WO2018028621A1 - 无线信号传输方法及装置 - Google Patents

无线信号传输方法及装置 Download PDF

Info

Publication number
WO2018028621A1
WO2018028621A1 PCT/CN2017/096759 CN2017096759W WO2018028621A1 WO 2018028621 A1 WO2018028621 A1 WO 2018028621A1 CN 2017096759 W CN2017096759 W CN 2017096759W WO 2018028621 A1 WO2018028621 A1 WO 2018028621A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
symbols
wireless signals
length
block
Prior art date
Application number
PCT/CN2017/096759
Other languages
English (en)
French (fr)
Inventor
郝鹏
张峻峰
毕峰
鲁照华
胡留军
王欣晖
柏钢
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610978148.1A external-priority patent/CN107733831B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/324,021 priority Critical patent/US10992409B2/en
Publication of WO2018028621A1 publication Critical patent/WO2018028621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of communications, and in particular to a wireless signal transmission method and apparatus.
  • the new generation of mobile communication system needs to support enhanced mobile broadband (eMBB) and Ultra-Reliable and Low-Latency Communications (URLLC).
  • eMBB enhanced mobile broadband
  • URLLC Ultra-Reliable and Low-Latency Communications
  • MMTC massive machine type communication
  • the phase noise of RF devices is very serious, and the subcarrier width of the Orthogonal Frequency Division Multiple Access system is increased to resist phase noise.
  • the high-frequency propagation characteristics are significantly different from the lower frequency bands. Since the propagation loss in the high frequency band is significantly larger than the low frequency band, the coverage of the high frequency band is generally much smaller than the coverage of the low frequency band, and the smaller coverage area generally has a delay spread of the channel.
  • the corresponding coherent bandwidth is larger than the coherent bandwidth of the low frequency band of 300M to 3000M.
  • the subcarrier width can still satisfy the subcarrier spacing within the coherent bandwidth after the increase of the Long Term Evolution (LTE) system. This design requirement. Therefore, the sub-carrier spacing (SCS) (equivalent to the sub-carrier width) needs to be adjusted according to the carrier level, and the feasibility of the adjustment is present and reasonable.
  • SCS sub-carrier spacing
  • the new generation wireless NR system covers the carrier frequency from below 6G (sub 6G) up to 100G. It is necessary to use the frame structure parameters of different subcarrier spacing to adapt to the carrier frequency, that is to say, the frame structure design parameters on each carrier frequency will For example, the closer the frequency is to the core frequency of LTE, the closer the typical frame structure parameters such as the subcarrier spacing are to the existing parameters of LTE, and the higher the frequency, the larger the subcarrier spacing.
  • the system frame parameters different at different frequencies even if the NR system is On one carrier, the type of transmission service is different, and the subcarrier spacing parameters of different types of services are also different.
  • the service of URLLC emphasizes low delay, the corresponding symbol is shorter than eMBB, and the subcarrier spacing is larger than eMBB.
  • mMTC service demand is biased towards massive access and deep coverage, its subcarrier spacing may be much smaller than eMBB services, and the symbol length is much larger than eMBB.
  • Multiple types of services are multiplexed on the same carrier, making the system frame structure parameters more complicated.
  • the length of the symbol similar to the multiple access system such as OFDM and the length of the Cyclic Prefix (CP) are affected.
  • a conventional processing method is based on the current frame structure of LTE, and performs scalable frame structure parameter changes. This change is called Scalable.
  • the subcarrier spacing currently under study is from 15KHz, 30KHz, 60KHz, 75KHz, 120KHz up to 240KHz, or less than 15KHz, and the above parameters are all changed according to the integral multiple expansion coefficient.
  • frame structure parameter scaling is generally based on the length of an Interval (usually 1ms subframe), which ensures that the NR system and the TD-LTE system are aligned on a 1ms boundary. To avoid the interference between the uplink and the downlink caused by coexistence.
  • FIG. 1 is a schematic diagram of a frame structure corresponding to different subcarrier spacing parameters according to the related art.
  • the frame is scaled based on 1 ms, and symbols between different frame structures cannot be aligned.
  • the 15 kHz LTE time slot has 7 symbols.
  • the same 0.5 ms is formed by compressing 14 symbols of the original 1 ms subframe, which can be easily calculated. It is concluded that the end of the first symbol of 15KHz and the end of the first and second symbols of 30KHz are misaligned, the difference is 8Ts, about 0.26us.
  • FIG. 2 is a schematic diagram of uplink and downlink interference when symbols are not aligned according to the related art.
  • FDM Frequency Division Multiplexing
  • FIG. 2 When multiple sets of frame structure parameters appear in the system coexist in a Frequency Division Multiplexing (FDM) manner, as shown in FIG. 2
  • FDM Frequency Division Multiplexing
  • the uplink and downlink switching points of TDD are in the case of integer symbol length units, such as 15KHz frames.
  • the second symbol under the structure is the downlink
  • the 3rd and 4th symbols in the 30KHz frame structure are the downlink
  • the 5th symbol is the uplink
  • the 2nd symbol in the 15KHz frame structure will be the edge at the end of the 2nd symbol.
  • the position interferes with the 5th symbol under the 30KHz frame structure.
  • the embodiment of the invention provides a method and a device for transmitting a wireless signal, so as to at least solve the problem that the symbol misalignment is easily generated when different subcarrier spacing parameters exist in the related art, which may cause uplink and downlink interference.
  • a wireless signal transmission method including: cascading consecutive symbols in each set of wireless signals into symbol cascading blocks in the presence of multiple sets of wireless signals of different configurations, wherein And symbolic concatenation of the two sets of wireless signals in the same time length in a case where the length of the effective symbol between any two sets of wireless signals of the plurality of sets of different configured wireless signals satisfies a proportional relationship of n:m
  • the number of symbols in the block satisfies the proportional relationship of m:n, and n and m are positive integers; the symbol concatenated blocks are transmitted in a predetermined order.
  • the symbols in the symbol concatenated block have the same transmission direction type.
  • the symbols in the symbol concatenated block have the same function type.
  • the function type includes one of the following: a downlink control symbol, a downlink data symbol, an uplink control symbol, and an uplink data symbol.
  • the different configured wireless signals include at least one of: wireless signals with different subcarrier spacing; wireless signals with different symbol lengths; wireless signals with different cyclic prefix lengths.
  • a relative relationship of lengths of one symbol in a symbol concatenated block of a wireless signal with a smaller subcarrier spacing and a symbol concatenation block of a larger subcarrier spacing wireless signal The relative lengths of the symbols whose number is the scaling factor are the same.
  • the relative relationship is that one symbol in the symbol concatenated block of the smaller subcarrier spacing is a long symbol, and the corresponding scaling factor symbol in the symbol concatenated block of the larger subcarrier spacing The symbol is also a long symbol; one symbol in the symbol concatenated block of the smaller subcarrier spacing is a short symbol, and the corresponding scaling factor symbols in the symbol concatenated block of the larger subcarrier spacing are also short symbols.
  • the relative relationship is that when one symbol in the symbol cascading block of the smaller subcarrier interval is a long symbol, at least one symbol corresponding to the symbol cascading block of the larger subcarrier interval Also a long symbol.
  • the same transmission direction type of the symbols in the symbol concatenated block includes one of the following: the symbols in the symbol concatenated block are all transmitted in a downlink transmission direction; and the symbol concatenated blocks are all downlink transmissions.
  • the lengths of the symbols of the same transmission direction type in the multiple sets of different configured wireless signals are not equal.
  • the lengths of the symbols of the same transmission direction type in the multiple sets of different configured wireless signals are obtained by at least one of: acquiring the symbols in the multiple sets of different configured wireless signals by using the received configuration parameters.
  • the length of the effective symbol in the corresponding symbol is obtained by the subcarrier spacing SCS, and the length of the corresponding symbol in the plurality of differently configured wireless signals is obtained according to the effective symbol length, wherein the length of the symbol passes through The effective symbol length and the prefix length are added together.
  • each of the plurality of sets of different configured wireless signals there is a length of at least two symbols, wherein, in the case where there are two symbols, the length of the two symbols The length of the long symbol and the length of the short symbol, respectively, and in each set of wireless signals The proportional relationship between the length of the long symbol and the length of the short symbol is the same.
