WO2021056762A1 - 显示面板以及显示装置 - Google Patents

显示面板以及显示装置 Download PDF

Info

Publication number
WO2021056762A1
WO2021056762A1 PCT/CN2019/118865 CN2019118865W WO2021056762A1 WO 2021056762 A1 WO2021056762 A1 WO 2021056762A1 CN 2019118865 W CN2019118865 W CN 2019118865W WO 2021056762 A1 WO2021056762 A1 WO 2021056762A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
layer
emitting
extraction layer
Prior art date
Application number
PCT/CN2019/118865
Other languages
English (en)
French (fr)
Inventor
孙佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/641,659 priority Critical patent/US20210091340A1/en
Publication of WO2021056762A1 publication Critical patent/WO2021056762A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to the field of display technology, in particular to the manufacture of display devices, and in particular to display panels and display devices.
  • OLED Organic Compared with LCD (Liquid Crystal Display)
  • Light-Emitting Diode Organic Light-Emitting Diode
  • the refraction angle ⁇ 2 will change. Is greater than the incident angle ⁇ 1 , so when the incident angle ⁇ 1 corresponding to the light rays is large enough, as shown in Figure 2, the corresponding refraction angle ⁇ 2 will increase to 90°, resulting in no light rays with an incident angle greater than ⁇ 1
  • the final light transmittance of the light in the OLED display panel is low, resulting in lower display brightness of the OLED display panel, and also reducing the light utilization rate of the OLED display panel.
  • the purpose of the present invention is to provide a display panel and a display device.
  • the light extraction surface of the light extraction layer By arranging the light extraction surface of the light extraction layer to include at least one curved surface, it solves the problem of the low display brightness of the OLED display panel in the prior art and the light emission of the OLED display panel. The problem of low utilization.
  • An embodiment of the present invention provides a display panel, including:
  • a light-emitting layer the light-emitting layer is used to emit light
  • a light extraction layer the light extraction layer is provided on one side of the light-emitting layer, the light extraction layer is used to transmit the light, and the light extraction layer includes:
  • a light-emitting surface is arranged on a side of the light extraction layer away from the light-emitting layer, the light-emitting surface includes at least one curved surface, and the light rays are refracted by the light-emitting surface.
  • the multiple curved surfaces are connected to form a continuous light-emitting surface.
  • the highest points of the multiple curved surfaces are located on the same horizontal plane, and the lowest points of the multiple curved surfaces are located on the same horizontal plane.
  • the shapes of the plurality of curved surfaces are the same or different.
  • the shape of the plurality of curved surfaces includes at least one of an upper hemispherical surface and a lower hemispherical surface.
  • the shape of the projection of the curved surface on the light extraction layer includes a circle, a rhombus or a square.
  • the constituent material of the light extraction layer includes nanomaterials.
  • the thickness of the light extraction layer is not less than 2 nanometers and not more than 20 nanometers.
  • the display panel further includes a protective layer disposed on a side of the light extraction layer away from the light-emitting layer, and a constituent material of the protective layer includes lithium fluoride.
  • the refractive index of the light extraction layer is greater than the refractive index of the protective layer.
  • An embodiment of the present invention further provides a display device, the display device includes a display panel, and the display panel includes:
  • a light-emitting layer the light-emitting layer is used to emit light
  • a light extraction layer the light extraction layer is provided on one side of the light-emitting layer, the light extraction layer is used to transmit the light, and the light extraction layer includes:
  • a light-emitting surface is arranged on a side of the light extraction layer away from the light-emitting layer, the light-emitting surface includes at least one curved surface, and the light rays are refracted by the light-emitting surface.
  • the multiple curved surfaces are connected to form a continuous light-emitting surface.
  • the highest points of the multiple curved surfaces are located on the same horizontal plane, and the lowest points of the multiple curved surfaces are located on the same horizontal plane.
  • the shapes of the plurality of curved surfaces are the same or different.
  • the shape of the plurality of curved surfaces includes at least one of an upper hemispherical surface and a lower hemispherical surface.
  • the shape of the projection of the curved surface on the light extraction layer includes a circle, a rhombus or a square.
  • the constituent material of the light extraction layer includes nanomaterials.
  • the thickness of the light extraction layer is not less than 2 nanometers and not more than 20 nanometers.
  • the display panel further includes a protective layer disposed on a side of the light extraction layer away from the light-emitting layer, and a constituent material of the protective layer includes lithium fluoride.
  • the refractive index of the light extraction layer is greater than the refractive index of the protective layer.
  • the present invention provides a display panel and a display device.
  • the display panel and the display device include: a light-emitting layer, a light extraction layer provided on one side of the light-emitting layer, and a side of the light extraction layer away from the light-emitting layer is provided There is a light-emitting surface.
  • a light-emitting surface By setting the light-emitting surface to include at least one curved surface, and further by setting a proper curvature of the curved surface, it is possible to avoid total reflection of light emitted by the light-emitting layer in most directions on the light-emitting surface, thereby improving The brightness and light utilization rate of the OLED display panel are improved, thereby improving the picture quality of the OLED display panel.
  • FIG. 1 is a schematic diagram of a light path of a display panel in the prior art.
  • FIG. 2 is a schematic diagram of another light path of a display panel in the prior art.
  • FIG. 3 is a first cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a second cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG. 5 is a third schematic cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG. 6 is a fourth cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 7 is a fifth cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 8 is a sixth schematic cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG. 9 is a three-dimensional schematic diagram of a light-emitting surface provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a geometric figure provided by an embodiment of the present invention.
  • FIG. 11 is a three-dimensional schematic diagram of another light-emitting surface provided by an embodiment of the present invention.
  • FIG. 12 is a seventh schematic cross-sectional view of a display panel provided by an embodiment of the present invention.
  • FIG. 13 is an eighth cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 14 is a ninth cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a projection of a light exit surface on a light extraction layer according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of the projection of another light-emitting surface on the light extraction layer according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of still another light emitting surface projected on the light extraction layer according to an embodiment of the present invention.
  • FIG. 18 is a tenth cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 19 is an eleventh cross-sectional schematic diagram of a display panel provided by an embodiment of the present invention.
  • direction of height is all defined according to the conventional definition of the placement position of the structure shown in the figure.
  • direction of width includes any direction along the two ends of the line segment corresponding to the height of the structure in the figure.
  • the present invention provides a display device, and the display device includes those shown in FIGS. 3-8, 12-14, and 18-19.
  • the display panel 100 includes a light-emitting layer 101 and a light extraction layer 102 provided on one side of the light-emitting layer 101, and the light-emitting layer 101 is used to emit light. Light, the light extraction layer 102 is used to transmit the light.
  • the light extraction layer 102 includes a light exit surface 1021, and the light exit surface 1021 is disposed on a side of the light extraction layer 102 away from the light emitting layer 101, the light exit surface 1021 includes at least one curved surface, and the light exit surface 1021
  • the surface 1021 is used to improve the light transmittance of the light on the light-emitting surface 1021, wherein when the light-emitting surface 1021 includes multiple curved surfaces, the multiple curved surfaces are connected to form the continuous light-emitting surface 1021.
  • the “continuous” means that the light-emitting surface 1021 is a surface without gaps, and is not limited to the light-emitting surface 1021 being smooth at any point, that is, the slope of the tangent at any point along any direction is the same.
  • the connection between two curved surfaces does not need to be smooth. If the connection between each smooth curved surface is smooth, it is temporarily defined in this application as that the light-emitting surface 1021 includes a curved surface.
