KR20230069107A - 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 - Google Patents

전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR20230069107A
KR20230069107A KR1020237008336A KR20237008336A KR20230069107A KR 20230069107 A KR20230069107 A KR 20230069107A KR 1020237008336 A KR1020237008336 A KR 1020237008336A KR 20237008336 A KR20237008336 A KR 20237008336A KR 20230069107 A KR20230069107 A KR 20230069107A
Authority
KR
South Korea
Prior art keywords
signal
information
self
transmitting
interference
Prior art date
Application number
KR1020237008336A
Other languages
English (en)
Inventor
김인수
김우찬
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20230069107A publication Critical patent/KR20230069107A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Abstract

본 문서는 무선 통신 시스템에서 송신 장치가 신호를 송수신하는 방법에 관한 것으로, 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계; 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계; 상기 RS에 연관된 피드백 정보를 수신하는 단계; 및 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되, 상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고, 상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함하는, 신호를 송수신하는 방법에 대해 개시하고 있습니다.

Description

전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
전 이중 통신(Full Duplex Radio, FDR)을 지원하는 무선통신시스템에서 상기 전 이중 통신과 관련된 데이터를 송수신하는 방법 및 이를 위한 장치에 대한 것이다.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
또한, 상기 단말 또는 차량은 상기 기지국으로부터 업링크 신호에 대한 자원 할당 및 다운링크 신호에 대한 자원 할당을 받을 수 있다. 상기 단말 또는 차량은 상기 업링크 신호에 대한 자원을 UCI (uplink control information)를 통하여 기지국으로부터 할당 받거나, 다운링크 신호에 대한 자원을 DCI(downlink control information)를 통하여 기지국으로부터 할당 받을 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
해결하고자 하는 과제는 전 이중 통신 (full duplex radio: FDR) 환경에서는 반 이중 통신에서의 빔포밍 (beamforming) 기술 적용 시 원하는 신호에 대해 빔 이득 (beam gain)을 최대화하는 종래 빔포밍 방식을 그대로 사용하면, 사이드로브 (sidelobe) 빔으로부터 수신되는 자기 간섭 (self-interference: SI) 영향을 고려하지 않게 되어 기지국과 단말 간 통신함에 있어 링크 품질 (quality) 저하를 초래하는 문제가 발생한다. 이를 개선하기 위해 본 문서는 FDR 시스템의 경우 빔포밍 기술을 적용하여, 수신단에서 추가 회로도 구현 없이 무선 주파수 도메인에서 SI 영향을 줄일 수 있는 빔 트래킹 (tracking) 방법을 제공하고자 한다.
기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 문서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 측면에 따른 무선 통신 시스템에서 송신 장치가 신호를 송수신하는 방법에 있어서, 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계; 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계; 상기 RS에 연관된 피드백 정보를 수신하는 단계; 및 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되, 상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고, 상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함할 수 있다.
또는, 상기 SI 신호의 세기를 측정하는 단계는, 초기 빔 탐색 시 결정된 빔 패턴에 기초하여 상기 송신 빔을 송신하는 제1 어레이에서 형성되는 신호를 제2 어레이에서 수신하여 측정하는 것을 포함할 수 있다.
또는, 상기 RS를 송신하는 단계는 상기 제1 어레이에서 한 주기에 해당하는 빔 스위핑을 수행하는 것을 포함하고, 상기 빔 스위핑은 상기 초기 빔 탐색 시 결정된 상기 빔 패턴의 메인 로브 빔의 전력이 절반이되는 영역 내에서 수행될 수 있다.
또는, 상기 피드백 정보는 링크 품질에 대한 정보를 포함하고, 상기 링크 품질에 대한 정보는 인덱스 형식일 수 있다.
또는, 상기 송신 빔을 조정하는 단계는 상기 링크 품질 대비 상기 SI 신호의 세기의 비를 최대화하는 방향으로 상기 송신 빔을 조정하는 것일 수 있다.
또는, 상기 RS는 DMRS (demodulation reference signal) 또는 CSI-RS (channel state information-reference signal)일 수 있다.
또는, 상기 RS의 자원은 콤 (comb) 타입으로 할당될 수 있다.
다른 측면에 따르면, 무선 통신 시스템의 송신 장치에 있어서, 송신부; 수신부; 및 제어부를 포함하고, 상기 송신부는 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하고, 상기 제어부는 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하고, 상기 수신부는 상기 RS에 연관된 피드백 정보를 수신하고, 및 상기 제어부는 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하고, 상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고, 상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함할 수 있다.
다른 측면에 따르면, 단말을 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하고, 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계; 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계; 상기 RS에 연관된 피드백 정보를 수신하는 단계; 및 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되, 상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고, 상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함할 수 있다.
다른 측면에 따르면, 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서가 단말에 대한 동작을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작은: 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계; 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계; 상기 RS에 연관된 피드백 정보를 수신하는 단계; 및 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되, 상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고, 상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함할 수 있다.
본 문서에서는 전 이중 무선 전송(Full-duplex radio: FDR) 통신 시스템에서의 빔포밍 기술 적용에 관한 것으로, 수신단에서 추가 회로도의 구현 없이 SI 영향을 줄일 수 있다.
다양한 실시예에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 문서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 문서에 대한 이해를 제공하기 위한 것으로서 본 문서의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 문서의 원리를 설명하기 위한 것이다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 NR 시스템의 구조를 나타낸다.
도 3은 NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 4는 NR의 무선 프레임의 구조를 나타낸다.
도 5는 NR 프레임의 슬롯 구조를 나타낸다.
도 6은 SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 7은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 8 및 도 9는 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 10은 본 문서의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 11은 본 문서의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 12는 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 13은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 14는 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 15는 도 14를 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화한 도면이다.
도 16은 일반적인 Full duplex radio (FDR) 기술을 수행하기 위한 통신 장치의 RF 체인을 나타낸 도면이다.
도 17은 FDR 방식을 사용할 때 자기간섭 신호 제거를 위한 통신 장치의 RF 체인 구조의 일 예를 도시한 도면이다.
도 18은 자기간섭 기준 신호 생성기를 제어하기 위해 통신 대역 양쪽에서 전송하는 두 개의 톤을 예시한 도면이다.
도 19는 본 문서에 적용 가능한 전 이중 통신 (full duplex radio) 환경에서 빔포밍을 지원하는 통신 시스템을 예시한 도면이다.
도 20은 본 문서에 적용 가능한 FDR 환경에서 빔포밍 적용시 자기 간섭 영향이 미치는 경우를 예시한 도면이다.
도 21은 본 문서에 따른 FDR 환경에서 각 어레이 별로 자기 간섭 영향을 줄이는 빔 트래킹 프로세스를 도시한 도면이다.
도 22는 본 문서에 따른 어레이 0으로부터 어레이 1으로 수신되는 자기 간섭 신호를 측정하는 것을 도시한 도면이다.
도 23은 본 문서에 따른 기지국 어레이 0으로부터 UE0에 수신되는 하향링크(downlink) 신호를 측정하는 것을 도시한 도면이다.
도 24는 본 문서에 따른 측정 기반 기지국 어레이 0의 빔 조정을 도시한 도면이다.
도 25는 본 문서에 따른 어레이 1로부터 어레이 0에 수신되는 자기 간섭 신호를 측정하는 것을 도시한 도면이다.
도 26은 본 문서에 따른 기지국 어레이 1로부터 단말 0에 수신되는 하향링크 신호를 측정하는 것을 도시한 도면이다.
도 27은 본 문서에 따른 측정 기반 기지국 어레이 1의 빔 조정을 도시한 도면이다.
도 28은 본 문서에 따른 자기 간섭 측정을 위한 참조 신호의 시간 및 주파수 자원 할당에 대한 예시도이다.
도 29는 본 문서에 따른 FDR 환경에서의 기지국 어레이에 수신된 참조 신호의 주파수 자원 정보를 도시한 도면이다.
도 30는 본 문서에 따른 FDR 환경에서 자기 간섭 측정 및 빔 트래킹 동작을 위한 시그널링 절차를 도시한 도면이다.
도 31은 본 문서에 따른 FDR 환경에서 자기 간섭 측정 및 빔 트래킹 동작을 위한 하향링크 및 상향링크의 할당 구조를 도시한 도면이다.
도 32는 본 문서에 따른 기지국의 송수신 어레이에서의 빔 트래킹을 통한 자기 간섭 신호 스펙트럼을 도시한 도면이다.
도 33은 본 문서에 적용되는 통신 시스템을 예시한다.
도 34는 본 문서에 적용될 수 있는 무선 기기를 예시한다.
도 35는 본 문서에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다
도 36은 본 문서에 적용되는 휴대 기기를 예시한다.
도 37은 본 문서에 적용되는 차량 또는 자율 주행 차량을 예시한다.
이하, 본 문서에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 문서의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 문서가 실시될 수 있는 유일한 실시 형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 문서의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 문서가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. 몇몇 경우, 본 문서의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블럭도 형식으로 도시될 수 있다. 또한, 본 문서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하에서, 하향링크(downlink, DL)는 기지국(base station, BS)에서 사용자 기기(user equipment, UE)로의 통신을 의미하며, 상향링크(uplink, UL)는 UE에서 BS로의 통신을 의미한다. 하향링크에서 전송기(transmitter)는 BS의 일부이고, 수신기(receiver)는 UE의 일부일 수 있다. 상향링크에서 전송이기는 UE의 일부이고, 수신기는 BS의 일부일 수 있다. 본 문서에서 BS는 제 1 통신 장치로, UE는 제 2 통신 장치로 표현될 수도 있다. BS는 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 접속 포인트(access point, AP), 네트워크 혹은 5G 네트워크 노드, AI 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, UE는 단말(terminal), MS(Mobile Station), UT(User Terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier FDMA) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다.
본 문서에서, 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 포인트(point)을 말한다. 다양한 형태의 BS들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 BS가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 BS의 전력 레벨(power level) 더욱 낮은 전력 레벨을 갖는다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 문서에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역 혹은 무선 자원을 말한다. 지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(con도)되는 주파수 크기인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
본 문서에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상향링크/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다.
