WO2021057211A1 - 采样组件、连接组件、电池模组以及车辆 - Google Patents

采样组件、连接组件、电池模组以及车辆 Download PDF

Info

Publication number
WO2021057211A1
WO2021057211A1 PCT/CN2020/102613 CN2020102613W WO2021057211A1 WO 2021057211 A1 WO2021057211 A1 WO 2021057211A1 CN 2020102613 W CN2020102613 W CN 2020102613W WO 2021057211 A1 WO2021057211 A1 WO 2021057211A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
circuit board
connecting portion
connection
area
Prior art date
Application number
PCT/CN2020/102613
Other languages
English (en)
French (fr)
Inventor
陈思恩
徐守江
戴晓汕
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20867622.1A priority Critical patent/EP3951996A4/en
Publication of WO2021057211A1 publication Critical patent/WO2021057211A1/zh
Priority to US17/546,075 priority patent/US20220102814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, in particular to a sampling assembly, a connection assembly, a battery module, and a vehicle.
  • the battery module includes a plurality of secondary batteries arranged side by side. During the use of the battery module, it is necessary to collect the voltage of each secondary battery included in the battery module. At present, circuit board components are usually used to collect voltage. Therefore, the reliability of the circuit board components determines the reliability of the voltage collected by the secondary battery.
  • the circuit board assembly is connected to the bus bar connected to the secondary battery through a connecting piece (for example, a nickel piece). However, the secondary battery swells during use, so there is a possibility that the circuit board assembly and the bus bar jointly stretch the connecting piece and cause the connecting piece to break, thereby making the circuit board assembly unable to perform the collection work normally.
  • the embodiments of the present application provide a sampling assembly, a connection assembly, a battery module, and a vehicle.
  • the sampling component can reduce the possibility of fracture of the sampling foot bearing the tensile force, and improve the working reliability of the sampling component.
  • an embodiment of the present application proposes a sampling assembly for use in a battery module.
  • the battery module includes a bus bar.
  • Sampling components include sampling circuit board and sampling feet.
  • the sampling circuit board has a predetermined length and width.
  • the sampling foot includes a first connecting part, a middle part and a second connecting part.
  • the first connection part is connected to the sampling circuit board.
  • the second connecting part is used for connecting with the bus bar.
  • the first connection part has a first connection area connected to the middle part.
  • the second connection part has a second connection area connected to the middle part.
  • the cross-sectional area of at least part of the middle portion is smaller than the cross-sectional area of the first connection area and smaller than the cross-sectional area of the second connection area.
  • the middle part is provided with a through hole, and the cross-sectional area of the part corresponding to the through hole on the middle part is smaller than the cross-sectional area of the first connection area and smaller than the cross-sectional area of the second connection area.
  • two or more through holes are distributed at intervals along the width direction of the sampling circuit board.
  • the first connecting portion, the middle portion, and the second connecting portion are successively distributed along the width direction of the sampling circuit board, and the number of through holes is one, so as to form two strips in the middle part; or , Two or more through holes are distributed at intervals along the length direction of the sampling circuit board, so as to form a plurality of strips in the middle part.
  • the cross-sectional area of each strip-shaped body is equal.
  • the through hole penetrates the middle portion in the width direction, and the through hole extends from the first connection area to the second connection area.
  • the middle portion has a bending sharp corner area protruding toward the length direction of the sampling circuit board, along the width direction of the sampling circuit board, the start and/or end point of the through hole and the bending sharp corner area Misplaced settings.
  • the size of the middle portion is smaller than the size of the first connection area and smaller than the size of the second connection area.
  • the first connection portion and the second connection portion are aligned and arranged; or, along the length direction of the sampling circuit board, the first connection portion and the second connection portion are staggered. .
  • At least part of the middle portion protrudes from the first connecting portion and the second connecting portion.
  • the middle portion includes at least two successively distributed connecting sections, and the at least two successively distributed connecting sections are configured in a wave-shaped structure.
  • all the connecting sections are straight sections or arc-shaped sections, or a part of the connecting sections of the at least two connecting sections is a straight section, and the other part of the connecting sections is an arc-shaped section.
  • the sampling leg has a sheet-like structure, and the thickness of the first connecting portion, the thickness of the middle portion, and the thickness of the second connecting portion are equal.
  • the sampling circuit board includes a substrate, a sampling line, and a protective film, the sampling line is laid on the substrate, the first connecting portion of the sampling leg is connected to the sampling line, and at least part of the first connecting portion is protected by the protective film cover.
  • the sampling foot of the embodiment of the present application when the position of the first connection part and the second connection part changes with each other, the sampling foot itself will bear the tensile force. Because the middle part of the sampling foot has deformability and cushioning ability, the middle part can buffer the above-mentioned tensile force, thereby reducing the load carried by the connection between the middle part and the first connection area and the connection between the middle part and the second connection area.
  • the tensile stress reduces the possibility of fracture between the middle part and the first connection zone and/or the middle part and the second connection zone, which is beneficial to improve the working reliability and stability of the sampling assembly, and to ensure the normal execution of the sampling work of the sampling assembly.
  • connection components include:
  • the bus bar, the insulator, and the sampling assembly as in the above-mentioned embodiment.
  • the bus bar and the sampling assembly are connected and fixed by insulators.
  • the sampling leg extends from the sampling circuit board toward the bus bar, and the second connecting portion is connected with the bus bar.
  • an embodiment of the present application proposes a battery module, which includes a secondary battery, a bus bar, and the sampling component as in the above-mentioned embodiment.
  • Two or more secondary batteries are arranged side by side along the arrangement direction.
  • the bus bar is arranged on the top of the secondary battery and electrically connects at least two secondary batteries.
  • the sampling circuit board extends along the arrangement direction and has a strip-shaped structure. The sampling leg extends from the sampling circuit board toward the bus bar, and the second connecting portion is connected with the bus bar.
  • a secondary battery includes an electrode assembly, the electrode assembly has a wide surface and a narrow surface alternately distributed, and the wide surface intersects the arrangement direction.
  • an embodiment of the present application proposes a vehicle, which includes a power source and the battery module as in the above-mentioned embodiment.
  • the power source is used to provide driving force for the vehicle.
  • the battery module as in the above embodiment is configured to provide electrical energy to the power source.
  • FIG. 1 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • FIG. 2 is a schematic top view of the structure of the battery module of the embodiment shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the structure of a connection assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a secondary battery according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a sampling foot according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • 15 is a schematic diagram of the structure of a sampling foot according to another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • Fig. 21 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • Fig. 22 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 31 is a schematic structural diagram of a sampling foot according to another embodiment of the present application.
  • FIG. 32 is a schematic top view of a battery module according to another embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an optional connection. Disassembly connection, or integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the battery module 10 of the embodiment of the present application includes a secondary battery 20 and a connecting assembly 70 connected to the secondary battery 20.
  • the connection assembly 70 includes a bus bar 30, an insulating member 80 and a sampling assembly 40.
  • the sampling component 40 includes a sampling circuit board 50 and a sampling support 60.
  • the bus bar 30 and the sampling assembly 40 are connected and fixed by an insulating member 80.
  • the connection assembly 70 further includes a snap component or an adhesive component.
  • the sampling assembly 40 and the insulating member 80 are connected and fixed by a buckle component or an adhesive component.
  • the insulating member 80 has a sheet structure, and the sampling circuit board 60 and the insulating member 80 are connected and fixed by thermocompression.
  • the insulating member 80 is a wire harness isolation plate.
  • Two or more secondary batteries 20 are arranged side by side along the arrangement direction X.
  • the arrangement direction X is the same as the width direction of the secondary battery 20.
  • the bus bar 30 is disposed on the top of the secondary battery 20 and electrically connects at least two secondary batteries 20 so that a plurality of secondary batteries 20 connected by one bus bar 30 are connected in series or parallel to each other.
  • the sampling circuit board 50 has a strip structure with a predetermined length and width.
  • the sampling circuit board 50 is arranged on the top of the secondary battery 20.
  • the length direction of the sampling circuit board 50 is the same as the arrangement direction X.
  • the sampling leg 60 extends along the width direction of the sampling circuit board 50.
  • the width direction of the sampling circuit board 50 intersects the arrangement direction X.
  • the sampling leg 60 includes a first connecting portion 61, a middle portion 62 and a second connecting portion 63.
  • the first connection part 61 is connected to the sampling circuit board 50, and the second connection part 63 is connected to the bus bar 30.
  • the first connecting portion 61 is connected to the sampling circuit board 50 by welding
  • the second connecting portion 63 is connected to the bus bar 30 by welding.
  • the first connection portion 61 has a first connection area 61 a connected to the intermediate portion 62.
  • the second connection portion 63 has a second connection area 63 a connected to the middle portion 62.
  • the cross-sectional area of at least part of the middle portion 62 is smaller than the cross-sectional area of the first connection area 61a and smaller than the cross-sectional area of the second connection area 63a, so that the overall rigidity of the middle portion 62 may be less than that of the first connection area 61a and the second connection area.
  • the area 63a enables the middle portion 62 to have relatively good deformability and cushioning ability as a whole.
  • the sampling leg 60 of the embodiment of the present application when the position of the first connecting portion 61 and the second connecting portion 63 changes with each other, the sampling leg 60 itself will bear the tensile force. Since the middle part 62 of the sampling foot 60 has deformability and cushioning ability, the middle part 62 can buffer the above-mentioned tensile force, thereby reducing the connection between the middle part 62 and the first connection area 61a and the middle part 62 and the second connection.
  • the tensile stress carried by the connection of the area 63a reduces the possibility of fracture of the intermediate portion 62 and the first connection area 61a and/or the intermediate portion 62 and the second connection area 63a, which is beneficial to improve the working reliability and reliability of the sampling assembly 40.