  • the light-emitting surface 1021 may be formed by techniques such as etching or nanoimprinting.
  • the refractive index of the light extraction layer 102 is greater than the refractive index of air, and greater than the refractive index of the film layer located above the light extraction layer 102, that is, the incident angle of the light at the light exit surface 1021 It is smaller than the refraction angle, so total reflection may occur on the light exit surface 1021, that is, the incident angle at the light exit surface 1021 is greater than the critical angle corresponding to the total reflection, and non-refracted light rays are emitted from the light exit surface 1021.
  • the refractive index of the light extraction layer 102 may be greater than the refractive index of the light-emitting layer 101, and further, the refractive index of the light extraction layer 102 may be greater than 2.
  • the light-emitting surface 1021 is a curved surface
  • the light-emitting surface 1021 may be a track S formed by a continuous and smooth curve L in a plane continuously moving in space
  • the Continuous movement means that the direction of movement is continuously changing, that is, the trend of the movement direction on both sides of a certain place must be the same.
  • the continuous and smooth curve L is a curve formed by cutting the light exit surface 1021 of the light extraction layer 102 in a direction parallel to the length of the display panel 100.
  • the direction of movement is a direction parallel to the width of the display panel 100.
  • the direction of movement here may not be limited to one direction, namely The direction of movement may include multiple directions.
  • the light-emitting surface 1021 may be a convex curved surface.
  • the light emitting surface 1021 is an axially symmetric convex curved surface. If the angle formed between the light emitting surface 1021 and the height direction of the display panel 100 is ⁇ , the light in this direction is just in If the highest point of the convex curved surface is totally reflected, then the incident angle ⁇ of the light in the direction on the right side of the highest point is smaller than the incident angle ⁇ corresponding to the total reflection, so the light in the direction can be from The range on the right side of the highest point is refracted; however, the incident angle ⁇ of the light in the direction on the left side of the highest point is greater than the incident angle ⁇ corresponding to the occurrence of total reflection, so the light in the direction cannot pass from all directions. The left range of the highest point is refracted.
  • the convex curved light-emitting surface 1021 in FIG. 3 is compared with the ordinary flat light-emitting surface.
  • a probability of 50% can be refracted from the light-emitting surface 1021, for example, the angle formed with the height direction of the display panel 100 is ⁇ , and light rays in this direction can be refracted from the right half of the light-emitting surface 1021 , The angle formed with the height direction of the display panel 100 is (- ⁇ ), and light rays in this direction can be refracted from the left half of the light exit surface 1021.
  • the angle from the left half of the display panel 100 to the light-emitting surface 1021 is defined as a positive angle
  • the angle from the right half of the display panel 100 to the light-emitting surface 1021 is defined as a positive angle.
  • the angle is a negative angle.
  • the absolute value of the angle formed with the height direction of the display panel 100 is not greater than the light rays in the direction of ⁇ , which is now not less than 50%
  • the probability of can be refracted from the light-emitting surface 1021; it is understandable that light rays in other directions can now be refracted from the light-emitting surface 1021 with a probability of less than 50%.
  • the light emitting surface 1021 uses the left and right ends of the display panel 200 as the highest horizontal plane and the lowest horizontal plane, respectively, and the middle smoothly transitions to form a convex curved surface.
  • the difference between the embodiment of FIG. 4 and the embodiment of FIG. 3 is that the convex curved surface corresponding to the light-emitting surface 1021 is not an axisymmetric figure. As shown in FIG.
  • the light in this direction happens to be totally reflected at the highest point of the convex surface, then the light in the direction can be refracted from the left half of the highest point, that is, the light in the (- ⁇ ) direction is now
  • the light-emitting surface 1021 can be refracted from any position of the light-emitting surface 1021, but the angle formed with the height direction of the display panel 100 is ⁇ , and light in this direction can only be reflected from the light-emitting surface 1021.
  • the range on the right side of the highest point of the surface 1021 is refracted, that is, the light in the ⁇ direction cannot be refracted from the light-emitting surface 1021; on this basis, further, between the height direction of the display panel 100
  • the light in the direction in which the absolute value of the angle formed is smaller than ⁇ can now be refracted from any position 1021 on the light exit surface.
  • the angle formed with the height direction of the display panel 100 is not less than (- ⁇ ) and not more than 0°.
  • Light rays can now be refracted from any position on the light-emitting surface 1021; light rays forming an angle not less than ⁇ with the height direction of the display panel 100 cannot now be refracted from the light-emitting surface 1021 It is understandable that light rays in other directions can now be refracted from the light exit surface 1021 in some directions.
  • the light-emitting surface 1021 may be a concave curved surface.
  • the light emitting surface 1021 is an axially symmetric concave curved surface. If the angle formed between the light emitting surface 1021 and the height direction of the display panel 100 is ⁇ , the light in this direction is just in If the highest point of the concave curved surface is totally reflected, then the incident angle ⁇ of the light in the direction on the left side of the highest point is smaller than the incident angle ⁇ corresponding to the total reflection, so the light in the direction can be from The range on the left of the highest point is refracted; however, the incident angle ⁇ of the light in the direction on the right of the highest point is greater than the incident angle ⁇ corresponding to just when total reflection occurs, so the light in the direction cannot pass from all directions. The right range of the highest point is refracted.
  • the absolute value of the angle formed with the height direction of the display panel 100 is not greater than ⁇ .
  • Light rays in one direction can now be refracted from the light exit surface 1021 with a probability of not less than 50%; it is understandable that light rays in other directions can now be refracted from the light exit surface 1021 with a probability of less than 50%.
  • the light-emitting layer 101 emits light in various directions, and the light-emitting surface 1021 in FIGS. 3 and 5 is turned over 180° to form a curved surface corresponding to each other, the light extraction in FIGS. 3 and 5
  • the layer 102 has the same contribution to the light extraction of the light emitted by the light-emitting layer 101.
  • the light emitting surface 1021 uses the left and right ends of the display panel 200 as the highest horizontal plane and the lowest horizontal plane, respectively, and the middle smoothly transitions to form a concave curved surface.
  • the difference between the embodiment of FIG. 6 and the embodiment of FIG. 5 is that the concave curved surface corresponding to the light-emitting surface 1021 is not an axisymmetric figure. As shown in FIG.
  • the angle formed with the height direction of the display panel 100 is ⁇
  • the The light in the direction happens to be totally reflected at the highest point of the concave curved surface
  • the light in the direction can be refracted from the left half of the highest point, that is, the light in the ⁇ direction can now be emitted from the light
  • the surface 1021 is refracted at any position, but the angle formed with the height direction of the display panel 100 is (- ⁇ ), and the light in this direction can only be refracted from the right range of the highest point of the light-emitting surface 1021 , That is, the light in the (- ⁇ ) direction cannot be refracted from the light exit surface 1021; on this basis, further, the absolute value of the angle formed with the height direction of the display panel 100 is less than The light in the direction of ⁇ can now be refracted from any position on the light-emitting surface 1021.
  • the angle formed between the height direction of the display panel 100 and the display panel 100 is not less than 0° and not greater than the light rays in the ⁇ direction. It can be refracted from any position of the light-emitting surface 1021; the angle formed by the direction of the height of the display panel 100 is not greater than (- ⁇ ), and now it cannot be refracted from the light-emitting surface 1021 It is understandable that light rays in other directions can now be refracted from the light exit surface 1021 in some directions.
  • the light-emitting layer 101 emits light in various directions, and the light-emitting surface 1021 in FIG. 4 and FIG. 6 is turned 180° to form a curved surface corresponding to each other, the light-emitting layer 101 in FIG. 4 and FIG.
  • the extraction layer 102 has the same effect on the light extraction contribution of the light emitted by the light-emitting layer 101.
