diagram of round trip time delay (Round Trip Time, RTT) operation provided by the embodiment of the present application.
  • the embodiment of Figure 3(b) is implemented in conjunction with the above-mentioned embodiment of Figure 3(a) and includes the following three parts.
  • the RTT operation between the base station and the UE is as follows:
  • Time t1 The base station sends message 1 to the UE at time t1;
  • Time t2 UE receives message 1 at time t2;
  • Time t3 UE sends message 2 to the base station at time t3.
  • the header of message 2 carries the reception time t2 of message 1 and the sending time t3 of message 2;
  • Time t4 The base station receives message 2 at time t4.
  • the base station can obtain four times, namely t1 to t4, which are called the first round-trip delay information between the base station and the UE.
  • offset1 represents the offset between the time of the base station and the time of the UE, that is, the difference between the time of the base station and the time of the UE.
  • the RTT operation between the base station and the reference equipment is as follows:
  • Time t5 The base station sends message 3 to the reference device at time t5;
  • Time t6 The reference device receives message 3 at time t6;
  • Time t7 The reference device sends message 4 to the base station at time t7.
  • the header of message 4 carries the reception time t6 of message 3 and the sending time t7 of message 4;
  • Time t8 The base station receives message 4 at time t8.
  • the base station can obtain four times, namely t5 to t8, which are called the second round-trip delay information between the base station and the reference device.
  • offset2 represents the offset between the time of the reference device and the time of the base station, that is, the difference between the time of the reference device and the time of the base station.
  • the RTT operation between the reference device and the UE is as follows:
  • Time t9 The reference device sends message 5 to the UE at time t9;
  • Time t10 UE receives message 5 at time t10;
  • Time t11 The UE sends message 6 to the reference device at time t11.
  • the header of this message 6 carries the reception time t10 of message 5 and the sending time t11 of message 6;
  • Time t12 The reference device receives message 6 at time t12.
  • the reference device can obtain four times, namely t9 to t12, and then the reference device sends the four times to the base station.
  • the t9 to t12 are called the third round-trip delay information between the reference device and the UE.
  • offset3 represents the offset between the time of the UE and the time of the reference device, that is, the difference between the time of the UE and the time of the reference device.
  • D4 (t4-t3)+(t6-t5)+(t10-t9).
  • min() represents the minimum value function
  • abs() represents the absolute value function
  • the above values of e and f can be measured. , so the values of e and f are determined.
  • the reference equipment is another base station (i.e., reference base station), and the base station and the reference equipment (i.e., reference base station) are connected by optical fiber, then the above values of c and d can be measured. , so the values of c and d are determined.
  • a represents the measured value of the delay from the base station to the UE
  • a' represents the real value of the delay from the base station to the UE
  • b represents the measured value of the delay from the UE to the base station
  • b' represents the UE to the base station
  • square() is the square value function.
  • the base station After the base station calculates the values of a and b, it can obtain the precise value of offset1 based on the values of a and b and the above formula (3). Then the base station sends the value of offset1 to the UE. Assuming that the UE receives offset1 at time T1, the UE updates the UE's time to T1+offset1, thereby achieving accurate time synchronization between the UE and the base station.
  • the base station can also send the base station's time (represented by T2) and the value of a to the UE.
  • T2 the base station's time
  • the UE After the UE receives T2 and the value of a, it updates the UE's time to T2+a, thereby realizing the communication between the UE and the base station. precise time synchronization.
  • the method of the embodiment of this application is to accurately calculate the delay a from the base station to the UE and the delay b from the UE to the base station when the uplink and downlink paths between the base station and the UE are symmetrical, and then accurately calculate offset1 , capable of achieving precise time synchronization of UE.
  • FIG. 2 The above-mentioned embodiment of FIG. 2 will be described in detail below with reference to the specific embodiments of FIGS. 4 to 5 .
  • FIG. 4 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application. This method is the AF request to provide timing services to the UE.
  • the method includes the following steps:
  • Step 401 The AF sends a timing request message to the NEF.
  • the timing request message includes the identification information of the UE, the identification information of the reference device, and the indication information.
  • the UE is a timing service object, that is, timing services need to be provided for the UE.
  • the reference device is another UE that is different from the timing object, or the reference device is a base station that is different from the base station that provides timing services to the UE. This reference device provides auxiliary functions for precise timing of UE.
  • This instruction information indicates the timing error elimination operation.
  • the timing request message is the Nnef_TimeSynchronization_ASTICreate/Update/Delete message.
  • Step 402 NEF sends a timing request message to the TSCTSF.
  • the timing request message includes the identification information of the UE, the identification information of the reference device, and the indication information.
  • the NEF After receiving the timing request message from the AF, the NEF authenticates the AF. When the authentication is passed, the NEF sends the timing request message to the TSCTSF.
  • the identification information of the UE, the identification information of the reference device and the indication information in the timing request message sent by the NEF come from the AF.
  • the timing request message is an Ntsctsf_TimeSynchronization_ASTICreate/Update/Delete message.
  • Step 403 The TSCTSF selects a base station that provides timing services for the UE.
  • the TSCTSF selects a base station that provides timing services for the UE from multiple base stations based on the distribution information of the base stations.
  • the reference device is a base station
  • the reference device and the base station that provide timing services for the UE are different base stations.
  • Step 404 The TSCTSF sends a query message to the UDR.
  • the query message includes the identification information of the UE, and the query message requests to obtain the PCF that provides services for the UE.
  • the query message is a Nudr_DM_Create/Update/Delete request message.
  • Step 405 The UDR sends a response message to the TSCTSF.
  • the response message includes the identification information of the PCF.
  • the response message is a Nudr_DM_Create/Update/Delete response message.
  • Step 406 The TSCTSF sends a notification message to the PCF.
  • the notification message includes the identification information of the UE and the base station's identification information. Identification information, identification information and instruction information of the reference equipment.
  • This base station is the base station selected by the TSCTSF to provide timing services for the UE.
  • the identification information of the UE, the identification information and the indication information of the reference device were received by the TSCTSF in the above step 402.
  • Step 407 The PCF sends policy information to the AMF.
  • the policy information includes the identification information of the UE, the identification information of the base station, the identification information and indication information of the reference device.
  • the identification information of the UE, the identification information of the base station, the identification information and the indication information of the reference device in the policy information are received by the PCF from the TSCTSF.
  • the query message in step 404 requests to obtain the AMF that provides services for the UE, and the response message in step 405 carries the identification information of the AMF.
  • the above steps 406 and 407 do not need to be executed, but are sent by the TSCTSF to The AMF sends identification information of the UE, identification information of the base station, identification information and indication information of the reference device.
  • Step 408 The AMF sends a notification message to the base station.
  • the notification message includes the identification information of the UE, the identification information of the reference device, and the indication information.
  • the identification information of the UE, the identification information and the indication information of the reference device in the notification message are received by the AMF from the PCF or TSCTSF.
  • Step 409a The AMF sends a notification message to the reference device.
  • the notification message includes the identification information of the UE, the identification information of the base station, and the indication information.
  • the identification information of the UE, the identification information of the base station and the indication information in the notification message are received by the AMF from the PCF or TSCTSF.
  • Step 409b The base station sends a notification message to the reference device.
  • the notification message includes the identification information of the UE, the identification information of the base station, and the indication information.
  • the identification information of the UE, the identification information and the indication information of the base station in the notification message are received by the base station from the AMF.
  • step 409a and step 409b are executed as an alternative, that is, step 409a or step 409b is executed.
  • Step 410a RTT operation is performed between the base station and the UE, and the base station records 4 times.
  • the four times recorded by the base station are t1, t2, t3 and t4.
  • Step 410b RTT operation is performed between the base station and the reference device, and the base station records 4 times.
  • the four times recorded by the base station are t5, t6, t7 and t8.
  • Step 410c RTT operation is performed between the reference device and the UE.
  • the reference device records 4 times and sends the 4 times to the base station.
  • the four times recorded and sent to the base station by the reference equipment are t9, t10, t11 and t12.
  • Step 411 The base station calculates the offset.
  • the base station calculates the deviation based on t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 and t12.
  • the objective function used by the base station to calculate the deviation can be pre-configured on the base station, or it can also come from the AF, that is, the above-mentioned steps 401 to 402, and steps 406 to 408 all carry the objective function or Information used to indicate the objective function.
  • Step 412 The base station sends the offset to the UE.
  • Step 413 The UE performs time synchronization based on the deviation.
  • the UE may update the UE's time to the sum of the time when the deviation is received and the deviation. For example, if the UE receives the deviation at time T, and the size of the deviation is represented by K, the UE updates the UE time to T+K.
  • the above-mentioned steps 411 to 413 are not executed, but the base station calculates the delay from the base station to the UE, and then the base station sends T1 and the delay to the UE.
  • the T1 is calculated based on the delay on the base station.
  • the base station based on the clock sends the delay time, and then the UE updates the UE time to the sum of T1 and delay.
  • TSCTSF may send a timing response message to NEF to notify that timing is successful, and then NEF sends a timing response message to AF to notify that timing is successful.
  • the AF requests timing services for the UE
  • the TSCTSF selects a base station that provides timing services to the UE.
  • the base station performs timing error elimination operations, determines the precise deviation and sends the deviation to the UE, and the UE performs time synchronization based on the deviation.
  • This method can reduce the impact of path asymmetry on base station timing, thereby achieving precise time synchronization between the UE and the base station, and helping to improve the communication capabilities of the UE.
  • FIG. 5 is a schematic flowchart of a time synchronization method provided by an embodiment of the present application. This method is that the UE actively requests to provide timing services for the UE.
  • the method includes the following steps:
  • Step 501 The UE sends a timing request message to the AMF.