한편, 무선 자원과 연관된 "셀"은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 컴포넌트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의될 수 있다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(con도d) 수도 있다. 반송파 집성(carrier aggregation)이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 해당 셀을 통해 전송되는 시스템 정보(system information)에 의해 지시될 수 있다. 여기서, 반송파 주파수는 각 셀 혹은 CC의 중심 주파수(center frequency)와 같을 수도 혹은 다를 수도 있다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. Scell이라 함은 UE가 BS와 RRC(Radio Resource Control) 연결 수립(connection establishment) 과정을 수행하여 상기 UE와 상기 BS 간에 RRC 연결이 수립된 상태, 즉, 상기 UE가 RRC_CONNECTED 상태가 된 후에 설정될 수 있다. 여기서 RRC 연결은 UE의 RRC와 BS의 RRC가 서로 RRC 메시지를 주고 받을 수 있는 통로를 의미할 수 있다. Scell은 UE에게 추가적인 무선 자원을 제공하기 위해 설정될 수 있다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.
셀은 고유의 무선 접속 기술을 지원한다. 예를 들어, LTE 셀 상에서는 LTE 무선 접속 기술(radio access technology, RAT)에 따른 전송/수신이 수행되며, 5G 셀 상에서는 5G RAT에 따른 전송/수신이 수행된다.
반송파 집성 기술은 광대역 지원을 위해 목표 대역폭(bandwidth)보다 작은 시스템 대역폭을 가지는 복수의 반송파들을 집성하여 사용하는 기술을 말한다. 반송파 집성은 각각이 시스템 대역폭(채널 대역폭이라고도 함)을 형성하는 복수의 반송파 주파수들을 사용하여 하향링크 혹은 상향링크 통신을 수행한다는 점에서, 복수의 직교하는 부반송파들로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 하향링크 혹은 상향링크 통신을 수행하는 OFDMA 기술과 구분된다. 예를 들어, OFDMA 혹은 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM)의 경우에는 일정 시스템 대역폭을 갖는 하나의 주파수 대역이 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할되고, 정보/데이터가 상기 복수의 부반송파들 내에서 매핑되며, 상기 정보/데이터가 맵핑된 상기 주파수 대역은 주파수 상향 변환(upconversion)을 거쳐 상기 주파수 대역의 반송파 주파수로 전송된다. 무선 반송파 집성의 경우에는 각각이 자신의 시스템 대역폭 및 반송파 주파수를 갖는 주파수 대역들이 동시에 통신에 사용될 수 있으며, 반송파 집성에 사용되는 각 주파수 대역은 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할될 수 있다.
3GPP 기반 통신 표준은 물리 계층(physical layer)의 상위 계층(upper layer)(예, 매제 접속 제어(medium access control, MAC) 계층, 무선 링크 제어(radio link control, RLC) 계층, 패킷 데이터 수렴 프로토콜(protocol data convergence protocol, PDCP) 계층, 무선 자원 제어(radio resource control, RRC) 계층, 서비스 데이터 적응 프로토콜(service data adaptation protocol, SDAP), 비-접속 층(non-access stratum, NAS) 계층)로부터 기원한 정보를 나르는 자원 요소(resource element)들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의한다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 BS와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS), 채널 상태 정보 RS(channel state information RS, CSI-RS), 복조 참조 신호(demodulation reference signal, DMRS)가 하향링크 참조 신호들로서 정의된다. 한편, 3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 문서에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)와 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH)는 물리 계층의 하향링크 제어 정보(downlink control information, DCI)와 하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각(respectively) 의미할 수 있다. 또한, 물리 상향링크 제어 채널(physical uplink control channel), 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 및 물리 임의 접속 채널(physical random access channel)는 물리 계층의 상향링크 제어 정보(uplink control information, UCI), 상향링크 데이터 및 임의 접속 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각 의미한다. 이하에서 UE가 상향링크 물리 채널(예, PUCCH, PUSCH, PRACH)를 전송한다는 것은 해당 상향링크 물리 채널 상에서 혹은 통해서 DCI, 상향링크 데이터, 또는 임의 접속 신호를 전송한다는 것을 의미할 수 있다. BS가 상향링크 물리 채널을 수신한다는 것은 해당 상향링크 물리 채널 상에서 혹은 통해서 DCI, 상향링크 데이터, 또는 임의 접속 신호를 수신한다는 것을 의미할 수 있다. BS가 하향링크 물리 채널(예, PDCCH, PDSCH)를 전송한다는 것은 해당 하향링크 물리 채널 상에서 혹은 통해서 DCI 혹은 상향링크 데이터를 전송한다는 것과 동일한 의미로 사용된다. UE가 하향링크 물리 채널을 수신한다는 것은 해당 하향링크 물리 채널 상에서 혹은 통해서 DCI 혹은 상향링크 데이터를 수신한다는 것을 의미할 수 있다.
본 문서에서 수송 블록(transport block)은 물리 계층을 위한 페이로드이다. 예를 들어, 상위 계층 혹은 매체 접속 제어(medium access control, MAC) 계층으로부터 물리 계층에 주어진 데이터가 기본적으로 수송 블록으로 지칭된다.
본 문서에서 HARQ는 오류 제어 방법의 일종이다. 하향링크를 통해 전송되는 HARQ-ACK은 상향링크 데이터에 대한 오류 제어를 위해 사용되며, 상향링크를 통해 전송되는 HARQ-ACK은 하향링크 데이터에 대한 오류 제어를 위해 사용된다. HARQ 동작을 수행하는 전송단은 데이터(예, 수송 블록, 코드워드)를 전송한 후 긍정 확인(ACK)를 기다린다. HARQ 동작을 수행하는 수신단은 데이터를 제대로 받은 경우만 긍정 확인(ACK)을 보내며, 수신 데이터에 오류가 생긴 경우 부정 확인(negative ACK, NACK)을 보낸다. 전송단이 ACK을 수신한 경우에는 (새로운) 데이터를 전송할 수 있고, NACK을 수신한 경우에는 데이터를 재전송할 수 있다. BS가 스케줄링 정보와 상기 스케줄링 정보에 따른 데이터를 전송한 뒤, UE로부터 ACK/NACK을 수신하고 재전송 데이터가 전송될 때까지 시간 딜레이(delay)가 발생한다. 이러한 시간 딜레이는 채널 전파 지연(channel propagation delay), 데이터 디코딩(decoding)/인코딩(encoding)에 걸리는 시간으로 인해 발생한다. 따라서, 현재 진행 중인 HARQ 프로세스가 끝난 후에 새로운 데이터를 보내는 경우, 시간 딜레이로 인해 데이터 전송에 공백이 발생한다. 따라서, 시간 딜레이 구간 동안에 데이터 전송에 공백이 생기는 것을 방지하기 위하여 복수의 독립적인 HARQ 프로세스가 사용된다. 예를 들어, 초기 전송과 재전송 사이에 7번의 전송 기회(occasion)가 있는 경우, 통신 장치는 7개의 독립적인 HARQ 프로세스를 운영하여 공백 없이 데이터 전송을 수행할 수 있다. 복수의 병렬 HARQ 프로세스들을 활용하면, 이전 UL/DL 전송에 대한 HARQ 피드백을 기다리는 동안 UL/DL 전송이 연속적으로 수행될 수 있다.
본 문서에서 채널 상태 정보(channel state information, CSI)는 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. CSI는 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS 자원 지시자(CSI-RS resource indicator, CRI), SSB 자원 지시자(SSB resource indicator, SSBRI), 레이어 지시자(layer indicator. LI), 랭크 지시자(rank indicator, RI) 또는 참조 신호 수신 품질(reference signal received power, RSRP) 중 적어도 하나를 포함할 수 있다.
본 문서에서 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 3GPP TS 36.211: Physical channels and modulation
- 3GPP TS 36.212: Multiplexing and channel coding
- 3GPP TS 36.213: Physical layer procedures
- 3GPP TS 36.214: Physical layer; Measurements
- 3GPP TS 36.300: Overall description
- 3GPP TS 36.304: User Equipment (UE) procedures in idle mode
- 3GPP TS 36.314: Layer 2 - Measurements
- 3GPP TS 36.321: Medium Access Control (MAC) protocol
- 3GPP TS 36.322: Radio Link Control (RLC) protocol
- 3GPP TS 36.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 36.331: Radio Resource Control (RRC) protocol
- 3GPP TS 23.303: Proximity-based services (Prose); Stage 2
- 3GPP TS 23.285: Architecture enhancements for V2X services
- 3GPP TS 23.401: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access
- 3GPP TS 23.402: Architecture enhancements for non-3GPP accesses
- 3GPP TS 23.286: Application layer support for V2X services; Functional architecture and information flows
- 3GPP TS 24.301: Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
- 3GPP TS 24.302: Access to the 3GPP Evolved Packet Core (EPC) via non-3GPP access networks; Stage 3
- 3GPP TS 24.334: Proximity-services (ProSe) User Equipment (UE) to ProSe function protocol aspects; Stage 3
- 3GPP TS 24.386: User Equipment (UE) to V2X control function; protocol aspects; Stage 3
3GPP NR
- 3GPP TS 38.211: Physical channels and modulation
- 3GPP TS 38.212: Multiplexing and channel coding
- 3GPP TS 38.213: Physical layer procedures for control
- 3GPP TS 38.214: Physical layer procedures for data
- 3GPP TS 38.215: Physical layer measurements
- 3GPP TS 38.300: NR and NG-RAN Overall Description
- 3GPP TS 38.304: User Equipment (UE) procedures in idle mode and in RRC inactive state
- 3GPP TS 38.321: Medium Access Control (MAC) protocol
- 3GPP TS 38.322: Radio Link Control (RLC) protocol
- 3GPP TS 38.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 38.331: Radio Resource Control (RRC) protocol
- 3GPP TS 37.324: Service Data Adaptation Protocol (SDAP)
- 3GPP TS 37.340: Multi-connectivity; Overall description
- 3GPP TS 23.287: Application layer support for V2X services; Functional architecture and information flows
- 3GPP TS 23.501: System Architecture for the 5G System
- 3GPP TS 23.502: Procedures for the 5G System
- 3GPP TS 23.503: Policy and Charging Control Framework for the 5G System; Stage 2
- 3GPP TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3
- 3GPP TS 24.502: Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks
- 3GPP TS 24.526: User Equipment (UE) policies for 5G System (5GS); Stage 3
3GPP 시스템 일반
- 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S11). 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
한편, 임의 접속 과정이 2 단계로 수행되는 경우, S13/S15 는 단말이 송신을 수행하는 하나의 동작으로 수행되고, S14/S16 이 기지국이 송신을 수행하는 하나의 동작으로 수행될 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
NR (NR Radio access)
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology, RAT) 에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 기계 타입 통신(massive Machine Type Communications, mMTC) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 레이턴시(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(Enhanced mobile Broadband Communication), mMTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 문서에서는 편의상 해당 기술을 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
뉴머롤로지는 주파수 도메인에서 하나의 부반송파 간격(subcarrier spacing)에 대응한다. 참조 부반송파 간격(reference subcarrier spacing)을 정수 N으로 스케일링함으로써, 상이한 뉴머롤로지가 정의될 수 있다.
