WO2021056258A1 - 离心泵的三维塑胶叶轮的制造方法及其结构 - Google Patents

离心泵的三维塑胶叶轮的制造方法及其结构 Download PDF

Info

Publication number
WO2021056258A1
WO2021056258A1 PCT/CN2019/107820 CN2019107820W WO2021056258A1 WO 2021056258 A1 WO2021056258 A1 WO 2021056258A1 CN 2019107820 W CN2019107820 W CN 2019107820W WO 2021056258 A1 WO2021056258 A1 WO 2021056258A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
rear cover
cover plate
edge curve
Prior art date
Application number
PCT/CN2019/107820
Other languages
English (en)
French (fr)
Inventor
施志贤
施志宽
简焕然
简淑燕
王锦城
林元弘
陈鹏翔
Original Assignee
协磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 协磁股份有限公司 filed Critical 协磁股份有限公司
Priority to EP19934342.7A priority Critical patent/EP4036417A4/en
Priority to PCT/CN2019/107820 priority patent/WO2021056258A1/zh
Priority to US16/972,681 priority patent/US11739642B2/en
Priority to EP24157512.5A priority patent/EP4345315A2/en
Priority to KR1020237004237A priority patent/KR20230025929A/ko
Priority to KR1020207036893A priority patent/KR102546910B1/ko
Priority to JP2020571745A priority patent/JP7177524B2/ja
Priority to RU2020143067A priority patent/RU2770774C1/ru
Publication of WO2021056258A1 publication Critical patent/WO2021056258A1/zh
Priority to JP2022152887A priority patent/JP2022177237A/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2616Moulds having annular mould cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • F04D29/2227Construction and assembly for special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/087Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7496Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7504Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49329Centrifugal blower or fan