  • the light-emitting surface 1021 may be a convex-concave curved surface, and the convex-concave curved surface indicates that the light-emitting surface 1021 is a continuous and smooth curved surface with both convex and concave surfaces.
  • the light-emitting surface 1021 includes a plurality of convex surfaces and concave surfaces.
  • the shape of each convex surface may be different, and the shape of each concave surface may also be different. It can be but not limited to an axisymmetric figure, and the concave surface can be but not limited to an axisymmetric figure. Comparing the embodiment of Fig. 7 with the embodiment of Figs. 3-6, the difference is that the light-emitting surface 1021 includes a convex surface and a concave surface with various curvatures.
  • the curvature of each convex curved surface is different.
  • the curvature may be a fixed value or may include multiple different values.
  • the curvature can satisfy the changing trend of first increasing and then decreasing; in the same way, for the convex surfaces S1 and S2 in FIG.
  • the curvature can also meet the changing trend of first increasing and then decreasing.
  • a plurality of convex surfaces and concave surfaces in the light-emitting surface 1021 may also be arranged at intervals to meet the requirements of continuous and smoothness.
  • the direction range of the light is larger; on the contrary, the curvature of the curved surface corresponding to the light-emitting surface 1021 is smaller.
  • the amount of light emitted from the light-emitting layer 101 in the direction corresponding to the curvature will be greatly increased.
  • the light-emitting surface 1021 includes a plurality of convex surfaces and concave surfaces.
  • the convex surfaces S3, S4, and S5 are upper hemispherical surfaces, and the concave surfaces S6 and S7 are lower hemispherical surfaces.
  • the radii of the balls corresponding to the upper hemispherical surfaces S3, S4, and S5 may be the same or different, and the radii of the balls corresponding to the lower hemispherical surfaces S6 and S7 may be the same or different.
  • the spheres corresponding to the upper hemispherical surfaces S3 and S5 have the same radius, and the radius of the sphere corresponding to the upper hemispherical surface S4 is greater than the radius of the sphere corresponding to the upper hemispherical surfaces S3 and S5; the lower hemispherical surface S6, S7 corresponds to the ball with the same radius.
  • the highest points of the curved surfaces corresponding to the light-emitting surface 1021 may be located on the same horizontal plane, and the lowest points of the multiple curved surfaces may be located on the same horizontal plane. It is understandable that this can ensure that the light exit point of the light emitting layer 101 on the light exit surface 1021 is within a predetermined height range, so as to improve the uniformity of the refracted light corresponding to the light. Further, when the light-emitting surface 1021 includes a plurality of convex and concave surfaces, the curvature and the vertical height between the highest point and the lowest point can be balanced according to actual conditions to obtain suitable uniformity and light extraction range.
  • the highest points of the convex surfaces S1 and S2 in the embodiment in FIG. 7 are located on the same horizontal plane, but it is not limited to the specific positions where the highest points of the convex surfaces S1 and S2 are on the same horizontal plane; similarly, the implementation in FIG. 7
  • the highest point of the concave curved surface in the example is located on the same horizontal plane, but it is not limited to the specific position of the highest point of the concave curved surface on the same horizontal plane.
  • the highest points of the upper hemispherical surfaces S3, S4, and S5 in the embodiment in FIG. 8 are located on the same horizontal plane, but it is not limited to the specific positions where the highest points of the upper hemispherical surfaces S1, S2 are on the same horizontal plane, that is, not It is limited to the radius of the ball corresponding to the upper hemisphere S3, S4, S5; similarly, the highest points of the lower hemisphere S6 and S7 in the embodiment in FIG.
  • the light-emitting surface 1021 may be a combined curve L'formed by successively connecting multiple continuous and smooth curves l1, l2, and l3 in the plane.
  • the connection of the smooth curves l1 and l2 is non-smooth, that is, the slopes on both sides of the intersection of the curves l1 and l2 are not equal, and the smooth curves l2 and l3 are connected It is also non-smooth, wherein the trajectory S′ includes trajectories s1, s2, s3 formed by the continuous movement of the curves 11, 12, and 13 in space, respectively.
  • the combination curve L' is a curve formed by cutting the light exit surface 1021 of the light extraction layer 102 in a direction parallel to the length of the display panel 100. It is understandable that, The direction of movement is the direction parallel to the width of the display panel 100. For specific embodiments, please refer to Figures 12-14. Of course, the direction of movement here may not be limited to one direction, that is, The direction of movement can be changed.
  • the light-emitting surface 1021 includes a curved surface or multiple curved surfaces, depending on whether any point on the light-emitting surface 1021 has the same slope in any direction. If so, it is the former; otherwise, it is the rear.
  • the light-emitting surface 1021 includes a plurality of curved surfaces, and the multiple curved surfaces are connected to form the continuous light-emitting surface 1021.
  • the light-emitting surface 1021 may be formed by connecting a plurality of identical convex curved surfaces.
  • the plurality of identical convex curved surfaces may be upper hemispherical surfaces or It is a non-upper hemispheric convex surface with the same or different curvatures; in the same way, the light-emitting surface 1021 may be connected by a plurality of identical concave curved surfaces.
  • the light-emitting surface 1021 may be formed by connecting a plurality of different convex curved surfaces, and the plurality of different convex curved surfaces may include upper hemispheres with the same or different curvatures. , It may also include convex curved surfaces other than the upper hemisphere with the same or different curvatures; the light-emitting surface 1021 may also be connected by multiple different convex curved surfaces and multiple identical convex curved surfaces.
  • related convex curved surfaces please refer to Above.
  • the light-emitting surface 1021 may be formed by connecting a plurality of convex curved surfaces and a plurality of concave curved surfaces, wherein the plurality of convex curved surfaces may include upper hemispheres with the same or different curvatures. It may include a convex surface other than the upper hemisphere whose curvature includes at least one value.
  • the concave surface please refer to the above description of the convex surface.
  • the shape of the projection of the curved surface corresponding to the light-emitting surface 1021 on the light extraction layer 102 includes, but is not limited to, a circle, a diamond, or a square. Further, the projection may be, but not limited to, a circle, a diamond or a square arranged in an array, and the patterns of the array arrangement may also be different.
  • the constituent material of the light extraction layer 102 may include nanomaterials.
  • the thickness of the light extraction layer may be not less than 2 nanometers and not more than 20 nanometers.
  • the display panel 100 may further include a protective layer 103 disposed on the side of the light extraction layer 102 away from the light-emitting layer 101, and the protective layer
  • the constituent material of the layer 103 includes lithium fluoride.
  • the refractive index of the light extraction layer 102 may be greater than the refractive index of the protective layer 103.
  • the display panel 100 may further include an encapsulation layer 104, a thin film transistor layer 105 and a substrate 106.
  • the thin film transistor layer 105 is provided on the side of the light emitting layer 101 away from the light extraction layer 102 for providing working voltage to the light emitting layer 102; the substrate 106 is provided on the thin film transistor layer 105 on the side away from the light-emitting layer 101 for supporting the display panel 100; the encapsulation layer 104 is provided on the protective layer 103 and the thin film transistor layer 105 on the side away from the substrate 106 for The light-emitting layer 101, the light extraction layer 102 and the protective layer 103 are fixed and protected.
  • the present invention provides a display panel and a display panel.
  • the light emitting surface of the display panel is set to include at least one curved surface, and further by setting a proper curvature of the curved surface, it is possible to prevent most of the direction of light emitted by the light emitting layer from falling on the light emitting layer.
  • the light-emitting surface is totally reflected, which improves the brightness and light utilization rate of the OLED display panel, thereby improving the picture quality of the OLED display panel.
  • the present invention provides a display panel and a display device.
  • the display panel and the display device include: a light-emitting layer, a light extraction layer provided on one side of the light-emitting layer, and the light extraction layer is far away from the light-emitting layer.
  • One side of the light-emitting layer is provided with a light-emitting surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了显示面板以及显示装置,包括:发光层、设于发光层的一侧的光提取层,光提取层中远离发光层的一侧设有出光面,出光面包括至少一个曲面,用于提升光线在出光面的透光率,当出光面包括多个曲面时,多个曲面相连设置,以形成连续的出光面。