도 2은 NR 시스템의 구조를 나타낸다.
도 2을 참조하면, NG-RAN은 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 2에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 3은 NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 3을 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 4은 NR의 무선 프레임의 구조를 나타낸다.
도 4을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 시간 자원 구간 (또는, CP-시간 자원 구간), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수((Nslot symb), 프레임 별 슬롯의 개수((Nframe,u slot)와 서브프레임 별 슬롯의 개수((Nsubframe,u slot)를 예시한다.
Figure pct00001
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
Figure pct00002
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Figure pct00003
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Figure pct00004
도 5는 NR 프레임의 슬롯 구조를 나타낸다.
도 5를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
한편, 단말과 단말 간 무선 인터페이스 또는 단말과 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 실시 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.
이하, V2X 또는 SL(sidelink) 통신에 대하여 설명한다.
도 6는 SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 6의 (a)는 NR의 사용자 평면 프로토콜 스택을 나타내고, 도 6의 (b)는 NR의 제어 평면 프로토콜 스택을 나타낸다.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
한편, NR SL 시스템에서, 서로 다른 SCS 및/또는 CP 길이를 가지는 복수의 뉴머놀로지가 지원될 수 있다. 이 때, SCS가 증가함에 따라서, 전송 단말이 S-SSB를 전송하는 시간 자원의 길이가 짧아질 수 있다. 이에 따라, S-SSB의 커버리지(coverage)가 감소할 수 있다. 따라서, S-SSB의 커버리지를 보장하기 위하여, 전송 단말은 SCS에 따라 하나의 S-SSB 전송 주기 내에서 하나 이상의 S-SSB를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말이 하나의 S-SSB 전송 주기 내에서 수신 단말에게 전송하는 S-SSB의 개수는 전송 단말에게 사전에 설정되거나(pre-con도d), 설정(con도d)될 수 있다. 예를 들어, S-SSB 전송 주기는 160ms 일 수 있다. 예를 들어, 모든 SCS에 대하여, 160ms의 S-SSB 전송 주기가 지원될 수 있다.
예를 들어, SCS가 FR1에서 15kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 30kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 60kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개 또는 4개의 S-SSB를 전송할 수 있다.
예를 들어, SCS가 FR2에서 60kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개, 4개, 8개, 16개 또는 32개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR2에서 120kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개, 4개, 8개, 16개, 32개 또는 64개의 S-SSB를 전송할 수 있다.
한편, SCS가 60kHz인 경우, 두 가지 타입의 CP가 지원될 수 있다. 또한, CP 타입에 따라서 전송 단말이 수신 단말에게 전송하는 S-SSB의 구조가 상이할 수 있다. 예를 들어, 상기 CP 타입은 Normal CP(NCP) 또는 Extended CP(ECP)일 수 있다. 구체적으로, 예를 들어, CP 타입이 NCP인 경우, 전송 단말이 전송하는 S-SSB 내에서 PSBCH를 맵핑하는 심볼의 개수는 9 개 또는 8 개일 수 있다. 반면, 예를 들어, CP 타입이 ECP인 경우, 전송 단말이 전송하는 S-SSB 내에서 PSBCH를 맵핑하는 심볼의 개수는 7 개 또는 6 개일 수 있다. 예를 들어, 전송 단말이 전송하는 S-SSB 내의 첫 번째 심볼에는, PSBCH가 맵핑될 수 있다. 예를 들어, S-SSB를 수신하는 수신 단말은 S-SSB의 첫 번째 심볼 구간에서 AGC(Automatic Gain Control) 동작을 수행할 수 있다.
도 7은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH (Physical Downlink Control Channel)가 전송될 수 있고, DL 데이터 영역에서는 PDSCH (Physical Downlink Shared Channel)가 전송될 수 있다. UL 제어 영역에서는 PUCCH (Physical Uplink Control Channel)가 전송될 수 있고, UL 데이터 영역에서는 PUSCH (Physical Uplink Shared Channel)가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국(Base Station; BS,)과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
본 문서에서 기지국은, 예를 들어 gNodeB일 수 있다.
아날로그 빔포밍 (Analog beamforming)
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 8 및 도 9는 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 8은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 12는 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 9의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 12에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 8 및 도 9에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 9의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 10은 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 13에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도 13과 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 또는 슬롯 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 11는 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 11에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 11에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)의 도입이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
MIMO RS(Reference Signal)
DMRS(demodulation reference signal)
NR의 DMRS는 네트워크 에너지 효율성(network energy efficiency)를 강화하고, 상위 호환성(forward compatibility)를 보장하기 위해 필요할 때에만 전송되는 것이 특징이다. DMRS의 시간 도메인 밀도(time domain density)는 UE의 속도(speed) 또는 이동성(mobility)에 따라 다양할 수 있다. NR에서 무선 채널의 빠른 변화를 추적하기 위해 시간 도메인에서 DMRS에 대한 밀도가 증가될 수 있다.
(1) DL DMRS 관련 동작
PDSCH 전송/수신을 위한 DMRS 관련 동작에 대해 살펴본다.
BS는 UE로 DMRS 설정(configuration) 정보를 전송한다. 상기 DMRS 설정 정보는 DMRS-DownlinkConfig IE를 지칭할 수 있다. 상기 DMRS-DownlinkConfig IE는 dmrs-Type 파라미터, dmrs-AdditionalPosition 파라미터, maxLength 파라미터, phaseTrackingRS 파라미터 등을 포함할 수 있다. 'dmrs-Type' 파라미터는 DL를 위해 사용될 DMRS 타입의 선택을 위한 파라미터이다. NR에서, DMRS는 (1) DMRS 설정 타입 1과 (2) DMRS 설정 타입 2의 2가지 설정 타입으로 구분될 수 있다. DMRS 설정 타입 1은 주파수 도메인에서 보다 높은 RS 밀도를 가지고, DMRS 설정 타입 2는 더 많은 DMRS 안테나 포트들을 가진다. 'dmrs-AdditionalPosition' 파라미터는 DL에서 추가적인(additional) DMRS의 위치를 나타내는 파라미터이다. 'maxLength' 파라미터는 DL front-loaded DMRS에 대한 OFDM 심볼의 최대 개수를 나타내는 파라미터이다. 'phaseTrackingRS' 파라미터는 DL PTRS를 설정하는 파라미터이다.
DMRS는 PDSCH 매핑 타입(타입 A 또는 타입 B)에 따라 front-loaded DMRS의 첫 번째 위치가 결정되며, 높은 속도(high speed)의 UE를 지원하기 위해 추가적인 DMRS가 설정될 수 있다. 상기 front-loaded DMRS는 1개 또는 2개 연속적(consecutive) OFDM 심볼들을 점유하며, RRC 시그널링 및 DCI에 의해 지시된다.
상기 BS는 상기 DMRS 설정을 기반으로 DMRS에 사용되는 시퀀스를 생성한다(S120). 상기 BS는 상기 생성된 시퀀스를 자원 요소(resource element)들에 매핑한다(S130). 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.
상기 BS는 상기 자원 요소들 상에서 상기 DMRS를 UE로 전송한다. 상기 UE는 상기 수신된 DMRS를 이용하여 PDSCH를 수신하게 된다.
(2) UL DMRS 관련 동작
PUSCH 수신을 위한 DMRS 관련 동작에 대해 살펴본다.
UL DMRS 관련 동작은 DL DMRS 관련 동작과 유사하며, DL과 관련된 파라미터들의 명칭이 UL과 관련된 파라미터들의 명칭으로 대체될 수 있다. 예를 들어, DMRS-DownlinkConfig IE는 DMRS-UplinkConfig IE로, PDSCH 매핑 타입은 PUSCH 맵핑 타입으로, PDSCH는 PUSCH로 대체될 수 있다. 그리고, DL DMRS 관련 동작에서 BS는 UE로, UE는 BS으로 대체될 수 있다.
UL DMRS에 대한 시퀀스 생성은 트랜스폼 프리코딩(transform precoding)이 가능화(enable)되었는지에 따라 다르게 정의될 수 있다. 예를 들어, DMRS는 CP-OFDM(cyclic prefix orthogonal frequency division multiplexing)을 사용하는 경우(즉, 트랜스폼 프리코딩이 가능화(enable)되지 않은 경우), 의사-잡음(pseudo-noise, PN) 시퀀스를 사용하며, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)을 사용하는 경우(즉, 트랜스폼 프리코딩이 가능화된 경우), 30 이상의 길이를 가지는 Zadoff-Chu(ZC) 시퀀스를 사용한다.
FDR 시스템의 Overview 와 FDR 에서의 간섭 요소
동일 주파수 밴드 상에서 상향링크와 하향링크 신호를 동시에 송·수신이 가능한 FDR 송·수신 시스템은 주파수 또는 시간을 나누어 상향링크와 하향링크 신호를 송·수신 하는 기존 시스템 대비 주파수 효율 (Spectral efficiency) 를 최대 2배 증가시킬 수 있기 때문에 차세대 5G 이동통신 시스템의 핵심 기술 중 하나로 각광 받고 있다.