Definitions

  • the present invention relates to a method for manufacturing a pump impeller, particularly a method for manufacturing a pump impeller made of engineering plastic material, which is suitable for the production of plastic impellers with high-efficiency three-dimensional flow channels, and can be injection molding or transfer molding.
  • the method can solve the problem that the traditional two-dimensional impeller is easy to produce but low in efficiency.
  • the two-dimensional blade is a typical low specific speed blade, and the two-dimensional blade has the same position in the axial direction (z axis) Line shape, so the upper edge curve (shroud edge) and lower edge curve (hub edge) of the blade will overlap.
  • the three-dimensional blade upper edge curve (shroud edge) and lower edge curve (hub edge) will have different line shapes ( shape) and blade angle.
  • Figure 19 (conformal transformation of blade shape) of the reference 1 illustrates that the expansion of the blade streamline is drawn by the conformal transformation method, which can clearly define the flow between different streamlines from the outlet to the inlet.
  • Line coordinates The upper blade angle changes, it can be seen that the exit angle of the blade is the same, but the closer to the inlet end, the greater the difference between the blade angle of the shroud edge and the hub edge. The more the blade is twisted.
  • the centrifugal impeller is an important component of rotating fluid machinery, which can be used to transport fluids containing liquid or gas, and can be applied to wind turbines or pumps.
  • the centrifugal impeller of the pump is installed in a volute.
  • the fluid flows in from the inlet of the volute and enters the impeller axially from the inlet of the shaft of the impeller.
  • the interior of the impeller has a plurality of radial or oblique blade flow channels formed by arc-shaped blades.
  • the rotating shaft drives the impeller to rotate, and through centrifugal force and Coriolis force, mechanical energy is transferred to the fluid through the blades to increase the flow rate and pressure of the fluid.
  • the direction of fluid movement changes from axial to radial, and the fluid enters the scroll channel of the scroll pump casing after leaving the blade channel, and its high-speed kinetic energy is recovered as Static pressure, and discharged from the outlet of the scroll pump casing.
  • a front shroud and a hub are respectively provided at the front and rear of the blades of the centrifugal impeller to restrict the flow of fluid in the blade channel.
  • the rear cover is directly connected to the rotating shaft to transmit the shaft power to the blades.
  • the front cover is used to restrict the flow of fluid, and can also increase the overall strength of the blades and bear the pressure difference between the inside of the scroll pump casing and the blade channel.
  • centrifugal pumps can be equipped with open impellers, semi-open impellers or closed impellers.
  • the impeller is installed between the front wall and the rear wall of the pump casing, mainly depending on the impeller and the front wall and the rear wall of the pump casing.
  • the semi-open impeller also does not have a front cover plate, but has a complete rear cover plate to connect the blades and the rotating shaft, and mainly depends on the gap between the impeller and the front wall of the pump casing to control the flow field.
  • Closed impellers usually have a front cover and a rear cover at the same time. There is no gap between the impeller runners, which has a high efficiency.
  • the front cover, the rear cover and the blades are usually integrated to provide sufficient mechanical strength and Effectively isolate the liquid in the flow path of each blade.
  • Figure 1A is an axial projection view of a traditional impeller with two-dimensional blades
  • Figure 1B is a plan projection view of the impeller of Figure 1A
  • Figure 1C is Figure 1A An expanded view of the streamline of the two-dimensional blade.
  • the impeller is a rotating mechanical element
  • cylindrical coordinates are usually used to describe the geometric shape of the impeller.
  • the surface of the impeller sectioned in the axial direction is called the r_z plane or the axial plane (meridional).
  • the r_ ⁇ plane in 1B is a projection plane perpendicular to the axis plane
  • the front cover 11 has an inner surface 111
  • the surface element of the inner surface 111 on the r_z plane is a straight line parallel to the r axis, in other words ,
  • the inner surface 111 is a two-dimensional disc plane
  • the rear cover 12 has an inner surface 121
  • the constituent elements of the inner surface 121 on the r_z plane are straight lines that are non-planar on the r axis
  • the inner surface 121 is a conical surface .
  • the blade 13 is between the front cover plate 11 and the rear cover plate 12.
  • the distance between the front cover plate 11 and the rear cover plate 12 is called the meridional width 131, and the change in the axial width 131 It is gradually reduced from the widest inlet width B11 of the blade 13 to the narrowest outlet width B12 of the blade 13.
  • the inlet of the blade 13 has a leading edge 132, and the blade 13 is before the combination
  • One side of the cover plate 11 has an upper edge curve (shroud edge) 134
  • the blade 13 has a lower edge curve (hub edge) 135 on the side where the rear cover plate 12 is combined
  • the arc-shaped blade 13 has a trailing edge (trailing edge) on the exit side. edge) 136, and there is a mean 138 between the upper edge curve 134 and the lower edge curve 135.
  • the upper edge curve 134 and the lower edge curve 135 completely overlap, and there may be a sector width 137 between the two blades 13 and the sector width
  • the change of 137 from the inlet to the outlet of the blade 13 increases as the radius increases.
  • the existing two-dimensional plastic impeller manufacturing method uses the blade and the rear cover to be integrally formed.
  • the molding method adopts a simple fixed mold and a movable mold to be easily molded, and then heats or fuses with the front cover.
  • the welding column is combined into a complete impeller.
  • the blade shape of the inlet section must be 2.5-dimensional or three-dimensional curved surface, or it is called twisting. blade.
  • the efficiency of 2.5-dimensional blades is much higher than that of two-dimensional blades because the blade angles are more in line with the requirements of the flow field.
  • only blades with three-dimensional curved surfaces can fully meet the requirements of the flow field and achieve the goal of real high efficiency.
  • FIGS. 2A, 2B, and 2C where FIG.
  • FIG. 2A is an axial projection view of a traditional impeller without an upper cover plate and having three-dimensional blades
  • FIG. 2B is a plan projection view of the impeller in FIG. 2A
  • FIG. 2C is the streamline development view of the three-dimensional blade in FIG. 2A.
  • the curved surface of the blade is called a three-dimensional curved surface
  • the curved surface of the blade is called a 2.5-dimensional curved surface if the constituent element of the blade curved surface is a straight line.
  • the rear cover 22 has an inner surface 221, the constituent elements of the inner surface 221 on the r_z plane are arcs, so that the inner surface 221 is an inner convex cone; in this case, when forming this type of impeller, The runner slider of the mold must be divided into multiple groups, otherwise the runner slider cannot be taken out after the impeller is formed, especially at the inlet width B21 of the blade, it is most difficult to take out the runner slider.
  • the entrance of the blade 23 has a blade leading edge 232
  • the blade 23 has an upper edge curve 234 on the side away from the rear cover 22, and the blade 23 has a lower edge on the side where the rear cover 22 is combined.
  • Curve 235 the exit side of the arc-shaped blade 23 has a blade trailing edge 236, and a flow channel center line 238 is located between the upper edge curve 234 and the lower edge curve 235.
  • the blade 23 near 232 has a three-dimensional twisted blade portion 233.
  • the twisted blade 233 forms an arc and extends axially toward the inlet.
  • the upper edge curve 234 and the lower edge curve 235 closer to the blade outlet gradually approach each other.
  • the ⁇ angle represents the three-degree spatial angle of the blade 23.
  • the upper edge curve 234 and the lower edge curve 235 have different ⁇ angles, so the arc
  • the front edge 232 of the curved blade spans between the two curves to form a curve line element 239a, which is an arc parallel to the front edge 232 of the blade.
  • the upper edge curve 234 and the lower edge curve 235 gradually approach , And the curved element 239a gradually changes from an arc to a straight line.
  • the prior art calls such a structure as a three-dimensional blade curved surface 239.
  • the upper edge curve 234 and the lower edge curve 235 of the three-dimensional blade are composed of multiple arcs.
  • the center position and radius of each arc are different. When it is taken out, it interferes with the molded blade 23.
  • Figure 3A is an axial projection view of a traditional impeller without an upper cover plate and with a 2.5-dimensional blade curved surface
  • Figure 3B is a plan projection view of the impeller of Figure 3A
  • Figure 3C is The streamline development view of the 2.5-dimensional blade of Fig. 3A.
  • the blade 33 in FIG. 3A is arranged on the rear cover plate 32.
  • the axial width 331 of the blade 33 is gradually reduced from the widest inlet width B31 of the blade 33 to the narrowest outlet width B32 of the blade 33.
  • the rear cover plate 32 has An inner surface 321.
  • the constituent elements of the inner surface 321 on the r_z plane are arcs, so that the inner surface 321 is an inner convex cone.
  • the inlet of the blade 33 has a blade leading edge 332, and the blade 33 There is an upper edge curve 334 on the side away from the rear cover plate 32.
  • the blade 33 has a lower edge curve 335 on the side where the rear cover plate 32 is joined.
  • the arc-shaped blade 33 has a trailing edge 336 on the exit side, and an upper edge curve 334
  • FIG. 3B from the perspective of the r_ ⁇ plane coordinates, there may be a fan-shaped flow passage width 337 between the two blades 33, and the upper edge curve 334 and the lower edge curve 335 do not overlap, especially the leading edge 332 of the blade.
  • the nearby blade 33 has a 2.5-dimensional twisted blade 333, which is straight and extends axially toward the inlet.
  • the straight blade leading edge 332 spans between the upper edge curve 334 and the lower edge curve 335 to form a blade curved surface 339.
  • the blade curved surface 339 is composed of linear elements 339b, which is called this in the prior art
  • the structure is a 2.5-dimensional blade surface.
  • the front cover and the blade are integrally formed in the manufacture of 2.5-dimensional impellers.
  • the sliding block of the mold on the fan-shaped runner is separated along the direction of the linear elements of the blade curved surface, and there is no interference problem.
  • the front cover and the blade are formed Then use the hot melt or welding column and the rear cover plate to combine to form a complete impeller, but the upper edge curve 334 and the lower edge curve 335 of the 2.5-dimensional blade are composed of multiple curves, so the mold slider at the fan-shaped runner width 337 is formed by the diameter It will still interfere with the formed blade when it is split, but the blade surface of the three-dimensional twisted blade is composed of curved elements.
  • the mold slider at the fan-shaped runner width 337 is split along the direction of the curved element of the blade surface, it will still be split. It will interfere with the blades, so it cannot be formed in the same mode.
  • the rear cover is a power transmission element. Although the heat fusion or welding column and the blade can be combined, it is still not integrally formed in a single process, so the rear cover and the blades There are still seams or structural discontinuities between them, resulting in weak structural strength and unable to withstand high temperature (such as 200°C) and high load conditions.
  • a high-efficiency plastic impeller must have a front cover, a rear cover, and three-dimensional twisted blades, and must overcome the difficulties of manufacturing and molding.
  • the two-dimensional blade geometry is used to replace the three-dimensional twisted blades, and a simple arc line is used to replace the changing flow field streamlines, thereby allowing the mold slider to be removed smoothly, but the pump performance of the two-dimensional blade Low, it reduces the efficiency and cannot meet the EU's pump energy efficiency requirements;
  • Reference 2 is about the production process of a plastic closed impeller. It is pointed out that in the prior art, in order to facilitate demoulding, the use of a single arc in the impeller blades of the pump will reduce the efficiency of the impeller. The use of double arc blades in the closed impeller can improve efficiency. , But the plug of the impeller mold cannot be removed, the impeller cannot be pressed, and an integral impeller cannot be produced. Reference 2 proposes that the front cover and the rear cover are produced in two sets of molds, and then combined with plastic screws. However, Reference 2 does not mention how to produce three-dimensional twisted blades. The diagram in Reference 2 also shows that the blade mold is Axial and unidirectional demolding and separation are only suitable for two-dimensional blades. Reference 2 also does not specify the reliability of using plastic screw combined blades instead of integral molding, and whether it can be applied to high temperature and high load occasions.
  • Reference 3 relates to a method for manufacturing a water pump impeller and a water pump. It is proposed to use a movable mold and a static mold to manufacture the impeller using injection, die-casting, or extrusion. However, Reference 3 points out that because the mold slider is not used, the impeller is The back cover will form a gap, which will affect efficiency. If inserts are used to fill the gaps on the rear cover of the impeller, efficiency can be improved. However, the power transmission of the impeller in Reference 3 is to apply torque to the shaft hole and the rear cover through the shaft center, because the rear cover has a huge gap , Only a small amount of area near the shaft hole is left. The connection between the rear cover and the blades needs to have the mechanical structure strength for pump power transmission.
  • Reference 3 shows that the connection position of the rear cover and the blades is an area with a small radius on the side of the shaft hole. Withstand large torque loads, and the area of the rear cover must be limited to the impeller inlet to demold. This will make Reference 3 only suitable for centrifugal pumps with larger flow and lower head (mid-to-high specific speed).
  • Reference 4 is about a plastic anticorrosive wear-resistant pump and its impeller forming mold. It points out that the efficiency of plastic centrifugal pumps is generally lower than that of metal pumps, mainly because the high-efficiency centrifugal pump impeller requires the axial and diameter of the impeller flow path. It is always necessary to have a degree of distortion that conforms to the hydraulic model. In the existing compression molding technology, the mold is difficult to get out of the flow channel with a large degree of distortion. The metal impeller formed by the casting process can be crushed. Way out of it.
  • Reference 4 proposes an impeller mold that can produce plastic three-dimensional twisted blades, but the impeller runner block (block) proposed in Reference 4 is divided into three groups, which must be taken out in order, which will cause complicated demolding engineering. The production cost has increased, and it is difficult to design an automatic demoulding mechanism, which cannot meet the needs of economic production.
  • Reference 5 is about the manufacture of centrifugal impeller molds.
  • the sliding block (mold core) in the impeller runner is divided into two groups, and the linkage mechanism is designed to be produced on the r_z surface.
  • Reference 5 also shows that its embodiment is a two-dimensional blade.
  • Reference 5 also mentions that the sliding block (mold core) in the impeller runner is retracted.
  • the path between the die and the die is a straight line, which shows that the blade design suitable for the die mechanism is not suitable for the three-dimensional twisted blade required by the centrifugal pump.
  • Reference 6 is about the three-dimensional design of a turbomachine impeller with castability. Reference 6 explains that one of the important ways to improve the efficiency of various rotating fluid machinery is the three-dimensional design of the impeller, but it must be designed to be suitable for production Runner geometry, reference 6 proposes a design method for metal casting three-dimensional impellers that takes into account the feasibility of manufacturing, but reference 6 does not propose manufacturing schemes or countermeasures for plastic pump impellers suitable for injection molding or transfer molding.
  • Reference 7 is about a high-efficiency full ternary impeller.
  • Reference 7 proposes a three-dimensional impeller design to improve efficiency, but Reference 7 explains that the new impeller design uses aluminum alloy. It is shown that its impeller is a semi-open impeller, which is applied to a fan. Reference 7 does not provide an explanation for the manufacturing method.
  • Reference 8 is about a small flow closed-type full milling ternary impeller, which belongs to the technical field of centrifugal compressors.
  • Reference 8 proposes to add an annular groove on the front cover of the impeller to match the inlet and outlet of the impeller and use mechanical processing.
  • the impeller is manufactured by the method, which can avoid the use of welding or riveting to combine the impeller, but the use of mechanical processing to engrave the blade flow channel will have the problem of excessive manufacturing cost.
  • Reference 8 also does not provide an explanation on the production economy, and the front cover The annular groove on the plate will interfere with the flow in the flow channel and reduce the efficiency of the impeller.
  • Reference 9 is about a closed impeller.
  • Reference 9 proposes a method of combining the front cover and the impeller. Through the design of the dovetail groove and the limit block, the shaft direction is fixed to prevent loose operation. References 9 does not specify the material of the subject matter and the production method of the three-dimensional blade flow channel.
  • Reference 10 proposes integrated injection molding countermeasures for pump impellers for automobile cooling cycles.
  • Reference 10 mentions that integrated injection molding impellers can improve blade efficiency and improve impeller reliability.
  • reference 10 shows that its blades are two-dimensional blades. The patent The content does not describe the production method of the plastic impeller with the three-dimensional blade flow channel.
  • Reference 11 is about the injection molding method of the pump impeller and the pump impeller. Reference 11 points out that the flow path of the impeller will have undercuts, that is, the side bends near the inlet side of the impeller are connected with the pump inlet, and the undercuts will hinder the flow along the flow path.
  • the prior art must rely on the lost mold core or assemble multiple parts to form the impeller.
  • reference 11 proposes a method of taking out the mold slider in the runner of the centrifugal pump impeller. The slide block can be reused instead of the lost mold core.
  • the axial width of the impeller flow passage and outlet of the centrifugal pump will vary according to the pump type, usually The models with low flow rate and high head (low specific speed) have a small outlet width, even only a few millimeters. It is impossible to divide the mold cores into groups, and it is impossible to design a guiding mechanism. The flow rate is large and the head is low (medium-to-high specific speed) In order to achieve higher efficiency, the mold core must be divided in the axial direction and the axial plane. The number of mold cores will increase, and the difficulty of designing the ejection mechanism will increase.
  • Reference 12 is about a pump designed to transport liquids containing impurity particles, such as sand-containing water. Such liquids will cause impeller wear. Therefore, wear-resistant impeller materials need to be selected. Reference 12 uses softer materials. For example, rubber is used as the wetted material of the impeller to resist abrasion. At the same time, the rubber material is elastic and easy to deform to make the mold slider in the impeller runner easy to take out. However, this reference 12 limits the impeller material to rubber with high elasticity. This type of material also limits the application range of the pump, especially for high temperature (such as 200°C) and high load operating conditions.
  • high temperature such as 200°C
  • the wetted material of plastic pumps must usually be made of fluoroplastics, and the impellers of pumps without shaft seals must be able to resist shaft thrust.
  • the mechanical strength of the load must be kept in contact with the inlet side of the pump casing or a very small gap to reduce internal leakage loss.
  • the operating temperature of the impeller made of rubber depends on the material, and generally cannot reach 200°C, and because of the high elasticity rate, the In the application, the transmission power will also produce deformation, which cannot meet the application conditions of the shaft-less pump.
  • Reference 13 is about centrifugal impellers used in fluid-operated pumps and the manufacturing method of the impeller.
  • Reference 13 divides the impeller into two groups, the front cover and half the number of blades, the rear cover and half the number of blades, and use positioning Holes and ultrasonic waves combine the front and rear cover plates and blades. This method only increases the production mold space between the blades. However, reference 13 does not explain how the twisted section of the blade at the central suction port of the impeller separates the mold from the finished blade.
  • the impeller in 13 still has half the number of blades that are not integrally connected with the back cover responsible for power transmission, and are only combined by ultrasonic welding or chemical glue, screws, etc., that is, half of the impeller in the embodiment of reference 13
  • the impeller load is only transmitted through the combination of the blade and the cover plate with a positive contact surface.
  • Reference 13 does not address such applications. The reliability is stated.
  • Reference 14 relates to a method of manufacturing an impeller, using an injection molding method, but the twisted blades of the impeller are located on the outer edge of the rear cover in the mold, and are only connected to the rear cover by a small part, and do not overlap with the rear cover. No mold slider is needed. After injection, the blade is turned and the rear cover is clamped and connected to form an impeller.
  • Reference 14 Although the blade shape is not restricted in production, it can produce better impeller efficiency, but Reference 14 The proposed blade connection to the rear cover cannot make the impeller bear high torque load, so it is only suitable for low-power equipment. Reference 14 also shows that its technical field belongs to low-power applications such as automobile cooling fans.
  • Reference 15 is about the structure of an evaporative mold core used to produce a three-dimensional twisted impeller made of metal or plastic.
  • the evaporative mold core is decomposed by chemicals or heat after the impeller is poured or injection molded.
  • the manufacturing process is complicated and costly, which does not meet the needs of economic production.
  • Reference 16 is about the mold structure of a closed plastic impeller, which is used to produce an integrated impeller.
  • the upper and lower two pieces are combined with the radially extracted slider core and mold mechanism, and the impeller is produced by the injection molding method, but reference 16 Without the use of axially separated molds, it is impossible to manufacture three-dimensional twisted blades.
  • the drawing in Reference 16 also shows that the impeller has a two-dimensional structure, so it is difficult to achieve high efficiency requirements.
  • the present invention proposes a method for manufacturing a three-dimensional plastic impeller that can produce centrifugal pumps using mold forming.
  • the rear cover of the impeller includes an annular outer rear cover and an inner rear cover.
  • the annular outer rear cover has a first through hole
  • the front cover includes a ring-shaped outer front cover and an inner front cover.
  • the ring-shaped outer front cover has a second through hole.
  • the front end of each blade is a twisted blade and is located in the first through hole and the ring outer of the ring-shaped outer rear cover.
  • the ring-shaped outer front cover has an inner surface, and its constituent elements on the r_z surface can be arcs; the ring-shaped outer rear cover has an inner surface that is on the r_z surface
  • the constituent elements can be arcs.
  • the manufacturing method is realized by using a twisted blade mold and an impeller outlet mold.
  • the twisted blade mold can pass through the first through hole and the second through hole to form the twisted blade of the blade by a simple fixed mold and a movable mold.
  • the central part of the front cover and the rear cover are arranged in a ring shape and suspended between the first through hole and the second through hole.
  • the difficulty of ejecting the mold after the twisted blade is formed is greatly reduced; at the same time, the impeller exit mold is used to
  • the rest of the integrally formed blades except for the twisted blades include the annular outer rear cover that bears power transmission; the second through hole of the annular outer front cover and the first through hole of the annular outer rear cover can use other supplementary parts (such as The inner front cover and the inner rear cover) can be used to make up these supplementary parts.
  • These supplementary parts can be formed by simple molds, and then combined with the ring-shaped outer rear cover and the ring-shaped outer front cover by heat melting or welding columns to form a complete Impeller, in which torque transmission can be directly transmitted to the load-bearing blades via the annular outer rear cover.
  • the present invention provides a three-dimensional plastic impeller of a centrifugal pump that can be produced by mold molding.
  • Each blade includes a front end and a rear end that are connected to each other.
  • the front end includes a first upper edge curve and a first lower edge curve.
  • the end includes a second upper edge curve and a second lower edge curve.
  • the front end of each blade is the aforementioned twisted blade.
  • the rear cover includes an annular outer rear cover and an inner rear cover.
  • the annular outer rear cover has a The first through hole; the front cover includes a ring-shaped outer front cover and an inner front cover, the ring-shaped outer front cover has a second through hole; the front end of each blade is located in the first through hole of the ring-shaped outer rear cover Between the second through hole of the ring-shaped outer front cover plate; the rear end of each blade, the ring-shaped outer rear cover plate and the ring-shaped outer front cover plate are integrally formed at one time in the same forming step.
  • the annular outer rear cover is used to transmit torque to these blades.
  • the inner front cover is installed in the second through hole, and the inner rear cover is installed in the first through hole to join the front end of each blade, so as to form a complete with the blade, the annular outer rear cover and the annular outer front cover. impeller.
  • the improvement of the plastic centrifugal impeller structure of the present invention mainly aims to provide a mold that can be mass-produced to reduce the manufacturing cost, so that the centrifugal blade achieves high efficiency performance with a three-dimensional curved surface geometry, and is suitable for high temperature (for example, 200°C) and high temperature. Load operating conditions.
  • the annular outer rear cover of the rear cover is molded together with each blade at the rear end of the impeller, so that torque transmission can be reliably transmitted to all through the annular outer rear cover of the rear cover. On the leaves.
  • the blade angles of the second upper edge curve and the second lower edge curve on the blade are different, so there is no overlap with the streamline expansion of the blade.
  • the two slider mold cores can be used to draw out and retreat radially in sequence.
  • the impeller outlet mold can be directly formed without using a slider mold, and then assembled and combined with the front cover plate and the inner rear cover plate by hot melt or welding column A complete three-dimensional plastic impeller, because the front cover only bears the pressure difference of the fluid and provides the overall strength of the impeller after molding, so the front cover will not have the problem of loosening due to high temperature and high load.
  • the mold for producing the impeller is divided into two components.
  • the first component is the twisted blade mold, which is used to form the three-dimensional twisted blade at the entrance of the impeller.