  • concatenating consecutive symbols in each set of wireless signals into symbol concatenated blocks comprises: concatenating a predetermined number of symbols in each set of wireless signals into symbol concatenated blocks, the predetermined number being the set of wireless The number of symbols that the signal contains in a unit time interval at the base subcarrier spacing.
  • transmitting the symbol concatenated blocks in a predetermined order comprises: transmitting symbol concatenated blocks in a unit time interval in series.
  • the valid symbol is an OFDM symbol.
  • a wireless signal transmission apparatus comprising: a cascading module configured to set a continuous symbol level in each set of wireless signals in the presence of a plurality of sets of differently configured wireless signals a symbol cascading block, wherein, in a case where a length of an effective symbol between any two sets of wireless signals of the plurality of sets of differently configured wireless signals satisfies a proportional relationship of n:m, the same length of time
  • the number of symbols in the symbol concatenated block of the two sets of wireless signals satisfies the proportional relationship of m:n, and n and m are positive integers
  • the transmission module is arranged to transmit the symbol concatenated blocks in a predetermined order.
  • the symbols in the symbol concatenated block have the same transmission direction type.
  • the symbols in the symbol concatenated block have the same function type.
  • the function type includes one of the following: a downlink control symbol, a downlink data symbol, an uplink control symbol, and an uplink data symbol.
  • the different configured wireless signals include at least one of: wireless signals with different subcarrier spacing; wireless signals with different symbol lengths; wireless signals with different cyclic prefix lengths.
  • a relative relationship of lengths of one symbol in a symbol concatenated block of a wireless signal with a smaller subcarrier spacing and a symbol concatenation block of a larger subcarrier spacing wireless signal The relative lengths of the symbols whose number is the scaling factor are the same.
  • the relative relationship is that one symbol in the symbol concatenated block of the smaller subcarrier spacing is a long symbol, and the corresponding scaling factor symbol in the symbol concatenated block of the larger subcarrier spacing also a long symbol; one symbol in the symbol concatenated block of the smaller subcarrier spacing is a short symbol, Then, the corresponding scaling factor symbols in the symbol concatenated block of the larger subcarrier spacing are also short symbols.
  • the relative relationship is that when one symbol in the symbol cascading block of the smaller subcarrier interval is a long symbol, at least one symbol corresponding to the symbol cascading block of the larger subcarrier interval Also a long symbol.
  • the same transmission direction type of the symbols in the symbol concatenated block includes one of the following: the symbols in the symbol concatenated block are all transmitted in a downlink transmission direction; and the symbol concatenated blocks are all downlink transmissions.
  • the lengths of the symbols of the same transmission direction type in the multiple sets of different configured wireless signals are not equal.
  • the device further includes: an acquiring module, configured to acquire, according to at least one of the following manners, a length of a symbol of the same transmission direction type in the multiple sets of different configured wireless signals: acquiring the configured parameter by using the received configuration parameter a plurality of sets of symbols in different configured wireless signals; obtaining a valid symbol length in the corresponding symbol by using a subcarrier spacing SCS, and acquiring corresponding symbols in the plurality of different configured wireless signals according to the effective symbol length Length, wherein the length of the symbol is obtained by adding the effective symbol length and the prefix length.
  • an acquiring module configured to acquire, according to at least one of the following manners, a length of a symbol of the same transmission direction type in the multiple sets of different configured wireless signals: acquiring the configured parameter by using the received configuration parameter a plurality of sets of symbols in different configured wireless signals; obtaining a valid symbol length in the corresponding symbol by using a subcarrier spacing SCS, and acquiring corresponding symbols in the plurality of different configured wireless signals according to the effective symbol
  • each of the plurality of sets of different configured wireless signals there is a length of at least two symbols, wherein, in the case where there are two symbols, the length of the two symbols The length of the long symbol and the length of the short symbol, respectively, and the proportional relationship between the length of the long symbol and the length of the short symbol in each set of wireless signals are the same.
  • the cascading module is further configured to: concatenate a predetermined number of symbols in each set of wireless signals into symbol cascading blocks, where the predetermined number is a unit of the set of wireless signals at a base subcarrier interval The number of symbols contained in the time interval.
  • the transmission module is further configured to: send the symbol concatenated blocks in a unit time interval in series.
  • the valid symbol is an OFDM symbol.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the step of concatenating successive symbols within each set of wireless signals into symbol concatenated blocks in the presence of multiple sets of differently configured wireless signals, wherein In the case where the length of the effective symbol between any two sets of wireless signals of different sets of wireless signals satisfies the proportional relationship of n:m, the number of symbols in the two sets of wireless signal cascading blocks in the same length of time A proportional relationship of m:n is satisfied, and n and m are positive integers; the symbol cascading block is transmitted in a predetermined order.
  • successive symbols in each set of wireless signals are cascaded into symbol concatenated blocks according to a certain proportional relationship, and then the symbol concatenated blocks are sequentially transmitted, so that the symbols of various configuration parameters in the same time length are
  • the effective symbols can be aligned, which solves the problem that the symbols are not aligned when different subcarrier spacing parameters exist in the related art, which may cause uplink and downlink interference, avoids uplink and downlink interference, and improves system robustness and stability.
  • FIG. 1 is a schematic diagram of a frame structure corresponding to different subcarrier spacing parameters according to the related art
  • FIG. 2 is a schematic diagram of uplink and downlink interference when symbols are not aligned according to the related art
  • FIG. 3 is a flowchart of a wireless signal transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of telescoping after symbol concatenation in a block according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic diagram of telescoping after symbol concatenation in a block according to a preferred embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a wireless signal transmission apparatus according to an embodiment of the present invention.
  • a method and apparatus for data transmission using a symbol concatenated block are provided, which can at least solve the uplink and downlink interference generated when the symbols cannot be aligned when different frame structure parameters of the NR system are used.
  • the inventors found that if the 15KHz downlink (Downlink, DL for short) part is taken as a whole, the uplink (Downlink, referred to as the UL part as a whole, as long as it will be under different parameters)
  • the DL parts of the frame structure are respectively aligned, and the UL parts are respectively aligned, so that the problem of uplink and downlink interference can be solved.
  • FIG. 3 is a flowchart of a wireless signal transmission method according to an embodiment of the present invention. As shown in FIG. 3, the flow includes the following steps:
  • Step S302 in the case that there are multiple sets of wireless signals of different configurations, cascading consecutive symbols in each set of wireless signals into symbol cascading blocks, wherein any two sets of the plurality of sets of different configured wireless signals
  • the length of the effective symbol between the wireless signals satisfies the proportional relationship of n:m
  • the number of symbols in the symbol concatenated block of the two sets of wireless signals in the same time length satisfies the proportional relationship of m:n
  • m are positive integers
  • Step S304 transmitting the symbol cascading block in a predetermined order.
  • the execution body of the foregoing steps may be a base station, a terminal, or the like, but is not limited thereto.
  • the above valid symbol may refer to an OFDM symbol that does not include a cyclic prefix (CP), which is also called a payload.
  • CP cyclic prefix
  • the symbols in the symbol concatenated block have the same transmission direction type.
  • the symbols in the symbol concatenated block have the same function type.
  • the function type includes one of the following: a downlink control symbol, a downlink data symbol, an uplink control symbol, and an uplink data symbol.
  • the different configured wireless signals include at least one of: wireless signals with different subcarrier spacing; wireless signals with different symbol lengths; wireless signals with different cyclic prefix lengths.
  • a relative relationship of lengths of one symbol in a symbol concatenated block of a wireless signal with a smaller subcarrier spacing and a symbol concatenation block of a larger subcarrier spacing wireless signal The relative lengths of the symbols whose number is the scaling factor are the same.