Description

显示面板以及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及显示器件的制造,具体涉及显示面板以及显示装置。
背景技术
目前,OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术相对于LCD(Liquid Crystal Display,液晶显示器)而言,具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点。
但是在OLED显示面板的内部由于全反射的原因,如图1所示,当光线由折射率较大的光提取层01进入到折射率较小的第二膜层02中,折射角θ 2会大于入射角θ 1,因此当所述光线对应的入射角θ 1足够大时,如图2所示,对应的折射角θ 2会增大到90°,导致入射角大于θ 1的光线均无法通过所述第二膜层02,导致光线最终在所述OLED显示面板中的透光率低,造成OLED显示面板的显示亮度较低,也降低了OLED显示面板的光线利用率。
因此,有必要提供可以提升OLED显示面板的亮度、提高OLED显示面板的光线利用率,以提高OLED显示面板的画面质量的显示面板以及显示装置。
技术问题
本发明的目的在于提供显示面板以及显示装置,通过将所述光提取层的出光面设置为包括至少一个曲面,解决了现有技术中OLED显示面板的显示亮度较低,以及OLED显示面板的光线利用率较低的问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种显示面板,包括:
发光层,所述发光层用于发射光线;
光提取层,所述光提取层设于所述发光层的一侧,所述光提取层用于传输所述光线,所述光提取层包括:
出光面,所述出光面设于所述光提取层中远离所述发光层的一侧,所述出光面包括至少一个曲面,所述光线经所述出光面发生折射。
在一实施例中,当所述出光面包括多个曲面时,所述多个曲面相连设置,以形成连续的所述出光面。
在一实施例中,所述多个曲面的最高点位于同一水平面,并且所述多个曲面的最低点位于同一水平面。
在一实施例中,所述多个曲面的形状相同或者不同。
在一实施例中,所述多个曲面的形状包括上半球面和下半球面中的至少一种。
在一实施例中,所述曲面在所述光提取层中的投影的形状包括圆形、菱形或者正方形。
在一实施例中,所述光提取层的组成材料包括纳米材料。
在一实施例中,所述光提取层的厚度不小于2纳米,且不大于20纳米。
在一实施例中,所述显示面板还包括保护层,所述保护层设于所述光提取层远离所述发光层的一侧,所述保护层的组成材料包括氟化锂。
在一实施例中,所述光提取层的折射率大于所述保护层的折射率。
本发明实施例还提供一种显示装置,所述显示装置包括显示面板,所述显示面板包括:
发光层,所述发光层用于发射光线;
光提取层,所述光提取层设于所述发光层的一侧,所述光提取层用于传输所述光线,所述光提取层包括:
出光面,所述出光面设于所述光提取层中远离所述发光层的一侧,所述出光面包括至少一个曲面,所述光线经所述出光面发生折射。
在一实施例中,当所述出光面包括多个曲面时,所述多个曲面相连设置,以形成连续的所述出光面。
在一实施例中,所述多个曲面的最高点位于同一水平面,并且所述多个曲面的最低点位于同一水平面。
在一实施例中,所述多个曲面的形状相同或者不同。
在一实施例中,所述多个曲面的形状包括上半球面和下半球面中的至少一种。
在一实施例中,所述曲面在所述光提取层中的投影的形状包括圆形、菱形或者正方形。
在一实施例中,所述光提取层的组成材料包括纳米材料。
在一实施例中,所述光提取层的厚度不小于2纳米,且不大于20纳米。
在一实施例中,所述显示面板还包括保护层,所述保护层设于所述光提取层远离所述发光层的一侧,所述保护层的组成材料包括氟化锂。
在一实施例中,所述光提取层的折射率大于所述保护层的折射率。
有益效果
本发明提供了显示面板以及显示装置,该显示面板和显示装置包括:发光层、设于所述发光层的一侧的光提取层,所述光提取层中远离所述发光层的一侧设有出光面,通过将所述出光面设置为包括至少一个曲面,进一步通过设置合适的所述曲面的曲率,可以避免发光层发射的绝大部分方向的光线在所述出光面发生全反射,提高了OLED显示面板的亮度以及光线利用率,从而提高了OLED显示面板的画面质量。
附图说明
下面通过附图来对本发明进行进一步说明。需要说明的是,下面描述中的附图仅仅是用于解释说明本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的显示面板的一种光路示意图。
图2为现有技术中的显示面板的另一种光路示意图。
图3为本发明实施例提供的显示面板的第一种剖面示意图。
图4为本发明实施例提供的显示面板的第二种剖面示意图。
图5为本发明实施例提供的显示面板的第三种剖面示意图。
图6为本发明实施例提供的显示面板的第四种剖面示意图。
图7为本发明实施例提供的显示面板的第五种剖面示意图。
图8为本发明实施例提供的显示面板的第六种剖面示意图。
图9为本发明实施例提供的一种出光面的立体示意图。
图10为本发明实施例提供的一种几何图形示意图。
图11为本发明实施例提供的另一种出光面的立体示意图。
图12为本发明实施例提供的显示面板的第七种剖面示意图。
图13为本发明实施例提供的显示面板的第八种剖面示意图。
图14为本发明实施例提供的显示面板的第九种剖面示意图。
图15为本发明实施例提供的一种出光面在光提取层上的投影示意图。
图16为本发明实施例提供的另一种出光面在光提取层上的投影示意图。
图17为本发明实施例提供的再一种出光面在光提取层上的投影示意图。
图18为本发明实施例提供的显示面板的第十种剖面示意图。
图19为本发明实施例提供的显示面板的第十一种剖面示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通简说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包括但不限定于”。
在本发明的描述中,需要理解的是,术语“上”、“下”、“一侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,以上方位或位置关系仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要注意的是,术语“高度的方向”、“宽度的方向”、“长度的方向”均是根据图示的结构的摆放位置的常规定义来定义长、宽、高的,而例如“高度的方向”包括沿着图中的结构的高对应的线段两端的任一方向。
另外,还需要说明的是,附图提供的仅仅是和本发明关系比较密切的结构和步骤,省略了一些与发明关系不大的细节,目的在于简化附图,使发明点一目了然,而不是表明实际中装置和方法就是和附图一模一样,不作为实际中装置和方法的限制。
本发明提供一种显示装置,所述显示装置包括如图3-8、12-14、18-19所示
