WO2021054396A1 - Gear position failure detection device - Google Patents

Gear position failure detection device Download PDF

Info

Publication number
WO2021054396A1
WO2021054396A1 PCT/JP2020/035272 JP2020035272W WO2021054396A1 WO 2021054396 A1 WO2021054396 A1 WO 2021054396A1 JP 2020035272 W JP2020035272 W JP 2020035272W WO 2021054396 A1 WO2021054396 A1 WO 2021054396A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear position
engine
value
clutch
calculation unit
Prior art date
Application number
PCT/JP2020/035272
Other languages
French (fr)
Japanese (ja)
Inventor
淳士 渡辺
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to DE112020004458.0T priority Critical patent/DE112020004458T5/en
Publication of WO2021054396A1 publication Critical patent/WO2021054396A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/706Monitoring gear ratio in stepped transmissions, e.g. by calculating the ratio from input and output speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/16Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism
    • F16H63/18Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism the final actuating mechanism comprising cams

Definitions

  • the present invention relates to a gear position failure detection device, and more particularly to a gear position failure detection device that detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism. ..
  • an engine which is an internal combustion engine mounted on an automobile such as a motorcycle, includes an engine rotation speed sensor that detects the rotation speed of the engine, an engine temperature sensor that detects the temperature of the engine, and an intake control valve provided in the engine. It is generally electronically controlled based on the output from various sensors such as a valve opening sensor for detecting the valve opening of the engine and an intake pressure sensor for detecting the intake pressure in the intake pipe provided in the engine.
  • various sensors such as a valve opening sensor for detecting the valve opening of the engine and an intake pressure sensor for detecting the intake pressure in the intake pipe provided in the engine.
  • a gear position sensor that detects the gear position of a driving force transmission device provided with a multi-stage gear ratio switching mechanism provided between the engine and the driving wheels is often used. There is.
  • the gear position detected by the gear position sensor is, for example, one of the important parameters for electronically controlling the operating state of the engine because the amount of fuel supplied to the engine is controlled accordingly. In order to determine whether or not the gear position sensor is operating normally, it has become an important matter for controlling the operating state of the engine to accurately detect the failure.
  • Patent Document 1 measures the average value of the amount of time change of the gear ratio with respect to the gear position determination method for determining the gear position based on the gear ratio obtained from the engine speed and the vehicle speed at the time of deceleration.
  • a configuration for determining a gear position based on whether or not the absolute value of the value is equal to or higher than a predetermined threshold value is disclosed.
  • Patent Document 2 relates to a first gear position calculation means for determining a gear position from data of a gear position sensor, a vehicle speed pulse sensor, an engine rotation speed sensor, and a gear position sensor with respect to a fuel injection control device for an internal combustion engine.
  • the second gear position calculation means for determining the gear position based on the data of the vehicle speed pulse sensor and the data of the engine rotation speed sensor, the gear position determined by the first gear position calculation means, and the second gear.
  • a configuration including a gear position selection means for determining a gear position based on a logical product with a gear position determined by a position calculation means is disclosed.
  • the gear position is determined based on the gear ratio obtained from the engine speed and the vehicle speed, but the manual multi-stage gear ratio switching mechanism
  • the gear position of the driving force transmission device provided with the above, for example, when the driver disengages the clutch and goes down a slope, the correlation between the engine speed and the vehicle speed is broken.
  • the gear ratio obtained from them There is room for improvement because it is possible that an accurate judgment cannot be made with the gear ratio obtained from them.
  • the first gear position calculation means for determining the gear position from the data of the gear position sensor, the data of the vehicle speed pulse sensor, and the engine rotation speed sensor The second gear position calculation means for determining the gear position based on the above data is used, and it can be applied not only to the determination of the gear position but also to the failure detection of the gear position sensor.
  • the situation described in Patent Document 1 occurs, and there is room for improvement in determining the gear position and detecting the failure of the gear position sensor.
  • the present invention has been made through the above studies, and is a gear position that accurately detects a failure of a gear position sensor that detects the gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism.
  • An object of the present invention is to provide a failure detection device.
  • the present invention is a gear position failure detection device that detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and having a manual multi-stage gear ratio switching mechanism. It is connected to the first gear position calculation unit that calculates the gear position from the output of the gear position sensor, the output of the vehicle speed sensor that detects the vehicle speed from the rotation speed of the drive wheels of the automobile, and the drive force transmission device.
  • a second gear position calculation unit that calculates an estimated gear position based on the output of an engine rotation speed sensor that detects the rotation speed of the engine, and the gear position and the first gear position calculated by the first gear position calculation unit.
  • the clutch state estimation unit includes a clutch state estimation unit that estimates whether or not a clutch mechanism that interrupts the transmission of driving force between the engine and the driving force transmission device is connected. Is a region defined by the rotational speed of the engine and the valve opening degree of the intake control valve provided in the engine, and is a region in which the clutch mechanism may be disconnected or in a half-clutch state.
  • the clutch state estimation unit has a release area value calculation unit that calculates a release area value in a release range that is equal to or greater than the lower limit value of the release region and is less than or equal to the upper limit value based on the output of the engine rotation speed sensor.
  • the first aspect is to allow the failure determination unit to execute the failure determination.
  • the release area value calculation unit is driven from the engine to the drive transmission device in response to the rotation speed of the engine and via the clutch mechanism.
  • the release range is calculated so as to include the non-transmission valve opening, which is the valve opening that is assumed that no force is transmitted, and the release range is the first with respect to the rotation speed of the engine.
  • the range is set between the estimated threshold value and the second estimated threshold value, the first estimated threshold value is set to a value obtained by adding a positive predetermined value to the non-transmission valve opening degree, and the second estimated threshold value is the said.
  • the second phase is to set the value by adding a negative predetermined value to the non-transmission valve opening degree.
  • the release region value calculation unit may be set in advance in response to the rotation speed of the engine and in response to a plurality of reference atmospheric pressures.
  • the release range is calculated based on the atmospheric pressure correction reference opening degree, and the non-transmission valve opening degree is the plurality of atmospheric pressures detected by the atmospheric pressure sensor provided in the automobile.
  • the third aspect is that the value is interpolated by the value between the atmospheric pressure correction reference openings of.
  • the clutch state estimation unit is a region defined by the rotation speed of the engine and the valve opening degree of the intake control valve provided in the engine.
  • the release area value in the release range above the lower limit of the release area and below the upper limit, which is the area where the clutch mechanism may be disengaged or half-clutched, is determined based on the output of the engine rotation speed sensor.
  • the clutch state estimation unit has a release area value calculation unit to calculate and the valve opening degree calculated based on the output of the valve opening degree sensor that detects the valve opening degree deviates from the release range, the clutch mechanism Is determined to be in the connected state and the failure determination unit is allowed to execute the failure determination.
  • the gear position sensor is surely failed only when the clutch mechanism is connected.
  • the detection can be determined.
  • the release region value calculation unit is driven from the engine to the drive transmission device via the clutch mechanism in accordance with the rotation speed of the engine.
  • the release range is calculated so as to include the non-transmission valve opening, which is the valve opening that is assumed that no force is transmitted, and the release range is the first estimated threshold value and the second with respect to the engine speed.
