WO2021057228A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2021057228A1
WO2021057228A1 PCT/CN2020/104455 CN2020104455W WO2021057228A1 WO 2021057228 A1 WO2021057228 A1 WO 2021057228A1 CN 2020104455 W CN2020104455 W CN 2020104455W WO 2021057228 A1 WO2021057228 A1 WO 2021057228A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
optical
imaging lens
Prior art date
Application number
PCT/CN2020/104455
Other languages
English (en)
French (fr)
Inventor
闻人建科
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US17/763,668 priority Critical patent/US20220350113A1/en
Publication of WO2021057228A1 publication Critical patent/WO2021057228A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • This application relates to the field of optical elements, and in particular, to an optical imaging lens.
  • the optical imaging lens is the key to determining the shooting effect of the camera equipment. Enlarging the aperture of the optical imaging lens is beneficial to the imaging equipment to obtain a good shooting effect in a dark environment. Setting the telephoto feature of the optical imaging lens is conducive to the long-distance high-definition imaging of the camera equipment. The combination of the two is conducive to long-distance high-definition imaging in low-light environments.
  • An aspect of the present application provides such an optical imaging lens, which includes in order from the object side to the image side along the optical axis: a first lens with positive refractive power; a second lens with negative refractive power ; A third lens with optical power; a fourth lens with optical power; a fifth lens with optical power; a sixth lens with positive optical power; and a seventh lens with negative optical power.
  • the entrance pupil diameter EPD of the optical imaging lens and the maximum half-field angle Semi-FOV of the optical imaging lens satisfy: 11mm ⁇ EPD/TAN(Semi-FOV) ⁇ 20mm.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy: f/EPD ⁇ 1.4.
  • the distance TTL from the object side surface of the first lens to the imaging surface of the optical imaging lens on the optical axis and the entrance pupil diameter EPD of the optical imaging lens satisfy: 1.2 ⁇ TTL/EPD ⁇ 1.6.
  • the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f6 of the sixth lens, and the effective focal length f7 of the seventh lens satisfy: -1 ⁇ (f2+f7)/(f1 +f6) ⁇ -0.6.
  • the radius of curvature R3 of the object side surface of the second lens, the radius of curvature R4 of the image side surface of the second lens, the radius of curvature R5 of the object side surface of the third lens, and the radius of curvature R6 of the image side surface of the third lens satisfy : 0.6 ⁇ (R3+R4)/(R5+R6) ⁇ 1.1.
  • the curvature radius R7 of the object side surface of the fourth lens, the curvature radius R8 of the image side surface of the fourth lens, and the effective focal length f4 of the fourth lens satisfy: 0.1mm ⁇ (R7 ⁇ R8)/f4 ⁇ 0.6mm .
  • the total effective focal length f of the optical imaging lens satisfies: 7mm ⁇ f ⁇ 8mm.
  • the distance between the third lens and the fourth lens on the optical axis is T34
  • the distance between the fourth lens and the fifth lens on the optical axis is T45
  • the distance between the fifth lens and the sixth lens on the optical axis The distance T56 and the separation distance T67 between the sixth lens and the seventh lens on the optical axis satisfy: 0.6 ⁇ (T34+T45)/(T56+T67) ⁇ 1.0.
  • the central thickness CT1 of the first lens on the optical axis and the distance TTL from the object side surface of the first lens to the imaging surface of the optical imaging lens on the optical axis satisfy: 0.9 ⁇ CT1/TTL ⁇ 5 ⁇ 1.2.
  • the on-axis distance SAG11 from the intersection of the object side surface of the first lens and the optical axis to the vertex of the effective radius of the object side surface of the first lens is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens ImgH satisfies: 0.3 ⁇ SAG11/ImgH ⁇ 0.6.
  • the on-axis distance SAG31 from the intersection of the object side of the third lens and the optical axis to the apex of the effective radius of the object side of the third lens, the intersection of the object side of the fourth lens and the optical axis to the object side of the fourth lens satisfy: 0.5 ⁇ SAG31/(SAG41-SAG71) ⁇ 0.9.
  • the combined focal length f123 of the first lens, the second lens, and the third lens and the total effective focal length f of the optical imaging lens satisfy: 1.0 ⁇ f123/f ⁇ 1.4.
  • the object side surface of the first lens is convex
  • the object side surface of the sixth lens is convex
  • the image side surface of the seventh lens is concave
  • the optical imaging lens provided by the present application uses multiple lenses, such as the first lens to the seventh lens.
  • the lenses are reasonably matched with each other to balance the optical system Aberrations, improve imaging quality, and make the lens have characteristics such as large aperture and telephoto.
  • Fig. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • 2A to 2D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application
  • 4A to 4D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 7;
  • FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 8;
  • FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 9;
  • FIG. 19 shows a schematic structural diagram of an optical imaging lens according to Embodiment 10 of the present application.
  • 20A to 20D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 10.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging lens according to the exemplary embodiment of the present application may include seven lenses with optical power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens. lens.
  • the seven lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens may have positive refractive power; the second lens may have negative refractive power; the third lens may have positive refractive power or negative refractive power; the fourth lens may have positive refractive power or negative refractive power Optical power; the fifth lens may have positive optical power or negative optical power; the sixth lens may have positive optical power; and the seventh lens may have negative optical power.
  • the first lens has a positive refractive power, and the second lens has a negative refractive power.
  • the object side surface of the second lens may be a convex surface
  • the image side surface may be a concave surface
  • the third lens may have positive refractive power, and its image side surface may be concave.
  • the object side surface of the fourth lens may be a convex surface, and the image side surface may be a concave surface.
  • the entrance pupil diameter EPD of the optical imaging lens and the maximum half-field angle Semi-FOV of the optical imaging lens may satisfy: 11mm ⁇ EPD/TAN(Semi-FOV) ⁇ 20mm, for example, 11mm ⁇ EPD/ TAN(Semi-FOV) ⁇ 15mm.
  • 11mm ⁇ EPD/TAN(Semi-FOV) ⁇ 20mm for example, 11mm ⁇ EPD/ TAN(Semi-FOV) ⁇ 15mm.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy: f/EPD ⁇ 1.4, for example, 1.2 ⁇ f/EPD ⁇ 1.4.
  • f/EPD ⁇ 1.4 Distribute the optical power of the optical imaging lens reasonably so that the F number of the optical imaging lens is less than 1.4, which is conducive to the large aperture characteristic of the optical imaging lens, so that the optical imaging lens can be better suitable for the shooting environment when the light is insufficient, such as cloudy days and dusk. , In order to achieve good image quality.
  • the distance TTL from the object side surface of the first lens to the imaging surface of the optical imaging lens on the optical axis and the entrance pupil diameter EPD of the optical imaging lens may satisfy: 1.2 ⁇ TTL/EPD ⁇ 1.6.
  • Reasonable setting of the ratio between the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis and the entrance pupil diameter of the optical imaging lens is not only conducive to achieving the ultra-thin characteristics of the optical imaging lens, but also conducive to optical
  • the imaging lens has a large relative aperture, which gives it a strong light-collecting ability.
  • the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f6 of the sixth lens, and the effective focal length f7 of the seventh lens may satisfy: -1 ⁇ (f2+f7)/ (f1+f6) ⁇ -0.6.
  • Reasonable setting of the relationship between the effective focal lengths of the above-mentioned lenses is beneficial to control the spherical aberration contribution of the above-mentioned four lenses within a reasonable horizontal range, so that the on-axis field of view can obtain good imaging quality.
