WO2021054643A1 - Nonlinear mooring simulation device - Google Patents

Nonlinear mooring simulation device Download PDF

Info

Publication number
WO2021054643A1
WO2021054643A1 PCT/KR2020/011524 KR2020011524W WO2021054643A1 WO 2021054643 A1 WO2021054643 A1 WO 2021054643A1 KR 2020011524 W KR2020011524 W KR 2020011524W WO 2021054643 A1 WO2021054643 A1 WO 2021054643A1
Authority
WO
WIPO (PCT)
Prior art keywords
surge
sway
main frame
mooring
rail
Prior art date
Application number
PCT/KR2020/011524
Other languages
French (fr)
Korean (ko)
Inventor
김영식
송형도
김윤호
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2021054643A1 publication Critical patent/WO2021054643A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Definitions

  • the present invention relates to a mooring simulation device, and more particularly, it transmits a resilience to the back and forth motion and left and right motion, and the vertical motion can allow the vertical motion of the ship using the equivalent mass of the turret.
  • the following relates to a nonlinear mooring simulation device that can more accurately simulate the characteristics of a mooring ship in a tank test where a model mooring ship cannot be installed.
  • a simulation test is essential for a large device such as a ship or structure to see if it satisfies the performance for underwater motion at the basic design stage.
  • model test The purpose of the model test is to reproduce the actual physical phenomena identically in a reduced laboratory, so that the measured and analyzed values in the model test can be expanded in units of solid lines. It is important to model to be satisfied, and this is made possible by extracting non-dimensional numbers having a physical meaning through dimensional analysis.
  • the model test can be performed in various forms according to various purposes.
  • the mooring force performance evaluation test related to the present invention is a test for maintaining the position of a floating body such as a ship or an offshore structure.
  • Various mooring systems can be used to maintain the floating body, and the mooring system is determined in consideration of conditions such as the environment of the installation sea area, the type of structure, and cost.
  • the one-point mooring method is mainly used in severe environmental conditions because the bow angle rotates freely according to the external force of the environment, thereby reducing the load acting on the floating body, and turret mooring is a representative one-point mooring method.
  • the model test for the design and performance evaluation of the mooring system for maintaining the position of the offshore structures installed and operated in the polar region is conducted on the surface of the ice tank by creating an ice water tank. Facilities related to ice formation are provided. Therefore, it is difficult to implement a general mooring system due to the characteristics of the ice water tank, due to the related facilities provided at the bottom of the water tank to generate ice sea.
  • Patent Document 1 KR 10-2019-0071138 A is provided on the main frame, the heave shaft having a degree of freedom in the vertical and vertical directions, the sway rail provided in the left and right longitudinal directions on the main frame, and the left and right ends of the sway rail, respectively.
  • a self-weight compensation device having a sway fixing part, a surge rail provided in the front and rear longitudinal direction on the main frame, a surge fixing part provided at each of the front and rear ends of the surge rail, and one side connected to the heave shaft and provided with a mounting fixing means Wow, a nonlinear mooring simulation device including a guide adapter connected to the lower part of the sway fixing station and the surge station was proposed.
  • the present invention is a mainframe; A heb shaft extending in the vertical height direction so as to penetrate the main frame in the vertical height direction and having a degree of freedom in the vertical height direction within a predetermined range; A sway rail extending in the left and right longitudinal direction to be connected to the main frame, and having the main frame movable in the left and right longitudinal direction; Sway fixing portions provided at the left and right ends of the sway rail, respectively; A surge rail extending in the longitudinal direction of the front and rear, connected to the main frame, and having the main frame movable in the longitudinal direction of the front and rear; A surge fixing unit provided at each of the front and rear ends of the surge rail; A self-weight compensation device connected to one side of the heave shaft and provided with a mounting fixing means on an upper portion thereof; A guide adapter connected to the lower portion of the sway fixing part and the surge fixing part, respectively; And a mooring reinforcement device connected to an upper portion of the sway elastic unit and the surge elastic unit
  • the mooring reinforcement device includes a guide bar extending upwardly on both sides of an upper end of the main frame; A rigid fixing part connected to the upper end of each of the guide bars; A plurality of reinforcing elastic parts elastically provided downwardly to the rigid fixing part at intervals along the length direction; And a rigid pulling portion provided to be elevating along the guide bar and connected to a lower end of the reinforcing elastic portion, wherein the rigid pulling portion is connected to each end of the sway elastic portion or the surge elastic portion.
  • the reinforcing elastic part spring is elastically provided perpendicularly to the lower side of the rigid fixing part; It is connected to the other end of the spring, characterized in that it is provided through the rigid pulling portion, characterized in that consisting of a pull position adjustment bar having a nut so that the spring can be pulled at a predetermined position of the rigid pulling portion.
  • the present invention transmits the restoring force for the forward and backward movements and the left and right movements, and the up and down movements allow the up and down movement of the ship using the equivalent mass of the turret. There is an effect that can more accurately simulate the characteristics of mooring ships compared to the existing ones during water tank tests that cannot be performed.
  • FIG. 1 is an overall configuration diagram showing a nonlinear mooring simulation apparatus according to the present invention.
  • FIG. 2 is a side view showing a nonlinear mooring simulation apparatus according to the present invention.
  • FIG. 3 is a plan configuration diagram showing a nonlinear mooring simulation apparatus according to the present invention.
  • FIG. 4 is a block diagram showing a mooring reinforcement device in a nonlinear mooring simulation device according to the present invention.
  • Figure 5 is a schematic diagram showing an operating state of the mooring reinforcement device shown in Figure 4.
  • FIG. 6 is a graph that simulates nonlinear mooring through the rigid interpolation device shown in FIG. 5.
  • the nonlinear mooring simulation apparatus of the present invention is formed to extend in the main frame 100, vertically and vertically, as shown in FIGS. 1 to 6, so as to penetrate the main frame 100 in the vertical and vertical direction, and
  • the heave shaft 200 having a degree of freedom in the vertical and vertical directions within the range, extending in the left and right longitudinal direction and connected to the main frame 100, the sway rail provided so that the main frame 100 is movable in the left and right longitudinal directions (300), the sway fixing portion 310 provided at each end of the sway rail 300, extending in the longitudinal direction of the front and rear to be connected to the main frame 100, the main frame 100 is the longitudinal direction of the front and rear
  • a surge rail 400 provided to be movable to, a surge fixing part 410 provided at an end of the surge rail 400, and one side connected to the heave shaft 200, and a mounting fixing means 510 at the top
  • the self-weight compensation device 500 provided, the guide adapter 600 connected to the lower portions of the
  • the main frame 100 connects the heave shaft 200, the sway rail 300, and the surge rail 400, and may have various shapes.
  • the main frame 100 is composed of a bottom plate, four pillars coupled to an upper portion of the bottom plate, and sidewalls extending in a height direction above the pillar, and a central portion of the bottom plate.
  • the heave shaft 200 penetrates, and the sway rail 300 and the surge rail 400 are combined at different heights at the edge of the bottom plate.
  • the configuration and shape of the main frame 100 may be variously modified within a range that is obvious to a person skilled in the art.
  • sway elastic parts 110 may be coupled to left and right sides of the main frame 100.
  • the sway elastic part 110 is configured to include an elastic member, and may be connected to the sway fixing part 310.
  • the surge elastic portion 120 may be coupled to the front and rear sides of the main frame 100, and the surge elastic portion 120 is configured to include an elastic member, and may be connected to the surge fixing portion 410. .
  • the sway elastic part 110 and the surge elastic part 120 are configured to include an elastic spring, and the sway fixing part 310 and the sway elastic part 110 may be connected by wire. have.
  • the surge fixing portion 410 and the surge elastic portion 120 may be connected with a wire.
  • a sway roller 130 provided under the sway elastic part 110 and coupled to the main frame 100 is further included on the line of the wire connecting the sway elastic part 110 and the sway fixing part 310
  • the surge roller 140 is provided under the surge elastic part 120 and coupled to the main frame 100 on a line of the wire connecting the surge elastic part 120 and the surge fixing part 410. It can be included more.
  • the sway roller 130 is coupled to the lower left and right sides of the main frame 100 so that the wire connecting the sway roller 130 and the sway fixing part 310 is tensioned in the left and right directions.
  • the wire connecting the sway roller 130 and the sway elastic portion 110 provided on the upper portion of the sway roller 130 is tensioned in the height direction.
  • the surge roller 140 is coupled to the lower front and rear sides of the main frame 100 so that the wire connecting the surge roller 140 and the surge fixing portion 410 is tensioned in the front and rear directions, and the surge roller A wire connecting 140 and the surge elastic part 120 provided on the surge roller 140 is tensioned in the height direction.
  • the sway roller 130 and the surge roller 140 are preferably provided at the same height, and it is more preferable that the wire connection positions of the sway fixing unit 310 and the surge fixing unit 410 have the same height. Do.
  • the mooring reinforcement device 700 includes guide bars 710 extending upwardly on both upper ends of the main frame 100; A rigid fixing part 720 connected to the upper end of each of the guide bars 710 and fixed; A plurality of reinforcing elastic parts 730 elastically provided downwardly to the rigid fixing part 720 at intervals along the length direction; And a rigid pulling unit 740 provided to be elevating along the guide bar 710 and connected to a lower end of the reinforcing elastic unit 730, wherein the rigid pulling unit 740 is provided with the sway elasticity It may be connected to each end of the part 110 or the surge elastic part 120.
  • a tension graph for the tensioned length (Sway Offset) and resistance force (Forc) of the sway elastic part 110 connected to the sway roller 130 by a wire can be formed nonlinearly and sharply
  • a tension graph for a tensioned length (Sway Offset) and a resistance force (Forc) of the surge elastic portion 120 connected to the surge roller 140 by a wire may be formed in a nonlinear shape.
  • the reinforcing elastic part 730 includes a spring 731 that is elastically provided perpendicularly to the lower side of the rigid fixing part 720; A pulling position having a nut 734 connected to the other end of the spring 731 and provided through the stiff pulling part 740 so that the spring 731 can be pulled at a predetermined position of the stiff pulling part 740 It may be composed of a control bar (733).
  • the reinforcing elastic portion 730 is configured to include a pull position control bar 733 having a spring 731 and a nut 734, and is connected to the rigid pulling portion 740.
  • a buffer washer 735 may be further provided on the nut 734 to reduce the impact of the rigid pulling portion 740.
  • the spring 731 used for the reinforcing elastic portion 730 is divided into a plurality of elastic groups K1 and K2 having different elastic modulus.
  • the sequence of the elastic group is K1> K2, and the first elastic group (K1) has a relatively high elastic force compared to the second elastic group (K2).
  • the heave shaft 200 is configured to have a degree of freedom within a certain range in the vertical and vertical directions, and the lower end of the heave shaft 200 is connected to an offshore structure such as a model ship, so that a degree of freedom in the height direction is secured during a mooring test of the offshore structure. .
  • Various configurations may be applied to the connection between the lower part of the heave shaft 200 and the offshore structure according to known techniques.
  • a gimbal system may be coupled to a lower end of the heave shaft 200 so as to have a degree of freedom in the three-way rotational movement of the roll, yaw, and pitch of the marine structure.
  • the gimbal system 220 is coupled to a lower end of the heave shaft 200, and a lower portion of the gimbal system 220 is coupled to one side of the offshore structure.
  • the gimbal system 220 may be provided with respective rotational axes for the three-way rotational movement.
  • the offshore structure has degrees of freedom of raising, shaking, surge, roll, yaw, and pitch.
  • the upper end of the heave shaft 200 may be provided with an upper fastener 210.
  • the upper fastener 210 is connected to the self-weight compensation device 500, and the shape and configuration of the upper fastener 210 may vary according to a connection method with the self-weight compensation device 500.
  • the sway rail 300 of the present invention is connected to the lower part of the main frame 100.
  • the sway rail 300 may be configured in plural, and the main frame 100 is movable in the left and right directions along the sway rail 300.
  • the main frame 100 is attached to the upper portion of the sway rail 300, and as it slides on the sway rail 300, a degree of freedom in the left and right directions is secured.
  • the surge rail 400 of the present invention is connected to the lower portion of the main frame 100.
  • the surge rail 400 may be configured in plural, and the main frame 100 is movable in the front-rear direction along the surge rail 400.
  • the surge rail 400 is provided above the sway rail 300, and a plurality of coupling holes 150 provided in the main frame 100 are It is connected to surround the upper part.
  • the combination of the sway rail 300 and the main frame 100 or the surge rail 400 and the main frame 100 is not limited to the above method, and the main frame 100 is If a configuration capable of moving in the left and right directions and in the front and rear directions on the line of the rail 300 and the surge rail 400 may be variously changed within the scope of the object of the present invention.
  • the self-weight compensation device 500 is connected to the upper part of the heave shaft 200 and is provided with a mounting fixing means 510 at the upper part, so that the self-weight of the heave shaft 200 is moored during a mooring test of an offshore structure such as the model ship. It should not be transmitted to offshore structures subject to performance evaluation tests.
  • the mounting fixing means 510 may be mounted on a structure provided outside of the mooring simulation guide device according to the present invention, and the mounting fixing means 510 may be connected to the main frame 100.
  • the weight of the heave shaft 200 may be supported by an external structure or the like.
  • One side of the self-weight compensation device 500 may be connected to the heave shaft 200 by a wire.
  • the self-weight compensation device 500 may further include a mounting roller 520 on which the wire is mounted and a self-weight compensation tool 530 provided on the other side of the wire.
  • the upper fixing unit 210 and the self-weight compensation unit 530 provided at the upper end of the heave shaft 200 are connected with a wire, and the mounting roller 520 is on the line of the wire.
  • the self-weight of the heave shaft 200 may be offset from the self-weight of the self-weight compensator 530.
  • the mounting roller 520 may be hingedly coupled to the mounting fixing means 510, and one side may be connected to the main frame 100.
  • the mounting roller 520 may be rotated in a certain range based on the upper and lower central axes.
  • the self-weight compensation sphere 530 connected to the heave shaft 200 by a wire moves up and down, and the mounting roller 520 is mounted on the mounting roller 520 It can be rotated in the vertical direction according to the movement of the wire.
  • the mounting fixing means 510 when the mounting fixing means 510 is coupled to the external structure, etc., as the main frame 100 moves along the sway rail 300 or the surge rail 400, the upper fixing member 210 and the The mounting roller 520 may be farther away, and the mounting roller 520 may be rotated. It is preferable that the self-weight compensation unit 530 and the mounting roller 520 are positioned at a sufficient distance so as not to interfere with the movement of the heave shaft 200.
  • the guide adapter 600 is connected to a lower portion of the sway fixing portion 310 and a lower portion of the surge fixing portion 410, respectively.
  • the guide adapter 600 is provided with a sway guide rail 610 on the left and right sides to which the sway fixing unit 310 is connected, and a surge guide rail 620 on the front and rear sides to which the surge fixing unit 410 is connected. It can be provided.
  • the sway fixing part 310 may have a degree of freedom in the front and rear directions on the sway guide rail 610
  • the surge fixing part 410 may have a degree of freedom in the left and right directions on the surge guide rail 620.
  • the sway fixing part 310 is provided with a sway guide groove 311 in which the sway guide rail 610 is seated, and the surge fixing part 410 ) Is provided with a surge guide groove 411 in which the surge guide rail 620 is seated.
  • the sway guide rail 610 is coupled to the lower portion of the sway guide groove 311 to limit the lateral movement and provide a degree of freedom in the forward and backward movement.
  • the surge guide rail 620 is coupled to the lower portion of the surge guide groove 411 to limit movement in the front and rear directions, and have a degree of freedom in movement in the left and right directions.
  • the sway fixing unit 310 moves forward and backward along the sway guide rail 610.
  • the guide adapter 600 may further include a pair of mounting frames 630 protruding to the outside of the sway guide rail 610 or the surge guide rail 620.
  • the pair of mounting frames 630 makes it easier to fix the nonlinear mooring simulation device to a preset position, and the position where the mounting frame 630 is provided in the guide adapter 600 is the nonlinear mooring simulation device. It can be variously modified depending on the purpose of installation of the device, the installation environment, and the installation location.
  • the present invention configured as described above, it has a degree of freedom including heave, sway, and surge, and the mooring can be more accurately simulated compared to the existing one, thereby enabling precise measurement.
  • the present invention is a mainframe; A heb shaft extending in the vertical height direction so as to penetrate the main frame in the vertical height direction and having a degree of freedom in the vertical height direction within a predetermined range; A sway rail extending in the left and right longitudinal direction to be connected to the main frame, the main frame being provided to be movable in the left and right longitudinal direction; Sway fixing portions provided at the left and right ends of the sway rail, respectively; A surge rail extending in the longitudinal direction of the front and rear, connected to the main frame, and having the main frame movable in the longitudinal direction of the front and rear; A surge fixing unit provided at each of the front and rear ends of the surge rail; A self-weight compensation device connected to one side of the heave shaft and provided with a mounting fixing means on an upper portion thereof; A guide adapter connected to the lower portion of the sway fixing part and the surge fixing part, respectively; And a mooring reinforcement device connected to an upper portion of the sway elastic portion and the surge elastic portion, wherein the