단일 주파수 전송 밴드를 사용한 FDR은 임의의 무선 디바이스 관점에서는 단일 주파수 전송 밴드를 통해 송·수신을 동시에 수행하는 전송 자원 설정 방식으로 정의할 수 있다. 이의 특별한 일례로서 일반적인 기지국(또는 중계기, 릴레이 노드, remote radio head(RRH) 등)과 무선 단말 간의 무선 통신에 대해서 단일한 주파수 전송 밴드를 통해 기지국의 하향 링크 전송과 상향 링크 수신, 무선 단말의 하향 링크 수신과 상향 링크 전송을 동시적으로 수행하는 전송 자원 설정 방식으로 표현할 수 있다. 다른 일례로서 무선 단말 들 간의 디바이스 간 직접 통신 (device-to-device direct communication: D2D)의 상황에서 무선 단말들 간의 전송과 수신이 동일한 주파수 전송 밴드에서 동시에 수행되는 전송 자원 설정 방식으로 표현할 수 있다. 이하의 본 문서에서 일반적 기지국과 무선 단말 간 무선 송수신의 경우를 예시하며 FDR 관련 제안 기술들을 기술하고 있으나 일반적인 기지국 이외의 단말과 무선 송수신을 수행하는 네트워크 무선 디바이스의 경우도 포괄함을 명시하며 단말들 간의 직접 통신의 경우도 포괄함을 명시한다.
도 12는 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 12와 같은 FDR 상황에서는 다음과 같은 총 3종류의 간섭이 존재하게 된다.
Intra-device self-interference: 동일한 시간 및 주파수 자원으로 송/수신을 수행하기 때문에, desired signal 뿐만 아니라 자신이 송신한 신호가 동시에 수신된다. 이때, 자신이 송신한 신호는 감쇄가 거의 없이 자신의 수신 안테나로 수신 되므로 desired signal 보다 매우 큰 파워로 수신되어 간섭으로 작용하는 것을 의미한다.
UE to UE inter-link interference: 단말이 송신한 상향링크 신호가 인접하게 위치한 단말에게 수신되어 간섭으로 작용하는 것을 의미한다.
BS to BS inter-link interference: 기지국간 혹은 HetNet 상황에서의 이종 기지국간(Picocell, femtocell, relay node) 송신하는 신호가 다른 기지국의 수신 안테나로 수신되어 간섭으로 작용하는 것을 의미한다.
이와 같은 3가지 간섭 중 Intra-device self-interference (이하 Self-interference (SI))는 FDR시스템에서만 발생 하는 간섭으로 FDR 시스템의 성능을 크게 열화 시키며, FDR 시스템을 운용하기 위해서 가장 먼저 해결해야 할 문제이다.
도 13은 FDR 통신 상황에서 송신/수신 링크와 자기간섭 (SI)의 개념도를 예시하고 있다.
도 13에서처럼 자기간섭(SI)은 송신 안테나로부터 송신된 신호가 경로 감쇄 없이 자신의 수신 안테나로 바로 들어오는 다이렉트 간섭(direct interference)과 주변의 지형에 의해 반사된 반사된 간섭(reflected interference)로 구분될 수 있으며, 그 크기는 물리적인 거리 차이에 의해 원하는 신호(desired signal) 보다 극단적으로 클 수 밖에 없다. 이렇게 극단적으로 큰 간섭의 세기 때문에 FDR 시스템의 구동을 위해서는 자기간섭의 효과적인 제거가 필요하다.
효과적으로 FDR 시스템이 구동되기 위해서는 장치의 최대 송신 파워에 따른 자기간섭 제거(Self-IC)의 요구 사항을 다음 표 5(이동통신 시스템에서의 FDR 적용 시 Self-IC 요구사항 (BW=20MHz))과 같이 결정할 수 있다.
Node Type Max. Tx Power (PA) Thermal Noise. (BW=20MHz) Receiver NF Receiver Thermal Noise Level Self-IC Target (PA- TN-NF)
Macro eNB 46dBm -101dBm 5dB (for eNB) -96dBm 142 dB
Pico eNB 30dBm 126 dB
Femto eNB,WLAN AP 23dBm 119 dB
UE 23dBm 9dB(for UE) -92dBm 115 dB
상기 표 5를 참조하면, 단말(UE)이 20MHz 의 대역폭(BW)에서 효과적으로 FDR 시스템을 구동시키기 위해서는 119dBm 의 Self-IC 성능이 필요함을 알 수 있다. 이동통신 시스템의 대역폭에 따라서 Thermal noise 값이
Figure pct00005
식과 같이 바뀔 수 있으며, 표 5은 20MHz 의 대역폭을 가정하고 구하였다. 표 5와 관련하여 Receiver Noise 도 (NF) 는 3GPP 표준 요구사항(specification requirement)를 참조하여 worst case를 고려하였다. Receiver thermal noise level 은 특정 BW 에서의 thermal noise 와 receiver NF의 합으로 결정된다.자기간섭 제거(Self-IC) 기법의 종류 및 적용 방법
도 14는 장치의 RF 송수신단(혹은 RF front end)에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다. 도 14에서는 3가지 Self-IC 기법의 적용 위치를 도시하고 있다. 이하 3가지 Self-IC 기법에 대해 간략히 설명한다.
Antenna Self-IC: 모든 Self-IC 기법 중 가장 우선적으로 실행되어야 할 자기간섭 제거 기법이 안테나 자기간섭 제거 기법이다. 안테나 단에서 SI 제거가 수행된다. 가장 간단하게는 송신 안테나 및 수신 안테나 사이에 신호를 차단할 수 있는 물체를 설치하여 SI 신호의 전달을 물리적으로 차단하거나, 다중 안테나를 활용하여 안테나 간의 거리를 인위적으로 조절하거나, 특정 송신 신호에 위상 반전을 주어 SI 신호를 일부 제거할 수 있다. 또한, 다중 편파 안테나 또는 지향성 안테나를 활용하여 SI 신호의 일부를 제거할 수 있다.
Analog Self-IC: 수신 신호가 ADC (Analog-to-Digital Convertor) 를 통과하기 이전에 Analog 단에서 간섭을 제거하는 기법으로 복제된 Analog 신호를 이용하여 SI 신호를 제거하는 기법이다. 이는 RF영역 혹은 IF 영역에서 수행될 수 있다. SI 신호를 제거하는 방법은 구체적으로 기술하면 다음과 같다. 우선 송신되는 Analog 신호를 시간지연 시킨 후 크기와 위상을 조절하여 실제로 수신되는 SI 신호의 복제 신호를 만들어 수신 안테나로 수신되는 신호에서 차감하는 방식으로 이루어진다. 그러나, Analog 신호를 이용하여 처리하기 때문에 구현 복잡도와 회로특성으로 인하여 추가적인 왜곡이 발생할 수도 있으며 이로 인하여 간섭제거 성능이 크게 달라질 수 있다는 단점이 있다.
Digital Self-IC: 수신 신호가 ADC를 통과한 이후에 간섭을 제거하는 기법으로 Baseband 영역에서 이루어지는 모든 간섭제거 기법들을 포함한다. 가장 간단하게는 송신되는 Digital 신호를 활용하여 SI 의 복제 신호를 만들어 수신된 Digital 신호에서 차감하는 방법으로 구현 가능하다. 혹은 다중 안테나를 이용하여 Baseband에서의 Precoding/Postcoding을 수행함으로써 단말 혹은 기지국에의 송신 신호가 수신안테나로 수신되지 않게끔 하기 위한 기법들 또한 Digital Self-IC로 분류 할 수 있다. 그러나 Digital Self-IC는 Digital로 변조된 신호가 원하는 신호에 대한 정보를 복원할 수 있을 정도로 양자화가 이루어져가 가능하기 때문에 Digital Self-IC를 수행하기 위해서는 상기의 기법들 중 하나 이상의 기법을 활용하여 간섭을 제거하고 난 이후의 남아있는 간섭 신호와 원하는 신호간의 신호 파워의 크기 차가 ADC range안에 들어와야 하는 전제조건이 필요하다.
도 15는 도 14를 바탕으로 하여 OFDM을 이용한 통신 시스템 환경에서 제안하는 통신 장치에서 자기간섭 제거(Self-IC)를 위한 장치의 블럭도를 도식화한 도면이다.
Digital Self-IC block의 위치는 도 15에서는 DAC 전과 ADC 통과후의 디지털 자기간섭 신호(digital SI) 정보를 바로 이용하여 수행하는 것으로 도시하고 있으나, IFFT 통과 후 및 FFT 통과 전의 디지털 자기간섭 신호를 이용하여 수행될 수도 있다. 또한 도 15는 송신 안테나와 수신 안테나를 분리하여 자기 간섭 신호를 제거하는 개념도이지만, 하나의 안테나를 이용한 안테나 간섭 제거 기법 사용시에는 도 15와는 다른 안테나의 구성법이 될 수 있다. 이때, 목적에 맞는 기능 block이 추가되거나 삭제될 수도 있다.
FDR 시스템의 신호 모델링
FDR 시스템은 송신 신호와 수신 신호 간 동일 주파수를 사용하고 있기 때문에 RF 에서의 non-linear 성분들이 크게 영향을 끼치게 된다. 특히 송신 RF Chain 의 Power Amplifier (PA) 와 수신 RF Chain 의 Low noise Amplifier (LNA)와 같은 능동 소자의 non-linear 특성에 의해 송신 신호가 왜곡되며, 송·수신 RF Chain 에서의 Mixer에 의해서도 왜곡이 변형될 수 있으며, 이러한 왜곡으로 인한 송신 신호는 high-order에 해당하는 성분이 발생되는 것으로 모델링 할 수 있다. 그 중에서 even-order 의 성분은 DC 주변 및 중심 주파수의 몇 배에 해당되는 고주파 영역에 영향을 끼치기 때문에 기존의 AC coupling 또는 Filtering 기법을 사용하여 효과적으로 제거 가능하다. 하지만 odd-order 의 성분은 기존 중심 주파수 주변에 인접하여 발생하기 때문에 even-order 와는 다르게 쉽게 제거가 불가능 하며, 수신 시 큰 영향을 끼치게 된다. 이러한 odd-order의 non-linear 특성을 고려하여 FDR 시스템에서의 ADC 이후의 수신 신호를 Parallel Hammerstein (PH) Model 을 이용하여 표현하면 다음 수학식과 같다.
[수학식 1]
Figure pct00006
여기서
Figure pct00007
는 수신 받고자 하는 데이터 이고,
Figure pct00008
는 수신 받고자 하는 데이터가 겪는 Desired channel 이며,
Figure pct00009
는 자신이 송신한 데이터 이고,
Figure pct00010
는 자신이 송신한 데이터가 겪는 Self-channel 이며 k가 1이면 linear 성분이고, k 가 3 이상인 홀수 값은 non-linear 성분이며,
Figure pct00011
는 Additive White Gaussian Noise (AWGN) 이다.