  • the timing request message includes the identification information of the UE, the identification information of the reference device, and the indication information.
  • the UE is a timing service object, that is, timing services need to be provided for the UE.
  • the reference device is another UE that is different from the timing object, or the reference device is a base station that is different from the base station that provides timing services to the UE. This reference device provides auxiliary functions for precise timing of UE.
  • This instruction information indicates the timing error elimination operation.
  • the timing request message is a NAS_TimeSynchronization_ASTICreate/Update/Delete message.
  • Step 502 The AMF sends a timing request message to the TSCTSF.
  • the timing request message includes the identification information of the UE, the identification information of the reference device, and the indication information.
  • the identification information of the UE, the identification information of the reference device and the indication information in the timing request message sent by the AMF come from the UE.
  • the timing request message is an Ntsctsf_TimeSynchronization_ASTICreate/Update/Delete message.
  • Step 503 TSCTSF sends a request message to UDM, where the request message includes the identification information of the UE.
  • This request message is used to query whether the UE is authorized to provide timing services.
  • Step 504 UDM sends a response message to TSCTSF.
  • the response message indicates that the UE is authorized to provide timing services.
  • Steps 505 to 515 are the same as steps 403 to 413 described above.
  • the above-mentioned steps 513 to 515 are not performed, but are performed: the base station calculates the delay from the base station to the UE, and then the base station sends T1 and the delay to the UE.
  • the T1 is calculated based on the delay on the base station.
  • the base station based on the clock sends the delay time, and then the UE updates the UE time to the sum of T1 and delay.
  • the TSCTSF may send a timing response message to the AMF to notify the timing of successful timing, and then the AMF sends a timing response message to the UE to notify the timing of the successful timing.
  • the UE actively requests timing services, and the TSCTSF selects a base station that provides timing services to the UE.
  • the base station performs timing error elimination operations, determines the precise deviation and sends the deviation to the UE, and the UE performs time synchronization based on the deviation. step.
  • This method can reduce the impact of path asymmetry on base station timing, thereby achieving precise time synchronization between the UE and the base station, and helping to improve the communication capabilities of the UE.
  • the base station that provides timing services for the UE is selected by the TSCTSF.
  • the base station that provides timing services for the UE may not be selected by the TSCTSF. Instead, the TSCTSF sends a first notification message to the AMF/PCF.
  • the first notification message includes the identification information of the UE, the identification information of the reference device, the indication information, the identification information of multiple base stations, and the capability information of the multiple base stations.
  • the capability information Indicates whether the base station can provide timing.
  • the indication information indicates the timing error elimination operation.
  • the AMF/PCF selects a base station that provides timing services to the UE based on the location information of multiple base stations and the capability information of multiple base stations. Then the AMF/PCF sends a message to the selected base station. The base station sends a second notification message, which includes the identification information of the UE, the identification information of the reference device, and the indication information. Among them, AMF/PCF selects a base station that provides timing services for the UE based on the location information of multiple base stations and the capability information of multiple base stations. For example, the AMF/PCF selects a base station that can provide timing services to the UE based on the capability information of multiple base stations. At least one base station for timing service, and then selects a base station that provides timing services for the UE from the at least one base station based on the location information of the at least one base station.
  • the access network equipment, clock management network element, mobility management network element or policy control network element includes corresponding hardware structures and/or software modules for executing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 6 and 7 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of access network equipment, clock management network elements, mobility management network elements or policy control network elements in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be an access network device, a clock management network element, a mobility management network element or a policy control network element, or it may be a module in the access network device or a clock management network element. module, a module in a mobility management network element, or a module in a policy control network element.
  • the communication device 600 shown in FIG. 6 includes a processing unit 610 and a transceiver unit 620.
  • the communication device 600 is used to implement the functions of the access network equipment or terminal equipment in the above method embodiments.
  • the transceiver unit 620 may be used to implement corresponding communication functions.
  • the transceiver unit 620 may also be called a communication interface or a communication unit.
  • the processing unit 610 may be used to implement corresponding processing functions.
  • the communication device 600 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 610 can read the instructions and/or data in the storage unit, so that the communication device 600 implements each of the foregoing.
  • Actions of the access network equipment such as base station
  • clock management network element such as TSCTSF
  • mobility management network element such as AMF
  • policy control network element such as PCF
  • the processing unit 610 is used to obtain the first round-trip delay information between the access network device and the terminal device, the access network device The second round-trip delay information between the reference device and the third round-trip delay information between the reference device and the terminal device; according to the first round-trip delay information, the second round-trip delay information and the third round-trip delay information
  • the round-trip delay information determines the delay from the access network device to the terminal device; the transceiver unit 620 is used to send the delay or the deviation value between the access network device and the terminal device to the terminal device.
  • the delay or the offset value is used for time synchronization of the terminal device, and the offset value is determined based on the first round-trip delay information and the delay.
  • the transceiver unit 620 is also configured to receive a notification message.
  • the notification message includes the identification information of the reference device, the identification information of the terminal device, and instruction information.
  • the instruction information indicates timing error elimination. delete operation.
  • the transceiver unit 620 is also configured to send the identification information of the terminal device and the indication information to the reference device.
  • the processing unit 610 is specifically configured to determine whether the access network device arrives based on the objective function, the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information. The delay of the terminal device.
  • the objective function is preconfigured in the access network device, or comes from an application function network element or a clock management network element.
  • the processing unit 610 is specifically configured to determine the limiting conditions of the objective function according to the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information; according to the The limiting conditions of the objective function and the objective function determine the delay from the access network device to the terminal device.
  • the objective function is a minimum value function or a minimum mean square error function with the limiting condition as the solution space bias.
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference device
  • d is The delay from the reference device to the access network device
  • e is the delay from the reference device to the terminal device
  • f is the delay from the terminal device to the reference device
  • D1 is determined based on the first round-trip delay information
  • D2 is determined based on the second round-trip delay information
  • D3 is determined based on the third round-trip delay information
  • D4 is determined based on the first round-trip delay information, the second round-trip delay information and the third round-trip delay information.
  • Delay information is determined.
  • the objective function is min(abs(a-b)+abs(d-c)+abs(f-e)) or min(min(abs(a-b)+abs(d-c)+abs(f-e))) ;
  • min() represents the minimum value function
  • abs() represents the absolute value function.
  • the objective function is MSE(a-a'), MSE(b-b') or MSE((a-a')+(b-b')); where, MSE() Represents the minimum mean square error function.
  • the reference device is a reference terminal device, and the terminal device is connected to the reference terminal device using optical fiber;
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference terminal device
  • d is The delay from the reference terminal equipment to the access network equipment
  • e is the delay from the reference terminal equipment to the terminal equipment
  • D1 is determined based on the first round-trip delay information
  • D2 is determined based on the second round-trip delay
  • D4 is determined based on the first round-trip delay information, the second round-trip delay information, and the third round-trip delay information.
  • the objective function is min(abs(a-b)+abs(d-c)); where min() represents the minimum value function and abs() represents the absolute value function.
  • the reference device is a reference access network device, and the access network device is connected to the reference access network device.
  • a is the delay from the access network device to the terminal device
  • b is the delay from the terminal device to the access network device
  • c is the delay from the access network device to the reference access network device
  • e is the delay from the reference access network equipment to the terminal equipment
  • f is the delay from the terminal equipment to the reference access network equipment
  • D1 is determined based on the first round-trip delay information
  • D3 is determined based on the first round-trip delay information.
  • Three round-trip delay information are determined, and D4 is determined based on the first round-trip delay information, the second round-trip delay information and the third round-trip delay information.
  • the objective function is min(abs(a-b)+abs(f-e)); where min() represents the minimum value function and abs() represents the absolute value function.
  • the transceiver unit 620 is used to receive a timing request message.
  • the timing request message includes the identification information of the terminal device, the identification information and instructions of the reference device. information, the instruction information instructs to perform the timing error elimination operation;
  • the processing unit 610 is used to select the access network device that provides timing services for the terminal device;
  • the transceiver unit 620 is also used to send a message to the policy control network element or the mobility management network element Send a notification message, the notification message including the identification information of the terminal device, the identification information of the reference device, the identification information of the access network device and the indication information.
  • the transceiver unit 620 is also used to send a query message to the unified database network element.
  • the query message includes the identification information of the terminal device, and the query message requests to obtain the policy control network that provides services for the terminal device. element or mobility management network element; receiving the identification information of the policy control network element or the identification information of the mobility management network element from the unified database network element.
  • the transceiver unit 620 is also used to send a request message to the unified data management network element.
  • the request message includes the identification information of the terminal device.
  • the request message is used to query whether the terminal device is authorized to provide timing. Service; receiving a response message from the unified data management network element, the response message indicating that the terminal device is authorized to provide timing services.
  • the transceiver unit 620 is specifically configured to receive the timing request message from the terminal device or application function network element.
  • the transceiver unit 620 is used to receive the first notification message, where the first notification message includes the identification information of the terminal device. , the identification information and indication information of the reference device, the identification information of multiple access network devices, and the capability information of the multiple access network devices.
  • the capability information indicates whether the access network device can serve the time
  • the indication information indicates whether the access network device can serve the time.
  • the processing unit 610 is configured to select an access network device that provides timing services for the terminal device according to the location information of the multiple access network devices and the capability information of the multiple access network devices; the transceiver unit 620 , and is also used to send a second notification message to the selected access network device, where the second notification message includes the identification information of the terminal device, the identification information of the reference device and the indication information.
  • the processing unit 610 is specifically configured to select at least one access network device capable of timing service from the multiple access network devices according to the capability information of the multiple access network devices; according to the at least For the location information of an access network device, select the access network device that provides timing services for the terminal device.
  • the communication device 700 shown in FIG. 7 includes a processor 710 and an interface circuit 720.