  • the relative relationship may be the meaning that one symbol in the symbol concatenated block of the smaller subcarrier spacing is a long symbol, and the corresponding scaling in the symbol concatenation block of the larger subcarrier spacing
  • the factor symbols are also long symbols; one symbol in the symbol concatenated block of the smaller subcarrier spacing is a short symbol, and the corresponding scaling factor symbols in the symbol concatenation block of the larger subcarrier spacing are also Short symbol.
  • the foregoing relative relationship may also be: when one symbol in the symbol cascading block of the smaller subcarrier spacing is a long symbol, at least the symbol cascading block of the larger subcarrier spacing corresponds to at least 1 symbol is also a long symbol
  • concatenating consecutive symbols in each set of wireless signals into symbol concatenated blocks comprises: concatenating a predetermined number of symbols in each set of wireless signals into symbol concatenated blocks, the predetermined number being the set of wireless The number of symbols that the signal contains in a unit time interval at the base subcarrier spacing. For example, when the number of CP-OFDM symbols included in the unit time interval of the basic subcarrier interval is two, the corresponding radio signals of the set of the stretched subcarriers are CP-OFDM symbol level.
  • the concatenations can each be concatenated by two CP-OFDM symbols of the same transmission direction type.
  • transmitting the symbol concatenated blocks in a predetermined order comprises: transmitting symbol concatenation blocks within a unit time interval (ie, one time interval unit (Interval)) in series: for example, may be within a time interval first
  • the downlink transmission direction type CP-OFDM symbol concatenated blocks are transmitted in series, and then the uplink transmission direction type CP-OFDM symbol concatenated blocks in the time interval are transmitted in series.
  • the transmission direction type of the symbol included in the symbol concatenated block may be a blank time, a downlink symbol, or an uplink symbol. That is, the same type of transmission direction of the symbols in the symbol concatenated block may include one of the following:
  • the symbol cascading block is a symbol transmitted in a downlink transmission direction
  • the symbol cascading block is a symbol and a blank time transmitted in a downlink transmission direction
  • the symbol cascading block is a symbol transmitted in an uplink transmission direction
  • the symbol cascading blocks are all symbols and blank times transmitted in the uplink transmission direction.
  • the lengths of the symbols of the same transmission direction type in the multiple sets of different configured wireless signals are not equal.
  • the multiple sets of parameters generally include the length of the symbol, or the length of the symbol may also be added by the effective symbol length and the prefix length in the parameter, wherein the effective symbol length is obtained by the subcarrier spacing SCS.
  • the length of the symbol of the same transmission direction type in the multiple sets of different configured wireless signals may be obtained by at least one of: acquiring the length of the symbols in the multiple sets of different configured wireless signals by using the received configuration parameters; Obtaining a valid symbol length in a corresponding symbol by using a subcarrier spacing SCS, and acquiring a length of a corresponding symbol in the plurality of sets of different configured wireless signals according to the effective symbol length, wherein a length of the symbol passes the effective The symbol length and the prefix length are added together.
  • the length of at least two or more symbols may exist in the same set of wireless signals (ie, within any one of the plurality of sets of parameters), wherein, in the case where there are two symbols, the The lengths of the two symbols correspond to long symbols and short symbols, respectively, and the ratio between the length of the long symbol and the length of the short symbol in each set of wireless signals (ie, under multiple sets of parameter configurations)
  • the lines are all the same.
  • the long symbol refers to a symbol corresponding to a long CP, for example, a combination of a long CP and an OPDM symbol, that is, a combination of an extended CP (extended CP) and an OPDM symbol; and a short symbol refers to a symbol corresponding to a short CP, for example, short.
  • a combination of CP and OPDM symbols that is, a combination of regular CP (normal CP) and OPDM symbols.
  • the symbol is Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM), which describes multiple parameters of CP-OFDM and valid symbols in the same set of parameters (ie, bears valid data (not The OFDM symbol part (also referred to as the payload) of the CP) is equal in length.
  • the prefix CP in the same set of parameters has two possible lengths, which are defined as a long CP and a short CP, respectively, wherein the length of the long CP is greater than the length of the short CP; The effective symbol length between multiple sets of parameters, the prefix CP is not equal.
  • the effective symbol length and the length and length CP length (set of parameters) of the subcarrier spacing fs after scaling are (the other set of parameters) 1/m under the base subcarrier spacing f0.
  • m may be a positive integer greater than or equal to 1, or may be a fraction of 1/2, 1/3, 1/4, etc., and the denominator is a positive integer.
  • the same set of intra-symbol symbols is combined into a symbol-concatenated block transmission.
  • the intra-block (only the downlink part DL Part or the uplink part UL Part is included in the block) is composed of multiple CP-OFDM symbols, and the intra-block symbols are not at most The total number of symbols of the subframe or slot that exceeds the base frame structure (subcarrier spacing is f0).
  • the relative proportion of the length between each symbol in the block is the same as the length between each symbol in the block under the basic frame structure parameter. If there are only two lengths of long symbol and short symbol, long symbol and short symbol The relative length ratio is the same as the length between the long symbol and the short symbol under the basic frame structure parameter.
  • the lengths of the corresponding m symbol concatenated blocks in the same time period are consistent among multiple sets of parameters.
  • the basic subcarrier spacing is assumed to be f0 (corresponding to a set of configurations or parameters, including the subcarrier spacing).
  • the compression ratio is 1/2, and the rendered pattern is shown in FIG. 4, and the first and second symbols of the basic frame structure f0 are shown. It is a pattern of a long CP and a short CP.
  • the compressed frame structure is a symbol cascading block of two symbols connected in a compressed long CP-OFDM+short CP-OFDM and another one. Long CP-OFDM+short CP-OFDM concatenated symbol concatenated blocks are combined.
  • the 3rd and 4th symbols of the base frame structure are patterns of short CP and short CP, and the compressed frame structure is a combination of short CP-OFDM + short CP-OFDM + short CP-OFDM + short CP-OFDM.
  • the length ratio of the long CP-OFDM and the short CP-OFDM under fs is the same as that under f0, and the symbol cascading block of the long CP-OFDM+short CP-OFDM+long CP-OFDM+short CP-OFDM (symbols 1, 2) 3, 4), the total length of the combination and the symbol of the basic frame structure f0 are the same as the length of the block (symbols 1, 2).
  • the NR system in the above solution is scaled according to different scaling factor scaling factors
  • the NR system is scaled based on a specific DL, GP, and UL part length reference, that is, the scaling does not change the reference type of each part, thereby solving the difference in related technologies.
  • the subcarrier spacing parameter is used, the symbol misalignment is easy to occur, which may cause uplink and downlink interference, avoiding uplink and downlink interference, and improving system robustness and stability.
  • the previous embodiment focuses on the alignment for the purpose of solving the interference between the uplink and the downlink.
  • the solution is also to consider aligning the cascading blocks composed of multiple symbols in the same transmission direction.
  • the following embodiment is mainly to consider the problem from the perspective of functional normalization of multiple symbols.
  • the symbol is still a CP-OFDM symbol, and there are multiple sets of parameters describing CP-OFDM, the same set.
  • the length of the valid symbol (excluding the CP) in the parameter, the prefix CP in the same set of parameters has two possible lengths, which are defined as a long CP and a short CP, wherein the length of the long CP is greater than the length of the short CP;
  • the effective symbol length between sets of parameters, the prefix CP is not equal.
  • the scaling factor Scale factor
  • the effective symbol length and the length and length CP length (set of parameters) of the subcarrier spacing fs after scaling For the base subcarrier spacing f0 (the other set of parameters) 1 / m.
  • m may be a positive integer greater than or equal to 1, or may be a fraction of 1/2, 1/3, 1/4, etc., and the denominator is a positive integer.
  • the symbol concatenation of the same function in the same set of parameters is combined into a symbol concatenated block transmission, for example, only the symbol concatenation block of the downlink control information bearer is executed, only the symbol concatenation block of the downlink data bearer is executed, and only the uplink control information bearer is performed.
  • the block is composed of one or more CP-OFDM symbols, and the intra-block symbols do not exceed the total number of symbols of the subframe or the slot of the basic frame structure (subcarrier spacing is f0).