的显示面板。
在一实施例中,如图3-8、12-14所示,显示面板100包括发光层101以及设于所述发光层101的一侧的光提取层102,所述发光层101用于发射光线,所述光提取层102用于传输所述光线。
其中,所述光提取层102包括出光面1021,所述出光面1021设于所述光提取层102中远离所述发光层101的一侧,所述出光面1021包括至少一个曲面,所述出光面1021用于提升所述光线在所述出光面1021的透光率,其中当所述出光面1021包括多个曲面时,所述多个曲面相连设置,以形成连续的所述出光面1021。
可以理解的是,所述“连续”表示所述出光面1021是一个没有缝隙的面,并不限制于所述出光面1021在任一点都是光滑的,即任一点沿任何方向的切线斜率均相同,例如两个曲面之间的连接处可以不必光滑,若每一光滑的曲面之间的连接处光滑,则本申请文件中暂定义为所述出光面1021包括一个曲面的情况。
在一实施例中,所述出光面1021可以通过蚀刻或纳米压印等技术形成。
需要注意的是,所述光提取层102的折射率大于空气的折射率,并且大于位于所述光提取层102上方的膜层的折射率,即在所述出光面1021处的光线的入射角小于折射角,因此在所述出光面1021可能会发生全反射现象,即在所述出光面1021处入射角大于所述全反射对应的临界角,将无折射光线从所述出光面1021射出。
在一实施例中,所述光提取层102的折射率可以大于所述发光层101的折射率,进一步的,所述光提取层102的折射率可以大于2。
当所述出光面1021为一个曲面时,可以理解的,如图9所示,所述出光面1021可以是平面内一条连续并且光滑的曲线L在空间连续运动所形成的轨迹S,且所述连续运动表示运动的方向是连续变化的,即某一处两侧的运动方向的趋势必须相同。为了方便理解,此处可以假设所述连续并且光滑的曲线L为将所述光提取层102的出光面1021沿的平行于所述显示面板100的长度的方向进行切割所形成的曲线,可以理解的,所述运动的方向即为平行于所述显示面板100的宽度的方向,具体实施例请参考如图3-8,当然,此处所述运动的方向也可以不限制于一个方向,即所述运动的方向可以包括多个方向。
在一实施例中,如图3-4所示,所述出光面1021可以为一个凸曲面。
在一实施例中,如图3所示,所述出光面1021为一个轴对称的凸曲面,若与所述显示面板100的高度的方向之间形成的角度为θ,该方向的光线刚好在所述凸曲面的最高点发生全反射,那么所述方向的光线在所述最高点的右侧任一的入射角α小于刚好发生全反射对应的入射角θ,因此所述方向的光线可以从所述最高点的右侧范围折射出来;然而,所述方向的光线在所述最高点的左侧的入射角β大于刚好发生全反射对应的入射角θ,因此所述方向的光线不能从所述最高点的左侧范围折射出来。
其中,图3中的凸曲面的出光面1021与普通的平面的出光面相比较,针对刚好在所述凸曲面的最高点发生全反射的方向的光线而言,现在在所述出光面1021上有50%的概率可以从所述出光面1021折射出来,例如:与所述显示面板100的高度的方向之间形成的角度为θ,该方向的光线可以从所述出光面1021右半侧折射出来,与所述显示面板100的高度的方向之间形成的角度为(-θ),该方向的光线可以从所述出光面1021左半侧折射出来。
需要注意的是,本文中定义从所述显示面板100的左半侧射向所述出光面1021的角度为正的角度,从所述显示面板100的右半侧射向所述出光面1021的角度为负的角度。
可以理解的,针对刚好在所述凸曲面的最高点的左侧第一点A发生全反射的角度为正的方向的光线而言,在所述凸曲面的曲率在一定范围之内,那么此方向的光线从所述第一点A往右侧出发,对应的入射角的绝对值均小于θ,即均有对应的光线可以折射出来;同理针对刚好在所述凸曲面的最高点的左侧第二点B发生全反射的角度为负的方向的光线而言,在所述凸曲面的曲率在一定范围之内,那么此方向的光线从所述第二点B往左侧出发,对应的入射角的绝对值均小于θ,即均有对应的光线可以折射出来。
综上所述,针对图3中的凸曲面的出光面1021而言,与所述显示面板100的高度的方向之间形成的角度的绝对值不大于θ的方向的光线,现在不小于50%的概率可以从所述出光面1021折射出来;可以理解的,其他方向的光线,现在有小于50%的概率可以从所述出光面1021折射出来。
在一实施例中,如图4所示,所述出光面1021以所述显示面板200的左、右两端分别作为最高水平面、最低水平面,中间光滑过渡以形成一凸曲面,其中不限制所述最高水平面、最低水平面与所述左、右两端的对应关系。图4的实施例与图3的实施例的区别在于,所述出光面1021对应的凸曲面不是轴对称图形。如图4所示,假设此时最高水平面、最低水平面分别与所述右、左两端对应设置,根据上述分析,若与所述显示面板100的高度的方向之间形成的角度为(-θ),该方向的光线刚好在所述凸曲面的最高点发生全反射,那么所述方向的光线可以从所述最高点的左半侧范围折射出来,即所述(-θ)方向的光线现在在所述出光面1021上刚好可以从所述出光面1021任一位置折射出来,然而与所述显示面板100的高度的方向之间形成的角度为θ,该方向的光线只能从所述出光面1021最高点的右侧范围折射出来,即所述θ方向的光线现在不可以从所述出光面1021折射出来;在此基础上,进一步的,与所述显示面板100的高度的方向之间形成的角度的绝对值小于θ的方向的光线,现在可以从所述出光面任一位置1021折射出来。
综上所述,针对图4中的凸曲面的出光面1021而言,与所述显示面板100的高度的方向之间形成的角度的不小于(-θ),且不大于0°的方向的光线,现在可以从所述出光面1021上任一位置折射出来;与所述显示面板100的高度的方向之间形成的角度的不小于θ的方向的光线,现在不可以从所述出光面1021折射出来;可以理解的,其他方向的光线,现在有部分方向的光可以从所述出光面1021折射出来。
可以理解的,当最高水平面、最低水平面分别与所述左、右两端对应设置,也可以参考关于图4的相关描述,可以理解为两者为所述显示面板100沿水平方向旋转180°的前、后关系。
在一实施例中,如图5-6所示,所述出光面1021可以为一个凹曲面。
在一实施例中,如图5所示,所述出光面1021为一个轴对称的凹曲面,若与所述显示面板100的高度的方向之间形成的角度为θ,该方向的光线刚好在所述凹曲面的最高点发生全反射,那么所述方向的光线在所述最高点的左侧任一的入射角β小于刚好发生全反射对应的入射角θ,因此所述方向的光线可以从所述最高点的左侧范围折射出来;然而,所述方向的光线在所述最高点的右侧的入射角α大于刚好发生全反射对应的入射角θ,因此所述方向的光线不能从所述最高点的右侧范围折射出来。
同理,参考关于图3的相关描述,可以得到,针对图5中的凹曲面的出光面1021而言,与所述显示面板100的高度的方向之间形成的角度的绝对值不大于θ的方向的光线,现在有不小于50%的概率可以从所述出光面1021折射出来;可以理解的,其他方向的光线,现在有小于50%的概率可以从所述出光面1021折射出来。