  • the radius of curvature R3 of the object side surface of the second lens, the radius of curvature R4 of the image side surface of the second lens, the radius of curvature R5 of the object side surface of the third lens, and the radius of curvature R6 of the image side surface of the third lens It can satisfy: 0.6 ⁇ (R3+R4)/(R5+R6) ⁇ 1.1.
  • the curvature radius R7 of the object side surface of the fourth lens, the curvature radius R8 of the image side surface of the fourth lens, and the effective focal length f4 of the fourth lens may satisfy: 0.1mm ⁇ (R7 ⁇ R8)/f4 ⁇ 0.6mm.
  • Properly setting the ratio of the product of the radius of curvature of the object side surface of the fourth lens and the radius of curvature of the image side surface of the fourth lens to the effective focal length of the fourth lens is conducive to effectively controlling the curvature of the fourth lens and making its field curvature contribution In a reasonable range, to reduce the optical sensitivity of the fourth lens, so as to ensure that it has good processing performance.
  • the total effective focal length f of the optical imaging lens may satisfy: 7mm ⁇ f ⁇ 8mm.
  • the separation distance T34 between the third lens and the fourth lens on the optical axis, the separation distance T45 between the fourth lens and the fifth lens on the optical axis, and the fifth lens and the sixth lens on the optical axis may satisfy: 0.6 ⁇ (T34+T45)/(T56+T67) ⁇ 1.0.
  • Reasonable setting of the interrelationship between the distances between adjacent lenses is not only conducive to reasonably controlling the space ratio of the lenses in the optical system, ensuring the assembly process of the lenses, but also conducive to miniaturization of the optical imaging lens.
  • the central thickness CT1 of the first lens on the optical axis and the distance TTL from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis may satisfy: 0.9 ⁇ CT1/TTL ⁇ 5 ⁇ 1.2.
  • Reasonable setting of the ratio between the center thickness of the first lens on the optical axis and the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis is beneficial to reduce the overall length of the optical system and make optical imaging
  • the front end of the lens is relatively light and thin, which helps reduce the processing sensitivity of the optical system.
  • the on-axis distance SAG11 from the intersection of the object side surface of the first lens and the optical axis to the vertex of the effective radius of the object side surface of the first lens is as long as the diagonal of the effective pixel area on the imaging surface of the optical imaging lens.
  • Half of ImgH can satisfy: 0.3 ⁇ SAG11/ImgH ⁇ 0.6.
  • the on-axis distance SAG31 from the intersection point of the object side surface of the third lens and the optical axis to the apex of the effective radius of the object side surface of the third lens, the intersection point of the object side surface of the fourth lens and the optical axis to the object side of the fourth lens can satisfy: 0.5 ⁇ SAG31/(SAG41-SAG71) ⁇ 0.9.
  • Reasonable setting of the interrelationship of the above three is conducive to better balance the field curvature, on-axis spherical aberration and chromatic spherical aberration of the optical imaging lens, thereby enabling the optical imaging lens to have good imaging quality and low system sensitivity. Ensure that the optical imaging lens has good processability.
  • the combined focal length f123 of the first lens, the second lens, and the third lens and the total effective focal length f of the optical imaging lens may satisfy: 1.0 ⁇ f123/f ⁇ 1.4.
  • Reasonably setting the ratio of the combined focal length of the first lens, the second lens and the third lens to the total effective focal length of the optical imaging lens is beneficial to reduce the deflection angle of the light in the optical system and reduce the sensitivity of the optical system.
  • the object side surface of the first lens may be a convex surface
  • the object side surface of the sixth lens may be a convex surface
  • the image side surface of the seventh lens may be a concave surface.
  • the above-mentioned optical imaging lens may further include a diaphragm.
  • the diaphragm can be set at an appropriate position as required.
  • the diaphragm may be provided between the object side and the first lens.
  • the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the present application adopts seven aspheric lenses, and through the combination and design of different lenses, a higher imaging quality can be obtained. At the same time, the optical imaging lens according to the present application can not only meet the high imaging quality of the optical system, but also meet the characteristics of the large aperture of the optical system through the reasonable allocation of optical power and the optimized selection of high-order aspheric parameters. It has the advantages of certain telephoto characteristics.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one of the object side surface of the first lens to the image side surface of the seventh lens is an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the center of the lens to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatism.
  • the use of aspheric lenses can eliminate as much as possible the aberrations that occur during imaging, thereby improving the imaging quality.
  • At least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens is an aspheric mirror surface .
  • the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are aspheric mirror surfaces.
  • the present application also provides an imaging device, the electronic photosensitive element of which may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.
  • Exemplary embodiments of the present application also provide an electronic device including the imaging device described above.
  • the number of lenses constituting the optical imaging lens can be changed to obtain the various results and advantages described in this specification.
  • the optical imaging lens is not limited to including seven lenses. If necessary, the optical imaging lens may also include other numbers of lenses.
  • FIG. 1 is a schematic diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the basic parameter table of the optical imaging lens of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side and image side of any one of the first lens E1 to the seventh lens E7 are aspherical, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each aspheric mirror S1-S14 in Embodiment 1.
  • FIG. 2A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 2B shows the astigmatism curve of the optical imaging lens of Example 1, which represents meridional field curvature and sagittal field curvature.
  • FIG. 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which represents the distortion magnitude values corresponding to different field angles.
  • 2D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 2A to 2D, it can be seen that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • Figure 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 3 shows the basic parameter table of the optical imaging lens of Embodiment 2, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 4 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each aspheric mirror S1-S14 in Embodiment 2.
  • FIG. 4A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 4B shows the astigmatism curve of the optical imaging lens of Example 2, which represents meridional field curvature and sagittal field curvature.
  • FIG. 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which represents the distortion magnitude values corresponding to different field angles.
  • 4D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 4A to 4D that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 5 shows the basic parameter table of the optical imaging lens of Embodiment 3, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 6 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each aspheric mirror S1-S14 in Embodiment 3.
  • FIG. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 6B shows the astigmatism curve of the optical imaging lens of Example 3, which represents meridional field curvature and sagittal field curvature.
  • FIG. 6C shows the distortion curve of the optical imaging lens of Embodiment 3, which represents the distortion magnitude values corresponding to different field angles.
  • 6D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 3, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the basic parameter table of the optical imaging lens of Embodiment 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 8 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each aspheric mirror surface S1-S14 in Embodiment 4.
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 4, which represents the deviation of the focusing point of light rays of different wavelengths after passing through the lens.
  • FIG. 8B shows the astigmatism curve of the optical imaging lens of Example 4, which represents meridional field curvature and sagittal field curvature.
  • FIG. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 8D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 4, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 8A to 8D that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the total effective focal length of the optical imaging lens f 7.30 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 8.20 mm
  • the effective pixel area on the imaging surface S17 Half of the diagonal length ImgH 3.70mm.
  • Table 9 shows the basic parameter table of the optical imaging lens of Embodiment 5, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 10 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S14 in Example 5. .
  • FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 5, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 10B shows the astigmatism curve of the optical imaging lens of Example 5, which represents meridional field curvature and sagittal field curvature.
  • FIG. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 10D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the total effective focal length of the optical imaging lens f 7.30 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 8.20 mm
  • the effective pixel area on the imaging surface S17 Half of the diagonal length ImgH 3.70mm.
  • Table 11 shows the basic parameter table of the optical imaging lens of Embodiment 6, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 12 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S14 in Example 6. .