  • the range between the estimated threshold and the estimated threshold is set, the first estimated threshold is set to a value obtained by adding a positive predetermined value to the non-transmission valve opening, and the second estimated threshold is set to a negative predetermined value for the non-transmission valve opening. Since the value is set to the sum of the values, it is possible to calculate the release range for determining that the clutch mechanism is connected so as not to increase the calculation load.
  • the release region value calculation unit is preset in accordance with the rotational speed of the engine and in response to each of a plurality of reference atmospheric pressures.
  • the release range is calculated based on the plurality of atmospheric pressure correction reference openings, and the non-transmission valve opening degree is based on the atmospheric pressure detected by the atmospheric pressure sensor provided in the automobile. Since it is a value that is interpolated by the value between the atmospheric pressure correction reference opening, the calculation accuracy of the non-transmission valve opening for defining the release range for determining that the clutch mechanism is connected. It is possible to improve the accuracy of failure detection for detecting the failure of the gear position sensor.
  • FIG. 1 is a block diagram showing a configuration of a gear position failure detection device according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view showing a driving force transmission device including a manual multi-stage gear ratio switching mechanism to which the gear position failure detection device according to the present embodiment is applied.
  • FIG. 2B is a schematic view in which the disengagement region of the clutch mechanism applied to the gear position failure detection device in the present embodiment is defined by the engine speed and the throttle opening degree.
  • FIG. 3 is a time chart showing the operation of the gear position failure detection device according to the present embodiment.
  • FIG. 4 is a schematic view showing a non-transmission line in the disengagement region of the clutch mechanism applied to the gear position failure detection device in the present embodiment for each reference atmospheric pressure.
  • FIG. 1 is a block diagram showing a configuration of a gear position failure detection device according to the present embodiment.
  • FIG. 2A is a schematic cross-sectional view showing a driving force transmission device including a manual multi-stage gear ratio switching mechanism to which the gear position failure detection device according to the present embodiment is applied
  • FIG. 2B is a schematic cross-sectional view according to the present embodiment. It is a schematic diagram which defined the release area of the clutch mechanism applied to a gear position failure detection device by engine rotation speed and throttle opening degree.
  • the gear position failure detection device 1 in the present embodiment is mounted on an automobile such as a motorcycle and is composed of an electronic control device such as an ECU (Electronic Control Unit).
  • the gear position failure detection device 1 includes a waveform shaping circuit 11, an A / D (Analog to Digital) converter 12, a waveform shaping circuit 13, an A / D converter 14, an A / D converter 15, a memory 16, and a CPU ( It is equipped with a Central Processing Unit) 17.
  • the waveform shaping circuit 11 shapes the waveform of the electric signal that is the electric signal detected by the crank angle sensor 21 and indicates the crank angle of the engine (internal combustion engine) of the automobile, and the electric signal thus shaped is sent to the CPU 17. input.
  • the A / D converter 12 A / D converts an electric signal detected by the throttle opening sensor 22 and indicating a valve opening (throttle opening) of an intake control valve provided in an automobile engine. Then, the electric signal converted to A / D in this way is input to the CPU 17.
  • the waveform shaping circuit 13 is an electric signal detected by the drive wheel vehicle speed sensor 23, and shapes the waveform of the electric signal indicating the rotation speed (drive wheel vehicle speed) of the drive wheels of the automobile, and the electric signal shaped in this way. Is input to the CPU 17.
  • the A / D converter 14 is an electric signal detected by the gear position sensor 24, and is an electric signal that indicates the gear position of a driving force transmission device that is provided with a manual multi-stage gear ratio switching mechanism and is connected to an automobile engine.
  • the signal is A / D converted, and the electric signal thus A / D converted is input to the CPU 17.
  • the driving force transmission device provided with the manual multi-stage gear ratio switching mechanism means a wet and manual transmission with a clutch mechanism such as a friction multi-plate type, and for example, a dog as shown in FIG. 2A.
  • a type transmission can be shown.
  • the shift pedal 31 is rotated in response to the shift operation by the driver of the shift pedal 31 which is a shift operation member, and the shift shaft 32 which is the rotation axis on the vehicle side is rotated. Rotates.
  • the rotation of the shift pedal 31 accompanying the shift operation by the driver is transmitted to the shift arm 33 fixed to the shift shaft 32 as a rotation shaft.
  • the gear position sensor 24 outputs an electric signal indicating the rotation angle of the drum shaft 42 according to the shift stage (gear position) of the dog-type transmission T.
  • the gear position sensor 24 any sensor whose output signal has a linear characteristic can be preferably used, and a potentiometer or the like can be used in addition to the hall sensor.
  • this dog type transmission T assuming that the input shaft 56 is equipped with the fixed transmission gear 51 and the drive shaft 57 is provided with the free transmission gear 52 and the slide transmission gear 53, the shift drum 41 is typically assumed. Is transmitted to the shift fork 44 which is arranged in the cam groove 43 formed therein and moves in accordance with the cam groove 43, and the shift fork 44 moves correspondingly, so that the slide transmission gear 53 is moved. It will be translated and moved while being mounted on the drive shaft 57. Then, when the slide transmission gear 53 is moved toward the free transmission gear 52 and they are in a position close to each other, these dog teeth are in a state where they can mesh with each other.
  • the main clutch 61 which is a clutch mechanism having a friction multi-plate type clutch plate that interrupts the transmission of the driving force between the engine and the driving force transmission device, is in a state where the clutch plates are in contact with each other.
  • the rotational force (driving force) of the crankshaft 71 is the main clutch 61, the input shaft 56, and the like. It is finally transmitted to the drive wheels via the fixed transmission gear 51, the free transmission gear 52, the slide transmission gear 53, and the drive shaft 57 in this order.
  • the shift fork 44 sets the slide transmission gear 53 to the free transmission gear.
  • the operating state of the engine may be controlled to facilitate shifting to another gear position so that it can be easily moved away from 52.
  • the dog tooth may have a structure in which both of them are convex teeth, or one of them is a concave tooth accommodating the other convex tooth, or the dog tooth may have a structure in which both of them are convex teeth.
  • a general synchronizer member may be used.
  • a wet friction multi-plate clutch having a wet friction multi-plate type clutch plate can be preferably used, but a dry type clutch may be used if necessary.
  • a series of components from the shift pedal 31 to the shift fork 44 constitute a shift mechanism S corresponding to a manual multi-stage gear ratio switching mechanism.
  • the generated electric signal is input to the CPU 17.
  • the memory 16 is composed of a non-volatile storage device, and stores various control programs for controlling the operation of the gear position failure detection device 1 and control data such as map data.
  • the CPU 17 By executing the control program stored in the memory 16, the CPU 17 includes an engine speed calculation unit 17a, a throttle opening calculation unit 17b, a vehicle speed calculation unit 17c, a gear position calculation unit 17d, and an estimated gear position calculation unit 17e. It functions as a clutch switch detection unit 17f, a clutch state estimation unit 17g, and a failure determination unit 17h.
  • the engine rotation speed calculation unit 17a calculates the engine rotation speed (engine rotation speed) of the automobile using the electric signal input from the waveform shaping circuit 11, and the engine rotation speed calculated in this way is the estimated gear position calculation unit. It is used in 17e and the clutch state estimation unit 17g.
  • the throttle opening calculation unit 17b calculates the throttle opening of the automobile using the electric signal input from the A / D converter 12, and the throttle opening calculated in this way is used by the clutch state estimation unit 17g.
