WO2021054462A1 - 発光性ナノカーボン製造方法 - Google Patents

発光性ナノカーボン製造方法 Download PDF

Info

Publication number
WO2021054462A1
WO2021054462A1 PCT/JP2020/035574 JP2020035574W WO2021054462A1 WO 2021054462 A1 WO2021054462 A1 WO 2021054462A1 JP 2020035574 W JP2020035574 W JP 2020035574W WO 2021054462 A1 WO2021054462 A1 WO 2021054462A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent
raw material
material solution
phenylenediamine
nanocarbon
Prior art date
Application number
PCT/JP2020/035574
Other languages
English (en)
French (fr)
Inventor
祐介 比江嶋
穣 兼子
加藤 博和
忠之 伊左治
Original Assignee
国立大学法人金沢大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 日産化学株式会社 filed Critical 国立大学法人金沢大学
Priority to JP2021546996A priority Critical patent/JPWO2021054462A1/ja
Publication of WO2021054462A1 publication Critical patent/WO2021054462A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon

Definitions

  • the present invention relates to a method for producing luminescent nanocarbons that emit strong light in a long wavelength region when excited by light having a wavelength shorter than the emission wavelength.
  • Luminescent nanocarbons are new carbon nanomaterials recently discovered in soot, and unlike graphene and other nanocarbon materials, they have the characteristic of exhibiting strong luminescence.
  • organic molecules are used as raw materials, and highly toxic cadmium compounds such as cadmium sulfide (CdS) and cadmium selenide (CdSe) and rare metals such as europium are used, such as semiconductor quantum dots.
  • CdS cadmium sulfide
  • CdSe cadmium selenide
  • rare metals such as europium
  • An object of the present invention is to provide a method for producing luminescent nanocarbons that emit strong light in a long wavelength region when excited by light having a wavelength shorter than the emission wavelength.
  • the present invention is a new method for producing luminescent nanocarbon, which exhibits strong emission in a long wavelength region of 490 to 620 nm when excited by light having a wavelength shorter than the emission wavelength, and has the following configuration.
  • a method for producing a luminescent nanocarbon having a reaction step of reacting a raw material solution to form a luminescent nanocarbon, the raw material solution is composed of a group consisting of a benzene compound having a hydroxy group, an aliphatic hydroxy acid and an aliphatic dicarboxylic acid.
  • a method for producing a luminescent nanocarbon which comprises at least one compound selected and at least one compound selected from o-phenylenediamine or 1,5-naphthalenediamine.
  • a luminescent nanocarbon production method including a reaction step of reacting a raw material solution to obtain luminescent nanocarbon, a plurality of components are contained in the raw material solution and / or the heating conditions in the reaction step are different.
  • a method for producing luminescent nanocarbons which comprises producing luminescent nanocarbons, evaluating the luminescent properties of a plurality of the luminescent nanocarbons, and adjusting the luminescent properties of the luminescent nanocarbons.
  • the present invention it is possible to produce luminescent nanocarbons that exhibit strong emission in a long wavelength region of 490 to 620 nm when excited by light having a wavelength shorter than the emission wavelength. Further, by differentiating the ratio of the components contained in the raw material solution and / or the heating conditions in the reaction step, the light emission characteristics of the luminescent nanocarbon in the long wavelength region can be adjusted, and the light emission that efficiently exhibits strong light emission in the long wavelength region can be obtained. Sexual nanocarbon can be obtained.
  • the raw material solution is at least one compound selected from the group consisting of a benzene compound having a hydroxy group, an aliphatic hydroxy acid and an aliphatic dicarboxylic acid, and at least one selected from o-phenylenediamine or 1,5-naphthalenediamine.
  • a compound selected from the above group is a carbon source of luminescent nanocarbon, and at least one compound selected from o-phenylenediamine or 1,5-naphthalenediamine is nitrogen of luminescent nanocarbon. It is the source.
  • the luminescent nanocarbon obtained by the production method according to the present embodiment exhibits strong luminescence in a long wavelength region.
  • "exhibiting strong emission in the long wavelength region” means exhibiting maximum or maximum emission intensity in the long wavelength region of 490 to 620 nm when excited by light having a wavelength shorter than the emission wavelength.
  • the emission intensity peaks in the range of 540 to 620 nm and further to 580 to 620 nm.
  • the luminescent nanocarbon shown can be produced.
  • the raw material solution contains a solvent that dissolves the above compounds.
  • the solvent include N, N dimethylformamide (DMF), formamide, N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), N, N-dimethylacetamide (N, N-dimethylacetamide).
  • amide compounds such as DMA
  • alcohol compounds such as methanol, ethanol, 1-propanol, isopropanol, ethylene glycol and propylene glycol, dimethyl sulfoxide (DMSO), acetonitrile (AN) and water. These may be used alone or in admixture of two or more.
  • reaction step The reaction step is carried out by a solvothermal synthesis method for producing luminescent nanocarbons using a high temperature and / or high pressure solvent.
  • the reaction step of reacting the raw material solution described above is hydrothermal synthesis in which the compound is synthesized in the presence of high temperature and high pressure water.
  • the reaction step is a step of heating the raw material solution in a closed state in a reaction vessel and reacting the raw material solution at a reaction temperature of 100 ° C. or higher and 500 ° C. or lower to synthesize luminescent nanocarbon as a reaction product.
  • the carbon source compound and the nitrogen source compound are reacted in a solvent under the condition that the raw material solution is uniformly present in the reaction vessel, that is, in the raw material solution in a uniform state at a pressure higher than vapor-liquid equilibrium. ..
  • the uniform state is a state in which there is no stationary interface between the gas phase and the liquid phase, that is, a state in which the gas phase and the liquid phase are mixed and integrated and there is no interface, or the position where the interface exists but is present. A state that is not constant but fluctuates.
  • the state in which the raw material solution in the reaction vessel forms a supercritical phase (supercritical fluid) having both gas diffusivity and liquid solubility is an example of a uniform state in which no interface exists. ..
  • a supercritical phase of the raw material solution can be formed.
  • the temperature inside the reaction vessel (reaction temperature) in the reaction step shall be 100 ° C or higher and 500 ° C or lower.
  • the hydrothermal reaction can be promoted by setting the reaction temperature to 100 ° C. or higher.
  • the reaction temperature is more preferably 150 ° C. or higher, 180. It is more preferable to set the temperature to ° C. or higher.
  • the reaction temperature is generally 500 ° C. or lower, preferably 400 ° C. or lower, and more preferably 300 ° C. or lower in order to further advance the conversion reaction in the reaction step and suppress the formation of insoluble components.
  • the reaction temperature is preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 180 ° C. or higher and 270 ° C. or lower, and further preferably 200 ° C. or higher and 230 ° C. or lower.