  • connection assembly 70 including the sampling assembly 40 of the embodiment of the present application can be applied to the battery module 10.
  • the secondary battery 20 will undergo swelling deformation or vibration deformation, which will cause the position of the secondary battery 20 to change, so that the secondary battery 20 will drive the sampling circuit board 50 to move.
  • the bus bar 30 and the sampling circuit board 50 jointly exert a tensile force on the sampling leg 60, and the intermediate portion 62 can buffer the tensile force, and reduce the damage caused by the intermediate portion 62 and the first connection area 61a and/or the intermediate portion 62 and the second portion.
  • the connection area 63a is broken and the collection function fails, which is beneficial to improve the safety of the battery module 10 in use.
  • the secondary battery 20 includes a case and an electrode assembly 21 provided in the case.
  • the electrode assembly 21 has a wide surface 21a and a narrow surface 21b alternately distributed, wherein the wide surface 21a intersects the arrangement direction X.
  • the electrode assembly 21 will swell, which will cause the casing to swell, causing the overall position of the secondary battery 20 in the arrangement direction X to change.
  • the expansion degree of the wide surface 21a of the electrode assembly 21 is greater than the expansion degree of the narrow surface 21b, so along the arrangement direction X, the expansion deformation of the electrode assembly 21 is larger, so that the bus bar 30 and the sampling circuit board 50 jointly apply the sampling leg 60 The tensile force is greater.
  • the first connecting portion 61 and the second connecting portion 63 are aligned and arranged.
  • the size of the intermediate portion 62 is smaller than the size of the first connection area 61a and smaller than the size of the second connection area 63a, so that the overall cross-sectional area of the intermediate portion 62 is smaller than the cross-sectional area of the first connection area 61a and smaller than the first connection area 61a.
  • the first connecting portion 61 and the second connecting portion 63 have a rectangular structure as a whole.
  • the first connection area 61a and the second connection area 63a are rectangular structures continuously extending in the arrangement direction X.
  • the middle portion 62 extends straight between the first connection area 61a and the second connection area 63a.
  • the intermediate portion 62 is connected to the intermediate area of the first connection area 61a and the intermediate area of the second connection area 63a.
  • the middle part 62 Since the rigidity of the middle part 62 is relatively small, the middle part 62 itself will deform to buffer the tensile force carried by itself, so as to reduce the connection between the middle part 62 and the first connection area 61a and the middle part 62 and the second connection.
  • the tensile stress carried by the connection of the zone 63a reduces the possibility of fracture of the middle part 62 and the first connection zone 61a, and the middle part 62 and the second connection zone 63a.
  • the sampling foot 60 has a sheet-like structure. The thickness of the first connecting portion 61, the thickness of the intermediate portion 62, and the thickness of the second connecting portion 63 are equal.
  • the sampling circuit board 50 includes a substrate, a sampling line, and a protective film.
  • the sampling line is laid on the substrate, and the protective film covers the sampling line to protect the sampling line.
  • the protective film covers the entire substrate.
  • the protective film is an insulating structure.
  • the first connecting portion 61 of the sampling leg 60 is connected to the sampling line, and at least a part of the first connecting portion 61 is covered by a protective film.
  • the first connecting portion 61, the middle portion 62, and the second connecting portion 63 of the sampling leg 60 are integrally formed.
  • both FIGS. 6 and 7 can be regarded as a modification of the embodiment shown in FIG. 5. Therefore, the same parts as those in FIG. 5 will not be described repeatedly below.
  • both the first connecting portion 61 and the second connecting portion 63 are provided with through holes. During the connection process between the first connecting portion 61 and the sampling circuit board 50 and the second connecting portion 63 and the bus bar 30, the connection state can be observed through the through hole.
  • the through holes on the first connecting portion 61 are spaced apart from the first connecting area 61a.
  • the through holes on the second connecting portion 63 are spaced apart from the second connecting area 63a.
  • the first connection area 61 a and the second connection area 63 a are respectively located between the corresponding through hole and the middle portion 62.
  • the edge of the first connecting portion 61 away from the second connecting portion 63 is arc-shaped, and the edge of the second connecting portion 63 away from the first connecting portion 61 is arc-shaped.
  • both FIGS. 8 and 9 can be regarded as a modification of the embodiment shown in FIG. 5. Therefore, the same parts as those in FIG. 5 will not be described repeatedly below.
  • the intermediate portion 62 includes at least two successively distributed connecting sections. At least two successively distributed connecting sections are configured into a wave-shaped structure, which is beneficial to further improve the deformability and cushioning ability of the intermediate portion 62.
  • all the connecting sections are straight sections 621. Two adjacent straight sections 621 are intersected.
  • the angle between two adjacent straight sections 621 ranges from 100° to 160°.
  • the included angle between two adjacent straight sections 621 is 135°.
  • all the connecting segments are arc-shaped segments 622.
  • the smooth transition of two adjacent arc-shaped segments 622 is beneficial to reduce stress concentration points.
  • the arc-shaped section 622 may be a circular arc section.
  • a part of the at least two connecting sections is a straight section 621, and the other part is an arc section 622.
  • the number of connecting sections is six, three of which are straight sections 621, and the remaining three are arc-shaped sections 622. There is a smooth transition between the straight section 621 and the arc section 622.
  • both FIGS. 10 and 11 can be regarded as a modification of the embodiment shown in FIG. 5. Therefore, the same parts as those in FIG. 5 will not be described repeatedly below.
  • the overall size of the middle portion 62 is equal to the size of the first connection area 61a and equal to the size of the second connection area 63a.
  • the sampling foot 60 has a through hole 64.
  • the middle portion 62 is provided with a through hole 64.
  • the cross-sectional area of the part of the middle portion 62 corresponding to the through hole 64 is smaller than the cross-sectional area of the first connection area 61a and smaller than the cross-sectional area of the second connection area 63a, which is beneficial to reduce the overall rigidity of the middle portion 62 and improve The deformability and cushioning capacity of the middle portion 62.
  • the number of through holes 64 is one.
  • the through hole 64 extends between the first connection area 61a and the second connection area 63a.
  • the start point of the through hole 64 is close to the first connection area 61a and has a predetermined distance from the first connection area 61a, and the end point is close to the second connection area 63a and has a predetermined distance from the second connection area 63a.
  • the starting point of the through hole 64 coincides with the edge of the first connection area 61a close to the second connection area 63a
  • the end point coincides with the edge of the second connection area 63a close to the first connection area 61a.
  • the edge of the first connection area 61a close to the second connection area 63a coincides with the edge of the protective film or is located on the side of the protective film close to the bus bar 30, and the second connection area 63a is close to the edge of the first connection area 61a It coincides with the edge of the busbar 30 or is located on the side of the busbar 30 close to the protective film.
  • the through hole 64 partitions the middle portion 62 to form two strip-shaped bodies 62a.
  • the two strip-shaped bodies 62a are arranged at intervals along the arrangement direction X, and the two strip-shaped bodies 62a have the same size in the arrangement direction X and have the same cross-sectional area.
  • the two strip-shaped bodies 62a can be used as a redundant design. When one of the strips 62a is broken due to the tensile force, the other strip 62a can still ensure that the first connecting portion 61 and the second connecting portion 63 remain in a connected state, which improves the connection reliability of the sampling foot 60, and at the same time, due to The cross-sectional area of each strip-shaped body 62a is equal, so the flow area of each strip-shaped body 62a is the same, which is beneficial to improve the sampling consistency among the strip-shaped bodies 62a.
  • two through holes 64 are spaced apart along the arrangement direction X to form three strip-shaped bodies 62 a in the middle portion 62.
  • the three strip-shaped bodies 62a have the same size in the arrangement direction X and have the same cross-sectional area.
  • the through hole 64 penetrates the middle portion 62 in the extending direction of the middle portion 62.
  • the through hole 64 extends from the first connection area 61a to the second connection area 63a, so that the respective starting points of the two through holes 64 coincide with the edge of the first connection area 61a close to the second connection area 63a, and the end point coincides with the second connection area 63a.
  • the edge of the area 63a close to the first connection area 61a overlaps.
  • the number of through holes 64 is not limited to the above-mentioned one or two. According to product requirements, the number of through holes 64 may be three or more, so as to form more than four strip-shaped bodies 62 a in the middle portion 62. The number of strip-shaped bodies 62 a is one more than the number of through holes 64.
  • FIG. 12 can be regarded as a modification of the embodiment shown in FIG. 10. Therefore, the same parts as those in FIG. 10 will not be described repeatedly below, and can be understood with reference to the previous description of the embodiment shown in FIG. 10 In the following, only the differences between the embodiments will be described.
  • the number of through holes 64 in this embodiment is three. Along the direction from the first connecting portion 61 to the second connecting portion 63, three through holes 64 are distributed at intervals. The direction from the first connecting portion 61 to the second connecting portion 63 intersects the arrangement direction X.
  • the three through holes 64 have the same size and shape, and the three through holes 64 are evenly distributed between the first connection area 61a and the second connection area 63a at equal intervals. It is easy to understand that the number of through holes 64 is not limited to the above three. According to product requirements, the number of through holes 64 can be two or more than four.
  • FIGS. 13 to 15 can be regarded as a modification of the embodiment shown in FIG. 5. Therefore, the same parts as those in FIG. 5 will not be described repeatedly below. For details, please refer to the previous embodiment shown in FIG. 5 To understand the description, the following only focuses on the differences between the embodiments. Referring to FIG. 13, along the arrangement direction X, at least part of the middle portion 62 protrudes beyond the first connecting portion 61 and the second connecting portion 63.
  • the size of the intermediate portion 62 is smaller than the size of the first connection area 61a and smaller than the size of the second connection area 63a, so that the overall cross-sectional area of the intermediate portion 62 is smaller than the cross-sectional area of the first connection area 61a and smaller than the first connection area 61a.
  • the intermediate portion 62 includes two successively distributed connecting segments. Two successively distributed connecting sections are constructed into a wave-shaped structure. As shown in FIG. 13, the two connecting sections are both straight sections 621.
  • the angle between two adjacent straight sections 621 ranges from 100° to 160°.
  • the included angle between two adjacent straight sections 621 is 135°.
  • the middle portion 62 includes an arc-shaped section 622 as a whole.
  • the middle portion 62 includes two connecting sections. Both connecting segments are arc-shaped segments 622. Two adjacent arc-shaped segments 622 transition smoothly.