  • the vehicle speed calculation unit 17c calculates the vehicle speed of the automobile using the electric signal input from the waveform shaping circuit 13, and the vehicle speed (driving wheel vehicle speed) calculated in this way is used by the estimated gear position calculation unit 17e.
  • the gear position calculation unit 17d calculates the gear position of the automobile using the electric signal input from the A / D converter 14, and the gear position calculated in this way is used by the failure determination unit 17h.
  • the estimated gear position calculation unit 17e typically takes a ratio between the engine speed calculated by the engine speed calculation unit 17a and the vehicle speed calculated by the vehicle speed calculation unit 17c, and which gear is the gear.
  • the estimated gear position is calculated by determining whether or not it corresponds to the position with reference to map data or the like, and the estimated gear position calculated in this way is used by the failure determination unit 17h.
  • the clutch switch detection unit 17f is turned on only when the clutch lever, which is a clutch operating member (not shown), typically has an operating position corresponding to a full grip (an operating position in which the clutch lever is completely gripped).
  • the operating position of the clutch lever is detected by using the electric signal input from the clutch switch 26.
  • the operating position of the clutch lever detected by the clutch switch detection unit 17f in this way generally indicates disconnection and connection of the main clutch 61 corresponding to the clutch mechanism, that is, disengagement (separation / contact between the clutch plates). Therefore, the clutch switch detection unit 17f can detect the engagement and disengagement of the main clutch 61 by using the electric signal input from the clutch switch 26, but in the present embodiment, the clutch plates of the main clutch 61 are connected to each other.
  • a clutch state estimation unit 17g is provided separately from the clutch switch detection unit 17f.
  • the clutch state estimation unit 17g uses the engine speed calculated by the engine speed calculation unit 17a to provide a region in which the main clutch 61 may be disengaged or in a half-clutch state, that is, the main clutch 61. Release of the main clutch 61 corresponding to a region in which the clutch plates of the main clutch 61 are not completely separated from each other and are not in contact with each other, or a half-clutch state in which the clutch plates of the main clutch 61 are in contact with each other while rotating relative to each other.
  • the release area value calculation unit 17i for calculating the release area value indicating the area is provided.
  • the clutch state estimation unit 17g is in a state in which the main clutch 61 is connected (clutch plate) when the throttle opening degree calculated by the throttle opening degree calculation unit 17b deviates from the range indicated by the release region value (release range). It is determined that the gears are in contact with each other and do not rotate relative to each other), and the failure determination unit 17h is allowed to execute the failure determination of the gear position sensor 24.
  • the release area value calculation unit 17i may be provided as an external functional block separately from the clutch state estimation unit 17g.
  • the release area value calculation unit 17i is in a state in which the main clutch 61 is disconnected so that the driving force is not transmitted between the engine and the driving force transmission device, and the main clutch 61 is interposed between the engine and the driving force transmission device.
  • the value is calculated according to the engine speed.
  • the release area value calculation unit 17i includes the release area R3 of the main clutch 61 as shown in FIG. 2B, and the map data defined by the engine speed NE and the throttle opening TH forming a two-axis orthogonal coordinate system.
  • the release region value corresponding to the engine speed NE1 specifically, the lower limit value TH3 and the upper limit value TH2 of the release range (TH3 ⁇ throttle opening TH ⁇ TH2).
  • the driving force of the engine is balanced with the resistance force of the engine (mechanical frictional force, viscoelastic force of lubricating oil, etc.), and the driving force is generated between the engine and the driving wheels.
  • the no-load throttle opening corresponding to the operating state of the engine that is not transmitted corresponds to the non-transmission throttle opening TH1, and the no-load throttle opening is set to the non-transmission throttle opening TH1.
  • the throttle opening is likely to be a value in the region of the no-load throttle opening and the throttle opening in the vicinity above and below it. This is because the no-load throttle opening is set to the non-transmission throttle opening TH. In other words, in the region deviating from the region of the no-load throttle opening and the throttle opening in the vicinity above and below it, the driver operates the clutch. It means that it is considered that there is no possibility that the shift operation is being performed.
  • the line L1 is a non-transmission line representing a line connecting a plurality of non-transmission throttle opening values provided corresponding to the engine speed NE
  • the line L2 is such a non-transmission line.
  • the 2B is arranged so as to be connected to the region R3 on the side of the large value of the throttle opening TH, and indicates a positive torque zone in which the engine drives the drive wheels, and the region R2 is a region.
  • a negative torque zone in which the engine is driven by the drive wheels is shown which is arranged in series with the throttle opening TH on the side where the throttle opening degree TH is small with respect to R3.
  • the region R2 is not set because it does not appear below the medium rotation speed region of the engine speed NE.
  • the release region R3, which is a region where the main clutch 61 may be disconnected or in a half-clutch state so as not to transmit the driving force between the engine and the driving force transmission device, is a non-transmission line L1.
  • the non-transmission line L1 shows a linear characteristic line that increases as the engine speed NE increases, but is set as having an inflection point such that the slope increases at low and medium speeds of the engine speed NE.
  • the positive predetermined value ⁇ TH1 and the negative predetermined value ⁇ TH2 are regarded as corresponding to the range of the throttle opening in the vicinity of the non-transmission throttle opening, that is, the range of the throttle opening in the half-clutch state.
  • map data fits into common driving patterns such as a combination of stopping, accelerating, decelerating and coasting.
  • the failure determination unit 17h compares the gear position calculated by the gear position calculation unit 17d with the estimated gear position calculated by the estimated gear position calculation unit 17d, and if the gear position and the estimated gear position do not match, the gear position sensor 24 Is determined to be out of order.
  • FIG. 3 is a time chart showing the operation of the gear position failure detection device in this embodiment.
  • the release area value calculation unit 17i releases the main clutch 61 corresponding to the engine speed NE at each predetermined control cycle. Calculate the release area value indicating the area.
  • the unit 17h is allowed to execute the failure determination of the gear position sensor 24.
  • the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3 (b) is the non-transmission line shown in FIG. 3 (a). Since the drive relationship between the engine and the drive wheels is smaller than the magnitude of the negative predetermined value ⁇ TH2 with respect to the non-transmission throttle opening value, which is the value on L1, the engine as shown in FIG. 2B has a drive relationship. It is in the negative torque zone R2 driven by the drive wheels, and the value of the negative torque zone flag FN shown in FIG. 3 (f) is 1 (otherwise, the value of the negative torque zone flag FN is 0). It has become.
  • the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3B is a value on the non-transmission line L1 shown in FIG. 3A. Since the value is larger than the positive predetermined value ⁇ TH1 with respect to the throttle opening, the drive relationship between the engine and the drive wheels is the positive torque zone R1 in which the engine drives the drive wheels as shown in FIG. 2B. Correspondingly, the value of the positive torque zone flag FP shown in FIG. 3 (e) is 1 (otherwise, the value of the positive torque zone flag FP is 0).
  • the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3B is on the non-transmission line L1 shown in FIG. 3A.
  • the upper limit of the non-transmission throttle opening which is the value of, or the non-transmission throttle opening plus a predetermined positive predetermined value ⁇ TH1, and the lower limit of the non-transmission throttle opening plus a negative predetermined value ⁇ TH2. Since it is within the range between the engine and the drive wheels, the drive relationship between the engine and the drive wheels may be in a state in which the transmission of the drive force between the engine and the drive wheels is disconnected or in a half-clutch state as shown in FIG. 2B. It is in the release area R3, which is a certain area.