  • the reaction step is a batch type reaction
  • an amount of the raw material solution in which the raw material solution in the reaction vessel has a density higher than that in the vapor-liquid equilibrium state is charged in the reaction step.
  • the reaction vessel is adjusted so that the raw material solution in the reaction vessel in the reaction step has a density higher than that in the vapor-liquid equilibrium state.
  • the raw material solution in the reaction step becomes a uniform state, that is, a state in which the gas and the liquid are mixed and integrated in the reaction vessel, so that various raw materials can be used in combination.
  • reaction step is a batch reaction
  • the reaction step is carried out in the entire reaction vessel by heating the entire reaction vessel in which the raw material solution is charged and setting the temperature and pressure in the entire reaction vessel to a predetermined temperature and pressure.
  • a tube-type high-pressure vessel autoclave
  • the reaction step is advanced by charging the reaction vessel into an electric furnace set to a predetermined reaction temperature.
  • the tube-shaped high-pressure vessel is taken out into room temperature air and air-cooled to cool the reaction solution containing the reaction product (cooling step).
  • the reaction step is a batch reaction
  • the reaction temperature is 200 ° C. to 250 ° C.
  • reaction step is a flow-type reaction
  • a pressure-resistant reaction vessel having a long continuous internal space like an elongated tube is used.
  • the reaction is continuously carried out in the part of the region to carry out the reaction step.
  • the pressure in the reaction vessel is adjusted so that the raw material solution becomes higher than the saturated vapor pressure at which vapor-liquid equilibrium is achieved. As a result, the raw material solution is present in a uniform state in the reaction step, so that the reaction efficiency is improved.
  • the cooling step By cooling the other part that communicates with the part that performs the reaction step (cooling step), luminescent nanocarbon can be obtained from the reaction solution that is the raw material solution after the reaction.
  • the cooling step is performed by rapidly cooling a part of an elongated tube which is a reaction vessel, for example, using an ice bath or a water bath.
  • reaction step and the cooling step are carried out in different parts of the reaction vessel, and the part where the reaction step proceeds and the part where the cooling step proceeds are communicated with each other, the raw material solution and the reaction solution move in the reaction vessel. By doing so, the reaction step and the cooling step proceed continuously and simultaneously.
  • reaction step is performed in a part of the region and the cooling step is performed in another region using the above-mentioned reaction vessel, the reaction step and the cooling step proceed continuously and simultaneously, so that a large amount can be efficiently used in a short time.
  • Luminescent nanocarbon can be produced.
  • the present invention manufactures a plurality of luminescent nanocarbons in a luminescent nanocarbon manufacturing method including a reaction step of reacting a raw material solution to form luminescent nanocarbons, and evaluates the luminescent characteristics of the plurality of luminescent nanocarbons.
  • a reaction step of reacting a raw material solution to form luminescent nanocarbons and evaluates the luminescent characteristics of the plurality of luminescent nanocarbons.
  • it can be implemented as a method for producing luminescent nanocarbons for adjusting the luminescent properties of the luminescent nanocarbons.
  • a plurality of luminescent nanocarbons having different luminescent characteristics are produced to adjust the luminescent property in the long wavelength region, and exhibit strong luminescent property. It is possible to efficiently produce luminescent nanocarbon.
  • the luminescence of a plurality of luminescent nanocarbons having different luminescence characteristics in a long wavelength region can be efficiently evaluated by evaluating the luminescence characteristics for an excitation wavelength in the vicinity of 450 nm (for example, 440 to 460 nm).
  • Example 1 In order to examine the effect of the combination of raw materials contained in the raw material solution on the optical properties of luminescent nanocarbon, 0.1 g of various compounds shown in Table 1 and 0.1 g of o-phenylenediamine or 1,5-naphthalene are used.
  • Luminescent nanocarbon was produced using a raw material solution in which 10 g of ethanol was added to a mixture with 0.1 g of diamine.
  • the reaction step of reacting the raw material solution to luminescent nanocarbon is carried out by encapsulating 9 mL of the raw material solution in an autoclave made of SUS316 having a capacity of about 10 mL, heating at a reaction temperature of 210 ° C. for 5 hours in an electric furnace, and solvothermal synthesis. It was.
  • the luminescent nanocarbon synthesized by the above method was filtered using a filter having a pore size of 220 nm (manufactured by Rephile Bioscience), and the luminescent nanocarbon was purified by removing coarse by-products.
  • the purified luminescent nanocarbon diluted 10-fold with ethanol was used as a sample for measuring the excitation / emission spectrum.
  • the excitation / emission spectrum was measured using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science.
  • FIGS. 1 (a) to 1 (f) and 2 (a) to 2 (e) are the excitations of FIGS. 1 (a) to 1 (f) and 2 (a) to 2 (e).
  • -It is a graph of the emission spectrum by the excitation light which showed the maximum emission intensity obtained by the emission spectrum measurement. In these graphs, the peak value of the emission intensity at the excitation wavelength is obtained for each excitation wavelength of 20 nm, and the emission wavelength and its intensity at the excitation wavelength showing the maximum peak value are plotted.
  • solvothermal synthesis using a raw material solution in which at least one compound of o-phenylenediamine or 1,5-naphthalenediamine and a specific compound is used is used to emit strong light in the long wavelength region. It was found that luminescent nanocarbon having the above can be synthesized. A combination of at least one compound of o-phenylenediamine or 1,5-naphthalenediamine and at least one compound selected from the group consisting of a benzene compound having a hydroxy group, an aliphatic hydroxy acid and an aliphatic dicarboxylic acid. It has been found that by using the raw material solution, a luminescent nanocarbon exhibiting an emission peak, that is, a maximum or maximum emission intensity in a long wavelength region of 490 to 620 nm can be produced.
  • a benzene compound having two hydroxy groups is preferable, and catechol is particularly preferable.
  • FIG. 2D By using a raw material solution containing catechol and o-phenylenediamine, as shown in FIG. 2D, light emission showing a strong emission peak in 580 to 620 nm due to an excitation wavelength of 500 nm, which is shorter than 580 nm. We were able to produce sex nanocarbons.
  • the aliphatic ⁇ -hydroxy acid is preferable among the above-mentioned aliphatic hydroxy acids and aliphatic dicarboxylic acids.
  • a raw material solution containing lactic acid and o-phenylenediamine as shown in FIG. 2A, when excited using a wavelength shorter than 580 nm, a relatively strong emission peak is generated at 580 to 620 nm. The luminescent nanocarbon shown was produced.