  • one part of the two connecting sections is a straight section 621, and the other part is an arc-shaped section 622. There is a smooth transition between the straight section 621 and the arc section 622. It is easy to understand that the number of connecting segments is not limited to two, and may be three or more.
  • FIGS. 16 to 19 can all be regarded as a modification of the embodiment shown in FIG. 13. Therefore, the same parts as those in FIG. 13 will not be described repeatedly below.
  • the sampling foot 60 has a through hole 64.
  • the middle portion 62 is provided with a through hole 64.
  • the cross-sectional area of the portion of the middle portion 62 corresponding to the through hole 64 is smaller than the cross-sectional area of the first connection region 61 a and smaller than the cross-sectional area of the second connection region 63 a, which is beneficial to reduce the overall rigidity of the middle portion 62.
  • the number of through holes 64 is one.
  • the through hole 64 extends between the first connection area 61a and the second connection area 63a.
  • the start point of the through hole 64 is close to the first connection area 61a and has a predetermined distance from the first connection area 61a, and the end point is close to the second connection area 63a and has a predetermined distance from the second connection area 63a.
  • the starting point of the through hole 64 coincides with the edge of the first connection area 61a close to the second connection area 63a, and the end point coincides with the edge of the second connection area 63a close to the first connection area 61a.
  • the through hole 64 partitions the middle portion 62 to form two strip-shaped bodies 62a.
  • the two strip-shaped bodies 62a are arranged at intervals along the arrangement direction X.
  • the two strip-shaped bodies 62a can be used as a redundant design. When one of the strips 62a breaks due to the tensile force, the other strip 62a can still ensure that the first connecting portion 61 and the second connecting portion 63 remain in a connected state, thereby improving the connection reliability of the sampling foot 60.
  • the middle portion 62 has two straight sections 621.
  • the through hole 64 continuously extends on the two straight sections 621.
  • the middle portion 62 has a bending sharp corner area 621a protruding in the arrangement direction X.
  • the starting point and/or the end point of the through hole 64 and the bending sharp corner area 621a are arranged in a staggered manner, so as to avoid the bending sharp corner area 621a and reduce the stress at the bending sharp corner. Concentration of the corner area 621a leads to the possibility that the middle portion 62 is prone to fracture in the bending sharp corner area 621a.
  • the number of straight sections 621 is not limited to two, and may also be three or more.
  • the middle portion 62 includes an arc-shaped section 622 as a whole.
  • the through hole 64 extends along the extending direction of the intermediate portion 62 so as to be substantially the same as the contour of the intermediate portion 62.
  • the middle portion 62 has two through holes 64.
  • the two through holes 64 are spaced apart along the arrangement direction X to form three strip-shaped bodies 62a at the intermediate portion 62.
  • the three strip-shaped bodies 62a can be used as a redundant design. It is easy to understand that the number of through holes 64 is not limited to the above two. According to product requirements, the number of through holes 64 may be three or more, so as to form more than four strip-shaped bodies 62 a in the middle portion 62.
  • the middle portion 62 includes two straight sections 621.
  • the middle portion 62 may be an arc-shaped section 622 as a whole.
  • the middle portion 62 may also include two arc-shaped segments 622 connected to each other.
  • both FIG. 20 and FIG. 21 can be regarded as a modification of the embodiment shown in FIG. 16. Therefore, the same parts as those in FIG. 16 will not be described repeatedly below.
  • the middle portion 62 includes two straight sections 621.
  • the middle portion 62 is provided with six through holes 64.
  • Each straight section 621 is provided with three through holes 64.
  • the middle portion 62 includes three arc-shaped segments 622 as a whole.
  • the middle portion 62 is provided with four through holes 64.
  • the plurality of through holes 64 are sequentially spaced apart.
  • each through hole 64 is evenly distributed between the first connection area 61a and the second connection area 63a. It is easy to understand that the number of through holes 64 is not limited to the above-mentioned four or six. The number of through holes 64 can be two, three, five, or more than seven according to product requirements.
  • FIG. 22 can be regarded as a modification of the embodiment shown in FIG. 5. Therefore, the same parts as those in FIG. 5 will not be described repeatedly below, and can be understood with reference to the previous description of the embodiment shown in FIG. 5 In the following, only the differences between the embodiments will be described.
  • the first connecting portion 61 and the second connecting portion 63 are staggered.
  • the cross-sectional area of a part of the middle portion 62 is smaller than the cross-sectional area of the first connection area 61a and smaller than the cross-sectional area of the second connection area 63a, so that the rigidity of the middle portion 62 is relatively small.
  • the first connecting portion 61 and the second connecting portion 63 are arranged in a staggered manner, it is beneficial to ensure that the first connecting portion 61 and the second connecting portion 63 have a larger allowable offset in the arrangement direction X, and at the same time, due to the intermediate portion 62 itself It has good deformability and further improves the cushioning capacity of the sampling foot 60.
  • the width of the two ends of the middle portion 62 of this embodiment is greater than the width of the middle area, and the ends and the middle area transition smoothly.
  • both FIGS. 23 and 24 can be regarded as a modification of the embodiment shown in FIG. 22. Therefore, the same parts as those in FIG. 22 will not be described repeatedly below.
  • the connecting section is a straight section 621.
  • the middle portion 62 includes five straight sections 621. Two adjacent straight sections 621 are intersected.
  • the angle between two adjacent straight sections 621 ranges from 100° to 160°.
  • the included angle between two adjacent straight sections 621 is 135°.
  • the connecting section is an arc-shaped section 622.
  • the smooth transition of two adjacent arc-shaped segments 622 is beneficial to reduce stress concentration points.
  • one part of the at least two connecting sections is a straight section 621, and the other part is an arc-shaped section 622. There is a smooth transition between the straight section 621 and the arc section 622.
  • FIGS. 25 to 29 can be regarded as a modification of the embodiment shown in FIG. 22. Therefore, the same parts as those in FIG. 22 will not be described repeatedly below.
  • the sampling foot 60 has a through hole 64.
  • the middle portion 62 is provided with a through hole 64.
  • the cross-sectional area of the portion of the middle portion 62 corresponding to the through hole 64 is smaller than the cross-sectional area of the first connection region 61 a and smaller than the cross-sectional area of the second connection region 63 a, which is beneficial to reduce the overall rigidity of the middle portion 62.
  • the number of through holes 64 is one.
  • the through hole 64 extends between the first connection area 61a and the second connection area 63a.
  • the start point of the through hole 64 is close to the first connection area 61a and has a predetermined distance from the first connection area 61a
  • the end point is close to the second connection area 63a and has a predetermined distance from the second connection area 63a.
  • the middle portion 62 has three straight sections 621.
  • the angle between two adjacent straight sections 621 ranges from 100° to 160°.
  • the included angle between two adjacent straight sections 621 is 135°.
  • the through hole 64 continuously extends on the three straight sections 621.
  • the middle portion 62 has a bending sharp corner area 621a protruding in the arrangement direction X.
  • the starting point and/or the end point of the through hole 64 and the bending sharp corner area 621a are arranged in a staggered manner, so as to avoid the bending sharp corner area 621a and reduce the stress at the bending sharp corner. Concentration of the corner area 621a leads to the possibility that the middle portion 62 is prone to fracture in the bending sharp corner area 621a.
  • the number of straight sections 621 is not limited to three, and may also be four or more.
  • the middle portion 62 has three arc-shaped segments 622.
  • the middle portion 62 has two through holes 64.
  • the two through holes 64 are spaced apart along the arrangement direction X to form three strip-shaped bodies 62 a in the middle portion 62.
  • the three strip-shaped bodies 62a can be used as a redundant design. It is easy to understand that the number of through holes 64 is not limited to the above two. According to product requirements, the number of through holes 64 may be three or more, so as to form more than four strip-shaped bodies 62 a in the middle portion 62.
  • the middle portion 62 has three straight sections 621.
  • the middle portion 62 includes two arc-shaped sections 622 and a straight section 621 arranged between the two arc-shaped sections 622.
  • the smooth transition connection between the arc section 622 and the straight section 621 is beneficial to reduce the stress concentration area.
  • the starting point of the through hole 64 coincides with the edge of the first connection area 61a close to the second connection area 63a, and the end point coincides with the edge of the second connection area 63a close to the first connection area 61a.
  • the middle portion 62 includes two arc-shaped segments 622. The two arc-shaped segments 622 are smoothly connected.
  • both FIGS. 30 and 31 can be regarded as a modification of the embodiment shown in FIG. 25. Therefore, the same parts as those in FIG. 25 will not be described repeatedly below.
  • the middle portion 62 includes three straight sections 621.
  • the middle portion 62 is provided with four through holes 64.
  • the middle portion 62 includes two arc-shaped sections 622 and a straight section 621 arranged between the two arc-shaped sections 622.
  • the middle portion 62 is provided with six through holes 64.
  • each through hole 64 is sequentially spaced apart.
  • the direction from the first connecting portion 61 to the second connecting portion 63 intersects the arrangement direction X.
  • the size and shape of each through hole 64 are the same, and each through hole 64 is evenly distributed between the first connection area 61a and the second connection area 63a.
  • the shape of the through hole 64 is circular. It is easy to understand that the number of through holes 64 is not limited to the above-mentioned four or six. The number of through holes 64 can be two, three, five, or more than seven according to product requirements.
  • the material of the sampling leg 60 in the foregoing embodiment may be conductive metal such as nickel or copper.
  • the sampling foot 60 is a nickel sheet.
  • the sampling foot 60 and the sampling line are integrally formed.
  • the first connecting portion 61 of the sampling foot 60 is integrally formed with the sampling line.
  • the material of the sampling line and the sampling foot 60 are both copper.
  • the sampling leg 60 of the embodiment of the present application is optimized for its own structure, so that the middle portion 62 of the sampling leg 60 has better deformability and cushioning ability relative to the first connecting portion 61 and the second connecting portion 63, so that there is It is beneficial to reduce the possibility of the sampling foot 60 bearing the tensile force due to the changes in the positions of the first connecting portion 61 and the second connecting portion 63 and causing the sampling leg 60 to break due to excessive tensile force, and to ensure that the sampling assembly 40 is normal Perform collection work.
  • the embodiment of the present application also provides a vehicle.
  • the vehicle includes a power source and the battery module 10 of the above-mentioned embodiment.
  • the power source is used to provide driving force for the vehicle.
  • a plurality of battery modules 10 may be installed inside the vehicle.
  • the battery module 10 can provide electrical energy to the power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种采样组件、连接组件、电池模组以及车辆。采样组件,用于电池模组,电池模组包括汇流片,采样组件包括:采样电路板,采样电路板具有预定长度和宽度;采样支脚,采样支脚包括第一连接部、中间部和第二连接部,第一连接部与采样电路板相连接,第二连接部用于与汇流片相连接,第一连接部具有与中间部相连接的第一连接区,第二连接部具有与中间部相连接的第二连接区,至少部分的中间部的横截面面积小于第一连接区的横截面面积并且小于第二连接区的横截面面积。本申请实施例的采样组件能够降低采样支脚承载拉伸力而出现断裂的可能性,提高采样组件的工作可靠性。