도 16은 일반적인 Full duplex radio (FDR) 기술을 수행하기 위한 통신 장치의 RF 체인을 나타낸 도면이다.
FDR 방식을 사용하는 통신 장치에서 자기간섭 신호를 제거하기 위해서는 자기간섭 신호와 똑같은 복제 신호(이하, 자기간섭 기준 신호라고 칭함)를 생성할 필요가 있다. 도 3을 참조하면, 자기간섭 신호의 제거를 위해 RX chain의 수신 단의 LNA 이전에 자기간섭 신호(SI)에서 자기간섭 기준 신호(SIREF)를 차감하는 방식을 일반적으로 사용한다. 이때, 통신 장치에서 자기간섭 기준 신호(SIREF)를 만들기 위해서 송신 단의 Tx 신호를 분기해서 (도 3에서는 송신 단에서 PA를 거친 후 분기되도록 하는 경우를 예시함) Tx 신호의 일부분을 감쇠기(attenuator), 위상 쉬프터(phase shifter) 및 시간 지연기(true time delay circuit)를 포함하는 자기간섭 기준 신호 생성기(SI reference generator)로 통과시킨다. 자기간섭 기준 신호 생성기는 분기된 Tx 신호를 이용하여 자기간섭 채널을 모방하도록 자기간섭 기준 신호를 생성한다. 이때, 자기간섭 기준 신호 생성기가 자기간섭 채널을 모방할 수 있도록 자기간섭 신호가 들어오는 채널을 따로 추정한다.
통신 장치는 먼저 자기간섭 채널을 추정한 후, 시간 지연기에 입력되는 제어 신호, 위상 쉬프터에 입력되는 제어 신호, 감쇠기에 입력되는 제어 신호를 생성할 수 있다. 이때, 자기간섭 기준 신호 경로와 원하는 수신 신호(desired Rx signal)는 전부 들어오지 않는 상태여야 한다.
통신 장치가 자기간섭 기준 신호 생성기를 제어하는 방법으로 두 가지 방법이 있을 수 있다.
첫 번째 방법으로는, 통신 장치가 자기간섭 신호가 들어오는 채널을 따로 추정하기 위해서 통신을 중지하고 자기간섭 채널 추정용 신호(예를 들어, 파일럿 신호, 기준신호)를 할당된 통신 대역(혹은 채널 대역)에서 전송하고, 자기간섭 기준 신호 생성기는 통신 시에 이러한 자기간섭 채널 추정용 신호의 정보를 이용하여 자기간섭 신호를 모방할 수 있다.
두 번째 방법으로는 통신 장치가 통신 채널 대역의 양 끝에(예를 들어, guard band) 자기간섭 신호 채널 추정용 신호(기준신호, 파일럿 신호, 또는 톤(tone))을 실어 전송하고, 적응적 피드백(adaptive feedback) 알고리즘에 따라 해당 자기간섭 신호 채널 추정용 신호가 줄어드는 방향으로 자기간섭 기준 신호 생성기를 제어할 수 있다.
상기 첫 번째 방법에서, 최적화된 자기간섭 기준 신호 생성기의 상태를 찾기 위해는 먼저 자기간섭 채널을 추정할 필요가 있다. 이를 위해, 송신 장치(혹은 송신 측) 및 수신 장치(혹은 수신 측)도 통신을 멈춰야 한다. 더욱이, 완벽한 자기간섭 채널 추정을 했다고 하여도 자기간섭 기준 경로의 채널을 매우 정확하게 측정(calibration)할 것이 요구된다. 자기간섭 기준 경로의 채널은 모든 제어 전압(control voltage)의 조합을 바탕으로 look up table화 시켜야 하며 특정 Tx power와 온도에서 정확한 look up table을 작성했다고 하여도 이것은 original Tx power와 회로의 온도에 따라 변하게 되어 있으므로 캘리브레이션(calibration)의 측정오차와 현재의 Tx power 및 온도와 look up table을 만든 시점의 조건의 차이 때문에 자기간섭 신호 제거 성능은 떨어질 수 밖에 없다. 또한, 시간에 따라 변하는 자기간섭 신호 채널(혹은 자기간섭 채널)을 따라갈 수 없다는 단점이 있다.
상기 두 번째 방법은, 통신 장치가 자기간섭 신호 채널 추정용 신호(톤, 파일럿 신호, 또는 기준신호 등)을 통신 밴드 양쪽에 실어 전송할 때 통신을 멈추지 않고 할 수 있고, 자기간섭 기준 신호 생성기를 시간 연속적으로 적응적 피드백 알고리즘을 이용하여 제어하기 때문에 자기간섭 기준 신호 생성기의 캘리브레이션 자체가 불필요하다. 그러나, 통신 대역이 아니라 통신 대역 양쪽 가드 밴드의 톤을 이용하여 자기간섭 기준 신호 생성기를 제어하기 때문에, 가장 중요한 통신 밴드 안쪽에서의 톤의 전송으로 인한 자기간섭 신호는 제거되지 않는다는 단점이 있다.
도 17은 FDR 방식을 사용할 때 자기간섭 신호 제거를 위한 통신 장치의 RF 체인 구조의 일 예를 도시한 도면이다.
도 17을 참조하면, 통신 장치의 RF 체인은 통신 모뎀(혹은 모뎀), 자기간섭 기준 신호 생성기(SI reference generator), 송신(Tx) 안테나, 수신(Rx) 안테나 등을 포함할 수 있다. 통신 모뎀은 FFT(Fast Fourier Transform) 부, 적분기들을 포함할 수 있다. 자기간섭 기준 신호 생성기(SI reference generator)는 감쇠기(attenuator), 위상 쉬프터(phase shifter), 시간 지연기(true time delay) 소자(circuit)를 포함할 수 있다.
자기간섭 기준 신호 생성기(SI reference generator)는 정밀한 자기간섭 기준 신호 생성(혹은 복제)하기 위해 감쇠기(attenuator), 위상 쉬프터(phase shifter), 시간 지연기(true time delay) 소자(circuit) 이들 모두 아날로그 방식을 사용하여 제어할 수 있다. 이를 위해, RF 체인은 통신 모뎀(혹은 모뎀)에서 전송되는 제어 신호를 아날로그 신호로 바꿔주는 DAC (Digital to Analog Converter)들을 포함할 수 있다.
기본적으로 위상 천이(phase shift) 대 주파수 대역의 기울기로 정의되는 시간 지연기(true time delay)의 개념상 하나의 주파수(single frequency)에서의 정보만을 가지고는 시간 지연(true time delay)을 제어할 수 없기 때문에 넓은 대역에 자기간섭 신호 제거를 수행하려면 적어도 2개 이상의 주파수에서의 정보를 알아야 할 필요가 있어서 테스트 신호인 2개 이상의 파일럿 신호, 2개 이상의 참조신호, 혹은 2개 이상의 톤 등을 전송하는 것을 가정한다.
자기간섭 기준 신호 생성기를 제어하기 위해 테스트 신호인 멀티 기준신호(혹은 멀티-톤(multi tone), 멀티 파일럿 신호 등)이 어떻게 이용되는지를 설명한다. 우선, 도 13에서 통신 모뎀(혹은 모뎀)은 테스트 신호인 멀티-톤들이 위치한 주파수에서의 멀티-톤들의 파워의 합을 모니터링하고, 멀티-톤들이 전송된 주파수 위치에서 각각 파워를 측정하여 그 합을 산출할 수 있다. 여기서 전송된 톤의 주파수 위치에서 측정된 파워가 자기간섭 신호의 파워에 해당한다.
통신 모뎀은 멀티 톤들로 인한 자기간섭 신호들의 파워 합과 자기간섭 기준 신호의 파워의 차가 최소로 되도록 하기 위한 제어 신호를 전송할 수 있다. 즉, 통신 모뎀은 멀티-톤들로 인한 자기간섭 신호의 파워의 합이 최소가 되도록 하기 위한 제어 신호를 자기간섭 기준 신호 생성기에 피드백할 수 있다. 자기간섭 기준 신호 생성기는 피드백된 제어 신호에 따라 자기간섭 기준 신호를 생성한다. 통신 모뎀은 측정된 자기간섭 신호들의 파워 합을 제거하기 위해 이 파워 합과 가장 가까운 값의 파워를 갖는 자기간섭 기준 신호를 생성할 수 있다.
통신 모뎀은 적응적 피드백 루프를 사용하여 자기간섭 신호들의 파워 합(SI=SI1+SI2+SI3+ㆍㆍㆍ +SIn) 가 최소가 될 때까지 자기간섭 기준 신호 생성기를 제어할 수 있다. 여기서, SIn 은 복수의 기준 신호 중에서 n번째 기준신호가 전송된 주파수 위치에서의 측정된 자기간섭 신호의 파워이다. 통신 모뎀은 적응적 피드백(adaptive feedback)의 루프 함수(loop function)으로는 제어하는 바이어스 전압의 증가분의 부호를 바꿀 수 있도록 +1과 -1의 주기적 펄스(periodic pulse) 신호를 사용한다. 루프 함수는 제어하고자 하는 변수를 포함하는 피드백 루프에서 현재 변수 주변을 탐색하기 위한 함수를 의미한다.
통신 모뎀은 자기간섭 기준 신호 생성기가 자기간섭 신호들의 파워 합과 가장 가까운 파워를 갖는 자기간섭 기준 신호를 생성하도록 적응적 피드백 루프를 사용하여 위상 쉬프터, 감쇠기, 시간 지연기에 각각 제어 신호를 피드백할 수 있다.
도 17에 따른 자기간섭 기준 신호 생성을 제어하는 방법은 멀티-톤들의 파워 합만을 가지고 적응적 피드백 알고리즘을 작동하기 때문에 복잡한 채널 추정과 calibration등이 불필요하다는 장점이 있다.
도 18는 자기간섭 기준 신호 생성기를 제어하기 위해 통신 대역 양쪽(예를 들어, guard band)에서 전송하는 두 개의 톤을 예시한 도면이다.