  • FIGS. 6 (a) to 6 (d) are graphs of emission spectra by excitation light showing the maximum emission intensity obtained by the excitation emission measurement of FIGS. 5 (a) to 5 (d). .. As shown in these graphs, when o-phenylenediamine and the raw materials shown in Table 2 are used in combination, it is not possible to produce luminescent nanocarbon showing the maximum emission intensity in the long wavelength region of 490 nm or more. It was.
  • Example 2 As shown in FIGS. 2 (d) and 4 (d), when the excitation wavelength is set to 580 nm or less by using the raw material solution of test number 1-10 containing catechol and o-phenylenediamine, the emission wavelength is 580. Luminescent nanocarbon showing a strong emission peak was obtained in the long wavelength region near 620 nm. Therefore, for this luminescent nanocarbon, in order to optimize the mixing ratio of the raw materials from the viewpoint of strengthening the emission intensity in the long wavelength region, the blending amount of catechol and o-phenylenediamine was changed within the range shown in Table 3. Luminescent nanocarbon was produced using the raw material solution.
  • the luminescent nanocarbon purified in the same manner as in Example 1 diluted 10-fold with ethanol was used as a sample.
  • Each sample was placed in a glass screw tube bottle, and the appearance in a state of being irradiated with ultraviolet light (wavelength 365 nm) was confirmed.
  • the appearance was different due to the difference in the blending ratio of the raw materials. Specifically, (10/10) is the brightest red, (5/10) and (10/5) are slightly pale pink, (1/10) is white, and (10/1) is brown. It was. From this result, it was found that luminescent nanocarbons having different luminescent characteristics can be obtained by changing the blending ratio of the raw materials.
  • FIG. 7 is a graph of the absorption spectrum, where the horizontal axis shows the wavelength (Wavelength / nm) and the vertical axis shows the absorbance (Absorbance /-). As shown in the figure, peaks of the absorption spectrum were confirmed in the vicinity of 540 nm and 570 nm except for the test number (1/10) in which the content ratio of o-phenylenediamine was the smallest. In all peaks, the luminescent nanocarbon of test number (10/10), which was a mixture of o-phenylenediamine and catechol in the same weight, showed the strongest absorption.
  • FIGS. 8 (a) to 8 (e) show graphs of contour plots obtained by measuring the excitation / emission spectra of luminescent nanocarbons sorbothermally synthesized at different raw material mixing ratios.
  • 9 (a) to 9 (e) and 10 (a) to 10 (e) show the excitation light of 450 nm obtained by the excitation / emission spectrum measurements of FIGS. 8 (a) to 8 (e). It is a graph of an emission spectrum with an excitation light of 500 nm. From these figures, it can be seen that the test number (1/10) having the largest catechol content (mixing ratio) in the raw material solution exhibits light emission of 450 to 500 nm by excitation light of 350 to 400 nm.
  • test number (10/1) having the largest mixing ratio of o-phenylenediamine showed emission of 500 to 580 nm by excitation light of 400 to 470 nm. Further, in the test number (10/10), the emission intensity in the region of 580 to 620 nm was the largest with respect to the emission intensity of 450 to 580 nm.
  • the ratio of the content of catechol to o-phenylenediamine (catechol / o-phenylenediamine) in the raw material solution is more preferably 7/10 or more and 15/10 or less, and 9/10 or more and 12/10 or less. Can be said to be even more preferable.
  • the property of showing the maximum emission peak in the region of 580 to 620 nm when excited with light having a wavelength shorter than the emission wavelength is the excitation light of 450 nm. It was found that when the above was used, it appeared in luminescent nanocarbon showing an emission peak in a long wavelength region of 580 to 620 nm. In particular, it was remarkable in the case where the emission peak in the region of 580 to 620 nm was the maximum when the excitation light of 450 nm was used.
  • those having the above-mentioned properties may show an emission peak at 540 to 560 nm due to excitation light at 450 nm, and in this case, the emission intensity of the emission peak in the region of 580 to 620 nm is the emission peak at 540 to 560 nm.
  • the emission intensity of the above is preferably 0.8 times or more, more preferably 1.0 times or more, and further preferably 1.5 times or more.
  • Example 3 (Optimization of reaction conditions)
  • the raw material solution containing o-phenylenediamine and catechol in a weight ratio of 1: 1 is a luminescent nanocarbon that emits light in a long wavelength region near 580 to 620 nm when an excitation wavelength having a wavelength shorter than the emission wavelength is used. It turned out to be suitable for the production of. Therefore, using this raw material solution, luminescent nanocarbon was produced by changing the reaction conditions in the solvothermal reaction. Specifically, as shown in Table 4, luminescent nanocarbons were produced by changing the reaction temperature in the range of 150 to 300 ° C. and the reaction time in the range of 1 to 24 hours. A measurement sample was prepared in the same manner as in Example 1.
  • TEM analysis In order to examine the particle size of each of the obtained luminescent nanocarbons, a measurement sample was observed using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • H-7650 manufactured by Hitachi High-Technologies Corporation was used.
  • TEM grid a TEM grid SC01-011A (EM Japan) with a hydrophilic carbon film was used.
  • FIG. 11 is a transmission electron micrograph ( ⁇ 200k) of the luminescent nanocarbon of test number 210-5. It was found that the sample existed as substantially spherical nanoparticles of about 10 to 20 nm.
  • FIG. 12A shows the absorption spectrum of the luminescent nanocarbon synthesized under each reaction condition. Further, FIG. 12 (b) shows an absorption spectrum obtained by extracting a part of FIG. 12 (a).
  • the peak of the absorption spectrum was confirmed in the vicinity of 400 nm.
  • the peak of the absorption spectrum around 400 nm was attenuated, and the peak of the absorption spectrum was confirmed around 540 and 570 nm.
  • Example 13 (a), 13 (b) and 13 (c) show graphs of contour plots of the excitation and emission spectra of the luminescent nanocarbons of test numbers 150-1, 210-24 and 300-24.
  • the sample in which the reaction did not proceed from the test number 150-1 shown in FIG. 13 (a) showed light emission at a wavelength of 450 to 580 nm due to the excitation light having a wavelength of 350 to 470 nm.
  • the sample in which the reaction proceeded from the test number 210-24 shown in FIG. 13 (b) showed light emission at a wavelength of 580 to 620 nm.
  • the reaction temperature is preferably 180 ° C. or higher and 240 ° C. or lower, and more preferably 190 ° C. or higher and 220 ° C. or lower, from the viewpoint of producing luminescent nanocarbon showing a strong emission peak in a long wavelength region.
  • the reaction temperature is 190 ° C. or higher and 220 ° C. or lower
  • the reaction time is preferably about 20 hours or more and 30 hours or less.
  • the present invention can be used as a method for producing luminescent nanocarbons used in lighting, displays, optical communication devices, fluorescent probes for living organisms that are required to have low toxicity, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

