WO2021057458A1 - 一种基于卫星通信的信号传输方法及设备 - Google Patents

一种基于卫星通信的信号传输方法及设备 Download PDF

Info

Publication number
WO2021057458A1
WO2021057458A1 PCT/CN2020/113827 CN2020113827W WO2021057458A1 WO 2021057458 A1 WO2021057458 A1 WO 2021057458A1 CN 2020113827 W CN2020113827 W CN 2020113827W WO 2021057458 A1 WO2021057458 A1 WO 2021057458A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
carrier
ofdm symbol
attribute information
satellite
Prior art date
Application number
PCT/CN2020/113827
Other languages
English (en)
French (fr)
Inventor
周建伟
徐晨蕾
罗禾佳
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022519452A priority Critical patent/JP7430782B2/ja
Priority to EP20869826.6A priority patent/EP4030716A4/en
Publication of WO2021057458A1 publication Critical patent/WO2021057458A1/zh
Priority to US17/706,291 priority patent/US20220217033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, and in particular to a signal transmission method and equipment based on satellite communication.
  • Satellites occupy an important position in the field of wireless communication due to their long communication distance, wide coverage, flexible networking, freedom from geographical environment conditions and freedom from ground equipment conditions.
  • the satellite communication system has many advantages that the ground transmission equipment does not have. For example, compared with the ground wireless communication system, the satellite communication system covers a wide area. In addition, it can be used in some areas that are not conducive to the deployment of ground base stations, such as oceans, deserts, and mountains. Communicate via satellite. However, compared with ground user terminals, satellites have higher moving speeds, satellite-to-earth link transmission loss and severe channel fading characteristics, which seriously affect the signal transmission quality of satellite communication systems. At the same time, due to the frequency selective fading characteristics of the multipath channel, the satellite communication system is in a complex and changeable channel environment. So the satellite communication system needs to adopt a kind of better anti-frequency selective fading multi-carrier transmission method.
  • OFDM orthogonal frequency division multiplexing
  • orthogonal frequency division multiplexing is a multi-carrier communication scheme with overlapping frequency bands, which has the advantages of resisting frequency selective fading and high frequency band utilization.
  • Applying OFDM technology to satellite systems can not only improve the frequency band utilization of satellite communication systems, but also the anti-multipath fading feature of OFDM can also weaken the negative impact of complex and changeable environments on signal transmission.
  • OFDM technology is mainly used in terrestrial communication scenarios. OFDM symbols are also designed for terrestrial communications equipment. Compared with terrestrial communications equipment, actual satellites have higher moving speeds, and they will also suffer from problems such as Influenced by factors such as multipath propagation, delay spread, fading characteristics, and Doppler effect, if OFDM technology is applied to satellite communication scenarios, it is easy to cause inter-symbol interference and inter-carrier interference, which cannot meet the transmission requirements of satellite communication systems. Poor applicability.
  • This application provides a method and equipment for signal transmission based on satellite communication to achieve better application of OFDM technology for signal transmission in a satellite communication system.
  • this application provides a signal transmission method based on satellite communication, which is applied to communication equipment, such as satellite equipment or terminal equipment.
  • the method includes:
  • the communication device obtains carrier attribute information corresponding to a target carrier used to transmit OFDM symbols, where the carrier attribute information of the target carrier includes subcarrier spacing;
  • the communication device determines the CP (Cyclic Prefix) length of the OFDM symbol according to the carrier attribute information of the target carrier and the preset correspondence between the carrier attribute information and the OFDM symbol, where the CP length is used for The length of the data carrying the OFDM symbol.
  • CP Cyclic Prefix
  • the communication device determines the CP length of the OFDM symbol corresponding to the carrier attribute information of the target carrier according to the preset correspondence relationship between the carrier attribute information and the OFDM symbol.
  • the CP length in the OFDM symbol corresponding to each carrier in the embodiment of the present application is no longer fixed, so that when the satellite communication system transmits OFDM symbols, the CP length is reduced according to the carrier attribute information to improve resource utilization, or the CP length is increased to avoid introducing Inter-symbol interference reduces bit error rate and improves system performance.
  • the method further includes: the communication device according to the carrier attribute information of the target carrier and the preset carrier attribute
  • the corresponding relationship between the information and the length of the CS determines the CS length of the OFDM symbol, where the CS length is a part of the CP length and/or the length of part of the data in the OFDM symbol.
  • the carrier attribute information further includes one or more of the beam identifier and the beam elevation angle of the beam where the target carrier is located.
  • the preset correspondence between the carrier attribute information and the OFDM symbol includes: the correspondence between the subcarrier interval and the CP length of the OFDM symbol.
  • the preset correspondence between carrier attribute information and OFDM symbols further includes: correspondence between subcarrier spacing and CP length and CS length; or
  • the CP is also used to carry second data, where the second data is data different from the OFDM symbol.
  • this application provides a communication device, such as a satellite device or a terminal device.
  • the communication device includes: an obtaining unit: obtaining carrier attribute information corresponding to a target carrier used for transmitting OFDM symbols, wherein the carrier attribute information of the target carrier includes subcarrier spacing; and a determining unit: according to the carrier attribute information of the target carrier Determine the CP length of the OFDM symbol according to the preset correspondence relationship between the carrier attribute information and the OFDM symbol, where the CP length is the length used to carry data of the OFDM symbol.
  • the determining unit is further configured to determine the CS length of the OFDM symbol according to the carrier attribute information of the target carrier and the corresponding relationship between the preset carrier attribute information and the OFDM symbol, where:
  • the CS length includes part of the CP length and part of the data length in the OFDM symbol.
  • the carrier attribute information further includes one or more of the beam identifier and the beam elevation angle of the beam where the target carrier is located.
  • the preset correspondence between the carrier attribute information and the OFDM symbol includes: the correspondence between the subcarrier interval and the CP length of the OFDM symbol.
  • the preset correspondence between the carrier attribute information and the OFDM symbol further includes: the correspondence between the subcarrier spacing and the CS length of the OFDM symbol.
  • the CP is also used to carry data different from the data of the OFDM symbol.
  • the present application provides a computer storage medium, which may be non-volatile.
  • the computer storage medium stores computer readable instructions, and when the computer readable instructions are executed by the processor, the method provided by any of the foregoing implementation manners is implemented.
  • the present application provides a computer program product that contains computer-readable instructions, and when the computer-readable instructions are executed by a processor, the method provided by any of the foregoing implementations is implemented.
  • this application provides a communication device, such as a satellite device or a terminal device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer readable instructions (or referred to as a computer program), and the processor is used to read the computer readable instructions to implement the aforementioned aspects related to the communication device and the method provided by any implementation manner thereof.
  • the communication device further includes a transceiver for receiving and sending data.
  • FIG. 1 is a schematic diagram of the relationship between the CP inserted in each OFDM symbol and the length of the maximum delay extension in an embodiment of the application;
  • FIG. 2 is a schematic diagram of a scenario in which no timing deviation is generated when OFDM symbols are transmitted according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of a scenario where timing point forward deviation is generated when transmitting OFDM symbols according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of another scenario where timing point forward deviation is generated when OFDM symbols are transmitted according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of a scenario in which a timing point offset is generated when OFDM symbols are transmitted according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of the architecture of a mobile satellite communication system provided in an embodiment of the application.
  • Fig. 7 is a schematic structural diagram of an OFDM symbol suitable for a satellite communication system provided in an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a method for determining the CP length and the CS length of the OFDM symbol corresponding to the parameters of the beam provided in an embodiment of the application;
  • FIG. 9 is a schematic diagram of the relationship between the beam elevation angle of a certain beam of a satellite in an embodiment of the application.
  • FIG. 10 is a schematic diagram of the accumulated timing deviation corresponding to the forward deviation of the timing point generated when the OFDM symbol is transmitted in the embodiment of the application;
  • FIG. 11 is a schematic diagram of a cumulative timing deviation corresponding to a backward offset of a timing point generated when OFDM symbols are transmitted according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of the relationship between the beam elevation angle and the velocity component of a certain beam of a satellite in an embodiment of the application;
  • FIG. 13 is a schematic diagram of a non-staring satellite system provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the staring satellite system provided by the second embodiment of the application.
  • 15 is a schematic diagram of the relationship between adjusting the CP length based on the NR OFDM symbol structure according to an embodiment of this application;
  • FIG. 16 is a schematic diagram of adjusting the relationship between CP length and CS length based on the NR OFDM symbol structure according to an embodiment of this application;
  • FIG. 17 is another schematic diagram of adjusting the relationship between CP length and CS length based on the NR OFDM symbol structure according to an embodiment of the application;
  • FIG. 19 is a schematic structural diagram of a communication device 1900 provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another communication device 2000 provided by an embodiment of the present application.
  • OFDM technology divides a given channel into many orthogonal sub-channels in the frequency domain, and uses one sub-carrier for modulation on each sub-channel, and each sub-carrier is transmitted in parallel.
  • Channel In the OFDM system, the channel is a large number of carriers with different frequencies but orthogonal to each other.
  • OFDM symbol refers to the waveform formed in a certain symbol period after modulating each sub-carrier orthogonal to each other.
  • ISI Inter Symbol Interference, Inter-Symbol Interference
  • ICI Inter-Carrier Interference, sub-carrier interference
  • Multipath effect also known as multipath fading, refers to the phenomenon of reflection, diffraction, scattering and other signal attenuation caused by the influence of terrain and ground objects during radio wave transmission. Due to multipath propagation, some radio waves cannot be Arriving at the receiving end, and the signal received by the receiving end is also a composite signal of signals sent from multiple paths with different phases, frequencies, and arrival times, which will cause signal frequency fading and delay spreading. These are called multipath fading or multipath effects.
  • Timing offset refers to the time difference between the moment when an OFDM symbol arrives at the receiving device and the timing when the receiving device presets to receive the OFDM symbol.
  • the beam refers to the shape formed on the surface of the earth by the electromagnetic waves emitted by the satellite antenna, just like the beam of a flashlight has a certain range.
  • the signal emitted by the satellite is not a 360° radiation, but a signal wave emitted concentratedly in a certain azimuth.
  • OFDM has a higher spectrum efficiency.
  • Traditional FDM separates a channel according to frequency bands for different users. In order to avoid carrier interference between different frequency bands, it is necessary to reserve a certain amount between adjacent carriers. Guard band, this will cause FDM system to reduce spectrum utilization.
  • the OFDM technology overlaps and arranges the sub-carriers while maintaining the orthogonality between the sub-carriers. Therefore, compared with traditional FDM, OFDM has high spectrum efficiency and can save a lot of spectrum resources.
  • the OFDM communication system requires that the sub-carriers in the OFDM symbol are orthogonal to each other, and each carrier has an integer number of carrier periods in one symbol time.
  • each carrier has an integer number of carrier periods in one symbol time.
  • inter-symbol interference will be caused, and the direct orthogonality of the sub-carriers will be destroyed.
  • the transmitting device needs to insert a guard interval between two adjacent OFDM symbols before sending the OFDM symbol, and the length of the guard interval needs to be greater than the maximum delay extension of the channel.
  • One OFDM symbol will not cause interference to the next OFDM symbol, thereby eliminating inter-symbol interference.
  • the maximum delay spread of the channel can also be referred to as the maximum channel delay or channel impulse response length.
  • Figure 1 shows a schematic diagram of the structure of the NR OFDM symbol, where ⁇ max represents the maximum delay spread.
  • the NR system defines the structure of OFDM symbols under different subcarrier intervals, including the duration of the OFDM symbol and the CP duration (ie CP length), as shown in Table 1 below.
  • Numerlogy can be understood as carrier identification or index.
  • OFDM technology is widely used in terrestrial communication systems.
  • advantages of satellite communications have become increasingly significant. These advantages include, for example, long communication distances, wide coverage, and freedom from geographical environmental conditions. Therefore, satellite communications have become more and more important in the field of wireless communications.
  • the satellites in other types of satellite systems have a certain moving speed relative to the ground, and the lower the orbit height, the greater the relative speed.
  • the satellite equipment has a relatively large moving speed relative to the UE, serious timing drift will occur when OFDM symbols are transmitted, and ISI and ICI are introduced at the same time.
  • the OFDM system is an orthogonal multi-carrier transmission system, and its performance is very susceptible to timing deviation. Impact.
  • the NR OFDM symbol transmission mechanism described above is simply applied to a satellite communication system, serious timing drift will occur, resulting in poor system stability and high error rate.
  • the satellite communication system cannot copy the OFDM symbols of the terrestrial communication system.
  • the transmission mechanism that is, the existing NR OFDM symbol transmission mechanism cannot meet the transmission requirements of the satellite communication system, and its applicability is poor.
  • NR OFDM symbols are not applicable to satellite communication systems, which are mainly reflected in the following two aspects, for example:
  • the following describes the timing drift that may occur when the satellite communication system transmits OFDM symbols:
  • the timing deviation is the time difference between the time when the OFDM symbol arrives at the terminal device and the time when the terminal device presets to receive the OFDM symbol.
  • the preset timing of receiving the OFDM symbol for the terminal device (hereinafter referred to as the timing sampling time) is exactly the same as the time when the symbol arrives at the terminal device (that is, the actual OFDM symbol arrival time), and no timing deviation occurs. This situation is extremely unlikely to occur in high-speed moving scenes.
  • the timing sampling time is earlier than the actual OFDM symbol arrival time, that is, the timing point is shifted forward, resulting in a timing deviation, but since the timing sampling time is within the CP, it does not enter ⁇ max (maximum delay extension), Therefore, it will not cause inter-symbol interference.
  • the timing pilot CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the timing pilot CSI-RS is a periodic or aperiodic signal.
  • Fig. 4 it is a schematic diagram of another timing point forward deviation.
  • Fig. 4 is similar to Fig. 3, but the timing sampling time is earlier than the actual OFDM symbol position. The difference is that the timing sampling time in Fig. 4 enters ⁇ max , will cause inter-symbol interference and inter-carrier interference.
  • the CP contains the waveform of the tail of the currently received OFDM symbol and the waveform of the tail of the last OFDM symbol transmitted due to multipath delay. The waveforms are aliased, causing inter-symbol interference and destroying the positive inter-carrier. Interaction, introducing inter-carrier interference.
  • the timing sampling time is lagging behind the actual OFDM symbol position, that is, the timing point is backward, which also produces timing deviation, and the signal received in an OFDM symbol is not a complete carrier waveform, causing inter-symbol interference. And inter-carrier interference.
  • the reason for the forward deviation of the timing point can be summarized as the distance between the sending device and the receiving device gradually becomes longer as time changes, that is, the movement tendency of the two is relatively far away, for example, the sending device is stationary, However, the receiving device is facing away from the sending device, and the data sent by the sending device arrives at the receiving device later than the predetermined time, that is, the timing sampling time is earlier than the actual OFDM symbol position.
  • the reason for the deviation of the timing point can be summarized as the distance between the sending device and the receiving device gradually becomes shorter as time changes, that is, the movement tendency of the two is relatively close, and the sending device sends The time when the data arrives at the receiving device will be earlier than the predetermined time, that is, the timing sampling time is lagging behind the actual OFDM symbol position.
  • the maximum moving speed of the mobile terminal is about 0.2777Km/s, which is negligible relative to the transmission speed of electromagnetic waves. Therefore, in the terrestrial communication system, the OFDM symbol is transmitted The symbol timing deviation that may occur at this time is mainly caused by the multipath effect of electromagnetic waves. Therefore, the actual arrival time of the OFDM symbol at the terminal device will only be later than the preset timing time when the terminal device receives the OFDM symbol, and will not arrive earlier. That is to say, in the terrestrial communication system, the situation shown in Fig. 3 and Fig. 4 is a relatively common phenomenon, while the situation shown in Fig. 5 hardly occurs in the terrestrial communication system.