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 may be a transceiver or an input-output interface.
  • the communication device 700 may also include a memory 730 for storing instructions executed by the processor 710 or input data required for the processor 710 to run the instructions or data generated after the processor 710 executes the instructions.
  • the processor 710 is used to realize the function of the above processing unit 610
  • the interface circuit 720 is used to realize the function of the above transceiver unit 620.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the processor and the storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a base station, a UE, or other programmable devices.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or”relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.

Abstract

本申请实施例提供一种时间同步方法及通信装置。该方法包括:接入网设备获取接入网设备与终端设备之间的第一往返时延信息、接入网设备与基准设备之间的第二往返时延信息以及基准设备与终端设备之间的第三往返时延信息;根据第一往返时延信息、第二往返时延信息和第三往返时延信息确定接入网设备到终端设备的时延;向终端设备发送时延或接入网设备与终端设备之间偏差值,时延或偏差值用于终端设备的时间同步。该方案,接入网设备可以精确确定偏差值或时延,终端设备根据该偏差或时延进行时间同步,可以减少路径不对称对基站授时带来的影响,实现终端设备与接入网设备之间的精确时间同步,有助于提升终端设备的通信能力。

Description

一种时间同步方法及通信装置
相关申请的交叉引用
本申请要求在2022年05月28日提交中国专利局、申请号为202210594963.3、申请名称为“一种时间同步方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种时间同步方法及通信装置。
背景技术
为保证终端设备与其它设备之间的正确通信,一般需要对终端设备进行时间同步。目前的同步方法是,终端设备接收接入网设备广播发送的系统信息块(system information block,SIB)消息,该SIB消息中携带接入网设备的授时信息,终端设备从SIB消息中获取授时信息,并根据授时信息执行与接入网设备之间的时间同步。
如何保障授时信息的精确性,以实现终端设备的精确时间同步,有待解决。
发明内容
本申请实施例提供一种时间同步方法及通信装置,用以实现终端设备与接入网设备之间的时间同步。
第一方面,本申请实施例提供一种时间同步方法,该方法可以由接入网设备或接入网设备中的模块执行。以接入网设备执行该方法为例,该方法包括:接入网设备获取该接入网设备与终端设备之间的第一往返时延信息、该接入网设备与基准设备之间的第二往返时延信息以及该基准设备与该终端设备之间的第三往返时延信息;该接入网设备根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延;该接入网设备向该终端设备发送该时延或该接入网设备与该终端设备之间偏差值,该时延或该偏差值用于该终端设备的时间同步,该偏差值是根据该第一往返时延信息和该时延确定的。
上述方案,接入网设备可以精确确定偏差值或时延,并向终端设备发送偏差值或时延,从而终端设备根据该偏差或时延进行时间同步,可以减少路径不对称对基站授时带来的影响,从而实现终端设备与接入网设备之间的精确时间同步,有助于提升终端设备的通信能力。
一种可能的实现方法中,该接入网设备接收通知消息,该通知消息包括该基准设备的标识信息、该终端设备的标识信息和指示信息,该指示信息指示进行授时误差消除操作。
上述方案,当接入网设备接收到通知消息,该通知消息中的指示信息触发接入网设备在为终端设备提供授时服务时,进行授时误差消除操作,实现终端设备与接入网设备之间的精确时间同步。
一种可能的实现方法中,该接入网设备向该基准设备发送该终端设备的标识信息和该指示信息。
一种可能的实现方法中,该接入网设备根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延,包括:该接入网设备根据目标函数、该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延。
一种可能的实现方法中,该目标函数是预配置在该接入网设备的,或者来自应用功能网元或时钟管理网元。
一种可能的实现方法中,该接入网设备根据目标函数、该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延,包括:该接入网设备根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该目标函数的限定条件;该接入网设备根据该目标函数的限定条件和该目标函数,确定该接入网设备到该终端设备的时延。
一种可能的实现方法中,该目标函数为以该限定条件为解空间偏向的最小值函数或最小均方误差函数。
一种可能的实现方法中,该目标函数的限定条件包括:
(1)a+b=D1;
(2)c+d=D2;
(3)e+f=D3;
(4)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准设备的时延,d为该基准设备到该接入网设备的时延,e为该基准设备到该终端设备的时延,f为该终端设备到该基准设备的时延,D1是根据该第一往返时延信息确定的,D2是根据该第二往返时延信息确定的,D3是根据该第三往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(d-c)+abs(f-e))或min(min(abs(a-b)+abs(d-c)+abs(f-e)));其中,min()表示最小值函数,abs()表示绝对值函数。
一种可能的实现方法中,该目标函数为MSE(a-a’),MSE(b-b’)或MSE((a-a’)+(b-b’));其中,MSE()表示最小均方误差函数。
一种可能的实现方法中,该基准设备是基准终端设备,该终端设备与该基准终端设备之间采用光纤连接;该目标函数的限定条件包括:
(1)a+b=D1;
(2)c+d=D2;
(3)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准终端设备的时延,d为该基准终端设备到该接入网设备的时延,e为该基准终端设备到该终端设备的时延,D1是根据该第一往返时延信息确定的,D2是根据该第二往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(d-c));其中,min()表示最小值函数,abs()表示绝对值函数。
一种可能的实现方法中,该基准设备是基准接入网设备,该接入网设备与该基准接入网设备之间采用光纤连接;该目标函数的限定条件包括:
(1)a+b=D1;
(2)e+f=D3;
(3)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准接入网设备的时延,e为该基准接入网设备到该终端设备的时延,f为该终端设备到该基准接入网设备的时延,D1是根据该第一往返时延信息确定的,D3是根据该第三往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(f-e));其中,min()表示最小值函数,abs()表示绝对值函数。
第二方面,本申请实施例提供一种时间同步方法,该方法可以由时钟管理网元或时钟管理网元中的模块执行。以时钟管理网元执行该方法为例,该方法包括:时钟管理网元接收授时请求消息,该授时请求消息包括终端设备的标识信息、基准设备的标识信息和指示信息,该指示信息指示进行授时误差消除操作;该时钟管理网元选择为该终端设备提供授时服务的接入网设备;该时钟管理网元向策略控制网元或移动性管理网元发送通知消息,该通知消息包括该终端设备的标识信息、该基准设备的标识信息、该接入网设备的标识信息和该指示信息。
上述方案,时钟管理网元基于授时请求,向策略控制网元或移动性管理网元发送通知消息,从而策略控制网元或移动性管理网元可以向接入网设备发送通知消息,以触发接入网设备在为终端设备提供授时服务时,进行授时误差消除操作,实现终端设备与接入网设备之间的精确时间同步。
一种可能的实现方法中,该时钟管理网元向统一数据库网元发送查询消息,该查询消息包括该终端设备的标识信息,该查询消息请求获取为该终端设备提供服务的策略控制网元或移动性管理网元;该时钟管理网元接收来自该统一数据库网元的该策略控制网元的标识信息或该移动性管理网元的标识信息。
一种可能的实现方法中,该时钟管理网元向统一数据管理网元发送请求消息,该请求消息包括该终端设备的标识信息,该请求消息用于查询是否授权为该终端设备提供授时服务;该时钟管理网元接收来自该统一数据管理网元的响应消息,该响应消息指示授权为该终端设备提供授时服务。
上述方案,当确认终端设备被授权获取授时服务,则为该终端设备提供授时服务,从而避免为没有获得授权的终端设备提供授时服务,以避免资源浪费。
一种可能的实现方法中,该时钟管理网元接收授时请求消息,包括:该时钟管理网元接收来自该终端设备或应用功能网元的该授时请求消息。
第三方面,本申请实施例提供一种时间同步方法,该方法可以由移动性管理网元、策略控制网元、移动性管理网元中的模块或策略控制网元中的模块执行。该方法包括:接收第一通知消息,该第一通知消息包括终端设备的标识信息、基准设备的标识信息、指示信 息、多个接入网设备的标识信息以及该多个接入网设备的能力信息,该能力信息指示该接入网设备是否能够授时,该指示信息指示进行授时误差消除操作;根据该多个接入网设备的位置信息和该多个接入网设备的能力信息,选择为该终端设备提供授时服务的接入网设备;向选择的接入网设备发送第二通知消息,该第二通知消息包括该终端设备的标识信息、该基准设备的标识信息和该指示信息。
上述方案,策略控制网元或移动性管理网元向接入网设备发送通知消息,以触发接入网设备在为终端设备提供授时服务时,进行授时误差消除操作,实现终端设备与接入网设备之间的精确时间同步。
一种可能的实现方法中,根据该多个接入网设备的位置信息和该多个接入网设备的能力信息,选择为该终端设备提供授时服务的接入网设备,包括:根据该多个接入网设备的能力信息,从该多个接入网设备中选择能够授时的至少一个接入网设备;根据该至少一个接入网设备的位置信息,选择为该终端设备提供授时服务的接入网设备。
第四方面,本申请实施例提供一种通信装置,该装置可以是接入网设备或接入网设备中的模块。该装置具有实现上述第一方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种通信装置,该装置可以是时钟管理网元或时钟管理网元中的模块。该装置具有实现上述第二方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请实施例提供一种通信装置,该装置可以是移动性管理网元、策略控制网元、移动性管理网元中的模块或策略控制网元中的模块。该装置具有实现上述第三方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面至第三方面中的任意实现方法。