도 18을 참조하면, 통신 채널 밴드 양 끝에(가드밴드) 자기간섭신호 채널 추정용 톤을 포함시키고 적응 피드백 (adaptive feedback) 알고리즘에 따라 해당 추정용 톤이 감소되는 방향으로 SI 기준 생성기 (reference generator)가 제어될 수 있다. 이 경우, 자기 간섭 (Self-Interference)이 제거된 원하는 신호 (Desired Signal)를 안정적으로 수신할 수 있다.
한편, 데이터에 대한 수요가 급증하면서 모바일 통신에서는 빔포밍 기술과 FDR 기술 적용에 대해 논의를 하고 있다. 점차 초고주파의 신호대역 사용을 고려함에 따라 빔포밍 기술을 이용해 초고주파 신호의 경로손실 단점을 극복하여 전파 도달 거리를 넓히고, FDR 기술 적용으로 통신 용량을 증대시키기 위한 연구들이 진행 중이다.
FDR 환경에서는 기지국/단말에서 송수신 동작이 동시에 진행됨에 따라 자기 수신신호에 자기 송신신호가 간섭으로 작용하는 자기 간섭 영향이 존재하게 된다. SI는 송수신 거리가 원하는 신호보다 매우 짧기 때문에 수신신호보다 큰 세기로 수신될 가능성이 높다. 이러한 환경에서 빔포밍 기술을 적용하게 될 경우, SI 신호 세기에 송수신 빔 이득이 더해지므로 SI 영향은 더욱 크게 작용하게 된다. 따라서, 수신부에서는 SI 영향을 줄이기 위한 추가 회로 또는 알고리즘 적용이 필요하다. RF 도메인에서도 SI 영향을 줄일 수 있는 가능성이 존재한다. 빔포밍 기술을 적용하면 송수신 빔패턴을 조정하여 공간적으로 신호를 분리하여 송수신할 수 있으므로, 추가 회로 구현 없이 SI 영향을 줄일 수 있다.
하지만, SI 영향이 수신단의 성능을 크게 좌우하는 상황에서는 HD(Half-Duplex) 모드에서 사용됐던 원하는 신호에 대해 빔 이득을 최대화하는 기존의 빔포밍 방식을 그대로 사용하면, 사이드로브 빔으로부터 수신되는 SI 영향을 고려하지 않게 되어 기지국과 단말 간 통신함에 있어 링크 품질 저하를 초래할 뿐만 아니라 그 안정성을 보장할 수 없게 된다.
따라서, 본 문서에서는 FDR 환경에서 빔포밍 기술을 적용하고 추가 회로도 구현 없이 SI 영향을 줄이기 위해서는 SI 영향을 고려하는 빔 관리/트래킹 (management/tracking) 방법에 대하여 제시한다.
도 19는 본 문서에 따른 FDR 환경에서 빔포밍 기술을 적용한 통신 시스템 구조의 한 예시에 대한 도면이다.
한 기지국 커버리지 내에 2개의 UE들이 존재하며, 기지국에서는 2 위상 (phased) 안테나 어레이를 사용하고 각 어레이 별로 DL/UL를 독립적으로 다르게 운용 가능한 상황을 가정하였다. 따라서 각 어레이 별로 송수신 빔포밍을 달리 수행하여 각각의 UE와 통신하고 있는 상황을 도 19에 도식화하였다. 도 19에는 두개의 UE들에 대해 도시하였으나, 본 문서에 따른 개시는 하나의 UE에 대하여도 적용 가능하며, 이하 설명들도 마찬가지이다.
도 20은 본 문서에 적용 가능한 FDR 환경에서 빔포밍 적용시 자기 간섭 영향이 미치는 경우를 예시한 도면이다.
각 어레이 별로 DL/UL를 다르게 운용하는 상황에서는 송신 어레이의 신호가 수신 어레이에 항상 SI 영향으로 작용하게 된다. 특히, 도 20과 같이 각 송수신 어레이 빔패턴에서 SI 영향을 미치는 방향의 사이드로브가 정렬 (align)되어 겹쳐지는 상황에서는 그 영향이 최대가 되어 기지국과 UE 간 링크에 악영향을 끼치게 된다.
SI 영향은 각 송수신 어레이의 빔패턴에 의해 좌우되므로, 기지국과 UE 링크 간 품질에는 큰 영향 없이 SI 영향을 줄일 수 있도록 빔패턴을 형성하는 방법이 필요하다.
빔패턴은 어레이의 물리적인 구조와 빔 조정 가중치에 따라 다른 모양으로 형성될 수 있는데, 대부분의 경우에는 메인로브의 신호 세기와 빔 폭이 사이드로브 보다 크게 형성되어 있다. 따라서 사이드로브보다 빔 폭이 더 넓은 메인로브의 빔 폭 내에서 빔 방향을 잘 조절하면, 기지국과 단말 간 링크 품질에는 큰 영향 없이 사이드로브 에서의 SI 영향을 줄일 수 있다. 빔 스위핑 (sweeping) 조절 단위 및 범위는 목표로 하는 링크 품질에 따라 다르게 설정할 수 있으며, 메인로브의 절반-전력 빔 폭 (half-power beam width) 또는 첫번째 널 빔 폭 (first null beam width)와 같은 일반적으로 많이 쓰이는 안테나 측정값으로 설정할 수도 있다. 여기서 빔 스위핑 조절 범위는 실시간으로 측정하여 찾을 수도 있으며, 빔을 형성하는 방향이 고정되면 빔 폭도 항상 같은 값을 가지므로 테이블 값으로 미리 정보를 가져 운용할 수도 있다.
기지국 어레이에서의 DL 신호 품질 및 SI 영향을 측정하는 전반적인 트래킹 절차
도 21은 본 문서에 따른 FDR 환경에서 각 어레이 별로 자기 간섭 영향을 줄이는 빔 트래킹 프로세스를 도시한 도면이다.
본 문서에서 제안하는 빔 트래킹 방안은 기존의 반 이중 모드 (Half-Duplex mode)에서 초기 (Initial) 빔 탐색 단계를 통해 기지국과 단말 간 빔 이득을 최대화하는 빔 방향을 찾은 이후에 적용될 수 있다.
먼저, 기지국에서는 초기 빔 탐색 단계에서 찾은 빔패턴을 기준으로 송신 어레이 0 에서 형성되는 SI 신호를 어레이 1 에서 수신하여 측정한다. SI 영향을 측정하기 위한 신호는 각 빔 방향에 따라 다르게 시간 영역에서 전용 참조 신호를 할당하여 측정할 수 있으며, 해당 신호의 RSRP (Reference Signal Received Power), RSSI (Received Signal Strength Indicator), RSRQ (Reference Signal Received Quality), CINR (Carrier to Interference and Noise Ratio), SNR (Signal to Noise Ratio), SINR (Signal to Interference Noise Ratio) 등과 같은 채널 품질 정보에 대해서 측정할 수 있다. 여기서 초기 빔 탐색 단계를 통해 찾은 빔패턴 의 메인로브 빔 폭 내에서 빔을 스위핑하여 SI 신호에 대한 영향을 측정하도록 한다.
도 22는 본 문서에 따른 어레이 0로부터 어레이 1으로 수신되는 자기 간섭 신호를 측정하는 것을 도시한 도면이다. 도 22는 메인로브의 Half-Power 빔 폭 영역 (즉, 메인로브 파워의 절반이 되는 정도 까지)에서 빔 스위핑하는 것을 도식화 한 것이다.
두 번째 단계에서는 기지국과 단말 간 빔 채널 품질 정보를 측정하도록 한다. 앞서 기지국 어레이 0 의 SI 영향을 측정하기 위해 빔 스위핑했던 방향 그대로 적용하여 수행해야 한다. 도 23은 본 문서에 따른 기지국 어레이 0로부터 UE 0에 수신되는 하향링크(downlink) 신호를 측정하는 것을 도시한 도면이다.
그리고 UE0 에서 측정된 DL신호에 대한 측정값은 UL 과정에서 피드백 정보로 수신 받도록 한다. 결국 기지국에서는 빔 스위핑 범위 내 빔들의 DL 신호 및 SI 신호에 대한 측정값을 갖게 된다. 여기서 기지국 어레이 0 에 대한 DL 신호와 SI 신호의 신호 세기 및 SNR 측정치를 토대로 DL 신호 대비 SI 신호 비를 계산할 수 있으며, 해당 값의 최대치를 가지는 빔 방향을 찾아 기지국 어레이 0 의 빔을 조정하도록 한다. 도 24는 본 문서에 따른 측정 기반 기지국 어레이 0의 빔 조정의 일 예시를 도시한 도면이다.
다음은 기지국의 송신 어레이 1 에서 형성되는 SI 신호를 어레이 0 에서 수신하여 측정하는 단계이다. 1) 단계와 동일하게 초기 빔 탐색 단계에서 찾은 빔패턴을 기준으로 SI 영향을 측정하고, 각 빔 방향에 따라 다르게 시간 영역에서 전용 RS 를 할당하여 측정할 수 있으며, 해당 신호의 RSRP, RSSI, RSRQ, CINR, SNR, SINR 등과 같은 채널 품질 정보에 대해서 측정할 수 있다. 또한, 빔패턴 의 메인로브 빔 폭 내에서 빔을 스위핑 하여 SI 신호에 대한 영향을 측정하도록 한다.
도 25는 본 문서에 따른 어레이 1로부터 어레이 0에 수신되는 자기 간섭 신호를 측정하는 것을 도시한 도면이다. 본 문서에서 도 25는 메인로브의 Half-Power 빔 폭 영역에서 빔 스위핑 하는 것을 도식화 한 것이다.
네 번째 단계에서는 두 번째 단계와 똑같이 기지국과 단말 간 빔 채널 품질 정보를 측정하는 단계이다. 앞서 기지국 어레이 1 의 SI 영향을 측정하기 위해 빔 스위핑 했던 방향 그대로 적용하고, UE 1의 DL 신호에 대한 측정값을 UL 과정에서 피드백 정보로 수신 받도록 한다.
도 26은 본 문서에 따른 기지국 어레이 1로부터 UE0에 수신되는 하향링크 신호를 측정하는 것을 도시한 도면이며, 도 27은 본 문서에 따른 측정 기반 기지국 어레이 1의 빔 조정을 도시한 도면이다.