  • the twisted blade mold can have a fixed mold and a movable mold, a fixed mold and a movable mold.
  • the ejection mold can be drawn out in the opposite direction from the first and second through holes of the annular outer front cover and the annular outer rear cover in the axial direction;
  • the second component is the impeller outlet mold, which is used to form the outer runner of the impeller, with and
  • the same number of sliders or slider groups on the outer runners, these sliders or slider groups can be drawn out from the runner curve in the radial direction.
  • the annular outer front cover, the outer rear cover and each blade are integrally formed in the same forming step, or only the blades and the outer rear cover are formed in the same forming step.
  • the manufacturing method and structure of the three-dimensional plastic impeller of the centrifugal pump disclosed in the present invention can at least achieve the following effects: 1. All parts can be produced by molds, and the machine can be automatically demolded, which has production value; 2. Twisted blades It can be made by separating the fixed mold from the movable mold, and the three-dimensional twisted blade geometry helps to improve the pump performance; 3.
  • the blades and the annular outer rear cover are integrally formed in a single process step, which has a higher structure Strength, the rear cover directly transmits torque to the blades, which helps the impeller run at high operating temperatures (such as about 200°C) or high-load applications without being easily damaged.
  • Figure 1A is an axial projection view of a traditional plastic impeller with two-dimensional blades.
  • Fig. 1B is a plan projection view of the plastic impeller of Fig. 1A.
  • Fig. 1C is a streamline development view of the two-dimensional blade of Fig. 1A.
  • Fig. 1D is a three-dimensional expanded view of the two-dimensional blade of Fig. 1A.
  • Fig. 2A is an axial projection view of a conventional plastic impeller without an upper cover plate and having three-dimensional blades.
  • Fig. 2B is a plan projection view of the plastic impeller of Fig. 2A.
  • Fig. 2C is a streamline development view of the three-dimensional blade of Fig. 2A.
  • Fig. 2D is a schematic diagram of multiple arcs of the three-dimensional blade curve of Fig. 2A.
  • Fig. 3A is an axial projection view of a traditional plastic impeller without an upper cover plate and having a 2.5-dimensional leaf surface curved surface.
  • Fig. 3B is a plan projection view of the plastic impeller of Fig. 3A.
  • Fig. 3C is a streamline development view of the three-dimensional blade of Fig. 3A.
  • FIG. 4A is an axial projection view of the plastic impeller according to the first embodiment of the invention.
  • Fig. 4B is a plan projection view of the plastic impeller of Fig. 4A.
  • Fig. 4C is a streamlined development view of the blade of Fig. 4A.
  • 4D is a simple schematic diagram of the mold split of the plastic impeller according to the first embodiment of the present invention.
  • 4E is a partial enlarged side sectional view of the plastic impeller according to the first embodiment of the present invention.
  • 4F is a side sectional view of a modification of the plastic impeller according to the first embodiment of the present invention.
  • 4G is a partial enlarged side sectional view of a modification of the plastic impeller according to the first embodiment of the present invention.
  • Fig. 5 is a sectional view of the plastic impeller assembly according to the first embodiment of the present invention.
  • 6A-6B are exploded views from different perspectives of the plastic impeller before the assembly of the first embodiment of the present invention.
  • FIG. 7A-7B are exploded views from different perspectives of the plastic impeller before assembly according to the first embodiment of the present invention.
  • Fig. 8A is an axial projection view of the plastic impeller according to the second embodiment of the present invention.
  • Fig. 8B is a plan projection view of the plastic impeller of Fig. 8A.
  • Fig. 8C is a streamlined development view of the blade of Fig. 8A.
  • FIG. 8D is a simple schematic diagram of the mold division of the plastic impeller according to the second embodiment of the present invention.
  • Fig. 9 is a sectional view of the plastic impeller assembly according to the second embodiment of the present invention.
  • Fig. 10A is an axial projection view of the plastic impeller according to the third embodiment of the present invention.
  • Fig. 10B is a plan projection view of the plastic impeller of Fig. 10A.
  • Fig. 10C is a streamlined development view of the blade of Fig. 10A.
  • FIG. 10D is a simple schematic diagram of the mold split of the plastic impeller according to the third embodiment of the present invention.
  • Fig. 11 is a sectional view of a plastic impeller according to a third embodiment of the present invention.
  • Figure 12 is a sectional view of a plastic impeller according to a fourth embodiment of the present invention.
  • FIG. 4A is an axial projection view of the impeller 5 according to the first embodiment of the present invention
  • FIG. 4B is a plan projection view of the impeller 5 in FIG. 4A
  • FIG. 4C is a view of FIG. 4A.
  • the streamline development view of the blade 53, and FIG. 5 is a combined cross-sectional view of the impeller 5 of the first embodiment of the present invention.
  • This embodiment provides a plastic impeller 5 for centrifugal pumps and having a three-dimensional flow channel.
  • the impeller 5 includes a plurality of blades 53, an annular outer rear cover (hub rim part) 521, an inner rear cover (rear inner plate) 522, and an annular outer front cover (shroud rim part). 511 and a front inner plate 512.
  • the annular outer front cover 511 and the inner front cover 512 can jointly form a front cover (shroud) 51
  • the annular outer rear cover 521 and the inner rear cover 522 can jointly form a rear Hub 52.
  • the ring-shaped outer front cover plate 511 has an inner surface 5111, and its constituent element on the r_z plane is an arc; the ring-shaped outer rear cover plate 521 has an inner surface 5111.
  • its constituent elements on the r_z plane are straight lines parallel to the r-axis and constitute a plane. In other words, the inner surface 5211 is a two-dimensional disc plane.
  • the annular outer rear cover plate 521 has a first through hole 5210
  • the annular outer front cover plate 511 has a second through hole 5110
  • each blade 53 is at least partially suspended in the annular Between the second through hole 5110 of the outer front cover 511 and the first through hole 5210 of the annular outer rear cover 521.
  • a leading edge 532 is defined at the position of the blade 53 near the inlet 54 on the r_z plane (meridional) coordinates, and the blade 53 is on the side where the annular outer front cover plate 511 is combined.
  • the upper edge curve (shroud edge) 534 is defined, the blade 53 is defined with a lower edge curve (hub edge) 535 on the side that joins the annular outer rear cover plate 521, and the side of the blade 53 farthest away from the inlet 54 is defined with the blade trailing edge ( trailing edge 536, and a trailing edge 536 is defined between the upper edge curve 534 and the lower edge curve 535.
  • the blade 53 may include a front end 530a and a rear end 530b that are connected to each other.
  • the front end 530a is the part of the blade 53 closer to the front edge 532 of the blade
  • the rear end 530b is The part of the blade 53 closer to the trailing edge 536 of the blade; it can also be said that the front end 530a is the part of the blade 53 closer to the inlet 54 and the rear end 530b is the part of the blade 53 farther from the inlet 54.
  • the shape of the front end 530a is much more twisted than the rear end 530b.
  • the front end 530a is a three-dimensional twisted portion of the blade 53, so it can also be called twisted. blade.
  • the front end 530a is where the blade 53 is located between the second through hole 5110 of the annular outer front cover 511 and the first through hole 5210 of the annular outer rear cover 521, or in other words, the twisted blade of the blade 53 is located on the annular outer front cover. Between the second through hole 5110 of the plate 511 and the first through hole 5210 of the annular outer rear cover plate 521.
  • the front end 530a is connected to the ring-shaped outer rear cover 521 and the ring-shaped outer front cover 511 via the rear end 530b.
  • the axial width (meridional width) 531 of the blade 53 is gradually reduced from the widest blade inlet width B51 of the blade 53 to the narrowest blade outlet width B52 of the blade 53.
  • the axial width (meridional width) 531 of the blade 53 is gradually reduced from the widest blade inlet width B51 of the blade 53 to the narrowest blade outlet width B52 of the blade 53.
  • the front end 530a and the rear end 530b of the blade 53 are distinguished, and the upper edge curve 534 of the blade 53 may include a first upper edge curve 5341 and a second upper edge curve.
  • the lower edge curve 535 of the blade 53 may include a first lower edge curve 5351 and a second lower edge curve 5352.
  • first upper edge curve 5341 and the first lower edge curve 5351 respectively refer to the upper edge curve 534 and the lower edge curve 535 are on the front end portion 530a
  • second upper edge curve 5342 and the second lower edge curve 5352 respectively refer to the upper edge curve 534 and the lower edge curve 535 on the rear end portion 530b.
  • only the second upper edge curve 5342 of the upper edge curve 534 is connected to the annular outer front cover 511
  • only the second lower edge curve 5352 of the lower edge curve 535 is connected to the annular outer rear cover 521.
  • the blade 53 is twisted. Therefore, the second upper edge curve 5342 and the second lower edge curve 5352 of the rear end 530b of the blade 53 are shown in the streamline development view of the blade (as shown in FIG. 4C). ) Does not overlap, and the blade angles of the first upper edge curve 5341 and the first lower edge curve 5351 on the front end 530a of the blade 53 are different, so the first upper edge curve 5341 and the first lower edge curve 5351 are different from the blade 53
  • the unfolded streamline (as shown in Figure 4C) does not overlap, and from the unfolded streamline view, the first upper edge curve 5341 and the first lower edge curve 5351 on the front end 530a do not overlap with the impeller 5. The situation is more obvious, so the front end 530a of the blade 53 exhibits a higher degree of twisting geometry than the rear end 530b.
  • the blade outlet angle ⁇ 2 is the same, and the closer to the inlet 54 (that is, the closer to the shaft center of the impeller 5), the upper edge curve 534 and the lower edge
  • the blade 53 has a three-dimensionally twisted front end 530a near the front edge 532 of the blade. Therefore, the front end 530a of this embodiment cannot be
  • the radial sliding slider is produced, but it needs to be produced by a special demoulding method. The content will be detailed in the subsequent paragraphs.
  • FIG. 4D is a simple schematic diagram of the parting of the mold used in the impeller of this embodiment.
  • the mold used to make the impeller 5 at one time can be divided into two units, such as the twisted blade mold M1 and the impeller outlet mold M2 as shown in the figure.
  • the twisted blade mold M1 can be used to form a highly twisted front end 530a (ie, twisted blade) between the first through hole 5210 of the annular outer rear cover plate 521 and the second through hole 5110 of the annular outer front cover plate 511.
  • the twisted blade mold M1 may include, for example, a fixed mold M11 and a movable mold M12.
  • the fixed mold M11 and the movable mold M12 can be used to form the front end 530a of the blade 53 due to the upper edge of the blade 53.
  • the difference between the curve 534 and the lower edge curve 535 at the front end 530a of the blade angle is relatively large (that is, the upper edge curve 534 and the lower edge curve 535 of the blade 53 at the front end 530a can be seen from the streamline development view of the blade.
  • the degree of overlap is large), so the demolding method of the fixed mold M11 and the movable mold M12 of the twisted blade mold M1 is to separate the first through hole 5210 of the annular outer rear cover plate 521 and the annular shape in the opposite axial directions.
  • the present invention is not limited to the positions of the fixed mold M11 and the movable mold M12 and the structure thereon in the drawings.
  • the positions of the fixed mold M11 and the movable mold M12 are not limited to the positions of the fixed mold M11 and the movable mold M12. The above structure is also interchangeable.
  • the difference between the upper edge curve 534 and the lower edge curve 535 of the blade 53 at the rear end 530b is relatively small (that is, the upper edge curve 534 and the lower edge curve 535 of the blade 53 are at the rear end 530b. It can be seen from the streamline development view of the blade that the degree of non-overlapping is small), even in some embodiments, the upper edge curve 534 and the lower edge curve 535 of the blade 53 are in the streamline of the blade at the rear end 530b.
  • the expanded view can overlap each other. Therefore, the impeller outlet mold M2 can be formed by multiple radially sliding sliders or slider groups to integrally form the blade 53 except for the front end 530a (ie, the twisted blade). Section 530b).
  • the impeller outlet mold M2 may include multiple slider sets, which are used to form each runner outlet (referring to the rear end 530b of the blade 53, the annular The space between the outer front cover 511 and the annular outer rear cover 521), each slider group may include a first slider M21 and a second slider M22, at least a part of the first slider M21 and the first slider M21 At least a part of the two sliders M22 can cooperate to form the inner surface 5211 of the annular outer rear cover 521, the inner surface 5111 of the annular outer front cover 511, and the rear end 530b of the blade 53, wherein the first slider M21 has A first contact surface M211 is used to form the inner surface 5211 of the ring-shaped outer rear cover plate 521, and the second sliding block M22 has a second contact surface M221 for forming the inner surface 5111 of the ring-shaped outer front cover plate 511.
  • the constituent elements of the first contact surface M211 of the first slider M21 are straight lines and constitute a plane. Therefore, the inner surface 5211 of the annular outer rear cover 521 can be shaped as a plane with straight constituent elements.
  • the constituent element of the second contact surface M221 of the second slider M22 is an arc, so the second contact surface M221 is a convex tapered surface.
  • the inner surface 5111 of the annular outer front cover 511 can be shaped as The constituent element is the concave conical surface of the arc.
  • the impeller 5 has the requirement that the constituent elements of the inner surface 5111 of the annular outer front cover plate 511 are arcs and the constituent elements of the inner surface 5211 of the annular outer rear cover plate 521 are straight lines, the aforementioned first The slider M21 and the second slider M22.
  • the first slider M21 and the second slider M22 need to be demolded in sequence.
  • the blade 53, the annular outer front cover After the 511 and the annular outer rear cover 521 are formed the first sliding block M21 can be first slid radially out, and the second sliding block M22 can be easily slid using the space made by the first sliding block M21 after sliding out. It will not interfere with the rear end 530b of the formed blade 53, the annular outer front cover 511, and the annular outer rear cover 521.
  • the geometric shapes of the first slider M21 and the second slider M22 can be adjusted according to actual requirements, and the present invention is not limited to this.
  • the requirement of the impeller 5 is changed to the inner surface 5111 of the ring-shaped outer front cover plate 511.
  • the constituent elements are straight lines and the inner surface of the ring-shaped outer rear cover plate 521
  • the constituent element of the surface 5211 is an arc.
  • the constituent element of the first contact surface M211 of the first slider M21 for forming the inner surface 5211 of the annular outer rear cover 521 is changed to an arc, so that the annular outer rear cover
  • the inner surface 5211 of the plate 521 can be formed as an inner concave conical surface whose constituent element is an arc
  • the constituent element of the second contact surface M221 of the second slider M22 used to form the inner surface 5111 of the ring-shaped outer front cover 511 It is changed to a straight line, so that the inner surface 5111 of the ring-shaped outer front cover 511 can be shaped into a plane whose constituent elements are straight lines.
  • the first slider M21 and the second slider M22 also need to be removed from the mold in sequence.
  • the second slider M22 can be first slid out radially, and The first slider M21 can easily slide out by using the space made by the second slider M22 after sliding out, and will not interact with the rear end 530b of the formed blade 53, the annular outer front cover 511 and the annular outer
  • the rear cover 521 has interference problems.
  • the geometric configuration of the first slider and the second slider or the design of the matching surface between the two can be adjusted according to actual needs, and the present invention is not limited to this.
  • the impeller 5 is assembled on a rotor 7.
  • the impeller 5 includes a front cover 51, a rear cover 52, and the aforementioned plurality of blades 53.
  • the front cover 51 is composed of the aforementioned annular outer front cover 511 and inner front cover 512. 4A and 5, it can be seen that the inner front cover 512 is located in the range of the second through hole 5110 of the ring-shaped outer front cover 511, and the ring-shaped outer front cover 511 and the blades can be joined by heat fusion or ultrasonic waves. 53.
  • the inner front cover 512 is provided with a wear ring mounting portion 512a for mounting the wear ring 8.
  • the rear cover 52 is composed of the aforementioned annular outer rear cover 521 and inner rear cover 522. 4A and 5, it can be seen that the inner rear cover plate 522 is located in the range of the first through hole 5210 of the annular outer rear cover plate 521, and the annular outer rear cover plate 521 and the blades can be joined by heat melting or ultrasonic waves. 53.
  • the annular outer rear cover 521 is provided with a power transmission mounting portion 521a for mounting on the rotor 7.
  • FIGS. 6A to 6B are exploded views of different perspectives of the parts before the impeller 5 is assembled in the first embodiment of the present invention.
  • the inner front cover 512 can be thermally fused or fused to the thermally fused surface 534a of the blade 53 via the thermally fused surface 512b.
  • the inner rear cover 522 can also be seamlessly joined by ultrasonic or other methods.
  • the inner rear cover 522 can also be joined by the thermal welding surface 522b of the inner rear cover 522 and the thermal welding surface 535a of the blade 53 by thermal welding or ultrasonic welding.
  • FIGS. 7A-7B are exploded views of the impeller 5 of the present invention from different perspectives before being assembled.
  • the inner front cover 512 can be combined with the welding column 534b of the blade 53 through the welding hole 512c and then heated and fused, and the inner rear cover 522 can also use the welding hole 522a and the welding post 535b of the blade 53 to be combined in a pin manner and then heated and fused. It can be seen from this that the inner front cover 512 and the inner rear cover 522 are not integrally formed with the annular outer front cover 511, the annular outer rear cover 521 and the blades 53 in the same forming step.
  • the power transmission of the pump is through the power transmission mounting portion 521a and the annular outer rear cover 521 and then to the blade 53, because these three parts are formed into one body at one time in the same forming step, or in other words, the blade 53 and There is no seam between the annular outer rear cover 521 and its power transmission mounting portion 521a, or a part that is additionally processed and joined during the manufacturing process, so there is no seam or structural discontinuity, and the structural strength is high. Therefore, the annular outer rear cover plate 521 can directly receive the main load or power transmission of the pump, which helps to increase the application range of the pump.
  • the inner front cover 512 and the inner rear cover 522 are formed by simple molds and combined into a complete impeller by means of hot melting or ultrasonic waves, the inner front cover 512 and the inner rear cover 522 are only responsible for their limitations.
  • the flow range of the fluid in the impeller 5 is not used as a structure that directly bears the main load or power transmission of the pump, so it will not affect the structural strength of the pump.
  • the impeller 5 proposed in this embodiment can be applied to 200°C high temperature and high load applications.
  • Figure 8A is an axial projection view of the impeller 5 of the second embodiment of the present invention
  • Figure 8B is a plan projection view of the impeller 5 of Figure 8A
  • Figure 8C is the blade 5 of Figure 8A
  • Figure 9 is a combined cross-sectional view of the impeller 5 of the second embodiment of the present invention.
  • the difference between this embodiment and the foregoing first embodiment is that the axial width 531 of the blade 53 of the second embodiment gradually decreases from the blade inlet width B51 to the junction of the front end 530a and the rear end 530b, and has an annular shape.
  • the outer front cover 511 has an inner surface 5111, and its constituent elements on the r_z plane are straight lines parallel to the r-axis and constitute a plane.
  • the inner surface 5111 is a two-dimensional disc plane
  • the cover plate 521 has an inner surface 5211, and its constituent elements on the r_z plane are straight lines parallel to the r axis and constitute a plane.
  • the inner surface 5211 is a two-dimensional disc plane.
  • the inner surface 5111 and the inner surface 5211 are parallel to each other, that is, the axial width 531 from the junction of the front end 530a and the rear end 530b to the blade outlet width B52 remains unchanged, and the second upper edge curve 5342 and the second lower edge curve 5352 are substantially parallel on the r_z plane. That is, in this embodiment, the axial width 531 of the front end 530a of the blade 53 is tapered from the blade inlet width B51 to the blade outlet width B52 along the centerline 538 of the flow channel, but the rear end 530b of the blade 53 The axial width 531 along the center line 538 of the flow channel remains unchanged. As shown in FIG.
  • the leading edge 532, the upper edge curve 534, and the lower edge curve 535 of the blade do not overlap at the front end 530a of the blade 53, and the upper edge curve 534 and the lower edge curve 535 are also at the rear end 530b of the blade 53. Do not overlap.
  • the exit angle of the blade is the same, from the junction of the front end 530a and the rear end 530b to the trailing edge 536 of the blade, the second upper edge curve 5342 and the second lower edge curve 5352
  • the difference of the blade angle ⁇ is within 10 degrees, so the production mold of this embodiment can only use a single mold slider to slide out of the mold in the radial direction at the impeller exit mold.
  • FIG. 8D is a simple schematic diagram of the mold parting of the mold used in the impeller of this embodiment.
  • the annular outer front cover 511 and the annular outer rear cover 521 are arranged substantially parallel to each other on the r_z plane (axial surface), that is, the annular outer front cover 511 and the annular outer rear cover 521 are mutually
  • the inner surfaces of the opposite faces are parallel to each other, so the space between the annular outer front cover 511 and the annular outer rear cover 521 does not gradually expand from the outside to the inside. Therefore, compared to the aforementioned FIG.
  • the impeller of this embodiment The exit mold M2 can be changed to a single sliding block of uniform thickness and radially extractable, and the single sliding block is used to form the inner surface 5211 of the annular outer rear cover plate 521 and the inner surface 5111 of the annular outer front cover plate 511.
  • the constituent elements of the first contact surface M211 and the second contact surface M221 are both straight lines.
  • the impeller outlet mold M2 can be radially slid out on the r_z surface (axial surface).
  • the fan-shaped runner width 537 with a larger radius on the r_ ⁇ plane is also larger, so when the impeller exit mold is demolded There will be no obstacles or interference.
  • Figure 10A is an axial projection view of the impeller 53 of the third embodiment of the present invention
  • Figure 10B is a plan projection view of the impeller 53 of Figure 10A
  • Figure 10C is the blade 53 of Figure 10A
  • Figure 11 is a combined cross-sectional view of the impeller 53 of the third embodiment of the present invention.
  • the third embodiment is an impeller 5 with a lower specific speed for a pump with a lower flow rate and a higher head.
  • the impeller 5 may not include the aforementioned annular outer front cover. 511, and the blade 53 only needs a three-dimensional twisted geometry at the front end 530a, and the rear end 530b of the blade 53 can be changed to a two-dimensional blade geometry.
  • the blade angles of the first upper edge curve 5341 and the first lower edge curve 5351 are different (that is, the first upper edge curve 5341 and the first lower edge curve 5351 remain non-overlapping in the streamline development view of the blade),
  • the blade angles of the second upper edge curve 5342 and the second lower edge curve 5352 can be the same (that is, the second upper edge curve 5342 and the second lower edge curve 5352 can overlap each other in the streamline development view of the blade).
  • the back cover 521 has an inner surface 5211, and its constituent element on the r_z plane is a straight line parallel to the r axis.
  • the blade angle ⁇ of the rear end 530 b of the blade 53, the upper edge curve (shroud edge) 534, the flow channel center line (mean) 538 and the lower edge curve (hub edge) 535 are all the same.
  • the impeller outlet mold for forming the rear end 530b of the blade 53 does not need to be demolded in the radial direction, but the same as the twisted blade mold forming the front end 530a of the blade 53 can be demolded in the axial direction. Way out of.
  • FIG. 10D is a simple schematic diagram of the mold division of the mold used in the impeller of this embodiment.
  • the impeller 5 since the impeller 5 may not include the aforementioned annular outer front cover 511, the side of the blade 53 away from the annular outer rear cover 521 is not shielded, and the rear end 530b of the blade 53 has a two-dimensional blade geometry.
  • the movable mold M12 of the twisting blade mold M1 for forming the twisted front end 530a (ie, the twisted blade) can be directly assembled with the impeller outlet mold M2 for forming the rear end 530b, and along the axial direction. It is demoulded in the direction away from the outer rear cover plate 521 without interference with the blade 53 in the process.
  • the outer front cover 511 and the inner front cover 512 can be formed into a single element using a simple mold, and then joined to the blade 53 by a suitable method such as heat melting or ultrasonic waves to form a composition.
  • a suitable method such as heat melting or ultrasonic waves to form a composition.
  • FIG. 12 is a sectional view of a plastic impeller according to a fourth embodiment of the present invention.
  • the difference between this embodiment and the foregoing first embodiment is that the plurality of blades 53, the annular outer rear cover plate 521, and the annular outer front cover plate 511 of the impeller 5 are embedded with metal reinforcing members 55 to strengthen the rigidity of the overall structure.
  • the plastic impeller can still operate safely and stably under high temperature (200°C) and high load.
  • the metal reinforcing member 55 may not be provided in the annular outer front cover 511, that is, in this case, only the blades 53 and the annular outer rear cover 521 are provided in the impeller 5.
  • the manufacturing method and structure of the three-dimensional plastic impeller of the centrifugal pump disclosed in the foregoing various embodiments of the present invention can at least achieve the following effects: 1. All parts can be produced by molds and can be automatically demolded by machines. Has production value; 2. The twisted blade (or the front end of the blade) can be made by separating the fixed mold from the movable mold, and the three-dimensional twisted blade geometry can help improve the performance of the pump; 3. The blade and the outer ring The back cover is formed into one piece in a single molding step at one time, and has high structural strength. The ring-shaped outer back cover directly transmits torque to the blades, which helps to keep the impeller at high operating temperature (such as about 200 °C) or high. It is not easy to be damaged when running in load applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种使用模具成型生产离心泵的三维塑胶叶轮的制造方法,包含一扭曲叶片模具(M1)与一叶轮出口模具(M2),该扭曲叶片模具用以成型该叶轮(5)的各叶片(13,23,33,53)的扭曲叶片(233,333),该叶轮出口模具用以成型各叶片的后端部(530b)与该叶轮的环形外后盖板(521)及该叶轮的环形外前盖板(511),使环形外后盖板、环形外前盖板与该些叶片于同一成型步骤一次性地成型为一体。还公开了使用上述方法制得的三维塑胶叶轮。上述叶轮中各部件均可使用模具生产,且可使用机器自动脱模,具有生产价值。