Description

采样组件、连接组件、电池模组以及车辆
相关申请的交叉引用
本申请要求享有于2019年09月23日提交的名称为“采样组件、连接组件、电池模组以及车辆”的中国专利申请201921582237.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种采样组件、连接组件、电池模组以及车辆。
背景技术
电池模组包括多个并排设置的二次电池。电池模组在使用过程中,需要对电池模组所包括的每个二次电池进行电压采集。目前,通常使用电路板组件进行采压工作,因此电路板组件的可靠性决定了二次电池采集电压的可靠性。电路板组件通过连接片(例如镍片)与连接二次电池的汇流片相连接。然而,二次电池在使用过程中会发生膨胀,从而存在电路板组件和汇流片共同拉伸连接片而导致连接片发生断裂的可能性,进而使得电路板组件无法正常执行采集工作。
发明内容
本申请实施例提供一种采样组件、连接组件、电池模组以及车辆。采样组件能够降低采样支脚承载拉伸力而出现断裂的可能性,提高采样组件的工作可靠性。
一方面,本申请实施例提出了一种采样组件,用于电池模组。电池模组包括汇流片。采样组件包括采样电路板以及采样支脚。采样电路板具有预定长度和宽度。采样支脚包括第一连接部、中间部和第二连接部。第一 连接部与采样电路板相连接。第二连接部用于与汇流片相连接。第一连接部具有与中间部相连接的第一连接区。第二连接部具有与中间部相连接的第二连接区。至少部分的中间部的横截面面积小于第一连接区的横截面面积并且小于第二连接区的横截面面积。
根据本申请实施例的一个方面,中间部设有贯通孔,中间部上与贯通孔相对应的部分的横截面面积小于第一连接区的横截面面积并且小于第二连接区的横截面面积。
根据本申请实施例的一个方面,两个以上的贯通孔沿采样电路板的宽度方向间隔分布。
根据本申请实施例的一个方面,第一连接部、中间部以及第二连接部沿采样电路板的宽度方向相继分布,贯通孔的数量为一个,以在中间部分隔形成两个条形体;或者,两个以上的贯通孔沿采样电路板的长度方向间隔分布,以在中间部分隔形成多个条形体。
根据本申请实施例的一个方面,各个条形体的横截面面积相等。
根据本申请实施例的一个方面,贯通孔沿宽度方向贯穿中间部,贯通孔从第一连接区起始延伸至第二连接区。
根据本申请实施例的一个方面,中间部具有朝采样电路板的长度方向凸出的折弯尖角区,沿采样电路板的宽度方向,贯通孔的起点和/或终点与折弯尖角区错位设置。
根据本申请实施例的一个方面,沿采样电路板的长度方向,中间部的尺寸小于第一连接区的尺寸并且小于第二连接区的尺寸。
根据本申请实施例的一个方面,沿采样电路板的长度方向,第一连接部和第二连接部对齐设置;或者,沿采样电路板的长度方向,第一连接部和第二连接部错位设置。
根据本申请实施例的一个方面,沿采样电路板的长度方向,至少部分的中间部凸出第一连接部和第二连接部。
根据本申请实施例的一个方面,中间部包括至少两个相继分布的连接段,至少两个相继分布的连接段构造成波浪形结构。
根据本申请实施例的一个方面,所有连接段为平直段或弧形段,或 者,至少两个连接段中一部分的连接段为平直段,另一部分的连接段为弧形段。
根据本申请实施例的一个方面,采样支脚为片状结构,第一连接部的厚度、中间部的厚度以及第二连接部的厚度相等。
根据本申请实施例的一个方面,采样电路板包括基板、采样线和保护膜,采样线铺设于基板,采样支脚的第一连接部与采样线相连,且至少部分的第一连接部被保护膜覆盖。
根据本申请实施例的采样支脚,在第一连接部和第二连接部彼此发生位置变动时,会导致采样支脚自身承载拉伸力。由于采样支脚的中间部具有变形能力和缓冲能力,因此中间部可以缓冲上述的拉伸力,从而减小中间部和第一连接区的连接处以及中间部和第二连接区的连接处所承载的拉伸应力,降低中间部和第一连接区和/或中间部和第二连接区发生断裂的可能性,有利于提高采样组件的工作可靠性和稳定性,保证采样组件正常执行采集工作。
又一方面,本申请实施例提出了一种连接组件,用于电池模组。连接组件包括:
汇流片、绝缘件以及如上述实施例的采样组件。汇流片和采样组件通过绝缘件连接固定。采样支脚从采样电路板朝向汇流片延伸并且第二连接部与汇流片相连接。
另一方面,本申请实施例提出了一种电池模组,其包括二次电池、汇流片以及如上述实施例的采样组件。两个以上的二次电池沿排列方向并排设置。汇流片设置于二次电池的顶部,并且电连接至少两个二次电池。采样电路板沿排列方向延伸并呈条形结构。采样支脚从采样电路板朝向汇流片延伸并且第二连接部与汇流片相连接。
根据本申请实施例的另一方面,二次电池包括电极组件,电极组件具有交替分布的宽面和窄面,宽面与排列方向相交。
再一方面,本申请实施例提出了一种车辆,其包括动力源以及如上述实施例的电池模组。动力源用于为车辆提供驱动力。如上述实施例的电池模组被配置为向动力源提供电能。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一实施例的电池模组的结构示意图;
图2是图1所示实施例的电池模组的俯视结构示意图;
图3是本申请一实施例的连接组件的结构示意图;
图4是本申请一实施例的二次电池的分解结构示意图;
图5是本申请一实施例的采样支脚的结构示意图;
图6是本申请又一实施例的采样支脚的结构示意图;
图7是本申请又一实施例的采样支脚的结构示意图;
图8是本申请又一实施例的采样支脚的结构示意图;
图9是本申请又一实施例的采样支脚的结构示意图;
图10是本申请又一实施例的采样支脚的结构示意图;
图11是本申请又一实施例的采样支脚的结构示意图;
图12是本申请又一实施例的采样支脚的结构示意图;
图13是本申请又一实施例的采样支脚的结构示意图;
图14是本申请又一实施例的采样支脚的结构示意图;
图15是本申请又一实施例的采样支脚的结构示意图;
图16是本申请又一实施例的采样支脚的结构示意图;
图17是本申请又一实施例的采样支脚的结构示意图;
图18是本申请又一实施例的采样支脚的结构示意图;
图19是本申请又一实施例的采样支脚的结构示意图;
图20是本申请又一实施例的采样支脚的结构示意图;
图21是本申请又一实施例的采样支脚的结构示意图;
图22是本申请又一实施例的采样支脚的结构示意图;
图23是本申请又一实施例的采样支脚的结构示意图;
图24是本申请又一实施例的采样支脚的结构示意图;
图25是本申请又一实施例的采样支脚的结构示意图;
图26是本申请又一实施例的采样支脚的结构示意图;
图27是本申请又一实施例的采样支脚的结构示意图;
图28是本申请又一实施例的采样支脚的结构示意图;
图29是本申请又一实施例的采样支脚的结构示意图;
图30是本申请又一实施例的采样支脚的结构示意图;
图31是本申请又一实施例的采样支脚的结构示意图;
图32是本申请又一实施例的电池模组的俯视结构示意图。
在附图中,附图未必按照实际的比例绘制。
标记说明:
10、电池模组;20、二次电池;21、电极组件;21a、宽面;21b、窄面;30、汇流片;40、采样组件;50、采样电路板;60、采样支脚;61、第一连接部;61a、第一连接区;62、中间部;62a、条形体;621、平直段;621a、折弯尖角区;622、弧形段;63、第二连接部;63a、第二连接区;64、贯通孔;70、连接组件;80、绝缘件;X、排列方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解 上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图32对本申请实施例进行描述。
参见图1至图3所示,本申请实施例的电池模组10包括二次电池20以及与二次电池20相连接的连接组件70。连接组件70包括汇流片30、绝缘件80以及采样组件40。采样组件40包括采样电路板50与采样支脚60。汇流片30和采样组件40通过绝缘件80连接固定。在一个示例中,连接组件70还包括卡扣部件或粘接部件。采样组件40和绝缘件80通过卡扣部件或粘接部件连接固定。在另一个示例中,绝缘件80为片状结构,采样电路板60和绝缘件80热压连接固定。可选地,绝缘件80是线束隔离板。两个以上的二次电池20沿排列方向X并排设置。排列方向X与二次电池20的宽度方向相同。汇流片30设置于二次电池20的顶部,并且电连接至少两个二次电池20,以使被一个汇流片30连接的多个二次电池20相互串联或并联。