  • FIG. 12A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 6, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 12B shows the astigmatism curve of the optical imaging lens of Example 6, which represents meridional field curvature and sagittal field curvature.
  • FIG. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 12D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 12A to 12D that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the total effective focal length of the optical imaging lens f 7.30 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 8.10 mm
  • Table 13 shows the basic parameter table of the optical imaging lens of Embodiment 7, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 14 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S14 in Example 7. .
  • FIG. 14A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 14B shows the astigmatism curve of the optical imaging lens of Example 7, which represents meridional field curvature and sagittal field curvature.
  • FIG. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 14D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 7, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 14A to 14D that the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the total effective focal length of the optical imaging lens f 7.30 mm
  • the distance from the object side S1 of the first lens E1 to the imaging surface S17 on the optical axis TTL 8.10 mm
  • Table 15 shows the basic parameter table of the optical imaging lens of Embodiment 8, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Example 8 the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 16 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S14 in Example 8. .
  • FIG. 16A shows the axial chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 16B shows the astigmatism curve of the optical imaging lens of Example 8, which represents meridional field curvature and sagittal field curvature.
  • FIG. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which represents the distortion magnitude values corresponding to different field angles.
  • 16D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 8, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 16A to 16D, it can be seen that the optical imaging lens provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 17 shows the basic parameter table of the optical imaging lens of Embodiment 9, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Example 9 the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • Table 18 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S14 in Example 9. .
  • FIG. 18A shows the axial chromatic aberration curve of the optical imaging lens of Example 9, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 18B shows the astigmatism curve of the optical imaging lens of Example 9, which represents meridional field curvature and sagittal field curvature.
  • FIG. 18C shows a distortion curve of the optical imaging lens of Embodiment 9, which represents the distortion magnitude values corresponding to different field angles.
  • 18D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 9, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 18A to 18D, it can be seen that the optical imaging lens provided in Embodiment 9 can achieve good imaging quality.
  • FIG. 19 shows a schematic structural diagram of an optical imaging lens according to Embodiment 10 of the present application.
  • the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. ,
  • the sixth lens E6 the seventh lens E7, the filter E8 and the imaging surface S17.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface.
  • the second lens E2 has negative refractive power
  • the object side surface S3 is convex
  • the image side surface S4 is concave.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 19 shows the basic parameter table of the optical imaging lens of Embodiment 10, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical surfaces.
  • the following table 20 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror S1-S14 in Embodiment 10. .
  • FIG. 20A shows the axial chromatic aberration curve of the optical imaging lens of Example 10, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 20B shows the astigmatism curve of the optical imaging lens of Example 10, which represents meridional field curvature and sagittal field curvature.
  • FIG. 20C shows a distortion curve of the optical imaging lens of Embodiment 10, which represents the distortion magnitude values corresponding to different field angles.
  • 20D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 10, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 20A to 20D, it can be seen that the optical imaging lens provided in Embodiment 10 can achieve good imaging quality.
  • Example 1 to Example 10 respectively satisfy the relationships shown in Table 21.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,其中,光学成像镜头沿着光轴由物侧至像侧依序包括具有正光焦度的第一透镜(E1)、具有负光焦度的第二透镜(E2)、具有光焦度的第三透镜(E3)、具有光焦度的第四透镜(E4)、具有光焦度的第五透镜(E5)、具有正光焦度的第六透镜(E6)、以及具有负光焦度的第七透镜(E7);光学成像镜头的入瞳直径EPD与光学成像镜头的最大半视场角Semi-FOV满足:11mm<EPD/TAN(Semi-FOV)<20mm,从而在光线偏暗的环境下获得好的拍摄效果。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2019年9月25日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910912301.4的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,具体地,涉及一种光学成像镜头。
背景技术
近年来随着摄像设备不断发展,摄像设备的拍摄质量得到不断提高。同时人们对摄像也变得愈加热爱。尤其在不同环境多场景下拍摄已成为人们普遍的摄像追求。面对拍摄环境的不断变化,能够在光线偏暗环境下进行远距离高清成像的摄像设备已成为市场上不可或缺的需求。然而,光学成像镜头是决定摄像设备拍摄效果的关键。增大光学成像镜头的孔径有利于摄像设备在光线偏暗环境下获得好的拍摄效果。设置光学成像镜头的长焦特性有利于摄像设备进行远距离高清成像。两者相互结合,有利于摄像设备在光线偏暗环境下进行远距离高清成像。