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Combustion & Propulsion (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The present invention relates to a nonlinear mooring simulation device comprising: a main frame; a heave shaft having a degree of freedom in the vertical height direction; a sway rail provided in the main frame in the left-right lengthwise direction; sway fixing parts respectively provided at the left and right ends of the sway rail; a surge rail provided in the main frame in the front-rear lengthwise direction; surge fixing parts respectively provided at the front and rear ends of the surge rail; a self-weight compensation device having one side connected to the heave shaft and provided with a holding fixing means; guide adapters connected to lower portions of the sway fixing parts and the surge fixing parts, respectively; and mooring reinforcement devices provided in the main frame and respectively connected to the sway fixing parts and the surge fixing parts. The nonlinear mooring simulation device enables a more precise simulation of mooring than the prior art.

Description

비선형 계류 모사장치Nonlinear mooring simulator
본 발명은 계류 모사장치에 관한 것으로, 보다 상세하게는 전후운동, 좌우운동에 대한 복원력을 전달하며 상하운동은 터렛의 등가 질량을 이용해 선박의 상하운동을 허용할 수 있으며, 모형수조의 특성상 수선면 아래에 모형계류선을 설치할 수 없는 수조시험시 계류선의 특성을 기존에 비해 보다 정교하게 모사할 수 있는 비선형 계류 모사장치에 관한 것이다.The present invention relates to a mooring simulation device, and more particularly, it transmits a resilience to the back and forth motion and left and right motion, and the vertical motion can allow the vertical motion of the ship using the equivalent mass of the turret. The following relates to a nonlinear mooring simulation device that can more accurately simulate the characteristics of a mooring ship in a tank test where a model mooring ship cannot be installed.
일반적으로 선박 또는 구조체 등 거대한 장치 등은 기본 설계 단계에서 수중 운동 등에 대한 성능을 만족하는가에 대하여 시뮬레이션 시험이 필수적이다.In general, a simulation test is essential for a large device such as a ship or structure to see if it satisfies the performance for underwater motion at the basic design stage.
모형시험은 실제의 물리적인 현상을 축소된 실험실에서 동일하게 재현함으로써 모형시험에서 계측하여 해석한 값을 실선단위로 확장 가능하게 함을 목적으로 하는바, 관찰하고자 하는 현상을 지배하는 물리적 상사법칙을 만족하도록 모델링(modelling)을 하는 것이 중요하며, 이는 차원해석을 통하여 물리적 의미를 갖는 무차원수를 추출함으로써 가능해진다.The purpose of the model test is to reproduce the actual physical phenomena identically in a reduced laboratory, so that the measured and analyzed values in the model test can be expanded in units of solid lines. It is important to model to be satisfied, and this is made possible by extracting non-dimensional numbers having a physical meaning through dimensional analysis.
한편, 모형시험은 다양한 목적에 따라 다양한 형태로 수행될 수 있는데, 그 중에서도 본 발명과 관련한 계류력 성능평가시험은 선박이나 해양구조물 등 부유체의 위치유지를 위한 시험이다.On the other hand, the model test can be performed in various forms according to various purposes. Among them, the mooring force performance evaluation test related to the present invention is a test for maintaining the position of a floating body such as a ship or an offshore structure.
부유체는 위치를 유지하기 위해 다양한 계류시스템(일점 계류, 다점 계류, 터렛 등)이 사용될 수 있으며, 계류시스템은 설치 해역의 환경, 구조물의 종류, 비용 등의 조건을 고려해 결정된다. 일점 계류 방식은 환경 외력에 따라 선수각이 자유롭게 회전하여 부유체에 작용하는 하중을 감소시킬 수 있기 때문에 가혹한 환경 조건에서 주로 사용되고 있으며, 터렛 계류는 대표적인 일점 계류 방식이다.Various mooring systems (single-point mooring, multi-point mooring, turret, etc.) can be used to maintain the floating body, and the mooring system is determined in consideration of conditions such as the environment of the installation sea area, the type of structure, and cost. The one-point mooring method is mainly used in severe environmental conditions because the bow angle rotates freely according to the external force of the environment, thereby reducing the load acting on the floating body, and turret mooring is a representative one-point mooring method.
극지역에 설치되어 운용되는 해양구조물의 위치유지를 위한 계류시스템의 설계 및 성능평가를 위한 모형시험은 빙해수조를 생성하고 빙해수조의 수면 위에서 이루어지며, 모형시험용 빙해 생성을 위해 수조 바닥에 다수의 빙해 생성 관련 설비들이 구비된다. 따라서 빙해수조는 특성 상 빙해 생성을 위한 수조 바닥에 구비된 관련 설비로 인하여 일반적인 계류시스템의 구현이 어렵다.The model test for the design and performance evaluation of the mooring system for maintaining the position of the offshore structures installed and operated in the polar region is conducted on the surface of the ice tank by creating an ice water tank. Facilities related to ice formation are provided. Therefore, it is difficult to implement a general mooring system due to the characteristics of the ice water tank, due to the related facilities provided at the bottom of the water tank to generate ice sea.
이에 대하여 특허문헌 1(KR 10-2019-0071138 A)은 메인프레임과, 상하 높이방향의 자유도를 갖는 히브축과, 메인프레임에 좌우 길이방향 구비되는 스웨이레일과, 스웨이레일의 좌우 말단에 각각 구비되는 스웨이고정부와, 메인프레임에 전후 길이방향으로 구비되는 서지레일과, 서지레일의 전후 말단에 각각 구비되는 서지고정부와, 상기 히브축과 일측이 연결되고 거치고정수단이 구비된 자중보상장치와, 스웨이고정부와 서지고정부의 하부에 각각 연결된 가이드아답터를 포함하는 비선형 계류 모사장치를 제안하였다.On the other hand, Patent Document 1 (KR 10-2019-0071138 A) is provided on the main frame, the heave shaft having a degree of freedom in the vertical and vertical directions, the sway rail provided in the left and right longitudinal directions on the main frame, and the left and right ends of the sway rail, respectively. A self-weight compensation device having a sway fixing part, a surge rail provided in the front and rear longitudinal direction on the main frame, a surge fixing part provided at each of the front and rear ends of the surge rail, and one side connected to the heave shaft and provided with a mounting fixing means Wow, a nonlinear mooring simulation device including a guide adapter connected to the lower part of the sway fixing station and the surge station was proposed.
그러나, 종래는 수중에 발생하는 계류 저항의 다양한 변화를 모두 적용하기에 부족하여 실질적으로 정확한 계류 상태를 모사하기 어려운 문제점이 있다.However, there is a problem in that it is difficult to simulate a practically accurate mooring state because it is insufficient to apply all various changes in mooring resistance occurring underwater.
위와 같은 점을 감안하여 발명된 본 발명의 목적은, 수면하 공간에 어떠한 설비도 필요하지 않는 비선형 계류 모사장치를 제공하는 것이다.It is an object of the present invention in view of the above points to provide a nonlinear mooring simulation device that does not require any equipment in the space under the water surface.
또한, 정밀한 측정이 가능한 비선형 계류 모사장치를 제공하는 것이다.In addition, it is to provide a nonlinear mooring simulation device capable of precise measurement.
상기한 목적을 달성하기 위하여, 본 발명은 메인프레임; 상하 높이 방향으로 연장 형성되어 상기 메인프레임을 상하 높이방향으로 관통 가능하게 형성되며, 일정 범위 안에서 상하 높이방향의 자유도를 갖는 히브축; 좌우 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 좌우 길이방향으로 이동 가능하게 구비되는 스웨이레일; 상기 스웨이레일의 좌우 말단에 각각 구비되는 스웨이고정부; 전후 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 전후 길이방향으로 이동 가능하게 구비되는 서지레일; 상기 서지레일의 전후 말단에 각각 구비되는 서지고정부; 상기 히브축과 일측이 연결되고 상부에 거치고정수단이 구비된 자중보상장치; 상기 스웨이고정부와 상기 서지고정부의 하부에 각각 연결된 가이드아답터; 및 상기 스웨이탄성부와 상기 서지탄성부의 상부에 각각 연결된 계류보강장치를 포함하는 것을 특징으로 하는 비선형 계류 모사장치를 제공한다.In order to achieve the above object, the present invention is a mainframe; A heb shaft extending in the vertical height direction so as to penetrate the main frame in the vertical height direction and having a degree of freedom in the vertical height direction within a predetermined range; A sway rail extending in the left and right longitudinal direction to be connected to the main frame, and having the main frame movable in the left and right longitudinal direction; Sway fixing portions provided at the left and right ends of the sway rail, respectively; A surge rail extending in the longitudinal direction of the front and rear, connected to the main frame, and having the main frame movable in the longitudinal direction of the front and rear; A surge fixing unit provided at each of the front and rear ends of the surge rail; A self-weight compensation device connected to one side of the heave shaft and provided with a mounting fixing means on an upper portion thereof; A guide adapter connected to the lower portion of the sway fixing part and the surge fixing part, respectively; And a mooring reinforcement device connected to an upper portion of the sway elastic unit and the surge elastic unit, respectively.