発光波長より短波長の光で励起させたときに、500~620nmの長波長領域において強い発光を示す発光性ナノカーボンを製造できる方法を提供するために、原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法は、前記原料溶液が、ヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれる少なくとも1種の化合物と、o-フェニレンジアミンまたは1,5-ナフタレンジアミンから選ばれる少なくとも1種の化合物と、を含有している。

Description

発光性ナノカーボン製造方法
 本発明は発光波長より短波長の光で励起させたときに長波長領域において強い発光を示す発光性ナノカーボンの製造方法に関する。
 発光性ナノカーボン(カーボンドット)は、最近、すすの中から発見された新規炭素ナノ材料であり、グラフェンや他のナノカーボン材料とは異なり、強い発光性を示すという特徴がある。また、原料として用いられるのは有機分子であって、半導体量子ドットのように、硫化カドミウム(CdS)やセレン化カドミウム(CdSe)など毒性の高いカドミウム化合物やユーロピウムなどの希少金属が使用されることはない。このため、発光性ナノカーボンは、毒性の懸念がある半導体量子ドットの代替となりうる新しい発光材料として注目されており、その合成法について近年さまざまな報告がなされている(例えば、特許文献1)。
特開2017-43539号公報
 発光性ナノカーボンの励起・発光波長等の光学特性は、様々な原料組成や反応温度の影響を受けることから、発光性ナノカーボンの製造方法において、所望の光学特性を備えたものを得ることは容易ではない。例えば、発光波長より短波長の光で励起させたときに、490~620nmの長波長領域において極大または最大の発光強度を示したり、600nm付近において強い発光強度を示したりといった、長波長領域において強い発光を示す発光性ナノカーボンを製造することは困難であった。
 本発明は、発光波長より短波長の光で励起させたときに長波長領域において強い発光を示す発光性ナノカーボンの製造方法を提供することを目的としている。
 本発明は、発光波長より短波長の光で励起させたときに、490~620nmの長波長領域において強い発光を示す発光性ナノカーボンの新たな製造方法であり、以下の構成を備えている。
 原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法において、前記原料溶液が、ヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれる少なくとも1種の化合物と、o-フェニレンジアミンまたは1,5-ナフタレンジアミンから選ばれる少なくとも1種の化合物と、を含有することを特徴とする発光性ナノカーボン製造方法。
 原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法において、前記原料溶液に含まれる成分の比率および/または前記反応ステップにおける加熱条件を異ならせることにより、複数の発光性ナノカーボンを製造し、複数の前記発光性ナノカーボンの発光特性を評価し、発光性ナノカーボンの発光特性を調整することを特徴とする、発光性ナノカーボン製造方法。
 本発明によれば、発光波長より短波長の光で励起させたときに、490~620nmの長波長領域において強い発光を示す発光性ナノカーボンを製造することができる。また、原料溶液に含まれる成分の比率および/または反応ステップにおける加熱条件を異ならせることにより、発光性ナノカーボンの長波長領域における発光特性を調整し、効率よく長波長領域において強い発光を示す発光性ナノカーボンを得ることができる。
(a)から(f)実施例1における試験番号1-1から1-6の原料溶液を用いて得られた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ (a)から(e)実施例1における試験番号1-7から1-11の原料溶液を用いて得られた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ (a)から(f)図1(a)から図1(f)の励起・発光スペクトル測定により得られた最大の発光強度を示した励起光による発光スペクトルのグラフ (a)から(e)図2(a)から図2(e)の励起・発光スペクトル測定により得られた最大の発光強度を示した励起光による発光スペクトルのグラフ (a)から(d)比較例における試験番号2-1から2-4の原料溶液を用いて得られた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ (a)から(d)図5(a)から図5(d)の励起・発光スペクトル測定により得られた最大の発光強度を示した励起光による発光スペクトルのグラフ 実施例2の吸収スペクトルのグラフ (a)から(e)実施例2の異なる原料の混合比率にてソルボサーマル合成した発光性ナノカーボンの励起・発光スペクトル測定より得られた等高線プロットのグラフ (a)から(e)図8(a)から図8(e)の励起・発光スペクトル測定により得られた励起光450nmによる発光スペクトルのグラフ (a)から(e)図8(a)から図8(e)の励起・発光スペクトル測定により得られた励起光500nmによる発光スペクトルのグラフ 実施例3における試験番号210-5の発光性ナノカーボンの透過電子顕微鏡写真 (a)実施例3における異なる反応条件で合成した発光性ナノカーボンの吸収スペクトル、(b)図12(a)の一部を抜き出した吸収スペクトル (a)から(c)実施例3における異なる反応条件で合成した発光性ナノカーボンの励起・発光スペクトルの等高線プロットのグラフ (a)から(c)図13(a)から図13(c)の励起・発光スペクトルにより得られた励起光450nmによる発光スペクトルのグラフ (a)から(c)図13(a)から図13(c)の励起・発光スペクトルにより得られた励起光500nmによる発光スペクトルのグラフ
 原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた本発明の発光性ナノカーボン製造方法の実施態様について、以下に説明する。
(原料溶液)
 原料溶液は、ヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれる少なくとも1種の化合物と、o-フェニレンジアミンまたは1,5-ナフタレンジアミンから選ばれる少なくとも1種の化合物と、を含有している。上述した群より選ばれる少なくとも1種の化合物は、発光性ナノカーボンの炭素源であり、o-フェニレンジアミンまたは1,5-ナフタレンジアミンから選ばれる少なくとも1種の化合物は、発光性ナノカーボンの窒素源である。これらを含有する原料溶液を用いることにより、発光波長より短波長の光で励起させたときに、長波長領域において強い発光を示す発光性ナノカーボンを得ることができる。
(長波長領域における発光)
 上述したように、本実施形態に係る製造方法により得られる発光性ナノカーボンは、長波長領域において強い発光を示す。本発明において「長波長領域において強い発光を示す」とは、発光波長より短波長の光で励起したときに、490~620nmの長波長領域において極大または最大の発光強度を示すことをいう。
 長波長において極大または最大の発光強度を示す発光性ナノカーボンの製造は困難であるが、本発明の製造方法によれば、540~620nm、さらには580~620nmの範囲内において発光強度のピークを示す発光性ナノカーボンを製造することができる。
 原料溶液は、上記の化合物を溶解する溶媒を含有している。溶媒としては、例えば、N,Nジメチルホルムアミド(DMF)、ホルムアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、N,N-ジメチルアセトアミド(DMA)等のアミド化合物、メタノール、エタノール、1-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール化合物、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)および水等が挙げられる。これらは、単独でまたは二以上を混合して用いられる。
(反応ステップ)
 反応ステップは、高温および/または高圧の溶媒を用いて発光性ナノカーボンを製造するソルボサーマル合成法により行われる。原料溶液に含まれる混合溶媒が水を含有している場合、上述した原料溶液を反応させる反応ステップは、高温高圧の水の存在下で化合物を合成する水熱合成となる。
 反応ステップは、原料溶液を反応容器中に密閉した状態で加熱して、反応温度100℃以上500℃以下で反応させて、反応生成物として発光性ナノカーボンを合成する工程である。好ましくは、反応容器中に原料溶液が均一に存在する条件において、すなわち、気液平衡よりも高い圧力とした均一状態の原料溶液中において、炭素源化合物と窒素源化合物とを溶媒中で反応させる。均一状態とは、気相と液相の定常的な界面が存在しない状態、すなわち気相と液相とが混然一体となっており界面が存在しない状態、または、界面は存在するものの位置が一定ではなく変動する状態をいう。
 例えば、反応容器中の原料溶液が気体の拡散性と液体の溶解性とを併せもつ超臨界相(超臨界流体)を形成した状態は、均一状態のうち、界面が存在しない状態の一例である。反応容器中を臨界温度以上かつ臨界圧力以上とすることにより、原料溶液の超臨界相を形成することができる。
 また、反応容器内の原料溶液中に、少量の気泡が存在する場合などは、界面の位置が一定ではなく変動する状態の一例である。発光性ナノカーボンの合成反応の副反応等によって気体が発生した場合等に原料溶液中に少量の気泡が存在する状態となることがある。