  • the existing NR OFDM symbol transmission mechanism is mainly designed for the situation of FIG. 3 and FIG. 4.
  • the situations shown in Figures 3 to 5 above are prone to occur.
  • the existing NR OFDM symbols can only alleviate the problem of forward deviation of the timing point, but cannot solve the problem of deviation of the timing point. problem.
  • the maximum delay extension of the satellite communication system obtained according to the channel model of the satellite communication system is about 154.89ns.
  • the minimum CP length is still less than 290 ns (see the NR OFDM symbol under 240KHz subcarrier spacing in Table 1), which is much larger than the maximum of the satellite communication system.
  • Delay extension that is, the CP length of the NR OFDM symbol is too long for the satellite communication system.
  • the embodiment of the present application provides a signal transmission method based on satellite communication.
  • the application scenarios of the embodiments of the present application are first introduced. Please refer to Figure 6. First, take the typical network architecture of a satellite communication system as an example. The actual satellite communication is similar to this.
  • FIG. 6 it is a schematic diagram of a possible mobile satellite communication system architecture applicable to this application, including satellite equipment and terminal equipment.
  • the satellite equipment can be regarded as one or more network equipment on the ground, such as a base station. Satellite equipment provides communication services to terminal equipment, and satellite equipment can also be connected to core network equipment (for example, access and mobile management functions (AMF)).
  • AMF access and mobile management functions
  • Satellite base stations mainly provide wireless access services for terminal devices, dispatch wireless resources to connected terminal devices, and provide reliable wireless transmission protocols and data encryption protocols.
  • Satellite base stations refer to base stations that use artificial earth satellites and high-altitude aircraft as wireless communications, such as evolved base stations (eNB) and 5G base stations (gNB).
  • the satellite base station can be a geostationary earth orbit (GEO) satellite, or a medium earth orbit (MEO) satellite and a low earth orbit (LEO) in a non-geostationary earth orbit (NGEO) Satellites can also be High Altitude Platform Station (HAPS), etc.
  • GEO geostationary earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit Satellites
  • HAPS High Altitude Platform Station
  • the operating attitude of the satellite equipment includes: the non-gazing attitude toward the ground and the gazing attitude toward the ground; among them, the satellite beams emitted by the satellite equipment in the non-gazing attitude toward the ground follow the movement of the satellite, and the angle of each beam emitted by the satellite does not change with the angle of the satellite.
  • the fixed point on the ground will experience more frequent beam switching during the satellite overhead.
  • the flashlight simulates the orbit of the satellite moving around the globe, and the angle of the beam emitted by the flashlight will not change.
  • the satellite equipment rotates faster than the earth It is even faster.
  • the relationship between a satellite in a geostationary orbit and the earth can be imagined as the earth is stationary, and the satellite equipment makes periodic circular motions around the earth. Therefore, the light beam emitted by the flashlight can sweep the globe for a full circle; while staring at the satellite system, the angle of each beam emitted by the satellite is adjusted in a certain way to achieve continuous observation of fixed points on the ground.
  • a flashlight simulates satellite orbits moving around the globe. During the operation of the flashlight, by adjusting the angles of the emitted beams to continuously observe the same area (the area illuminated by the flashlight does not change), it is understandable that the flashlight The angle of each beam emitted is adjustable.
  • a terminal equipment may be a wireless terminal device that can receive network equipment scheduling and instruction information.
  • a wireless terminal device may be a device that provides voice and/or data connectivity to the user, or a handheld device with wireless connection function. , Or other processing equipment connected to the wireless modem.
  • a wireless terminal device can communicate with one or more core networks or the Internet via a wireless access network (e.g., radio access network, RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone).
  • Mobile phones Mobile phones
  • computers, and data cards for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, and they exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • Wireless terminal devices can also be wearable devices and next-generation communication systems, for example, terminal devices in 5G networks or terminal devices in public land mobile network (PLMN) networks that will evolve in the future, and in NR communication systems. Terminal equipment, etc.
  • FIG. 6 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 6.
  • the terminal device may be a terminal device in a wireless communication system that has a wireless connection relationship with the satellite device. It is understandable that the satellite device can transmit OFDM symbols based on the same technical solution with multiple terminal devices in a wireless connection relationship in the wireless communication system. This application does not limit this.
  • the carrier attribute information of each carrier is combined to calculate the OFDM symbol applicable to the carrier, and the carrier attribute information is bound to the determined OFDM symbol to form the
  • the corresponding relationship between the carrier attribute information of all carriers sent by the satellite device and the OFDM symbol is preset in the satellite device or terminal device, that is, the communication device in this application.
  • the carrier attribute information includes sub-carrier spacing.
  • the communication device obtains the carrier attribute information of the target carrier used to transmit the OFDM symbol with the peer device, and determines the CP length of the OFDM symbol corresponding to the target carrier by querying the preset correspondence relationship between the carrier attribute information and the OFDM symbol.
  • the CP length in the OFDM symbol is adjusted through the preset correspondence between the carrier attribute information and the OFDM symbol.
  • the CP length in the OFDM symbol corresponding to each carrier is no longer fixed, so that the satellite communication system is transmitting OFDM.
  • the CP length is reduced according to the carrier attribute information to improve resource utilization, or the CP length is increased to avoid the introduction of inter-symbol interference, reduce the bit error rate, and improve system performance.
  • the foregoing preset correspondence between the carrier attribute information and the OFDM symbol is the correspondence between the subcarrier interval and the CP length of the OFDM symbol.
  • the foregoing preset correspondence between the carrier attribute information and the OFDM symbol may also be the correspondence between the subcarrier spacing and the CP length and the CS length of the OFDM symbol.
  • the communication device can also determine the CS length of the OFDM symbol corresponding to the carrier attribute information of the target carrier by querying the correspondence between the preset carrier attribute information and the OFDM symbol.
  • the OFDM symbol includes CP and CS.
  • This Figure 7 is an improvement on the NR OFDM symbol shown in Figure 1 on the basis of Figure 1.
  • the foregoing preset correspondence relationship may be determined by the satellite device, or determined by the terminal device or third-party device after obtaining the carrier attribute information of all carriers of the satellite device, or it may be based on any of the foregoing. It is artificially set based on the corresponding relationship determined by the equipment.
  • the foregoing correspondence relationship may be preset in the satellite device in advance, or may be determined by calculation from time to time during the operation of the satellite device, which is not limited in the embodiment of the present application.
  • the above-mentioned correspondence is distinguished for the orbital height of the satellite equipment.
  • the satellite equipment can transmit multiple beams at the same time. Therefore, the above-mentioned correspondence may be further subdivided according to the beam of the target carrier. If the correspondence between the carrier and the OFDM symbol also includes the beam information corresponding to the carrier, the carrier attribute information of the target carrier may also include the beam identifier and/or the beam elevation angle.
  • a method for satellite equipment to determine the corresponding relationship between carrier attribute information and OFDM symbols is given below. It is assumed that the method is executed by the satellite equipment in the architecture shown in FIG. 6, as shown in FIG. 8. This application provides a satellite equipment to determine carrier attributes. The method of CP length and CS length corresponding to the information. The method can include the following steps:
  • Step S801 The satellite device acquires the beam identifier and the beam elevation angle of any beam transmitted by the satellite device;
  • the satellite device obtains the beam identifier of the beam (each beam identifier corresponds to the only beam of the satellite device) and the beam elevation angle of the beam.
  • the smaller the beam elevation angle the greater the relative speed between the satellite device and the area. Conversely, the larger the beam elevation angle, the lower the relative speed between the satellite device and the area. Among them, the smaller the relative speed, the smaller the timing drift, that is, the beam elevation angle is different, the maximum timing offset of the beam is different. Therefore, in this embodiment of the application, when the satellite device obtains the beam elevation angle of the beam, it can select the minimum beam elevation angle of the beam and its coverage area, that is, the beam elevation angle of the beam at the edge of the coverage area on the earth's surface. As shown in FIG. 9, it is a schematic diagram of a beam elevation angle provided by an embodiment of this application.
  • Step S802 the satellite device determines the values of the maximum delay spread and the maximum timing deviation and the direction of the maximum timing deviation corresponding to different carriers under the beam;
  • different carriers in this application are determined to be different based on different subcarrier intervals. For example, if the subcarrier intervals of multiple carriers carried by the same beam are the same, the multiple carriers are considered to be the same.
  • the satellite equipment determines the maximum delay extension corresponding to the carrier by the following methods:
  • the satellite equipment determines the maximum multipath extension corresponding to different sub-carrier spacing according to the channel model of the satellite communication system at different orbit heights;
  • the satellite equipment determines the maximum timing deviation in the following ways:
  • the timing point offset is reflected in the transmitted OFDM symbols, which is the accumulated timing point offset between the satellite equipment and the terminal equipment in a timing pilot cycle.
  • FIG. 10 it is a schematic diagram of the accumulated timing deviation before the timing point; as shown in FIG. 11, it is a schematic diagram of the accumulated timing deviation after the timing point.
  • the maximum timing deviation is the cumulative timing deviation on the last symbol in a timing pilot period.
  • the embodiment of the present application is based on the maximum timing deviation determined in the above manner, and then adjusts the CP length and CS length of the OFDM symbol according to the maximum timing deviation, which can eliminate inter-symbol interference without increasing timing pilot overhead.
  • Step S803 The satellite device determines the direction of the maximum timing point deviation according to the relative movement trend between itself and the beam and the terminal in the ground coverage area:
  • the satellite equipment determines the direction of the maximum timing deviation according to its position and the relative movement trend of the beam on the ground surface coverage area.
  • the satellite equipment determines the direction of the maximum timing deviation as the timing point forward; if the satellite equipment and the beam are on the ground surface The relative movement trend of the coverage area is far away from each other, then the satellite equipment determines the direction of the maximum timing deviation as the deviation of the timing point.
  • the satellite device determines the relative movement trend with the coverage area of the beam on the ground surface, it can be determined according to the direction of its own moving speed and the angle between the beam emitted and the elevation angle of the beam.
  • the direction of its own moving speed and the angle between the beam emitted and the elevation angle of the beam.
  • Example 1 is a schematic diagram of a non-staring satellite communication system provided by an embodiment of this application;
  • (a) in FIG. 13 is a three-dimensional schematic diagram of the satellite beam irradiating the earth's surface, and
  • FIG. 13 b) is a schematic diagram of the relationship between the satellite equipment and the top-view plane of the irradiation area.
  • the largest circle is the total area of the earth's surface irradiated under all satellite beams emitted by the satellite equipment. The following is an introduction to the relative movement trend of the satellite equipment to determine itself and different areas in conjunction with (b) in Figure 13:
  • the dotted line A in Figure 13 (b) is perpendicular to the moving direction of the satellite equipment.
  • the moving direction of the satellite equipment is known. It can be seen from Figure 13 (b) that the satellite equipment is relative to the area on the left of the dotted line A. Close, the satellite equipment is relatively far away from the area on the right side of the dashed line A. For example, summarizing the above position relationship, it can be concluded that if the angle between the transmitted beam and the moving direction of the satellite is not greater than 90°, the relative movement trend is Close to each other; if the angle between the transmitted beam and the moving direction of the satellite is greater than 90°, the relative movement tends to be relatively far away.
  • the satellite equipment is relatively close to the coverage area of the beam, or it can be considered The satellite equipment and the coverage area of the beam are relatively far away.
  • the beam elevation angle is larger, the relative speed between the satellite device and the terminal device is smaller, so the timing deviation is smaller; if the beam elevation angle is smaller, the relative speed of the satellite device and the terminal device is smaller, and the timing deviation is larger. Therefore,
  • the satellite device determines the movement trend of the area where the dotted line A is located, it can also determine the minimum elevation angle between the beam and the area. For example, when the beam elevation angle is 0-30°, the satellite equipment and the coverage area of the beam are relatively far away, and when the elevation angle is 31°-90°, the satellite equipment and the coverage area of the beam are relatively close.
  • Example 2 is a schematic diagram of a scene of a gaze attitude to the ground provided by an embodiment of this application; in the figure, the elliptical circle is the area irradiated by the satellite equipment on the surface of the earth, and the dashed line A is the left side of the coverage area. The dashed line B is the boundary on the right side of the coverage area, and the left arrow in the figure is the moving direction of the satellite device.
  • the following describes the relative movement trend of satellite equipment to determine itself and different areas in conjunction with Figure 14:
  • the satellite equipment and the coverage area of the beam are relatively close; when the angle between the moving direction of the satellite equipment and the transmitting beam is greater than 90°, the satellite equipment and the The coverage area of the beam is relatively far away.
  • Step S804 The satellite device determines the CP length and CS length of the OFDM symbol corresponding to the carrier attribute information of the carrier according to the determined maximum delay spread, the value of the maximum timing deviation, and the direction of the maximum timing deviation of the carrier carried by the beam;
  • the carrier attribute information of the carrier includes the above-mentioned sub-carrier spacing, beam identification and/or beam elevation angle.
  • Implementation method 1 The satellite device first determines the CP length according to the maximum delay spread, the value of the maximum timing deviation, and the direction of the maximum timing deviation, and adjusts the CS length according to the determined CP length;
  • the total length of the OFDM symbols in the embodiments of this application can follow the definition of the NR standard, that is, the satellite device is based on the current NR OFDM symbol structure, and adjusted to the same according to the determined maximum delay spread, the value of the maximum timing deviation, and the direction of the maximum timing deviation.
  • the CP length of the NR OFDM symbol under the subcarrier spacing for example:
  • the satellite device determines whether the sum of the maximum delay spread and the maximum timing deviation is greater than the CP length of the current NR OFDM symbol. If it is not greater, the following adjustment methods are available: The following example illustrates:
  • Adjustment method 1 Use the CP length of the current NR OFDM symbol
  • Satellite equipment uses the CP length of the NR OFDM symbol.
  • this CP is used to carry content (first data) that is copied from the end of the OFDM symbol data and has the same length as the CP; as another example, this segment
  • the CP can also be used to carry content less than the CP length copied from the end of the data of the OFDM symbol and other data (second data) that is different from the data of the OFDM symbol.
  • Adjustment method 2 Shorten the CP length of the OFDM symbol and extend the data length of the OFDM symbol;
  • the satellite device shortens the CP length of the OFDM symbol so that the shortened CP length is equal to or greater than the sum of the maximum delay spread and the maximum timing deviation. Accordingly, the shortened CP length is used to carry the data of the OFDM symbol. It can be understood that the data length of the OFDM symbol is extended so that the OFMD symbol can carry more data.
  • the total length of the OFDM symbols in the satellite communication system follows the definition of the NR standard, that is, the total length of the OFDM symbols after adjusting the CP length and the length of the data part of the OFMD symbol in this application remains unchanged , That is, the sum of the shortened CP length and the length of the data part of the extended OFDM symbol is the same as the total length of the NR OFDM symbol before adjustment.
  • the subcarrier spacing is 15KHz
  • the total length of an OFDM symbol is 71.35ns
  • the CP length is 4.69
  • the data length of the OFDM symbol is 66.67ns.
  • the CP length of the adjusted OFDM symbol is 2.69ns
  • the length of the OFDM symbol is 2.69ns.
  • the data length is 68.67ns.
  • FIG. 15 it is a schematic diagram of the relationship between the CP length and the maximum delay spread and the maximum timing deviation in the adjusted OFDM symbol.
  • the CS length is determined based on the determined OFDM symbol; if the direction of the maximum timing deviation is the forward deviation of the timing point, the satellite device determines not to increase the CS part, that is The CS length in the OFDM symbol is zero.