发明内容
本申请的一方面提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有正光焦度的第六透镜;以及具有负光焦度的第七透镜。
在一个实施方式中,光学成像镜头的入瞳直径EPD与光学成像镜头的最大半视场角Semi-FOV满足:11mm<EPD/TAN(Semi-FOV)<20mm。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD满足:f/EPD<1.4。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的入瞳直径EPD满足:1.2<TTL/EPD<1.6。
在一个实施方式中,第一透镜的有效焦距f1、第二透镜的有效焦距f2、第六透镜的有效焦距f6以及第七透镜的有效焦距f7满足:-1<(f2+f7)/(f1+f6)<-0.6。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4、第三透镜的物侧面的曲率半径R5以及第三透镜的像侧面的曲率半径R6满足:0.6<(R3+R4)/(R5+R6)<1.1。
在一个实施方式中,第四透镜的物侧面的曲率半径R7、第四透镜的像侧面的曲率半径R8以及第四透镜的有效焦距f4满足:0.1mm<(R7×R8)/f4<0.6mm。
在一个实施方式中,光学成像镜头的总有效焦距f满足:7mm<f<8mm。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34、第四透镜和第五透镜在光轴上的间隔距离T45第五透镜和第六透镜在光轴上的间隔距离T56以及第六透镜和第七透镜在光轴上的间隔距离T67满足:0.6<(T34+T45)/(T56+T67)<1.0。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL满足:0.9<CT1/TTL×5<1.2。
在一个实施方式中,第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离SAG11与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:0.3<SAG11/ImgH<0.6。
在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31、第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点的轴上距离SAG41以及第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半径顶点的轴上距离SAG71满足:0.5<SAG31/(SAG41-SAG71)<0.9。
在一个实施方式中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学成像镜头的总有效焦距f满足:1.0<f123/f<1.4。
在一个实施方式中,第一透镜的物侧面为凸面、第六透镜的物侧面为凸面以及第七透镜的像侧面为凹面。
本申请提供的光学成像镜头采用多个透镜,例如第一透镜至第七透镜。通过合理设置光学成像镜头的入瞳直径与光学成像镜头的最大半视场角的相互关系,并优化设置透镜的光焦度和面型,使得各透镜之间彼此合理搭配,以平衡光学系统的像差、提高成像质量,并使镜头具有例如大光圈、长焦等特性。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸 变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像镜头的结构示意图;
图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光 轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有正光焦度或负光焦度;第四透镜可具有正光焦度或负光焦度;第五透镜可具有正光焦度或负光焦度;第六透镜可具有正光焦度;以及第七透镜可具有负光焦度。第一透镜具有正光焦度,第二透镜具有负光焦度,通过对第一透镜和第二透镜的正负光焦度的合理分配,可以有效地平衡系统的低阶像差,使得系统具有较好的成像质量和加工性。第六透镜具有正光焦度,第七透镜具有负光焦度,有利于减小系统球差和像散,提高光学系统的成像品质并提高光学系统的相对照度。
在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第三透镜可具有正光焦度,其像侧面可为凹面。
在示例性实施方式中,第四透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,光学成像镜头的入瞳直径EPD与光学成像镜头的最大半视场角Semi-FOV可满足:11mm<EPD/TAN(Semi-FOV)<20mm,例如,11mm<EPD/TAN(Semi-FOV)<15mm。合理设置光学成像镜头的入瞳直径与光学成像镜头最大半视场角的正切值的比例关系,有利于保证光学系统具有较大光圈的同时,还具有较大的拍摄范围。
在示例性实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足:f/EPD<1.4,例如,1.2<f/EPD<1.4。合理分配光学成像镜头的光焦度,使得光学成像镜头的F数小于1.4,有利于光学成像镜头具有大光圈特性,使得光学成像镜头能够更好适用于阴天、黄昏等光线不足时的拍摄环境,以实现良好的成像质量。
在示例性实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的入瞳直径EPD可满足:1.2<TTL/EPD<1.6。合理设置第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离与光学成像镜头的入瞳直径的比例关系,既有利于实现光学成像镜头的超薄特性,又有利于使得光学成像镜头具有较大的相对孔径,使其具有较强的集光能力。
在示例性实施方式中,第一透镜的有效焦距f1、第二透镜的有效焦距f2、第六透镜的有效焦距f6以及第七透镜的有效焦距f7可满足:-1<(f2+f7)/(f1+f6)<-0.6。合理设置上述透镜的有效焦距之间的相互关系,有利于控制上述四片透镜的球差贡献量在合理的水平范围内,使得轴上视场获得良好的成像质量。
在示例性实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4、第三透镜的物侧面的曲率半径R5以及第三透镜的像侧面的曲率半径R6可满足:0.6<(R3+R4)/(R5+R6)<1.1。合理设置第二透镜的物侧面和像侧面的曲率半径之和与第三透镜的物侧面和像侧面的曲率半径之和的比例关系,有利于有效控制入射至光学系统中的光线经过第二透镜和第三透镜后的偏折角度,使得光学系统中各视场光线到达成像面时能够更好地匹配芯片的CRA(Chief Ray Angle,主光线倾斜角)。
在示例性实施方式中,第四透镜的物侧面的曲率半径R7、第四透镜的像侧面的曲率半径R8以及第四透镜的有效焦距f4可满足:0.1mm<(R7×R8)/f4<0.6mm。合理设置第四透镜的物侧面的曲率半径和第四透镜的像侧面的曲率半径的乘积与第四透镜的有效焦距的比例关系,有利于有效控制第四透镜的曲率,使其场曲贡献量在合理的范围,以降低第四透镜的光学敏感度,从而保证其具有良好的加工性能。
在示例性实施方式中,光学成像镜头的总有效焦距f可满足:7mm<f<8mm。合理设置光学成像镜头的总有效焦距,使得光学成像镜头具有一定的长焦特性。
在示例性实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34、第四透镜和第五透镜在光轴上的间隔距离T45、第五透镜和第六透镜在光轴上的间隔距离T56以及第六透镜和第七透镜在光轴上的间隔距离T67可满足:0.6<(T34+T45)/(T56+T67)<1.0。合理设置上述相邻透镜的间隔距离的相互关系,既有利于合理控制上述透镜在光学系统的空间占比,保证透镜的组装工艺,又有利于实现光学成像镜头的小型化。
在示例性实施方式中,第一透镜在光轴上的中心厚度CT1与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL可满足:0.9<CT1/TTL×5<1.2。合理设置第一透镜在光轴上的中心厚度和第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离的比例关系,既有利于减小光学系统的总体长度,使得光学成像镜头的前端相对轻薄,又有利于降低光学系统的加工感度。
在示例性实施方式中,第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离SAG11与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足:0.3<SAG11/ImgH<0.6。合理设置第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点的轴上距离与光学成像镜头的成像面上有效像素区域的对角线长的一半的比例关系,有利于有效控制光学成像镜头的场曲和畸变量,提高其成像质量。
在示例性实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31、第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点的轴上距离SAG41以及第七透镜的物侧面和光轴的交点至第七透镜的物侧面的有效半径顶点的轴上距离SAG71可满足:0.5<SAG31/(SAG41-SAG71)<0.9。合理设置上述三者的相互关系,有利于更好地平衡光学成像镜头的场曲、轴上球差以及色球差,进而使得光学成像镜头具有良好的成像质量和较低的系统敏感性,从而保证光学成像镜头具有良好的加工性。
在示例性实施方式中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学成像镜头的总有效焦距f可满足:1.0<f123/f<1.4。合理设置第一透镜、第二透镜和第三透镜的组合焦距与光学成像镜头的总有效焦距的比例关系,有利于减小光学系统中光线的偏转角,降低光学系统的敏感性。
在示例性实施方式中,第一透镜的物侧面可为凸面、第六透镜的物侧面可为凸面以及第七透镜的像侧面可为凹面。合理设置第一透镜的物侧面、第六透镜的物侧面和第七透镜的像侧面的面型,既有利于压缩光阑位置处光线的入射角、减小光瞳像差,以提高成像质量,又有利于提升光学系统的相对照度。
在示例性实施方式中,上述光学成像镜头还可包括光阑。光阑可根据需要设置在适当位置处。例如,光阑可设置在物侧与第一透镜之间。可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的光学成像镜头采用七片的非球面透镜,通过不同透镜的搭配和设计,可以获得较高的成像质量。同时,根据本申请的光学成像镜头通过对光焦度的合理分配和对高阶非球面参数的优化选择,不仅可以满足光学系统的高成像质量,而且还可以满足光学系统大孔径特性的同时并具备一定长焦特性的优势。
在示例性实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第七透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球 面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
本申请的示例性实施方式还提供一种电子设备,该电子设备包括以上描述的成像装置。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1是示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000001
Figure PCTCN2020104455-appb-000002
表1
在本实施例中,光学成像镜头的总有效焦距f=7.46mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.03mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.49mm。