  • the relative proportion of the length between each symbol in the block is the same as the length between each symbol in the block under the basic frame structure parameter. If there are only two lengths of long symbol and short symbol, long symbol and short symbol The relative length ratio is the same as the length between the long symbol and the short symbol under the basic frame structure parameter.
  • the downlink and uplink parts are respectively 2 symbols, that is, one symbol of each of the downlink control Ctrl and the downlink data Data, and one symbol of each of the uplink control Ctrl and the uplink data Data.
  • the interval corresponding to the set of symbols is 1/2 of the symbol length.
  • the block is a pattern of a long CP, and in the same period of time after compression, the compressed frame structure is a symbol concatenated block in which two symbols of the compressed long CP-OFDM+long CP-OFDM are concatenated.
  • the second symbol of the base frame structure f0 is a pattern of a short CP, and the compressed frame structure is in the same period of time after compression. Compressed short CP-OFDM + short CP-OFDM 2 symbol concatenated into symbol concatenated blocks.
  • the third symbol of the base frame structure is a short CP pattern, and the compressed frame structure is a combination of short CP-OFDM + short CP-OFDM.
  • the fourth symbol of the base frame structure is a pattern of short CPs, and the compressed frame structure is also a combination of short CP-OFDM + short CP-OFDM.
  • the length ratio of long CP-OFDM and short CP-OFDM under fs is the same as that under f0, and the symbol cascading block of long CP-OFDM+short CP-OFDM+long CP-OFDM+short CP-OFDM is symbol 1+2 3+4, 5+6, 7+8, respectively indicating downlink control, downlink data, uplink data, and uplink control, and these functional blocks are respectively associated with the symbol of the basic frame structure f0 (symbols 1, 2, 3, 4) ) The respective lengths are the same.
  • the total length of the combination of the function blocks is the same as the total length of the symbol parallel blocks (symbols 1, 2, 3, 4) of the base frame structure f0.
  • the NR system in the above solution is scaled according to different scaling factor scaling factors
  • the NR system is scaled based on a specific function, such as a length reference of the control and data parts, that is, the scaling does not change the function of each part of the reference type, thereby solving the related technology.
  • the symbol misalignment is easy to occur, which may cause mutual interference between functional blocks, which improves system robustness and stability.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention may be soft in nature or in part contributing to the prior art.
  • the form of the product is stored in a storage medium (such as ROM / RAM, disk, CD), including a number of instructions to make a terminal device (can be a mobile phone, computer, server, or network) Apparatus, etc.) performs the methods described in various embodiments of the present invention.
  • a wireless signal transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a wireless signal transmission apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes:
  • the cascading module 52 is configured to cascade successive symbols in each set of wireless signals into symbol cascading blocks in the presence of multiple sets of different configured wireless signals, wherein in the plurality of sets of different configured wireless signals In the case where the length of the effective symbol between any two sets of wireless signals satisfies the proportional relationship of n:m, the number of symbols in the symbol concatenated block of the two sets of wireless signals in the same time length satisfies the ratio of m:n Relationship, and n and m are positive integers;
  • the transmission module 54 connected to the cascade module 52, is arranged to transmit the symbol concatenated blocks in a predetermined order.
  • the above valid symbol may refer to an OFDM symbol that does not include a cyclic prefix (CP), which is also called a payload.
  • CP cyclic prefix
  • the symbols in the symbol concatenated block have the same transmission direction type.
  • the symbols in the symbol concatenated block have the same function type.
  • the function type includes one of the following: a downlink control symbol, a downlink data symbol, an uplink control symbol, and an uplink data symbol.
  • the different configured wireless signals include at least one of: wireless signals with different subcarrier spacing; wireless signals with different symbol lengths; wireless signals with different cyclic prefix lengths.
  • a relative relationship of lengths of one symbol in a symbol concatenated block of a wireless signal with a smaller subcarrier spacing and a symbol concatenation block of a larger subcarrier spacing wireless signal The relative lengths of the symbols whose number is the scaling factor are the same.
  • the relative relationship may be that one symbol in the symbol concatenated block of the smaller subcarrier spacing is a long symbol, and the corresponding scaling factor in the symbol concatenated block of the larger subcarrier spacing The symbol is also a long symbol; if one symbol in the symbol concatenated block of the smaller subcarrier spacing is a short symbol, the corresponding scaling factor symbols in the symbol concatenated block of the larger subcarrier spacing are also short symbols. .
  • the relative relationship may be that when one symbol in the symbol concatenated block of the smaller subcarrier interval is a long symbol, at least one symbol concatenation block corresponding to the larger subcarrier interval corresponds to at least one symbol. Symbols are also long symbols.
  • the cascading module 52 may be configured to concatenate consecutive symbols in each set of wireless signals into symbol cascading blocks, including: cascading a predetermined number of symbols in each set of wireless signals into symbol cascading blocks,
  • the predetermined number is the number of symbols included in the unit time interval of the set of wireless signals at the base subcarrier interval. For example, when the number of CP-OFDM symbols included in the unit time interval of the basic subcarrier interval is two, the corresponding radio signals of each set of the stretched subcarriers are separated by CP-OFDM symbol cascading blocks. It can be cascaded by two CP-OFDM symbols of the same transmission direction type.
  • the transmission module 54 may be configured to transmit symbol concatenated blocks within a unit time interval (ie, one time interval unit (Interval)) in series.
  • a downlink transmission direction type CP-OFDM symbol concatenated block in one time interval may be transmitted in series, and then an uplink transmission direction type CP-OFDM symbol concatenated block in the time interval is transmitted in series.
  • the same transmission direction type of the symbols in the symbol concatenation block may include one of the following:
  • the symbol cascading block is a symbol transmitted in a downlink transmission direction
  • the symbol cascading block is a symbol and a blank time transmitted in a downlink transmission direction
  • the symbol cascading block is a symbol transmitted in an uplink transmission direction
  • the symbol cascading blocks are all symbols and blank times transmitted in the uplink transmission direction.
  • the lengths of the symbols of the same transmission direction type in the multiple sets of different configured wireless signals are not equal.
  • the apparatus further includes: an acquiring module, configured to acquire, according to at least one of the following manners, a length of a CP-OFDM symbol of the same transmission direction type in the multiple sets of different configured wireless signals:
  • each of the plurality of sets of different configured wireless signals there may be a length of at least two or more symbols, wherein, in the case where there are two symbols, the two types
  • the lengths of the symbols correspond to long symbols and short symbols, respectively, and the proportional relationship between the length of the long symbol and the length of the short symbol in each set of wireless signals (ie, under multiple sets of parameter configurations) is the same.
  • the long symbol refers to a symbol corresponding to a long CP, for example, a combination of a long CP and an OPDM symbol, that is, a combination of an extended CP (extended CP) and an OPDM symbol; and a short symbol refers to a symbol corresponding to a short CP, for example, short.
  • a combination of CP and OPDM symbols that is, a combination of regular CP (normal CP) and OPDM symbols.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S302 in the case that there are multiple sets of wireless signals of different configurations, cascading consecutive symbols in each set of wireless signals into symbol cascading blocks, wherein any two sets of the plurality of sets of different configured wireless signals
  • the length of the effective symbol between the wireless signals satisfies the proportional relationship of n:m
  • the number of symbols in the symbol concatenated block of the two sets of wireless signals in the same time length satisfies the proportional relationship of m:n
  • m are positive integers
  • Step S304 transmitting the symbol cascading block in a predetermined order.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the wireless signal transmission method and apparatus provided by the embodiments of the present invention have the following beneficial effects: the problem that the symbols are not aligned when different subcarrier spacing parameters exist in the related art is solved, and the uplink and downlink interferences are caused.
  • the problem is to avoid the uplink and downlink interference and improve the robustness and stability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例中提供了一种无线信号传输方法及装置,该方法包括:在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;按照预定的顺序发射所述符号级联块。通过本发明中的实施例,解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题,避免了上下行干扰,提升了系统健壮性及稳定性。