可以理解的,由于所述发光层101沿各个方向发射光线,并且图3和图5中的所述出光面1021翻转180°形成彼此对应的曲面,因此图3和图5中的所述光提取层102对所述发光层101发射的光线的光提取贡献效果是一样的。
在一实施例中,如图6所示,所述出光面1021以所述显示面板200的左、右两端分别作为最高水平面、最低水平面,中间光滑过渡以形成一凹曲面,其中不限制所述最高水平面、最低水平面与所述左、右两端的对应关系。图6的实施例与图5的实施例的区别在于,所述出光面1021对应的凹曲面不是轴对称图形。如图6所示,假设此时最高水平面、最低水平面分别与所述左、右两端对应设置,根据上述分析,若与所述显示面板100的高度的方向之间形成的角度为θ,该方向的光线刚好在所述凹曲面的最高点发生全反射,那么所述方向的光线可以从所述最高点的左半侧范围折射出来,即所述θ方向的光线现在在可以从所述出光面1021任一位置折射出来,然而与所述显示面板100的高度的方向之间形成的角度为(-θ),该方向的光线只能从所述出光面1021最高点的右侧范围折射出来,即所述(-θ)方向的光线现在不可以从所述出光面1021折射出来;在此基础上,进一步的,与所述显示面板100的高度的方向之间形成的角度的绝对值小于θ的方向的光线,现在可以从所述出光面1021任一位置折射出来。
综上所述,针对图6中的凹曲面的出光面1021而言,与所述显示面板100的高度的方向之间形成的角度的不小于0°,且不大于θ的方向的光线,现在可以从所述出光面1021任一位置折射出来;与所述显示面板100的高度的方向之间形成的角度的不大于(-θ)的方向的光线,现在不可以从所述出光面1021折射出来;可以理解的,其他方向的光线,现在有部分方向的光线可以从所述出光面1021折射出来。
可以理解的,当最高水平面、最低水平面分别与所述左、右两端对应设置,时也可以参考关于图6的相关描述,可以理解为两者为所述显示面板100沿水平方向旋转180°的前、后关系。
可以理解的,由于所述发光层101沿各个方向发射光线,并且图4和图6中的所述出光面1021翻转180°可以形成彼此对应的曲面,因此图4和图6中的所述光提取层102对所述发光层101发射的光线的光提取贡献效果是一样的。
在一实施例中,如图7-8所示,所述出光面1021可以为一个凸凹曲面,所述凸凹曲面表示所述出光面1021为一连续、光滑且同时具有凸面和凹面的曲面。
在一实施例中,如图7所示,所述出光面1021包括多个凸面和凹面,所述每一凸面的形状可以不一样,所述每一凹面的形状也可以不一样,所述凸面可以为但不限定于轴对称图形,所述凹面可以为但不限定于轴对称图形。图7的实施例和图3-6的实施例相比较,区别在于所述出光面1021包括多种曲率的凸面和凹面。
例如,对于图7中的凸曲面S1、S2而言,每一所述凸曲面的曲率不同,对于同一个所述凸曲面而言,其曲率可以为定值或者可以包括多个不同值。为了形成为一连续、光滑的所述出光面1021,对于所述包括不同曲率的凸曲面S1、S2而言,曲率可以满足先增大、后减小的变化趋势;同理,对于图7中的凹曲面而言,曲率也可以满足先增大、后减小的变化趋势。进一步的,所述出光面1021中的多个凸面、凹面也可以满足间隔排列以满足所述连续、光滑的要求。
需要注意的是,如图10所示,对于同一圆心角Φ而言,对应的圆半径越大,
所形成的圆弧越长,即曲率越小。当弦长为一定值a时,图中半径较小的圆对应的圆心角仍为Φ,半径较大的圆对应的圆心角为Ψ,明显的,Ψ小于Φ,即曲率小的曲面对应的圆的圆心角越小。
可以理解的,当所述光提取层102的长度确定以后,所述出光面1021对应的曲面的曲率越大,则对应的圆的圆心角越大,这样可以提取的所述发光层101发射的光线的方向范围就越大;相反的,所述出光面1021对应的曲面的曲率越小,那么相对于前一种情况而言,在所述发光层101向各个方向发射光线的前提下,所述曲率所对应方向上的所述发光层101射出的光线的被提取的量将大大提高。
在一实施例中,如图8所示,所述出光面1021包括多个凸面和凹面,所述凸面S3、S4、S5为上半球面,所述凹面S6、S7为下半球面,所述上半球面S3、S4、S5对应的球的半径可以相同或者不相同,所述下半球面S6、S7对应的球的半径可以相同或者不相同。例如,所述上半球面S3、S5对应的球的半径相同,所述上半球面S4对应的球的半径大于所述上半球面S3、S5对应的球的半径;所述下半球面S6、S7对应的球的半径相同。
在一实施例中,所述出光面1021对应的曲面的最高点可以位于同一水平面,并且所述多个曲面的最低点可以位于同一水平面。可以理解的,这样可以保证所述发光层101发射的光线在所述出光面1021的出光点在一预设高度范围内,以提高所述光线对应的折射光线的均一性。进一步的,当所述出光面1021包括多个凸面和凹面时,可以根据实际情况平衡曲率和所述最高点、最低点的之间的竖直高度,以获取合适的均一性和光提取范围。
例如图7中的实施例中的凸曲面S1、S2的最高点位于同一水平面,但不限制于所述凸曲面S1、S2的最高点在同一水平面的具体位置;同理,图7中的实施例中的凹曲面的最高点位于同一水平面,但不限制于所述凹曲面的最高点在同一水平面的具体位置。
又例如,图8中的实施例中的上半球面S3、S4、S5的最高点位于同一水平面,但不限制于所述上半球面S1、S2的最高点在同一水平面的具体位置,即不限于所述上半球面S3、S4、S5对应的球的半径大小;同理,图8中的实施例中的下半球面S6、S7的最高点位于同一水平面,但不限制于所述下半球面S6、S7的最高点在同一水平面的具体位置,即不限于所述下半球面S6、S7对应的球的半径大小。
当所述出光面1021包括多个曲面时,可以理解的,如图11所示,出光面1021可以是平面内由多条连续并且光滑的曲线l1、l2、l3依次连接形成的组合曲线L’在空间连续运动所形成的轨迹S’,其中所述光滑的曲线l1和l2连接处是非光滑的,即曲线l1和l2的交点两侧的斜率不相等,所述光滑的曲线l2和l3连接处也是非光滑的,其中所述轨迹S’包括所述曲线l1、l2、l3分别在空间连续运动所形成的轨迹s1、s2、s3。为了方便理解,此处可以假设所述组合曲线L’为将所述光提取层102的出光面1021沿的平行于所述显示面板100的长度的方向进行切割所形成的曲线,可以理解的,所述运动的方向即为平行于所述显示面板100的宽度的方向,具体实施例请参考如图12-14,当然,此处所述运动的方向也可以不限制于一个方向,即所述运动的方向可以改变。
需要注意的是,本文中判断所述出光面1021包括一个曲面或者包括多个曲面,依据所述出光面1021上是否任意一点沿任一方向斜率均相同,若是,则为前者;否则,为后者。
在一实施例中,如图12-14所示,所述出光面1021包括多个曲面,所述多个曲面相连设置,以形成连续的所述出光面1021。