Description

离心泵的三维塑胶叶轮的制造方法及其结构 技术领域
本发明关于一种泵叶轮的制造方法,特别是一种针对工程塑胶材质的泵叶轮的制造方法,适合应用于具有高效率三维流道的塑胶叶轮的生产,可采用射出成型或移转成型等方法,并可解决传统二维叶轮容易生产却低效率的问题。
背景技术
节约能源与减少二氧化碳排放的议题被各国所重视,提升动力机械设备效率也成为各从业者努力的方向,国际能源总署(International Energy Agency,IEA)统计,泵用电量约占马达用电的19%,且自2015年起,欧盟规定水泵的最小能效指标(Minimum Efficiency Index,MEI)须大于或等于0.4,因此从业者无不致力于开发高效率泵,但同时也必须考虑到生产经济性。
参考文献1,Paul Cooper所着并由McGRAW-HILL于2001年发行的《PUMP HANDBOOK》的第三版2.1节(Centrifugal pump theory)、其图9(Optimum geometry as a function of BEP specific speed)及图10(Efficiency of centrifugal pumps versus specific speed),说明了在泵产业普遍使用的参数,称为比转速(specific speed)的定义如下:
Figure PCTCN2019107820-appb-000001
该文献中也提到泵叶轮几何、操作区域(流量Q,扬程H)的关系,离心泵比转速大约落在380~1750
Figure PCTCN2019107820-appb-000002
之间,比转速愈大的叶轮,叶片扭曲的程度愈大,文献中也提到,二维叶片是典型的低比转速叶片,且二维叶片在轴向(z轴)各个位置均有相同线形(shape),所以叶片上缘曲线(shroud edge)与下缘曲线(hub edge)将会重叠,反之,三维叶片上缘曲线(shroud edge)与下缘曲线(hub edge)会有不同线形(shape)及叶片角(blade angle)。
该参考文献1的图19(conformal transformation of blade shape)说明了由叶片流线展开图是由保角变换方法(conformal transformation method)绘制,可以明确地定义出不同流线由出口到进口间在流线坐标
Figure PCTCN2019107820-appb-000003
上的叶片角(blade angle)变化,可以看出叶片出口角度相同,但愈靠近进口端,上缘曲线(shroud edge)与下缘曲线(hub edge)的叶片角(blade angle)差异愈大,叶片扭曲愈大。
离心式叶轮(centrifugal impeller)是转动流体机械的一个重要元件,可用于输送含液体或气体的流体,可应用于风机(wind turbine)或泵(pump)。泵的离心式叶轮被安装于涡卷泵壳(volute)内,流体由涡卷泵壳的进口流入,并从叶轮的轴心的进口处轴向地进入叶轮。叶轮的内部具有多个由弧形的叶片(blade)所构成的径向或斜向的叶片流道(blade flow channel)。转轴驱动叶轮旋转,并通过离心力(centrifugal force)与科氏力(Coriolis Force)将机械能经由这些叶片传递给流体,以提高流体的流速与压力。随着叶片的导引,流体的运动方向从轴向转成径向,且流体在离开叶片流道后进入涡卷泵壳的涡卷流道,其高速动能经由涡卷流道的扩散回收为静压,并从涡卷泵壳的出口排出。
在轴向方向上,离心式叶轮的叶片的前后分别设置有前盖板(shroud)与后盖板(hub),用以限制流体于叶片流道中的流动。后盖板是直接连结转轴,以将轴动力传递给叶片。前盖板是用来限制流体的流动,还可增加叶片的整体强度及承担涡卷泵壳内侧与叶片流道之间的压差。
一般离心泵可搭载开放式叶轮、半开放式叶轮或封闭式叶轮等。开放式叶轮中没有设置前盖板,且仅保留部分的后盖板来连结叶片与转轴,叶轮安装在泵壳前壁面与后壁面之间,主要依赖叶轮与泵壳前壁面与后壁面之间的间隙来控制流场。半开放式叶轮中同样没有设置前盖板,但具有完整的后盖板来连结叶片与转轴,主要依赖叶轮与泵壳前壁面的间隙来控制流场。封闭式叶轮中则通常同时具备前盖板与后盖板,叶轮流道间没有间隙具有较高的效率,且前盖板、后盖板与叶片通常制成一体,以提供足够的机械强度及有效隔离各叶片流道的液体。
于此,请参阅图1A、图1B与图1C,其中图1A为一个具有二维叶片的传统叶轮的轴面投影图,图1B为图1A的叶轮的平面投影图,而图1C为图1A的二维叶片的流线展开图。需先说明的是,由于叶轮为转动式机械元件,故通常使用圆柱坐标来描述叶轮的几何形状,如图1A所示,由轴方向剖切叶轮的表面称为r_z面或轴面(meridional),可以描述流体自叶轮进口进入叶轮后由轴向转至径向的流道的几何形状,也可以描述流体在前盖板11与后盖板12之间的流道的几何形状,而在图1B中的r_θ面为与轴心面垂直的投影面,前盖板11具有一内表面111,内表面111在r_z面上的构成元素(surface element)为平行于r轴的直线,换句话说,内表面111为一个二维的圆盘平面;后盖板12具有一内表面121,内表面121在r_z面的构成元素为非平形于r轴的直线,而使内表面121呈一圆锥面。
于图1A中,叶片13介于前盖板11与后盖板12之间,前盖板11到后盖板12的距离称为轴面宽度(meridional width)131,而轴面宽度131的变化是由叶片13最宽的进口宽度B11逐渐缩小到叶片13最窄的出口宽度B12,在r_z面(轴面)坐标上叶片13的进口有叶片前缘(leading edge)132,叶片13在结合前盖板11的一侧有上缘曲线(shroud edge)134,叶片13在结合后盖板12的一侧有下缘曲线(hub edge)135,弧形的叶片13的出口侧有尾缘(trailing edge)136,而上缘曲线134与下缘曲线135中间还具有一流道中线(mean)138。于图1B中,从r_θ面坐标的角度来看,上缘曲线134与下缘曲线135完全重叠,两个叶片13之间可具有一扇形流道宽度(sector width)137,而扇形流道宽度137的变化自叶片13的进口至出口随半径增大而增大。于图1C的流线展开图中,纵坐标为流线坐标
Figure PCTCN2019107820-appb-000004
Figure PCTCN2019107820-appb-000005
代表r_z面从m=0的上缘曲线134、流道中线(mean)138与下缘曲线135的长度,横坐标为∫rdθ代表从∫rdθ=0的上缘曲线134、流道中线(mean)138与下缘曲线135在r_θ面投影的圆周长度。由于图1B已清楚看到二维的叶片13的上缘曲线134与下缘曲线135完全重叠,因此各流线叶片角β,tanβ=dm/rdθ,完全相同,且也与r_θ面坐标上看叶片13的角度相同。
于图1D中,现有的二维塑胶叶轮的制造方法采用叶片与后盖板一体成型,成型方法采用简单的固定模与可动模方式即可轻易成型,再与前盖板利用热融或熔接柱组合成一完整叶轮。
考量流体从泵进口输送进入叶轮后是由轴向流动转为径向流动及圆周运动,为了使离心式叶轮达到高效率,进口段的叶片形状必须为2.5维或三维曲面,或称之为扭曲叶片。2.5维叶片因叶片角度比较符合流场的需求因而其效率远高于二维叶片,但是,仍然只有具有三维曲面的叶片才能完全符合流场的需求,达到真正高效率的目标。于此,请参阅图2A、图2B与图2C,其中图2A为一个没有上盖板且具有三维叶片的传统叶轮的轴面投影图,图2B为图2A的叶轮的平面投影图,而图2C为图2A的三维叶片的流线展开图,在图2B中,叶片曲面构成元素为弧线称为三维曲面,若叶片曲面构成元素为直线则称为2.5维曲面。相较于前述二维的叶片,图2A中的叶片23设置于后盖板22上,叶片23的轴面宽度231的变化是由叶片23最宽的进口宽度B21逐渐缩小到叶片23最窄的出口宽度B22,后盖板22具有一内表面221,内表面221在r_z面上的构成元素为弧线,使得内表面221呈内凸锥面;在此情况下,成型此类的叶轮时,模具的流道滑块必须要分拆成多组,否则叶轮成型后流道滑块将无法取出,尤其是在叶片的进口宽度B21处最难以将流道滑块取出。
在r_z面(轴面)坐标上叶片23的进口有叶片前缘232,叶片23在远离后盖板22的一侧有上缘曲线234,叶片23在结合后盖板22的一侧有下缘曲线235,弧形的叶片23的出口侧有叶片尾缘236,而上缘曲线234与下缘曲线235中间还具有一流道中线238。于图2B中,从r_θ面坐标的角度来看,两个叶片23之间可具有一扇形流道宽度237,但上缘曲线234与下缘曲线235之间并不重叠,特别是叶片前缘232附近的叶片23具有三维扭曲叶片(twisted blade portion)233,扭曲叶片233成弧形并往进口轴向延伸,而越靠近叶片出口的上缘曲线234与下缘曲线235逐渐趋近于彼此。于图2C的流线展开图中,β角代表叶片23的三度空间角度,在叶片进口位置(m靠近100%处),上缘曲线234与下缘曲线235 有不同的β角,因此弧形的叶片前缘232横跨在二条曲线之间而构成曲线元素(curve line element)239a,为平行于叶片前缘232的弧线,在叶片出口处上缘曲线234与下缘曲线235逐渐接近,而曲线元素239a也逐渐由弧线变成直线,现有技术称这样的结构为三维叶片曲面239。
参阅图2D,三维叶片的上缘曲线234与下缘曲线235由多个圆弧线衔接构成,每一个圆弧的圆心位置不同且半径也不同,在扇形流道宽度237的模具滑块由径向取出时,会与成型的叶片23产生干涉。
参阅图3A、图3B与图3C,其中图3A为一个没有上盖板且具有2.5维叶片曲面的传统叶轮的轴面投影图,图3B为图3A的叶轮的平面投影图,而图3C为图3A的2.5维叶片的流线展开图。图3A中的叶片33设置于后盖板32上,叶片33的轴面宽度331的变化是由叶片33最宽的进口宽度B31逐渐缩小到叶片33最窄的出口宽度B32,后盖板32具有一内表面321,内表面321在r_z面上的构成元素为弧线,使得内表面321呈内凸锥面,在r_z面(轴面)坐标上叶片33的进口有叶片前缘332,叶片33在远离后盖板32的一侧有上缘曲线334,叶片33在结合后盖板32的一侧有下缘曲线335,弧形的叶片33的出口侧有尾缘336,而上缘曲线334与下缘曲线335中间还具有一流道中线338。于图3B中,从r_θ面坐标的角度来看,两个叶片33之间可具有一扇形流道宽度337,上缘曲线334与下缘曲线335之间并不重叠,特别是叶片前缘332附近的叶片33具有2.5维扭曲叶片333,呈直线并往进口轴向延伸。在叶片33的进口位置,直线的叶片前缘332横跨在上缘曲线334与下缘曲线335之间而构成叶片曲面339,叶片曲面339是由直线元素339b所构成,现有技术称这样的结构为2.5维叶片曲面。
现有技术在制造2.5维叶轮时采用前盖板与叶片一体成型,模具于扇形流道的滑块沿着叶片曲面的直线元素方向分拆,不会有干涉问题,前盖板与叶片成型后再利用热融或熔接柱与后盖板组合成一完整叶轮,但2.5维叶片的上缘曲线334与下缘曲线335由多个曲线衔接构成,因此扇形流道宽度337处的模具滑块 由径向分拆时仍会与成型后的叶片产生干涉,但三维的扭曲叶片的叶片曲面由曲线元素构成,扇形流道宽度337处的模具滑块若沿着叶片曲面的曲线元素方向分拆,仍然会与叶片产生干涉,因此无法采用相同模式成型,况且后盖板为动力传动元件,虽然可利用热融或熔接柱与叶片组合,但仍非于单一制程中一体成型,故后盖板与叶片之间还是存有接缝或结构上的不连续性,导致结构强度较弱成型而无法承受高温(例如200℃)及高负荷条件。
综上所述,高效率的塑胶叶轮必须具有前盖板、后盖板与三维的扭曲叶片,并且必须克服制造成型的困难点。
此外,传统上金属材质的泵要制成具有前盖板与后盖板的三维曲面叶片,一般是采用消失模的铸造工艺或使用钣金件制成各种零件后再焊接为一体,目前已是相当成熟的技术。而传统上塑胶材质的泵要制成封闭式三维叶片则有以下几种现有技术:
1.使用五轴加工机器,将一整块塑胶实体雕刻成具有三维叶片曲面的叶轮,然此方法会造成大量的材料浪费及高昂的加工成本,流道宽度狭小或叶片具有高度扭曲形状等情况都不适宜采取这样的加工方式;
2.使用五轴加工机器,将一整块塑胶实体雕刻成具有2.5维叶片曲面的叶轮,虽然较前一种方式可方便地使用铣刀腹加工(flank milling),但这样的加工方法还是会造成大量的材料浪费及高昂的加工成本,并且,叶片曲面的直线元素降低了叶片的扭曲程度,同时也降低了泵的效率,因此仍无法完全满足流场需求;
3.将叶轮的前盖板、多个叶片及后盖板等三个部分各别使用模具成型生产后,再利用超音波或热熔接等方式组装一体,但此加工方法的叶片、前盖板与后盖板并非于单一制程中一体成型,元件之间存有接缝或结构上的不连续性,导致结构强度较弱,容易在高工作温度(如约200℃)或高负荷的应用场合中损坏;
4.将整组叶轮扭曲叶片分成两组,在前盖板与后盖板上分别有部分叶片一体生产,多数叶片是偶数各分拆一半,再利用超音波或熔接组合为叶轮,此种方 式虽然增加了叶片间的扇形流道宽度(sector width)空间,但叶片前缘(leading edge)的扭曲叶片无法直接以轴向或径向脱模,仍然需要滑块脱模机构,且如此设计有一半叶片数仅靠超音波或热熔方式连结,仍然存在结构强度弱,对于高温(例如200℃)、高负荷的应用场合容易损坏的问题;
5.采用二维的叶片几何取代三维的扭曲叶片,以用简单的圆弧线取代具变化的的流场流线,借此,得以让模具滑块被顺利取出,但二维叶片的泵性能低,反而使效率降低而无法满足欧盟的泵能效要求;
6.另有从业者采用消失模的方式成型叶轮,但消失模无法重复使用,且必须额外使用化学药剂或加热使消失模模芯分解,导致制造工序繁复并增加成本,不符经济生产需求;
7.还有从业者将流道中的模具滑块分层,改为由多个滑块组成一组流道模具滑块的方式,使得模具滑块可依序从流道取出。过程中,后取出的模具滑块可利用先取出的模具滑块所让出的空间而无阻碍地取出,但此方法仅适用于流道宽度较大、流量大且扬程较低,中高比速率的泵机型,这类的泵机型才具有足够空间将模具滑块分层,此外,此方法的脱模工序繁复,且退模的机构设计复杂,反而增加生产成本。
以下,列举一些关于叶轮制造的现有公开的参考文献。
参考文献2(中国专利CN 103128974 A)
参考文献2有关于一种塑料闭式叶轮的生产工艺,指出现有技术为了容易脱模,泵叶轮叶片采用单圆弧会使叶轮的效率降低,封闭式叶轮采用双圆弧叶片虽然可以提高效率,却无法抽掉叶轮模具的塞片,压制不出叶轮,无法生产一体成型的叶轮。参考文献2提出将前盖板与后盖板分两套模具生产,再使用塑料螺丝组合,但参考文献2并未提到如何生产三维扭曲叶片,参考文献2的图示也显示其叶片模具为轴向单方向脱模分离,仅适用于二维叶片,参考文献2 也未说明使用塑料螺丝组合叶片取代一体成型的可靠度,是否能应用于高温、高负荷场合。
参考文献3(中国专利CN 104131995 A)
参考文献3有关于一种水泵叶轮的制造方法及水泵,提出以一动模及一静模使用注塑或压铸或挤压方式制造出叶轮,但参考文献3指出由于不使用模具滑块,故在叶轮的后盖板会形成缺口,此缺口会影响效率。若使用嵌件填满叶轮后盖板上的缺口,可以提高效率,但参考文献3中叶轮功率的传递是通过轴心施加扭矩于轴孔及后盖板,由于后盖板存在极大的缺口,仅剩靠近轴孔处少量面积,后盖板与叶片连结需具备泵功率传递的机械结构强度,参考文献3图式显示后盖板与叶片连结位置在轴孔边属于半径小的区域,需要承受较大扭矩负荷,且后盖板面积需限制于叶轮进口范围内才能脱模,如此将会使参考文献3仅适用于较大流量,较低扬程(中高比转速)的离心泵。
参考文献4(中国专利CN 105179304 A)
参考文献4有关于一种塑料防腐耐磨泵及其叶轮的成型模具,指出塑料离心泵效率普遍比金属泵要低,主要是因为高效率的离心泵叶轮,要求叶轮流道的轴向和径向都要有符合水力模型的扭曲度,塑料叶轮在现有的压模技术中,模具难以从扭曲度很大的流道中脱出来,而采用铸造工艺成型的金属叶轮,型块可以用击碎的方式脱出。参考文献4提出了一种叶轮模具可以生产出塑料三维扭曲叶片,但参考文献4提出的叶轮流道滑块(型块)分为三组,必须依序取出,这会造成脱模工程繁复,生产成本提高,且难以设计自动脱模机构,无法符合经济生产需求。
参考文献5(中国专利CN 107471547 A)