  • the change with time of the engine speed NE is shown in FIG. 3 (c)
  • the change with time of the driving wheel vehicle speed VSP is shown in FIG. 3 (d).
  • the clutch lever was released (released) in the clutch switch signal CS detected by the clutch switch detection unit 17f shown in FIG. 3 (g).
  • the clutch switch signal CS detected by the clutch switch detection unit 17f is substantially the clutch lever. It is an on signal (for example, the output voltage is a positive predetermined value) indicating that the vehicle is completely gripped (fully gripped).
  • the clutch plates of the main clutch 61 are completely separated from each other, and the driving force is transmitted between the engine and the driving force transmission device.
  • the gear position calculated by 17d indicates that the gear position is the second gear
  • the ratio of the engine speed calculated by the engine speed calculation unit 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c is shown in FIG.
  • the gear normal region determination flag FD shown in FIG.
  • the value of is 1 (the value of the gear normal region determination flag FD is 0 in other periods).
  • the ratio of the engine speed calculated by the engine speed calculation unit 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c is shown in FIG. Counting is started when entering or exiting the predetermined range of the 2nd gear (normal range of the 2nd gear) or the predetermined range of the 3rd gear (normal range of the 3rd gear) shown in (i) (in the figure).
  • the value of the estimated gear position updateability flag FE shown in FIG. 3 (n) is 1 (the value of the estimated gear position updateability flag FE is 0 in other periods).
  • the degree of stability of the gear position signal GS (constancy of output voltage, etc.) is taken into consideration, and is shown in FIG. 3 (o).
  • the value of the final judgment permission flag FA is 0).
  • the failure determination unit 17h is permitted to determine the failure of the gear position sensor 24. During this period, the failure determination unit 17h compares the gear position calculated by the gear position calculation unit 17d with the estimated gear position calculated by the estimated gear position calculation unit 17d, and the gear position and the estimated gear position are determined. If they do not match, it is determined that the gear position sensor 24 is out of order.
  • the clutch state estimation unit 17g is in a region defined by the rotation speed of the engine and the valve opening degree of the intake control valve provided in the engine. Therefore, the output of the crank angle sensor 21 is the release area value in the release range that is equal to or greater than the lower limit of the release region and is less than or equal to the upper limit, which is the region where the main clutch 61 may be disengaged or half-clutched.
  • the clutch state estimation unit 17g includes a release area value calculation unit 17i that calculates based on the above, and the throttle opening degree calculated based on the output of the throttle opening sensor 22 deviates from the release range, the main clutch 61 is set.
  • the failure detection of the gear position sensor 24 is surely performed only when the main clutch 61 is connected. Can be determined. As a result, it is possible to prevent an erroneous determination of the gear position sensor 24 from occurring.
  • the release area value calculation unit 17i calculates the release range so as to correspond to the engine speed and include the non-transmission throttle opening degree.
  • the release range is set to a range between the upper limit value TH2 and the lower limit value TH3 for an arbitrary engine speed NE1, and the upper limit value TH2 sets a positive predetermined value ⁇ TH1 to the non-transmission throttle opening degree TH1.
  • the lower limit value TH3 is set to the added value, and the lower limit value TH3 is set to the value obtained by adding the negative predetermined value TH2 to the non-transmission throttle opening TH1. Therefore, the main clutch 61 is connected so as not to increase the calculation load. It is possible to calculate the release range for determining that it is in.
  • FIG. 4 is a schematic view showing a non-transmission line in the release region of the main clutch 61 applied to the gear position failure detection device in the present embodiment for each reference atmospheric pressure.
  • the line L4 shows a non-transmission line at the reference atmospheric pressure A corresponding to the high-altitude atmospheric pressure
  • the line L5 is the reference atmospheric pressure B corresponding to the low-lying atmospheric pressure higher than the reference atmospheric pressure A.
  • the non-transmission line in.
  • the non-transmission throttle opening degree is a value that is interpolated as a value between a plurality of atmospheric pressure correction reference openings shown in FIG. 4 based on the atmospheric pressure detected by the atmospheric pressure sensor 25. Specifically, in the example shown in FIG. 4, when the engine speed is NE1 and the atmospheric pressure detected by the atmospheric pressure sensor 25 is atmospheric pressure C, the value of the non-transmission throttle opening at atmospheric pressure C is , (THH-THL) ⁇ (BC) / (BA) + THL.
  • the non-transmission throttle opening degree for defining the release range for determining that the main clutch 61 is in the engaged state is defined.
  • the calculation accuracy can be improved, and the accuracy of failure detection for detecting the failure of the gear position sensor 24 can be improved.
  • the present invention provides a gear position failure detection device that accurately detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism. It is expected that it can be widely applied to automobiles due to its general-purpose universal nature.
  • Gear position failure detection device 11 Waveform shaping circuit 12 ... A / D (Analog to Digital) converter 13 ... Waveform shaping circuit 14 ... A / D converter 15 ... A / D converter 16 ... Memory 17 ... CPU ( Central Processing Unit) 17a ... Engine speed calculation unit 17b ... Throttle opening calculation unit 17c ... Vehicle speed calculation unit 17d ... Gear position calculation unit 17e ... Estimated gear position calculation unit 17f ... Clutch switch detection unit 17g ... Clutch state estimation unit 17h ... Failure determination unit 17i ... Release area value calculation unit 21 ... Crank angle sensor 22 ... Throttle opening sensor 23 ... Drive wheel vehicle speed sensor 24 ... Gear position sensor 25 ... Atmospheric pressure sensor 26 ...

Abstract

In this gear position failure detection device (1), a clutch state estimation unit (17g) includes a release area value calculation unit (17i) for calculating, on the basis of the output of a crank angle sensor (21), the value of a release area which is defined by the rotation speed of an engine and the valve opening degree of an intake control valve provided in the engine, and in which a main clutch (61) may be disengaged or half-clutched. When the throttle opening degree calculated on the basis of the output of a throttle opening degree sensor (22) deviates from the release range, the clutch state estimation unit (17g) determines that the main clutch (61) is connected, and allows the failure determination unit (17h) to execute a failure determination.

Description

ギヤポジション故障検知装置Gear position failure detector
 本発明は、ギヤポジション故障検知装置に関し、特に、自動車に搭載され手動多段式ギヤ比切り替え機構を備える駆動力伝達装置のギヤポジションを検出するギヤポジションセンサの故障を検知するギヤポジション故障検知装置に関する。 The present invention relates to a gear position failure detection device, and more particularly to a gear position failure detection device that detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism. ..
 近年、自動二輪車等の自動車に搭載される内燃機関であるエンジンの運転状態は、エンジンの回転速度を検出するエンジン回転速度センサ、エンジンの温度を検出するエンジン温センサ、エンジンに設けられる吸気制御弁の弁開度を検出する弁開度センサ、及びエンジンに設けられる吸気管内の吸気圧力を検出する吸気圧センサ等の各種センサからの出力に基づいて電子制御されることが一般的になっているが、かかる各種センサの1つとして、エンジンと駆動輪との間に設けられる多段式ギヤ比切り替え機構を備えた駆動力伝達装置のギヤポジションを検出するギヤポジションセンサが用いられることも多くなっている。 In recent years, the operating state of an engine, which is an internal combustion engine mounted on an automobile such as a motorcycle, includes an engine rotation speed sensor that detects the rotation speed of the engine, an engine temperature sensor that detects the temperature of the engine, and an intake control valve provided in the engine. It is generally electronically controlled based on the output from various sensors such as a valve opening sensor for detecting the valve opening of the engine and an intake pressure sensor for detecting the intake pressure in the intake pipe provided in the engine. However, as one of such various sensors, a gear position sensor that detects the gear position of a driving force transmission device provided with a multi-stage gear ratio switching mechanism provided between the engine and the driving wheels is often used. There is.