在一实施例中,如图12所示,所述出光面1021可以由多个完全相同的凸曲面相连设置而成,进一步的,所述多个完全相同的凸曲面可以为上半球面或者可以为曲率相同或者不相同的非上半球的凸曲面;同理,所述出光面1021可以由多个完全相同的凹曲面相连设置,相关描述可以参考上述关于多个完全相同的凸曲面的描述。
在一实施例中,如图13所示,所述出光面1021可以由多个不相同的凸曲面相连设置而成,所述多个不相同的凸曲面可以包括曲率相同或者不相同的上半球,还可以包括曲率相同或者不相同的非上半球的凸曲面;所述出光面1021还可以由多个不相同的凸曲面、以及多个相同的凸曲面相连设置,相关的凸曲面描述可以参考上文。
在一实施例中,如图14所示,所述出光面1021可以由多个凸曲面和多个凹曲面相连设置而成,其中所述多个凸曲面可以包括曲率相同或者不同的上半球还可以包括曲率至少包括一个值的非上半球的凸曲面,同理,关于凹曲面的相关描述可以参考上文关于凸曲面的相关描述。
在一实施例中,如图15-17所示,所述出光面1021对应的曲面在所述光提取层102中的投影的形状包括但不限于圆形、菱形或者正方形。进一步的,所述投影可以为但不限于阵列排布的圆形、菱形或者正方形,所述阵列排布的图形也可以不相同。
在一实施例中,所述光提取层102的组成材料可以包括纳米材料。
在一实施例中,所述光提取层的厚度可以不小于2纳米,且不大于20纳米。
在一实施例中,如图18所示,所述显示面板100还可以包括保护层103,所述保护层103设于所述光提取层102远离所述发光层101的一侧,所述保护层103的组成材料包括氟化锂。
在一实施例中,所述光提取层102的折射率可以大于所述保护层103的折射率。
在一实施例中,如图19所示,所述显示面板100还可以包括封装层104、薄膜晶体管层105和衬底106。
其中,所述薄膜晶体管层105设于所述发光层101远离所述光提取层102的一侧,用于向所述发光层102提供工作电压;所述衬底106设于所述薄膜晶体管层105远离所述发光层101的一侧,用于支撑所述显示面板100;所述封装层104设于所述保护层103以及所述薄膜晶体管层105远离所述衬底106的一侧,用于固定以及保护所述发光层101、光提取层102以及保护层103。
本发明提供了显示面板和显示面板,该显示面板通过将出光面设置为包括至少一个曲面,进一步通过设置合适的所述曲面的曲率,可以避免发光层发射的绝大部分方向的光线在所述出光面发生全反射,提高了OLED显示面板的亮度以及光线利用率,从而提高了OLED显示面板的画面质量。
本发明的有益效果为:本发明提供了显示面板以及显示装置,该显示面板和显示装置包括:发光层、设于所述发光层的一侧的光提取层,所述光提取层中远离所述发光层的一侧设有出光面,通过将所述出光面设置为包括至少一个曲面,进一步通过设置合适的所述曲面的曲率,可以避免发光层发射的绝大部分方向的光线在所述出光面发生全反射,提高了OLED显示面板的亮度以及光线利用率,从而提高了OLED显示面板的画面质量。
以上对本发明实施例所提供的一种显示面板以及包含所述显示面板的显示装置的结构进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,其中,包括:
    发光层,所述发光层用于发射光线;
    光提取层,所述光提取层设于所述发光层的一侧,所述光提取层用于传输所述光线,所述光提取层包括:
    出光面,所述出光面设于所述光提取层中远离所述发光层的一侧,所述出光面包括至少一个曲面,所述光线经所述出光面发生折射。
  2. 如权利要求1所述的显示面板,其中,当所述出光面包括多个曲面时,所述多个曲面相连设置,以形成连续的所述出光面。
  3. 如权利要求2所述的显示面板,其中,所述多个曲面的最高点位于同一水平面,并且所述多个曲面的最低点位于同一水平面。
  4. 如权利要求2所述的显示面板,其中,所述多个曲面的形状相同或者不同。
  5. 如权利要求4所述的显示面板,其中,所述多个曲面的形状包括上半球面和下半球面中的至少一种。
  6. 如权利要求1所述的显示面板,其中,所述曲面在所述光提取层中的投影的形状包括圆形、菱形或者正方形。
  7. 如权利要求1所述的显示面板,其中,所述光提取层的组成材料包括纳米材料。
  8. 如权利要求1所述的显示面板,其中,所述光提取层的厚度不小于2纳米,且不大于20纳米。
  9. 如权利要求1所述的显示面板,其中,所述显示面板还包括保护层,所述保护层设于所述光提取层远离所述发光层的一侧,所述保护层的组成材料包括氟化锂。
  10. 如权利要求9所述的显示面板,其中,所述光提取层的折射率大于所述保护层的折射率。
  11. 一种显示装置,其中,所述显示装置包括显示面板,所述显示面板包括:
    发光层,所述发光层用于发射光线;
    光提取层,所述光提取层设于所述发光层的一侧,所述光提取层用于传输所述光线,所述光提取层包括:
    出光面,所述出光面设于所述光提取层中远离所述发光层的一侧,所述出光面包括至少一个曲面,所述光线经所述出光面发生折射。
  12. 如权利要求11所述的显示装置,其中,当所述出光面包括多个曲面时,所述多个曲面相连设置,以形成连续的所述出光面。
  13. 如权利要求12所述的显示装置,其中,所述多个曲面的最高点位于同一水平面,并且所述多个曲面的最低点位于同一水平面。
  14. 如权利要求12所述的显示装置,其中,所述多个曲面的形状相同或者不同。
  15. 如权利要求14所述的显示装置,其中,所述多个曲面的形状包括上半球面和下半球面中的至少一种。
  16. 如权利要求11所述的显示装置,其中,所述曲面在所述光提取层中的投影的形状包括圆形、菱形或者正方形。
  17. 如权利要求11所述的显示装置,其中,所述光提取层的组成材料包括纳米材料。
  18. 如权利要求11所述的显示装置,其中,所述光提取层的厚度不小于2纳米,且不大于20纳米。
  19. 如权利要求11所述的显示装置,其中,所述显示装置还包括保护层,所述保护层设于所述光提取层远离所述发光层的一侧,所述保护层的组成材料包括氟化锂。
  20. 如权利要求19所述的显示装置,其中,所述光提取层的折射率大于所述保护层的折射率。
PCT/CN2019/118865 2019-09-25 2019-11-15 显示面板以及显示装置 WO2021056762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/641,659 US20210091340A1 (en) 2019-09-25 2019-11-15 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910911090.2 2019-09-25
CN201910911090.2A CN110729413B (zh) 2019-09-25 2019-09-25 显示面板以及显示装置