采样电路板50为具有预定的长度和宽度的条状结构。采样电路板50设置于二次电池20的顶部。采样电路板50的长度方向与排列方向X相同。采样支脚60沿采样电路板50的宽度方向延伸。采样电路板50的宽度方向与排列方向X相交。采样支脚60包括第一连接部61、中间部62和第二连接部63。第一连接部61与采样电路板50相连接,而第二连接部63与汇流片30相连接。可选地,第一连接部61与采样电路板50焊接连接,而第二连接部63与汇流片30焊接连接。第一连接部61具有与中间部62相连接的第一连接区61a。第二连接部63具有与中间部62相连接的第二连接区63a。至少部分的中间部62的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积,从而中间部62整体的刚度可以小于第一连接区61a和第二连接区63a,使得中间部62整体具有相对较好的变形能力和缓冲能力。
本申请实施例的采样支脚60,在第一连接部61和第二连接部63彼此发生位置变动时,会导致采样支脚60自身承载拉伸力。由于采样支脚60的中间部62具有变形能力和缓冲能力,因此中间部62可以缓冲上述的拉 伸力,从而减小中间部62和第一连接区61a的连接处以及中间部62和第二连接区63a的连接处所承载的拉伸应力,降低中间部62和第一连接区61a和/或中间部62和第二连接区63a发生断裂的可能性,有利于提高采样组件40的工作可靠性和稳定性,保证采样组件40正常执行采集工作。包括本申请实施例的采样组件40的连接组件70可以应用于电池模组10。本申请实施例的电池模组10在使用过程中,二次电池20会发生膨胀变形或振动变形,从而导致二次电池20出现位置变动,使得二次电池20会带动采样电路板50移动,进而导致汇流片30和采样电路板50共同对采样支脚60施加拉伸力,而中间部62可以缓冲该拉伸力,降低因中间部62和第一连接区61a和/或中间部62和第二连接区63a出现断裂而导致采集功能失效的可能性,从而有利于提升电池模组10的使用安全性。
参见图4所示,二次电池20包括壳体以及设置于壳体内的电极组件21。电极组件21具有交替分布的宽面21a和窄面21b,其中,宽面21a与排列方向X相交。在二次电池20使用过程中,电极组件21会发生膨胀,从而引起壳体发生膨胀,使得二次电池20整体在排列方向X上的位置出现变动。电极组件21的宽面21a的膨胀程度大于窄面21b的膨胀程度,因此沿排列方向X,电极组件21的膨胀变形量较大,从而使得汇流片30和采样电路板50共同对采样支脚60施加拉伸力较大。
在一个实施例中,参见图5所示,沿排列方向X,第一连接部61和第二连接部63对齐设置。沿排列方向X,中间部62的尺寸小于第一连接区61a的尺寸并且小于第二连接区63a的尺寸,从而中间部62整体的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积。本实施例中,第一连接部61和第二连接部63整体呈矩形结构。第一连接区61a和第二连接区63a为在排列方向X上连续延伸的矩形结构。中间部62在第一连接区61a和第二连接区63a之间平直延伸。在排列方向X上,中间部62与第一连接区61a的中间区域以及第二连接区63a的中间区域相连接。在二次电池20发生变形时,在排列方向X上,第一连接区61a和第二连接区63a的相对位置会发生变化。由于中间部62刚度相对偏小,因此中间部62自身会存在变形以缓冲自身所承载的拉伸力, 以减小中间部62和第一连接区61a的连接处以及中间部62和第二连接区63a的连接处所承载的拉伸应力,降低中间部62和第一连接区61a以及中间部62和第二连接区63a发生断裂的可能性。在一个示例中,采样支脚60为片状结构。第一连接部61的厚度、中间部62的厚度以及第二连接部63的厚度相等。在一个示例中,采样电路板50包括基板、采样线和保护膜。采样线铺设于基板,并且保护膜覆盖采样线以保护采样线。保护膜覆盖整个基板。保护膜为绝缘结构件。采样支脚60的第一连接部61与采样线相连,且至少部分的第一连接部61被保护膜覆盖。可选地,采样支脚60的第一连接部61、中间部62以及第二连接部63为一体成型结构。
在一个实施例中,图6和图7均可以看作图5所示实施例的变型,因此,与图5相同的部分以下不再重复描述,具体可以参照前面对图5所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。本实施例中,参见图6所示,第一连接部61和第二连接部63上均设置有通孔。在第一连接部61和采样电路板50以及第二连接部63与汇流片30连接过程中,可以通过该通孔观察连接状态。本实施例中,第一连接部61上的通孔与第一连接区61a间隔设置。第二连接部63上的通孔与第二连接区63a间隔设置。第一连接区61a和第二连接区63a各自位于对应的通孔和中间部62之间。在一个示例中,参见图7所示,第一连接部61远离第二连接部63的边缘为圆弧形,而第二连接部63远离第一连接部61的边缘为圆弧形。
在一个实施例中,图8和图9均可以看作图5所示实施例的变型,因此,与图5相同的部分以下不再重复描述,具体可以参照前面对图5所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。本实施例中,中间部62包括至少两个相继分布的连接段。至少两个相继分布的连接段构造成波浪形结构,有利于进一步提高中间部62的变形能力和缓冲能力。在一个示例中,参见图8所示,所有的连接段为平直段621。相邻两个平直段621相交设置。可选地,相邻两个平直段621的夹角范围为100°至160°。优选地,相邻两个平直段621的夹角为135°。在另一个示例中,参见图9所示,所有的连接段为弧形段622。相邻两个弧形段 622光滑过渡,有利于减少应力集中点。优选地,弧形段622可以是圆弧段。另一个示例中,至少两个连接段中一部分为平直段621,另一部分为弧形段622。例如,连接段的数量为六个,其中三个为平直段621,其余三个为弧形段622。平直段621和弧形段622之间光滑过渡。
在一个实施例中,图10和图11均可以看作图5所示实施例的变型,因此,与图5相同的部分以下不再重复描述,具体可以参照前面对图5所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图10所示,沿排列方向X,中间部62的整体尺寸等于第一连接区61a的尺寸并且等于第二连接区63a的尺寸。采样支脚60具有贯通孔64。中间部62设有贯通孔64。中间部62上与贯通孔64相对应的部分的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积,有利于减小中间部62的整体刚度,提高中间部62的变形能力和缓冲能力。本实施例中,贯通孔64的数量为一个。贯通孔64在第一连接区61a和第二连接区63a之间延伸。贯通孔64的起点靠近第一连接区61a并与第一连接区61a具有预定距离,而终点靠近第二连接区63a并与第二连接区63a具有预定距离。可选地,贯通孔64的起点与第一连接区61a靠近第二连接区63a的边缘重合,而终点与第二连接区63a靠近第一连接区61a的边缘重合。在一个示例中,第一连接区61a靠近第二连接区63a的边缘与保护膜的边缘重合或位于保护膜靠近汇流片30的一侧,而第二连接区63a靠近第一连接区61a的边缘与汇流片30的边缘重合或位于汇流片30靠近保护膜的一侧。在一个示例中,参见图10所示,贯通孔64将中间部62分隔形成两个条形体62a。两个条形体62a沿排列方向X间隔设置,并且两个条形体62a在排列方向X上的尺寸相等并且各自的横截面面积相等。两个条形体62a可以作为冗余设计。当其中一个条形体62a因拉伸力作用而发生断裂时,另一个条形体62a仍然可以保证第一连接部61和第二连接部63保持连通状态,提高采样支脚60的连接可靠性,同时由于各个条形体62a的横截面面积相等,因此各个条形体62a的过流面积相同,有利于提高各个条形体62a之间的采样一致性。在另一个示例中,参见图11所示,两个贯通孔64沿排列方向X间隔分布,以在中间部62分 隔形成三个条形体62a。三个条形体62a在排列方向X上的尺寸相等并且各自的横截面面积相等。贯通孔64沿中间部62的延伸方向贯穿中间部62。贯通孔64从第一连接区61a起始延伸至第二连接区63a,从而两个贯通孔64各自的起点与第一连接区61a靠近第二连接区63a的边缘重合,而终点与第二连接区63a靠近第一连接区61a的边缘重合。容易理解地,贯通孔64的数量并不局限于上述的一个或两个。可以根据产品需求,贯通孔64的数量可以是三个以上,以在中间部62分隔形成四个以上的条形体62a。条形体62a的数量比贯通孔64的数量多一个。