  • the satellite device determines whether the sum of the maximum delay spread and the maximum timing deviation is greater than the CP length of the NR OFDM symbol with the same subcarrier interval, and the satellite shortens the CP length to equal to Or larger than the maximum delay extension, the shortened part of the CP is used as CS, that is, part of the CP in the current NR OFDM symbol is used as the CS.
  • the CS is used to carry the content of the same length as the CS length copied by the head end of the OFDM symbol.
  • the satellite device can shorten the CP length to Equal to or greater than the maximum delay extension, and the shortened CP length is regarded as part of the CS. It should be noted that since the length of the CS is greater than the maximum timing deviation, the shortened CP length is greater than the maximum delay extension, so it will be intercepted In addition to the part of the CP as the CS, an additional CS length must be added, that is, the CS length includes part of the CP length and part of the data length of the OFDM symbol.
  • CS is used to carry the content of the same length as the CS length copied by the head end of the OFDM symbol.
  • the CP length of the current NR OFDM symbol can also be used. As mentioned in the above adjustment method 1, this CP can be used to carry the length of the CP copied from the end of the OFDM symbol.
  • the content of the OFDM symbol and other data different from the data of the OFDM symbol; that is, the CP length in the OFDM symbol does not change, and a section of the data length of the OFDM symbol needs to be occupied as the CS.
  • Implementation method 2 The satellite device first determines the CS length according to the maximum delay extension, the value of the maximum timing deviation, and the direction of the maximum timing deviation, and adjusts the CS length according to the determined CS length;
  • the satellite device can adjust the CS length of the NR OFDM symbol under the same subcarrier interval according to the determined maximum delay spread, the value of the maximum timing deviation, and the direction of the maximum timing deviation based on the current NR OFDM symbol structure.
  • the following examples are as follows:
  • the satellite device determines that the CS length is 0, that is, there is no need to add CS to the OFDM symbol.
  • the satellite device determines that the CS length is 0, it then determines the CP length.
  • the step of determining the CP length refer to the step of determining the CP in the adjustment of the timing point forward deviation in the foregoing implementation method 1, which will not be repeated here.
  • the satellite device determines that the CS length is equal to or greater than the value of the maximum timing deviation. After the CS length is determined, the CP length is further determined. For the determination method, please refer to the CP in the above implementation mode 1. The procedure for determining the length will not be repeated here.
  • the CS may be formed by copying the content of the CS length in the header of each OFDM symbol to the end position of each OFDM symbol to form a cyclic suffix.
  • each beam is The CP length and CS length corresponding to the same subcarrier interval remain unchanged.
  • the satellite equipment with a non-gazing attitude towards the ground can combine the beam identification and subcarrier interval Binding with the corresponding CP length and CS length
  • the first correspondence is in the form of the first correspondence, as shown in Table 2 below, the correspondence between the subcarrier spacing and the CP length and the CS length provided in this embodiment of the application.
  • the satellite equipment uses the above method to determine the CP length and CS length corresponding to each sub-carrier spacing of each beam at different beam elevation angles. , And bind the beam identifier, beam elevation angle, and subcarrier spacing with the corresponding CP length and CS length to form a second correspondence. As shown in Table 3 below, the correspondence between subcarrier spacing and beam elevation angle and CP length and CS length provided in this embodiment of the application.
  • the foregoing list is only a simplified illustration of examples for ease of understanding, and the list may also include other items, or reduce unnecessary items, which are not shown in the foregoing list.
  • the satellite device needs to adjust the CP length and CS length of the OFDM symbol from time to time. Therefore, The maximum value of CP length and the maximum value of CS length under different beam elevation angles corresponding to each beam can also be determined under each subcarrier spacing as the CP length and CS length corresponding to the beam. Accordingly, the satellite device will separate the subcarriers
  • the beam identifier is bound to the CP length and the CS length to form another form of second correspondence.
  • the satellite device determines the maximum value of the CP length and the maximum value of the CS length of the different beams corresponding to each beam elevation angle under each sub-carrier spacing, as the CP length and CS length corresponding to the beam elevation angle, and the satellite device sets the sub-carrier
  • the interval and the beam elevation angle are bound with the CP length and the CS length to form a third form of second correspondence.
  • different beams emitted by the same satellite device can also use the same OFDM symbol, and the satellite device can also determine the fixed OFDM symbol corresponding to the satellite device of each orbital height in the following manner:
  • the orbit height of the LEO satellite equipment is 600km, and the moving speed of the satellite equipment is 7.5622km.s-1.
  • the maximum delay extension of the satellite communication system obtained according to the channel model of the satellite communication system is about 154.89ns.
  • Table 1 shows that in the existing NR OFDM symbols, the minimum CP length is still less than 290 ns. Therefore, combining Table 1 shows that the CP length in the NR OFDM symbols corresponding to other subcarrier intervals is greater than the maximum.
  • the CP length and CS length of the OFDM symbols corresponding to different subcarrier intervals of LEO satellite equipment determined by this application:
  • the CP length and CS length of the OFDM symbols corresponding to different subcarrier intervals of the HEO satellite equipment determined for this application:
  • the CP length of the NR OFDM symbol corresponding to 240KHz of subcarrier spacing is 290ns, which is less than the sum of the maximum delay spread and the maximum timing deviation, the CP length may not be intercepted, and because the OFDM symbol length is also small If CS is added, one OFDM symbol carries less data, which will also cause a waste of resources. Therefore, you can choose not to add CS, that is, the length of CS is 0.
  • the satellite equipment binds each sub-carrier interval with the corresponding CP length and CS length to form a third binding relationship.
  • Tables 3 to 4 are only examples. Among them, the CS length and the CP length in the table It is only an example value, and may also be other values. The embodiments of the present application do not limit the values of CS length and CP length. For example, taking Table 4 as an example, the length of the OFDM symbol corresponding to the subcarrier spacing of 240KHz is adjusted to 4.022, and the length of CS is adjusted to 0.148.
  • the satellite device may also select the maximum value of the CP length and the maximum value of the CS length in each subcarrier interval based on the first correspondence shown in Table 2, and use the maximum value of the CP length as the subcarrier interval
  • the CP length of the corresponding OFDM symbol, the maximum value of the CS length is taken as the CS length of the OFDM symbol corresponding to the subcarrier interval, and the subcarrier interval is bound to the OFDM symbol to form a non-gazing attitude to the ground at the orbit height
  • the satellite device determines the corresponding relationship between the carrier attribute information and the CP length and the CS length, the corresponding relationship can be notified to the terminal device.
  • the method may include the following steps:
  • Step 1800 The satellite device obtains carrier attribute information corresponding to the target carrier used to transmit the OFDM symbol to the terminal i;
  • Step 1801 The satellite device sends the carrier attribute information of the target carrier to the terminal i;
  • Step 1802 Terminal i obtains the carrier attribute information of the target carrier sent by the satellite device, and determines the CP length corresponding to the target carrier according to the corresponding relationship between the carrier attribute information of the target carrier and the preset carrier attribute information and the CP length and CS length And CS length;
  • Step 1803 The satellite device obtains carrier attribute information of the target carrier used to transmit the OFDM symbol to the terminal j;
  • Step 1804 The satellite device determines the CP length and CS length corresponding to the target carrier of the terminal j according to the carrier attribute information of the target carrier of the terminal j and the correspondence between the preset carrier attribute information and the CP length and CS length, where the CS length Can be 0.
  • Step 1805 The satellite device sends the CP length and CS length information corresponding to the target carrier to the terminal j.
  • steps 1800 to 1802 and steps 1803 to 1805 are the two interactive methods of satellite equipment and terminal equipment in the satellite communication system in this application, and do not indicate the order of the two methods.
  • the satellite equipment can be used at the same time.
  • step 1800 to step 1802 and step 1803 to step 1805 are performed, which is not limited in the embodiment of the present application.
  • the target carrier refers to the carrier sent by the satellite device for transmitting OFDM symbols to the terminal device.
  • Specific sending methods include but are not limited to the following methods:
  • Sending method 1 The satellite device notifies the terminal device by means of each beam broadcast;
  • the satellite device broadcasts the correspondence between the carrier attribute information and the CP length and the CS length, the carrier attribute information of the target carrier, or the determined CP length and CS length information through each beam.
  • carriers for the aforementioned information, such as placing the aforementioned information in MIB (Master Information Block) or SIB (System Information Blocks) for broadcasting.
  • MIB Master Information Block
  • SIB System Information Blocks
  • the satellite device places the determined correspondence in the MIB.
  • the correspondence relationship is obtained according to the broadcast MIB.
  • the satellite device can also use the target carrier to transmit OFDM symbols to the terminal device.
  • the carrier attribute information of is placed in the MIB or SIB and is issued. Therefore, the terminal device can determine the CP length and the CS length according to the acquired carrier attribute information of the target carrier and the corresponding relationship, where the CS length can be zero.
  • Satellite equipment can also use unicast (point-to-point) to notify terminal equipment;
  • the satellite device and each terminal device establish a dedicated data link to transmit the correspondence between the carrier attribute information and the CP length and CS length, the carrier attribute information of the target carrier, or the determined CP length and CS length.
  • Sending method 3 Satellite equipment forwards through network equipment
  • the satellite device delivers the above-mentioned information to the base station corresponding to each beam, and the base station notifies the terminal equipment in the cell where it is located.
  • a network device is an entity used to transmit or receive signals on the network side, such as a generation Node B (gNodeB).
  • the network device may be a device used to communicate with mobile devices.
  • Network equipment can be APs in wireless local area networks (WLAN), base transceivers in global system for mobile communication (GSM) or code division multiple access (CDMA) station, BTS), it can also be a base station (NodeB, NB) in wideband code division multiple access (WCDMA), or an evolutional base station (evolutional base station) in long-term evolution (LTE).
  • WLAN wireless local area networks
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS code division multiple access
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • LTE long-term evolution
  • Node B, eNB or eNodeB Node B, eNB or eNodeB), or relay station or access point, or in-vehicle equipment, wearable equipment, and network equipment in the future 5G network or the network in the future evolved public land mobile network (PLMN) network Equipment, or gNodeB in the NR system, etc.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment. (E.g. base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • the PT-RS pilot can be introduced in the low frequency band for terminal equipment to calculate and compensate the phase noise based on the PT-RS pilot to improve link performance.
  • the time domain density of the PT-RS pilot frequency introduced in the FR1 frequency band can be the time domain density of the PT-RS pilot frequency of the FR2 frequency band.
  • the PT can also be determined in the following way -Time domain density of RS pilot frequency:
  • Table 7 is only an example, and the embodiments of this application are not limited to specific values. The values can fluctuate within a certain range.
  • the PT- in the FR1 frequency band can be adjusted according to the above method.
  • the time domain density of the RS pilot frequency is divided, which will not be repeated here.
  • the satellite device notifies the receiving device of the time-domain density information of the PT-RS pilot. For example, the satellite device places the time-domain density information of the PT-RS pilot in a SIB or RRC (Radio Resource Control) message and sends it to the receiving device.
  • the receiving device can be a terminal device or a network device.
  • FIG. 19 is a schematic structural diagram of a communication device 1900 provided by an embodiment of the present application, such as a terminal device or a satellite device. As shown in FIG. 19, the communication device 1900 includes:
  • the obtaining unit 1901 is configured to obtain carrier attribute information corresponding to a target carrier used to transmit OFDM symbols, where the carrier attribute information of the target carrier includes subcarrier spacing;
  • the determining unit 1902 is configured to determine the CP length of the OFDM symbol according to the corresponding relationship between the carrier attribute information of the target carrier and the preset carrier attribute information and the CP length, where the CP is used to carry first data,
  • the first data is data in OFDM symbols.
  • the determining unit 1902 is further configured to determine the CS length of the OFDM symbol according to the carrier attribute information of the target carrier and the correspondence between the preset carrier attribute information and the CS length.
  • the CS length is part of the CP length and/or the length of part of the data in the OFDM symbol.
  • the carrier attribute information further includes one or more of the beam identifier and the beam elevation angle of the beam where the target carrier is located.
  • the preset correspondence between carrier attribute information and OFDM symbols includes: correspondence between subcarrier spacing and CP length.
  • the preset correspondence between carrier attribute information and OFDM symbols further includes: correspondence between subcarrier spacing and CP length and CS length; or
  • the CP is also used to carry second data, where the second data is data different from the OFDM symbol.
  • the communication equipment in the embodiments of the present application may have some units (or devices) implemented by hardware circuits and another part of the units (or devices) may be implemented by software, or all of the units (or devices) may be implemented by hardware circuits. It is also possible that all units (or devices) are implemented by software.
  • FIG. 20 is a schematic structural diagram of a communication 2000 provided by an embodiment of the present application.
  • a communication device 1900 such as a satellite device or a terminal device.
  • the communication device 2000 includes a processor 2001 and a memory 2002, where the memory 2002 can be independent of the processor or network device (Memory#3), and can also be within the processor or network device (Memory# 1 and Memory#2).
  • the storage 1902 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk.
  • the memory 2002 is used to store computer readable instructions (or called computer programs).
  • the processor 2001 is configured to read the computer-readable instructions to implement the foregoing aspects related to the communication device and the method provided in any implementation manner thereof.
  • the memory 2002 (Memory#1) is located in the device.
  • the memory 2002 (Memory#2) is integrated with the processor.
  • the memory 2002 (Memory#3) is located outside the device.
  • the first network device further includes a transceiver 2003 for receiving and sending data.
  • the processor 2001 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the memory 2002 may include: volatile memory (volatile memory), such as random-access memory (random-access memory, RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash Flash memory, hard disk drive (HDD) or solid-state drive (SSD), cloud storage, network attached storage (NAS: network attached Storage), network drive (network drive) ), etc.; the memory may also include a combination of the above-mentioned types of memory or any other medium or product with a storage function.
  • volatile memory volatile memory
  • RAM random-access memory
  • non-volatile memory such as flash Flash memory, hard disk drive (HDD) or solid-state drive (SSD), cloud storage, network attached storage (NAS: network attached Storage), network drive (network drive)
  • the memory may also include a combination of the above-mentioned types of memory or any other medium or product with a storage function.
  • the program product can use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the program product for configuring parameters may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may run on a server device.
  • CD-ROM portable compact disk read-only memory
  • the program product of this application is not limited to this.
  • the readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with information transmission, devices, or devices.
  • the readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and readable program code is carried therein. This propagated data signal can take many forms, including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with a periodic network action system, apparatus, or device.
  • the program code contained on the readable medium can be transmitted by any suitable medium, including, but not limited to, wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • the program code used to perform the operations of the present application can be written in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming languages. Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device.
  • LAN local area network
  • WAN wide area network
  • the embodiment of the present application also provides a storage medium readable by a computing device for a signal transmission method based on satellite communication, that is, the content is not lost after a power failure.
  • the storage medium stores a software program, including program code.
  • the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors.
  • Signal transmission scheme based on satellite communication.
  • this application can also be implemented by hardware and/or software (including firmware, resident software, microcode, etc.).
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used or used by the instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, apparatus, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种基于卫星通信的信号传输方法及设备。该方法包括:通信设备获得用于传输OFDM符号的目标载波对应的载波属性信息,其中,所述目标载波的载波属性信息包括子载波间隔;所述通信设备根据所述目标载波的载波属性信息和预设的载波属性信息与CP长度的对应关系,确定所述OFDM符号的CP长度,其中,所述CP用于承载第一数据,所述第一数据为OFDM符号中的数据。本申请实施例各载波对应的OFDM符号中的CP长度不再固定,使得卫星通信系统在传输OFDM符号时,可以根据载波属性信息减小CP长度,以提高资源利用率,或者增加CP长度,避免引入符号间干扰,降低误码率,提高了系统性能。