기지국 어레이 1 에 대한 DL 신호와 SI 신호의 신호 세기 및 SNR 측정치를 토대로 DL 신호 대비 SI 신호 비를 계산할 수 있으며, 해당 값의 최대치를 가지는 빔 방향을 찾아 기지국 어레이 1 의 빔을 조정하도록 한다. 도 27은 어레이 0 및 어레이 1의 빔 조정 이후의 모습을 한 예로 나타낸 것이다.
전용 참조 신호를 생성 및 자원 할당하는 방법과 운용하는 매커니즘
빔 트래킹 과정은 실시간으로 측정할 수 있도록 시간 영역에서 전용 RS가 주기적으로 계속 할당되어야 하며, 각 어레이 별로 기지국과 단말 간 링크 품질 대비 SI 영향 비를 최대화하는 방향으로 빔을 트래킹 해 나갈 것이다. 여기서 빔 트래킹 과정 중 기준으로 삼는 빔패턴의 경우, 처음 빔 트래킹 과정에서는 초기 빔 탐색 단계에서 찾은 빔패턴에 해당하고 이후 과정에서는 그 전 과정에서 조정된 빔패턴을 기준으로 설정하도록 한다.
SI 영향을 측정하기 위한 전용 RS(참조 신호) 의 운용 방법은 두 가지 방식에 대해서 생각할 수 있다. 첫째는 5G NR 표준의 기존 RS를 이용하여 새로운 방식으로 자원할당 및 운용하는 방법이고, 둘째는 SI 측정 용도에 맞게 새로운 RS를 생성하여 할당하는 방법에 해당한다. 첫 번째 방법을 이용할 경우에는 기존의 RS를 이용하므로 전용 RS 시퀀스를 별도로 생성할 필요가 없는 이점이 있다. 두 번째 방법을 이용할 경우에는 새로운 전용 RS를 추가 생성하는 것으로, 빔 트래킹 동작과 관련된 자원할당 정보 및 시그널링 프로세스를 최적화하여 운용할 수 있을 것이다. 이는 기존 RS를 이용하는 것과 비교하여 상대적으로 더 짧은 측정 주기로 운용하거나 Full-Duplex(전-이중) 모드에서만 발생할 수 있는 추가 시나리오에 대해서 유연하게 활용할 수 있는 기회를 제공할 수도 있다.
5G NR 표준에는 CSI(Channel Status Information)를 측정하기 위해 사용되는 CSI-RS 신호와 데이터 디코딩을 위해 채널 추정 용도로 사용되는 DMRS 등의 RS가 존재하며, 본 문서에서 제안하는 빔 트래킹 방법에 적용할 수 있을 것으로 보인다. 따라서, 본 문서에서는 5G NR 표준에서 기존의 운용 중인 PDSCH-DMRS/PUSCH-DMRS 이용을 고려하여 자원 할당 방안의 한 예에 대해서 개시하였다.
도 28은 본 문서에 따른 자기 간섭 측정을 위한 참조 신호의 시간 및 주파수 자원 할당에 대한 예시도이다.
도 28에서는 SI 를 측정하기 위해서 기지국의 각 어레이 별로 한 주기에 해당하는 빔 스위핑 동작을 수행하는 것과 각 어레이 별 RS 0/1 신호 송신 동작이 다른 시간 구간에서 구분되어 운용되는 것을 나타내었다. 또한, 빔 트래킹 이 지속적으로 동작할 수 있도록 RS 심볼이 시간 영역에서 연속적으로 할당되는 것을 그림으로 표현하였다.
그리고 한 심볼 내 주파수 영역에서의 RS 시퀀스 할당 정보를 보면 SI를 측정하기 위한 DL RS가 모든 자원 영역에 할당된 것과 Comb (콤) 타입으로 할당된 것을 볼 수 있다. 모든 주파수 자원 영역에 할당하는 방식을 적용할 경우에는 SI 측정 시간 동안 동일 주파수를 사용하는 단말의 UL 신호가 간섭으로 작용할 수 있어 동시에 수신이 어렵기 때문에 시간적으로 별도 구분하여 반-이중(half-duplex) 모드로 운용할 수 밖에 없다. Comb 타입 할당의 이유는 SI를 측정하는 빔 트래킹 동작 중에도 FDR로 운용할 수 있도록 SI 측정 용도의 RS 시퀀스가 할당되지 않은 영역에 단말과의 링크 내 UL RS 신호를 수신할 수 있도록 하기 위함이다. 따라서 기지국 어레이에서 RS 신호를 송신할 때 Comb 타입의 시퀀스를 할당하여 전송하는 경우에는 수신기에서 시퀀스 영역에 해당되지 않는 RE 자원들에 대해 펑쳐링 (puncturing) 동작을 수행해야 한다. 펑쳐링 동작은 상위 시그널링을 통해 전달받을 수 있다.
도 29는 본 문서에 따른 FDR 환경에서의 기지국 어레이에 수신된 참조 신호의 주파수 자원 정보를 도시한 도면이다.
본 문서의 일 예시인 도 29를 보면, 기지국의 DL RS 신호와 단말 링크의 UL RS가 더해진 수신신호의 주파수 자원 할당 정보를 도식화한 것으로, Comb 타입의 주파수 자원 할당 방식을 적용하여 기지국과 단말 간 RS 신호가 직교가 되도록 할당이 되면, 기지국 송신 어레이의 SI를 측정함과 동시에 단말과의 링크에 필요한 동작을 같이 수행하여 FDR 운용이 가능해지며, 빔 트래킹 동작의 정확성을 높일 수 있다.
도 30는 본 문서에 따른 FDR 환경에서 자기 간섭 측정 및 빔 트래킹 동작을 위한 시그널링 절차를 도시한 도면이다.
SI 영향을 측정하기 위한 시그널링 동작은 Measurement Gap (측정 갭) 구간의 동작을 수행하기 위한 Flag (플래그)를 상위 계층으로부터 명령을 받아 수행하도록 하며, 측정해야 할 자원 정보는 Puncturing Flag (펑쳐링 플래그)로부터 인지하도록 한다. 그리고, UE로부터 피드백 받는 DL 품질 측정 정보는 신호 품질 값에 해당하는 테이블의 인덱스 값을 건네주는 방법으로 수행할 수 있다.
하기 표 6은 Measuremet Gap 동작과 링크 품질 보고에 대한 Flag 정보에 대해서 테이블로 정의를 한 것이다.
Figure pct00012
여기서, Measuremet Gap 동작은 인덱스에 따라서 링크 품질 측정을 수행할지 여부와 RS 의 자원 할당 방법 별로 분류할 수 있도록 정의하였다. 하기 표 7 및 표 8는 FDR 환경에서 링크 품질 리포트 정보에 대한 예시들이다.
Figure pct00013
Figure pct00014
링크 품질 측정을 한 뒤 측정 결과를 보고할 경우, 측정값의 의미에 따라 다양하게 테이블 정보를 나타낼 수 있는데, 위의 표 8 및 표 9에 나타난 예시들은 각각 RSRP 또는 SNR로 측정할 경우에 대해 보고 정보를 인덱스에 따라 분류할 수 있도록 정의되었다.
도 31은 본 문서에 따른 FDR 환경에서 자기 간섭 측정 및 빔 트래킹 동작을 위한 하향링크 및 상향링크의 할당 구조를 도시한 도면이며, 도 32는 본 문서에 따른 기지국의 송수신 어레이에서의 빔 트래킹을 통한 자기 간섭 신호 스펙트럼을 도시한 도면이다.
도 32에서 원하는 신호 레벨은 기지국과 단말 간 링크에 해당하는 신호 레벨을 의미한다.
본 문서에 따른 빔 트래킹 과정을 통해 SI 신호 레벨이 더 낮은 신호 레벨로 떨어져 FDR 환경에서의 기지국과 단말 간 링크 품질을 향상시켜 줄 것으로 기대한다.
본 문서에서 주장하는 바는 다음과 같다.
1) 각 기지국 어레이에서의 DL 신호 품질 및 SI 영향을 측정하는 전반적인 트래킹 절차
2) DL 신호와 SI 신호의 측정치에 따라 최적의 빔을 결정하는 방법
3) 전용 RS 를 생성하고 자원 할당하는 방법과 운용하는 매커니즘
이하에서는, 상술한 제안 방법들을 수행하기 위한 장치들을 상세히 설명한다.
발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 문서의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 33은 본 문서에 적용되는 통신 시스템을 예시한다.
도 33을 참조하면, 본 문서에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 문서의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 문서가 적용되는 무선 기기 예
도 34는 본 문서에 적용될 수 있는 무선 기기를 예시한다.
도 34를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 19의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩셋의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 문서에서 무선 기기는 통신 모뎀/회로/칩셋을 의미할 수도 있다.
구체적으로, 상기 칩 셋은 프로세서(102)와 메모리(104)를 포함할 수 있다. 상기 메모리(104)는 상기에서 설명한 실시예들과 관련된 동작을 수행할 수 있는 적어도 하나의 프로그램들이 포함될 수 있다. 프로세서(102)는 상기 메모리에 저장된 적어도 하나의 프로그램에 기반하여 FDR과 관련된 자원을 할당 받을 수 있다.
프로세서(102)는 상기 RF 송수신기를 제어하여 상 자기 간섭 제거 능력을 기지국에 보고할 수 있다. 프로세서(102)는 상기 RF 송수신기를 제어하여 기지국으로부터 제1 시간 자원 구간 및 제2 시간 자원 구간으로 구분된 미리 구성된 시간 구간에 대한 자원 할당 정보를 수신 받을 수 있다. 여기서, 상기 제1 시간 자원 구간은 동일한 주파수 대역에서 업링크 신호의 전송 및 다운링크 신호의 수신의 동시 수행을 위해 할당된 시간 자원 구간이고, 상기 제2 시간 자원 구간은 상기 업링크 신호의 전송 또는 상기 다운링크 신호의 수신을 위해 할당된 시간 자원 구간일 수 있다. 또한, 상기 제1 시간 자원 구간 및 상기 제2 시간 자원 구간은 상기 자기 간섭 제거 능력, 상기 업링크 신호와 관련된 제1 데이터 량 및 상기 다운링크 신호와 관련된 제2 데이터 량에 기초하여 결정될 수 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 문서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
기지국과 관련된 프로세서(202)는 상기 RF 송수신기를 제어하여 상기 FDR과 관련된 자기 간섭 제거 능력을 UE로부터 보고받을 수 있다. 프로세서(202)는 미리 구성된 시간 구간에 대한 동일한 주파수 대역을 사용하여 업링크 신호 및 다운링크 신호의 송수신이 동시 수행되는 제1 시간 자원 구간 및 상기 업링크 신호의 전송 또는 상기 다운링크 신호의 수신이 수행되는 상기 제2 시간 자원 구간을 결정할 수 있다. 프로세서(202)는 상기 RF 송수신기를 제어하여 상기 제1 시간 자원 구간 및 상기 제2 시간 자원 구간에 대한 정보를 포함하는 자원 할당 정보를 상기 UE에게 전송할 수 있다.