여기서, 상기 계류보강장치는 상기 메인프레임의 상단 양측에 각각 상부로 연장된 가이드바; 상기 각 가이드바의 상단을 이어 고정되는 강성고정부; 상기 강성고정부에 길이 방향을 따라 간격을 두고 하측으로 탄성 구비되는 복수의 보강탄성부; 및 상기 가이드바를 따라 승강 가능하게 구비되며, 상기 보강탄성부의 하단에 연결되는 강성당김부로 구성되며, 상기 강성당김부가 상기 스웨이탄성부 또는 서지탄성부의 각 단부에 연결되는 것을 특징으로 한다.Here, the mooring reinforcement device includes a guide bar extending upwardly on both sides of an upper end of the main frame; A rigid fixing part connected to the upper end of each of the guide bars; A plurality of reinforcing elastic parts elastically provided downwardly to the rigid fixing part at intervals along the length direction; And a rigid pulling portion provided to be elevating along the guide bar and connected to a lower end of the reinforcing elastic portion, wherein the rigid pulling portion is connected to each end of the sway elastic portion or the surge elastic portion.
이때, 상기 보강탄성부는 상기 강성고정부의 하측에 수직으로 탄성 구비되는 스프링; 상기 스프링의 타단부에 연결되며, 상기 강성당김부에 관통 구비되어 상기 강성당김부의 소정 위치에서 스프링이 당겨질 수 있도록 너트를 갖는 당김위치조절바로 구성되는 것을 특징으로 한다.In this case, the reinforcing elastic part spring is elastically provided perpendicularly to the lower side of the rigid fixing part; It is connected to the other end of the spring, characterized in that it is provided through the rigid pulling portion, characterized in that consisting of a pull position adjustment bar having a nut so that the spring can be pulled at a predetermined position of the rigid pulling portion.
상기와 같이 구성된 본 발명을 제공함으로써, 전후운동, 좌우운동에 대한 복원력을 전달하며 상하운동은 터렛의 등가 질량을 이용해 선박의 상하운동을 허용하며, 모형수조의 특성상 수선면 아래에 모형계류선을 설치할 수 없는 수조시험 시 계류선의 특성을 기존에 비해 보다 정교하게 모사할 수 있는 효과가 있다.By providing the present invention configured as described above, it transmits the restoring force for the forward and backward movements and the left and right movements, and the up and down movements allow the up and down movement of the ship using the equivalent mass of the turret. There is an effect that can more accurately simulate the characteristics of mooring ships compared to the existing ones during water tank tests that cannot be performed.
도 1은 본 발명에 따른 비선형 계류 모사장치를 나타내는 전체구성도.1 is an overall configuration diagram showing a nonlinear mooring simulation apparatus according to the present invention.
도 2는 본 발명에 따른 비선형 계류 모사장치를 나타내는 측면구성도.2 is a side view showing a nonlinear mooring simulation apparatus according to the present invention.
도 3은 본 발명에 따른 비선형 계류 모사장치를 나타내는 평면구성도.3 is a plan configuration diagram showing a nonlinear mooring simulation apparatus according to the present invention.
도 4는 본 발명에 따른 비선형 계류 모사장치에서 계류보강장치를 나타내는 구성도.4 is a block diagram showing a mooring reinforcement device in a nonlinear mooring simulation device according to the present invention.
도 5는 도 4에 도시된 계류보강장치의 작동 상태를 나타내는 모식도.Figure 5 is a schematic diagram showing an operating state of the mooring reinforcement device shown in Figure 4;
도 6은 도 5에 도시된 강성보간장치를 통한 비선형 계류가 모사되는 그래프.6 is a graph that simulates nonlinear mooring through the rigid interpolation device shown in FIG. 5.
이하, 본 발명에 대하여 동일한 기술분야에 속하는 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부도면을 참조하여 바람직한 실시 예를 상세하게 설명하기로 한다.Hereinafter, a preferred embodiment will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the same technical field can easily implement the present invention.
본 발명의 비선형 계류 모사장치는 도 1 내지 도 6에 도시된 바와 같이, 메인프레임(100), 상하 높이방향으로 연장 형성되어 상기 메인프레임(100)을 상하 높이방향으로 관통가능하게 형성되며, 일정 범위 안에서 상하 높이방향의 자유도를 갖는 히브축(200), 좌우 길이방향으로 연장 형성되어 상기 메인프레임(100)과 연결되며, 상기 메인프레임(100)이 좌우 길이방향으로 이동 가능하게 구비되는 스웨이레일(300), 상기 스웨이레일(300)의 말단에 각각 구비되는 스웨이고정부(310), 전후 길이방향으로 연장 형성되어 상기 메인프레임(100)과 연결되며, 상기 메인프레임(100)이 전후 길이방향으로 이동 가능하게 구비되는 서지레일(400), 상기 서지레일(400)의 말단에 각각 구비되는 서지고정부(410), 상기 히브축(200)과 일측이 연결되고 상부에 거치고정수단(510)이 구비된 자중보상장치(500), 상기 스웨이고정부(310)와 상기 서지고정부(410)의 하부에 각각 연결된 가이드아답터(600), 및 상기 스웨이탄성부(110)와 상기 서지탄성부(120)의 상부에 각각 연결된 계류보강장치(700)를 포함한다.The nonlinear mooring simulation apparatus of the present invention is formed to extend in the main frame 100, vertically and vertically, as shown in FIGS. 1 to 6, so as to penetrate the main frame 100 in the vertical and vertical direction, and The heave shaft 200 having a degree of freedom in the vertical and vertical directions within the range, extending in the left and right longitudinal direction and connected to the main frame 100, the sway rail provided so that the main frame 100 is movable in the left and right longitudinal directions (300), the sway fixing portion 310 provided at each end of the sway rail 300, extending in the longitudinal direction of the front and rear to be connected to the main frame 100, the main frame 100 is the longitudinal direction of the front and rear A surge rail 400 provided to be movable to, a surge fixing part 410 provided at an end of the surge rail 400, and one side connected to the heave shaft 200, and a mounting fixing means 510 at the top The self-weight compensation device 500 provided, the guide adapter 600 connected to the lower portions of the sway fixing part 310 and the surge fixing part 410, respectively, and the sway elastic part 110 and the surge elastic part ( It includes a mooring reinforcement device 700 each connected to the upper portion of the 120).
상기 메인프레임(100)은 상기 히브축(200), 상기 스웨이레일(300) 및 상기 서지레일(400)을 연결하며, 그 형상은 다양할 수 있다. 본 발명의 일 실시예로서, 상기 메인프레임(100)은 바닥판과 상기 바닥판의 상부에 결합된 4개의 기둥과 상기 기둥의 상부에 높이방향으로 연장형성된 측벽으로 구성되며, 상기 바닥판의 중앙부를 상기 히브축(200)이 관통하고, 상기 바닥판의 모서리에 상기 스웨이레일(300)과 상기 서지레일(400)이 높이를 달리하여 결합된다.The main frame 100 connects the heave shaft 200, the sway rail 300, and the surge rail 400, and may have various shapes. As an embodiment of the present invention, the main frame 100 is composed of a bottom plate, four pillars coupled to an upper portion of the bottom plate, and sidewalls extending in a height direction above the pillar, and a central portion of the bottom plate The heave shaft 200 penetrates, and the sway rail 300 and the surge rail 400 are combined at different heights at the edge of the bottom plate.
상기와 같은 구성은 본 발명의 일 실시예에 따른 메인프레임(100)일뿐이므로, 통상의 기술자에게 자명한 범위 내에서 상기 메인프레임(100)의 구성 및 형상은 다양하게 변형 실시될 수 있다.Since the above configuration is only the main frame 100 according to an embodiment of the present invention, the configuration and shape of the main frame 100 may be variously modified within a range that is obvious to a person skilled in the art.
도 2를 참조하면, 상기 메인프레임(100)의 좌우측에는 스웨이탄성부(110)가 결합될 수 있다. Referring to FIG. 2, sway elastic parts 110 may be coupled to left and right sides of the main frame 100.
상기 스웨이탄성부(110)는 탄성 부재를 포함하도록 구성되며, 상기 스웨이고정부(310)와 연결될 수 있다.The sway elastic part 110 is configured to include an elastic member, and may be connected to the sway fixing part 310.
또한, 상기 메인프레임(100)의 전후측에는 서지탄성부(120)가 결합될 수 있고, 상기 서지탄성부(120)는 탄성 부재를 포함하도록 구성되며, 상기 서지고정부(410)와 연결될 수 있다.In addition, the surge elastic portion 120 may be coupled to the front and rear sides of the main frame 100, and the surge elastic portion 120 is configured to include an elastic member, and may be connected to the surge fixing portion 410. .