Description

一种基于卫星通信的信号传输方法及设备
相关申请的交叉引用
本申请要求在2019年09月29日提交中国专利局、申请号为201910936092.7、申请名称为“一种基于卫星通信的信号传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于卫星通信的信号传输方法及设备。
背景技术
未来的5G及其演进网络不仅需要满足多种业务需求,还需要提供更广的业务覆盖。卫星以其通信距离远、覆盖范围广、组网灵活、不受地理环境条件限制以及不受地面设备条件限制等特点,在无线通信领域占有重要的地位。
卫星通信系统具有许多地面传输设备所不具备的优越性,例如相对于地面无线通信系统,卫星通信系统覆盖面广,另外在一些不利于部署地面基站的区域,例如海洋、沙漠和高山等区域,可以通过卫星进行通信。但相对于地面用户终端来说,卫星具有较高的移动速度,星地链路传输损耗以及信道衰落严重等特性,使得卫星通信系统的信号传输质量受到严重的影响。同时由于多径信道的频率选择性衰落特性,造成卫星通信系统处于一种复杂多变的信道环境中。因此卫星通信系统需要采用一种较好的抗频率选择性衰落的多载波传输方式。
OFDM(orthogonal frequency division multiplexing,正交频分复用)技术是一种频带重叠的多载波通信方案,具有抗频率选择性衰落、频带利用率高的优点。将OFDM技术应用于卫星系统,既能够提高卫星通信系统的频带利用率,同时OFDM的抗多径衰落的特点还可以削弱复杂多变的环境对信号传递的负面影响。
然而目前OFDM技术还主要应用于地面通信场景,OFDM符号也是针对于地面通信设备进行设计的,实际中的卫星相对于地面通信设备而言,具有较高的移动速度,且传输时也会受到诸如多径传播、时延扩展、衰落特性以及多普勒效应等因素的影响,若将OFDM技术应用到卫星通信场景中,容易产生符号间干扰和载波间干扰,无法满足卫星通信系统的传输需求,应用性较差。
发明内容
本申请提供一种基于卫星通信的信号传输方法及设备,用以实现在卫星通信系统中较好应用OFDM技术进行信号传输。
以下从多个方面介绍本申请,容易理解的是,该以下多个方面的实现方式可互相参考。
第一方面,本申请提供一种基于卫星通信的信号传输方法,所述方法应用于通信设备,例如卫星设备或终端设备。所述方法包括:
通信设备获得用于传输OFDM符号的目标载波对应的载波属性信息,其中,所述目标 载波的载波属性信息包括子载波间隔;
所述通信设备根据所述目标载波的载波属性信息和预设的载波属性信息与OFDM符号的对应关系,确定所述OFDM符号的CP(Cyclic Prefix,循环前缀)长度,所述CP长度是用于承载OFDM符号的数据的长度。
可见,通信设备获取到向终端传输OFDM符号的目标载波对应的载波属性信息后,根据预设的载波属性信息与OFDM符号的对应关系,确定目标载波的载波属性信息对应的OFDM符号的CP长度,本申请实施例各载波对应的OFDM符号中的CP长度不再固定,使得卫星通信系统在传输OFDM符号时,根据载波属性信息减小CP长度,以提高资源利用率,或者增加CP长度,避免引入符号间干扰,降低误码率,提高了系统性能。
在一些实现方式下,所述通信设备获得用于传输OFDM符号的目标载波对应的载波属性信息之后,还包括:所述通信设备根据所述目标载波的载波属性信息和所述预设的载波属性信息与CS(Cyclic suffix,循环后缀)长度的对应关系,确定所述OFDM符号的CS长度,其中,所述CS长度为部分CP长度和/或OFDM符号中的部分数据的长度。
在一些实现方式下,所述载波属性信息还包括所述目标载波所在波束的波束标识、波束仰角中的一种或多种。
在一些实现方式下,所述预设的载波属性信息与OFDM符号的对应关系包括:子载波间隔与OFDM符号的CP长度的对应关系。
在一些实现方式下,所述预设的载波属性信息与OFDM符号的对应关系还包括:子载波间隔与CP长度和CS长度的对应关系;或
子载波间隔和波束标识与CP长度和CS长度的对应关系;或
子载波间隔和波束仰角与CP长度和CS长度的对应关系;或
子载波间隔、波束标识和波束仰角与CP长度和CS长度的对应关系。
在一些实现方式下,所述CP还用于承载第二数据,其中所述第二数据为与OFDM符号不同的数据。
第二方面,本申请提供一种通信设备,例如卫星设备或终端设备。该通信设备包括:获取单元:获得用于传输OFDM符号的目标载波对应的载波属性信息,其中,所述目标载波的载波属性信息包括子载波间隔;确定单元:根据所述目标载波的载波属性信息和预设的载波属性信息与OFDM符号的对应关系,确定所述OFDM符号的CP长度,所述CP长度是用于承载OFDM符号的数据的长度。
在一些实现方式下,所述确定单元,还用于根据所述目标载波的载波属性信息和所述预设的载波属性信息与OFDM符号的对应关系,确定所述OFDM符号的CS长度,其中,所述CS长度包括部分CP长度和OFDM符号中的部分数据长度。
在一些实现方式下,所述载波属性信息还包括所述目标载波所在波束的波束标识、波束仰角中的一种或多种。
在一些实现方式下,所述预设的载波属性信息与OFDM符号的对应关系包括:子载波间隔与OFDM符号的CP长度的对应关系。
在一些实现方式下,所述预设的载波属性信息与OFDM符号的对应关系还包括:子载波间隔与OFDM符号的CS长度的对应关系。
在一些实现方式下,所述CP还用于承载与OFDM符号的数据不同数据。
第三方面,本申请提供一种计算机存储介质,该计算机存储介质可以是非易失性的。 该计算机存储介质中存储有计算机可读指令,当该计算机可读指令被处理器执行时实现前述任意实现方式提供的方法。
第四方面,本申请提供一种计算机程序产品,该计算机程序产品中包含计算机可读指令,当该计算机可读指令被处理器执行时实现前述任意实现方式提供的方法。
第五方面,本申请提供一种通信设备,例如卫星设备或终端设备。该通信设备包括:处理器,存储器。所述存储器用于存储计算机可读指令(或者称之为计算机程序),所述处理器用于读取所述计算机可读指令以实现前述有关通信设备的方面及其任意实现方式提供的方法。
在一些实现方式下,该通信设备还包括收发器,用于接收和发送数据。
附图说明
图1为本申请实施例中在每个OFDM符号中插入的CP与最大时延扩展的长度关系示意图;
图2为本申请实施例提供的在传输OFDM符号时未产生定时偏差的场景示意图;
图3为本申请实施例提供的一种在传输OFDM符号时产生定时点前偏的场景示意图;
图4为本申请实施例提供的另一种在传输OFDM符号时产生定时点前偏的场景示意图;
图5为本申请实施例提供的在传输OFDM符号时产生定时点后偏的场景示意图;
图6为本申请实施例中提供的一种移动卫星通信系统架构示意图;
图7为本申请实施例中提供的适用于卫星通信系统的OFDM符号的结构示意图;
图8为本申请实施例中提供的确定波束的参数对应的OFDM符号的CP长度和CS长度的方法流程示意图;
图9为本申请实施例中卫星的某波束的波束仰角的关系示意图;
图10为本申请实施例中在传输OFDM符号时产生的定时点前偏对应累积定时偏差示意图;
图11为本申请实施例中提供的一种在传输OFDM符号时产生的定时点后偏对应累积定时偏差示意图;
图12为本申请实施例中卫星的某波束的波束仰角与速度分量的关系示意图;
图13为本申请实施例一种提供的非凝视卫星系统示意图;
图14为本申请实施例二种提供的凝视卫星系统示意图;
图15为本申请实施例一种基于NR OFDM符号结构调整CP长度的关系示意图;
图16为本申请实施例一种基于NR OFDM符号结构调整CP长度和CS长度的关系示意图;
图17为本申请实施例另一种基于NR OFDM符号结构调整CP长度和CS长度的关系示意图;
图18为本申请实施例提供一种基于卫星通信的信号传输方法流程示意图;
图19是本申请实施例提供的一种通信设备1900的结构示意图;
图20是本申请实施例提供的另一种通信设备2000的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面对文中出现的一些词语进行解释:
1)OFDM技术,是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,各子载波并行传输。
2)信道,在OFDM系统的信道就是众多频率不同但是相互正交的载波。
3)OFDM符号,是指将相互正交的各子载波经过调制后形成的在某一个符号周期内的波形。
4)ISI(Inter Symbol Interference,符号间干扰),是指对于某一个OFDM符号而言,由于多径传输造成的接收设备接收到的不同路径传输的OFDM符号的混叠。
5)ICI(Inter-Carrier Interference,子载波干扰),子载波之间不再相互正交。
6)多径效应,又称多径衰落,是指无线电波传输过程中会受到地形、地物的影响而产生反射、绕射、散射等导致信号衰减的现象,由于多径传播使得部分电波不能到达接收端,而接收端接收到的信号也是相位、频率和到达时间上都不尽相同的多条路径上发来的信号的合成信号,因而会产生信号的频率性衰落和时延扩展等现象,这些被称为多径衰落或多径效应。
7)定时偏移(也称为定时偏差),是指OFDM符号到达接收设备的时刻和该接收设备预设接收到该OFDM符号的定时时刻之间的时间差。
8)波束,指由卫星天线发射出来的电磁波在地球表面上形成的形状,就像手电筒的光束有一定的范围。或者卫星发射的信号非360°的辐射,而是在一定的方位集中发射的信号波。
需要理解的是,在本申请的描述中,“第一”、“第二”和“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
目前,OFDM与传统FDM相比,具有较高的频谱利用率,传统FDM是将一个信道按频段分开给不同用户使用,为了避免不同频段间的载波干扰,需要在相邻的载波间保留一定的保护频带,这样就导致FDM系统会降低频谱利用率。而OFDM技术则是将各子载波重叠排列,同时保持子载波间的正交性。因此,与传统FDM相比,OFDM具有很高的频谱效率,可以节约很多频谱资源。
OFDM通信系统要求OFDM符号中各子载波相互正交,且每个载波在一个符号时间内有整数个载波周期。但由于载波的多径效应,会导致符号间干扰,使子载波直接的正交性遭到破坏。
为了最大限度的消除符号间干扰,发送设备在发送OFDM符号之前,需要在相邻两个OFDM符号之间插入保护间隔,且保护间隔的长度需要大于信道的最大时延扩展。使得一个OFDM符号不会对下一个OFDM符号造成干扰,从而消除符号间干扰,其中,信道的最大时延扩展,还可以称为最大信道延迟或信道冲击响应长度。如图1所示为NR OFDM符号的结构示意图,其中,τ max表示最大时延扩展。
目前,基于地面网无线通信系统的信道模型确定的各子载波间隔对应的最大时延扩展,NR系统定义了不同子载波间隔下OFDM符号的结构,包括OFDM符号的持续时间和CP持续时间(即CP长度),如下表1所示。其中,Numerlogy可以理解为载波标识或索引。
Figure PCTCN2020113827-appb-000001
表1
综上,OFDM技术在地面通信系统得到广泛的应用。近年来,随着卫星设备的发展,卫星通信的优点日趋显著,这些优点比如包括通信距离远、覆盖范围广、不受地理环境条件限制,因此卫星通信在无线通信领域占有越来越重要的地位。然而,除了同步轨道卫星系统,其他类型卫星系统中卫星相对于地面均有一定的移动速度,而且轨道高度越低,相对速度越大。卫星设备相对于UE有较大的移动速度时,在传输OFDM符号时会产生严重的定时漂移,同时引入ISI和ICI,而OFDM系统是正交多载波传输系统,它的性能极易受到定时偏差的影响。因此,若将上述介绍的NR OFDM符号的传输机制简单搬用到卫星通信系统,则会产生严重的定时漂移,导致系统稳定性差,差误码率高等问题,卫星通信系统无法照搬地面通信系统的OFDM符号传输机制,也就是说,现有的NR OFDM符号传输机制无法满足卫星通信系统的传输需求,应用性较差。
对于上述所讲的NR OFDM符号不适用于卫星通信系统,主要体现在以下两方面,举例来说:
第一方面,下面针对卫星通信系统在传输OFDM符号时可能产生的定时漂移进行介绍说明:
定时偏差为OFDM符号到达所述终端设备的时刻和所述终端设备预设接收到所述OFDM符号的定时时刻之间的时间差。
如图2所示,为终端设备预设接收到OFDM符号的定时时刻(以下简称定时采样时刻)与符号到达终端设备的时刻(即实际OFDM符号到达时刻)完全吻合,没有产生定时偏差。这种情况在高速移动场景下发生的几率极低。
如图3所示,为定时采样时刻相比实际OFDM符号到达时刻提前,即定时点前偏,产生了定时偏差,但由于定时采样时刻处于CP内,未进入τ max(最大时延扩展),因此不会引起符号间干扰。其中,定时导频CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)用于校准定时偏差,定时导频CSI-RS为周期性或非周期性信号。
如图4所示,为另一种定时点前偏的示意图,图4与图3相似,都是定时采样时刻相比实际OFDM符号位置提前,不同的是,图4中定时采样时刻进入了τ max,会引起符号间干扰和载波间干扰。可以这样理解,CP内为当前接收到的OFDM符号的尾部的波形和由于多径延时传递的上一个OFDM符号的尾部的波形,波形混叠,引起符号间干扰,并且破 坏了载波间的正交性,引入载波间干扰。
如图5所示,为定时采样时刻相比实际OFDM符号位置滞后,即定时点后偏,同样产生了定时偏差,且在一个OFDM符号内接收的信号不是完整的载波波形,引起了符号间干扰以及载波间干扰。
其中,产生定时点前偏的原因,可以概括为随着时间的变化,发送设备和接收设备之间的距离逐渐变长,即两者的运动趋势为相对远离,比如,发送设备静止不动,而接收设备却背向远离发送设备,则发送设备发送的数据到达接收设备的时间会比预定时间要晚一些,即定时采样时刻相比实际OFDM符号位置提前。与此相反的,产生定时点后偏的原因,则可以概括为随着时间的变化,发送设备和接收设备之间的距离逐渐变短,即两者的运动趋势为相对靠近,发送设备发送的数据到达接收设备的时间会比预定时间要早一些,即定时采样时刻相比实际OFDM符号位置滞后。
根据现有NR标准可知,在地面通信系统中,移动终端的最大移动速度约为0.2777Km/s,该速度相对于电磁波的传输速度可以忽略不计,因此,在地面通信系统中,在传输OFDM符号时可能出现的符号定时偏差主要由电磁波的多径效应引起,因此,OFDM符号实际到达终端设备的时刻只会比终端设备预设接收到OFDM符号的定时时刻要晚,而不会提前到达。也就是说,在地面通信系统中,对于图3和图4所示的情况,是一种比较常见的现象,而对于图5所示的情况,在地面通信系统中几乎不会出现。
因此,现有NR OFDM符号的传输机制主要是针对图3和图4的情况进行设计的。然而在卫星通信系统中,由于卫星设备的高速移动,上述图3~图5所示的情况均易出现,现有NR OFDM符号只能缓解定时点前偏的问题,无法解决定时点后偏的问题。
另一方面,在卫星通信系统中,根据卫星通信系统的信道模型得到的卫星通信系统的最大时延扩展约为154.89ns。然而,结合表1所示的内容可知在现有NR OFDM符号中,CP长度的最小值仍未290ns(参见表1中子载波间隔为240KHz下的NR OFDM符号),远大于卫星通信系统的最大时延扩展,即NR OFDM符号的CP长度对于卫星通信系统而言过于冗长。本领域技术人员可以理解的是,在相同的调制方式下,CP长度越大,一个OFDM符号所能承载的bit(比特)数就越少,由于导致卫星通信的资源浪费。
为解决上述问题,本申请实施例提供了一种基于卫星通信的信号传输方法。为了更好地理解本申请实施例公开的基于卫星通信的信号传输方法,先对本申请实施例的应用场景进行介绍。请参阅图6,首先以卫星通信系统的典型网络架构为例进行介绍,实际卫星通信与此类似。