参考文献5有关于制造离心叶轮的模具,针对离心式风机的叶轮提出一种模具机构设计,将叶轮流道内滑块(模芯)分成两组,利用联动机构设计使之可以生产出在r_z面具有宽度变化的叶轮,但一般离心式风机叶片长度较泵叶片长度 短,参考文献5图式也显示其实施例为二维叶片,参考文献5也提到叶轮流道内滑块(模芯)退模与进模路径为直线,显示其模具机构适合的叶片设计并不适用于离心泵需要的三维扭曲叶片。
参考文献6(中国专利CN 107092763 A)
参考文献6有关于具有可铸造性的透平机械叶轮的三维设计,参考文献6说明了各种转动流体机械提高效率的重要方法之一就是的叶轮的三维设计,但必须设计出可以适合生产的流道几何,参考文献6对于金属铸造的三维叶轮提出一种兼顾制造可行性评估的设计方法,但参考文献6并未对适合射出成型或移转成型的塑胶泵叶轮提出制造方案或对策。
参考文献7(中国专利CN 202209308 U)
参考文献7有关于一种高效的全三元叶轮,参考文献7提出一种三维叶轮的设计,用以提高效率,但参考文献7内容说明该新型叶轮设计使用铝合金材质,参考文献7图式显示其叶轮为半开放方式叶轮,应用于风机,参考文献7并未针对制造方式提出说明。
参考文献8(中国专利CN 203009383 U)
参考文献8有关于一种小流量闭式全铣制三元叶轮,属于离心压缩机技术领域,参考文献8提出在叶轮前盖板上增加一环型槽,配合叶轮进口及出口,用机械加工方式制造出叶轮,可以免除使用焊接或铆接等方式组合叶轮,但使用机械加工方式雕刻叶片流道会有制造成本过高的问题,参考文献8也并未对生产经济性提出说明,且前盖板上的环型槽会对流道内的流动形成干扰,降低叶轮效率。
参考文献9(中国专利CN 206753985 U)
参考文献9有关于一种闭式叶轮,参考文献9提出了一种组合前盖板与叶轮的方法,通过燕尾槽及限位块的机构设计增加轴方向的固定,防止运转松脱,参考文献9并未说明标的物的材质及三维叶片流道的生产方式。
参考文献10(专利WO2007/046565 A1)
参考文献10针对汽车冷却循环用泵叶轮提出一体射出成型对策,参考文献10提到一体射出成型叶轮可以提高叶片效率并且提高叶轮可靠度,但参考文献10图式显示其叶片为二维叶片,专利内容并未对于三维叶片流道的塑胶叶轮生产方式说明。
参考文献11(中国专利CN 102264525 A)
参考文献11有关于泵叶轮的喷铸方法以及泵叶轮,参考文献11指出由于叶轮的流道会出现侧凹,即靠近叶轮进口侧有侧弯与泵进口衔接,而侧凹会阻碍沿流道径方向取出模芯,现有技术必须借助于消失模芯,或组装多部件以组成叶轮,为降低成本,参考文献11提出一种将离心泵叶轮的流道中的模具滑块取出的方法,模具滑块可重复使用取代消失模芯,先由径向取出一部分模芯,使叶轮的流道让出空间,再依序取出具有侧凹的模芯,参考文献11甚至提出一种优化的实施例,通过设计一组连动机构让数个模芯一起取出,但若无设计自动脱模机构,采用人工脱模,会造成脱模工程繁复,生产成本提高,无法符合经济生产需求,若采用参考文献11所提出连动机构,则必须要有足够的流道空间,特别是轴向宽度,用以设计导引路径,离心泵的叶轮流道及出口轴向宽度会依泵型式而不同,通常属于流量小,扬程高(低比转速)的机型具有较小出口宽度,甚至仅有数毫米,无法将模芯分成数组,也无法设计导引机构,对流量大,扬程低(中高比转速)的机型,叶片扭曲大才能达到较高效率,模芯必须在轴向分割及轴面分割,模芯数量会增加,退模机构设计困难度也会增加。
参考文献12(专利WO2014/139578 A1)
参考文献12有关于一种泵专为输送含有杂质颗粒的液体,例如含砂粒的水,此类液体会造成叶轮磨损,因此需要选用耐磨耗的叶轮材质,参考文献12选用较软的材质,例如橡胶,作为叶轮接液材质用以抵抗磨耗,同时利用橡胶类材质具弹性容易变形的特型让叶轮流道中的模具滑块容易取出,但本参考文献12 限定叶轮材质为弹性率高的橡胶类材质的同时也限定了泵的应用范围,特别是高温(例如200℃)、高负荷操作条件,塑胶泵的接液材质通常必须使用氟塑胶,且无轴封泵的叶轮必须具备抵抗轴推力负荷的机械强度且必须与泵壳进口侧保持接触摩擦或极小间隙以减少内部泄漏损失,橡胶类制成的叶轮使用温度视材质而定,一般无法达200℃,且因为弹性率高,在应用中为传递功率也会产生变形,无法满足无轴封泵应用条件。
参考文献13(台湾专利TW 201640027 A)
参考文献13有关于用于流体操作式泵的离心式叶轮以及该叶轮的制造方法,参考文献13将叶轮分成两组,前盖板与一半叶片数,后盖板与一半叶片数,并利用定位孔与超音波结合前后盖板与叶片,此方式仅增加叶片间生产模具空间,但参考文献13中并未说明叶轮中央吸水口的叶片扭曲段如何使模具与叶片成品脱模分离,且参考文献13中的叶轮仍有一半数量的叶片并未与负责动力传递的后盖板一体连接,仅通过超音波熔接或化学胶、螺丝等方式组合,也就是参考文献13实施例中的叶轮将有一半的叶轮负荷仅通过接触面积极小的叶片与盖板连接组合方式传递,对于塑胶材质于高温(例如200℃)、高负荷下存在机械强度结构问题,参考文献13并未对此类应用场合的可靠度提出说明。
参考文献14(美国专利US 2018/0243955A1)
参考文献14有关于一种叶轮制造方法,使用射出成型方法,但叶轮的扭曲叶片于模具中位于后盖板外缘,与后盖板仅有一小部分连结,不与后盖板有重叠,故不需模具滑块,待射出后再将叶片折转与后盖板卡住连结组合成叶轮,参考文献14虽然让叶片形状不受限制的生产,可以产生较好的叶轮效率,但参考文献14提出的叶片连结后盖板方式无法使叶轮承受高扭矩负荷,故仅适用于小功率设备,参考文献14内容也说明其技术领域属于汽车冷却风扇等小功率的应用。
参考文献15(美国专利US 10016808 B2)
参考文献15有关于一种消失模模芯的构造用以生产金属或塑胶材质的三维扭曲叶轮,消失模模芯于叶轮灌注或射出成型完成后再使用化学药剂或热使消失模模芯分解,制造工序繁复且成本高,不符经济生产需求。
参考文献16(欧洲专利EP 0734834A1)
参考文献16有关于封闭式塑胶叶轮的模具结构,用以生产一体成型叶轮,利用上下两片组合由径向抽取的滑块模芯及模具机构,并利用射出成型方法生产叶轮,但参考文献16未使用轴向分离的模具,故无法制造三维扭曲叶片,参考文献16图式也显示叶轮为二维构造,因此难以达到高效率需求。
发明内容
本发明提出了一种可以使用模具成型生产离心泵的三维塑胶叶轮的制造方法,叶轮之后盖板包含环形外后盖板与内后盖板,环形外后盖板具有一第一通孔,叶轮之前盖板包含环形外前盖板与内前盖板,环形外前盖板具有一第二通孔,各叶片之前端部为扭曲叶片并位于环形外后盖板的第一通孔与环形外前盖板的第二通孔之间,环形外前盖板具有一内表面,其在r_z面上的构成元素可为弧线;环形外后盖板具有一内表面,其在r_z面上的构成元素可为弧线。制造方法利用扭曲叶片模具与叶轮出口模具来实现,扭曲叶片模具可以通过第一通孔与第二通孔,以简单的固定模与可动模成型的方法来成型出叶片的扭曲叶片,扭曲叶片在前盖板与后盖板的中心部分成环状排列并在第一通孔与第二通孔之间悬空成型,扭曲叶片成型后的退模困难度大幅降低;同时,利用叶轮出口模具来一体成型叶片除扭曲叶片以外的其余部分,包含承受动力传递的环形外后盖板;环形外前盖板的第二通孔、环形外后盖板的第一通孔可使用其他补充零件(如内前盖板与内后盖板)来补齐,这些补充零件均可以用简单模具成型,再利用热融或熔接柱组合于环形外后盖板与环形外前盖板上而构成一完整的叶轮,其中扭矩传递可经由环形外后盖板直接传递到承受负荷的叶片。
本发明提出了一种可以使用模具成型生产的离心泵的三维塑胶叶轮,各叶片包含彼此相连的一前端部以及一后端部,前端部包含第一上缘曲线与第一下缘曲线,后端部包含一第二上缘曲线与第二下缘曲线,各叶片前端部即前述的扭曲叶片,后盖板包含一环形外后盖板与一内后盖板,环形外后盖板具有一第一通孔;前盖板包含一环形外前盖板与一内前盖板,环形外前盖板具有一第二通孔;各叶片的前端部位于环形外后盖板的第一通孔与环形外前盖板的第二通孔之间;各叶片的后端部与环形外后盖板及环形外前盖板于同一成型步骤一次性地成型为一体。环形外后盖板用于传递扭矩到这些叶片。内前盖板安装于第二通孔,内后盖板安装于第一通孔,以接合各叶片的前端部,从而与叶片、环形外后盖板及环形外前盖板共同构成一完整的叶轮。
本发明的一种塑胶离心式叶轮结构改良,主要目的在于提供可以使用模具大量生产降低制造成本,使离心式叶片以三维曲面几何达到高效率性能,并能适用于高温(例如200℃)、高负荷操作条件。
本发明的离心式叶轮成型时,后盖板的环形外后盖板在叶轮后端部与每一叶片为一起成型,使得扭矩传递可确实地经由后盖板的环形外后盖板传递到所有的叶片上。
在叶片上的第二上缘曲线与第二下缘曲线的叶片角不同因此于叶片的流线展开图没有重叠,在此情况下,可利用二片滑块模具芯子径向依序抽出退模,或者把r-z面的环形外前盖板跟环形外后盖板设计成互为平行,叶轮出口模具就可以用单一简易滑块由径向滑出。
在叶片上的第二上缘曲线与第二下缘曲线重叠时,叶轮出口模具可以不使用滑块模具而直接成型,再利用热融或熔接柱与前盖板及内后盖板组装结合为一完整的三维塑胶叶轮,因为前盖板只承担流体的压力差并提供叶轮成型后的整体强度,所以前盖板不会有因高温高负荷而松脱的问题。
大致上,生产叶轮的模具分为2个组件,第一组件是扭曲叶片模具,用来成型叶轮进口处的三维扭曲叶片,扭曲叶片模具可具有固定模与可动模,固定模与可动模可沿轴向从环形外前盖板跟环形外后盖板的第一与第二通孔朝相反方向抽出退模;第二组件是叶轮出口模具,用来成型叶轮的外侧流道,具有与外侧流道相同数目的滑块或滑块组,这些滑块或滑块组可沿径向方向从流道曲线抽出退模。环状的环形外前盖板跟环形外后盖板及每一叶片于同一成型步骤一次性地成型为一体,或者是仅叶片与外后盖板成型于同一成型步骤一次性地成型为一体。
本发明所公开的离心泵的三维塑胶叶轮的制造方法及其结构,至少可达到以下效果:1.各部件均可使用模具生产,且可使用机器自动脱模,具生产价值;2.扭曲叶片可采取固定模与可动模脱模分离的方式制成,而三维扭曲的叶片几何有助于提高泵性能;3.叶片与环形外后盖板以单一制程步骤一体成型,具有较高的结构强度,后盖板直接传递扭矩到叶片,有助于让叶轮在高工作温度(如约200℃)下或高负荷的应用场合中运行而不易损坏。
以上之关于本发明公开所公开内容的说明及以下的实施方式的说明,用以示范与解释本发明的精神与原理,并且提供本发明的权利要求更进一步之解释。
附图说明
图1A为一个具有二维叶片的传统塑胶叶轮的轴面投影图。
图1B为图1A的塑胶叶轮的平面投影图。
图1C为图1A的二维叶片的流线展开图。
图1D为图1A的二维叶片的立体展开图。
图2A为一个没有上盖板且具有三维叶片的传统塑胶叶轮的轴面投影图。
图2B为图2A的塑胶叶轮的平面投影图。
图2C为图2A的三维叶片的流线展开图。
图2D为图2A的三维叶片曲线的多段圆弧的示意图。
图3A为一个没有上盖板且具有2.5维叶面曲面的传统塑胶叶轮的轴面投影图。
图3B为图3A的塑胶叶轮的平面投影图。
图3C为图3A的三维叶片的流线展开图。
图4A为本发明第一实施例的塑胶叶轮的轴面投影图。
图4B为图4A的塑胶叶轮的平面投影图。
图4C为图4A的叶片的流线展开图。
图4D为本发明第一实施例的塑胶叶轮的分模简单示意图。
图4E为本发明第一实施例的塑胶叶轮的局部放大侧剖图。
图4F为本发明第一实施例的塑胶叶轮的变体的侧剖图。
图4G为本发明第一实施例的塑胶叶轮的变体的局部放大侧剖图。
图5为本发明第一实施例的塑胶叶轮的组合剖面图。
图6A~6B为本发明第一实施例的塑胶叶轮组合前的不同视角的分解图。
图7A~7B为本发明第一实施例的塑胶叶轮组合前的不同视角的分解图。
图8A为本发明第二实施例的塑胶叶轮的轴面投影图。
图8B为图8A的塑胶叶轮的平面投影图。
图8C为图8A的叶片的流线展开图。
图8D为本发明第二实施例的塑胶叶轮的分模简单示意图。
图9为本发明第二实施例的塑胶叶轮的组合剖面图。
图10A为本发明第三实施例的塑胶叶轮的轴面投影图。
图10B为图10A的塑胶叶轮的平面投影图。
图10C为图10A的叶片的流线展开图。
图10D为本发明第三实施例的塑胶叶轮的分模简单示意图。
图11为本发明第三实施例的塑胶叶轮的组合剖面图。
图12为本发明第四实施例的塑胶叶轮的组合剖面图。
其中,附图标记:
5叶轮
7转子
8磨损环
11、51前盖板
12、22、52后盖板
13、23、33、53叶片
54进口
55金属补强件
131、231、331、531轴面宽度
132、232、332、532叶片前缘
134、234、334、534上缘曲线
135、235、335、535下缘曲线
136、236、336、536叶片尾缘
137、237、337、537扇形流道宽度
138、238、338、538流道中线
233、333扭曲叶片
239、339叶片曲面
239a曲线元素
339b直线元素
511环形外前盖板
512内前盖板
512a磨损环安装部
512b热熔接面
512c熔接孔
521环形外后盖板
521a动力传动安装部
522内后盖板
522a熔接孔
522b热熔接面
530a前端部
530b后端部
534a热熔接面
534b熔接柱
535a热熔接面
535b熔接柱
5110第二通孔
121、221、321、5111内表面
5210第一通孔
111、5211内表面
5341第一上缘曲线
5342第二上缘曲线
5351第一下缘曲线
5352第二下缘曲线
B11、B21、B31、B51叶片进口宽度
B12、B22、B32、B52叶片出口宽度
Figure PCTCN2019107820-appb-000006
流线坐标
M1扭曲叶片模具
M11固定模
M12可动模
M2叶轮出口模具
M21第一滑块
M211第一接触面
M22第二滑块
M221第二接触面
β叶片角
β 2叶片出口角度
具体实施方式
公开以下在实施方式中详细叙述本发明的详细特征以及优点,其内容足以使任何本领域的技术人员了解本发明的技术内容并据以实施,且根据本说明书所公开的内容、权利要求保护范围及附图,任何本领域的技术人员可轻易地理解本发明相关的目的及优点。以下的实施例进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。
此外,以下将以图式公开本发明的实施例,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到的是,这些实务上的细节非用以限制本发明。
并且,为达图面整洁的目的,一些现有的惯用结构与元件在图式可能会以简单示意的方式示出。另外,本发明的附图中部份的特征可能会略为放大或改变其比例或尺寸,以达到便于理解与观看本发明的技术特征的目的,但这并非用于限定本发明。依照本发明所公开的内容所制造的产品的实际尺寸与规格应是可依据生产时的需求、产品本身的特性、及搭配本发明如下所公开的内容据以调整,于此先声明。
第一实施例
首先,请参阅图4A~图4C及图5,图4A为本发明第一实施例的叶轮5的轴面投影图,图4B为图4A的叶轮5的平面投影图,图4C为图4A的叶片53的流线展开图,而图5为本发明第一实施例的叶轮5的组合剖面图。本实施例提出一种用于离心泵且具有三维流道的塑胶叶轮5。
于本实施例中,叶轮5包括多个叶片53、一环形外后盖板(hub rim part)521、一内后盖板(rear inner plate)522、一环形外前盖板(shroud rim part)511以及一内前盖板(front inner plate)512。其中,如图5所示,环形外前盖板511与内前盖板512可共同构成一前盖板(shroud)51,而环形外后盖板521与内后 盖板522可共同构成一后盖板(hub)52,此外,如图4A或图4F所示,环形外前盖板511具有一内表面5111,其在r_z面上的构成元素为弧线;环形外后盖板521具有一内表面5211,其在r_z面上的构成元素为平行于r轴的直线且构成一平面,换句话说,内表面5211为一个二维的圆盘平面。
进一步来看,如图4A或图4B所示,环形外后盖板521具有一第一通孔5210,环形外前盖板511具有一第二通孔5110,各叶片53至少部分悬置于环形外前盖板511的第二通孔5110以及环形外后盖板521的第一通孔5210之间。