 かかるギヤポジションセンサが検出するギヤポジションは、例えば、それに応じてエンジンに供給される燃料量が制御されるものであるため、エンジンの運転状態を電子制御する上で重要なパラメータの1つであり、かかるギヤポジションセンサが正常に動作しているか否かを判断するために、その故障検知を正確に実行することもエンジンの運転状態の制御上で重要な事項となってきている。 The gear position detected by the gear position sensor is, for example, one of the important parameters for electronically controlling the operating state of the engine because the amount of fuel supplied to the engine is controlled accordingly. In order to determine whether or not the gear position sensor is operating normally, it has become an important matter for controlling the operating state of the engine to accurately detect the failure.
 かかる状況下で、特許文献1は、減速時にエンジン回転数と車速度とから求めたギヤ比によりギヤポジションを判定するギヤポジション判定方法に関し、ギヤ比の時間変化量の平均値を計測し、この値の絶対値が予め定めた所定のしきい値以上であるかどうかによりギヤポジションを判定する構成を開示する。 Under such circumstances, Patent Document 1 measures the average value of the amount of time change of the gear ratio with respect to the gear position determination method for determining the gear position based on the gear ratio obtained from the engine speed and the vehicle speed at the time of deceleration. A configuration for determining a gear position based on whether or not the absolute value of the value is equal to or higher than a predetermined threshold value is disclosed.
 また、特許文献2は、内燃機関の燃料噴射制御装置に関し、ギヤポジションセンサと、車速パルスセンサと、エンジン回転速度センサと、ギヤポジションセンサのデータよりギヤポジションを判定する第1のギヤポジション演算手段と、車速パルスセンサのデータとエンジン回転速度センサのデータに基づいてギヤポジションを判定する第2のギヤポジション演算手段と、第1のギヤポジション演算手段により判定されたギヤポジションと、第2のギヤポジション演算手段により判定されたギヤポジションとの論理積により、ギヤポジションを決定するギヤポジション選択手段と、を備えた構成を開示する。 Further, Patent Document 2 relates to a first gear position calculation means for determining a gear position from data of a gear position sensor, a vehicle speed pulse sensor, an engine rotation speed sensor, and a gear position sensor with respect to a fuel injection control device for an internal combustion engine. The second gear position calculation means for determining the gear position based on the data of the vehicle speed pulse sensor and the data of the engine rotation speed sensor, the gear position determined by the first gear position calculation means, and the second gear. A configuration including a gear position selection means for determining a gear position based on a logical product with a gear position determined by a position calculation means is disclosed.
特開平04-171352号公報Japanese Unexamined Patent Publication No. 04-171352 特開2006-316665号公報Japanese Unexamined Patent Publication No. 2006-316665
 しかしながら、本発明者の検討によれば、特許文献1が開示する構成では、エンジン回転数と車速度とから求めたギヤ比によりギヤポジションを判定するものであるが、手動多段式ギヤ比切り替え機構を備える駆動力伝達装置のギヤポジションを検出する際には、例えば、運転者がクラッチを切って坂を下っていくような場合に、エンジン回転数と車速度との相関関係がくずれてしまい、それらから求めたギヤ比では正確な判定ができない事態を招いてしまうことが考えられて改善の余地がある。 However, according to the study of the present inventor, in the configuration disclosed in Patent Document 1, the gear position is determined based on the gear ratio obtained from the engine speed and the vehicle speed, but the manual multi-stage gear ratio switching mechanism When detecting the gear position of the driving force transmission device provided with the above, for example, when the driver disengages the clutch and goes down a slope, the correlation between the engine speed and the vehicle speed is broken. There is room for improvement because it is possible that an accurate judgment cannot be made with the gear ratio obtained from them.
 また、本発明者の検討によれば、特許文献2が開示する構成では、ギヤポジションセンサのデータよりギヤポジションを判定する第1のギヤポジション演算手段と、車速パルスセンサのデータとエンジン回転速度センサのデータに基づいてギヤポジションを判定する第2のギヤポジション演算手段と、を用いるものであって、ギヤポジションの決定のみならずギヤポジションセンサの故障検知にも適用し得るものではあるが、かかる構成に関しても、特許文献1で述べたような状況が発生してしまい、ギヤポジションの決定やギヤポジションセンサの故障検知において改善の余地がある。 Further, according to the study of the present inventor, in the configuration disclosed in Patent Document 2, the first gear position calculation means for determining the gear position from the data of the gear position sensor, the data of the vehicle speed pulse sensor, and the engine rotation speed sensor The second gear position calculation means for determining the gear position based on the above data is used, and it can be applied not only to the determination of the gear position but also to the failure detection of the gear position sensor. Regarding the configuration, the situation described in Patent Document 1 occurs, and there is room for improvement in determining the gear position and detecting the failure of the gear position sensor.
 また、本発明者の更なる検討によれば、運転者がクラッチを切って坂を下っていくような場合に、ギヤポジションの決定やギヤポジションセンサの故障検知に誤判定が生じるのであれば、クラッチの断続を検出可能なクラッチスイッチの出力を用いることも考えられるが、一般的なクラッチスイッチの出力は単純なオン・オフ信号であり、いわゆる半クラッチ状態の検出ができず、かかる場合にクラッチスイッチを用いることは、充分な対処とはいえないとも考えられる。 Further, according to a further study by the present inventor, if a misjudgment occurs in the determination of the gear position or the failure detection of the gear position sensor when the driver disengages the clutch and goes down the slope, It is conceivable to use the output of the clutch switch that can detect the engagement and disengagement of the clutch, but the output of a general clutch switch is a simple on / off signal, and the so-called half-clutch state cannot be detected. It may not be possible to say that using a switch is a sufficient countermeasure.
 本発明は、以上の検討を経てなされたものであり、自動車に搭載され手動多段式ギヤ比切り替え機構を備える駆動力伝達装置のギヤポジションを検出するギヤポジションセンサの故障を精度よく検知するギヤポジション故障検知装置を提供することを目的とする。 The present invention has been made through the above studies, and is a gear position that accurately detects a failure of a gear position sensor that detects the gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism. An object of the present invention is to provide a failure detection device.