如图6所示,为本申请所适用的一种可能的移动卫星通信系统架构示意图,包括卫星设备和终端设备。如果将卫星通信系统与地面通信系统做类比,可以将卫星设备看做是地面的一个或多个网络设备,例如基站。卫星设备向终端设备提供通信服务,卫星设备还可以连接到核心网设备(例如接入和移动管理功能网元(access and mobile management functions,AMF))。
卫星基站主要为终端设备提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。卫星基站是指将人造地球卫星和高空飞行器等作为无线通信的基站,例如演进型基站(eNB)和5G基站(gNB)等。卫星基站可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO) 卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。卫星设备的运行姿态包括:对地非凝视姿态和对地凝视姿态;其中,对地非凝视姿态的卫星设备发射的卫星波束随着卫星运动,在卫星看来自身发射各波束的角度不会随时间改变,地面固定点在卫星过顶期间会经历较为频繁的波束切换,比如,手电筒模拟卫星轨道绕着地球仪运动,手电筒发射的光束的角度不会改变,同时,由于卫星设备比地球自转的速度还要快,因此除同步卫星外,对于静止轨道的卫星与地球的关系,可以想像为地球静止不动,卫星设备绕着地球做周期性圆周运动。因此,该手电筒发射的光束能够扫过地球仪一周;而凝视卫星系统,卫星发射各波束的角度按一定方式调整,以实现对地面固定点的连续观测。比如,手电筒模拟卫星轨道绕着地球仪运动,在手电筒运行过程中,通过调节发射各光束的角度来实在对同一区域的持续观测(手电筒照亮的区域并不改变),可以理解的是,该手电筒发射的各光束的角度是可调的。
终端设备(user equipment,UE)可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。无线终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备,NR通信系统中的终端设备等。
应理解,图6仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图6中未予以画出。
以下,以一个终端设备与卫星设备之间的交互过程为例详细说明本申请实施例,该终端设备可以为处于无线通信系统中与卫星设备具有无线连接关系的终端设备。可以理解的是,卫星设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案来传输OFDM符号。本申请对此并不做限定。
本申请实施例,针对不同轨道高度的卫星设备发送的任一载波,结合各载波的载波属性信息计算该载波适用的OFDM符号,并将该载波属性信息与确定的OFDM符号进行绑定,形成该卫星设备发送的所有载波的载波属性信息与OFDM符号的对应关系,将该对应关系预设至卫星设备或终端设备中,即本申请中的通信设备。其中,载波属性信息包括子载波间隔。
通信设备获取用于与对端设备传输OFDM符号的目标载波的载波属性信息,通过查询预设的载波属性信息与OFDM符号的对应关系,确定目标载波对应的OFDM符号的CP长度。
可见,本申请实施例中通过预设的载波属性信息与OFDM符号的对应关系,调整OFDM符号中的CP长度,各载波对应的OFDM符号中的CP长度不再固定,使得卫星通信系统在传输OFDM符号时,根据载波属性信息减小CP长度,以提高资源利用率,或者增加CP长度,避免引入符号间干扰,降低误码率,提高了系统性能。
相应的,上述预设的载波属性信息与OFDM符号的对应关系为子载波间隔和OFDM符号的CP长度的对应关系。
作为有一种实现方法,上述预设的载波属性信息与OFDM符号的对应关系还可以是子载波间隔和OFDM符号的CP长度和CS长度的对应关系。通信设备还可以通过查询预设的载波属性信息与OFDM符号的对应关系,确定目标载波的载波属性信息对应的OFDM符号的CS长度。以使卫星通信系统中若出现上述图5所示的定时点后偏的情况时,通过在OFDM符号内增加CS段来避免引入符号间干扰。如图7所示,为本申请实施例基于卫星通信系统定义的一种OFDM符号,该OFDM符号包含CP和CS。该图7是在图1基础上,对图1所示的NR OFDM符号的一种改进。
需要说明的是,上述预设的对应关系可以是卫星设备确定的,也可以是终端设备或第三方设备获取了卫星设备的所有载波的载波属性信息后确定的,还可以是基于前述的任一设备确定的对应关系的基础上进行人为设定的。可选的,上述对应关系可以是提前预设在卫星设备中的,也可以是卫星设备在运行过程中,时时计算确定的,本申请实施例对此并不作限制。
上述对应关系是针对卫星设备的轨道高度进行区分的,实际上,卫星设备能够同时发射多个波束,因此,还可以针对目标载波所在波束对上述对应关系进行进一步细分。若载波与OFDM符号的对应关系还包含载波对应的波束信息,则目标载波的载波属性信息还可以包括波束标识和/或波束仰角。
下面给出卫星设备确定载波属性信息和OFDM符号的对应关系的方法,假设该方法由图6所示的架构中的卫星设备执行,如图8所示,本申请提供一种卫星设备确定载波属性信息对应的CP长度和CS长度的方法。该方法可以包括以下步骤:
步骤S801:卫星设备针对自身发射的任意一个波束,获取该波束的波束标识和波束仰角;
以卫星设备发射的一个波束为例,卫星设备获取该波束的波束标识(每个波束标识对应该卫星设备的唯一一个波束)和该波束的波束仰角。
本领域技术人员可以理解的是,波束仰角越小,卫星设备和该区域的相对速度越大,相反的,波束仰角越大,卫星设备和该区域的相对速度越小。其中,相对速度越小,定时漂移也就越小,也就是说,波束仰角不同,该波束的最大定时偏移量不同。因此,本申请实施例中,卫星设备在获取该波束的波束仰角时,可以选取该波束与其覆盖区域的最小波束仰角,即该波束在地球表面的覆盖区域沿处的波束仰角。如图9所示,为本申请实施例提供的一种波束仰角示意图。
步骤S802:卫星设备确定该波束下不同载波对应的最大时延扩展和最大定时偏差的值和最大定时偏差的方向;
需要说明的是,本申请中的不同载波以不同子载波间隔为依据确定不同,比如,若同一波束承载的多个载波的子载波间隔相同,则认为该多个载波相同。
1)卫星设备通过下列方式确定载波对应的最大时延扩展:
卫星设备根据不同轨道高度的卫星通信系统的信道模型,确定不同子载波间隔对应的最大多径扩展;
2)卫星设备通过下列方式确定最大定时偏差:
定时点偏移体现在传输的OFDM符号上,为卫星设备与终端设备在一个定时导频周期内的累积定时点偏移量。如图10所示,为定时点前偏的累积定时偏差示意图;如图11所示,为定时点后偏的累积定时偏差示意图。其中,最大定时偏差量为一个定时导频周期内最后一个符号上的累积定时偏差,计算最大定时偏差量的方式举例如下:
比如:以图12为例,假设卫星设备的移动速度约为v(7.5622km.s-1),该波束覆盖区域的边沿处P点的仰角为10°,1ms时间间隔内,UE和卫星相对位置变化最大约为距离L(6.80598m),则1ms内下行定时偏差约为t=L/v x,其中,卫星的移动速度的方向垂直于与地心连线的方向,则卫星的移动速度在P点的速度分量v x=v·cosα,根据上述数值,可得1ms内下行定时偏差约为t的值约为22.6866ns(转化为采样点约为45Tc),假设定时导频CSI-RS的发送周期为10ms,则一个定时导频周期内的最大定时偏差为t·10=226.866ns。
可见,本申请实施例基于上述方式确定的最大定时偏差,再根据该最大定时偏差调整OFDM符号的CP长度和CS长度,可以在不增加定时导频开销的基础上,消除符号间干扰。
步骤S803:卫星设备根据自身与该波束与地面覆盖区域内的终端的相对运动趋势,确定最大定时点偏移的方向:
卫星设备根据自身的位置与该波束在地面表面的覆盖区域的相对运动趋势,确定最大定时偏差的方向。
如上文所示,若卫星设备和该波束在地面表面的覆盖区域的相对运动趋势为相互靠近,则卫星设备确定最大定时偏差的方向为定时点前偏;若卫星设备和该波束在地面表面的覆盖区域的相对运动趋势为相互远离,则卫星设备确定最大定时偏差的方向为定时点后偏。
其中,卫星设备在确定与该波束在地面表面的覆盖区域的相对运动趋势时,可以根据自身移动速度的方向和发射该波束之间的夹角以及波束的仰角来确定。下面举例来说:
示例1,如图13所示,为本申请实施例提供的一种非凝视卫星通信系统的场景示意图;图13中的(a)为卫星波束辐照地球表面的立体示意图,图13中的(b)为卫星设备与辐照区域的俯视平面关系示意图。在图13中的(b)中,最大的圆圈为卫星设备发射的所有卫星波束下辐照的地球表面的总区域。下面结合图13中的(b)对卫星设备确定自身与不同区域的相对运动趋势进行介绍:
图13中的(b)中虚线A垂直于卫星设备的移动方向,卫星设备的移动方向已知,通过图13中的(b)可以看出,卫星设备相对于虚线A左侧的区域为相对靠近,卫星设备相对于虚线A右侧的区域为相对远离,则示例性的,总结上述位置关系可以得出:若发射的波束与卫星移动方向的夹角不大于90°,则相对运动趋势为相互靠近;若发射的波束与卫星移动方向的夹角大于90°,则相对运动趋势为相对远离。
一种特殊的情况,对于发射的波束与卫星移动方向的夹角等于90°的波束的覆盖区域(虚线A所在区域),即可以认为卫星设备与该波束的覆盖区域为相对靠近,也可以认为 卫星设备与该波束的覆盖区域为相对远离。或者,由于波束仰角越大,卫星设备和终端设备的相对速度越小,因此定时偏差越小;若波束仰角越小,卫星设备和终端设备的相对速度越小,定时偏差也越大,因此,卫星设备在确定与虚线A所在区域的运动趋势时,还可以结合该波束与该区域的最小仰角确定。比如:当波束仰角为0~30°时,卫星设备与该波束的覆盖区域为相对远离,仰角为31°~90°时,卫星设备与该波束的覆盖区域为相对靠近。
示例2,如图14所示,为本申请实施例提供的一种对地凝视姿态的场景示意图;图中椭圆形圈为卫星设备辐照在地球表面的区域,虚线A为覆盖区域左侧的边界,虚线B为覆盖区域右侧的边界,图中向左的箭头为卫星设备的移动方向。下面结合图14对卫星设备确定自身与不同区域的相对运动趋势进行介绍:
如图14中的(a)和图14中的(b)可知,当卫星设备位于虚线B右侧时,卫星设备相对于全部覆盖区域为相对靠近,当卫星设备位于虚线A左侧时,卫星设备相对于全部覆盖区域为相对远离。卫星设备位于虚线A和虚线B之间时,卫星设备相对于不同波束的覆盖区域既有相对靠近又有相对远离,总结以上规律可得:
卫星设备的移动方向与发射波束的夹角小于或等于90°时,卫星设备与该波束的覆盖区域为相对靠近;卫星设备的移动方向与发射波束的夹角大于90°时,卫星设备与该波束的覆盖区域为相对远离。
步骤S804:卫星设备根据确定的该波束承载的载波的最大时延扩展、最大定时偏差的值和最大定时偏差的方向,确定该载波的载波属性信息对应的OFDM符号的CP长度和CS长度;
下面给出卫星设备确定OFDM符号的不同实现方法。
下述方法中,载波的载波属性信息包括上述中的子载波间隔,以及波束标识和/或波束仰角。
实现方法一:卫星设备根据最大时延扩展、最大定时偏差的值和最大定时偏差的方向首先确定CP长度,根据确定的CP长度调整CS长度;
本申请实施例中的OFDM符号的总长度可以沿用NR标准的定义,即卫星设备基于当前NR OFDM符号的结构,根据确定的最大时延扩展、最大定时偏差的值和最大定时偏差的方向调整相同子载波间隔下的NR OFDM符号的CP长度,举例如下:
1)对于定时点前偏的调整:
若最大定时偏差的方向为定时点前偏,则卫星设备判断最大时延扩展和最大定时偏差的值的和是否大于当前NR OFDM符号的CP长度,若不大于,则具有下列几种调整方式,下面举例说明:
调整方式一:沿用当前NR OFDM符号的CP长度;
卫星设备沿用NR OFDM符号的CP长度,示例性的,该段CP用于承载从OFDM符号的数据尾端复制的与CP长度等长的内容(第一数据);作为另一种示例,该段CP还可以用于承载从OFDM符号的数据尾端复制的小于CP长度的内容以及与OFDM符号的数据不同的其他数据(第二数据)。
调整方式二:缩短OFDM符号的CP长度,延长OFDM符号的数据长度;
卫星设备缩短OFDM符号的CP长度,以使缩短后的CP长度等于或大于最大时延扩展和最大定时偏差的值的和,相应的,将CP长度缩短的部分用于承载OFDM符号的数据, 也可以理解为,延长OFDM符号的数据长度,以使OFMD符号能够承载更多的数据。
可以理解的是,结合上述所讲的,卫星通信系统中的OFDM符号的总长度沿用NR标准的定义,即本申请调整CP长度和OFMD符号的数据部分的长度后的OFDM符号的总长度不变,即缩短后的CP长度和延长后的OFDM符号的数据部分的长度的和与调整前的NR OFDM符号的总长度相同。比如:子载波间隔为15KHz时,一个OFDM符号的总长度为71.35ns,CP长度为4.69,OFDM符号的数据长度为66.67ns,假设调整后的OFDM符号的CP长度为2.69ns,则OFDM符号的数据长度为68.67ns。
若最大时延扩展和最大定时偏差的值的和大于当前NR OFDM符号的CP长度,则延长NR OFDM符号中CP长度,减少OFDM符号的数据部分的长度,使调整后的CP长度等于或大于最大时延扩展和最大定时偏差的和。如图15所示,为调整后的OFDM符号中CP长度和最大时延扩展和最大定时偏差的关系示意图。
可选的,卫星设备调整完NR OFDM符号中的CP长度后,基于上述确定的OFDM符号再确定CS长度;若最大定时偏差的方向为定时点前偏,则卫星设备确定不增加CS部分,即OFDM符号中的CS长度为0。
2)对于定时点后偏的调整:
若最大定时偏差的方向为定时点后偏,则卫星设备判断最大时延扩展和最大定时偏差的值的和是否大于相同子载波间隔的NR OFDM符号的CP长度,则卫星将CP长度缩短至等于或大于最大时延扩展,将CP缩短的部分作为CS,即用当前NR OFDM符号中的部分CP作为CS,如图16所示,基于NR OFDM符号,截取部分CP长度,将截取的部分CP作为CS。其中,CS用于承载OFDM符号的首端复制的与CS长度等长的内容。
若最大定时偏差的方向为定时点后偏,且卫星设备确定最大时延扩展和最大定时偏差的值的和大于相同子载波间隔的NR OFDM符号的CP长度,则卫星设备可以将CP长度缩短至等于或大于最大时延扩展,将CP长度缩短的部分作为CS的一部分,需要说明的是,由于CS的长度要大于最大定时偏差,缩短后的CP长度要大于最大时延扩展,因此,将截取的部分CP作为CS之外,还要额外增加CS长度,即CS长度包括部分CP长度和部分OFDM符号的数据长度。如图17所示,基于NR OFDM符号,截取部分CP长度,结合部分CP长度和部分OFDM符号的数据长度形成CS。其中,CS用于承载OFDM符号的首端复制的与CS长度等长的内容。
需要说明的是,在调整CP长度时,也可以沿用当前NR OFDM符号的CP长度,如上述调整方式一所述的,该段CP可以用于承载从OFDM符号的数据尾端复制的小于CP长度的内容以及与OFDM符号的数据不同的其他数据;也就是说,OFDM符号中CP长度不变,需要占用一段OFDM符号的数据长度作为CS。
实现方法二:卫星设备根据最大时延扩展、最大定时偏差的值和最大定时偏差的方向首先确定CS长度,根据确定的CS长度调整CS长度;
卫星设备可以基于当前NR OFDM符号的结构,根据确定的最大时延扩展、最大定时偏差的值和最大定时偏差的方向调整相同子载波间隔下的NR OFDM符号的CS长度。下面举例如下:
1)对于定时点前偏的调整:
若最大定时偏差的方向为定时点前偏,则卫星设备确定CS长度为0,即不需要在OFDM符号中增加CS。
卫星设备确定CS长度为0后,再确定CP长度,其中,确定CP长度的步骤,参见上述实现方法一中,定时点前偏的调整中的CP的确定的步骤,此处不再赘述。
2)对于定时点后偏的调整;
若最大定时偏差的方向为定时点后偏,则卫星设备确定CS长度为等于或大于最大定时偏差的值,CS长度确定后,进一步确定CP长度,其确定方式可以参见上述实现方式一中对CP长度的确定流程,此处不再赘述。