在一个实施例中,图12可以看作图10所示实施例的变型,因此,与图10相同的部分以下不再重复描述,具体可以参照前面对图10所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图12所示,本实施例的贯通孔64数量为三个。沿第一连接部61至第二连接部63的方向,三个贯通孔64间隔分布。第一连接部61至第二连接部63的方向与排列方向X相交。优选地,三个贯通孔64的尺寸和形状相同,并且三个贯通孔64等间距地均匀分布于第一连接区61a和第二连接区63a之间。容易理解地,贯通孔64的数量并不局限于上述的三个。可以根据产品需求,贯通孔64的数量可以是两个或四个以上。
在一个实施例中,图13至图15均可以看作图5所示实施例的变型,因此,与图5相同的部分以下不再重复描述,具体可以参照前面对图5所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图13所示,沿排列方向X,至少部分的中间部62凸出超过第一连接部61和第二连接部63。沿排列方向X,中间部62的尺寸小于第一连接区61a的尺寸并且小于第二连接区63a的尺寸,从而中间部62整体的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积。在一个示例中,中间部62包括两个相继分布的连接段。两个相继分布的连接段构造成波浪形结构。参见图13所示,两个连接段均为平直段621。可选地,相邻两个平直段621的夹角范围为100°至160°。优选地,相邻两个平直段621的夹角为135°。在另一个示例中,参见图14所示,中间部62整体包括一个弧形段622。在另一个示例中,参见图15所 示,中间部62包括两个连接段。两个连接段均为弧形段622。相邻两个弧形段622光滑过渡。在另一个示例中,两个连接段中一部分为平直段621,另一部分为弧形段622。平直段621和弧形段622之间光滑过渡。容易理解地,连接段的数量不限于两个,也可以是三个以上。
在一个实施例中,图16至图19均可以看作图13所示实施例的变型,因此,与图13相同的部分以下不再重复描述,具体可以参照前面对图13所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图16所示,采样支脚60具有贯通孔64。中间部62设有贯通孔64。中间部62上与贯通孔64相对应的部分的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积,有利于减小中间部62的整体刚度。本实施例中,贯通孔64的数量为一个。贯通孔64在第一连接区61a和第二连接区63a之间延伸。贯通孔64的起点靠近第一连接区61a并与第一连接区61a具有预定距离,而终点靠近第二连接区63a并与第二连接区63a具有预定距离。可选地,贯通孔64的起点与第一连接区61a靠近第二连接区63a的边缘重合,而终点与第二连接区63a靠近第一连接区61a的边缘重合。贯通孔64将中间部62分隔形成两个条形体62a。两个条形体62a沿排列方向X间隔设置。两个条形体62a可以作为冗余设计。当其中一个条形体62a因拉伸力作用而发生断裂时,另一个条形体62a仍然可以保证第一连接部61和第二连接部63保持连通状态,提高采样支脚60的连接可靠性。本实施例中,中间部62具有两个平直段621。贯通孔64在两个平直段621上连续延伸。中间部62具有朝排列方向X凸出的折弯尖角区621a。沿第一连接部61至第二连接部63的方向,贯通孔64的起点和/或终点与折弯尖角区621a错位设置,从而避开折弯尖角区621a,降低应力在折弯尖角区621a出现集中而导致中间部62在折弯尖角区621a易于发生断裂的可能性。可选地,平直段621的数量不局限于两个,也可以是三个以上。在一个示例中,参见图17所示,中间部62整体包括一个弧形段622。贯通孔64沿中间部62的延伸方向延伸,从而与中间部62的轮廓大致相同。在另一个示例中,参见图18和图19所示,中间部62具有两个贯通孔64。两个贯通孔64沿排列方向X间隔分 布,以在中间部62分隔形成三个条形体62a。三个条形体62a可以作为冗余设计。容易理解地,贯通孔64的数量并不局限于上述的两个。可以根据产品需求,贯通孔64的数量可以是三个以上,以在中间部62分隔形成四个以上的条形体62a。参见图18所示,中间部62包括两个平直段621。参见图19所示,中间部62整体可以为一个弧形段622。可选地,中间部62也可以包括两个相互连接的弧形段622。
在一个实施例中,图20和图21均可以看作图16所示实施例的变型,因此,与图16相同的部分以下不再重复描述,具体可以参照前面对图16所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图20所示,中间部62包括两个平直段621。中间部62设置有六个贯通孔64。每个平直段621上设置三个贯通孔64。参见图21所示,中间部62整体包括三个弧形段622。中间部62设置有四个贯通孔64。沿第一连接部61至第二连接部63的方向,上述多个贯通孔64依次间隔分布。第一连接部61至第二连接部63的方向与排列方向X相交。优选地,各个贯通孔64的尺寸和形状相同,并且各个贯通孔64均匀地分布于第一连接区61a和第二连接区63a之间。容易理解地,贯通孔64的数量并不局限于上述的四个或六个。可以根据产品需求,贯通孔64的数量可以是两个、三个、五个或七个以上。
在一个实施例中,图22可以看作图5所示实施例的变型,因此,与图5相同的部分以下不再重复描述,具体可以参照前面对图5所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图22所示,沿排列方向X,第一连接部61和第二连接部63错位设置。中间部62的一部分的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积,使得中间部62刚度相对偏小。由于第一连接部61和第二连接部63错位设置,从而有利于保证第一连接部61和第二连接部63在排列方向X上具有较大的允许偏移量,同时由于中间部62自身具有良好的变形能力,进一步提高了采样支脚60的缓冲能力。在排列方向X上,本实施例的中间部62的两个端部的宽度大于中间区域的宽度,并且端部与中间区域光滑过渡。
在一个实施例中,图23和图24均可以看作图22所示实施例的变型,因此,与图22相同的部分以下不再重复描述,具体可以参照前面对图22所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图23所示,中间段具有两个以上的相继分布的连接段。连接段为平直段621。中间部62包括五个平直段621。相邻两个平直段621相交设置。可选地,相邻两个平直段621的夹角范围为100°至160°。优选地,相邻两个平直段621的夹角为135°。参见图24所示,连接段为弧形段622。相邻两个弧形段622光滑过渡,有利于减少应力集中点。在另一个示例中,至少两个连接段中一部分为平直段621,另一部分为弧形段622。平直段621和弧形段622之间光滑过渡。
在一个实施例中,图25至图29均可以看作图22所示实施例的变型,因此,与图22相同的部分以下不再重复描述,具体可以参照前面对图22所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图25所示,采样支脚60具有贯通孔64。中间部62设有贯通孔64。中间部62上与贯通孔64相对应的部分的横截面面积小于第一连接区61a的横截面面积并且小于第二连接区63a的横截面面积,有利于减小中间部62的整体刚度。本实施例中,贯通孔64的数量为一个。贯通孔64在第一连接区61a和第二连接区63a之间延伸。贯通孔64的起点靠近第一连接区61a并与第一连接区61a具有预定距离,而终点靠近第二连接区63a并与第二连接区63a具有预定距离。在一个示例中,参见图25所示,中间部62具有三个平直段621。可选地,相邻两个平直段621的夹角范围为100°至160°。优选地,相邻两个平直段621的夹角为135°。贯通孔64在三个平直段621上连续延伸。中间部62具有朝排列方向X凸出的折弯尖角区621a。沿第一连接部61至第二连接部63的方向,贯通孔64的起点和/或终点与折弯尖角区621a错位设置,从而避开折弯尖角区621a,降低应力在折弯尖角区621a出现集中而导致中间部62在折弯尖角区621a易于发生断裂的可能性。可选地,平直段621的数量不局限于三个,也可以是四个以上。在另一个示例中,参见图26所示,中间部62具有三个弧形段622。相邻两个弧形段622光滑过渡连接。在另一个示例中,参见图 27至图29所示,中间部62具有两个贯通孔64。两个贯通孔64沿排列方向X间隔分布,以在中间部62分隔形成三个条形体62a。三个条形体62a可以作为冗余设计。容易理解地,贯通孔64的数量并不局限于上述的两个。可以根据产品需求,贯通孔64的数量可以是三个以上,以在中间部62分隔形成四个以上的条形体62a。参见图27和图28所示,中间部62具有三个平直段621。贯通孔64的起点与第一连接区61a靠近第二连接区63a的边缘重合,而终点与第二连接区63a靠近第一连接区61a的边缘重合。参见图29所示,中间部62包括两个弧形段622以及设置于两个弧形段622之间的平直段621。弧形段622和平直段621之间光滑过渡连接,有利于减少应力集中区域。贯通孔64的起点与第一连接区61a靠近第二连接区63a的边缘重合,而终点与第二连接区63a靠近第一连接区61a的边缘重合。在其它示例中,中间部62包括两个弧形段622。两个弧形段622光滑过渡连接。