 以上の目的を達成するべく、本発明は、自動車に搭載され手動多段式ギヤ比切り替え機構を有する駆動力伝達装置のギヤポジションを検出するギヤポジションセンサの故障を検知するギヤポジション故障検知装置であって、前記ギヤポジションセンサの出力からギヤポジションを算出する第1のギヤポジション算出部と、前記自動車の駆動輪の回転速度から車速を検出する車速センサの出力と前記駆動力伝達装置に接続されるエンジンの回転速度を検出するエンジン回転速度センサの出力とに基づいて、推定ギヤポジションを算出する第2のギヤポジション算出部と、前記第1のギヤポジション算出部が算出した前記ギヤポジションと前記第2のギヤポジション算出部が算出した前記推定ギヤポジションとを比較して、前記ギヤポジションと前記推定ギヤポジションが一致しない場合には、前記ギヤポジションセンサが故障していると判定する故障判定部と、前記エンジンと前記駆動力伝達装置との間の駆動力の伝達を断続するクラッチ機構が接続されている状態にあるか否かを推定するクラッチ状態推定部と、を備え、前記クラッチ状態推定部は、前記エンジンの前記回転速度及び前記エンジンに設けられる吸気制御弁の弁開度で規定される領域であって、前記クラッチ機構が切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域の下限値以上で上限値以下の解除範囲における解除領域値を、前記エンジン回転速度センサの前記出力に基づいて算出する解除領域値算出部を有し、前記クラッチ状態推定部は、前記弁開度を検出する弁開度センサの出力に基づいて算出される前記弁開度が前記解除範囲から逸脱する場合には、前記クラッチ機構が接続されている状態にあると判断して、前記故障判定部が故障判定を実行することを許可することを第1の局面とする。 In order to achieve the above object, the present invention is a gear position failure detection device that detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and having a manual multi-stage gear ratio switching mechanism. It is connected to the first gear position calculation unit that calculates the gear position from the output of the gear position sensor, the output of the vehicle speed sensor that detects the vehicle speed from the rotation speed of the drive wheels of the automobile, and the drive force transmission device. A second gear position calculation unit that calculates an estimated gear position based on the output of an engine rotation speed sensor that detects the rotation speed of the engine, and the gear position and the first gear position calculated by the first gear position calculation unit. When the estimated gear position calculated by the gear position calculation unit of 2 is compared with the estimated gear position and the estimated gear position does not match, the failure determination unit determines that the gear position sensor has failed. The clutch state estimation unit includes a clutch state estimation unit that estimates whether or not a clutch mechanism that interrupts the transmission of driving force between the engine and the driving force transmission device is connected. Is a region defined by the rotational speed of the engine and the valve opening degree of the intake control valve provided in the engine, and is a region in which the clutch mechanism may be disconnected or in a half-clutch state. The clutch state estimation unit has a release area value calculation unit that calculates a release area value in a release range that is equal to or greater than the lower limit value of the release region and is less than or equal to the upper limit value based on the output of the engine rotation speed sensor. When the valve opening degree calculated based on the output of the valve opening degree sensor that detects the valve opening degree deviates from the release range, it is determined that the clutch mechanism is connected. The first aspect is to allow the failure determination unit to execute the failure determination.
 また、本発明は、第1の局面に加えて、前記解除領域値算出部は、前記エンジンの前記回転速度に対応して、かつ、前記クラッチ機構を介して前記エンジンから前記駆動伝達装置に駆動力が伝達しないと想定される前記弁開度である無伝達弁開度を含むように、前記解除範囲を算出するものであり、前記解除範囲は、前記エンジンの前記回転速度に対して第1推定閾値と第2推定閾値との間の範囲に設定され、前記第1推定閾値は、前記無伝達弁開度に正の所定値を加算した値に設定され、前記第2推定閾値は、前記無伝達弁開度に負の所定値を加算した値に設定されることを第2の局面とする。 Further, in the present invention, in addition to the first aspect, the release area value calculation unit is driven from the engine to the drive transmission device in response to the rotation speed of the engine and via the clutch mechanism. The release range is calculated so as to include the non-transmission valve opening, which is the valve opening that is assumed that no force is transmitted, and the release range is the first with respect to the rotation speed of the engine. The range is set between the estimated threshold value and the second estimated threshold value, the first estimated threshold value is set to a value obtained by adding a positive predetermined value to the non-transmission valve opening degree, and the second estimated threshold value is the said. The second phase is to set the value by adding a negative predetermined value to the non-transmission valve opening degree.
 また、本発明は、第2の局面に加えて、前記解除領域値算出部は、前記エンジンの前記回転速度に対応して、かつ、複数の基準大気圧に各々対応して予め設定された複数の大気圧補正基準開度に基づいて、前記解除範囲を算出するものであり、前記無伝達弁開度は、前記自動車に設けられた大気圧センサによって検出された大気圧に基づいて、前記複数の大気圧補正基準開度の間の値で補間演算される値であることを第3の局面とする。 Further, in the present invention, in addition to the second aspect, the release region value calculation unit may be set in advance in response to the rotation speed of the engine and in response to a plurality of reference atmospheric pressures. The release range is calculated based on the atmospheric pressure correction reference opening degree, and the non-transmission valve opening degree is the plurality of atmospheric pressures detected by the atmospheric pressure sensor provided in the automobile. The third aspect is that the value is interpolated by the value between the atmospheric pressure correction reference openings of.
 以上の本発明の第1の局面にかかるギヤポジション故障検知装置によれば、クラッチ状態推定部が、エンジンの回転速度及びエンジンに設けられる吸気制御弁の弁開度で規定される領域であって、クラッチ機構が切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域の下限値以上で上限値以下の解除範囲における解除領域値を、エンジン回転速度センサの出力に基づいて算出する解除領域値算出部を有し、クラッチ状態推定部が、弁開度を検出する弁開度センサの出力に基づいて算出される弁開度が解除範囲から逸脱する場合には、クラッチ機構が接続されている状態にあると判断して、故障判定部が故障判定を実行することを許可するものであるため、クラッチ機構が接続されている状態のときにのみ確実にギヤポジションセンサの故障検知の判定を行うことができる。これにより、手動多段式ギヤ比切り替え機構を備える駆動力伝達装置のギヤポジションを検出するギヤポジションセンサに関して誤判定が生じることを抑制することができる。 According to the gear position failure detection device according to the first aspect of the present invention, the clutch state estimation unit is a region defined by the rotation speed of the engine and the valve opening degree of the intake control valve provided in the engine. , The release area value in the release range above the lower limit of the release area and below the upper limit, which is the area where the clutch mechanism may be disengaged or half-clutched, is determined based on the output of the engine rotation speed sensor. When the clutch state estimation unit has a release area value calculation unit to calculate and the valve opening degree calculated based on the output of the valve opening degree sensor that detects the valve opening degree deviates from the release range, the clutch mechanism Is determined to be in the connected state and the failure determination unit is allowed to execute the failure determination. Therefore, the gear position sensor is surely failed only when the clutch mechanism is connected. The detection can be determined. As a result, it is possible to prevent an erroneous determination from occurring in the gear position sensor that detects the gear position of the driving force transmission device provided with the manual multi-stage gear ratio switching mechanism.
 また、本発明の第2の局面にかかるギヤポジション故障検知装置によれば、解除領域値算出部が、エンジンの回転速度に対応して、かつ、クラッチ機構を介してエンジンから駆動伝達装置に駆動力が伝達しないと想定される弁開度である無伝達弁開度を含むように、解除範囲を算出するものであり、解除範囲が、エンジンの回転速度に対して第1推定閾値と第2推定閾値との間の範囲に設定され、第1推定閾値が、無伝達弁開度に正の所定値を加算した値に設定され、第2推定閾値が、無伝達弁開度に負の所定値を加算した値に設定されるため、演算負荷を増大させないようにクラッチ機構が接続されている状態にあると判断するための解除範囲を算出することができる。 Further, according to the gear position failure detection device according to the second aspect of the present invention, the release region value calculation unit is driven from the engine to the drive transmission device via the clutch mechanism in accordance with the rotation speed of the engine. The release range is calculated so as to include the non-transmission valve opening, which is the valve opening that is assumed that no force is transmitted, and the release range is the first estimated threshold value and the second with respect to the engine speed. The range between the estimated threshold and the estimated threshold is set, the first estimated threshold is set to a value obtained by adding a positive predetermined value to the non-transmission valve opening, and the second estimated threshold is set to a negative predetermined value for the non-transmission valve opening. Since the value is set to the sum of the values, it is possible to calculate the release range for determining that the clutch mechanism is connected so as not to increase the calculation load.