在实施例1中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020104455-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.6000E-04 -2.5000E-04 -1.5000E-05 4.0400E-05 -1.3000E-05 1.6200E-06 -7.6177E-08
S2 -3.9000E-05 7.5380E-03 -3.5600E-03 7.9500E-04 -9.5000E-05 5.7900E-06 -1.4173E-07
S3 -1.5780E-02 8.8770E-03 -2.5200E-03 1.0700E-04 6.8300E-05 -1.1000E-05 5.3573E-07
S4 -6.7440E-02 7.9630E-02 -5.6480E-02 2.3148E-02 -5.6800E-03 7.7100E-04 -4.4614E-05
S5 -6.5530E-02 8.2803E-02 -5.0300E-02 1.6373E-02 -2.8800E-03 2.5800E-04 -8.7965E-06
S6 -3.9640E-02 2.4752E-02 -1.7720E-02 8.5570E-03 -2.4400E-03 3.9300E-04 -2.6821E-05
S7 -4.1500E-02 3.4680E-03 -2.4000E-04 -3.2800E-03 2.0540E-03 -4.6000E-04 3.6109E-05
S8 -2.6750E-02 5.4820E-03 -3.4000E-03 -1.5300E-03 1.5720E-03 -4.2000E-04 3.7760E-05
S9 -6.8610E-02 2.8996E-02 -8.8300E-03 1.5160E-03 -1.8000E-04 2.0000E-05 -4.0298E-06
S10 -8.3870E-02 4.2621E-02 -1.9890E-02 8.1850E-03 -2.3300E-03 3.9100E-04 -2.8016E-05
S11 -2.5960E-02 -9.2000E-04 4.0200E-04 -9.0000E-05 4.8700E-05 -8.4000E-06 4.4138E-07
S12 -1.0230E-02 -3.8800E-03 6.7900E-04 2.5400E-06 -5.3000E-06 1.0100E-07 1.2960E-08
S13 -1.6013E-01 9.6599E-02 -3.6890E-02 9.2080E-03 -1.4100E-03 1.1800E-04 -4.0854E-06
S14 -1.7514E-01 7.9941E-02 -2.2450E-02 4.0350E-03 -4.5000E-04 2.8000E-05 -7.2573E-07
表2
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。图3示出了根据本申 请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.48mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.03mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.52mm。
表3示出了实施例2的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000004
表3
在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表4给出了可用于实施例2中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.6000E-04 -3.6000E-04 5.7100E-05 1.9800E-05 -9.3000E-06 1.2639E-06 -6.1545E-08
S2 -1.1100E-03 8.9160E-03 -3.4900E-03 6.1500E-04 -5.4000E-05 2.1279E-06 -2.1329E-08
S3 -2.4060E-02 7.8060E-03 4.5600E-04 -1.1000E-03 2.9000E-04 -3.1001E-05 1.2131E-06
S4 -9.0700E-02 1.1811E-01 -9.9120E-02 4.9055E-02 -1.4100E-02 2.1475E-03 -1.3395E-04
S5 -6.5990E-02 8.8794E-02 -5.0070E-02 1.5067E-02 -2.4700E-03 2.0787E-04 -6.8941E-06
S6 -4.0090E-02 3.3095E-02 -2.3060E-02 1.0654E-02 -2.9600E-03 4.6411E-04 -3.0987E-05
S7 -6.9710E-02 1.4507E-02 -1.3830E-02 5.6050E-03 -1.0200E-03 1.0583E-04 -8.5102E-06
S8 -5.1630E-02 1.3709E-02 -1.5610E-02 7.3890E-03 -1.7600E-03 2.2961E-04 -1.4732E-05
S9 -6.5190E-02 4.8207E-02 -2.6460E-02 1.1130E-02 -3.7600E-03 7.7160E-04 -6.7443E-05
S10 -9.8710E-02 6.8187E-02 -3.6760E-02 1.5113E-02 -4.3700E-03 7.5186E-04 -5.4352E-05
S11 -4.6540E-02 4.7100E-03 2.0720E-03 -1.6700E-03 4.5900E-04 -5.4213E-05 2.3398E-06
S12 -2.0720E-02 -3.0100E-03 2.9410E-03 -1.0500E-03 1.8600E-04 -1.5142E-05 4.5380E-07
S13 -2.2795E-01 1.3792E-01 -4.8710E-02 1.0982E-02 -1.5700E-03 1.2546E-04 -4.1647E-06
S14 -2.4797E-01 1.2406E-01 -3.6570E-02 6.6980E-03 -7.6000E-04 4.7629E-05 -1.2647E-06
表4
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.46mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.03mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.50mm。
表5示出了实施例3的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000005
Figure PCTCN2020104455-appb-000006
表5
在实施例3中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表6给出了可用于实施例3中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.9000E-04 -4.0000E-05 -1.5000E-04 8.1700E-05 -1.9000E-05 2.1213E-06 -9.1971E-08
S2 7.2900E-04 4.4090E-03 -1.6700E-03 3.0500E-04 -3.1000E-05 1.5756E-06 -3.0434E-08
S3 -2.0580E-02 6.0090E-03 -6.0000E-04 -2.8000E-04 9.0900E-05 -1.0060E-05 3.9123E-07
S4 -6.7860E-02 1.0779E-01 -1.1084E-01 6.0965E-02 -1.8170E-02 2.7606E-03 -1.6797E-04
S5 -2.1860E-02 2.3021E-02 -8.6900E-03 1.3490E-03 4.9700E-05 -3.5794E-05 2.8678E-06
S6 -2.9660E-02 1.5281E-02 -8.0300E-03 3.0360E-03 -6.6000E-04 8.3154E-05 -4.7256E-06
S7 -4.0580E-02 2.6680E-03 1.6200E-05 -3.4900E-03 2.2220E-03 -5.2257E-04 4.4298E-05
S8 -2.4910E-02 4.1080E-03 -2.7000E-03 -2.1200E-03 1.8930E-03 -4.9762E-04 4.4533E-05
S9 -5.9930E-02 1.0730E-02 9.1460E-03 -9.5500E-03 3.6090E-03 -6.1972E-04 3.5366E-05
S10 -7.0560E-02 2.0385E-02 -7.9000E-04 -2.9600E-03 1.4490E-03 -2.7117E-04 1.8312E-05
S11 -1.1440E-02 -8.7400E-03 6.0280E-03 -3.2000E-03 9.0400E-04 -1.1735E-04 5.6690E-06
S12 -1.9000E-03 -4.1600E-03 1.3560E-03 -7.5000E-04 1.9900E-04 -2.1916E-05 8.6269E-07
S13 -1.3925E-01 9.5947E-02 -3.8360E-02 9.3550E-03 -1.3900E-03 1.1429E-04 -3.8865E-06
S14 -1.6101E-01 8.5207E-02 -2.7740E-02 5.5810E-03 -6.8000E-04 4.5171E-05 -1.2495E-06
表6
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.48mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.03mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.53mm。
表7示出了实施例4的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000007
表7
在实施例4中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表8给出了可用于实施例4中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.5860E-02 2.5703E-02 -1.6010E-02 4.8510E-03 -7.7000E-04 6.1639E-05 -1.9629E-06
S2 1.4195E-02 -1.9200E-03 5.9600E-04 -2.8000E-04 5.6800E-05 -5.1193E-06 1.7013E-07
S3 -7.3800E-03 -1.9300E-03 2.9420E-03 -1.2400E-03 2.3400E-04 -2.0327E-05 6.5088E-07
S4 -3.1280E-02 2.4524E-02 -1.4840E-02 5.5870E-03 -1.3600E-03 1.9098E-04 -1.1550E-05
S5 -1.2610E-02 2.9319E-02 -1.5750E-02 4.1610E-03 -5.4000E-04 2.9722E-05 -2.5467E-07
S6 -4.2610E-02 2.8567E-02 -1.6990E-02 7.1820E-03 -1.9400E-03 3.0619E-04 -2.1008E-05
S7 -7.1350E-02 2.0317E-02 -3.1490E-02 2.1673E-02 -8.3500E-03 1.7479E-03 -1.5483E-04
S8 -3.5510E-02 -4.3900E-03 -4.6000E-04 -1.3900E-03 1.3860E-03 -3.9948E-04 3.8130E-05
S9 -5.2820E-02 4.2213E-02 -2.6490E-02 1.3024E-02 -4.8100E-03 1.0045E-03 -8.6629E-05