 反応ステップにおける反応容器内の温度(反応温度)は、100℃以上500℃以下とする。反応温度を100℃以上とすることにより、水熱反応を促進することができる。また、反応ステップにおいて原料溶液が発光性ナノカーボンに転化する転化率を向上させ、発光性が失われた不溶性成分の生成を抑える観点から、反応温度は150℃以上とすることがより好ましく、180℃以上とすることがさらに好ましい。
 反応温度は一般に500℃以下であり、好ましくは400℃以下であり、反応ステップにおける転化反応をさらに進行させて不溶性成分の生成を抑制するために、300℃以下とすることがより好ましい。
 長波長領域において強く発光する発光性ナノカーボンとする観点から、反応温度は150℃以上300℃以下が好ましく、180℃以上270℃以下がより好ましく、200℃以上230℃以下がさらに好ましい。
 反応ステップを回分式(バッチ式)反応とする場合、反応容器内の原料溶液が反応ステップにおいて気液平衡状態よりも高い密度となる量の原料溶液を仕込む。また、流通式(連続式)反応で製造する場合、反応ステップにおける反応容器内の原料溶液が気液平衡状態よりも高い密度となる温度、圧力となるように反応容器を調整する。これにより、反応ステップにおける原料溶液が均一な状態、すなわち反応容器中で気体と液体が混然一体となった状態となるから、多様な原料を組み合わせて用いることができる。
 反応ステップにおける反応容器は、高温、高圧条件に対する耐圧性を備えたものを用いる。反応ステップを回分式反応とする場合、原料溶液が仕込まれた反応容器全体を加熱して反応容器内の全体を所定温度および圧力として、反応容器内全体で反応ステップを進行させる。例えば、反応容器として管型高圧容器(オートクレーブ)を用い、所定の反応温度に設定した電気炉内に投入することにより、反応ステップを進行させる。反応ステップが完了した後、管型高圧容器を室温空気中に取り出して空冷することにより反応生成物を含有する反応溶液を冷却する(冷却ステップ)。
 反応ステップを回分式反応とする場合、反応容器内には、反応ステップにおいて気液平衡状態よりも高い密度となる量の原料溶液を仕込むことが好ましい。反応温度を200℃~250℃とする場合、反応容器の容積の約90%程度(80%以上97%以下、好ましくは85%以上95%以下)となる量の原料溶液を仕込むことが好ましい。このような量の原料溶液を仕込むことにより、反応ステップにおいて原料溶液が均一な状態で存在することとなって反応効率がよくなる。
 反応ステップを流通式反応とする場合、細長い管のように連続した長い内部空間を備えた耐圧性の反応容器を用いる。細長い管の一方端から原料溶液を供給しつつ、十分な長さを備えた反応容器の一部を加熱することにより、当該一部の領域で反応を連続的に進行させて反応ステップを行うことができる。反応ステップでは、原料溶液が気液平衡となる飽和蒸気圧よりも高くなるように、反応容器内の圧力を調整する。これにより、反応ステップにおいて原料溶液が均一な状態で存在することとなるから反応効率がよくなる。
 反応ステップを行う部分と連通している他の部分を冷却することで(冷却ステップ)、反応後の原料溶液である反応溶液から発光性ナノカーボンが得られる。冷却ステップは、例えば、氷浴または水浴を用いて、反応容器である細長い管の一部を急激に冷却することにより行う。
 反応ステップと冷却ステップとを反応容器の異なる部分において進行させ、反応ステップが進行する部分と冷却ステップが進行する部分とが連通された構成とすれば、原料溶液および反応溶液が反応容器内を移動することによって反応ステップと冷却ステップとが連続的かつ同時に進行する。
 上述した反応容器を用いて、一部の領域で反応ステップを行い、他の領域で冷却ステップを行えば、反応ステップと冷却ステップとが連続的かつ同時に進行するから、短時間で、効率よく大量の発光性ナノカーボンを製造することができる。
 本発明は、原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法において、複数の発光性ナノカーボンを製造し、複数の発光性ナノカーボンの発光特性を評価し、発光性ナノカーボンの発光特性を調整する発光性ナノカーボン製造方法として実施することができる。
 原料溶液に含まれる成分の比率および/または反応ステップにおける加熱条件を異ならせることにより発光特性の異なる複数の発光性ナノカーボンを製造して長波長領域における発光性を調整し、強い発光性を示す発光性ナノカーボンを効率よく製造することが可能である。発光特性の異なる複数の発光性ナノカーボンの長波長領域における発光性は、450nm付近(例えば、440~460nm)の励起波長に対する発光特性を評価することにより、効率よく評価可能である。
[実施例1]
 原料溶液に含まれる原料の組み合わせが、発光性ナノカーボンの光学特性に与える影響を検討するため、表1に示す種々の化合物0.1gと、o-フェニレンジアミン0.1gまたは1,5-ナフタレンジアミン0.1gとの混合物に、エタノール10gを加えた原料溶液を用いて発光性ナノカーボンを製造した。原料溶液を反応させて発光性ナノカーボンとする反応ステップは、原料溶液9mLを容量約10mLのSUS316製オートクレーブに封入し、電気炉にて反応温度210℃で5時間加熱し、ソルボサーマル合成により行った。
Figure JPOXMLDOC01-appb-T000001
(励起・発光スペクトル)
 上述した方法で合成した発光性ナノカーボンを、孔径220nmのフィルター(Rephile Bioscience社製)を用いてろ過し、粗大な副生成物を除去することにより発光性ナノカーボンを精製した。精製した発光性ナノカーボンをエタノールで10倍に希釈したものを、励起・発光スペクトルの測定用試料とした。励起・発光スペクトルの測定は、日立ハイテクサイエンス社製分光光度計F-2700を用いて行った。
 図1(a)から図1(f)および図2(a)から図2(e)は、実施例1における試験番号1-1から1-6および試験番号1-7から1-11の原料溶液を、それぞれ用いて製造された発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらのグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス強度(PL intensity)を示している。
 図3(a)から図3(f)および図4(a)から図4(e)は、図1(a)から図1(f)および図2(a)から図2(e)の励起・発光スペクトル測定により得られた最大の発光強度を示した励起光による発光スペクトルのグラフである。これらのグラフは、励起波長20nm毎に当該励起波長における発光強度のピーク値を求め、最大のピーク値を示した励起波長における発光波長とその強度をプロットしたものである。
 図1(a)から図1(f)、図2(a)から図2(e)、図3(a)から図3(f)および図4(a)から図4(e)のグラフに示すように、表1に示す原料を用いて製造した発光性ナノカーボンはいずれも、長波長領域において強く発光する性質を備えていた。図2(d)および図4(d)に示すように、o-フェニレンジアミンとカテコールとを原料として用いることにより、長波長領域のうちの580~620nmの領域において最大の発光強度を示す発光性ナノカーボンを製造することができた。
 これらの結果より、o-フェニレンジアミンまたは1,5-ナフタレンジアミンの少なくとも1種の化合物と特定の化合物と組み合わせた原料溶液を用いてソルボサーマル合成することにより、長波長領域において強く発光する発光特性を有する発光性ナノカーボンを合成可能であることがわかった。o-フェニレンジアミンまたは1,5-ナフタレンジアミンの少なくとも1種の化合物とヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれる少なくとも1種の化合物と、を組み合わせた原料溶液を用いることにより、490~620nmの長波長領域に発光ピークすなわち極大または最大の発光強度を示す発光性ナノカーボンを製造できることがわかった。
 長波長領域における発光強度が大きい発光性ナノカーボンを製造する観点から、上記のヒドロキシ基を有するベンゼン化合物では、ヒドロキシ基が二つであるベンゼン化合物が好ましく、特に、カテコールが好ましい。カテコールとo-フェニレンジアミンと、を含有する原料溶液を用いることにより、図2(d)に示すように、580nmよりも波長が短い500nmの励起波長によって、580~620nmに強い発光ピークを示す発光性ナノカーボンを製造することができた。
 また、上記と同様の観点から、上記の脂肪族ヒドロキシ酸および脂肪族ジカルボン酸では、脂肪族αヒドロキシ酸が好ましい。乳酸とo-フェニレンジアミンとを含有する原料溶液を用いることにより、図2(a)に示すように、580nmよりも短い波長を用いて励起した場合に、580~620nmに比較的強い発光ピークを示す発光性ナノカーボンを製造できた。
 以上のように、ヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれるすくなくとも1種の化合物と、o-フェニレンジアミンまたは1,5-ナフタレンジアミンの少なくとも1種の化合物と、を含有する原料溶液を用いて、580~620nmの長波長領域で発光する発光性ナノカーボンを製造できることが分かった。また、o-フェニレンジアミンおよび1,5-ナフタレンジアミン、ならびにこれら化合物と組み合わせて用いる化合物はいずれも、二以上を同時に用いても、同様の性質を備えた発光性ナノカーボンを製造することができると推定される。
[比較例]
 実施例1の表1に示す種々の化合物とo-フェニレンジアミンまたは1,5-ナフタレンジアミンの少なくとも1種の化合物との混合物に変えて、表2に示す種々の化合物とo-フェニレンジアミンとの混合物を用いて、実施例1と同様にして、発光性ナノカーボンを製造した。
Figure JPOXMLDOC01-appb-T000002