 また、本発明の第3の局面にかかるギヤポジション故障検知装置によれば、解除領域値算出部が、エンジンの回転速度に対応して、かつ、複数の基準大気圧に各々対応して予め設定された複数の大気圧補正基準開度に基づいて、解除範囲を算出するものであり、無伝達弁開度が、自動車に設けられた大気圧センサによって検出された大気圧に基づいて、複数の大気圧補正基準開度の間の値で補間演算される値であるため、クラッチ機構が接続されている状態にあると判断するための解除範囲を規定するための無伝達弁開度の算出精度を向上することができ、ギヤポジションセンサの故障を検知する故障検知の精度を向上することができる。 Further, according to the gear position failure detection device according to the third aspect of the present invention, the release region value calculation unit is preset in accordance with the rotational speed of the engine and in response to each of a plurality of reference atmospheric pressures. The release range is calculated based on the plurality of atmospheric pressure correction reference openings, and the non-transmission valve opening degree is based on the atmospheric pressure detected by the atmospheric pressure sensor provided in the automobile. Since it is a value that is interpolated by the value between the atmospheric pressure correction reference opening, the calculation accuracy of the non-transmission valve opening for defining the release range for determining that the clutch mechanism is connected. It is possible to improve the accuracy of failure detection for detecting the failure of the gear position sensor.
図1は、本発明の実施形態におけるギヤポジション故障検知装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a gear position failure detection device according to an embodiment of the present invention. 図2Aは、本実施形態におけるギヤポジション故障検知装置が適用される手動多段式ギヤ比切り替え機構を備える駆動力伝達装置を示す模式的な断面図である。FIG. 2A is a schematic cross-sectional view showing a driving force transmission device including a manual multi-stage gear ratio switching mechanism to which the gear position failure detection device according to the present embodiment is applied. 図2Bは、本実施形態におけるギヤポジション故障検知装置に適用されるクラッチ機構の解除領域をエンジン回転数とスロットル開度とで規定した模式図である。FIG. 2B is a schematic view in which the disengagement region of the clutch mechanism applied to the gear position failure detection device in the present embodiment is defined by the engine speed and the throttle opening degree. 図3は、本実施形態におけるギヤポジション故障検知装置の動作を示すタイムチャートである。FIG. 3 is a time chart showing the operation of the gear position failure detection device according to the present embodiment. 図4は、本実施形態におけるギヤポジション故障検知装置に適用されるクラッチ機構の解除領域の無伝達ラインを基準大気圧毎に示す模式図である。FIG. 4 is a schematic view showing a non-transmission line in the disengagement region of the clutch mechanism applied to the gear position failure detection device in the present embodiment for each reference atmospheric pressure.
 以下、図面を適宜参照して、本発明の実施形態におけるギヤポジション故障検知装置につき、詳細に説明する。 Hereinafter, the gear position failure detection device according to the embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 〔構成〕
 まず、図1並びに図2A及び図2Bを参照して、本実施形態におけるギヤポジション故障検知装置の構成について説明する。
〔Constitution〕
First, the configuration of the gear position failure detection device according to the present embodiment will be described with reference to FIGS. 1 and 2A and 2B.
 図1は、本実施形態におけるギヤポジション故障検知装置の構成を示すブロック図である。また、図2Aは、本実施形態におけるギヤポジション故障検知装置が適用される手動多段式ギヤ比切り替え機構を備える駆動力伝達装置を示す模式的な断面図であり、図2Bは、本実施形態におけるギヤポジション故障検知装置に適用されるクラッチ機構の解除領域をエンジン回転数とスロットル開度とで規定した模式図である。 FIG. 1 is a block diagram showing a configuration of a gear position failure detection device according to the present embodiment. Further, FIG. 2A is a schematic cross-sectional view showing a driving force transmission device including a manual multi-stage gear ratio switching mechanism to which the gear position failure detection device according to the present embodiment is applied, and FIG. 2B is a schematic cross-sectional view according to the present embodiment. It is a schematic diagram which defined the release area of the clutch mechanism applied to a gear position failure detection device by engine rotation speed and throttle opening degree.
 図1に示すように、本実施形態におけるギヤポジション故障検知装置1は、自動二輪車等の自動車に搭載され、ECU(Electronic Control Unit)等の電子制御装置によって構成されている。ギヤポジション故障検知装置1は、波形整形回路11、A/D(Analog to Digital)変換器12、波形整形回路13、A/D変換器14、A/D変換器15、メモリ16、及びCPU(Central Processing Unit)17を備えている。 As shown in FIG. 1, the gear position failure detection device 1 in the present embodiment is mounted on an automobile such as a motorcycle and is composed of an electronic control device such as an ECU (Electronic Control Unit). The gear position failure detection device 1 includes a waveform shaping circuit 11, an A / D (Analog to Digital) converter 12, a waveform shaping circuit 13, an A / D converter 14, an A / D converter 15, a memory 16, and a CPU ( It is equipped with a Central Processing Unit) 17.
 波形整形回路11は、クランク角センサ21によって検出された電気信号であって、自動車のエンジン(内燃機関)のクランク角を示す電気信号の波形を整形し、このように整形した電気信号をCPU17に入力する。 The waveform shaping circuit 11 shapes the waveform of the electric signal that is the electric signal detected by the crank angle sensor 21 and indicates the crank angle of the engine (internal combustion engine) of the automobile, and the electric signal thus shaped is sent to the CPU 17. input.
 A/D変換器12は、スロットル開度センサ22によって検出された電気信号であって、自動車のエンジンに設けられる吸気制御弁の弁開度(スロットル開度)を示す電気信号をA/D変換し、このようにA/D変換した電気信号をCPU17に入力する。 The A / D converter 12 A / D converts an electric signal detected by the throttle opening sensor 22 and indicating a valve opening (throttle opening) of an intake control valve provided in an automobile engine. Then, the electric signal converted to A / D in this way is input to the CPU 17.
 波形整形回路13は、駆動輪車速センサ23によって検出された電気信号であって、自動車の駆動輪の回転速度(駆動輪車速)を示す電気信号の波形を整形し、このように整形した電気信号をCPU17に入力する。 The waveform shaping circuit 13 is an electric signal detected by the drive wheel vehicle speed sensor 23, and shapes the waveform of the electric signal indicating the rotation speed (drive wheel vehicle speed) of the drive wheels of the automobile, and the electric signal shaped in this way. Is input to the CPU 17.
 A/D変換器14は、ギヤポジションセンサ24によって検出された電気信号であって、手動多段式ギヤ比切り替え機構を備えて自動車のエンジンに接続されている駆動力伝達装置のギヤポジションを示す電気信号をA/D変換し、このようにA/D変換した電気信号をCPU17に入力する。 The A / D converter 14 is an electric signal detected by the gear position sensor 24, and is an electric signal that indicates the gear position of a driving force transmission device that is provided with a manual multi-stage gear ratio switching mechanism and is connected to an automobile engine. The signal is A / D converted, and the electric signal thus A / D converted is input to the CPU 17.