S10 -8.0330E-02 5.9487E-02 -3.6110E-02 1.6712E-02 -5.3000E-03 9.6519E-04 -7.2060E-05
S11 -3.6830E-02 2.4080E-03 2.5990E-03 -1.9800E-03 5.5500E-04 -6.7063E-05 2.9664E-06
S12 -1.5750E-02 -2.7800E-03 2.6880E-03 -1.1900E-03 2.4800E-04 -2.3502E-05 8.2841E-07
S13 -2.1400E-01 1.3552E-01 -5.0320E-02 1.1719E-02 -1.6900E-03 1.3578E-04 -4.5052E-06
S14 -2.3511E-01 1.2148E-01 -3.7550E-02 7.2000E-03 -8.4000E-04 5.4416E-05 -1.4708E-06
表8
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.30mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.20mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表9示出了实施例5的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000008
Figure PCTCN2020104455-appb-000009
表9
在实施例5中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表10给出了可用于实施例5中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.0000E-05 -1.1100E-03 8.6500E-04 -4.0000E-04 1.1532E-04 -2.0000E-05 2.1600E-06 -1.2000E-07 2.9731E-09
S2 1.4770E-03 4.6180E-03 -1.5700E-03 1.5800E-04 1.2447E-05 -3.4000E-06 9.3300E-08 1.6600E-08 -9.3285E-10
S3 -2.5770E-02 8.6110E-03 1.5040E-03 -2.5300E-03 9.6299E-04 -1.9000E-04 2.1300E-05 -1.3000E-06 3.2948E-08
S4 -3.1730E-02 2.8700E-02 -2.0310E-02 1.2428E-02 -5.2970E-03 1.4190E-03 -2.3000E-04 1.9500E-05 -7.0662E-07
S5 -1.2380E-02 2.5993E-02 -2.2570E-02 1.2849E-02 -4.4918E-03 9.2300E-04 -1.0000E-04 4.7100E-06 -1.0360E-08
S6 -2.7180E-02 2.1536E-02 -1.8960E-02 1.2620E-02 -5.7405E-03 1.7270E-03 -3.2000E-04 3.2900E-05 -1.4246E-06
S7 -4.0080E-02 6.4310E-03 4.2900E-04 -4.7800E-03 3.0861E-03 -9.3000E-04 1.6200E-04 -1.7000E-05 9.7081E-07
S8 -2.6330E-02 8.5610E-03 -1.1000E-02 1.0444E-02 -8.2376E-03 4.0750E-03 -1.1400E-03 1.6700E-04 -9.8943E-06
S9 -4.6370E-02 -1.0290E-02 5.4317E-02 -7.3520E-02 5.6584E-02 -2.6920E-02 7.7760E-03 -1.2500E-03 8.4404E-05
S10 -5.9060E-02 1.8329E-02 -4.0900E-03 8.3000E-04 -9.5250E-04 6.9600E-04 -2.2000E-04 3.1000E-05 -1.6872E-06
S11 -1.7210E-02 -3.9400E-03 -3.8000E-04 1.9930E-03 -1.6007E-03 5.9100E-04 -1.1000E-04 9.9000E-06 -3.5256E-07
S12 -6.5400E-03 5.2530E-03 -1.1680E-02 7.7000E-03 -2.8176E-03 6.0400E-04 -7.5000E-05 4.9300E-06 -1.3465E-07
S13 -1.1430E-01 8.1783E-02 -5.1550E-02 2.3219E-02 -7.1725E-03 1.4700E-03 -1.9000E-04 1.4000E-05 -4.4236E-07
S14 -1.2080E-01 6.9020E-02 -3.1090E-02 9.6440E-03 -2.0534E-03 2.9500E-04 -2.7000E-05 1.4200E-06 -3.2285E-08
表10
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、 第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.30mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.20mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表11示出了实施例6的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000010
表11
在实施例6中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表12给出了可用于实施例6中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
Figure PCTCN2020104455-appb-000011
Figure PCTCN2020104455-appb-000012
表12
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.30mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.10mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表13示出了实施例7的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000013
Figure PCTCN2020104455-appb-000014
表13
在实施例7中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表14给出了可用于实施例7中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.7200E-04 -7.3006E-04 6.1605E-04 -3.2000E-04 9.7541E-05 -1.9000E-05 2.0900E-06 -1.3000E-07 3.2422E-09
S2 7.0526E-03 2.0885E-03 -1.7380E-03 6.7900E-04 -1.8554E-04 3.3800E-05 -3.8000E-06 2.2700E-07 -5.6483E-09
S3 -1.4053E-02 2.8867E-03 8.6483E-04 -8.8000E-04 2.8188E-04 -4.8000E-05 4.6000E-06 -2.5000E-07 5.6912E-09
S4 -1.2207E-02 -1.4799E-03 1.4125E-03 6.9600E-05 -3.5047E-04 1.4100E-04 -2.7000E-05 2.5700E-06 -1.0255E-07
S5 1.5203E-02 -3.0718E-03 1.3035E-04 9.3100E-04 -5.4402E-04 1.7100E-04 -3.4000E-05 3.9700E-06 -2.0757E-07
S6 -1.8044E-02 9.8595E-03 -6.3519E-03 3.9270E-03 -1.6411E-03 4.4100E-04 -7.0000E-05 5.8500E-06 -1.9380E-07
S7 -3.4402E-02 3.0045E-03 -2.4942E-03 1.8540E-03 -1.0963E-03 4.6800E-04 -1.2000E-04 1.5000E-05 -7.4173E-07
S8 -2.2400E-02 -2.6690E-04 -2.1819E-03 1.7450E-03 -8.7652E-04 2.7900E-04 -4.5000E-05 2.2300E-06 1.4194E-07
S9 -2.5147E-02 -2.5581E-02 7.1300E-02 -9.7760E-02 7.8804E-02 -3.9330E-02 1.1860E-02 -1.9700E-03 1.3886E-04
S10 -4.0980E-02 1.8847E-02 -2.2513E-02 2.4963E-02 -1.7041E-02 6.7440E-03 -1.5100E-03 1.7600E-04 -8.4242E-06
S11 -2.5923E-02 -1.5930E-02 1.5668E-02 -6.0800E-03 -1.5227E-04 7.7600E-04 -2.2000E-04 2.5700E-05 -1.1098E-06
S12 -1.7194E-02 3.6462E-03 -7.3090E-03 4.5680E-03 -1.5190E-03 2.8000E-04 -2.7000E-05 1.2100E-06 -1.4354E-08
S13 -1.2891E-01 7.6048E-02 -4.0527E-02 1.5979E-02 -4.3659E-03 7.9000E-04 -8.9000E-05 5.7500E-06 -1.5966E-07
S14 -1.4578E-01 8.3922E-02 -4.1318E-02 1.4258E-02 -3.3132E-03 5.0200E-04 -4.7000E-05 2.4900E-06 -5.6004E-08
表14
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.30mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.10mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表15示出了实施例8的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000015
表15
在实施例8中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表16给出了可用于实施例8中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
Figure PCTCN2020104455-appb-000016
Figure PCTCN2020104455-appb-000017
表16
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.26mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.03mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表17示出了实施例9的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000018
Figure PCTCN2020104455-appb-000019
表17
在实施例9中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表18给出了可用于实施例9中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.2400E-04 -7.9732E-04 5.1835E-04 -2.3000E-04 6.3769E-05 -1.1000E-05 1.0400E-06 -5.1000E-08 8.8307E-10