 図5(a)から図5(d)は、比較例における試験番号2-1から2-4の原料溶液を、それぞれ用いて得られた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。また、図6(a)から図6(d)は、図5(a)から図5(d)の励起発光測定により得られた最大の発光強度を示した励起光による発光スペクトルのグラフである。これらのグラフに示すように、o-フェニレンジアミンと表2に示す原料とを組み合わせで用いた場合、490nm以上の長波長領域において最大の発光強度を示す発光性ナノカーボンを製造することができなかった。
[実施例2]
 図2(d)および図4(d)に示すように、カテコールとo-フェニレンジアミンと含む試験番号1-10の原料溶液を用いることにより、励起波長を580nm以下とした場合に、発光波長580~620nm付近の長波長領域に、強い発光ピークを示す発光性ナノカーボンが得られた。そこで、この発光性ナノカーボンについて、長波長領域の発光強度を強くする観点から、原料の混合比率を最適化するため、カテコールとo-フェニレンジアミンとの配合量を表3に示す範囲で変化させた原料溶液を用いて、発光性ナノカーボンを製造した。
 ソルボサーマル合成による製造条件は、実施例1同様、原料溶液9mLを容量約10mLのSUS316製オートクレーブに封入し、電気炉にて反応温度210℃において5時間加熱した。なお、試験番号(10/10)の原料溶液は、試験番号1-10の原料溶液と同じ組成である。
Figure JPOXMLDOC01-appb-T000003
(紫外光下における色)
 実施例1と同様して精製した発光性ナノカーボンを、エタノールで10倍に希釈したものを試料とした。各試料をガラス製のスクリュウ管瓶に入れて、紫外光(波長365nm)を照射した状態における外観を確認した。その結果、原料の配合比の相違により外観に相違が生じることが分かった。具体的には、(10/10)が最も鮮やかな赤色、(5/10)および(10/5)はやや薄いピンク色、(1/10)は白色、(10/1)は褐色であった。この結果から、原料の配合比を変化させることにより、発光特性の異なる発光性ナノカーボンが得られることが分かった。
(吸収スペクトル)
 紫外光下における色を観察した各試料について、日立ハイテクサイエンス社製分光光度計F-2700を用いて吸収スペクトルを測定し、各発光性ナノカーボンの吸光特性を調べた。
 図7は吸収スペクトルのグラフであり、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。同図に示すように、o-フェニレンジアミンの含有比率が最も小さい試験番号(1/10)以外は、540nm付近および570nm付近に、吸収スペクトルのピークが確認できた。また、いずれのピークも、o-フェニレンジアミンとカテコールとを同重量で配合した試験番号(10/10)の発光性ナノカーボンがもっとも強い吸収を示した。
(励起・発光スペクトル)
 紫外光下における色を観察した各試料について、日立ハイテクサイエンス社製分光光度計F-2700を用いて励起・発光スペクトルを測定した。
 図8(a)から図8(e)に異なる原料の混合比率にてソルボサーマル合成した発光性ナノカーボンの励起・発光スペクトル測定より得られた等高線プロットのグラフを示す。図9(a)から図9(e)および図10(a)から図10(e)は、図8(a)から図8(e)の励起・発光スペクトル測定により得られた、励起光450nmおよび励起光500nmによる発光スペクトルのグラフである。これらの図より、原料溶液中のカテコールの含有割合(混合比率)が最も大きい試験番号(1/10)は350~400nmの励起光により、450~500nmの発光を示すことが分かる。また、o-フェニレンジアミンの混合比率が最も大きい試験番号(10/1)は400~470nmの励起光により、500~580nmの発光を示した。さらに、試験番号(10/10)は450~580nmの発光強度に対して580~620nmの領域の発光強度が最も大きかった。
 上述した結果より、カテコールの含有量とo-フェニレンジアミンの含有量との比率(カテコール/o-フェニレンジアミン)が5/10以上10/5以下の原料溶液を用いることにより、580~620nm付近に発光を示す発光性ナノカーボンが得られることがわかった。また、580~620nmの発光を示す発光性ナノカーボンの合成には、原料溶液中が含有するo-フェニレンジアミンとカテコールとの重量比を1:1とした原料溶液が最も適していた。この結果から、原料溶液中のカテコールとo-フェニレンジアミンとの含有量の比率(カテコール/o-フェニレンジアミン)は、7/10以上15/10以下がより好ましく、9/10以上12/10以下がさらに好ましいといえる。
 また、図9(a)から図9(e)より、発光波長より短波長の光で励起させたときに580~620nmの領域に発光強度が最大の発光ピークを示す性質は、450nmの励起光を用いた場合に580~620nmの長波長領域に発光ピークを示す発光性ナノカーボンに現れることが分かった。特に、450nmの励起光を用いた場合に580~620nmの領域の発光ピークが最大であるものに顕著であった。さらに、上記の性質を備えたものは、450nmの励起光によって540~560nmにも発光ピークを示す場合があり、この場合580~620nmの領域の発光ピークの発光強度が、540~560nmの発光ピークの発光強度の0.8倍以上であることが好ましく、1.0倍以上であることがより好ましく、1.5倍以上であることがさらに好ましい。
 以上のように、原料溶液中のカテコールの含有量とo-フェニレンジアミンの含有量との比率を調整することにより、600nm付近の長波長領域で発光する発光性ナノカーボンを合成することができた。
[実施例3]
(反応条件の最適化)
 o-フェニレンジアミンとカテコールとを重量比1:1で含有する原料溶液は、発光波長よりも短い波長の励起波長を用いた場合に580~620nm付近の長波長領域において発光を示す発光性ナノカーボンの製造に適していることが分かった。そこで、この原料溶液を用いて、ソルボサーマル反応における反応条件を変化させて発光性ナノカーボンを製造した。具体的には、表4に示すように、反応温度を150~300℃、反応時間を1~24時間の範囲で変化させて、発光性ナノカーボンを製造した。実施例1と同様の方法で測定用試料を調製した。
Figure JPOXMLDOC01-appb-T000004
(TEM分析)
 得られた各発光性ナノカーボンの粒径を調べるため、透過電子顕微鏡(TEM)を用いて測定用試料を観察した。透過電子顕微鏡は日立ハイテクノロジーズ社製透過型電子顕微鏡H-7650を用いた。また、TEMグリッドには親水性カーボンフィルム付きTEMグリッドSC01-011A(イーエムジャパン)を用いた。
 図11は試験番号210-5の発光性ナノカーボンの透過電子顕微鏡写真(×200k)である。試料は10~20nm程度の略球状のナノ粒子として存在していることがわかった。
(吸収スペクトル)
 図12(a)に各反応条件で合成した発光性ナノカーボンの吸収スペクトルを示す。また、図12(b)に図12(a)の一部を抜き出した吸収スペクトルを示す。原料溶液の反応が進行不十分である試料(反応溶液)は、400nm付近に吸収スペクトルのピークが確認できた。一方で、反応が進行した試料は、400nm付近の吸収スペクトルのピークが減衰し、540、570nm付近に吸収スペクトルのピークが確認できた。最も原料溶液の反応が進行した試料は、400、540、570nm付近の吸収スペクトルの各ピークが全て減衰することが確認できた。これは高い反応温度で長時間反応させたことにより、発光性ナノカーボンの一部が分解したため、吸収スペクトルが減衰したと推測される。
(励起・発光スペクトル)
 図13(a)、図13(b)および図13(c)に、試験番号150-1、210-24および300-24の発光性ナノカーボンの励起・発光スペクトルの等高線プロットのグラフを示す。図13(a)に示す試験番号150-1より反応が進行していない試料は、波長350~470nmの励起光により、波長450~580nmの発光を示した。図13(b)に示す試験番号210-24より反応が進行した試料は、波長580~620nmにおいて発光を示した。また、図13(c)に示す試験番号300-24の最も反応が進行した試料は、300~500nmの励起光により、300~600nmに発光を示した。これらの結果より、o-フェニレンジアミンとカテコールとの重量比1:1で含有する原料溶液を用いた場合、最適な反応条件は反応温度210℃、反応時間24時間であることが分かった。
 図14(a)から(c)および図15(a)から(c)は、図13(a)から図13(c)の励起・発光スペクトルにより得られた励起光450nmおよび500nmによる発光スペクトルのグラフである。これらに示すように、励起光450nmおよび500nmによる発光スペクトルのグラフのいずれも、波長580~620nmにおける発光強度の変化を確認することができた。ただし、励起光450nmによる発光スペクトルのほうが励起光500nmとした場合よりも変化が顕著であった。このため、最適な反応条件を求める際には、励起光450nmによる発光スペクトルを用いることが好ましい。具体的には、励起光450nmによる発光スペクトルの最大の発光強度(発光ピーク)が、波長580~620nmの範囲に現れる反応条件を好適な条件と評価することができる。
 上述した実験結果によれば、長波長領域に強い発光ピークを示す発光性ナノカーボンを製造する観点から、反応温度は、180℃以上240℃以下が好ましく、190℃以上220℃以下がより好ましい。反応温度が190℃以上220℃以下である場合、反応時間を20時間以上30時間以下程度とすることが好ましい。
 以上のように、反応条件(温度、時間)を変化させることにより、580~620nmの発光強度が異なる発光性ナノカーボンが得られることが分かった。
 本発明は、照明やディスプレイ、光通信デバイス、低毒性であることが要求される生体用の蛍光プローブ等に用いられる発光性ナノカーボンの製造方法として利用することができる。