第八方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第三方面中的任意实现方法的各个步骤的单元或手段(means)。
第九方面,本申请实施例提供一种通信装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面至第三方面中的任意实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第十方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第三方面中的任意实现方法。该处理器包括一个或多个。
第十一方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被通信装置运行时,使得上述第一方面至第三方面中的任意实现方法被执行。
第十二方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面至第三方面中的任意实现 方法被执行。
第十三方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第三方面中的任意实现方法。
第十四方面,本申请实施例还提供一种通信系统,包括用于执行上述第二方面任意方法的接入网设备,以及包括策略控制网元或移动性管理网元,该策略控制网元或该移动性管理网元,用于向该接入网设备发送通知消息,该通知消息包括终端设备的标识信息、基准设备的标识信息和指示信息,该指示信息指示进行授时误差消除操作。
一种可能的实现方法中,该策略控制网元或该移动性管理网元,还用于接收该终端设备的标识信息、该基准设备的标识信息、该指示信息、多个接入网设备的标识信息以及该多个接入网设备的能力信息,该能力信息指示该接入网设备是否能够授时;以及根据该多个接入网设备的位置信息和该多个接入网设备的能力信息,选择为该终端设备提供授时服务的该接入网设备。
一种可能的实现方法中,该策略控制网元或该移动性管理网元,具体用于根据该多个接入网设备的能力信息,从该多个接入网设备中选择能够授时的至少一个接入网设备;根据该至少一个接入网设备的位置信息,选择为该终端设备提供授时服务的接入网设备。
附图说明
图1(a)为基于服务化架构的5G网络架构示意图;
图1(b)为基于点对点接口的5G网络架构示意图;
图2为本申请实施例提供的一种时间同步方法的流程图;
图3(a)为本申请实施例提供的一种时间同步的示例图;
图3(b)为本申请实施例提供的一种时间同步的又一示例图;
图4为本申请实施例提供的一种时间同步方法的流程图;
图5为本申请实施例提供的一种时间同步方法的流程图;
图6为本申请实施例提供的一种通信装置示意图;
图7为本申请实施例提供的一种通信装置示意图。
具体实施方式
图1(a)为基于服务化架构的5G网络架构示意图。图1(a)所示的5G网络架构中包括数据网络(data network,DN)和运营商网络。下面对其中的部分网元的功能进行简单介绍。
运营商网络包括以下网元中的一个或多个:鉴权服务器功能(Authentication Server Function,AUSF)网元(图中未示出)、统一数据管理(unified data management,UDM)网元、统一数据库(Unified Data Repository,UDR)网元、网络存储功能(Network Repository Function,NRF)网元(图中未示出)、网络开放功能(network exposure function,NEF)网元(图中未示出)、应用功能(application function,AF)网元、策略控制功能(policy control function,PCF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、UPF网元、接入网(access network,AN)设备(图中以无线接入网(radio access network,RAN)设备作为示例)、时间敏感通信和时间同步功能(Time Sensitive Communication and Time  Synchronization Function,TSCTSF)网元等。上述运营商网络中,除接入网设备之外的网元或设备可以称为核心网网元或核心网设备。
接入网设备包括有线接入网设备和无线接入网设备。其中,无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。
与RAN通信的终端设备包括终端、用户设备(user equipment,UE)、移动台、移动终端等。图中以终端设备为UE作为示例。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IoT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
接入网设备和终端设备可以是固定位置的,也可以是可移动的。接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
移动性管理网元是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和授权用户等功能。在5G中,移动性管理网元可以是AMF网元,在未来通信如第六代(the 6th generation,6G)中,移动性管理网元仍可以是AMF网元,或有其它的名称,本申请不做限定。
会话管理网元是由运营商网络提供的控制面网元,负责管理终端设备的协议数据单元(protocol data unit,PDU)会话。PDU会话是一个用于传输PDU的通道,终端设备需要通过PDU会话与DN互相传送PDU。PDU会话由SMF网元负责建立、维护和删除等。会话管理网元包括会话管理(如会话建立、修改和释放,包含用户面网元和接入网设备之间的隧道维护)、用户面网元的选择和控制、业务和会话连续性(Service and Session Continuity,SSC)模式选择、漫游等会话相关的功能。在5G中,会话管理网元可以是SMF网元,在未来通信如6G中,会话管理网元仍可以是SMF网元,或有其它的名称,本申请不做限定。
用户面网元是由运营商提供的网关,是运营商网络与DN通信的网关。UPF网元包括数据包路由和传输、包检测、业务用量上报、服务质量(Quality of Service,QoS)处理、合法监听、上行包检测、下行数据包存储等用户面相关的功能。在5G中,用户面网元可以是UPF网元,在未来通信如6G中,用户面网元仍可以是UPF网元,或有其它的名称,本申请不做限定。
数据管理网元是由运营商提供的控制面网元,负责存储运营商网络中签约用户的用户 永久标识符(subscriber permanent identifier,SUPI)、信任状(credential)、安全上下文(security context)、签约数据等信息。数据管理网元所存储的这些信息可用于终端设备接入运营商网络的认证和授权。其中,上述运营商网络的签约用户具体可为使用运营商网络提供的业务的用户,例如使用中国电信的手机芯卡的用户,或者使用中国移动的手机芯卡的用户等。上述签约用户的永久签约标识(Subscription Permanent Identifier,SUPI)可为该手机芯卡的号码等。上述签约用户的信任状、安全上下文可为该手机芯卡的加密密钥或者跟该手机芯卡加密相关的信息等存储的小文件,用于认证和/或授权。上述安全上下文可为存储在用户本地终端(例如手机)上的数据(cookie)或者令牌(token)等。上述签约用户的签约数据可为该手机芯卡的配套业务,例如该手机芯卡的流量套餐或者使用网络等。需要说明的是,永久标识符、信任状、安全上下文、认证数据(cookie)、以及令牌等同认证、授权相关的信息,在本申请文件中,为了描述方便起见不做区分、限制。如果不做特殊说明,本申请实施例将以用安全上下文为例进行来描述,但本申请实施例同样适用于其他表述方式的认证、和/或授权信息。在5G中,数据管理网元可以是UDM网元,在未来通信如6G中,数据管理网元仍可以是UDM网元,或有其它的名称,本申请不做限定。
统一数据库网元是由运营商提供的控制面网元,包含执行签约数据、策略数据、应用数据等类型数据的存取功能。在5G中,统一数据库网元可以是UDR网元,在未来通信如6G中,统一数据库网元仍可以是UDR网元,或有其它的名称,本申请不做限定。
网络开放网元是由运营商提供控制面网元。网络开放网元以安全的方式对第三方开放运营商网络的对外接口。在会话管理网元需要与第三方的网元通信时,网络开放网元可作为会话管理网元与第三方的网元通信的中继。网络开放网元作为中继时,可作为签约用户的标识信息的翻译,以及第三方的网元的标识信息的翻译。比如,网络开放网元将签约用户的SUPI从运营商网络发送到第三方时,可以将SUPI翻译成其对应的外部身份标识。反之,网络开放网元将外部ID(第三方的网元ID)发送到运营商网络时,可将其翻译成SUPI。在5G中,网络开放网元可以是NEF网元,在未来通信如6G中,网络开放网元仍可以是NEF网元,或有其它的名称,本申请不做限定。
应用功能网元用于传递应用侧对网络侧的需求,例如,QoS需求或用户状态事件订阅等。应用功能网元可以是第三方功能实体,也可以是运营商部署的应用服务器。在5G中,应用功能网元可以是AF网元,在未来通信如6G中,应用功能网元仍可以是AF网元,或有其它的名称,本申请不做限定。
策略控制网元是由运营商提供的控制面功能,用于向会话管理网元提供PDU会话的策略。策略可以包括计费相关策略、QoS相关策略和授权相关策略等。在5G中,策略控制网元可以是PCF网元,在未来通信如6G中,策略控制网元仍可以是PCF网元,或有其它的名称,本申请不做限定。
网络存储功能网元可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。网络存储功能网元还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。在5G中,网络存储功能网元可以是NRF网元,在未来通信如6G中,网络存储功能网元仍可以是NRF网元,或有其它的名称,本申请不做限定。
时钟管理网元可用于管理5G网络的一个或多个时钟源的时钟信息,可以通过自己的端口对外提供时钟源的时钟信息,比如直接或间接向终端设备、接入网设备、核心网设备或第三方应用功能网元提供时钟信息。其中,时钟信息表示时钟的时间、时刻或时间点; 时钟管理网元还可以根据授时请求方的授时请求,选择相应的授时网元,该授时网元比如可以是UPF网元、接入网设备等,也可以是该时钟管理网元本身,然后时钟管理网元指示授时网元为授时请求方提供授时服务。在5G中,时钟管理网元可以是3GPP定义的TSCTSF网元,在未来通信如6G中,时钟管理网元仍可以是TSCTSF网元,或有其它的名称,本申请不做限定。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1(a)中Npcf、Nudr、Nudm、Naf、Namf、Nsmf、Ntsctsf分别为上述PCF网元、UDR网元、UDM网元、AF网元、AMF网元、SMF网元、TSCTSF网元提供的服务化接口,用于调用相应的服务化操作。N1、N2、N3、N4以及N6为接口序列号,这些接口序列号的含义如下:
1)、N1:AMF网元与UE之间的接口,可以用于向UE传递非接入层(non access stratum,NAS)信令(如包括来自AMF网元的QoS规则)等。
2)、N2:AMF网元与无线接入网设备之间的接口,可以用于传递核心网侧至无线接入网设备的无线承载控制信息等。