본 발명의 일 실시예에서 상기 스웨이탄성부(110) 및 서지탄성부(120)는 탄성스프링을 포함하도록 구성되며, 상기 스웨이고정부(310)와 상기 스웨이탄성부(110)는 와이어로 연결될 수 있다. 또한, 상기 서지고정부(410)와 상기 서지탄성부(120)는 와이어로 연결될 수 있다.In an embodiment of the present invention, the sway elastic part 110 and the surge elastic part 120 are configured to include an elastic spring, and the sway fixing part 310 and the sway elastic part 110 may be connected by wire. have. In addition, the surge fixing portion 410 and the surge elastic portion 120 may be connected with a wire.
상기 스웨이탄성부(110)와 상기 스웨이고정부(310)를 연결하는 와이어의 선상에는 상기 스웨이탄성부(110) 하부에 구비되며 상기 메인프레임(100)에 결합된 스웨이롤러(130)가 더 포함되고, 상기 서지탄성부(120)와 상기 서지고정부(410)를 연결하는 와이어의 선상에는 상기 서지탄성부(120) 하부에 구비되며 상기 메인프레임(100)에 결합된 서지롤러(140)가 더 포함될 수 있다.A sway roller 130 provided under the sway elastic part 110 and coupled to the main frame 100 is further included on the line of the wire connecting the sway elastic part 110 and the sway fixing part 310 The surge roller 140 is provided under the surge elastic part 120 and coupled to the main frame 100 on a line of the wire connecting the surge elastic part 120 and the surge fixing part 410. It can be included more.
본 발명의 일 실시예에서 상기 스웨이롤러(130)는 상기 메인프레임(100)의 하부 좌우측에 결합되어 상기 스웨이롤러(130)와 상기 스웨이고정부(310)를 연결하는 와이어는 좌우방향으로 긴장되고, 상기 스웨이롤러(130)와 상기 스웨이롤러(130)의 상부에 구비된 상기 스웨이탄성부(110)를 연결하는 와이어는 높이방향으로 긴장된다.In an embodiment of the present invention, the sway roller 130 is coupled to the lower left and right sides of the main frame 100 so that the wire connecting the sway roller 130 and the sway fixing part 310 is tensioned in the left and right directions. , The wire connecting the sway roller 130 and the sway elastic portion 110 provided on the upper portion of the sway roller 130 is tensioned in the height direction.
또한, 상기 서지롤러(140)는 상기 메인프레임(100)의 하부 전후측에 결합되어 상기 서지롤러(140)와 상기 서지고정부(410)를 연결하는 와이어는 전후방향으로 긴장되고, 상기 서지롤러(140)와 상기 서지롤러(140)의 상부에 구비된 상기 서지탄성부(120)를 연결하는 와이어는 높이방향으로 긴장된다.In addition, the surge roller 140 is coupled to the lower front and rear sides of the main frame 100 so that the wire connecting the surge roller 140 and the surge fixing portion 410 is tensioned in the front and rear directions, and the surge roller A wire connecting 140 and the surge elastic part 120 provided on the surge roller 140 is tensioned in the height direction.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따르면, 상기 모형 선박의 계류 시험시 모형 선박의 수평면에 좌우방향 및 전후방향의 계류강성을 줄 수 있게 된다.According to an embodiment of the present invention having the configuration as described above, it is possible to provide mooring stiffness in the left and right directions and in the front and rear directions to the horizontal plane of the model ship during the mooring test of the model ship.
상기 스웨이롤러(130)와 서지롤러(140)는 같은 높이에 구비되는 것이 바람직하고, 상기 스웨이고정부(310)와 상기 서지고정부(410) 각각의 와이어 연결위치는 같은 높이를 갖는 것이 더욱 바람직하다.The sway roller 130 and the surge roller 140 are preferably provided at the same height, and it is more preferable that the wire connection positions of the sway fixing unit 310 and the surge fixing unit 410 have the same height. Do.
도 4의 도시와 같이, 상기 계류보강장치(700)는 상기 메인프레임(100)의 상단 양측에 각각 상부로 연장된 가이드바(710); 상기 각 가이드바(710)의 상단을 이어 고정되는 강성고정부(720); 상기 강성고정부(720)에 길이 방향을 따라 간격을 두고 하측으로 탄성 구비되는 복수의 보강탄성부(730); 및 상기 가이드바(710)를 따라 승강 가능하게 구비되며, 상기 보강탄성부(730)의 하단에 연결되는 강성당김부(740)를 포함하여 구성되며, 상기 강성당김부(740)가 상기 스웨이탄성부(110) 또는 서지탄성부(120)의 각 단부에 연결될 수 있다.As shown in Fig. 4, the mooring reinforcement device 700 includes guide bars 710 extending upwardly on both upper ends of the main frame 100; A rigid fixing part 720 connected to the upper end of each of the guide bars 710 and fixed; A plurality of reinforcing elastic parts 730 elastically provided downwardly to the rigid fixing part 720 at intervals along the length direction; And a rigid pulling unit 740 provided to be elevating along the guide bar 710 and connected to a lower end of the reinforcing elastic unit 730, wherein the rigid pulling unit 740 is provided with the sway elasticity It may be connected to each end of the part 110 or the surge elastic part 120.
도 6에 도시와 같이, 상기 스웨이롤러(130)에 와이어로 연결된 스웨이탄성부(110)의 긴장되는 길이(Sway Offset)와 저항력(Forc)에 대한 장력 그래프를 비선형에 가갑게 형성할 수 있고, 상기 서지롤러(140)에 와이어로 연결된 서지탄성부(120)의 긴장되는 길이(Sway Offset)와 저항력(Forc)에 대한 장력 그래프를 비선형에 가갑게 형성할 수 있다.As shown in FIG. 6, a tension graph for the tensioned length (Sway Offset) and resistance force (Forc) of the sway elastic part 110 connected to the sway roller 130 by a wire can be formed nonlinearly and sharply, A tension graph for a tensioned length (Sway Offset) and a resistance force (Forc) of the surge elastic portion 120 connected to the surge roller 140 by a wire may be formed in a nonlinear shape.
도 4에 의하면, 상기 보강탄성부(730)는 상기 강성고정부(720)의 하측에 수직으로 탄성 구비되는 스프링(731); 상기 스프링(731)의 타단부에 연결되며, 상기 강성당김부(740)에 관통 구비되어 상기 강성당김부(740)의 소정 위치에서 스프링(731)이 당겨질 수 있도록 너트(734)를 갖는 당김위치조절바(733)로 구성될 수 있다.Referring to FIG. 4, the reinforcing elastic part 730 includes a spring 731 that is elastically provided perpendicularly to the lower side of the rigid fixing part 720; A pulling position having a nut 734 connected to the other end of the spring 731 and provided through the stiff pulling part 740 so that the spring 731 can be pulled at a predetermined position of the stiff pulling part 740 It may be composed of a control bar (733).
본 발명의 일 실시예에서 상기 보강탄성부(730)가 스프링(731) 및 너트(734)를 갖는 당김위치조절바(733)를 포함하도록 구성되며, 상기 강성당김부(740)에 연결된 스웨이탄성부(110) 및 서지탄성부(120)에 해당하는 계류 힘에 의해 당겨지는 강성당김부(740)가 상기 당김위치조절바(733)를 당겨 스프링(731)의 탄성력으로 계류 힘을 비선형으로 변형시킬 수 있다.In an embodiment of the present invention, the reinforcing elastic portion 730 is configured to include a pull position control bar 733 having a spring 731 and a nut 734, and is connected to the rigid pulling portion 740. The rigid pulling part 740 pulled by the mooring force corresponding to the part 110 and the surge elastic part 120 pulls the pulling position control bar 733 and transforms the mooring force nonlinearly with the elastic force of the spring 731 I can make it.
여기서, 상기 너트(734)의 상부에는 상기 강성당김부(740)의 충격을 감소시키는 완충와셔(735)가 더 구비될 수 있다.Here, a buffer washer 735 may be further provided on the nut 734 to reduce the impact of the rigid pulling portion 740.
즉, 상기 강성당김부(740)가 급격하게 움직이는 경우 상기 너트(734)의 충격으로 이상 파형이 발생하는 것을 방지할 수 있다.That is, when the rigid pulling part 740 moves rapidly, it is possible to prevent the occurrence of an abnormal waveform due to the impact of the nut 734.
그리고, 상기 보강탄성부(730)에 사용되는 스프링(731)은 탄성계수가 서로 다른 복수의 탄성그룹(K1,K2)으로 분할 구성되는 것이 바람직하다.In addition, it is preferable that the spring 731 used for the reinforcing elastic portion 730 is divided into a plurality of elastic groups K1 and K2 having different elastic modulus.
즉, 도 5의 (a)와 같이, 상기 강성당김부(740)의 당김으로 상기 스프링(731) 중 제1탄성그룹(K1)을 당겨 소정 거리에 따른 선형의 계류저항을 파악하고, 상기 강성당김부(740)를 더 당기게 되면, 도 5의 (b)와 같이, 제1탄성그롭(K1)과 함께 제2탄성그룹(K2)을 더 포함하여 당겨져 더욱 급격히 증가하는 계류저항을 모사하여 비선형의 계류저항을 그래프로 형성할 수 있다.That is, as shown in (a) of Figure 5, pulling the first elastic group (K1) of the spring 731 by the pulling of the rigid pulling unit 740 to grasp the linear mooring resistance according to a predetermined distance, and When the cathedral gimbu 740 is further pulled, as shown in Fig. 5(b), the first elastic group K1 and the second elastic group K2 are further included to simulate the mooring resistance which increases more rapidly and is nonlinear. The mooring resistance of can be formed as a graph.
여기서, 상기 탄성그룹의 서열은 K1 > K2 로서 제1탄성그룹(K1)이 제2탄성그룹(K2)에 비해 상대적으로 높은 탄성력을 갖는다.Here, the sequence of the elastic group is K1> K2, and the first elastic group (K1) has a relatively high elastic force compared to the second elastic group (K2).