详细来说,针对叶片53,在r_z面(轴面(meridional))坐标上叶片53靠近进口54处定义有叶片前缘(leading edge)532,叶片53在结合环形外前盖板511的一侧定义有上缘曲线(shroud edge)534,叶片53在结合环形外后盖板521的一侧定义有下缘曲线(hub edge)535,叶片53最远离进口54的一侧定义有叶片尾缘(trailing edge)536,而上缘曲线534与下缘曲线535中间还定义有一流道中线(mean)538。更进一步来看,于本实施例中,叶片53可包含彼此相连的一前端部530a及一后端部530b,前端部530a是叶片53上较靠近叶片前缘532的部分,后端部530b是叶片53上较靠近叶片尾缘536的部分;也可以说,前端部530a是叶片53较靠近进口54的部分,而后端部530b是叶片53较远离进口54的部分。并且,于本实施例或其他实施例中,前端部530a的形状的扭曲程度远大于后端部530b,因此,前端部530a为叶片53的三维扭曲部(twisted portion),因而也可称为扭曲叶片。此外,前端部530a是叶片53位于环形外前盖板511的第二通孔5110以及环形外后盖板521的第一通孔5210之间,或者说,叶片53的扭曲叶片位于环形外前盖板511的第二通孔5110以及环形外后盖板521的第一通孔5210之间。此外,前端部530a经由后端部530b连接环形外后盖板521及环形外前盖板511。
另一方面,叶片53的轴面宽度(meridional width)531的变化是由叶片53最宽的叶片进口宽度B51逐渐缩小到叶片53最窄的叶片出口宽度B52。此外, 于图4B中,从r_θ面坐标的角度来看,两个叶片53之间具有一扇形流道宽度(sector width)537,叶片前缘532、上缘曲线534与下缘曲线535之间不重叠。特别地是,如图4A与4B所示,以叶片53的前端部530a与后端部530b为区分,叶片53的上缘曲线534可包含一第一上缘曲线5341及一第二上缘曲线5342,叶片53的下缘曲线535可包含一第一下缘曲线5351及一第二下缘曲线5352,换句话说,第一上缘曲线5341与第一下缘曲线5351分别是指上缘曲线534与下缘曲线535于前端部530a上的部分,而第二上缘曲线5342与第二下缘曲线5352分别是指上缘曲线534与下缘曲线535于后端部530b上的部分。于本实施例中,上缘曲线534中仅第二上缘曲线5342连接环形外前盖板511,而下缘曲线535中仅第二下缘曲线5352连接环形外后盖板521。
于本实施例与其他实施例中,叶片53呈现扭曲状,因此,叶片53的后端部530b的第二上缘曲线5342与第二下缘曲线5352于叶片的流线展开图(如图4C)上不相重叠,且叶片53的前端部530a上的第一上缘曲线5341与第一下缘曲线5351的叶片角不同,因而第一上缘曲线5341与第一下缘曲线5351于叶片53的流线展开图(如图4C)上亦不相重叠,且从该流线展开图来看,前端部530a上的第一上缘曲线5341与第一下缘曲线5351于叶轮5不相重叠的情形更为明显,因此叶片53的前端部530a相较于后端部530b呈现更高度的扭曲几何。
具体来说,在图4C的叶片53的流线展开图可更清楚看到,叶片出口角度β 2相同,愈靠近进口54(即越靠近叶轮5的轴中心),上缘曲线534与下缘曲线535的叶片角(blade angle)β差异愈大,这代表叶片扭曲程度愈大,特别是叶片53于叶片前缘532附近具有三维扭曲的前端部530a,因此本实施例的前端部530a不能以径向滑移的滑块来生产,而是需要用特殊脱模方式生产,其内容将于后续段落详述。
进一步地,请参阅图4D,为本实施例的叶轮所采用的模具的分模简单示意图。于本实施例与其他实施例中,用于一次性制成叶轮5的模具可分为两 个单元,如图所示的扭曲叶片模具M1与叶轮出口模具M2。扭曲叶片模具M1可用以成型位于环形外后盖板521的第一通孔5210与环形外前盖板511的第二通孔5110之间的高度扭曲的前端部530a(即扭曲叶片)。详细来说,扭曲叶片模具M1例如可包含一固定模M11以及一可动模M12,固定模M11与可动模M12相搭配时可用于成型这些叶片53的前端部530a,由于叶片53的上缘曲线534与下缘曲线535于前端部530a处的叶片角的差异程度较大(即叶片53的上缘曲线534与下缘曲线535于前端部530a处从叶片的流线展开图可看到不相重叠的程度较大),因此扭曲叶片模具M1的固定模M11与可动模M12的脱模方式是采取分别往轴向相反的方向脱离环形外后盖板521的第一通孔5210与环形外前盖板511的第二通孔5110。由于各叶片53的前端部530a(即扭曲叶片)悬置于环形外前盖板511的第二通孔5110以及环形外后盖板521的第一通孔5210之间,所以固定模M11与可动模M12于轴向相反的方向脱离时,不会与叶片53、环形外前盖板511及环形外后盖板521有干涉的问题。于此,需声明的是,本发明并非以图式中固定模M11与可动模M12的位置与其上的结构为限,例如于其他实施例中,固定模M11与可动模M12的位置与其上的结构也可互换。
另一方面,由于叶片53的上缘曲线534与下缘曲线535于后端部530b处的叶片角的差异程度较小(即叶片53的上缘曲线534与下缘曲线535于后端部530b处从叶片的流线展开图可看出不相重叠的程度较小),甚至于一些实施例中,叶片53的上缘曲线534与下缘曲线535于后端部530b处在叶片的流线展开图可为互相重叠,因此,叶轮出口模具M2可由多组可径向滑移的滑块或滑块组来一体成型叶片53除了前端部530a(即扭曲叶片)以外的其余部分(如后端部530b)。
如图4D与图4E所示,具体来说,于本实施例中,叶轮出口模具M2可包含多组滑块组,分别用于成型每一流道出口(指叶片53的后端部530b、环形外前盖板511及环形外后盖板521之间的空间),各滑块组可包含一第一滑 块M21及一第二滑块M22,第一滑块M21的至少一部份及第二滑块M22的至少一部份可配合而成型环形外后盖板521的内表面5211、环形外前盖板511的内表面5111及叶片53的后端部530b,其中第一滑块M21具有一第一接触面M211用于成型环形外后盖板521的内表面5211,而第二滑块M22具有一第二接触面M221用于成型环形外前盖板511的内表面5111。于本实施例中,第一滑块M21的第一接触面M211的构成元素为直线且构成一平面,因此,环形外后盖板521的内表面5211可被成型为构成元素为直线的一平面;第二滑块M22的第二接触面M221的构成元素为弧线,因此第二接触面M221呈外凸锥面,在此情况下,环形外前盖板511的内表面5111可被成型为构成元素为弧线的内凹锥面。反过来说,由于叶轮5具有环形外前盖板511的内表面5111的构成元素为弧线且环形外后盖板521的内表面5211的构成元素为直线的需求,因而需要提出前述的第一滑块M21与第二滑块M22,在此需求下,第一滑块M21与第二滑块M22需要以依序取出的方式来脱模,具体来说,待叶片53、环形外前盖板511及环形外后盖板521成型后,可先将第一滑块M21径向滑出,而第二滑块M22则可利用第一滑块M21滑出后所让出的空间而轻易地滑出而不会与成型后的叶片53的后端部530b、环形外前盖板511及环形外后盖板521产生干涉问题。
然而,第一滑块M21与第二滑块M22的几何形状可依据实际需求进行调整,本发明并非以此为限。例如如图4F与图4G所示,在前述实施例的一个变体中,叶轮5的需求改为环形外前盖板511的内表面5111的构成元素为直线且环形外后盖板521的内表面5211的构成元素为弧线,相应地,用于成型环形外后盖板521的内表面5211的第一滑块M21的第一接触面M211的构成元素改为弧线,使得环形外后盖板521的内表面5211可被成型为构成元素为弧线的内凹锥面;而用于成型环形外前盖板511的内表面5111的第二滑块M22的第二接触面M221的构成元素改为直线,使得环形外前盖板511的内表面5111可被成型为构成元素为直线的平面。同样地,第一滑块M21与 第二滑块M22也需要以依序取出的方式来脱模,具体来说,待叶片53成型后,可先将第二滑块M22径向滑出,而第一滑块M21则可利用第二滑块M22滑出后所让出的空间而轻易地滑出而不会与成型后的叶片53的后端部530b、环形外前盖板511及环形外后盖板521产生干涉问题。另外,补充说明的是,第一滑块与第二滑块的几何构型或两者之间相匹配的表面的设计,均可依据实际需求进行调整,本发明并非以此为限。
进一步地,请参阅图5,叶轮5组装于一转子7上。叶轮5包含有前盖板51、后盖板52及前述的多个叶片53。如前所述,前盖板51由前述的环形外前盖板511与内前盖板512所构成。对照图4A与图5可知,内前盖板512是位于环形外前盖板511的第二通孔5110的范围内,且可通过热熔或超音波等方式接合环形外前盖板511与叶片53。此外,内前盖板512设有一磨损环安装部512a,用以安装磨损环8。后盖板52由前述的环形外后盖板521与内后盖板522所构成。对照图4A与图5可知,内后盖板522是位于环形外后盖板521的第一通孔5210的范围内,且可通过热熔或超音波等方式接合环形外后盖板521与叶片53。此外,环形外后盖板521设有一动力传动安装部521a,用以安装于转子7。
至于前述图5的内前盖板512与内后盖板522均可用简单的模具额外进行生产,内前盖板512与内后盖板522分别与该各叶片53的第一上缘曲线5341与第一下缘曲线5351组装结合,从而与环形外前盖板511、环形外后盖板521及叶片53共同构成为一完整的三维塑胶叶轮。例如,图6A~6B为本发明第一实施例的叶轮5组合前的零件的不同视角的分解图,内前盖板512可以经由热熔接面512b与叶片53的热熔接面534a可以热熔或超音波等方式无缝接合,内后盖板522同样可由内后盖板522的热熔接面522b与叶片53的热熔接面535a可以热熔或超音波等方式接合。或者,图7A~7B为本发明的叶轮5组合前的不同视角的分解图,内前盖板512可通过熔接孔512c与叶片53的熔接柱534b以插销方式组合后加热熔合,内后盖板522也可以使用 熔接孔522a与叶片53的熔接柱535b以插销方式组合后加热熔合。由此可知,内前盖板512与内后盖板522,并不是与环形外前盖板511、环形外后盖板521及叶片53于同一成型步骤一次性地成型为一体的结构。
请参阅图5,泵的动力传递是通过动力传动安装部521a及环形外后盖板521再至叶片53,由于此三部分为于同一成型步骤一次性地成型为一体,或者说,叶片53与环形外后盖板521及其动力传动安装部521a之间并没有任何接缝或于制程中额外加工接合的部分,因此不存在接缝或结构上的不连续性,结构强度高。因此,环形外后盖板521可直接接受泵主要负荷或动力传递,有助于提升泵的应用范围。另一方面,虽然内前盖板512及内后盖板522使用简单模具成型,通过热熔或超音波等方式组合成一完整叶轮,但内前盖板512及内后盖板522仅是负责侷限流体在叶轮5的流动范围,不做为直接承受泵主要负荷或动力传递的结构,因此对于泵的结构强度不会有影响。借此,本实施例所提出的叶轮5得以应用于200℃高温与高负荷场合。
第二实施例
请参阅图8A~图8C以及图9,图8A为本发明第二实施例的叶轮5的轴面投影图,图8B为图8A的叶轮5的平面投影图,图8C为图8A的叶片5的流线展开图,图9为本发明第二实施例的叶轮5的组合剖面图。如图所示,本实施例与前述第一实施例的差异在于,第二实施例的叶片53的轴面宽度531从叶片进口宽度B51到前端部530a与后端部530b接合处逐渐缩小,环形外前盖板511具有一内表面5111,其在r_z面上的构成元素为平行于r轴的直线且构成一平面,换句话说,内表面5111为一个二维的圆盘平面;环形外后盖板521具有一内表面5211,其在r_z面上的构成元素为平行于r轴的直线且构成一平面,换句话说,内表面5211为一个二维的圆盘平面。也就是说,内表面5111与内表面5211二者相互平行,也就是前端部530a与后端部530b接合处到叶片出口宽度B52之间的轴面宽度531保持不变,且第二上缘曲线5342与第二下缘曲线5352在r_z面上实质上相平行。也就是说,于本 实施例中,叶片53的前端部530a的轴面宽度531沿着流道中线538从叶片进口宽度B51往叶片出口宽度B52的方向渐缩,但叶片53的后端部530b沿着流道中线538的轴面宽度531不变。如图8B,叶片前缘532、上缘曲线534与下缘曲线535在叶片53的前端部530a处不相重叠,且上缘曲线534与下缘曲线535在叶片53的后端部530b处也不相重叠。
此外,在图8C的叶片53的流线展开图上,叶片出口角度相同,在前端部530a与后端部530b接合处到叶片尾缘536,第二上缘曲线5342与第二下缘曲线5352的叶片角β差异在10度内,因此本实施例的生产模具在叶轮出口模具可仅改为使用单一模具滑块由径向方向滑出脱模。
详细来说,请进一步参阅图8D,为本实施例的叶轮所采用的模具的分模简单示意图。于本实施例中,由于环形外前盖板511与环形外后盖板521在r_z面(轴面)上为实质上平行的配置,即环形外前盖板511与环形外后盖板521彼此相对面的内表面相互平行,因此环形外前盖板511与环形外后盖板521之间的空间由外向内并无渐扩的情形,因此,相较于前述图4D,本实施例的叶轮出口模具M2可改为单一块厚度一致且可径向抽取的滑块,而该单一滑块用于成型环形外后盖板521的内表面5211与环形外前盖板511的内表面5111的第一接触面M211及第二接触面M221的构成元素均为直线,借此配置,叶轮出口模具M2即可在r_z面(轴面)上径向滑出。并且,由于环形外前盖板511与环形外后盖板521在r_z面(轴面)方向为平行,在r_θ面半径愈大的扇形流道宽度537也较大,故叶轮出口模具脱模时不会产生阻碍或干涉等问题。
第三实施例
请参阅图10A~图10C和图11,图10A为本发明第三实施例的叶轮53的轴面投影图,图10B为图10A的叶轮53的平面投影图,图10C为图10A的叶片53的流线展开图,图11为本发明第三实施例的叶轮53的组合剖面图。
本实施例与前述第一实施例的差异在于,第三实施例是对于流量较低,扬程较高的泵具有较低比转速的叶轮5,其中,叶轮5可不包含前述的环形外前盖板511,且叶片53仅在前端部530a处需要三维扭曲几何,而在叶片53的后端部530b可改为二维叶片几何。具体来说,第一上缘曲线5341与第一下缘曲线5351的叶片角具有差异(即第一上缘曲线5341与第一下缘曲线5351于叶片的流线展开图保持不相重叠),但第二上缘曲线5342与第二下缘曲线5352的叶片角可为相同(即第二上缘曲线5342与第二下缘曲线5352于叶片的流线展开图可为互相重叠),环形外后盖板521具有一内表面5211,其在r_z面上的构成元素为平行于r轴的直线。
此外,在图10C叶片展开图上,叶片53的后端部530b,上缘曲线(shroud edge)534、流道中线(mean)538与下缘曲线(hub edge)535的叶片角度β均相同。
因此于本实施例中,用于成型叶片53的后端部530b的叶轮出口模具可无需采取径向脱模,而是与形成叶片53的前端部530a的扭曲叶片模具同样可采取轴向脱模的方式脱离。详细来说,请进一步参阅图10D,图10D为本实施例的叶轮所采用的模具的分模简单示意图。于本实施例中,由于叶轮5可不包含前述的环形外前盖板511,叶片53远离环形外后盖板521的一侧并没有受到遮蔽,且叶片53的后端部530b为二维叶片几何,因此,用于成型扭曲前端部530a(即扭曲叶片)的扭曲叶片模具M1的可动模M12可直接与用于成型后端部530b的叶轮出口模具M2组装于一体,且一并沿轴向往远离环形外后盖板521的方向脱模,而在过程中不会与叶片53产生干涉。
至于前盖板51的部分,则可为利用简单模具将环形外前盖板511与内前盖板512成型为单一元件后,再经由热熔或超音波等合适的方式接合于叶片53以组成完整叶轮5。
第四实施例
请参阅图12,为本发明第四实施例的塑胶叶轮的组合剖面图。本实施例与前述第一实施例的差异在于,叶轮5的多个叶片53、环形外后盖板521及环形外前盖板511埋设有金属补强件55,用以强化整体结构的刚性,使塑胶叶轮在高温(200℃)高负荷下仍能安全稳定运转。补充说明的是,于一些其他实施例中,环形外前盖板511中也可不设置金属补强件55,也就是说,在此情况中,叶轮5中仅叶片53与环形外后盖板521有埋置金属补强件55。
由此可知,由本发明前述各个实施例所公开的离心泵的三维塑胶叶轮的制造方法及其结构,至少可达到以下效果:1.各部件均可使用模具生产,且可使用机器自动脱模,具生产价值;2.扭曲叶片(或叶片的前端部)可采取固定模与可动模脱模分离的方式制成,而三维扭曲的叶片几何有助于提高泵性能;3.叶片与环形外后盖板以单一成型步骤一次性地成型为一体成型,具有较高的结构强度,环形外后盖板直接传递扭矩到叶片,有助于让叶轮在高工作温度(如约200℃)下或高负荷的应用场合中运行而不易损坏。