Claims (11)

  1.  原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法において、
     前記原料溶液が、
     ヒドロキシ基を有するベンゼン化合物、脂肪族ヒドロキシ酸および脂肪族ジカルボン酸からなる群より選ばれる少なくとも1種の化合物と、o-フェニレンジアミンまたは1,5-ナフタレンジアミンから選ばれる少なくとも1種の化合物と、を含有することを特徴とする発光性ナノカーボン製造方法。
  2.  前記原料溶液が、ヒドロキシ基が二つであるベンゼン化合物と、前記o-フェニレンジアミンと、を含有する、請求項1に記載の発光性ナノカーボン製造方法。
  3.  前記原料溶液が、カテコールと前記o-フェニレンジアミンと、を含有する、請求項1に記載の発光性ナノカーボン製造方法。
  4.  前記原料溶液は、前記カテコールの含有量と前記o-フェニレンジアミンの含有量との比率(カテコール/o-フェニレンジアミン)が5/10以上20/10以下である、請求項3に記載の発光性ナノカーボン製造方法。
  5.  前記原料溶液は、脂肪族αヒドロキシ酸と、前記o-フェニレンジアミンと、を含有する請求項1に記載の発光性ナノカーボン製造方法。
  6.  前記原料溶液は、乳酸と、前記o-フェニレンジアミンと、を含有する請求項1に記載の発光性ナノカーボン製造方法。
  7.  前記反応ステップは、ソルボサーマル合成法により前記原料溶液を反応させるものである請求項1から6のいずれか一項に記載の発光性ナノカーボン製造方法。
  8.  前記反応ステップの温度が180℃以上270℃以下である、請求項7に記載の発光性ナノカーボン製造方法。
  9.  前記原料溶液の溶媒がアルコールであり、
     前記発光性ナノカーボンが、発光波長より短波長の光で励起させたときに、発光波長580~620nmに発光ピークを有する、請求項8に記載の発光性ナノカーボン製造方法。
  10.  原料溶液を反応させて発光性ナノカーボンとする反応ステップを備えた発光性ナノカーボン製造方法において、
     前記原料溶液に含まれる成分の比率および/または前記反応ステップにおける加熱条件を異ならせることにより、複数の発光性ナノカーボンを製造し、
     複数の前記発光性ナノカーボンの発光特性を評価し、
     発光性ナノカーボンの発光特性を調整することを特徴とする、発光性ナノカーボン製造方法。
  11.  前記原料溶液がカテコールとo-フェニレンジアミンとを含有しており、
     前記カテコールと前記o-フェニレンジアミンとの含有比率を異ならせることにより、複数の発光性ナノカーボンを製造する、請求項10に記載の発光性ナノカーボン製造方法。
PCT/JP2020/035574 2019-09-20 2020-09-18 発光性ナノカーボン製造方法 WO2021054462A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546996A JPWO2021054462A1 (ja) 2019-09-20 2020-09-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-171562 2019-09-20
JP2019171562 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054462A1 true WO2021054462A1 (ja) 2021-03-25