또한, 상기 제1,2탄성그룹(K1,K2)으로 한정되는 것이 아니라 다양한 탄성계를 갖는 각 스프링을 적용하여 더욱 원형에 가까운 비선형 계류 저항을 모사할 수 있다.In addition, it is not limited to the first and second elastic groups K1 and K2, but by applying each spring having a variety of elastic systems, it is possible to simulate a more circular nonlinear mooring resistance.
상기 히브축(200)은 상하 높이방향으로 일정범위 내에서 자유도를 갖도록 구성되고 상기 히브축(200)의 하단은 모형 선박 등 해양 구조물이 연결되어 상기 해양 구조물의 계류시험시 높이방향 자유도가 확보된다. 상기 히브축(200)의 하부와 해양 구조물의 연결은 공지의 기술에 따라 다양한 구성이 적용될 수 있다.The heave shaft 200 is configured to have a degree of freedom within a certain range in the vertical and vertical directions, and the lower end of the heave shaft 200 is connected to an offshore structure such as a model ship, so that a degree of freedom in the height direction is secured during a mooring test of the offshore structure. . Various configurations may be applied to the connection between the lower part of the heave shaft 200 and the offshore structure according to known techniques.
상기 히브축(200)의 하단에는 상기 해양 구조물의 롤, 요, 핏치의 3방향 회전운동에 자유도를 갖도록 짐벌 시스템이 결합될 수 있다.A gimbal system may be coupled to a lower end of the heave shaft 200 so as to have a degree of freedom in the three-way rotational movement of the roll, yaw, and pitch of the marine structure.
상기 짐벌시스템(220)은 상기 히브축(200)의 하단에 결합되며, 상기 짐벌시스템(220)의 하부는 상기 해양 구조물의 일측에 결합된다.The gimbal system 220 is coupled to a lower end of the heave shaft 200, and a lower portion of the gimbal system 220 is coupled to one side of the offshore structure.
상기 짐벌시스템(220)은 상기 3방향 회전운동에 대한 각각의 회전축이 구비될 수 있다.The gimbal system 220 may be provided with respective rotational axes for the three-way rotational movement.
위와 같은 구성을 갖는 본 발명의 일 실시예에 따르면 상기 해양 구조물은 올림, 흔들림, 서지, 롤, 요, 피치의 자유도를 갖게 된다.According to an embodiment of the present invention having the above configuration, the offshore structure has degrees of freedom of raising, shaking, surge, roll, yaw, and pitch.
상기 히브축(200)의 상단은 상부고정구(210)가 구비될 수 있다. 상기 상부고정구(210)는 상기 자중보상장치(500)와 연결되며, 상기 상부고정구(210)의 형상 및 구성은 상기 자중보상장치(500)와의 연결방법에 따라 다양할 수 있다.The upper end of the heave shaft 200 may be provided with an upper fastener 210. The upper fastener 210 is connected to the self-weight compensation device 500, and the shape and configuration of the upper fastener 210 may vary according to a connection method with the self-weight compensation device 500.
본 발명의 스웨이레일(300)은 상기 메인프레임(100)의 하부에 연결된다.The sway rail 300 of the present invention is connected to the lower part of the main frame 100.
상기 스웨이레일(300)은 복수개로 구성될 수 있으며, 상기 메인프레임(100)은 상기 스웨이레일(300)을 따라 좌우 방향으로 이동 가능하게 된다. 본 발명의 일 실시예에서 상기 메인프레임(100)은 상기 스웨이레일(300)의 상부에 결착되며, 상기 스웨이레일(300) 위를 미끄러짐에 따라 좌우 방향의 자유도가 확보된다.The sway rail 300 may be configured in plural, and the main frame 100 is movable in the left and right directions along the sway rail 300. In one embodiment of the present invention, the main frame 100 is attached to the upper portion of the sway rail 300, and as it slides on the sway rail 300, a degree of freedom in the left and right directions is secured.
본 발명의 서지레일(400)은 상기 메인프레임(100)의 하부에 연결된다.The surge rail 400 of the present invention is connected to the lower portion of the main frame 100.
상기 서지레일(400)은 복수개로 구성될 수 있으며, 상기 메인프레임(100)은 상기 서지레일(400)을 따라 전후 방향으로 이동 가능하게 된다.The surge rail 400 may be configured in plural, and the main frame 100 is movable in the front-rear direction along the surge rail 400.
본 발명의 일 실시예에서 상기 서지레일(400)은 상기 스웨이레일(300)의 상부에 구비되며, 상기 메인프레임(100)에 구비된 복수개의 결합구(150)가 상기 서지레일(400)의 상부를 감싸도록 연결된다.In an embodiment of the present invention, the surge rail 400 is provided above the sway rail 300, and a plurality of coupling holes 150 provided in the main frame 100 are It is connected to surround the upper part.
상기 서지레일(400)의 선상에서 상기 결합구(150)가 미끄러짐에 따라 상기 메인프레임(100)의 전후 방향 자유도가 확보된다.As the coupling hole 150 slides on the line of the surge rail 400, a degree of freedom in the front and rear directions of the main frame 100 is secured.
그러나 상기 스웨이레일(300)과 상기 메인프레임(100) 또는 상기 서지레일(400)과 상기 메인프레임(100)의 결합은 상기와 같은 방법으로 한정되는 것은 아니며, 상기 메인프레임(100)이 상기 스웨이레일(300) 및 서지레일(400)의 선상에서 각각 좌우 및 전후 방향으로 이동 가능한 구성이라면 본 발명의 목적범위 내에서 다양하게 설계변경 될 수 있다.However, the combination of the sway rail 300 and the main frame 100 or the surge rail 400 and the main frame 100 is not limited to the above method, and the main frame 100 is If a configuration capable of moving in the left and right directions and in the front and rear directions on the line of the rail 300 and the surge rail 400 may be variously changed within the scope of the object of the present invention.
상기 자중보상장치(500)는 상기 히브축(200)의 상부와 연결되며 상부에 거치고정수단(510)이 구비되어 상기 모형 선박 등 해양 구조물의 계류 시험시 상기 히브축(200)의 자중이 계류 성능평가시험의 대상이 되는 해양 구조물 등에 전달되지 않도록 한다.The self-weight compensation device 500 is connected to the upper part of the heave shaft 200 and is provided with a mounting fixing means 510 at the upper part, so that the self-weight of the heave shaft 200 is moored during a mooring test of an offshore structure such as the model ship. It should not be transmitted to offshore structures subject to performance evaluation tests.
상기 거치고정수단(510)은 본 발명인 계류모사 가이드장치의 외부에 구비된 구조물 등에 거치될 수 있으며, 상기 거치고정수단(510)은 상기 메인프레임(100)과 연결될 수 있다.The mounting fixing means 510 may be mounted on a structure provided outside of the mooring simulation guide device according to the present invention, and the mounting fixing means 510 may be connected to the main frame 100.
이 경우 외부 구조물 등에 의해 상기 히브축(200)의 자중이 지지될 수 있다.In this case, the weight of the heave shaft 200 may be supported by an external structure or the like.
상기 자중보상장치(500)는 일측이 상기 히브축(200)과 와이어로 연결될 수 있다.One side of the self-weight compensation device 500 may be connected to the heave shaft 200 by a wire.
또한, 상기 자중보상장치(500)는 상기 와이어가 거치되는 거치롤러(520)와 상기 와이어의 타측에 구비된 자중보상구(530)를 더 포함할 수 있다.In addition, the self-weight compensation device 500 may further include a mounting roller 520 on which the wire is mounted and a self-weight compensation tool 530 provided on the other side of the wire.
본 발명의 일 실시예에서 상기 히브축(200)의 상단에 구비된 상기 상부고정구(210)와 상기 자중보상구(530)가 와이어로 연결되고, 상기 와이어의 선상에 상기 거치롤러(520)가 구비되며 상기 히브축(200)의 자중은 상기 자중보상구(530)의 자중과 상쇄될 수 있다.In an embodiment of the present invention, the upper fixing unit 210 and the self-weight compensation unit 530 provided at the upper end of the heave shaft 200 are connected with a wire, and the mounting roller 520 is on the line of the wire. The self-weight of the heave shaft 200 may be offset from the self-weight of the self-weight compensator 530.
상기 거치롤러(520)는 상기 거치고정수단(510)과 힌지결합될 수 있고, 상기 메인프레임(100)과 일측이 연결될 수도 있다.The mounting roller 520 may be hingedly coupled to the mounting fixing means 510, and one side may be connected to the main frame 100.
또한, 상기 거치롤러(520)는 상하 중심축을 기준으로 일정범위 회전될 수 있다.In addition, the mounting roller 520 may be rotated in a certain range based on the upper and lower central axes.
상기 히브축(200)의 상하 운동에 대응하여 상기 히브축(200)과 와이어로 연결된 상기 자중보상구(530)가 상하로 운동하며, 상기 거치롤러(520)는 상기 거치롤러(520)에 거치된 와이어의 이동에 따라 상하 방향으로 회전될 수 있다.In response to the vertical movement of the heave shaft 200, the self-weight compensation sphere 530 connected to the heave shaft 200 by a wire moves up and down, and the mounting roller 520 is mounted on the mounting roller 520 It can be rotated in the vertical direction according to the movement of the wire.