S2 2.3465E-02 -1.6183E-02 1.0272E-02 -4.2800E-03 1.1281E-03 -1.9000E-04 1.9600E-05 -1.2000E-06 2.9797E-08
S3 -5.3900E-04 -1.5194E-02 1.3589E-02 -6.2400E-03 1.6892E-03 -2.8000E-04 2.7800E-05 -1.5000E-06 3.6437E-08
S4 -1.1642E-02 -5.0927E-03 5.1185E-03 -3.0000E-03 1.1917E-03 -3.0000E-04 4.4300E-05 -3.4000E-06 1.0090E-07
S5 2.3750E-02 -1.3531E-02 1.4045E-02 -1.2020E-02 6.4401E-03 -2.0400E-03 3.7300E-04 -3.7000E-05 1.4934E-06
S6 -1.2069E-02 8.4263E-03 -7.0201E-03 4.3320E-03 -1.7161E-03 4.3900E-04 -7.0000E-05 6.2100E-06 -2.3801E-07
S7 -3.4385E-02 -2.0014E-03 1.0083E-02 -1.3330E-02 9.5355E-03 -4.0200E-03 1.0120E-03 -1.4000E-04 8.2222E-06
S8 -2.5590E-02 -4.1876E-03 1.2507E-02 -1.8630E-02 1.5137E-02 -7.3600E-03 2.1340E-03 -3.4000E-04 2.2679E-05
S9 -2.6900E-02 -6.9234E-02 1.9922E-01 -2.8847E-01 2.4821E-01 -1.3226E-01 4.2655E-02 -7.6300E-03 5.7972E-04
S10 -6.5548E-02 3.3408E-02 -2.3382E-02 1.9106E-02 -1.2656E-02 5.2060E-03 -1.2100E-03 1.4700E-04 -7.2057E-06
S11 -3.8433E-02 -8.3076E-03 1.3994E-02 -7.8300E-03 1.4672E-03 2.3000E-04 -1.3000E-04 1.8600E-05 -8.9721E-07
S12 -2.7091E-02 1.3608E-02 -1.4023E-02 6.7190E-03 -1.6617E-03 1.7600E-04 4.1200E-06 -2.3000E-06 1.3020E-07
S13 -1.9861E-01 1.3325E-01 -7.3210E-02 2.8250E-02 -7.4299E-03 1.2940E-03 -1.4000E-04 8.8500E-06 -2.3904E-07
S14 -2.1440E-01 1.2910E-01 -5.5891E-02 1.6143E-02 -3.1058E-03 3.9400E-04 -3.2000E-05 1.4500E-06 -2.9063E-08
表18
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述根据本申请实施例10的光学成像镜头。图19示出了根据本申请实施例10的光学成像镜头的结构示意图。
如图19所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具 有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,光学成像镜头的总有效焦距f=7.26mm,从第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL=8.05mm,以及成像面S17上有效像素区域对角线长的一半ImgH=3.70mm。
表19示出了实施例10的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020104455-appb-000020
表19
在实施例10中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。下表20给出了可用于实施例10中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.6300E-04 -3.2705E-04 1.0530E-04 -3.2000E-05 6.4892E-07 1.5700E-06 -4.2000E-07 4.4413E-08 -1.7820E-09
S2 2.3858E-02 -1.3531E-02 7.5766E-03 -3.1100E-03 8.2834E-04 -1.4000E-04 1.4900E-05 -8.9570E-07 2.3343E-08
S3 -5.1110E-03 -9.5752E-03 9.0354E-03 -4.2600E-03 1.1841E-03 -2.0000E-04 2.0300E-05 -1.1392E-06 2.7472E-08
S4 -1.1128E-02 -4.0237E-03 3.6359E-03 -2.4100E-03 1.0829E-03 -2.9000E-04 4.1700E-05 -3.0572E-06 8.5152E-08
S5 3.4121E-02 -1.6166E-02 1.2938E-02 -1.0670E-02 5.8086E-03 -1.8700E-03 3.4700E-04 -3.4562E-05 1.4292E-06
S6 -8.4810E-03 4.3418E-03 -4.0800E-03 2.8530E-03 -1.1733E-03 2.8700E-04 -4.1000E-05 3.1265E-06 -9.9970E-08
S7 -3.4699E-02 -3.6382E-03 1.0949E-02 -1.4540E-02 1.1113E-02 -5.0400E-03 1.3480E-03 -1.9549E-04 1.1817E-05
S8 -2.0099E-02 -1.4504E-02 3.1094E-02 -4.2770E-02 3.5455E-02 -1.7970E-02 5.4420E-03 -9.0128E-04 6.2608E-05
S9 -1.9663E-02 -6.6299E-02 1.7395E-01 -2.5331E-01 2.2346E-01 -1.2307E-01 4.1190E-02 -7.6643E-03 6.0777E-04
S10 -4.3133E-02 4.8840E-03 5.6205E-03 -3.9700E-03 -3.9571E-05 8.1000E-04 -2.9000E-04 4.2140E-05 -2.2505E-06
S11 -2.5066E-02 -2.1114E-02 2.8455E-02 -1.9470E-02 7.1450E-03 -1.4100E-03 1.4300E-04 -5.9398E-06 1.4323E-08
S12 -2.0796E-02 7.9229E-03 -8.9800E-03 3.4770E-03 -3.5231E-04 -1.5000E-04 5.1600E-05 -6.1519E-06 2.6104E-07
S13 -1.4781E-01 7.3766E-02 -3.3594E-02 1.1281E-02 -2.7537E-03 4.8300E-04 -5.8000E-05 4.1035E-06 -1.3019E-07
S14 -1.5290E-01 7.1311E-02 -2.5635E-02 6.3230E-03 -1.0807E-03 1.3000E-04 -1.1000E-05 5.2094E-07 -1.1549E-08
表20
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图20D示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表21中所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9 10
EPD/TAN(Semi-FOV)(mm) 13.09 12.67 12.42 12.13 11.12 11.88 11.84 11.96 11.97 11.90
f/EPD 1.28 1.33 1.35 1.38 1.39 1.28 1.28 1.28 1.28 1.30
TTL/EPD 1.38 1.42 1.45 1.49 1.56 1.44 1.42 1.42 1.42 1.44
(f2+f7)/(f1+f6) -0.79 -0.89 -0.88 -0.93 -0.91 -0.80 -0.64 -0.66 -0.79 -0.89
(R3+R4)/(R5+R6) 1.06 0.88 0.85 0.88 0.85 0.87 0.87 0.80 0.71 0.66
(R7×R8)/f4(mm) 0.28 0.14 0.24 0.19 0.35 0.49 0.57 0.46 0.25 0.26
f(mm) 7.46 7.48 7.46 7.48 7.30 7.30 7.30 7.30 7.26 7.26
(T34+T45)/(T56+T67) 0.70 0.84 0.62 0.75 0.71 0.74 0.86 0.96 0.99 0.98
CT1/TTL×5 1.16 1.18 1.11 1.13 1.10 1.08 0.94 0.92 1.09 1.12
SAG11/ImgH 0.59 0.58 0.59 0.58 0.43 0.44 0.42 0.41 0.41 0.40
SAG31/(SAG41-SAG71) 0.59 0.57 0.61 0.62 0.56 0.59 0.79 0.87 0.73 0.66
f123/f 1.30 1.18 1.25 1.24 1.32 1.30 1.25 1.17 1.09 1.11
表21
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (26)

  1. 一种光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有正光焦度的第六透镜;以及
    具有负光焦度的第七透镜;
    其中,所述光学成像镜头的入瞳直径EPD与所述光学成像镜头的最大半视场角Semi-FOV满足:11mm<EPD/TAN(Semi-FOV)<20mm。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足:f/EPD<1.4。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的入瞳直径EPD满足:1.2<TTL/EPD<1.6。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2、所述第六透镜的有效焦距f6以及所述第七透镜的有效焦距f7满足:
    -1<(f2+f7)/(f1+f6)<-0.6。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4、所述第三透镜的物侧面的曲率半径R5以及所述第三透镜的像侧面的曲率半径R6满足:0.6<(R3+R4)/(R5+R6)<1.1。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7、所述第四透镜的像侧面的曲率半径R8以及所述第四透镜的有效焦距f4满足:0.1mm<(R7×R8)/f4<0.6mm。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f满足:7mm<f<8mm。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56以及所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足:0.6<(T34+T45)/(T56+T67)<1.0。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜在所述光轴上的 中心厚度CT1与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足:0.9<CT1/TTL×5<1.2。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的有效半径顶点的轴上距离SAG11与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:0.3<SAG11/ImgH<0.6。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的有效半径顶点的轴上距离SAG41以及所述第七透镜的物侧面和所述光轴的交点至所述第七透镜的物侧面的有效半径顶点的轴上距离SAG71满足:0.5<SAG31/(SAG41-SAG71)<0.9。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123与所述光学成像镜头的总有效焦距f满足:1.0<f123/f<1.4。