Family

ID=74883545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035574 WO2021054462A1 (ja) 2019-09-20 2020-09-18 発光性ナノカーボン製造方法

Country Status (2)

Country Link
JP (1) JPWO2021054462A1 (ja)
WO (1) WO2021054462A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045242A (zh) * 2013-01-21 2013-04-17 吉林大学 高荧光量子产率碳点的制备方法
CN105295909A (zh) * 2015-10-30 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种苯二胺与柠檬酸制备细胞显影用碳量子点标记探针的方法
CN105482817A (zh) * 2015-12-11 2016-04-13 哈尔滨工业大学 发红橙色荧光的含羧基碳量子点溶液及其制备方法
CN105542764A (zh) * 2016-01-29 2016-05-04 兰州大学 一种高量子产率的黄色荧光碳点及其制备方法
JP2017043539A (ja) * 2015-08-25 2017-03-02 国立大学法人金沢大学 発光性ナノカーボン製造方法
CN106587005A (zh) * 2016-10-21 2017-04-26 上海纳米技术及应用国家工程研究中心有限公司 一种分步碳化高量子效率碳量子点及其制备方法
JP2017132850A (ja) * 2016-01-26 2017-08-03 日産化学工業株式会社 炭素系発光材料の製造方法
CN108690609A (zh) * 2018-05-10 2018-10-23 中国科学院理化技术研究所 一种水溶或油溶性碳点及荧光碳点的合成方法
CN108913132A (zh) * 2018-07-20 2018-11-30 江南大学 一种双发射碳基纳米探针的制备方法及其产物
CN108929682A (zh) * 2018-06-25 2018-12-04 北京工业大学 发射白光的碳点的一步制备方法
CN108998010A (zh) * 2018-07-04 2018-12-14 山西大学 一种全发射荧光碳量子点一步快速可控的制备方法
CN109399606A (zh) * 2018-12-21 2019-03-01 北京工业大学 一种高效光热转换碳点基泡沫的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045242A (zh) * 2013-01-21 2013-04-17 吉林大学 高荧光量子产率碳点的制备方法
JP2017043539A (ja) * 2015-08-25 2017-03-02 国立大学法人金沢大学 発光性ナノカーボン製造方法
CN105295909A (zh) * 2015-10-30 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种苯二胺与柠檬酸制备细胞显影用碳量子点标记探针的方法
CN105482817A (zh) * 2015-12-11 2016-04-13 哈尔滨工业大学 发红橙色荧光的含羧基碳量子点溶液及其制备方法
JP2017132850A (ja) * 2016-01-26 2017-08-03 日産化学工業株式会社 炭素系発光材料の製造方法
CN105542764A (zh) * 2016-01-29 2016-05-04 兰州大学 一种高量子产率的黄色荧光碳点及其制备方法
CN106587005A (zh) * 2016-10-21 2017-04-26 上海纳米技术及应用国家工程研究中心有限公司 一种分步碳化高量子效率碳量子点及其制备方法
CN108690609A (zh) * 2018-05-10 2018-10-23 中国科学院理化技术研究所 一种水溶或油溶性碳点及荧光碳点的合成方法
CN108929682A (zh) * 2018-06-25 2018-12-04 北京工业大学 发射白光的碳点的一步制备方法
CN108998010A (zh) * 2018-07-04 2018-12-14 山西大学 一种全发射荧光碳量子点一步快速可控的制备方法
CN108913132A (zh) * 2018-07-20 2018-11-30 江南大学 一种双发射碳基纳米探针的制备方法及其产物
CN109399606A (zh) * 2018-12-21 2019-03-01 北京工业大学 一种高效光热转换碳点基泡沫的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QU, DAN ET AL.: "White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Forster Resonance Energy Transfer", J. PNYS. CNEM. LETT., vol. 10, 26 June 2019 (2019-06-26), pages 3 849 - 3857, XP055807734, ISSN: 1948-7185 *

Also Published As

Publication number Publication date
JPWO2021054462A1 (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
Niu et al. Facile synthesis and optical properties of nitrogen-doped carbon dots
Song et al. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes
Wu et al. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs
Zhang et al. Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes
Zheng et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes
Zhai et al. Fabrication and luminescent properties of ZnWO4: Eu3+, Dy3+ white light-emitting phosphors
Feng et al. A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices
Zheng et al. Controllable synthesis highly efficient red, yellow and blue carbon nanodots for photo-luminescent light-emitting devices
CN109097038B (zh) 一种固态黄色荧光碳量子点及其制备方法
Song et al. Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content
WO2020045466A1 (ja) 発光性ナノカーボン製造方法
JP6809041B2 (ja) 発光性ナノカーボン製造方法
Zhang et al. Self-assembled CaMoO4 and CaMoO4: Eu3+ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties
CN110846030B (zh) 单组分白光碳量子点及其制备方法、发光器件
Cao et al. A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices
Chen et al. A highly luminescent Mn 4+ activated LaAlO 3 far-red-emitting phosphor for plant growth LEDs: charge compensation induced Mn 4+ incorporation
Wang et al. A single-phase heteroatom doped carbon dot phosphor toward white light-emitting diodes
Qian et al. Columnar Gd 2 O 3: Eu 3+/Tb 3+ phosphors: Preparation, luminescence properties and growth mechanism
Zheng et al. Facile and rapid synthesis of yellow-emission carbon dots for white light-emitting diodes
Dang et al. Microwave-assisted synthesis of nanoscale Eu (BTC)(H 2 O)· DMF with tunable luminescence
Lei et al. RGB-multicolor fluorescent carbon dots by changing the reaction solvent type for white light-emitting diodes
Peter et al. Synthesis and luminescence properties of NaLa (WO 4) 2: Eu 3+ phosphors for white LED applications
WO2021054462A1 (ja) 発光性ナノカーボン製造方法
Oliva et al. White light generation from YAG/YAM: Ce3+, Pr3+, Cr3+ nanophosphors mixed with a blue dye under 340 nm excitation
Hu et al. Molten salt synthesis of Zn1. 8Mn0. 2SiO4 luminescent materials in NaCl–ZnCl2 eutectic salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866426

Country of ref document: EP

Kind code of ref document: A1