Publications (1)

Publication Number Publication Date
WO2021056762A1 true WO2021056762A1 (zh) 2021-04-01

Family

ID=69219334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118865 WO2021056762A1 (zh) 2019-09-25 2019-11-15 显示面板以及显示装置

Country Status (2)

Country Link
CN (1) CN110729413B (zh)
WO (1) WO2021056762A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477108B (zh) * 2020-04-26 2022-02-01 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715372A (zh) * 2013-12-26 2014-04-09 京东方科技集团股份有限公司 Oled显示面板及其制作方法
CN104319351A (zh) * 2014-10-31 2015-01-28 京东方科技集团股份有限公司 Oled阵列基板及其制备方法、显示面板、显示装置
CN107466429A (zh) * 2016-06-30 2017-12-12 深圳市柔宇科技有限公司 一种电致发光器件及其制备方法
CN109427997A (zh) * 2017-08-31 2019-03-05 昆山工研院新型平板显示技术中心有限公司 Oled显示装置及oled显示装置的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538224B2 (en) * 2010-04-22 2013-09-17 3M Innovative Properties Company OLED light extraction films having internal nanostructures and external microstructures
US20170149019A1 (en) * 2013-03-14 2017-05-25 Q1 Nanosystems Corporation Three-dimensional optical devices including cavity-containing cores and methods of manufacture
US10033014B2 (en) * 2013-03-15 2018-07-24 Pixelligent Technologies Llc. Advanced light extraction structure
US10983388B2 (en) * 2017-03-15 2021-04-20 Lg Display Co., Ltd. Display device
CN108899435A (zh) * 2018-06-22 2018-11-27 中国乐凯集团有限公司 Oled照明器件光提取膜及其制造方法
CN108987606B (zh) * 2018-06-29 2020-07-17 江苏集萃有机光电技术研究所有限公司 光提取膜的制备方法、及具有光提取膜的oled器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715372A (zh) * 2013-12-26 2014-04-09 京东方科技集团股份有限公司 Oled显示面板及其制作方法
CN104319351A (zh) * 2014-10-31 2015-01-28 京东方科技集团股份有限公司 Oled阵列基板及其制备方法、显示面板、显示装置
CN107466429A (zh) * 2016-06-30 2017-12-12 深圳市柔宇科技有限公司 一种电致发光器件及其制备方法
CN109427997A (zh) * 2017-08-31 2019-03-05 昆山工研院新型平板显示技术中心有限公司 Oled显示装置及oled显示装置的制备方法

Also Published As

Publication number Publication date
CN110729413B (zh) 2021-12-03
CN110729413A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
JP5168813B2 (ja) 光学シート、バックライト装置および液晶表示装置
US10964917B2 (en) Display module and method for preparing the same
CN110297386B (zh) 曲面屏幕及其微结构设置方法和投影系统
WO2019024367A1 (zh) 投影屏幕和投影系统
WO2019134447A1 (zh) 像素排布结构、有机电致发光显示面板、金属掩模板及显示装置
WO2020233282A1 (zh) 透镜结构、光源结构、背光模组和显示装置
WO2019169870A1 (zh) 屏幕和投影系统
WO2022048429A1 (zh) 一种显示基板及其制备方法、显示面板、显示模组
WO2019179166A1 (zh) 屏幕和投影系统
WO2021258849A1 (zh) 显示面板及显示装置
WO2023060908A1 (zh) 显示面板及显示装置
US7248411B2 (en) Optical film with array of microstructures and the light source apparatus utilizing the same
WO2021056762A1 (zh) 显示面板以及显示装置
US20220113616A1 (en) Fresnel projection screen and projection system
WO2020258755A1 (zh) 色彩转化组件、显示面板及色彩转化组件的制造方法
CN109388014B (zh) 投影屏幕和投影系统
US20210091340A1 (en) Display panel and display device
KR20230078520A (ko) 밴딩 가능한 커버판, 제조 방법, 디스플레이 패널 및 디스플레이 장치
CN113690281B (zh) 一种显示面板
JP5272508B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP6176892B2 (ja) 照明装置、液晶ディスプレイ装置及びディスプレイ装置
WO2020228632A1 (zh) 准直器件、光学膜、背光模组及显示装置
WO2023207994A1 (zh) 显示面板及其制备方法、显示装置
US7388634B2 (en) Reflector comprising a plurality of concave portions and liquid crystal display device including the same
TWM629984U (zh) 光軸偏轉膜與應用其之光軸偏轉發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946306

Country of ref document: EP

Kind code of ref document: A1