  13. 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面为凸面,所述第六透镜的物侧面为凸面以及所述第七透镜的像侧面为凹面。
  14. 一种光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有正光焦度的第六透镜;以及
    具有负光焦度的第七透镜;
    其中,所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123与所述光学成像镜头的总有效焦距f满足:1.0<f123/f<1.4。
  15. 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足:f/EPD<1.4。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的入瞳直径EPD与所述光学成像镜头的最大半视场角Semi-FOV满足:11mm<EPD/TAN(Semi-FOV)<20mm。
  17. 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的入瞳直径EPD满足:1.2<TTL/EPD<1.6。
  18. 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2、所述第六透镜的有效焦距f6以及所述第七透镜的有效焦距f7满足:-1<(f2+f7)/(f1+f6)<-0.6。
  19. 根据权利要求14所述的光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4、所述第三透镜的物侧面的曲率半径R5以及所述第三透镜的像侧面的曲率半径R6满足:0.6<(R3+R4)/(R5+R6)<1.1。
  20. 根据权利要求14所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7、所述第四透镜的像侧面的曲率半径R8以及所述第四透镜的有效焦距f4满足:0.1mm<(R7×R8)/f4<0.6mm。
  21. 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f满足:7mm<f<8mm。
  22. 根据权利要求14所述的光学成像镜头,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56以及所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足:0.6<(T34+T45)/(T56+T67)<1.0。
  23. 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足:0.9<CT1/TTL×5<1.2。
  24. 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的有效半径顶点的轴上距离SAG11与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:0.3<SAG11/ImgH<0.6。
  25. 根据权利要求14所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的有效半径顶点的轴上距离SAG41以及所述第七透镜的物侧面和所述光轴的交点至所述第七透镜的物侧面的有效半径顶点的轴上距离SAG71满足:0.5<SAG31/(SAG41-SAG71)<0.9。
  26. 根据权利要求14至25中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面为凸面,所述第六透镜的物侧面为凸面以及所述第七透镜的像侧面为凹面。
PCT/CN2020/104455 2019-09-25 2020-07-24 光学成像镜头 WO2021057228A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/763,668 US20220350113A1 (en) 2019-09-25 2020-07-24 Optical Imaging Lens Assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910912301.4 2019-09-25
CN201910912301.4A CN110515186B (zh) 2019-09-25 2019-09-25 光学成像镜头

Publications (1)

Publication Number Publication Date
WO2021057228A1 true WO2021057228A1 (zh) 2021-04-01

Family

ID=68633874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104455 WO2021057228A1 (zh) 2019-09-25 2020-07-24 光学成像镜头

Country Status (3)

Country Link
US (1) US20220350113A1 (zh)
CN (1) CN110515186B (zh)
WO (1) WO2021057228A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515186B (zh) * 2019-09-25 2024-05-03 浙江舜宇光学有限公司 光学成像镜头
TWI788626B (zh) * 2020-02-07 2023-01-01 先進光電科技股份有限公司 光學成像系統
CN111208623A (zh) * 2020-02-14 2020-05-29 浙江舜宇光学有限公司 光学成像镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204065539U (zh) * 2014-01-10 2014-12-31 株式会社光学逻辑 摄像镜头
CN107490840A (zh) * 2014-08-01 2017-12-19 大立光电股份有限公司 取像用光学镜组、取像装置及电子装置
CN108732724A (zh) * 2018-08-22 2018-11-02 浙江舜宇光学有限公司 光学成像系统
CN208172354U (zh) * 2017-08-18 2018-11-30 三星电机株式会社 光学成像系统
CN109031590A (zh) * 2017-06-08 2018-12-18 宁波舜宇光电信息有限公司 光学镜头和镜头模组
CN109254385A (zh) * 2018-10-30 2019-01-22 浙江舜宇光学有限公司 光学成像镜头
US20190049701A1 (en) * 2015-04-16 2019-02-14 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN110187469A (zh) * 2018-02-22 2019-08-30 大立光电股份有限公司 成像光学镜头、取像装置及电子装置
CN209400779U (zh) * 2019-03-01 2019-09-17 南昌欧菲精密光学制品有限公司 光学组件、取像模组及移动终端
CN110515186A (zh) * 2019-09-25 2019-11-29 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160423B2 (ja) * 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN113376812B (zh) * 2017-12-29 2022-10-04 玉晶光电(厦门)有限公司 光学成像镜头
CN113238348B (zh) * 2019-05-16 2022-11-04 浙江舜宇光学有限公司 光学成像镜头
CN210924083U (zh) * 2019-09-25 2020-07-03 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204065539U (zh) * 2014-01-10 2014-12-31 株式会社光学逻辑 摄像镜头
CN107490840A (zh) * 2014-08-01 2017-12-19 大立光电股份有限公司 取像用光学镜组、取像装置及电子装置
US20190049701A1 (en) * 2015-04-16 2019-02-14 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN109031590A (zh) * 2017-06-08 2018-12-18 宁波舜宇光电信息有限公司 光学镜头和镜头模组
CN208172354U (zh) * 2017-08-18 2018-11-30 三星电机株式会社 光学成像系统
CN110187469A (zh) * 2018-02-22 2019-08-30 大立光电股份有限公司 成像光学镜头、取像装置及电子装置
CN108732724A (zh) * 2018-08-22 2018-11-02 浙江舜宇光学有限公司 光学成像系统
CN109254385A (zh) * 2018-10-30 2019-01-22 浙江舜宇光学有限公司 光学成像镜头
CN209400779U (zh) * 2019-03-01 2019-09-17 南昌欧菲精密光学制品有限公司 光学组件、取像模组及移动终端
CN110515186A (zh) * 2019-09-25 2019-11-29 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110515186B (zh) 2024-05-03
US20220350113A1 (en) 2022-11-03
CN110515186A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021073275A1 (zh) 光学成像镜头
WO2021082727A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2020024633A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2020199573A1 (zh) 摄像透镜组
WO2020010878A1 (zh) 光学成像系统
WO2019233160A1 (zh) 光学成像镜片组
WO2020029620A1 (zh) 光学成像镜片组
WO2020073702A1 (zh) 光学成像镜片组
WO2020010879A1 (zh) 光学成像系统
WO2020038134A1 (zh) 光学成像系统
WO2020088022A1 (zh) 光学成像镜片组
WO2019228064A1 (zh) 成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2020168717A1 (zh) 光学成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2021068753A1 (zh) 光学成像系统
WO2020001119A1 (zh) 摄像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020164236A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870232

Country of ref document: EP

Kind code of ref document: A1