其中,形成CS的方式可以为,将每个OFDM符号首部该CS长度的内容复制到相应每个OFDM符号的末尾位置形成循环后缀。
假设该卫星设备的运行姿态为对地非凝视姿态,在非凝视卫星通信系统中,由于卫星设备发射波束的角度不变,因此,每个波束的卫星仰角不会改变,因此,每个波束下同一子载波间隔对应的CP长度和CS长度不变,因此,对地非凝视姿态的卫星设备在确定出各波束下不同子载波间隔对应的CP长度和CS长度后,可以将波束标识和子载波间隔与对应的CP长度和CS长度进行绑定,形式第一对应关系,如下表2所示,为本申请实施例提供的子载波间隔与CP长度和CS长度的对应关系。
Figure PCTCN2020113827-appb-000002
表2
而在凝视卫星通信系统中,由于卫星设备会调整每个波束的发射角度,因此,每个波束的波束仰角为规律性变化的值,每一个波束的波束仰角的变化范围相同,因此每个波束在同一子载波间隔对应的CP长度和CS长度随着波束仰角变化,因此,对地凝视姿态的卫星设备采用上述方法分别确定各波束在不同波束仰角下各子载波间隔对应的CP长度和CS长度,并将波束标识、波束仰角和子载波间隔与对应的CP长度和CS长度进行绑定,形成第二对应关系。如下表3所示,为本申请实施例提供的子载波间隔和波束仰角与CP长度和CS长度的对应关系。
Figure PCTCN2020113827-appb-000003
表3
应理解,上述列表仅为便于理解而示例的简化示意,该列表中还可以包括其他项目,或减少已有不必要的项目,上述列表中未予以画出。比如:OFDM符号的长度或OFDM符号的总长度,或减少载波参数项或减少CS长度项,或根据各波束覆盖的小区划分各波束在不同小区对应的CP长度和CS长度时,还可以在该对应关系中添加小区标识等信息。
基于上述方式,由于对地凝视姿态的卫星设备的地面覆盖区域不变,且卫星设备的速度较高,按照上述第二对应关系,卫星设备需要时时调整OFDM符号的CP长度和CS长度,因此,还可以确定各子载波间隔下,各波束对应的不同波束仰角下的CP长度的最大值和CS长度的最大值,作为该波束对应的CP长度和CS长度,相应的,卫星设备将子载波间隔和波束标识与CP长度和CS长度进行绑定,形成另一种形式的第二对应关系。或者卫星设备确定各子载波间隔下,各波束仰角对应的不同波束的CP长度的最大值和CS长度的最大值,作为该波束仰角对应的CP长度和CS长度,相应的,卫星设备将子载波间隔和波束仰角与CP长度和CS长度进行绑定,形成第三种形式的第二对应关系。
可选的,同一卫星设备发射的不同波束还可以采用同一OFDM符号,卫星设备还可以通过下列方式确定各轨道高度的卫星设备对应的固定的OFDM符号:
根据NTN(Non-terrestrial network,非地面网络)协议中固定的卫星高度,LEO卫星设备的轨道高度为600km,卫星设备的移动速度为7.5622km.s-1,按照上述方法确定1ms内下行定时偏差约为22.6866ns;MEO卫星设备的轨道高度为1500km,卫星设备的移动速度为7.1172km.s-1,1ms内下行定时偏差约为21.3516ns;HEO卫星设备的轨道高度为10000km,卫星设备的移动速度为和4.9301km.s-1,1ms内下行定时偏差约为14.7903ns。
根据前述所讲的,在卫星通信系统中,根据卫星通信系统的信道模型得到的卫星通信系统的最大时延扩展约为154.89ns。然而,结合表1所示的内容可知在现有NR OFDM符号中,CP长度的最小值仍未290ns,因此,结合表1可知,其他子载波间隔对应的NR OFDM符号中的CP长度大于最大时延扩展和最大定时偏差的和,因此,为避免定时点偏差的方向为定时后偏会引入ISI的情况,可以截取当前NR OFDM符号中的CP的部分长度作为CS,如下表4所示,为本申请确定的LEO卫星设备不同子载波间隔对应的OFDM符号的CP长度和CS长度:
Numerlogy(载波参数) 0 1 2 3 4
子载波间隔(KHz) 15 30 60 120 240
OFDM的符号长度(us) 66.67 33.33 16.67 8.33 4.17
CP长度(us) 4.463 2.113 0.943 0.343 0.29
CS长度(us) 0.227 0.227 0.227 0.227 0
表4
如下表5所示,为本申请确定的MEO卫星设备不同子载波间隔对应的OFDM符号的CP长度和CS长度:
Numerlogy(载波参数) 0 1 2 3 4
子载波间隔(KHz) 15 30 60 120 240
OFDM的符号长度(us) 66.67 33.33 16.67 8.33 4.17
CP长度(us) 4.476 2.126 0.956 0.356 0.29
CS长度(us) 0.214 0.214 0.214 0.214 0
表5
如下表6所示,为本申请确定的HEO卫星设备不同子载波间隔对应的OFDM符号的CP长度和CS长度:
Numerlogy(载波参数) 0 1 2 3 4
子载波间隔(KHz) 15 30 60 120 240
OFDM符号长度(us) 66.67 33.33 16.67 8.33 4.17
CP长度(us) 4.542 2.192 1.022 0.422 0.29
CS长度(us) 0.148 0.148 0.148 0.148 0
表6
需要说明的是,由于子载波间隔为240KHz对应的NR OFDM符号的CP长度为290ns,小于最大时延扩展和最大定时偏差的和,则可以不截取CP的长度,且由于OFDM符号长度也较小,若添加CS,则一个OFDM符号承载的数据较少,也会造成资源浪费,因此,可以选择不添加CS,即CS的长度为0。
卫星设备将各子载波间隔与对应的CP长度和CS长度进行绑定,形成第三绑定关系,需要说明的是,上述表3~表4仅为举例,其中,表中CS长度和CP长度仅为举例的一个数值,还可以是其他数值,本申请实施例并不限定CS长度和CP长度的值。比如:以表4为例,将子载波间隔为240KHz对应的OFDM符号长度调整为4.022,将CS的长度调整为0.148。
可选的,卫星设备还可以基于如表2所示的第一对应关系中选择各子载波间隔下,CP长度的最大值和CS长度的最大值,将CP长度的最大值作为该子载波间隔对应的OFDM 符号的CP长度,将CS长度的最大值作为该子载波间隔对应的OFDM符号的CS长度,将该子载波间隔与该OFDM符号进行绑定,形成该轨道高度的对地非凝视姿态的卫星设备的子载波间隔与CP长度和CS长度的对应关系;同样的,卫星设备可以基于上述方法,确定对地凝视姿态的卫星设备的子载波间隔与CP长度和CS长度的对应关系。
进一步,卫星设备确定载波属性信息与CP长度和CS长度的对应关系后,可以将该对应关系通知给终端设备,基于图6所示的架构,如图18所示,为提供的基于卫星通信系统进行OFDM符号传输的方式,该方法可以包括以下步骤:
步骤1800,卫星设备获取用于向终端i传输OFDM符号的目标载波对应的载波属性信息;
步骤1801,卫星设备向终端i发送目标载波的载波属性信息;
步骤1802,终端i获取卫星设备发送的目标载波的载波属性信息,并根据目标载波的载波属性信息和预设的载波属性信息与CP长度和CS长度的对应关系,确定该目标载波对应的CP长度和CS长度;
步骤1803,卫星设备获取用于向终端j传输OFDM符号的目标载波的载波属性信息;
步骤1804,卫星设备根据终端j的目标载波的载波属性信息和预设的载波属性信息与CP长度和CS长度的对应关系,确定终端j的目标载波对应的CP长度和CS长度,其中,CS长度可为0。
步骤1805,卫星设备向终端j发送目标载波对应的CP长度和CS长度信息。
需要说明的是,步骤1800~步骤1802与步骤1803~步骤1805为本申请中卫星通信系统中卫星设备和终端设备的两种交互方式,并非表示两种方式的先后顺序,比如,卫星设备可以同时执行上述步骤1800~步骤1802和步骤1803~步骤1805,本申请实施例对此不作限制。
其中,目标载波是指卫星设备发送的用于向该终端设备传输OFDM符号的载波。具体的发送方式包括但不限于下列方式:
发送方式一:卫星设备通过各波束广播的方式通知终端设备;
卫星设备将该载波属性信息与CP长度和CS长度的对应关系、目标载波的载波属性信息或确定的CP长度和CS长度的信息通过各波束进行广播。其中,前述信息的载体有多种,比如将前述信息置于MIB(Master Information Block,主信息块)或SIB(System Information Blocks,系统信息块)中进行广播,下面举例说明:
比如:卫星设备将确定的对应关系置于MIB中,对于初始接入波束的终端设备,根据广播的MIB获取该对应关系,同时卫星设备还可以将用于向该终端设备传输OFDM符号的目标载波的载波属性信息置于MIB或SIB中下发,因此,终端设备可以根据获取的目标载波的载波属性信息和该对应关系确定CP长度和CS长度,其中,CS长度可以为0。
发送方式二,卫星设备还可以使用单播(点对点)方式通知终端设备;
即卫星设备与各终端设备建立专用的数据链路传输载波属性信息与CP长度和CS长度的对应关系、目标载波的载波属性信息或确定的CP长度和CS长度等信息。
发送方式三:卫星设备通过网络设备转发;
比如,卫星设备将上述信息下发到各波束对应的基站,由该基站通知自身所在的小区内的终端设备。
其中,网络设备是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation  Node B,gNodeB)。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的AP,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR系统中的gNodeB等。另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
最后为了实现低频段的优化,可以在低频段引入PT-RS导频,用于终端设备根据PT-RS导频对相位噪声进行计算和补偿,以提高链路性能。
本领域技术人员已知,FR2频段,卫星设备可以向接收设备发送PT-RS导频,接收设备根据PT-RS做相位噪声补偿,以纠正同一个时隙内不同符号的相位变化。然而在FR1频段还没有实现该技术,本申请实施例,在FR1频段引入PT-RS导频的时域密度可以沿用FR2频段的PT-RS导频的时域密度,也可以通过下列方式确定PT-RS导频的时域密度:
由于卫星设备与终端设备的相对高速运动,会引起同一个时隙内不同符号的相位变化,因为,可以根据卫星设备和终端设备最大相对速度对PT-RS导频的时域密度进行划分,下面进行举例说明:
如下表7所示,为本申请实施例提供的LEO针对终端设备的速度设定的低频段PT-RS导频的时域密度划分。
Figure PCTCN2020113827-appb-000004
表7
下面针对表7进行解读,当终端设备的速度大于7.44Km/s时,卫星设备在FR1频段 发送PT-RS导频的时域密度为每个符号发送一次;终端设备的速度大于5.58Km/s,不大于7.74时,卫星设备则FR1频段发送PT-RS导频的时域密码为每4个符号发送一次,以此类推。
需要说明的是,表7仅为举例,本申请实施例并不限制于具体的数值,该数值可以在一定范围内波动,对于不同轨道高度的卫星设备,可以依据上述方式对FR1频段的PT-RS导频的时域密度进行划分,此处不再赘述。
卫星设备将PT-RS导频的时域密度信息通知给接收设备。比如,卫星设备将PT-RS导频的时域密度信息置于SIB或RRC(Radio Resource Control,无线资源控制)消息中发送给接收设备。该接收设备可以是终端设备或网络设备。
图19是本申请实施例提供的一种通信设备1900的结构示意图,例如终端设备或卫星设备。如图19所示,该通信设备1900包括:
获取单元1901,用于获得用于传输OFDM符号的目标载波对应的载波属性信息,其中,所述目标载波的载波属性信息包括子载波间隔;
确定单元1902,用于根据所述目标载波的载波属性信息和预设的载波属性信息与CP长度的对应关系,确定所述OFDM符号的CP长度,其中,所述CP用于承载第一数据,所述第一数据为OFDM符号中的数据。
可选的,所述确定单元1902,还用于根据所述目标载波的载波属性信息和所述预设的载波属性信息与CS长度的对应关系,确定所述OFDM符号的CS长度,其中,所述CS长度为部分CP长度和/或OFDM符号中的部分数据的长度。
可选的,所述载波属性信息还包括所述目标载波所在波束的波束标识、波束仰角中的一种或多种。
可选的,所述预设的载波属性信息与OFDM符号的对应关系包括:子载波间隔与CP长度的对应关系。
可选的,所述预设的载波属性信息与OFDM符号的对应关系还包括:子载波间隔与CP长度和CS长度的对应关系;或
子载波间隔和波束标识与CP长度和CS长度的对应关系;或
子载波间隔和波束仰角与CP长度和CS长度的对应关系;或
子载波间隔、波束标识和波束仰角与CP长度和CS长度的对应关系。
可选的,所述CP还用于承载第二数据,其中所述第二数据为与OFDM符号不同的数据。
本申请实施例中的通信设备可能有部分单元(或器件)为通过硬件电路来实现而另一部分单元(或器件)通过软件来实现,也可能其中所有单元(或器件)都通过硬件电路来实现,还可能其中所有单元(或器件)都通过软件来实现。
图20是本申请实施例提供的一种通信2000的结构示意图,如图20所示,一种通信设备1900,例如卫星设备或终端设备。该通信设备2000包括:处理器2001,存储器2002,其中,存储器2002可以独立于处理器之外或独立于网络设备之外(Memory#3),也可以在处理器或网络设备之内(Memory#1和Memory#2)。存储器1902可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
所述存储器2002用于存储计算机可读指令(或者称之为计算机程序)。
所述处理器2001用于读取所述计算机可读指令以实现前述有关通信设备的方面及其 任意实现方式提供的方法。
可选的,所述存储器2002(Memory#1)位于所述装置内。
可选的,所述存储器2002(Memory#2)与所述处理器集成在一起。
可选的,所述存储器2002(Memory#3)位于所述装置之外。
可选的,该第一网络设备还包括收发器2003,用于接收和发送数据。
另外,该处理器2001可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。另外,该存储器2002可以包括:易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、云存储(cloud storage)、网络附接存储(NAS:network attached Storage)、网盘(network drive)等;存储器还可以包括上述种类的存储器的组合或者其他具有存储功能的任意形态的介质或产品。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
根据本申请的实施方式的用于配置参数的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在服务器设备上运行。然而,本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被信息传输、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由周期网络动作系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算设备,或者,可以连接到外部计算设备。
本申请实施例针对基于卫星通信的信号传输方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种基于卫星通信的信号传输的方案。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (14)