3)、N3:无线接入网设备与UPF网元之间的接口,主要用于传递无线接入网设备与UPF网元间的上行用户面数据和/或下行用户面数据。
4)、N4:SMF网元与UPF网元之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS规则、流量统计规则等的下发以及用户面的信息上报。
5)、N6:UPF网元与DN的接口,用于传递UPF网元与DN之间的上行用户数据流和/或下行用户数据流。
图1(b)为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1(a)中对应的网元的功能的介绍,不再赘述。图1(b)与图1(a)的主要区别在于:图1(a)中的各个控制面网元之间的接口是服务化的接口,图1(b)中的各个控制面网元之间的接口是点对点的接口。
在图1(b)所示的架构中,各个网元之间的接口名称及功能如下:
1)、N1、N2、N3、N4和N6接口的含义可以参考前述描述。
2)、N5:AF网元与PCF网元之间的接口,可以用于应用业务请求下发以及网络事件上报。
3)、N7:PCF网元与SMF网元之间的接口,可以用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
4)、N8:AMF网元与UDM网元间的接口,可以用于AMF网元向UDM网元获取接入与移动性管理相关签约数据与鉴权数据,以及AMF网元向UDM网元注册终端设备移动性管理相关信息等。
5)、N9:UPF网元和UPF网元之间的用户面接口,用于传递UPF网元间的上行用户数据流和/或下行用户数据流。
6)、N10:SMF网元与UDM网元间的接口,可以用于SMF网元向UDM网元获取会话管理相关签约数据,以及SMF网元向UDM网元注册终端设备会话相关信息等。
7)、N11:SMF网元与AMF网元之间的接口,可以用于传递无线接入网设备和UPF网元之间的PDU会话隧道信息、传递发送给终端设备的控制消息、传递发送给无线接入网设备的无线资源控制信息等。
8)、N15:PCF网元与AMF网元之间的接口,可以用于下发终端设备策略及接入控制相关策略。
9)、N35:UDM网元与UDR网元间的接口,可以用于UDM网元从UDR网元中获取用户签约数据信息。
10)、N36:PCF网元与UDR网元间的接口,可以用于PCF网元从UDR网元中获取策略相关签约数据以及应用数据相关信息。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
本申请的实施例中,以UE、基站、AMF、PCF、NEF、AF、TSCTSF、UDM、UDR分别作为终端设备、接入网设备、移动性管理网元、策略控制网元、网络开放网元、应用功能网元、时钟管理网元、数据管理网元、统一数据库网元的具体示例进行描述。
图2为本申请实施例提供的一种时间同步方法的流程图,该方法包括以下步骤:
步骤201,基站获取基站与UE之间的第一往返时延信息、基站与基准设备之间的第二往返时延信息以及基准设备与UE之间的第三往返时延信息。
基准设备是用于辅助确定基站与UE之间的时延的设备,也即通过该基准设备的辅助,能够准确确定基站与UE之间的时延,具体包括基站到UE的时延,和UE到基站的时延。当前,该基准设备还能够辅助确定基站与基准设备之间的时延,以及基准设备与UE之间的时延。
基准设备可以是另一个UE(称为基准UE),或者是另一个基站(称为基准基站)。
第一往返时延信息用于表示基站与UE之间的报文收发时间,第一往返时延信息包括基站发送报文的时间和该报文到达UE的时间,以及还包括UE发送报文的时间和该报文到达基站的时间。
第二往返时延信息用于表示基站与基准设备之间的报文收发时间,第二往返时延信息包括基站发送报文的时间和该报文到达基准设备的时间,以及还包括基准设备发送报文的时间和该报文到达基站的时间。
第三往返时延信息用于表示基准设备与UE之间的报文收发时间,第三往返时延信息包括基准设备发送报文的时间和该报文到达UE的时间,以及还包括UE发送报文的时间和该报文到达基准设备的时间。
一种实现方法中,在步骤201之前,基站接收通知消息,该通知消息包括基准设备的标识信息、UE的标识信息和指示信息,该指示信息指示进行授时误差消除操作,该指示信息触发执行该步骤201以及后续步骤。
基站收到该通知消息后,还可以向基准设备发送UE的标识信息和指示信息,从而触发基准设备获取基准设备与UE之间的第三往返时延信息,然后基准设备向UE发送第三往返时延信息。
步骤202,基站根据第一往返时延信息、第二往返时延信息和第三往返时延信息,确定基站到UE的时延。
其中,基站到UE的时延,指的是基站发送的报文到达UE所经历的时间,也即基站发送该报文到该报文到达UE之间的时间差。
一种实现方法中,基站可以根据目标函数、第一往返时延信息、第二往返时延信息和第三往返时延信息,确定基站到UE的时延。比如,基站先根据第一往返时延信息、第二往返时延信息和第三往返时延信息确定目标函数的限定条件,然后根据目标函数的限定条件和目标函数,确定基站到UE的时延。
该目标函数是预配置在基站的,或者来自AF或TSCTSF。
该目标函数为以该限定条件为解空间偏向的最小值函数或最小均方误差函数。也即,基站基于该限定条件构造解空间,并从解空间中获取目标函数的最小值或最小均方误差。
步骤203,基站向UE发送时延或基站与UE之间偏差值。
该时延或偏差值用于UE的时间同步,时间同步指的是保持UE与基站的时间相同。
该偏差值是根据第一往返时延信息和该时延确定的。
其中,当基站向UE发送时延,则基站在发送时延的同时,还发送基站上的时间。
步骤204,UE根据时延或基站与UE之间的偏差值,进行时间同步。
如果UE从基站收到时延和基站的时间,则UE将基站的时间与时延之和,作为UE的当前时间,实现时间同步。
如果UE从基站收到偏差,则UE将UE的时间更新为UE收到该偏差的时间与该偏差之和,比如UE在T时刻收到该偏差,则UE将T与偏差的和值作为UE的当前时间。
上述方案,基站可以精确确定偏差值或时延,并向UE发送偏差值或时延,从而UE根据该偏差或时延进行时间同步,可以减少路径不对称对基站授时带来的影响,从而实现UE与基站之间的精确时间同步,有助于提升UE的通信能力。
下面结合图3(a)、图3(b),给出上述图2的实施例的一种具体实现方式。
图3(a)为本申请实施例提供的设备之间的时延示例图。其中,a为基站到UE的时延,b为UE到基站的时延为b,c为基站到基准设备的时延,d为基准设备到基站的时延,e为基准设备到UE的时延,f为UE到基准设备的时延。其中,基准设备可以是另一个UE,或者是另一个基站。UE与基站之间建立无线通信,通过空口方式通信。当基准设备是UE,则UE与基准设备之间可以建立无线通信,也可以通过光纤建立有线通信。当基准设备是基站,则基站与基准设备之间可以建立无线通信,也可以通过光纤建立有线通信。
图3(b)为本申请实施例提供的往返时延(Round Trip Time,RTT)操作的示例图。该图3(b)的实施例是结合上述图3(a)的实施例实现的,包括以下三个部分。
第一部分,基站与UE之间的RTT操作如下:
t1时刻:基站在t1时刻向UE发送报文1;
t2时刻:UE在t2时刻收到报文1;
t3时刻:UE在t3时刻向基站发送报文2,该报文2的报文头中携带报文1的接收时间t2以及报文2的发送时间t3;
t4时刻:基站在t4时刻收到报文2。
基站可以获取4个时间,即t1~t4,该t1~t4称为基站与UE之间的第一往返时延信息。
上述t1~t4的关系如下:
t2-t1=a-offset1;公式(1)
t4-t3=b+offset1;公式(2)
offset1表示基站的时间与UE的时间之间的偏差,即基站的时间与UE的时间之间的差值。
因此可以得出:
offset1=[(t4-t3)-(t2-t1)+(a-b)]/2;公式(3)
a+b=(t2-t1)+(t4-t3);公式(4)
设D1=(t2-t1)+(t4-t3),则a+b=D1  公式(5)
第二部分,基站与基准设备之间的RTT操作如下:
t5时刻:基站在t5时刻向基准设备发送报文3;
t6时刻:基准设备在t6时刻收到报文3;
t7时刻:基准设备在t7时刻向基站发送报文4,该报文4的报文头中携带报文3的接收时间t6以及报文4的发送时间t7;
t8时刻:基站在t8时刻收到报文4。
基站可以获取4个时间,即t5~t8,该t5~t8称为基站与基准设备之间的第二往返时延信息。
上述t5~t8的关系如下:
t6-t5=c+offset2;公式(6)
t8-t7=d-offset2;公式(7)
offset2表示基准设备的时间与基站的时间之间的偏差,即基准设备的时间与基站的时间之间的差值。
因此可以得出:
c+d=(t8-t7)+(t6-t5);公式(8)
设D2=(t8-t7)+(t6-t5),则c+d=D2公式(9)
第三部分,基准设备与UE之间的RTT操作如下:
t9时刻:基准设备在t9时刻向UE发送报文5;
t10时刻:UE在t10时刻收到报文5;
t11时刻:UE在t11时刻向基准设备发送报文6,该报文6的报文头中携带报文5的接收时间t10以及报文6的发送时间t11;
t12时刻:基准设备在t12时刻收到报文6。
基准设备可以获取4个时间,即t9~t12,然后基准设备向基站发送该4个时间,该t9~t12称为基准设备与UE之间的第三往返时延信息。
上述t9~t12的关系如下:
t10-t9=e+offset3;公式(10)
t12-t11=f-offset3;公式(11)
offset3表示UE的时间与基准设备的时间之间的偏差,即UE的时间与基准设备的时间之间的差值。
因此可以得出:
e+f=(t12-t11)+(t10-t9);公式(12)
设D3=(t12-t11)+(t10-t9),则e+f=D3公式(13)
此外,还存在以下关系:
offset1+offset2+offset3=0公式(14)
因此,根据上述公式(2)、(6)、(10)和(14),得到以下公式(15):
b+c+e=D4  公式(15)
其中,D4=(t4-t3)+(t6-t5)+(t10-t9)。
假设目标函数为:min(abs(a-b)+abs(d-c)+abs(f-e))或min(min(abs(a-b)+abs(d-c)+abs(f-e))),限定条件为以下(1)至(4):
(1)a+b=D1;
(2)c+d=D2;
(3)e+f=D3;
(4)b+c+e=D4。
其中,min()表示最小值函数,abs()表示绝对值函数。通过上述4个限定条件,可以对上述目标函数进行求解,得到a,b,c,d,e,f的最优解。
在又一种实现方法中,如果基准设备是另一个UE(即基准UE),且UE与基准设备(即基准UE)之间采用光纤连接,则上述e和f的取值是可以测量得到的,因此e和f的取值是确定的,上述目标函数可以修改为:min(abs(a-b)+abs(d-c)),且限定条件包括以下(1)至(3):
(1)a+b=D1;
(2)c+d=D2;
(3)b+c+e=D4。
在又一种实现方法中,如果基准设备是另一个基站(即基准基站),且基站与基准设备(即基准基站)之间采用光纤连接,则上述c和d的取值是可以测量得到的,因此c和d的取值是确定的,上述目标函数可以修改为:min(abs(a-b)+abs(f-e)),且限定条件包括以下(1)至(3):
(1)a+b=D1;
(2)e+f=D3;
(3)b+c+e=D4。
在又一种实现方法中,上述目标函数可以修改为:MSE(a-a’),MSE(b-b’)或MSE((a-a’)+(b-b’)),且限定条件包括以下(1)至(4):
(1)a+b=D1;
(2)c+d=D2;
(3)e+f=D3;
(4)b+c+e=D4。