Claims (14)

  1. 一种使用模具成型生产离心泵的三维塑胶叶轮的制造方法,其特征在于,
    该叶轮的一后盖板包含一环形外后盖板与一内后盖板,该环形外后盖板具有一第一通孔,该叶轮的该前盖板包含一环形外前盖板与一内前盖板,该环形外前盖板具有一第二通孔,该叶轮的多个叶片各具有一扭曲叶片位于该环形外后盖板的该第一通孔与该环形外前盖板的该第二通孔之间;
    其中利用一扭曲叶片模具与一叶轮出口模具来成型该叶轮;
    该扭曲叶片模具包含一固定模及一可动模,利用该固定模及该可动模通过该第一通孔与该第二通孔以成型出该些扭曲叶片,其中该些扭曲叶片在该前盖板与该后盖板的中心部呈开口状并在该中心部悬空成型;
    利用该叶轮出口模具一体成型该些叶片除该些扭曲叶片以外的其余部分以及承受动力传递的该环形外后盖板;
    其中该环形外前盖板的该第二通孔与该环形外后盖板的该第一通孔分别供该内后盖板及该内前盖板以热融或熔接柱的方式设置,从而共同形成该叶轮。
  2. 如权利要求1所述的制造方法,其特征在于,该环形外后盖板包含一动力传动安装部。
  3. 如权利要求1所述的制造方法,其特征在于,该叶轮出口模具具有可径向滑移的一第一滑块及一第二滑块,该第一滑块具有一第一接触面以用于成型该环形外后盖板朝向该环形外前盖板的一内表面,且该第二滑块具有一第二接触面以用于成型该环形外前盖板朝向该环形外后盖板的一内表面,该第一接触面为一平面从而将该环形外后盖板的该内表面成型为平面,而该第二接触面为一外凸锥面从而将该环形外前盖板的该内表面成型为内凹锥面。
  4. 如权利要求1所述的制造方法,其特征在于,该叶轮出口模具具有可径向滑移的一第一滑块及一第二滑块,该第一滑块具有一第一接触面以用于成型该环形外后盖板朝向该环形外前盖板的一内表面,且该第二滑块具有一第二接触面以用于成型该环形外前盖板朝向该环形外后盖板的一内表面,该第一接触面为一外凸锥面从而将该环形外后盖板的该内表面成型为内凹锥面,而该第二接触面为一平面从而将该环形外前盖板的该内表面成型为平面。
  5. 如权利要求1所述的制造方法,其特征在于,各该叶片在该扭曲叶片之外的其余部分的一上缘曲线与一下缘曲线的叶片角相同,该叶轮出口模具与该可动模为一体,且该环形外后盖板与该些叶片于同一制程步骤一次性地成型为一体。
  6. 如权利要求1所述的制造方法,其特征在于,各该叶片在该扭曲叶片之外的其余部分的一上缘曲线与一下缘曲线的叶片角不相同,该环形外前盖板与该环形外后盖板互为平行者,该叶轮出口模具于任两相邻的其中二该叶片之间仅具有径向滑移的一滑块。
  7. 一种可以使用模具成型生产的离心泵的三维塑胶叶轮,其特征在于,该三维塑胶叶轮包含:
    一前盖板、一后盖板以及多个叶片,共同组合成流体在该叶轮内的流动空间,该前盖板与该后盖板用以限制流动路径,该后盖板用以传递扭矩到该些叶片,各该叶片具三维扭曲形状用以提高泵效率,其特征在于:
    各该叶片包含彼此相连的一前端部、一后端部、连接该前盖板的一上缘曲线以及连接该后盖板的一下缘曲线,其中该上缘曲线包含一第一上缘曲线与一第二上缘曲线,该下缘曲线包含一第一下缘曲线与一第二下缘曲线,该第一上缘曲线与该第一下缘曲线位于该前端部,该第二上缘曲线与该第二下缘曲线位于该后端部,且该第一上缘曲线的叶片角与该第一下缘曲线的叶片角不相同;
    该后盖板包含一环形外后盖板与一内后盖板,该环形外后盖板具有一第一通孔,且该环形外后盖板具有一动力传动安装部以传递扭矩到该些叶片;
    该前盖板包含一环形外前盖板与一内前盖板,该环形外前盖板具有一第二通孔;
    各该叶片的该前端部位于该环形外后盖板的该第一通孔与该环形外前盖板的该第二通孔之间;
    该些叶片的该些后端部与该环形外后盖板于同一制程步骤一次性地成型为一体,而该些叶片的该些后端部与该环形外前盖板相结合;以及
    该内前盖板与该内后盖板分别安装于该第二通孔与该第一通孔而与该些叶片的该些前端部结合。
  8. 如权利要求7所述的三维塑胶叶轮,其特征在于,该前盖板用以安装一磨损环。
  9. 如权利要求7所述的三维塑胶叶轮,其特征在于,各该叶片的该第二上缘曲线的叶片角与该第二下缘曲线的叶片角相同。
  10. 如权利要求7所述的三维塑胶叶轮,其特征在于,该环形外前盖板与该内前盖板为一体成型。
  11. 一种离心泵的叶轮,其特征在于,该叶轮包含:
    一环形外后盖板;以及
    多个叶片,该些叶片沿着该环形外后盖板配置,其中该些叶片各具有一扭曲叶片,该环形外后盖板与该些叶片一次性地于同一成型步骤所制成,且该些扭曲叶片与该环形外后盖板不相重叠。
  12. 如权利要求11所述的叶轮,其特征在于,各该叶片包含彼此相连的一前端部以及一后端部,该前端部为该扭曲叶片且经由该后端部连接该环形 外后盖板,各该前端部具有一第一上缘曲线以及一第一下缘曲线,该第一上缘曲线的叶片角与该第一下缘曲线的叶片角不相同。
  13. 如权利要求12所述的叶轮,其特征在于,更包含一内后盖板,接合该环形外后盖板与各该叶片的该第一下缘曲线。
  14. 如权利要求11所述的叶轮,其特征在于,更包含一金属补强件,埋设于该环形外后盖板以及该些叶片。
PCT/CN2019/107820 2019-09-25 2019-09-25 离心泵的三维塑胶叶轮的制造方法及其结构 WO2021056258A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19934342.7A EP4036417A4 (en) 2019-09-25 2019-09-25 METHOD FOR MANUFACTURING A THREE-DIMENSIONAL PLASTIC IMPELLER OF A CENTRIFUGAL PUMP AND ASSOCIATED STRUCTURE
PCT/CN2019/107820 WO2021056258A1 (zh) 2019-09-25 2019-09-25 离心泵的三维塑胶叶轮的制造方法及其结构
US16/972,681 US11739642B2 (en) 2019-09-25 2019-09-25 Manufacturing method of 3-dimensional plastic impeller of centrifugal pump and the impeller
EP24157512.5A EP4345315A2 (en) 2019-09-25 2019-09-25 Method for manufacturing three-dimensional plastic impeller of centrifugal pump and structure thereof
KR1020237004237A KR20230025929A (ko) 2019-09-25 2019-09-25 원심 펌프의 3차원 플라스틱 임펠러
KR1020207036893A KR102546910B1 (ko) 2019-09-25 2019-09-25 원심 펌프의 3 차원 플라스틱 임펠러 제조 방법 및 임펠러
JP2020571745A JP7177524B2 (ja) 2019-09-25 2019-09-25 遠心ポンプの3次元プラスチックインペラおよびインペラの製造方法
RU2020143067A RU2770774C1 (ru) 2019-09-25 2019-09-25 Способ изготовления трехмерного пластикового рабочего колеса центробежного насоса и рабочее колесо
JP2022152887A JP2022177237A (ja) 2019-09-25 2022-09-26 遠心ポンプのインペラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107820 WO2021056258A1 (zh) 2019-09-25 2019-09-25 离心泵的三维塑胶叶轮的制造方法及其结构