在一个实施例中,图30和图31均可以看作图25所示实施例的变型,因此,与图25相同的部分以下不再重复描述,具体可以参照前面对图25所示实施例的描述予以理解,接下来仅重点描述各实施例的不同之处。参见图30所示,中间部62包括三个平直段621。中间部62设置有四个贯通孔64。参见图31所示,中间部62包括两个弧形段622以及设置于两个弧形段622之间的平直段621。中间部62设置有六个贯通孔64。沿第一连接部61至第二连接部63的方向,上述各个贯通孔64依次间隔分布。第一连接部61至第二连接部63的方向与排列方向X相交。优选地,各个贯通孔64的尺寸和形状相同,并且各个贯通孔64均匀地分布于第一连接区61a和第二连接区63a之间。贯通孔64的形状为圆形。容易理解地,贯通孔64的数量并不局限于上述的四个或六个。可以根据产品需求,贯通孔64的数量可以是两个、三个、五个或七个以上。
上述实施例的采样支脚60的材料可以是镍或铜等可导电金属。优选地,采样支脚60为镍片。
在一个实施例中,参见图32所示,采样支脚60和采样线为一体成型结构。采样支脚60的第一连接部61与采样线一体成型。采样线和采样支 脚60的材料均为铜。
本申请实施例的采样支脚60,对其自身结构进行优化设计,使得采样支脚60的中间部62相对于第一连接部61以及第二连接部63具有较好的变形能力和缓冲能力,从而有利于降低因第一连接部61和第二连接部63位置发生变动而使得采样支脚60承载拉伸力并导致采样支脚60因承载过大拉伸力而出现断裂的可能性,保证采样组件40正常执行采集工作。
本申请实施例还提供一种车辆。车辆包括动力源以及上述实施例的电池模组10。动力源用于为车辆提供驱动力。多个电池模组10可以安装于车辆内部。电池模组10能够向动力源提供电能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种采样组件,用于电池模组,所述电池模组包括汇流片,其中,所述采样组件包括:
    采样电路板,所述采样电路板具有预定长度和宽度;
    采样支脚,所述采样支脚包括第一连接部、中间部和第二连接部,所述第一连接部与所述采样电路板相连接,所述第二连接部用于与所述汇流片相连接,所述第一连接部具有与所述中间部相连接的第一连接区,所述第二连接部具有与所述中间部相连接的第二连接区,至少部分的所述中间部的横截面面积小于所述第一连接区的横截面面积并且小于所述第二连接区的横截面面积。
  2. 根据权利要求1所述的采样组件,其中,所述中间部设有贯通孔,所述中间部上与所述贯通孔相对应的部分的横截面面积小于所述第一连接区的横截面面积并且小于所述第二连接区的横截面面积。
  3. 根据权利要求2所述的采样组件,其中,两个以上的所述贯通孔沿所述采样电路板的宽度方向间隔分布。
  4. 根据权利要求2所述的采样组件,其中,所述第一连接部、所述中间部以及所述第二连接部沿所述采样电路板的宽度方向相继分布,所述贯通孔的数量为一个,以在所述中间部分隔形成两个条形体;或者,两个以上的所述贯通孔沿所述采样电路板的长度方向间隔分布,以在所述中间部分隔形成多个条形体。
  5. 根据权利要求4所述的采样组件,其中,各个所述条形体的横截面面积相等。
  6. 根据权利要求4所述的采样组件,其中,所述贯通孔沿所述宽度方向贯穿所述中间部,所述贯通孔从所述第一连接区起始延伸至所述第二连接区。
  7. 根据权利要求2所述的采样组件,其中,所述中间部具有朝所述采样电路板的长度方向凸出的折弯尖角区,沿所述采样电路板的宽度方向,所述贯通孔的起点和/或终点与所述折弯尖角区错位设置。
  8. 根据权利要求1所述的采样组件,其中,沿所述采样电路板的长度方向,所述中间部的尺寸小于所述第一连接区的尺寸并且小于所述第二连接区的尺寸。
  9. 根据权利要求1所述的采样组件,其中,沿所述采样电路板的长度方向,所述第一连接部和所述第二连接部对齐设置;或者,沿所述采样电路板的长度方向,所述第一连接部和所述第二连接部错位设置。
  10. 根据权利要求1所述的采样组件,其中,沿所述采样电路板的长度方向,至少部分的所述中间部凸出所述第一连接部和所述第二连接部。
  11. 根据权利要求1所述的采样组件,其中,所述中间部包括至少两个相继分布的连接段,至少两个相继分布的所述连接段构造成波浪形结构。
  12. 根据权利要求11所述的采样组件,其中,所有所述连接段为平直段或弧形段,或者,至少两个所述连接段中一部分的所述连接段为平直段,另一部分的所述连接段为弧形段。
  13. 根据权利要求1所述的采样组件,其中,所述采样支脚为片状结构,所述第一连接部的厚度、所述中间部的厚度以及所述第二连接部的厚度相等。
  14. 根据权利要求1所述的采样组件,其中,所述采样电路板包括基板、采样线和保护膜,所述采样线铺设于所述基板,所述采样支脚的所述第一连接部与所述采样线相连,且至少部分的所述第一连接部被所述保护膜覆盖。
  15. 一种连接组件,用于电池模组,其中,包括:
    汇流片、绝缘件以及如权利要求1至14任一项所述的采样组件,
    所述汇流片和所述采样组件通过所述绝缘件连接固定,所述采样支脚从所述采样电路板朝向所述汇流片延伸并且所述第二连接部与所述汇流片相连接。
  16. 一种电池模组,其中,包括:
    二次电池,两个以上的所述二次电池沿排列方向并排设置;
    汇流片,设置于所述二次电池的顶部,并且电连接至少两个所述二次 电池;
    如权利要求如权利要求1至14任一项所述的采样组件,所述采样电路板沿所述排列方向延伸并呈条形结构,所述采样支脚从所述采样电路板朝向所述汇流片延伸并且所述第二连接部与所述汇流片相连接。
  17. 根据权利要求16所述的电池模组,其中,所述二次电池包括电极组件,所述电极组件具有交替分布的宽面和窄面,所述宽面与所述排列方向相交。
  18. 一种车辆,其中,包括:
    动力源,所述动力源用于为所述车辆提供驱动力;
    被配置为向所述动力源提供电能的如权利要求16或17所述的电池模组。
PCT/CN2020/102613 2019-09-23 2020-07-17 采样组件、连接组件、电池模组以及车辆 WO2021057211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20867622.1A EP3951996A4 (en) 2019-09-23 2020-07-17 Sampling assembly, connecting assembly, battery module and vehicle
US17/546,075 US20220102814A1 (en) 2019-09-23 2021-12-09 Sampling assembly, connection assembly, battery module and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921582237.X 2019-09-23
CN201921582237.XU CN210467964U (zh) 2019-09-23 2019-09-23 采样组件、连接组件、电池模组以及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/546,075 Continuation US20220102814A1 (en) 2019-09-23 2021-12-09 Sampling assembly, connection assembly, battery module and vehicle