其中,MSE()表示最小均方误差函数,MSE(a-a’)=min((a-a’)^2),即(a-a’)的平方的最小值,MSE(b-b’)=min((b-b’)^2),即(b-b’)的平方的最小值,MSE((a-a’)+(b-b’))=min((a-a’)^2)+(b-b’)^2),即(a-a’)的平方与(b-b’)的平方之和的最小值。a表示基站到UE的时延的测量值,a’表示基站到UE的时延的真实值,b表示UE到基站的时延的测量值,b’表示UE到基站 的时延的真实值。square()为平方值函数。
基站在计算得到a,b的取值之后,可以根据a,b的取值以及上述公式(3)得到offset1的精确取值。然后基站向UE发送offset1的取值,假设UE在T1时刻收到offset1,则UE将UE的时间更新为T1+offset1,从而实现UE与基站之间的精确时间同步。
或者,基站也可以将基站的时间(用T2表示)以及a的取值发送给UE,UE收到T2以及a的取值之后,将UE的时间更新为T2+a,从而实现UE与基站之间的精确时间同步。
现有技术中,一般是不计算a,b的取值,而是直接假设a=b,即假设基站与UE之间的上下行路径对称。因此上述公式(3)简化为offset1=[(t4-t3)-(t2-t1)]/2,导致按照现有技术的方法得到的offset1不够精确,进而导致UE无法实现精确时间同步。而本申请实施例的方法是在基站与UE之间的上下行路径对称的情况下,精确计算得到基站到UE的时延a,以及计算得到UE到基站的时延b,进而精确计算得到offset1,能够实现UE的精确时间同步。
下面结合图4至图5的具体实施例,对上述图2的实施例进行具体说明。
图4为本申请实施例提供的一种时间同步方法的流程示意图。该方法是AF请求为UE提供授时服务。
该方法包括以下步骤:
步骤401,AF向NEF发送授时请求消息,该授时请求消息包括UE的标识信息、基准设备的标识信息和指示信息。
该UE为授时对象,也即需要为该UE提供授时服务。
该基准设备是与授时对象不同的另一个UE,或者基准设备是一个基站,该基站与为UE提供授时服务的基站不同。该基准设备为UE的精准授时提供辅助功能。
该指示信息指示进行授时误差消除操作。
可选的,该授时请求消息是Nnef_TimeSynchronization_ASTICreate/Update/Delete消息。
步骤402,NEF向TSCTSF发送授时请求消息,该授时请求消息包括UE的标识信息、基准设备的标识信息和指示信息。
NEF收到来自AF的授时请求消息后,对AF进行认证,当认证通过后,NEF向TSCTSF发送授时请求消息。NEF发送的授时请求消息中的UE的标识信息、基准设备的标识信息和指示信息来自AF。
可选的,该授时请求消息是Ntsctsf_TimeSynchronization_ASTICreate/Update/Delete消息。
步骤403,TSCTSF选择为UE提供授时服务的基站。
比如,TSCTSF根据基站的分布信息,从多个基站中选择为UE提供授时服务的基站。
其中,如果基准设备是一个基站,则基准设备与该为UE提供授时服务的基站是不同的基站。
步骤404,TSCTSF向UDR发送查询消息,该查询消息包括UE的标识信息,该查询消息请求获取为该UE提供服务的PCF。
一种实现方法中,该查询消息是Nudr_DM_Create/Update/Delete request消息。
步骤405,UDR向TSCTSF发送响应消息,该响应消息包括PCF的标识信息。
一种实现方法中,该响应消息是Nudr_DM_Create/Update/Delete response消息。
步骤406,TSCTSF向PCF发送通知消息,该通知消息包括UE的标识信息、基站的 标识信息、基准设备的标识信息和指示信息。
该基站即为TSCTSF选择的为UE提供授时服务的基站,该UE的标识信息、基准设备的标识信息和指示信息是TSCTSF在上述步骤402收到的。
步骤407,PCF向AMF发送策略信息,该策略信息包括UE的标识信息、基站的标识信息、基准设备的标识信息和指示信息。
该策略信息中的UE的标识信息、基站的标识信息、基准设备的标识信息和指示信息,是PCF从TSCTSF收到的。
在又一种实现方法中,上述步骤404的查询消息请求获取为UE提供服务的AMF,则步骤405的响应消息携带AMF的标识信息,上述步骤406和步骤407不需要执行,而是由TSCTSF向AMF发送UE的标识信息、基站的标识信息、基准设备的标识信息和指示信息。
步骤408,AMF向基站发送通知消息,该通知消息包括UE的标识信息、基准设备的标识信息和指示信息。
该通知消息中的UE的标识信息、基准设备的标识信息和指示信息,是AMF从PCF或TSCTSF收到的。
步骤409a,AMF向基准设备发送通知消息,该通知消息包括UE的标识信息、基站的标识信息和指示信息。
该通知消息中的UE的标识信息、基站的标识信息和指示信息,是AMF从PCF或TSCTSF收到的。
步骤409b,基站向基准设备发送通知消息,该通知消息包括UE的标识信息、基站的标识信息和指示信息。
该通知消息中的UE的标识信息、基站的标识信息和指示信息,是基站从AMF收到的。
上述步骤409a与步骤409b为二选一执行,即执行步骤409a或步骤409b。
步骤410a,基站与UE之间进行RTT操作,基站记录4个时间。
比如基站记录的4个时间为t1、t2、t3和t4。
步骤410b,基站与基准设备之间进行RTT操作,基站记录4个时间。
比如基站记录的4个时间为t5、t6、t7和t8。
步骤410c,基准设备与UE之间进行RTT操作,基准设备记录4个时间并向基站发送该4个时间。
比如基准设备记录并向基站发送的4个时间为t9、t10、t11和t12。
上述步骤410a、步骤410b和步骤410c之间的先后顺序不限。
步骤411,基站计算偏差(offset)。
基站根据t1、t2、t3、t4、t5、t6、t7、t8、t9、t10、t11和t12,计算偏差。具体计算方法可以参考前述图2的实施例的描述。
需要说明的是,基站计算偏差时所使用的目标函数,可以是预先配置在基站上的,或者也可以是来自AF,即上述步骤401至步骤402、步骤406至步骤408中均携带目标函数或用于指示目标函数的信息。
步骤412,基站向UE发送偏差。
步骤413,UE根据偏差,进行时间同步。
具体的,UE可以将该UE的时间更新为收到该偏差的时间与该偏差之和。比如,UE在T时刻收到该偏差,该偏差的大小用K表示,则UE将UE的时间更新为T+K。
在又一种实现方法中,不执行上述步骤411至步骤413,而是执行:基站计算基站到UE的时延(delay),然后基站向UE发送T1和时延,该T1是以基站上的时钟为准的基站发送该时延的时间,然后UE将UE的时间更新为T1与时延之和。
可选的,在上述步骤406之后,TSCTSF可以向NEF发送用于通知授时成功的授时响应消息,然后NEF向AF发送用于通知授时成功的授时响应消息。
上述方案,由AF为UE请求授时服务,TSCTSF选择为UE提供授时服务的基站,该基站进行授时误差消除操作,确定精确的偏差并向UE发送偏差,UE根据该偏差进行时间同步。该方法可以减少路径不对称对基站授时带来的影响,从而实现UE与基站之间的精确时间同步,有助于提升UE的通信能力。
图5为本申请实施例提供的一种时间同步方法的流程示意图。该方法是UE主动请求为该UE提供授时服务。
该方法包括以下步骤:
步骤501,UE向AMF发送授时请求消息,该授时请求消息包括UE的标识信息、基准设备的标识信息和指示信息。
该UE为授时对象,也即需要为该UE提供授时服务。
该基准设备是与授时对象不同的另一个UE,或者基准设备是一个基站,该基站与为UE提供授时服务的基站不同。该基准设备为UE的精准授时提供辅助功能。
该指示信息指示进行授时误差消除操作。
可选的,该授时请求消息是NAS_TimeSynchronization_ASTICreate/Update/Delete消息。
步骤502,AMF向TSCTSF发送授时请求消息,该授时请求消息包括UE的标识信息、基准设备的标识信息和指示信息。
AMF发送的授时请求消息中的UE的标识信息、基准设备的标识信息和指示信息,来自UE。
可选的,该授时请求消息是Ntsctsf_TimeSynchronization_ASTICreate/Update/Delete消息。
步骤503,TSCTSF向UDM发送请求消息,该请求消息包括UE的标识信息。
该请求消息用于查询是否授权为该UE提供授时服务。
步骤504,UDM向TSCTSF发送响应消息。
该响应消息指示授权为该UE提供授时服务。
上述步骤503至步骤504为可选步骤。
步骤505至步骤515,同上述步骤403至步骤413。
在又一种实现方法中,不执行上述步骤513至步骤515,而是执行:基站计算基站到UE的时延(delay),然后基站向UE发送T1和时延,该T1是以基站上的时钟为准的基站发送该时延的时间,然后UE将UE的时间更新为T1与时延之和。
可选的,TSCTSF可以向AMF发送用于通知授时成功的授时响应消息,然后AMF向UE发送用于通知授时成功的授时响应消息。
上述方案,由UE主动请求授时服务,TSCTSF选择为UE提供授时服务的基站,该基站进行授时误差消除操作,确定精确的偏差并向UE发送偏差,UE根据该偏差进行时间同 步。该方法可以减少路径不对称对基站授时带来的影响,从而实现UE与基站之间的精确时间同步,有助于提升UE的通信能力。
需要说明的是,在上述图4、图5的实施例中,是由TSCTSF选择为UE提供授时服务的基站,在又一种实现方法中,也可以不由TSCTSF选择为UE提供授时服务的基站,而是TSCTSF向AMF/PCF发送第一通知消息,该第一通知消息包括UE的标识信息、基准设备的标识信息、指示信息、多个基站的标识信息以及多个基站的能力信息,该能力信息指示基站是否能够授时,该指示信息指示进行授时误差消除操作,然后AMF/PCF根据多个基站的位置信息和多个基站的能力信息选择为UE提供授时服务的基站,然后AMF/PCF向选择的基站发送第二通知消息,该第二通知消息包括UE的标识信息、基准设备的标识信息和该指示信息。其中,AMF/PCF根据多个基站的位置信息和多个基站的能力信息选择为UE提供授时服务的基站,比如可以是:AMF/PCF根据多个基站的能力信息,从多个基站中选择能够授时的至少一个基站,然后根据该至少一个基站的位置信息,从该至少一个基站中选择为UE提供授时服务的基站。
可以理解的是,为了实现上述实施例中功能,接入网设备、时钟管理网元、移动性管理网元或策略控制网元包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中接入网设备、时钟管理网元、移动性管理网元或策略控制网元的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是接入网设备、时钟管理网元、移动性管理网元或策略控制网元,也可以是接入网设备中的模块、时钟管理网元中的模块、移动性管理网元中的模块或策略控制网元中的模块。
图6所示的通信装置600包括处理单元610和收发单元620。通信装置600用于实现上述方法实施例中接入网设备或终端设备的功能。收发单元620可以用于实现相应的通信功能。收发单元620还可以称为通信接口或通信单元。处理单元610可以用于实现相应的处理功能。可选地,该通信装置600还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元610可以读取存储单元中的指令和/或数据,以使得通信装置600实现前述各个方法实施例中的接入网设备(如基站)、时钟管理网元(如TSCTSF)、移动性管理网元(如AMF)或策略控制网元(如PCF)的动作。
当该通信装置600用于实现上述方法实施例中的接入网设备的功能,处理单元610,用于获取接入网设备与终端设备之间的第一往返时延信息、该接入网设备与基准设备之间的第二往返时延信息以及该基准设备与该终端设备之间的第三往返时延信息;根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延;收发单元620,用于向该终端设备发送该时延或该接入网设备与该终端设备之间偏差值,该时延或该偏差值用于该终端设备的时间同步,该偏差值是根据该第一往返时延信息和该时延确定的。