Description

无线信号传输方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种无线信号传输方法及装置。
背景技术
新一代移动通信系统(new radio,简称为NR)需要支持增强移动宽带(enhanced mobile broad band,简称为eMBB)、高可靠低时延通信(Ultra-Reliable and Low-Latency Communications,简称为URLLC)以及海量机器类型通信(massive machine type communication,简称为mMTC)业务,而且将会在低于6GHz或者高于6GHz的更高的载波频率上进行系统组网,目前得到业界广泛共识和国际组织认定的频段主要是3GHz~6GHz,6GHz~100GHz,这一频段基本上属于厘米波段和毫米波段。研究表明,频率在6G~100GHz之间,特别是较高频率,射频器件的相位噪声非常严重,而增加正交频分多址系统的子载波宽度可以抵抗相位噪声。高频传播特性与较低频段有明显区别,由于高频段的传播损耗明显大于低频段,高频段的覆盖一般远小于低频段的覆盖范围,较小的覆盖范围一般情况下信道的延时扩展也比较小,相应的相干带宽比在300M~3000M的低频段的相干带宽要大,子载波宽度相对于长期演进(Long Term Evolution,简称为LTE)系统增加后仍然可以满足子载波间隔在相干带宽内这一设计要求。所以子载波间距(sub-carrier spacing,简称为SCS)(等同于子载波宽度)需要根据载波的高低进行调整,而且调整的可行性是存在且合理的。
新一代无线NR系统覆盖了从6G以下(sub 6G)一直到100G的载波频率,需要使用不同的子载波间距的帧结构参数来适应载波频率,也就是说各个载波频率上的帧结构设计参数会有所不同,举例来说,频率越接近LTE的核心频率,其子载波间隔等典型帧结构参数越接近LTE现有的参数,频率越高,其子载波间隔就越大。
不仅是系统在不同的频率上帧结构参数会有不同,即使NR系统在同 一个载波上,其传输业务类型的不同,不同类型业务的子载波间隔参数也会有所区别,比如说URLLC的业务强调低延时,相应的符号比eMBB更短,子载波间隔也大于eMBB,而mMTC业务需求偏向于海量接入和深度覆盖,其子载波间隔可能远远小于eMBB业务,符号长度也比eMBB大得多。多种类型的业务复用在同一载波上,使得系统帧结构参数更加的复杂。
子载波间隔SCS这一重要帧结构参数变化后,会相应的影响类似OFDM等多址系统的符号的长度以及循环前缀(Cyclic Prefix,简称为CP)的长度等。
一种常规的处理方法,是以LTE目前的帧结构为基础,进行可伸缩的帧结构参数变化,这种变化称为可Scalable。比如目前正在研究的子载波间距从15KHz、30KHz、60KHz、75KHz、120KHz一直到240KHz等或者比15KHz还要小的情况都是可能存在的,而且以上参数都是按照整数倍伸缩系数进行变化的。但是由于LTE帧结构参数的特殊性,即LTE的0.5ms的时隙中7个符号中第一个符号是长符号,其他6个符号是短符号,所以一般为了保证和时分(Time Division,简称为TD)LTE系统共存,帧结构参数伸缩一般是以一个时间间隔单元(Interval)(通常是1ms的子帧)长度为基础进行的,这样可以保证NR系统与TD-LTE系统以1ms为边界对齐,避免共存时带来的上下行相互干扰。
然而,当NR系统的帧结构参数伸缩以1ms的子帧长度为基础进行时,由于LTE时隙是由1个长符号和6个短符号组成的,所以在进行整数倍伸缩时,不同的子载波间隔参数对应的帧结构在符号边缘不能对齐。图1是根据相关技术中不同子载波间隔参数对应的帧结构示意图,图1中是以1ms为基础伸缩,不同参数的帧结构之间符号无法对齐。如图1所示,15KHz的LTE时隙有7个符号,子载波间隔调整为30KHz时,同样的0.5ms内是由原1ms的子帧的14个符号压缩1倍形成的,可以通过简单计算得出,15KHz的第一个符号末尾和30KHz的第1、2个符号的末尾是对不齐的,差距是8Ts,约0.26us。
图2是根据相关技术中符号未对齐时的上下行干扰示意图,当系统中出现了多套帧结构参数以频分复用(Frequency Division Multiplexing,简称为FDM)的方式共存时,如图2的15KHz和30KHz两套帧结构参数共存时,如果采用的是时分双工(Time Division Duplexing,简称为TDD)双工方式,TDD的上下行切换点在整数个符号长度单位的情况下,比如15KHz帧结构下的第2符号是下行,30KHz帧结构下的第3、4符号是下行,第5个符号是上行,15KHz帧结构下的第2符号会在第2符号末尾的边缘也就是对不齐的位置干扰30KHz帧结构下第5个符号。
针对相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题,目前尚未给出有效的解决方案。
发明内容
本发明实施例提供了一种无线信号传输方法及装置,以至少解决相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题。
根据本发明的一个实施例,提供了一种无线信号传输方法,包括:在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;按照预定的顺序发射所述符号级联块。
可选地,所述符号级联块内的符号的传输方向类型相同。
可选地,所述符号级联块内的符号的功能类型相同。
可选地,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
可选地,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
可选地,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
可选地,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为短符号。
可选地,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号。
可选地,所述符号级联块内的符号的传输方向类型相同包括以下之一:所述符号级联块内均为下行传输方向传输的符号;所述符号级联块内均为下行传输方向传输的符号和空白时间;所述符号级联块内均为上行传输方向传输的符号;所述符号级联块内均为上行传输方向传输的符号和空白时间。
可选地,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
可选地,所述多套不同配置的无线信号中相同传输方向类型的符号的长度通过以下方式至少之一获取:通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
可选地,所述多套不同配置的无线信号中的每一套无线信号中,存在至少两种符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别为长符号的长度和短符号的长度,且每一套无线信号中的 长符号的长度和短符号的长度之间的比例关系均相同。
可选地,将每套无线信号内连续的符号级联成符号级联块包括:将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。
可选地,按照预定的顺序发射所述符号级联块包括:将一单位时间间隔内的符号级联块串联发送。
可选地,所述有效符号为OFDM符号。
根据本发明的另一实施例,还提供了一种无线信号传输装置,包括:级联模块,设置为在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;传输模块,设置为按照预定的顺序发射所述符号级联块。
可选地,所述符号级联块内的符号的传输方向类型相同。
可选地,所述符号级联块内的符号的功能类型相同。
可选地,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
可选地,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
可选地,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
可选地,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号, 则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为短符号。
可选地,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号。
可选地,所述符号级联块内的符号的传输方向类型相同包括以下之一:所述符号级联块内均为下行传输方向传输的符号;所述符号级联块内均为下行传输方向传输的符号和空白时间;所述符号级联块内均为上行传输方向传输的符号;所述符号级联块内均为上行传输方向传输的符号和空白时间。
可选地,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