Publications (1)

Publication Number Publication Date
WO2021056258A1 true WO2021056258A1 (zh) 2021-04-01

Family

ID=75165468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107820 WO2021056258A1 (zh) 2019-09-25 2019-09-25 离心泵的三维塑胶叶轮的制造方法及其结构

Country Status (6)

Country Link
US (1) US11739642B2 (zh)
EP (2) EP4345315A2 (zh)
JP (2) JP7177524B2 (zh)
KR (2) KR20230025929A (zh)
RU (1) RU2770774C1 (zh)
WO (1) WO2021056258A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114925481A (zh) * 2022-06-30 2022-08-19 江苏大学 一种基于能效指标的水力模型库离心泵性能提升方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873835B2 (en) * 2021-03-31 2024-01-16 Stokes Technology Development Ltd. Manufacturing method of axial air moving device with blades overlapped in axial projection
CN117329161A (zh) * 2023-08-14 2024-01-02 湖南麦格米特电气技术有限公司 叶轮及应用该叶轮的水泵

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734834A1 (en) 1995-03-31 1996-10-02 Cattini S.R.L. A procedure for manufacturing closed impellers and an equipment therefor
JP2001355595A (ja) * 2000-06-13 2001-12-26 Hitachi Ltd ポンプ用羽根車の製造方法及び該羽根車を用いて成るポンプ
CN1908443A (zh) * 2006-08-11 2007-02-07 宜兴市宙斯泵业有限公司 模压非金属离心泵闭式叶轮及制备方法和模具
WO2007046565A1 (en) 2005-10-21 2007-04-26 Myung Hwa Ind. Co., Ltd. Method of manufacturing water pump impeller assembly using injection mold
CN102264525A (zh) 2008-12-24 2011-11-30 格伦德福斯管理联合股份公司 泵叶轮的喷铸方法以及泵叶轮
US20110318183A1 (en) * 2010-06-29 2011-12-29 Turbocam, Inc. Method for Producing a Shrouded Impeller from Two or More Components
CN202209308U (zh) 2011-08-23 2012-05-02 无锡杰尔压缩机有限公司 一种高效的全三元叶轮
CN103128974A (zh) 2011-11-30 2013-06-05 黄晓鹏 一种塑料闭式叶轮的生产工艺
CN203009383U (zh) 2012-11-30 2013-06-19 杭州杭氧透平机械有限公司 一种小流量闭式全铣制三元叶轮
WO2014139578A1 (en) 2013-03-14 2014-09-18 Grundfos Holding A/S Impeller
CN104131995A (zh) 2013-04-30 2014-11-05 吴为国 一种水泵叶轮的制造方法及水泵
CN105179304A (zh) 2015-09-17 2015-12-23 宜兴市宙斯泵业有限公司 一种塑料防腐耐磨泵及其叶轮的成型模具
CN205117800U (zh) * 2015-10-27 2016-03-30 上海华鼓鼓风机有限公司 一种用于低速运行鼓风机的三元流闭式铸造叶轮
CN105849418A (zh) * 2013-12-27 2016-08-10 本田技研工业株式会社 叶轮
CN105927595A (zh) * 2016-06-28 2016-09-07 广州市拓道流体设备技术有限公司 一种抗气蚀渣浆泵
TW201640027A (zh) 2015-01-19 2016-11-16 荏原製作所股份有限公司 用於流體操作式泵浦之離心式葉輪以及該葉輪之製造方法
CN107092763A (zh) 2017-05-22 2017-08-25 宁波聚清源环保科技有限公司 具有可铸造性的透平机械叶轮的三维设计方法
CN107345521A (zh) * 2016-05-05 2017-11-14 创科(澳门离岸商业服务)有限公司 混流风机
CN107471547A (zh) 2017-09-29 2017-12-15 永嘉县中塑塑业有限公司 用于制造离心叶轮的模具
CN206753985U (zh) 2017-05-13 2017-12-15 永嘉县金鼎泰铸造有限公司 一种闭式叶轮
US10016808B2 (en) 2013-02-18 2018-07-10 Grundfos Holding A/S Segmented core and method for molding an impeller
US20180243955A1 (en) 2015-03-06 2018-08-30 Honda Motor Co., Ltd. Method for manufacturing impeller
CN110142930A (zh) * 2019-05-29 2019-08-20 太仓市宇格明叶环保设备有限公司 一种高效的一体注塑成型叶轮的模具及一体成型的叶轮

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220669A (en) * 1936-06-26 1940-11-05 Allen Sherman Hoff Co Impeller for centrifugal pumps
JPS5488955A (en) * 1977-12-26 1979-07-14 Mitsubishi Rayon Co Ltd Reinforced thermoplastic resin composition
JPH11277583A (ja) * 1998-03-27 1999-10-12 Nakano Seiko Kk 羽根車の成形方法及びその装置
KR100508683B1 (ko) * 2004-09-14 2005-08-17 명화공업주식회사 사출금형을 이용한 차량용 워터펌프 임펠러 조립체의 제조방법
US7632073B2 (en) * 2005-06-08 2009-12-15 Dresser-Rand Company Impeller with machining access panel
JP4556884B2 (ja) * 2006-03-01 2010-10-06 パナソニック株式会社 電動送風機
KR20090041283A (ko) * 2007-10-23 2009-04-28 박화석 형상적응형 냉각수로를 갖는 팬 성형용 사출금형
RU2376500C2 (ru) * 2008-03-07 2009-12-20 Закрытое Акционерное Общество "Новомет-Пермь" Рабочее колесо ступени погружного центробежного насоса
CN201236836Y (zh) * 2008-08-08 2009-05-13 安徽卧龙泵阀有限责任公司 防腐衬塑叶轮
TWI447303B (zh) * 2010-11-08 2014-08-01 Sunonwealth Electr Mach Ind Co 風扇
RU123868U1 (ru) * 2011-12-06 2013-01-10 Научно-производственное общество с ограниченной ответственностью "Фенокс" Рабочее колесо центробежного насоса
JP5998544B2 (ja) * 2012-03-13 2016-09-28 アイシン精機株式会社 インペラの製造方法およびインペラ
CN105172014B (zh) * 2015-09-17 2018-03-09 宜兴市宙斯泵业有限公司 一种高扭曲闭式或半开式塑料叶轮的成型模具
KR20170124029A (ko) * 2016-04-29 2017-11-09 한화파워시스템 주식회사 임펠러 어셈블리
US11015610B2 (en) * 2016-07-27 2021-05-25 Denso Corporation Centrifugal blower

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734834A1 (en) 1995-03-31 1996-10-02 Cattini S.R.L. A procedure for manufacturing closed impellers and an equipment therefor
JP2001355595A (ja) * 2000-06-13 2001-12-26 Hitachi Ltd ポンプ用羽根車の製造方法及び該羽根車を用いて成るポンプ
WO2007046565A1 (en) 2005-10-21 2007-04-26 Myung Hwa Ind. Co., Ltd. Method of manufacturing water pump impeller assembly using injection mold
CN1908443A (zh) * 2006-08-11 2007-02-07 宜兴市宙斯泵业有限公司 模压非金属离心泵闭式叶轮及制备方法和模具
CN102264525A (zh) 2008-12-24 2011-11-30 格伦德福斯管理联合股份公司 泵叶轮的喷铸方法以及泵叶轮
US20110318183A1 (en) * 2010-06-29 2011-12-29 Turbocam, Inc. Method for Producing a Shrouded Impeller from Two or More Components
CN202209308U (zh) 2011-08-23 2012-05-02 无锡杰尔压缩机有限公司 一种高效的全三元叶轮
CN103128974A (zh) 2011-11-30 2013-06-05 黄晓鹏 一种塑料闭式叶轮的生产工艺
CN203009383U (zh) 2012-11-30 2013-06-19 杭州杭氧透平机械有限公司 一种小流量闭式全铣制三元叶轮
US10016808B2 (en) 2013-02-18 2018-07-10 Grundfos Holding A/S Segmented core and method for molding an impeller
WO2014139578A1 (en) 2013-03-14 2014-09-18 Grundfos Holding A/S Impeller
CN104131995A (zh) 2013-04-30 2014-11-05 吴为国 一种水泵叶轮的制造方法及水泵
CN105849418A (zh) * 2013-12-27 2016-08-10 本田技研工业株式会社 叶轮
TW201640027A (zh) 2015-01-19 2016-11-16 荏原製作所股份有限公司 用於流體操作式泵浦之離心式葉輪以及該葉輪之製造方法
US20180243955A1 (en) 2015-03-06 2018-08-30 Honda Motor Co., Ltd. Method for manufacturing impeller
CN105179304A (zh) 2015-09-17 2015-12-23 宜兴市宙斯泵业有限公司 一种塑料防腐耐磨泵及其叶轮的成型模具
CN205117800U (zh) * 2015-10-27 2016-03-30 上海华鼓鼓风机有限公司 一种用于低速运行鼓风机的三元流闭式铸造叶轮
CN107345521A (zh) * 2016-05-05 2017-11-14 创科(澳门离岸商业服务)有限公司 混流风机
CN105927595A (zh) * 2016-06-28 2016-09-07 广州市拓道流体设备技术有限公司 一种抗气蚀渣浆泵
CN206753985U (zh) 2017-05-13 2017-12-15 永嘉县金鼎泰铸造有限公司 一种闭式叶轮
CN107092763A (zh) 2017-05-22 2017-08-25 宁波聚清源环保科技有限公司 具有可铸造性的透平机械叶轮的三维设计方法
CN107471547A (zh) 2017-09-29 2017-12-15 永嘉县中塑塑业有限公司 用于制造离心叶轮的模具
CN110142930A (zh) * 2019-05-29 2019-08-20 太仓市宇格明叶环保设备有限公司 一种高效的一体注塑成型叶轮的模具及一体成型的叶轮

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAUL COOPER: "PUMP HANDBOOK", 2001, MCGRAW-HILL
See also references of EP4036417A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114925481A (zh) * 2022-06-30 2022-08-19 江苏大学 一种基于能效指标的水力模型库离心泵性能提升方法

Also Published As

Publication number Publication date
US20220213897A1 (en) 2022-07-07
JP7177524B2 (ja) 2022-11-24
EP4345315A2 (en) 2024-04-03
JP2022503420A (ja) 2022-01-12
US11739642B2 (en) 2023-08-29
KR102546910B1 (ko) 2023-06-23
JP2022177237A (ja) 2022-11-30
EP4036417A4 (en) 2023-10-18
KR20230025929A (ko) 2023-02-23
RU2770774C1 (ru) 2022-04-21
EP4036417A1 (en) 2022-08-03
KR20210038844A (ko) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021056258A1 (zh) 离心泵的三维塑胶叶轮的制造方法及其结构
CN112549570B (zh) 离心泵的三维塑胶叶轮的制造方法及其结构
CN101915130B (zh) 可变几何涡轮增压器喷嘴环三维叶片及其设计方法
CN1727643B (zh) 流体机械的冷却构件及其铸造方法和有该构件的燃气轮机
EP2966271B1 (en) Turbocharger turbine housing
CN101558219B (zh) 一种用于涡轮增压器的涡轮壳体
CN104196572B (zh) 一种具有盘腔导流肋板的双辐板涡轮盘
CN106089312B (zh) 一种具有封严及冷却导流板的涡轮盘腔结构
CN101985897A (zh) 可变截面复合涡轮装置
CN201546969U (zh) 不锈钢卧式端吸多级离心泵
CN103925238B (zh) 外摆线离心泵叶轮
TWI717849B (zh) 離心式泵浦之3維塑膠葉輪之製造方法及其結構
CN103089655A (zh) 磁驱动泵浦之结构改良
CN101208519B (zh) 水泵
CN209294063U (zh) 一种单壳体多级泵
CN108980296B (zh) 一种液力变矩器泵轮结构
CN113560500A (zh) 一种柴油机缸盖铸造进气道整体芯及其制造工艺
CN108980297B (zh) 一种液力变矩器涡轮结构
TWI812198B (zh) 離心式散熱風扇
CN209638100U (zh) 一种泵体前端盖、泵体及磁力泵
CN213392659U (zh) 一种无油螺杆压缩机缸体结构
CN105650000A (zh) 一种循环水泵及改造循环水泵的方法
CN206111654U (zh) 一种高能效单级双吸中开式离心泵
CN106287712A (zh) 分气盘、燃烧器、燃气灶、烤箱及分气盘的加工模具
CN115126721A (zh) 一种变出口高度的无蜗壳离心通风机及其工作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571745

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019934342

Country of ref document: EP

Effective date: 20220425