一种可能的实现方法中,收发单元620,还用于接收通知消息,该通知消息包括该基准设备的标识信息、该终端设备的标识信息和指示信息,该指示信息指示进行授时误差消 除操作。
一种可能的实现方法中,收发单元620,还用于向该基准设备发送该终端设备的标识信息和该指示信息。
一种可能的实现方法中,处理单元610,具体用于根据目标函数、该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该接入网设备到该终端设备的时延。
一种可能的实现方法中,该目标函数是预配置在该接入网设备的,或者来自应用功能网元或时钟管理网元。
一种可能的实现方法中,处理单元610,具体用于根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息,确定该目标函数的限定条件;根据该目标函数的限定条件和该目标函数,确定该接入网设备到该终端设备的时延。
一种可能的实现方法中,该目标函数为以该限定条件为解空间偏向的最小值函数或最小均方误差函数。
一种可能的实现方法中,该目标函数的限定条件包括:
(1)a+b=D1;
(2)c+d=D2;
(3)e+f=D3;
(4)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准设备的时延,d为该基准设备到该接入网设备的时延,e为该基准设备到该终端设备的时延,f为该终端设备到该基准设备的时延,D1是根据该第一往返时延信息确定的,D2是根据该第二往返时延信息确定的,D3是根据该第三往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(d-c)+abs(f-e))或min(min(abs(a-b)+abs(d-c)+abs(f-e)));其中,min()表示最小值函数,abs()表示绝对值函数。
一种可能的实现方法中,该目标函数为MSE(a-a’),MSE(b-b’)或MSE((a-a’)+(b-b’));其中,MSE()表示最小均方误差函数。
一种可能的实现方法中,该基准设备是基准终端设备,该终端设备与该基准终端设备之间采用光纤连接;该目标函数的限定条件包括:
(1)a+b=D1;
(2)c+d=D2;
(3)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准终端设备的时延,d为该基准终端设备到该接入网设备的时延,e为该基准终端设备到该终端设备的时延,D1是根据该第一往返时延信息确定的,D2是根据该第二往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(d-c));其中,min()表示最小值函数,abs()表示绝对值函数。
一种可能的实现方法中,该基准设备是基准接入网设备,该接入网设备与该基准接入 网设备之间采用光纤连接;该目标函数的限定条件包括:
(1)a+b=D1;
(2)e+f=D3;
(3)b+c+e=D4;
其中,a为该接入网设备到该终端设备的时延,b为该终端设备到该接入网设备的时延,c为该接入网设备到该基准接入网设备的时延,e为该基准接入网设备到该终端设备的时延,f为该终端设备到该基准接入网设备的时延,D1是根据该第一往返时延信息确定的,D3是根据该第三往返时延信息确定的,D4是根据该第一往返时延信息、该第二往返时延信息和该第三往返时延信息确定的。
一种可能的实现方法中,该目标函数为min(abs(a-b)+abs(f-e));其中,min()表示最小值函数,abs()表示绝对值函数。
当该通信装置600用于实现上述方法实施例中的时钟管理网元的功能,收发单元620,用于接收授时请求消息,该授时请求消息包括终端设备的标识信息、基准设备的标识信息和指示信息,该指示信息指示进行授时误差消除操作;处理单元610,用于选择为该终端设备提供授时服务的接入网设备;收发单元620,还用于向策略控制网元或移动性管理网元发送通知消息,该通知消息包括该终端设备的标识信息、该基准设备的标识信息、该接入网设备的标识信息和该指示信息。
一种可能的实现方法中,收发单元620,还用于向统一数据库网元发送查询消息,该查询消息包括该终端设备的标识信息,该查询消息请求获取为该终端设备提供服务的策略控制网元或移动性管理网元;接收来自该统一数据库网元的该策略控制网元的标识信息或该移动性管理网元的标识信息。
一种可能的实现方法中,收发单元620,还用于向统一数据管理网元发送请求消息,该请求消息包括该终端设备的标识信息,该请求消息用于查询是否授权为该终端设备提供授时服务;接收来自该统一数据管理网元的响应消息,该响应消息指示授权为该终端设备提供授时服务。
一种可能的实现方法中,收发单元620,具体用于接收来自该终端设备或应用功能网元的该授时请求消息。
当该通信装置600用于实现上述方法实施例中的移动性管理网元或策略控制网元的功能,收发单元620,用于接收第一通知消息,该第一通知消息包括终端设备的标识信息、基准设备的标识信息、指示信息、多个接入网设备的标识信息以及该多个接入网设备的能力信息,该能力信息指示该接入网设备是否能够授时,该指示信息指示进行授时误差消除操作;处理单元610,用于根据该多个接入网设备的位置信息和该多个接入网设备的能力信息,选择为该终端设备提供授时服务的接入网设备;收发单元620,还用于向选择的接入网设备发送第二通知消息,该第二通知消息包括该终端设备的标识信息、该基准设备的标识信息和该指示信息。
一种可能的实现方法中,处理单元610,具体用于根据该多个接入网设备的能力信息,从该多个接入网设备中选择能够授时的至少一个接入网设备;根据该至少一个接入网设备的位置信息,选择为该终端设备提供授时服务的接入网设备。
有关上述处理单元610和收发单元620更详细的描述可以直接参考上述方法实施例中相关描述直接得到,这里不加赘述。
图7所示的通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器730,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现上述方法实施例时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、UE或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (30)

  1. 一种时间同步方法,其特征在于,包括:
    接入网设备获取所述接入网设备与终端设备之间的第一往返时延信息、所述接入网设备与基准设备之间的第二往返时延信息以及所述基准设备与所述终端设备之间的第三往返时延信息;
    所述接入网设备根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延;
    所述接入网设备向所述终端设备发送所述时延或所述接入网设备与所述终端设备之间偏差值,所述时延或所述偏差值用于所述终端设备的时间同步,所述偏差值是根据所述第一往返时延信息和所述时延确定的。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述接入网设备接收通知消息,所述通知消息包括所述基准设备的标识信息、所述终端设备的标识信息和指示信息,所述指示信息指示进行授时误差消除操作。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    所述接入网设备向所述基准设备发送所述终端设备的标识信息和所述指示信息。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述接入网设备根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延,包括:
    所述接入网设备根据目标函数、所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延。
  5. 如权利要求4所述的方法,其特征在于,所述目标函数是预配置在所述接入网设备的,或者来自应用功能网元或时钟管理网元。
  6. 如权利要求4或5所述的方法,其特征在于,所述接入网设备根据目标函数、所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延,包括:
    所述接入网设备根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述目标函数的限定条件;
    所述接入网设备根据所述目标函数的限定条件和所述目标函数,确定所述接入网设备到所述终端设备的时延。
  7. 如权利要求6所述的方法,其特征在于,所述目标函数为以所述限定条件为解空间偏向的最小值函数或最小均方误差函数。
  8. 如权利要求6或7所述的方法,其特征在于,
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)c+d=D2;
    (3)e+f=D3;
    (4)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准设备的时延,d为所述基准设备到所述接入网设 备的时延,e为所述基准设备到所述终端设备的时延,f为所述终端设备到所述基准设备的时延,D1是根据所述第一往返时延信息确定的,D2是根据所述第二往返时延信息确定的,D3是根据所述第三往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  9. 如权利要求8所述的方法,其特征在于,
    所述目标函数为min(abs(a-b)+abs(d-c)+abs(f-e))或min(min(abs(a-b)+abs(d-c)+abs(f-e)));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  10. 如权利要求8所述的方法,其特征在于,
    所述目标函数为MSE(a-a’),MSE(b-b’)或MSE((a-a’)+(b-b’));
    其中,MSE()表示最小均方误差函数。
  11. 如权利要求6或7所述的方法,其特征在于,所述基准设备是基准终端设备,所述终端设备与所述基准终端设备之间采用光纤连接;
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)c+d=D2;
    (3)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准终端设备的时延,d为所述基准终端设备到所述接入网设备的时延,e为所述基准终端设备到所述终端设备的时延,D1是根据所述第一往返时延信息确定的,D2是根据所述第二往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  12. 如权利要求11所述的方法,其特征在于,所述目标函数为min(abs(a-b)+abs(d-c));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  13. 如权利要求6或7所述的方法,其特征在于,所述基准设备是基准接入网设备,所述接入网设备与所述基准接入网设备之间采用光纤连接;
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)e+f=D3;
    (3)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准接入网设备的时延,e为所述基准接入网设备到所述终端设备的时延,f为所述终端设备到所述基准接入网设备的时延,D1是根据所述第一往返时延信息确定的,D3是根据所述第三往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  14. 如权利要求13所述的方法,其特征在于,