可选地,所述装置还包括:获取模块,设置为通过以下方式至少之一获取所述多套不同配置的无线信号中相同传输方向类型的符号的长度:通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
可选地,所述多套不同配置的无线信号中的每一套无线信号中,存在至少两种符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别为长符号的长度和短符号的长度,且每一套无线信号中的长符号的长度和短符号的长度之间的比例关系均相同。
可选地,所述级联模块还设置为:将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。
可选地,所述传输模块还设置为:将一单位时间间隔内的符号级联块串联发送。
可选地,所述有效符号为OFDM符号。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;按照预定的顺序发射所述符号级联块。
通过本发明,将每套无线信号内连续的符号按照一定比例关系级联成符号级联块,然后按顺序将符号级联块进行发射,从而使得同一个时间长度中各种配置参数的符号在有效符号上能够对齐,解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题,避免了上下行干扰,提升了系统健壮性及稳定性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术中不同子载波间隔参数对应的帧结构示意图;
图2是根据相关技术中符号未对齐时的上下行干扰示意图;
图3是根据本发明实施例的无线信号传输方法的流程图;
图4是根据本发明优选实施例一的符号级联成块后进行伸缩的示意图;
图5是根据本发明优选实施例二的符号级联成块后进行伸缩的示意图;
图6是根据本发明实施例的无线信号传输装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
方法实施例
在本实施例中,提供了一种使用符号级联块进行数据传输的方法和装置,能够至少解决NR系统的不同帧结构参数时符号无法对齐时产生的上下行干扰。
通过仔细分析图2,发明人发现,如果将15KHz的下行链路(Downlink,简称为DL)部分作为一个整体,上行链路(Downlink,简称为UL部分作为一个整体,只要将在不同参数下的帧结构DL部分分别对齐,UL部分分别对齐,就可以解决上下行干扰的问题。
基于上述分析,在本实施例中提供了一种无线信号传输方法,图3是根据本发明实施例的无线信号传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;
步骤S304,按照预定的顺序发射所述符号级联块。
通过上述步骤,将每套无线信号内连续的符号按照一定比例关系级联成符号级联块,然后按顺序将符号级联块进行发射,从而使得同一个时间长度中各种配置参数的符号在有效符号上能够对齐,解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下 行干扰的问题,避免了上下行干扰,提升了系统健壮性及稳定性。
可选地,上述步骤的执行主体可以为基站、终端等,但不限于此。
可选地,上述有效符号可以指的是不包含循环前缀(CP)的OFDM符号,也称净载荷。
可选地,所述符号级联块内的符号的传输方向类型相同。
可选地,所述符号级联块内的符号的功能类型相同。
可选地,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
可选地,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
可选地,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
可选地,所述相对关系可以是如下含义:所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为短符号。
可选地,上述相对关系也可以是如下含义:所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号
可选地,将每套无线信号内连续的符号级联成符号级联块包括:将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。例如,在基础子载波间隔下的单位时间间隔内包含的CP-OFDM符号个数为2个时,其对应的各套伸缩后的子载波间隔的无线信号,其CP-OFDM符号级 联块均可以由2个相同传输方向类型的CP-OFDM符号级联成。
可选地,按照预定的顺序发射所述符号级联块包括:将一单位时间间隔(即一个时间间隔单元(Interval))内的符号级联块串联发送:例如,可以先将一个时间间隔内的下行传输方向类型的CP-OFDM符号级联块串联发送,然后再将该时间间隔内的上行传输方向类型的CP-OFDM符号级联块串联发送。
作为一种优选实施方式,所述符号级联块中包含的符号的传输方向类型可以是空白时间、下行符号或者是上行符号。也即,所述符号级联块内的符号的传输方向类型相同可以包括以下之一:
所述符号级联块内均为下行传输方向传输的符号;
所述符号级联块内均为下行传输方向传输的符号和空白时间;
所述符号级联块内均为上行传输方向传输的符号;
所述符号级联块内均为上行传输方向传输的符号和空白时间。
作为一种优选实施方式,在存在多套不同配置的无线信号的情况下,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
可选地,所述多套参数通常包含符号的长度,或者符号的长度也可以由参数中有效符号长度及前缀长度相加,其中有效符号长度由子载波间隔SCS获得。则所述多套不同配置的无线信号中相同传输方向类型的符号的长度可以通过以下方式至少之一获取:通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
可选地,同一套无线信号中(即所述多套参数中的任意一套参数内)可以存在至少两种或以上符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别对应着长符号和短符号,且每一套无线信号中(即多套参数配置下)的长符号的长度和短符号的长度之间的比例关 系均相同。其中,长符号指的是长CP对应的符号,例如长CP和OPDM符号的组合,也即扩展CP(extended CP)和OPDM符号的组合;而短符号指的是短CP对应的符号,例如短CP和OPDM符号的组合,也即常规CP(normal CP)和OPDM符号的组合。
下面结合优选实施例进行说明,以下优选实施例结合了上述实施例及其优选实施方式。
优选实施例
实施例一
符号为循环前缀正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,简称为CP-OFDM)符号,描述CP-OFDM的参数有多套,同一套参数内的有效符号(即承载有效数据(不包含CP)的OFDM符号部分,也称净载荷)等长,同一套参数内前缀CP有两种可能的长度,分别定义为长CP和短CP,其中,长CP的长度大于短CP的长度;多套参数间的有效符号长度,前缀CP不相等,如果满足伸缩原则,且伸缩因子Scale factor=m,则伸缩后的子载波间隔fs下的有效符号长度及长短CP长度(一套参数)为基础子载波间隔f0下的(另一套参数)1/m。其中m可以为大于等于1的正整数,也可以是1/2,1/3,1/4等分子为1、分母为正整数的分数。
同一套参数内符号级联组合成符号级联块发射,块内(块内只包含下行链路部分DL Part或上行链路部分UL Part)由多个CP-OFDM符号组成,块内符号最多不超过基础帧结构(子载波间隔为f0)的子帧或时隙总的符号数。
块内每个符号之间的长度相对比例,和基础帧结构参数下的块内每个符号之间的长度相对比例相同,如果是只有长符号和短符号两种长度,则长符号和短符号的长度相对比例和基础帧结构参数下的长符号和短符号之间的长度相对比例相同。
多套参数间在同一时间段内对应的m个符号级联块的长度一致。
图4是根据本发明优选实施例一的符号级联成块后进行伸缩的示意图,如图4所示,假设基础子载波间隔为f0(对应一套配置或参数,包括该子载波间隔下的有效符号长度,前缀CP等),下行和上行部分分别是2个符号,伸缩后的子载波间隔是fs=2*f0(对应另一套配置或参数,包括该子载波间隔下的有效符号长度,前缀CP等),伸缩后这一套配置的符号长度为基础子载波间隔对应的那一套配置的符号长度的1/2,下行和上行分别是4个符号。对基础帧结构的2个符号级联成块(即符号级联块)然后进行时间压缩后,压缩比例为1/2,呈现的图样参见图4,基础帧结构f0的第1和第2符号是长CP和短CP的图样,则压缩后的同一时间段内,压缩的帧结构为压缩后的长CP-OFDM+短CP-OFDM的2个符号级联成的符号级联块再加另外一个长CP-OFDM+短CP-OFDM级联成的符号级联块进行组合的形式。基础帧结构的第3和第4符号是短CP和短CP的图样,则压缩后的帧结构为短CP-OFDM+短CP-OFDM+短CP-OFDM+短CP-OFDM的组合。其中fs下的长CP-OFDM、短CP-OFDM的长度相对比例与f0下的相同,且长CP-OFDM+短CP-OFDM+长CP-OFDM+短CP-OFDM的符号级联块(符号1、2、3、4),再进行组合的总长度和基础帧结构f0的符号并级块(符号1、2)的长度相同。