또한, 상기 거치고정수단(510)이 상기 외부 구조물 등에 결합된 경우, 상기 메인프레임(100)이 상기 스웨이레일(300) 또는 상기 서지레일(400)을 따라 이동함에 따라 상기 상부고정구(210)와 상기 거치롤러(520)는 거리가 멀어질 수 있으며, 상기 거치롤러(520)는 회전될 수 있다. 상기 자중보상구(530)와 상기 거치롤러(520)는 상기 히브축(200)의 움직임에 지장이 없도록 충분한 거리가 이격되어 위치되는 것이 바람직하다.In addition, when the mounting fixing means 510 is coupled to the external structure, etc., as the main frame 100 moves along the sway rail 300 or the surge rail 400, the upper fixing member 210 and the The mounting roller 520 may be farther away, and the mounting roller 520 may be rotated. It is preferable that the self-weight compensation unit 530 and the mounting roller 520 are positioned at a sufficient distance so as not to interfere with the movement of the heave shaft 200.
상기 가이드아답터(600)는, 상기 스웨이고정부(310)의 하부와 상기 서지고정부(410)의 하부에 각각 연결된다. 또한 상기 가이드아답터(600)는 상기 스웨이고정부(310)가 연결되는 좌우측에 스웨이가이드레일(610)이 구비되고, 상기 서지고정부(410)가 연결되는 전후측에 서지가이드레일(620)이 구비될 수 있다. 이 경우 상기 스웨이고정부(310)는 상기 스웨이가이드레일(610) 위에서 전후방향 자유도를 가질 수 있고, 상기 서지고정부(410)는 상기 서지가이드레일(620) 위에서 좌우 방향 자유도를 가질 수 있다.The guide adapter 600 is connected to a lower portion of the sway fixing portion 310 and a lower portion of the surge fixing portion 410, respectively. In addition, the guide adapter 600 is provided with a sway guide rail 610 on the left and right sides to which the sway fixing unit 310 is connected, and a surge guide rail 620 on the front and rear sides to which the surge fixing unit 410 is connected. It can be provided. In this case, the sway fixing part 310 may have a degree of freedom in the front and rear directions on the sway guide rail 610, and the surge fixing part 410 may have a degree of freedom in the left and right directions on the surge guide rail 620.
위와 같은 구성을 갖는 본 발명의 일 실시예에 따르면, 상기 스웨이고정부(310)는 하부에 상기 스웨이가이드레일(610)이 안착되는 스웨이가이드홈(311)이 구비되고, 상기 서지고정부(410)는 하부에 상기 서지가이드레일(620)이 안착되는 서지가이드홈(411)이 구비된다.According to an embodiment of the present invention having the above configuration, the sway fixing part 310 is provided with a sway guide groove 311 in which the sway guide rail 610 is seated, and the surge fixing part 410 ) Is provided with a surge guide groove 411 in which the surge guide rail 620 is seated.
상기 스웨이가이드홈(311)의 하부에 상기 스웨이가이드레일(610)이 결합되어 좌우방향 움직임이 제한되고 전후방향 움직임에 자유도를 갖게 된다.The sway guide rail 610 is coupled to the lower portion of the sway guide groove 311 to limit the lateral movement and provide a degree of freedom in the forward and backward movement.
또한 상기 서지가이드홈(411)의 하부에 상기 서지가이드레일(620)이 결합되어 전후방향 움직임이 제한되고 좌우방향 움직임에 자유도를 갖는다.In addition, the surge guide rail 620 is coupled to the lower portion of the surge guide groove 411 to limit movement in the front and rear directions, and have a degree of freedom in movement in the left and right directions.
일예로서, 상기 메인프레임(100)이 상기 서지레일(400)을 따라 전후 방향으로 움직이는 경우 상기 스웨이고정부(310)는 상기 스웨이가이드레일(610)을 따라 전후방향으로 움직이게 된다.As an example, when the main frame 100 moves forward and backward along the surge rail 400, the sway fixing unit 310 moves forward and backward along the sway guide rail 610.
상기 가이드아답터(600)는 상기 스웨이가이드레일(610) 또는 상기 서지가이드레일(620)의 외부로 돌출형성된 한 쌍의 거치프레임(630)을 더 포함할 수 있다.The guide adapter 600 may further include a pair of mounting frames 630 protruding to the outside of the sway guide rail 610 or the surge guide rail 620.
상기 한 쌍의 거치프레임(630)은 상기 비선형 계류 모사장치를 기 설정된 위치에 고정시키는데 있어서 보다 용이하게 하며, 상기 가이드아답터(600)에서 상기 거치프레임(630)이 구비되는 위치는 상기 비선형 계류 모사장치의 설치 목적, 설치 환경, 설치 장소 등에 따라 다양하게 변형될 수 있다.The pair of mounting frames 630 makes it easier to fix the nonlinear mooring simulation device to a preset position, and the position where the mounting frame 630 is provided in the guide adapter 600 is the nonlinear mooring simulation device. It can be variously modified depending on the purpose of installation of the device, the installation environment, and the installation location.
상기와 같이 구성된 본 발명을 제공함으로써, 히브, 스웨이, 서지를 포함하는 자유도를 가지며, 계류를 기존에 비해 보다 정교하게 모사할 수 있어 정밀하게 측정할 수 있는 효과가 있다.By providing the present invention configured as described above, it has a degree of freedom including heave, sway, and surge, and the mooring can be more accurately simulated compared to the existing one, thereby enabling precise measurement.
이상에 설명한 본 명세서 및 청구범위에 사용되는 용어 및 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims described above should not be construed as being limited to their usual or dictionary meanings, and the present inventors appropriate the concept of terms in order to describe their own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention on the basis of the principle that it can be defined.
따라서, 본 명세서에 기재된 도면 및 실시 예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the configurations shown in the drawings and embodiments described in the present specification are only one of the most preferred embodiments of the present invention, and do not represent all the technical ideas of the present invention, and thus they can be replaced at the time of application. It is to be understood that there may be a variety of equivalents and variations that may exist.
본 발명은 메인프레임; 상하 높이방향으로 연장 형성되어 상기 메인프레임을 상하 높이방향으로 관통 가능하게 형성되며, 일정 범위 안에서 상하 높이방향의 자유도를 갖는 히브축; 좌우 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 좌우 길이방향으로 이동 가능하게 구비되는 스웨이레일; 상기 스웨이레일의 좌우 말단에 각각 구비되는 스웨이고정부; 전후 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 전후 길이방향으로 이동 가능하게 구비되는 서지레일; 상기 서지레일의 전후 말단에 각각 구비되는 서지고정부; 상기 히브축과 일측이 연결되고 상부에 거치고정수단이 구비된 자중보상장치; 상기 스웨이고정부와 상기 서지고정부의 하부에 각각 연결된 가이드아답터; 및 상기 스웨이탄성부와 상기 서지탄성부의 상부에 각각 연결된 계류보강장치를 포함하며, 상기 계류보강장치는 상기 메인프레임의 상단 양측에 각각 상부로 연장된 가이드바; 상기 각 가이드바의 상단을 이어 고정되는 강성고정부; 상기 강성고정부에 길이 방향을 따라 간격을 두고 하측으로 탄성 구비되는 복수의 보강탄성부; 및 상기 가이드바를 따라 승강 가능하게 구비되며, 상기 보강탄성부의 하단에 연결되는 강성당김부로 구성되며, 상기 강성당김부가 상기 스웨이탄성부 또는 서지탄성부의 각 단부에 연결되는 구성으로 히브, 스웨이, 서지를 포함하는 자유도를 가지며, 계류를 기존에 비해 보다 정교하게 모사할 수 있는 비선형 계류 모사장치를 제안하여 해양 선박 제조 분야에 이용가능성이 있다.The present invention is a mainframe; A heb shaft extending in the vertical height direction so as to penetrate the main frame in the vertical height direction and having a degree of freedom in the vertical height direction within a predetermined range; A sway rail extending in the left and right longitudinal direction to be connected to the main frame, the main frame being provided to be movable in the left and right longitudinal direction; Sway fixing portions provided at the left and right ends of the sway rail, respectively; A surge rail extending in the longitudinal direction of the front and rear, connected to the main frame, and having the main frame movable in the longitudinal direction of the front and rear; A surge fixing unit provided at each of the front and rear ends of the surge rail; A self-weight compensation device connected to one side of the heave shaft and provided with a mounting fixing means on an upper portion thereof; A guide adapter connected to the lower portion of the sway fixing part and the surge fixing part, respectively; And a mooring reinforcement device connected to an upper portion of the sway elastic portion and the surge elastic portion, wherein the mooring reinforcement device includes a guide bar extending upwardly at both upper ends of the main frame; A rigid fixing part connected to the upper end of each of the guide bars; A plurality of reinforcing elastic parts elastically provided downwardly to the rigid fixing part at intervals along the length direction; And a rigid pulling unit provided to be elevating along the guide bar and connected to the lower end of the reinforcing elastic unit, and the rigid pulling unit is connected to each end of the sway elastic unit or the surge elastic unit. It has a degree of freedom to include and proposes a non-linear mooring simulation device capable of more elaborately simulating mooring than the existing one, and thus it is possible to be used in the field of marine vessel manufacturing.