발명의 다른 일 양태로서, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독가능한 저장 매체가 제공되며, 상기 동작은 자기 간섭 제거 능력과 관련된 정보를 기지국에 제공하고, 기지국으로부터 제1 시간 자원 구간 및 제2 시간 자원 구간으로 구분된 미리 구성된 시간 구간에 대한 자원 할당 정보를 수신 받을 수 있다. 여기서, 상기 제1 시간 자원 구간은 동일한 주파수 대역에서 업링크 신호의 전송 및 다운링크 신호의 수신의 동시 수행을 위해 할당된 시간 자원 구간이고, 상기 제2 시간 자원 구간은 상기 업링크 신호의 전송 또는 상기 다운링크 신호의 수신을 위해 할당된 시간 자원 구간일 수 있다. 또한, 상기 제1 시간 자원 구간 및 상기 제2 시간 자원 구간은 상기 자기 간섭 제거 능력, 상기 업링크 신호와 관련된 제1 데이터 량 및 상기 다운링크 신호와 관련된 제2 데이터 량에 기초하여 결정될 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 문서가 적용되는 무선 기기 활용 예
도 35는 본 문서에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 34 참조).
도 35를 참조하면, 무선 기기(100, 200)는 도 34의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 21의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 34의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 19, 100a), 차량(도 19, 100b-1, 100b-2), XR 기기(도 19, 100c), 휴대 기기(도 19, 100d), 가전(도 19, 100e), IoT 기기(도 19, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 19, 400), 기지국(도 19, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 35에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 35의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
본 문서가 적용되는 휴대기기 예
도 36는 본 문서에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 36를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 35의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
본 문서가 적용되는 차량 또는 자율 주행 차량 예
도 37는 본 문서에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 37을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 35의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 문서의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 문서의 실시예를 구성하는 것도 가능하다. 본 문서의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 문서의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 문서에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 문서의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 문서의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 문서는 본 문서의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 문서의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 문서의 등가적 범위 내에서의 모든 변경은 본 문서의 범위에 포함된다.
상술한 바와 같은 본 문서의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 송신 장치가 신호를 송수신하는 방법에 있어서,
    송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계;
    상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계;
    상기 RS에 연관된 피드백 정보를 수신하는 단계; 및
    상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되,
    상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고,
    상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함하는, 신호를 송수신하는 방법.
  2. 제 1 항에 있어서,
    상기 SI 신호의 세기를 측정하는 단계는, 초기 빔 탐색 시 결정된 빔 패턴에 기초하여 상기 송신 빔을 송신하는 제1 어레이에서 형성되는 신호를 제2 어레이에서 수신하여 측정하는 것을 포함하는, 신호를 송수신하는 방법.
  3. 제 2 항에 있어서,
    상기 RS를 송신하는 단계는 상기 제1 어레이에서 한 주기에 해당하는 빔 스위핑을 수행하는 것을 포함하고,
    상기 빔 스위핑은 상기 초기 빔 탐색 시 결정된 상기 빔 패턴의 메인 로브 빔의 전력이 절반이되는 영역 내에서 수행되는, 신호를 송수신하는 방법.
  4. 제 1 항에 있어서,
    상기 피드백 정보는 링크 품질에 대한 정보를 포함하고,
    상기 링크 품질에 대한 정보는 인덱스 형식인, 신호를 송수신하는 방법.
  5. 제 4 항에 있어서,
    상기 송신 빔을 조정하는 단계는 상기 링크 품질 대비 상기 SI 신호의 세기의 비를 최대화하는 방향으로 상기 송신 빔을 조정하는 것인, 신호를 송수신하는 방법.
  6. 제 1 항에 있어서,
    상기 RS는 DMRS (demodulation reference signal) 또는 CSI-RS (channel state information-reference signal)인, 신호를 송수신하는 방법.
  7. 제 1 항에 있어서,
    상기 RS의 자원은 콤 (comb) 타입으로 할당되는, 신호를 송수신하는 방법.
  8. 무선 통신 시스템의 송신 장치에 있어서,
    송신부; 수신부; 및 제어부를 포함하고,
    상기 송신부는 송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하고,
    상기 제어부는 상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하고,
    상기 수신부는 상기 RS에 연관된 피드백 정보를 수신하고, 및
    상기 제어부는 상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하고,
    상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고,
    상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함하는, 송신 장치.
  9. 제 8 항에 있어서,
    상기 제어부는 초기 빔 탐색 시 결정된 빔 패턴에 기초하여 상기 송신 빔을 송신하는 제1 어레이에서 형성되는 신호를 제2 어레이에서 수신하여 측정하는 것을 포함하는, 송신 장치.
  10. 제 9 항에 있어서,
    상기 송신부가 상기 제1 어레이에서 한 주기에 해당하는 빔 스위핑을 수행하는 것을 포함하고,
    상기 빔 스위핑은 상기 초기 빔 탐색 시 결정된 상기 빔 패턴의 메인 로브 빔의 전력이 절반이되는 영역 내에서 수행되는, 송신 장치.
  11. 제 8 항에 있어서,
    상기 피드백 정보는 링크 품질에 대한 정보를 포함하고,
    상기 링크 품질에 대한 정보는 인덱스 형식인, 송신 장치.
  12. 제 11 항에 있어서,
    상기 제어부가 상기 링크 품질 대비 상기 SI 신호의 세기의 비를 최대화하는 방향으로 상기 송신 빔을 조정하는 것을 포함하는, 송신 장치.
  13. 제 8 항에 있어서,
    상기 RS는 DMRS (demodulation reference signal) 또는 CSI-RS (channel state information-reference signal)인, 송신 장치.
  14. 단말을 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하고,
    송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계;
    상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계;
    상기 RS에 연관된 피드백 정보를 수신하는 단계; 및
    상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되,
    상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고,
    상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함하는, 단말을 위한 장치.
  15. 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서가 단말에 대한 동작을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작은:
    송신 빔을 이용하여 참조 신호 (RS, reference signal)를 송신하는 단계;
    상기 RS에 기초하여 자기 간섭 (SI, self-interference) 신호의 세기를 측정하는 단계;
    상기 RS에 연관된 피드백 정보를 수신하는 단계; 및
    상기 SI 신호의 세기 및 상기 피드백 정보에 기초하여 상기 송신 빔을 조정하는 단계를 포함하되,
    상기 RS는 채널 상태 측정을 요청하는 요청 정보를 포함하고,
    상기 요청 정보는 링크 품질 측정의 수행 여부와 상기 RS의 자원 할당에 대한 정보를 포함하는, 컴퓨터 판독 가능 저장 매체.
KR1020237008336A 2020-09-16 2020-09-16 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 KR20230069107A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/012469 WO2022059812A1 (ko) 2020-09-16 2020-09-16 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
KR20230069107A true KR20230069107A (ko) 2023-05-18

Family

ID=80776783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237008336A KR20230069107A (ko) 2020-09-16 2020-09-16 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US20230370182A1 (ko)
KR (1) KR20230069107A (ko)
WO (1) WO2022059812A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117279095A (zh) * 2022-06-14 2023-12-22 中兴通讯股份有限公司 Ssb波束资源配置方法、网络设备、终端设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270450B1 (ko) * 2015-03-23 2021-06-29 삼성전자주식회사 빔 포밍을 지원하는 풀 듀플렉스 통신 시스템에서 통신을 수행하는 장치 및 방법
US10069555B2 (en) * 2016-04-13 2018-09-04 Qualcomm Incorporated System and method for beam management
US10764766B2 (en) * 2018-03-27 2020-09-01 Samsung Electronics Co., Ltd. Methods of radio front-end beam sweeping for 5G terminals
US10720978B1 (en) * 2019-02-27 2020-07-21 Apple Inc. Beam diversity interference mitigation

Also Published As

Publication number Publication date
US20230370182A1 (en) 2023-11-16
WO2022059812A1 (ko) 2022-03-24

Similar Documents

Publication Publication Date Title
US11863476B2 (en) Method for transmitting and receiving channel state information between terminal and base station in wireless communication system and apparatus supporting same
US11838871B2 (en) Method and device for controlling sidelink transmission power in NR V2X
US11770829B2 (en) Method and device for determining RSRP in NR V2X
US11824665B2 (en) Sidelink HARQ feedback of NR V2X
US11601182B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US11737073B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US11470466B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US20220386146A1 (en) Apparatus and method for performing calibration in wireless communication system
KR20220119073A (ko) 무선통신 시스템에서 iab 노드의 동작 방법 및 상기 방법을 이용하는 장치
US11751229B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US20230370182A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex communication, and apparatus therefor
US11546125B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US20230239805A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex radio, and apparatus therefor
US20230309126A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex communication, and apparatus therefor
US20230367005A1 (en) Method and apparatus for performing beam alignment on basis of position in wireless communication system
US20230188245A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system supporting full-duplex radio
US20230189229A1 (en) Method for transmitting/receiving data in wireless communication system supporting full duplex communication, and apparatus therefor
US20230300906A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex communication, and apparatus therefor
US11337167B2 (en) Method for transmitting or receiving signal in wireless communication system and apparatus supporting same
US11510074B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US20230328510A1 (en) Method for transmitting/receiving data in wireless communication system, and apparatus therefor
US20230189312A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex communication, and apparatus therefor
US20230336213A1 (en) Method for transmitting or receiving data in wireless communication system supporting full-duplex radio and device therefor
US20240064663A1 (en) Power control of network-controlled repeaters
KR20230049669A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치