通俗的说,上述方案中的NR系统依据不同伸缩因子scaling factor进行伸缩时,基于特定DL、GP、UL part长度基准进行伸缩,即伸缩不改变各部分基准类型,从而解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题,避免了上下行干扰,提升了系统健壮性及稳定性。
实施例二
前面的实施例重点以解决上下行互相干扰为目的进行的对齐,解决方案也是考虑对相同传输方向的多符号组成的级联块进行对齐。下面这个实施例主要是从多符号的功能归一化角度出发考虑问题。
符号仍然为CP-OFDM符号,描述CP-OFDM的参数有多套,同一套 参数内的有效符号(不包含CP)的部分等长,同一套参数内前缀CP有两种可能的长度,分别定义为长CP和短CP,其中,长CP的长度大于短CP的长度;多套参数间的有效符号长度,前缀CP不相等,如果满足伸缩原则,且伸缩因子(Scale factor)=m,则伸缩后的子载波间隔fs下的有效符号长度及长短CP长度(一套参数)为基础子载波间隔f0下的(另一套参数)1/m。其中m可以为大于等于1的正整数,也可以是1/2,1/3,1/4等分子为1、分母为正整数的分数。
同一套参数内执行相同功能的符号级联组合成符号级联块发射,比如只执行下行控制信息承载的符号级联块,只执行下行数据承载的符号级联块,只执行上行控制信息承载的符号级联块,只执行上行数据承载的符号级联块等。块内由1个或多个CP-OFDM符号组成,块内符号最多不超过基础帧结构(子载波间隔为f0)的子帧或时隙总的符号数。
块内每个符号之间的长度相对比例,和基础帧结构参数下的块内每个符号之间的长度相对比例相同,如果是只有长符号和短符号两种长度,则长符号和短符号的长度相对比例和基础帧结构参数下的长符号和短符号之间的长度相对比例相同。
图5是根据本发明优选实施例二的符号级联成块后进行伸缩的示意图,假设基础子载波间隔为f0(对应一套配置或参数,包括该子载波间隔下的有效符号长度,前缀CP等),下行和上行部分分别是2个符号,即下行控制Ctrl和下行数据Data各1个符号,上行控制Ctrl和上行数据Data各1个符号。伸缩后的子载波间隔是fs=2*f0(对应另一套配置或参数,包括该子载波间隔下的有效符号长度,前缀CP等),伸缩后这一套配置的符号长度为基础子载波间隔对应的那一套配置的符号长度的1/2。对基础帧结构的1个符号级联成块(即符号级联块)然后进行时间压缩后,压缩比例为1/2,呈现的图样参见图5,基础帧结构f0的第1符号(第1块)是长CP的图样,则压缩后的同一时间段内,压缩的帧结构为压缩后的长CP-OFDM+长CP-OFDM的2个符号级联成的符号级联块。基础帧结构f0的第2符号是短CP的图样,则压缩后的同一时间段内,压缩的帧结构为 压缩后的短CP-OFDM+短CP-OFDM的2个符号级联成的符号级联块。基础帧结构的第3符号是短CP图样,则压缩后的帧结构为短CP-OFDM+短CP-OFDM的组合。基础帧结构的第4符号是短CP的图样,则压缩后的帧结构也为短CP-OFDM+短CP-OFDM的组合。其中fs下的长CP-OFDM、短CP-OFDM的长度相对比例与f0下的相同,且长CP-OFDM+短CP-OFDM+长CP-OFDM+短CP-OFDM的符号级联块为符号1+2、3+4、5+6、7+8,分别表示下行控制、下行数据、上行数据、上行控制,这些功能块分别和基础帧结构f0的符号并级块(符号1、2、3、4)各自的长度相同。功能块的组合的总长度和基础帧结构f0的符号并级块(符号1、2、3、4)的总长度相同。
从图5中可以归纳出,对齐的级联块之间存在这样的相对关系:具有大子载波间隔(符号较短)的级联块中x个符号的长度的相对关系(即长、短、短…关系)与小子载波间隔(符号较长)中y个符号的长度的相对关系相同,这里x=scaling factor×y。具体来说小子载波间隔的符号如果为长符号,则对应的大子载波间隔的scaling factor个符号也为长符号,小子载波间隔的符号如果为短符号,则对应的大子载波间隔的scaling factor个符号也为短符号。从这个实施例可以看出,如果小子载波间隔的级联块中有一个符号为长符号,则对应的大子载波间隔的级联块中至少也有一个符号为长符号。
通俗的说,上述方案中的NR系统依据不同伸缩因子scaling factor进行伸缩时,基于特定功能,比如控制、数据部分的长度基准进行伸缩,即伸缩不改变各部分基准类型功能,从而解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致功能块之间相互干扰的问题,提升了系统健壮性及稳定性。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
装置实施例
在本实施例中还提供了一种无线信号传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的无线信号传输装置的结构框图,如图6所示,该装置包括:
级联模块52,设置为在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;
传输模块54,与级联模块52相连,设置为按照预定的顺序发射所述符号级联块。
可选地,上述有效符号可以指的是不包含循环前缀(CP)的OFDM符号,也称净载荷。
可选地,所述符号级联块内的符号的传输方向类型相同。
可选地,所述符号级联块内的符号的功能类型相同。
可选地,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
可选地,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
可选地,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
可选地,所述相对关系可以是指所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为短符号。
可选地,所述相对关系可以是指所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号。
可选地,所述级联模块52可以设置为将每套无线信号内连续的符号级联成符号级联块包括:将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。例如,在基础子载波间隔下的单位时间间隔内包含的CP-OFDM符号个数为2个时,其对应的各套伸缩后的子载波间隔的无线信号,其CP-OFDM符号级联块均可以由2个相同传输方向类型的CP-OFDM符号级联成。
可选地,所述传输模块54可以设置为将一单位时间间隔(即一个时间间隔单元(Interval))内的符号级联块串联发送。例如,可以先将一个时间间隔内的下行传输方向类型的CP-OFDM符号级联块串联发送,然后再将该时间间隔内的上行传输方向类型的CP-OFDM符号级联块串联发送。
可选地,所述符号级联块内的符号的传输方向类型相同可以包括以下之一:
所述符号级联块内均为下行传输方向传输的符号;
所述符号级联块内均为下行传输方向传输的符号和空白时间;
所述符号级联块内均为上行传输方向传输的符号;
所述符号级联块内均为上行传输方向传输的符号和空白时间。
可选地,在存在多套不同配置的无线信号的情况下,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
可选地,所述装置还包括:获取模块,设置为通过以下方式至少之一获取所述多套不同配置的无线信号中相同传输方向类型的CP-OFDM符号的长度:
通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;
通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
可选地,所述多套不同配置的无线信号中的每一套无线信号中,可以存在至少两种或以上符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别对应着长符号和短符号,且每一套无线信号中(即多套参数配置下)的长符号的长度和短符号的长度之间的比例关系均相同。其中,长符号指的是长CP对应的符号,例如长CP和OPDM符号的组合,也即扩展CP(extended CP)和OPDM符号的组合;而短符号指的是短CP对应的符号,例如短CP和OPDM符号的组合,也即常规CP(normal CP)和OPDM符号的组合。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S302,在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;
步骤S304,按照预定的顺序发射所述符号级联块。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种无线信号传输方法及装置具有以下有益效果:解决了相关技术中存在不同子载波间隔参数时容易产生符号未对齐的情况,进而会导致上下行干扰的问题,避免了上下行干扰,提升了系统健壮性及稳定性。