Publications (1)

Publication Number Publication Date
WO2021057211A1 true WO2021057211A1 (zh) 2021-04-01

Family

ID=70434571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102613 WO2021057211A1 (zh) 2019-09-23 2020-07-17 采样组件、连接组件、电池模组以及车辆

Country Status (4)

Country Link
US (1) US20220102814A1 (zh)
EP (1) EP3951996A4 (zh)
CN (1) CN210467964U (zh)
WO (1) WO2021057211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142037A1 (en) * 2021-07-15 2023-03-01 Yazaki Corporation Busbar module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210467964U (zh) * 2019-09-23 2020-05-05 宁德时代新能源科技股份有限公司 采样组件、连接组件、电池模组以及车辆
CN212161961U (zh) * 2020-05-26 2020-12-15 宁德时代新能源科技股份有限公司 信号传输端子、采样装置、电池模组以及装置
CN112271368A (zh) * 2020-10-12 2021-01-26 东风时代(武汉)电池系统有限公司 高能量密度动力电池包集成结构及新能源汽车
KR20230174572A (ko) * 2022-06-21 2023-12-28 삼성에스디아이 주식회사 배터리 팩

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024943A1 (en) * 1995-02-06 1996-08-15 Motorola Inc. Battery pack having a ruggedized thermal fuse
CN208368601U (zh) * 2018-06-28 2019-01-11 江苏天钧精密技术有限公司 一种fpc一体化线排
JP2019036386A (ja) * 2017-08-10 2019-03-07 株式会社豊田自動織機 電池パック
CN209249738U (zh) * 2018-12-20 2019-08-13 湖南金杯新能源发展有限公司 一种电压采集片
CN209249637U (zh) * 2018-12-26 2019-08-13 宁德时代新能源科技股份有限公司 电池模组
CN210142696U (zh) * 2019-08-21 2020-03-13 孚能科技(赣州)股份有限公司 电压采集片以及动力电池包
CN210467964U (zh) * 2019-09-23 2020-05-05 宁德时代新能源科技股份有限公司 采样组件、连接组件、电池模组以及车辆
CN210467965U (zh) * 2019-09-23 2020-05-05 宁德时代新能源科技股份有限公司 电池模组、电池包以及车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164489B2 (ja) * 2014-01-21 2017-07-19 株式会社オートネットワーク技術研究所 配線モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024943A1 (en) * 1995-02-06 1996-08-15 Motorola Inc. Battery pack having a ruggedized thermal fuse
JP2019036386A (ja) * 2017-08-10 2019-03-07 株式会社豊田自動織機 電池パック
CN208368601U (zh) * 2018-06-28 2019-01-11 江苏天钧精密技术有限公司 一种fpc一体化线排
CN209249738U (zh) * 2018-12-20 2019-08-13 湖南金杯新能源发展有限公司 一种电压采集片
CN209249637U (zh) * 2018-12-26 2019-08-13 宁德时代新能源科技股份有限公司 电池模组
CN210142696U (zh) * 2019-08-21 2020-03-13 孚能科技(赣州)股份有限公司 电压采集片以及动力电池包
CN210467964U (zh) * 2019-09-23 2020-05-05 宁德时代新能源科技股份有限公司 采样组件、连接组件、电池模组以及车辆
CN210467965U (zh) * 2019-09-23 2020-05-05 宁德时代新能源科技股份有限公司 电池模组、电池包以及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951996A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142037A1 (en) * 2021-07-15 2023-03-01 Yazaki Corporation Busbar module

Also Published As

Publication number Publication date
EP3951996A4 (en) 2022-06-29
CN210467964U (zh) 2020-05-05
US20220102814A1 (en) 2022-03-31
EP3951996A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2021057211A1 (zh) 采样组件、连接组件、电池模组以及车辆
JP6806269B2 (ja) プローブピン、検査治具、検査ユニットおよび検査装置
JP7090172B2 (ja) 単電池、電池モジュール、動力電池及び電気自動車
EP3547391B1 (en) Protective pressure plate and battery module
JP6053643B2 (ja) 電池パックの電池内配線モジュール
US10833373B2 (en) Battery module
JP2007265945A (ja) ラミネートセル集積型バッテリ及びバッテリモジュール
US20220077536A1 (en) Wiring material and battery module
EP3905363B1 (en) Battery module
JP2016212980A (ja) 電池モジュール
EP3503258B1 (en) Conductive sheet for connecting batteries and battery connecting module utilizing the same
JPH10125301A (ja) 接続端子
JP7446438B2 (ja) 信号伝送端子、サンプリング装置、電池モジュール及び装置
EP3675238B1 (en) Secondary battery and battery module
ES2627413T3 (es) Chapa de resorte de contacto y batería electroquímica con una chapa de resorte de contacto de este tipo
JP5877181B2 (ja) バスバー構造体、電池モジュール
CN215955513U (zh) 总线组
JPWO2019146197A1 (ja) 蓄電モジュール
US11011792B2 (en) Power storage device
JPS6228739Y2 (zh)
CN210224344U (zh) 转换器连接件及转换器
JP6108997B2 (ja) 配線カバー
JP4957575B2 (ja) 半導体素子の絶縁構造および電気機器
JP4910331B2 (ja) 燃料電池スタックのターミナル及びその製造方法
CN110010832B (zh) 电池导接模块

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020867622

Country of ref document: EP

Effective date: 20211025

NENP Non-entry into the national phase

Ref country code: DE