  1. 一种基于卫星通信的信号传输方法,其特征在于,包括:
    通信设备获得用于传输正交频分复用OFDM符号的目标载波对应的载波属性信息,其中,所述目标载波的载波属性信息包括子载波间隔;
    所述通信设备根据所述目标载波的载波属性信息和预设的载波属性信息与循环前缀CP长度的对应关系,确定所述OFDM符号的CP长度,其中,所述CP用于承载第一数据,所述第一数据为OFDM符号中的数据。
  2. 如权利要求1所述的方法,其特征在于,所述通信设备获得用于传输OFDM符号的目标载波对应的载波属性信息之后,还包括:
    所述通信设备根据所述目标载波的载波属性信息和所述预设的载波属性信息与循环后缀CS长度的对应关系,确定所述OFDM符号的CS长度,其中,所述CS长度为部分CP长度和/或OFDM符号中的部分数据的长度。
  3. 如权利要求2所述的方法,其特征在于,所述载波属性信息还包括所述目标载波所在波束的波束标识、波束仰角中的一种或多种。
  4. 如权利要求3所述的方法,其特征在于,所述预设的载波属性信息与CP长度的对应关系包括:子载波间隔与CP长度的对应关系。
  5. 如权利要求3所述的方法,其特征在于,所述预设的载波属性信息与OFDM符号的对应关系还包括:子载波间隔与CP长度和CS长度的对应关系;或
    子载波间隔和波束标识与CP长度和CS长度的对应关系;或
    子载波间隔和波束仰角与CP长度和CS长度的对应关系;或
    子载波间隔、波束标识和波束仰角与CP长度和CS长度的对应关系。
  6. 如权利要求1所述的方法,其特征在于,所述CP还用于承载第二数据,其中所述第二数据为与OFDM符号不同的数据。
  7. 一种通信设备,其特征在于,包括:
    获取单元:获得用于传输OFDM符号的目标载波对应的载波属性信息,其中,所述目标载波的载波属性信息包括子载波间隔;
    确定单元:根据所述目标载波的载波属性信息和预设的载波属性信息与CP长度的对应关系,确定所述OFDM符号的CP长度,其中,所述CP用于承载第一数据,所述第一数据为OFDM符号中的数据。
  8. 如权利要求7所述的通信设备,其特征在于,所述确定单元,还用于:
    根据所述目标载波的载波属性信息和所述预设的载波属性信息与CS长度的对应关系,确定所述OFDM符号的CS长度,其中,所述CS长度为部分CP长度和/或OFDM符号中的部分数据的长度。
  9. 如权利要求8所述的通信设备,其特征在于,所述载波属性信息还包括所述目标载波所在波束的波束标识、波束仰角中的一种或多种。
  10. 如权利要求9所述的通信设备,其特征在于,所述预设的载波属性信息与OFDM符号的对应关系包括:子载波间隔与CP长度的对应关系。
  11. 如权利要求9所述的通信设备,其特征在于,所述预设的载波属性信息与OFDM符号的对应关系还包括:子载波间隔与CP长度和CS长度的对应关系;或
    子载波间隔和波束标识与CP长度和CS长度的对应关系;或
    子载波间隔和波束仰角与CP长度和CS长度的对应关系;或
    子载波间隔、波束标识和波束仰角与CP长度和CS长度的对应关系。
  12. 如权利要求7所述的通信设备,其特征在于,所述CP还用于承载第二数据,其中所述第二数据为与OFDM符号不同的数据。
  13. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-6中任意一项所述的基于卫星通信的信号传输方法。
  14. 一种通信设备,其特征在于,包括:处理器,存储器;
    所述存储器用于存储计算机可读指令或者计算机程序,所述处理器用于读取所述计算机可读指令以实现如权利要求1-6中任意一项所述的基于卫星通信的信号传输方法。
PCT/CN2020/113827 2019-09-29 2020-09-07 一种基于卫星通信的信号传输方法及设备 WO2021057458A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022519452A JP7430782B2 (ja) 2019-09-29 2020-09-07 衛星通信に基づく信号伝送方法及びデバイス
EP20869826.6A EP4030716A4 (en) 2019-09-29 2020-09-07 SIGNAL TRANSMISSION METHOD AND DEVICE BASED ON SATELLITE COMMUNICATIONS
US17/706,291 US20220217033A1 (en) 2019-09-29 2022-03-28 Signal transmission method based on satellite communication and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936092.7A CN112583752B (zh) 2019-09-29 2019-09-29 一种基于卫星通信的信号传输方法及设备
CN201910936092.7 2019-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,291 Continuation US20220217033A1 (en) 2019-09-29 2022-03-28 Signal transmission method based on satellite communication and device