Claims (31)

  1. 一种无线信号传输方法,包括:
    在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;
    按照预定的顺序发射所述符号级联块。
  2. 根据权利要求1所述的方法,其中,所述符号级联块内的符号的传输方向类型相同。
  3. 根据权利要求1所述的方法,其中,所述符号级联块内的符号的功能类型相同。
  4. 根据权利要求3所述的方法,其中,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
  5. 根据权利要求2所述的方法,其中,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
  6. 根据权利要求5所述的方法,其中,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
  7. 根据权利要求6所述的方法,其中,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号,则所述较大子载波间隔 的符号级联块中对应的伸缩因子个符号也为短符号。
  8. 根据权利要求6所述的方法,其中,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号。
  9. 根据权利要求2所述的方法,其中,所述符号级联块内的符号的传输方向类型相同包括以下之一:
    所述符号级联块内均为下行传输方向传输的符号;
    所述符号级联块内均为下行传输方向传输的符号和空白时间;
    所述符号级联块内均为上行传输方向传输的符号;
    所述符号级联块内均为上行传输方向传输的符号和空白时间。
  10. 根据权利要求2所述的方法,其中,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
  11. 根据权利要求10所述的方法,其中,所述多套不同配置的无线信号中相同传输方向类型的符号的长度通过以下方式至少之一获取:
    通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;
    通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
  12. 根据权利要求10所述的方法,其中,所述多套不同配置的 无线信号中的每一套无线信号中,存在至少两种符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别为长符号的长度和短符号的长度,且每一套无线信号中的长符号的长度和短符号的长度之间的比例关系均相同。
  13. 根据权利要求1至12中任一项所述的方法,其中,将每套无线信号内连续的符号级联成符号级联块包括:
    将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。
  14. 根据权利要求1至12中任一项所述的方法,其中,按照预定的顺序发射所述符号级联块包括:
    将一单位时间间隔内的符号级联块串联发送。
  15. 根据权利要求1至12中任一项所述的方法,其中,所述有效符号为正交频分复用OFDM符号。
  16. 一种无线信号传输装置,包括:
    级联模块,设置为在存在多套不同配置的无线信号的情况下,将每套无线信号内连续的符号级联成符号级联块,其中,在所述多套不同配置的无线信号中的任意两套无线信号之间的有效符号的长度满足n:m的比例关系的情况下,相同时间长度内所述两套无线信号的符号级联块中符号的个数满足m:n的比例关系,且n和m为正整数;
    传输模块,设置为按照预定的顺序发射所述符号级联块。
  17. 根据权利要求16所述的装置,其中,所述符号级联块内的符号的传输方向类型相同。
  18. 根据权利要求16所述的装置,其中,所述符号级联块内的 符号的功能类型相同。
  19. 根据权利要求18所述的装置,其中,所述功能类型包括以下之一:下行控制符号、下行数据符号、上行控制符号、上行数据符号。
  20. 根据权利要求17所述的装置,其中,所述不同配置的无线信号包括以下至少之一:不同子载波间隔的无线信号;不同符号长度的无线信号;不同循环前缀长度的无线信号。
  21. 根据权利要求20所述的装置,其中,所述不同配置的无线信号中,具有较小子载波间隔的无线信号的符号级联块中1个符号的长度的相对关系与较大子载波间隔无线信号的符号级联块中个数为伸缩因子的符号的长度的相对关系相同。
  22. 根据权利要求21所述的装置,其中,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为长符号;所述较小子载波间隔的符号级联块中1个符号为短符号,则所述较大子载波间隔的符号级联块中对应的伸缩因子个符号也为短符号。
  23. 根据权利要求21所述的装置,其中,所述相对关系是指所述较小子载波间隔的符号级联块中1个符号为长符号时,则所述较大子载波间隔的符号级联块对应的至少1个符号也为长符号。
  24. 根据权利要求17所述的装置,其中,所述符号级联块内的符号的传输方向类型相同包括以下之一:
    所述符号级联块内均为下行传输方向传输的符号;
    所述符号级联块内均为下行传输方向传输的符号和空白时间;
    所述符号级联块内均为上行传输方向传输的符号;
    所述符号级联块内均为上行传输方向传输的符号和空白时间。
  25. 根据权利要求17所述的装置,其中,所述多套不同配置的无线信号中相同传输方向类型的符号的长度不相等。
  26. 根据权利要求25所述的装置,其中,还包括:
    获取模块,设置为通过以下方式至少之一获取所述多套不同配置的无线信号中相同传输方向类型的符号的长度:
    通过接收到的配置参数获取所述多套不同配置的无线信号中的符号的长度;
    通过子载波间隔SCS获得相应的符号中的有效符号长度,并根据所述有效符号长度获取所述多套不同配置的无线信号中相应的符号的长度,其中,所述符号的长度通过所述有效符号长度及前缀长度相加得到。
  27. 根据权利要求25所述的装置,其中,所述多套不同配置的无线信号中的每一套无线信号中,存在至少两种符号的长度,其中,在存在两种符号的长度的情况下,所述两种符号的长度分别为长符号的长度和短符号的长度,且每一套无线信号中的长符号的长度和短符号的长度之间的比例关系均相同。
  28. 根据权利要求16至27中任一项所述的装置,其中,所述级联模块还设置为:
    将每套无线信号内预定个数的符号级联成符号级联块,所述预定个数为该套无线信号在基础子载波间隔下的单位时间间隔内包含的符号个数。
  29. 根据权利要求16至27中任一项所述的装置,其中,所述传输模块还设置为:
    将一单位时间间隔内的符号级联块串联发送。
  30. 根据权利要求16至27中任一项所述的装置,其中,所述有效符号为正交频分复用OFDM符号。
  31. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至15中任一项所述的方法。
PCT/CN2017/096759 2016-08-12 2017-08-10 无线信号传输方法及装置 WO2018028621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,021 US10992409B2 (en) 2016-08-12 2017-08-10 Wireless signal transmission method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610666759 2016-08-12
CN201610666759.2 2016-08-12
CN201610978148.1 2016-11-04
CN201610978148.1A CN107733831B (zh) 2016-08-12 2016-11-04 无线信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018028621A1 true WO2018028621A1 (zh) 2018-02-15

Family

ID=61162785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096759 WO2018028621A1 (zh) 2016-08-12 2017-08-10 无线信号传输方法及装置

Country Status (1)

Country Link
WO (1) WO2018028621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583752A (zh) * 2019-09-29 2021-03-30 华为技术有限公司 一种基于卫星通信的信号传输方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902427A (zh) * 2009-06-01 2010-12-01 中兴通讯股份有限公司 帧结构及其配置方法、通信方法
US20110299572A1 (en) * 2010-05-05 2011-12-08 Peter Monsen Method and apparatus for subband signal demodulation in a transponder satellite communication link containing a component of relayed interference
CN102316591A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 通信系统中物理资源的配置方法和通信系统
CN103916900A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种特殊时隙配置的检测方法及装置
CN105827385A (zh) * 2016-06-01 2016-08-03 珠海市魅族科技有限公司 时延控制方法和时延控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902427A (zh) * 2009-06-01 2010-12-01 中兴通讯股份有限公司 帧结构及其配置方法、通信方法
US20110299572A1 (en) * 2010-05-05 2011-12-08 Peter Monsen Method and apparatus for subband signal demodulation in a transponder satellite communication link containing a component of relayed interference
CN102316591A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 通信系统中物理资源的配置方法和通信系统
CN103916900A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种特殊时隙配置的检测方法及装置
CN105827385A (zh) * 2016-06-01 2016-08-03 珠海市魅族科技有限公司 时延控制方法和时延控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583752A (zh) * 2019-09-29 2021-03-30 华为技术有限公司 一种基于卫星通信的信号传输方法及设备
CN112583752B (zh) * 2019-09-29 2022-10-11 华为技术有限公司 一种基于卫星通信的信号传输方法及设备

Similar Documents

Publication Publication Date Title
US10863456B2 (en) Systems and methods of communicating via sub-bands in wireless communication networks
US10992409B2 (en) Wireless signal transmission method and device
EP3272087B1 (en) System and method of waveform design for operation bandwidth extension
US20190253296A1 (en) Systems and methods of communicating via sub-bands in wireless communication networks
US20170273083A1 (en) Tone plan adaptation for channel bonding in wireless communication networks
CN107634925B (zh) 同步信道的发送、接收方法及装置、传输系统
CN103109474A (zh) 宽带传输的共存方法
WO2017113425A1 (zh) 传输数据的方法和用户设备
CN110855407B (zh) 信息的发送方法、发送装置、通信装置及可读存储介质
US10756878B2 (en) Communication method and communications apparatus
US10904051B2 (en) Method for sending carrier information, base station, and terminal
US20230232386A1 (en) Transmission bandwidth configuration method and transmission node
CN115553042A (zh) 毫米波通信中的相位噪声处理
WO2018028621A1 (zh) 无线信号传输方法及装置
KR101954682B1 (ko) 비직교 다중 접속 시스템에서의 사용자 페어링 방법 및 컴퓨터 프로그램
WO2018059356A1 (zh) 一种信息传输方法及装置
CN109076045A (zh) 数据处理方法及装置
KR20220075220A (ko) Nr v2x를 위한 채널 래스터
EP4336786A1 (en) Signal transmission method and communication apparatus
CN107968759A (zh) 一种多载波系统的数据调制方法及装置
CN114731319A (zh) 用于配置保护子载波的方法
DE102015101708A1 (de) Schätzung eines Uplink-Mehrfachnutzer-Trägerfrequenzversatzes (CFO) in drahtlosen Kommunikationen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838751

Country of ref document: EP

Kind code of ref document: A1