Claims (5)

  1. 메인프레임;Mainframe;
    상하 높이방향으로 연장 형성되어 상기 메인프레임을 상하 높이방향으로 관통 가능하게 형성되며, 일정 범위 안에서 상하 높이방향의 자유도를 갖는 히브축;A heb shaft extending in the vertical height direction so as to penetrate the main frame in the vertical height direction and having a degree of freedom in the vertical height direction within a predetermined range;
    좌우 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 좌우 길이방향으로 이동 가능하게 구비되는 스웨이레일;A sway rail extending in the left and right longitudinal direction to be connected to the main frame, the main frame being provided to be movable in the left and right longitudinal direction;
    상기 스웨이레일의 좌우 말단에 각각 구비되는 스웨이고정부;Sway fixing portions provided at the left and right ends of the sway rail, respectively;
    전후 길이방향으로 연장 형성되어 상기 메인프레임과 연결되며, 상기 메인프레임이 전후 길이방향으로 이동 가능하게 구비되는 서지레일;A surge rail extending in the longitudinal direction of the front and rear, connected to the main frame, and having the main frame movable in the longitudinal direction of the front and rear;
    상기 서지레일의 전후 말단에 각각 구비되는 서지고정부;A surge fixing unit provided at each of the front and rear ends of the surge rail;
    상기 히브축과 일측이 연결되고 상부에 거치고정수단이 구비된 자중보상장치;A self-weight compensation device connected to one side of the heave shaft and provided with a mounting fixing means on an upper portion thereof;
    상기 스웨이고정부와 상기 서지고정부의 하부에 각각 연결된 가이드아답터; 및A guide adapter connected to the lower portion of the sway fixing part and the surge fixing part, respectively; And
    상기 메인프레임에 구비되어 상기 스웨이고정부와 상기 서지고정부에 각각 연결되는 계류보강장치를 포함하는 것을 특징으로 하는 비선형 계류 모사장치.And a mooring reinforcement device provided on the main frame and connected to the sway fixing part and the surge fixing part, respectively.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 계류보강장치는,The mooring reinforcement device,
    상기 메인프레임의 상단 양측에 각각 상부로 연장된 가이드바;Guide bars extending upwardly on both sides of the upper end of the main frame;
    상기 가이드바의 상단을 이어 고정되는 강성고정부;A rigid fixing part connected to the upper end of the guide bar and fixed;
    상기 강성고정부에 길이 방향을 따라 간격을 두고 하측으로 탄성 구비되는 복수의 보강탄성부; 및A plurality of reinforcing elastic parts elastically provided downwardly to the rigid fixing part at intervals along the length direction; And
    상기 가이드바를 따라 승강 가능하게 구비되며, 상기 보강탄성부의 하단에 연결되는 강성당김부로 구성되며, 상기 강성당김부가 상기 스웨이탄성부 또는 서지탄성부의 각 단부에 연결되는 것을 특징으로 하는 비선형 계류 모사장치.A nonlinear mooring simulation device, characterized in that it is provided to be elevating along the guide bar, and comprising a rigid pulling unit connected to a lower end of the reinforcing elastic unit, wherein the rigid pulling unit is connected to each end of the sway elastic unit or the surge elastic unit.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 보강탄성부는,The reinforcing elastic part,
    상기 강성고정부의 하측에 수직으로 탄성 구비되는 스프링;A spring vertically elastically provided on a lower side of the rigid fixing part;
    상기 스프링의 타단부에 연결되며, 상기 강성당김부에 관통 구비되어 상기It is connected to the other end of the spring, and is provided through the rigid pulling part to
    강성당김부의 소정 위치에서 스프링이 당겨질 수 있도록 너트를 갖는 당김위치조절바로 구성되는 것을 특징으로 하는 비선형 계류 모사장치.Non-linear mooring simulation device, characterized in that consisting of a pull position adjustment bar having a nut so that the spring can be pulled at a predetermined position of the rigid pull portion.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 너트의 상부에는,On the top of the nut,
    상기 강성당김부의 충격을 감소시키는 완충와셔가 더 구비되는 것을 특징으로 하는 비선형 계류 모사장치.Nonlinear mooring simulation apparatus, characterized in that further provided with a buffer washer to reduce the impact of the rigid pull portion.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 보강탄성부에 사용되는 스프링은,The spring used for the reinforcing elastic part,
    탄성계수가 서로 다른 복수의 탄성그룹(K1,K2)으로 분할 구성되는 것을 특징으로 하는 비선형 계류 모사장치.A nonlinear mooring simulation device, characterized in that it is divided into a plurality of elastic groups (K1, K2) having different elastic modulus.
PCT/KR2020/011524 2019-09-18 2020-08-28 Nonlinear mooring simulation device WO2021054643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0114549 2019-09-18
KR1020190114549A KR102279075B1 (en) 2019-09-18 2019-09-18 Simulating apparatus of nonlinear mooring test