    所述目标函数为min(abs(a-b)+abs(f-e));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于获取接入网设备与终端设备之间的第一往返时延信息、所述接入网设备与基准设备之间的第二往返时延信息以及所述基准设备与所述终端设备之间的第三往 返时延信息;根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延;
    收发单元,用于向所述终端设备发送所述时延或所述接入网设备与所述终端设备之间偏差值,所述时延或所述偏差值用于所述终端设备的时间同步,所述偏差值是根据所述第一往返时延信息和所述时延确定的。
  16. 如权利要求15所述的装置,其特征在于,所述收发单元,还用于接收通知消息,所述通知消息包括所述基准设备的标识信息、所述终端设备的标识信息和指示信息,所述指示信息指示进行授时误差消除操作。
  17. 如权利要求16所述的装置,其特征在于,所述收发单元,还用于向所述基准设备发送所述终端设备的标识信息和所述指示信息。
  18. 如权利要求15至17中任一项所述的装置,其特征在于,所述处理单元,具体用于根据目标函数、所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述接入网设备到所述终端设备的时延。
  19. 如权利要求18所述的装置,其特征在于,所述目标函数是预配置在所述接入网设备的,或者来自应用功能网元或时钟管理网元。
  20. 如权利要求18或19所述的装置,其特征在于,所述处理单元,具体用于根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息,确定所述目标函数的限定条件;根据所述目标函数的限定条件和所述目标函数,确定所述接入网设备到所述终端设备的时延。
  21. 如权利要求20所述的装置,其特征在于,所述目标函数为以所述限定条件为解空间偏向的最小值函数或最小均方误差函数。
  22. 如权利要求20或21所述的装置,其特征在于,
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)c+d=D2;
    (3)e+f=D3;
    (4)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准设备的时延,d为所述基准设备到所述接入网设备的时延,e为所述基准设备到所述终端设备的时延,f为所述终端设备到所述基准设备的时延,D1是根据所述第一往返时延信息确定的,D2是根据所述第二往返时延信息确定的,D3是根据所述第三往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  23. 如权利要求22所述的装置,其特征在于,
    所述目标函数为min(abs(a-b)+abs(d-c)+abs(f-e))或min(min(abs(a-b)+abs(d-c)+abs(f-e)));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  24. 如权利要求22所述的装置,其特征在于,
    所述目标函数为MSE(a-a’),MSE(b-b’)或MSE((a-a’)+(b-b’));
    其中,MSE()表示最小均方误差函数。
  25. 如权利要求20或21所述的装置,其特征在于,所述基准设备是基准终端设备,所 述终端设备与所述基准终端设备之间采用光纤连接;
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)c+d=D2;
    (3)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准终端设备的时延,d为所述基准终端设备到所述接入网设备的时延,e为所述基准终端设备到所述终端设备的时延,D1是根据所述第一往返时延信息确定的,D2是根据所述第二往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  26. 如权利要求25所述的装置,其特征在于,
    所述目标函数为min(abs(a-b)+abs(d-c));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  27. 如权利要求20或21所述的装置,其特征在于,所述基准设备是基准接入网设备,所述接入网设备与所述基准接入网设备之间采用光纤连接;
    所述目标函数的限定条件包括:
    (1)a+b=D1;
    (2)e+f=D3;
    (3)b+c+e=D4;
    其中,a为所述接入网设备到所述终端设备的时延,b为所述终端设备到所述接入网设备的时延,c为所述接入网设备到所述基准接入网设备的时延,e为所述基准接入网设备到所述终端设备的时延,f为所述终端设备到所述基准接入网设备的时延,D1是根据所述第一往返时延信息确定的,D3是根据所述第三往返时延信息确定的,D4是根据所述第一往返时延信息、所述第二往返时延信息和所述第三往返时延信息确定的。
  28. 如权利要求27所述的装置,其特征在于,
    所述目标函数为min(abs(a-b)+abs(f-e));
    其中,min()表示最小值函数,abs()表示绝对值函数。
  29. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被通信装置执行时,实现如权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法。
PCT/CN2023/075611 2022-05-28 2023-02-13 一种时间同步方法及通信装置 WO2023231450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210594963.3 2022-05-28
CN202210594963.3A CN117177347A (zh) 2022-05-28 2022-05-28 一种时间同步方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023231450A1 true WO2023231450A1 (zh) 2023-12-07

Family

ID=88928667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075611 WO2023231450A1 (zh) 2022-05-28 2023-02-13 一种时间同步方法及通信装置

Country Status (2)

Country Link
CN (1) CN117177347A (zh)
WO (1) WO2023231450A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180188A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 同步方法、同步装置和基站
CN108964819A (zh) * 2017-05-19 2018-12-07 华为技术有限公司 一种时钟调整、时钟偏差计算方法、设备及系统
CN112636858A (zh) * 2020-12-11 2021-04-09 北京邮电大学 多网络设备协作的授时方法、系统、电子设备及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180188A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 同步方法、同步装置和基站
CN108964819A (zh) * 2017-05-19 2018-12-07 华为技术有限公司 一种时钟调整、时钟偏差计算方法、设备及系统
CN112636858A (zh) * 2020-12-11 2021-04-09 北京邮电大学 多网络设备协作的授时方法、系统、电子设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhanced RTT Based Propagation Delay Determination", 3GPP DRAFT; R1-2007711, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Electronic meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946496 *
OPPO: "Enhancement for support of time synchronization", 3GPP DRAFT; R1-2102396, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177113 *

Also Published As

Publication number Publication date
CN117177347A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7064588B2 (ja) エッジネットワークケイパビリティ開放を実現する方法、装置、機器および記憶媒体
WO2021017550A1 (zh) 一种事件报告的发送方法、装置及系统
WO2021212939A1 (zh) 通信方法、装置及系统
WO2021254353A1 (zh) 一种释放中继连接的方法、设备及系统
JP2022530333A (ja) 通信方法、通信装置、及び通信システム
WO2023179238A1 (zh) 一种授时方法、通信装置及通信系统
WO2022222745A1 (zh) 一种通信方法及装置
WO2023231450A1 (zh) 一种时间同步方法及通信装置
WO2021218244A1 (zh) 通信方法、装置及系统
WO2022067736A1 (zh) 一种通信方法及装置
WO2023231465A1 (zh) 一种时间同步方法、通信装置及通信系统
WO2023134431A1 (zh) 一种授时方法、通信装置及通信系统
WO2023051620A1 (zh) 一种通信方法、通信装置及通信系统
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
WO2023104123A1 (zh) 一种通信方法、装置及设备
WO2023082858A1 (zh) 确定移动性管理策略的方法、通信装置及通信系统
WO2023016298A1 (zh) 一种业务感知方法、通信装置及通信系统
WO2023213177A1 (zh) 一种通信方法及装置
WO2023125392A1 (zh) 一种通信方法及装置
WO2023020046A1 (zh) 一种通信方法及通信装置
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023030077A1 (zh) 一种通信方法、通信装置及通信系统
WO2023005440A1 (zh) 通信方法、通信装置及通信系统
WO2023169225A1 (zh) 一种pin管理方法、通信装置及通信系统
WO2023045741A1 (zh) 定位方法及装置、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814649

Country of ref document: EP

Kind code of ref document: A1