Publications (1)

Publication Number Publication Date
WO2021057458A1 true WO2021057458A1 (zh) 2021-04-01

Family

ID=75111247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113827 WO2021057458A1 (zh) 2019-09-29 2020-09-07 一种基于卫星通信的信号传输方法及设备

Country Status (5)

Country Link
US (1) US20220217033A1 (zh)
EP (1) EP4030716A4 (zh)
JP (1) JP7430782B2 (zh)
CN (1) CN112583752B (zh)
WO (1) WO2021057458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230351A1 (ja) * 2021-04-28 2022-11-03 ソニーグループ株式会社 通信装置、通信システム及び通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190081A (zh) * 2021-04-02 2022-10-14 展讯半导体(南京)有限公司 一种数据传输方法、通信装置、芯片及模组设备
CN117879697B (zh) * 2024-03-13 2024-05-28 中国电子科技集团公司第五十四研究所 一种mf-tdma卫星网资源动态均衡方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063353A (zh) * 2014-03-07 2016-10-26 华为技术有限公司 具有灵活子载波间隔和符号持续时间的用于正交频分复用的系统和方法
CN108023703A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 通信方法和通信装置
US20190253183A1 (en) * 2016-08-12 2019-08-15 Zte Corporation Wireless signal transmission method and apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019255A1 (en) 2004-08-17 2006-02-23 Lg Electronics Inc. Method for detecting ofdm symbol timing in ofdm system
CN101056151B (zh) * 2006-04-10 2010-09-08 中国科学院上海微系统与信息技术研究所 多播单播兼容的正交频分时分复用发射、接收机及其方法
GB2463508B (en) 2008-09-16 2011-04-13 Toshiba Res Europ Ltd Wireless communications apparatus
CN101674163B (zh) * 2009-09-29 2013-12-04 中兴通讯股份有限公司 多天线系统中物理上行控制信道的数据传输方法与装置
US10674514B2 (en) 2014-10-31 2020-06-02 Mitsubishi Electric Corporation Communication system
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
CN107154907A (zh) * 2016-03-03 2017-09-12 北京三星通信技术研究有限公司 基于滤波的信号发送、接收方法及相应的发射机与接收机
US10461975B2 (en) * 2016-05-11 2019-10-29 Qualcomm Incorporated Dynamic cyclic prefix (CP) length in wireless communication
WO2018028621A1 (zh) * 2016-08-12 2018-02-15 中兴通讯股份有限公司 无线信号传输方法及装置
US11240774B2 (en) 2017-06-02 2022-02-01 Qualcomm Incorporated Timing advance group for new radio
JP7279640B2 (ja) 2017-11-16 2023-05-23 ソニーグループ株式会社 端末装置、基地局装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063353A (zh) * 2014-03-07 2016-10-26 华为技术有限公司 具有灵活子载波间隔和符号持续时间的用于正交频分复用的系统和方法
US20190253183A1 (en) * 2016-08-12 2019-08-15 Zte Corporation Wireless signal transmission method and apparatus
CN108023703A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030716A4 *
THALES, FRAUNHOFER IIS: "NR-NTN: Analysis of the applicability of NR numerology to satellite communication TDOC", 3GPP DRAFT; RP-172277_NR NUMEROLOGY FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Lisbon, Portugal; 20171218 - 20171221, 17 December 2017 (2017-12-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051364968 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230351A1 (ja) * 2021-04-28 2022-11-03 ソニーグループ株式会社 通信装置、通信システム及び通信方法

Also Published As

Publication number Publication date
CN112583752A (zh) 2021-03-30
JP2022550128A (ja) 2022-11-30
CN112583752B (zh) 2022-10-11
EP4030716A1 (en) 2022-07-20
US20220217033A1 (en) 2022-07-07
JP7430782B2 (ja) 2024-02-13
EP4030716A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US11290894B2 (en) Apparatuses and methods for beam identification through the physical random access channel (PRACH) and efficient PRACH resource utilization
CN108243391B (zh) 卫星通信中的小区搜索、小区接入方法及装置
WO2021057458A1 (zh) 一种基于卫星通信的信号传输方法及设备
US11563828B2 (en) Edge computing platform capability discovery
US10536312B2 (en) System, method, and apparatus for low power cyclic prefix (CP) based hybrid spread waveforms
CN111357249B (zh) 用于pi/2二进制相移键控(bpsk)调制的参考信号
US11109392B2 (en) Communication method, network device, and relay device
US9277453B2 (en) Method and a system for transmitting pilot
KR20200111281A (ko) 복조 기준 신호들을 사용하는 위상 잡음 추적 기준 신호 시퀀스 생성을 위한 시스템들 및 방법들
JP2019517746A (ja) 同期チャネルおよびブロードキャストチャネルのリソース選択による仮説の伝達
TW201735574A (zh) 裝置及方法
CN105704807A (zh) 定时提前方法和装置
JP2022046566A (ja) 位相トラッキング基準信号
CN116195310A (zh) 用于调整无线通信系统的上行链路定时的方法和装置
US20210409975A1 (en) Enhancement to expedite secondary cell (scell) or primary scell (pscell) addition or activation
WO2017107716A1 (zh) 一种数据帧实现方法和装置
WO2018059550A1 (zh) 参考信号的处理方法、用户设备和基站
US11323961B2 (en) Energy-efficient base station with synchronization
US20240045015A1 (en) Uplink-based and downlink-based positionings
KR20230069107A (ko) 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
CN114982362A (zh) 用于通信的方法、设备和计算机存储介质
CN116319189B (zh) 用于无线通信的方法及装置
US11848745B2 (en) Method and apparatus for accessing base station in satellite communication system
WO2023216112A1 (en) Methods and apparatus for sensing-assisted doppler compensation
WO2021163923A1 (en) Method, device and computer storage medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869826

Country of ref document: EP

Effective date: 20220412