Publications (1)

Publication Number Publication Date
WO2021054643A1 true WO2021054643A1 (en) 2021-03-25

Family

ID=74883838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011524 WO2021054643A1 (en) 2019-09-18 2020-08-28 Nonlinear mooring simulation device

Country Status (2)

Country Link
KR (1) KR102279075B1 (en)
WO (1) WO2021054643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720090A (en) * 2022-04-19 2022-07-08 浙江大学 Experimental device for researching bottoming zone scouring-slotting effect under multi-degree-of-freedom cyclic oscillation of anchoring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203003B (en) * 2021-11-23 2023-04-21 华中科技大学 Multifunctional simulation test device for ship
CN114279677B (en) * 2021-12-08 2023-12-12 中国运载火箭技术研究院 Underwater mooring body vortex-induced vibration shrinkage ratio test method based on acceleration equivalence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990057437A (en) * 1997-12-30 1999-07-15 이해규 Resistive dynamometer for catamaran vessels in circulating tank
JP2002145183A (en) * 2000-11-16 2002-05-22 National Maritime Research Institute Instrumentation system for wave drift force three components and non-constraint oscillation displacement six components for floating body in ocean waves
CN104155131A (en) * 2014-07-31 2014-11-19 河海大学 Cable simulation device and cable simulation method in ship mooring physical model test
CN104819857A (en) * 2015-03-12 2015-08-05 上海交通大学 Marine deep water floating platform vortex induced motion model experimental device
KR20190071138A (en) * 2017-12-14 2019-06-24 한국해양과학기술원 Simulating apparatus for mooring test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990057437A (en) * 1997-12-30 1999-07-15 이해규 Resistive dynamometer for catamaran vessels in circulating tank
JP2002145183A (en) * 2000-11-16 2002-05-22 National Maritime Research Institute Instrumentation system for wave drift force three components and non-constraint oscillation displacement six components for floating body in ocean waves
CN104155131A (en) * 2014-07-31 2014-11-19 河海大学 Cable simulation device and cable simulation method in ship mooring physical model test
CN104819857A (en) * 2015-03-12 2015-08-05 上海交通大学 Marine deep water floating platform vortex induced motion model experimental device
KR20190071138A (en) * 2017-12-14 2019-06-24 한국해양과학기술원 Simulating apparatus for mooring test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720090A (en) * 2022-04-19 2022-07-08 浙江大学 Experimental device for researching bottoming zone scouring-slotting effect under multi-degree-of-freedom cyclic oscillation of anchoring system

Also Published As

Publication number Publication date
KR102279075B1 (en) 2021-07-19
KR20210033172A (en) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021054643A1 (en) Nonlinear mooring simulation device
KR102094408B1 (en) Simulating apparatus for mooring test
WO2015174620A1 (en) Model-testing water tank device having float-friendly strut for submerged vehicle
CN111220354B (en) Underwater dragging test device
CN112985762B (en) Seaworthiness device for ship model six-degree-of-freedom motion measurement
US9340263B2 (en) Motion compensation device for compensating a carrier frame on a vessel for water motion
KR102023648B1 (en) Tidal Current Load Measurement System
CN111366332B (en) Three-degree-of-freedom decomposition mooring structure measurement experimental device
CN212300783U (en) Large-scale low-speed wind tunnel flutter test full-mode supporting device
CN102305696A (en) Deep sea vertical pipe array model vortex-induced vibration test device with top capable of moving in step flow
CN105405336A (en) Helicopter rescue simulated training system
CN102305697B (en) Vortex-induced vibration test device for movable deep sea vertical pipe array model at lower top end of uniform flow
CN112014060A (en) Large-scale low-speed wind tunnel flutter test full-mode supporting device
WO2018016679A1 (en) Model ship wind load measuring device
CN113916489A (en) Model supporting device for releasing five rigid body degrees of freedom of wind tunnel test model
KR100343022B1 (en) 4 degree of freedom movement and resistance measuring device
CN112798224A (en) Ship model plane motion measurement method
CN111874261A (en) Test platform suitable for free surface movement measurement is striden to model
CN113008684A (en) Device and method for simulating mechanical characteristics of marine riser under motion excitation of platform
KR101938802B1 (en) Simulating apparatus for mooring test and mooring test system thereof
CN110031169A (en) Simulate two-tube interference dynamic response experimental provision under oblique uniform flow effect
CN106184618B (en) Ship hydrostatic power experimental apparatus for capability and its experimental method
CN102359856B (en) Bidirectional forced vibration experimental apparatus of segmented model of FISHFARM float bowl under uniform flow
CN110554213A (en) Device for ship true wind measurement calibration
CN106404444A (en) Multi-posture vibration navigation simulator platform device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866789

Country of ref document: EP

Kind code of ref document: A1