 ここで、手動多段式ギヤ比切り替え機構を備える駆動力伝達装置とは、湿式で摩擦多板式等のクラッチ機構を伴う手動式の変速機のことを意味し、例えば、図2Aに示すようなドッグ式変速機を示すことができる。 Here, the driving force transmission device provided with the manual multi-stage gear ratio switching mechanism means a wet and manual transmission with a clutch mechanism such as a friction multi-plate type, and for example, a dog as shown in FIG. 2A. A type transmission can be shown.
 図2Aに示すドッグ式変速機Tでは、シフト操作部材であるシフトペダル31の運転者によるシフト操作に応じて、シフトペダル31が回動されると共に車両側のその回動軸であるシフトシャフト32が回転する。運転者によるシフト操作に伴うシフトペダル31の回動は、シフトシャフト32に対してそれを回動軸として固設されたシフトアーム33に伝達される。 In the dog-type transmission T shown in FIG. 2A, the shift pedal 31 is rotated in response to the shift operation by the driver of the shift pedal 31 which is a shift operation member, and the shift shaft 32 which is the rotation axis on the vehicle side is rotated. Rotates. The rotation of the shift pedal 31 accompanying the shift operation by the driver is transmitted to the shift arm 33 fixed to the shift shaft 32 as a rotation shaft.
 シフトアーム33の一端部には図示を省略するギヤ部が設けられているため、運転者によるシフト操作に伴うシフトペダル31の回動は、シフトアーム33のギヤ部を介して、シフトドラム41の回動軸であるドラムシャフト42に固設されたシフトギヤ34に伝達され、この際にドラムシャフト42、つまりシフトドラム41が回動する。ギヤポジションセンサ24は、ドッグ式変速機Tの変速段(ギヤポジション)に応じて、ドラムシャフト42の回転角を示す電気信号を出力する。なお、ギヤポジションセンサ24としては、その出力信号が線形な特性を有するセンサであれば好適に使用でき、ホールセンサの他にポテンションメータ等も用い得るものである。 Since a gear portion (not shown) is provided at one end of the shift arm 33, the rotation of the shift pedal 31 accompanying the shift operation by the driver is performed by the shift drum 41 via the gear portion of the shift arm 33. It is transmitted to the shift gear 34 fixed to the drum shaft 42, which is the rotating shaft, and at this time, the drum shaft 42, that is, the shift drum 41 rotates. The gear position sensor 24 outputs an electric signal indicating the rotation angle of the drum shaft 42 according to the shift stage (gear position) of the dog-type transmission T. As the gear position sensor 24, any sensor whose output signal has a linear characteristic can be preferably used, and a potentiometer or the like can be used in addition to the hall sensor.
 また、このドッグ式変速機Tでは、インプットシャフト56に固定変速ギヤ51が装着され、ドライブシャフト57にフリー変速ギヤ52及びスライド変速ギヤ53が装着された構成を代表的に想定すると、シフトドラム41の回動は、それに形成されたカム溝43に配設されると共にカム溝43に倣って移動するシフトフォーク44に伝達され、対応してシフトフォーク44が移動することにより、スライド変速ギヤ53がドライブシャフト57に対して装着された状態で並進移動されることになる。そして、スライド変速ギヤ53がフリー変速ギヤ52に向かって移動されてこれらが互いに近接した位置にあるときには、これらのドッグ歯同士が噛合可能な状態をとることになる。 Further, in this dog type transmission T, assuming that the input shaft 56 is equipped with the fixed transmission gear 51 and the drive shaft 57 is provided with the free transmission gear 52 and the slide transmission gear 53, the shift drum 41 is typically assumed. Is transmitted to the shift fork 44 which is arranged in the cam groove 43 formed therein and moves in accordance with the cam groove 43, and the shift fork 44 moves correspondingly, so that the slide transmission gear 53 is moved. It will be translated and moved while being mounted on the drive shaft 57. Then, when the slide transmission gear 53 is moved toward the free transmission gear 52 and they are in a position close to each other, these dog teeth are in a state where they can mesh with each other.
 つまり、エンジンと駆動力伝達装置との間の駆動力の伝達を断続する摩擦多板式のクラッチ板を有するクラッチ機構であるメインクラッチ61がそのクラッチ板同士が当接した接続されている状態にあり、かつドッグ歯同士が当接してそれらの一方のドッグ歯がそれらの他方のドッグ歯を押す噛合状態にあるときには、クランクシャフト71の回転力(駆動力)は、メインクラッチ61、インプットシャフト56、固定変速ギヤ51、フリー変速ギヤ52、スライド変速ギヤ53、及びドライブシャフト57を順に介して、最終的には駆動輪に伝達していくことになる。また、メインクラッチ61が接続されている状態にあり、かつドッグ歯同士が当接してそれらの一方がそれらの他方を押した噛合状態にあるときには、シフトフォーク44でスライド変速ギヤ53をフリー変速ギヤ52から離れるように移動することが容易になるように、エンジンの運転状態を制御して、他のギヤポジションへの変速を容易なものとしてもよい。 That is, the main clutch 61, which is a clutch mechanism having a friction multi-plate type clutch plate that interrupts the transmission of the driving force between the engine and the driving force transmission device, is in a state where the clutch plates are in contact with each other. When the dog teeth are in contact with each other and one of the dog teeth pushes the other dog tooth, the rotational force (driving force) of the crankshaft 71 is the main clutch 61, the input shaft 56, and the like. It is finally transmitted to the drive wheels via the fixed transmission gear 51, the free transmission gear 52, the slide transmission gear 53, and the drive shaft 57 in this order. Further, when the main clutch 61 is engaged and the dog teeth are in contact with each other and one of them is in a meshed state in which the other is pushed, the shift fork 44 sets the slide transmission gear 53 to the free transmission gear. The operating state of the engine may be controlled to facilitate shifting to another gear position so that it can be easily moved away from 52.
 ここで、ドッグ歯は、それらの両方が凸状歯である構成の他に、それらの一方が他方の凸状歯を収容する凹状歯である構成を有していてもよいし、ドッグ歯の代わりに、一般的なシンクロナイザ部材を用いてもよい。メインクラッチ61としては、湿式で摩擦多板式のクラッチ板を有する湿式摩擦多板クラッチが好適に用いられ得るが、必要に応じて乾式のものを用いてもよい。また、シフトペダル31からシフトフォーク44までの一連の構成要素が、手動多段式ギヤ比切り替え機構に相当するシフト機構Sを構成している。 Here, the dog tooth may have a structure in which both of them are convex teeth, or one of them is a concave tooth accommodating the other convex tooth, or the dog tooth may have a structure in which both of them are convex teeth. Alternatively, a general synchronizer member may be used. As the main clutch 61, a wet friction multi-plate clutch having a wet friction multi-plate type clutch plate can be preferably used, but a dry type clutch may be used if necessary. Further, a series of components from the shift pedal 31 to the shift fork 44 constitute a shift mechanism S corresponding to a manual multi-stage gear ratio switching mechanism.
 次に、図1に示すように、A/D変換器15は、大気圧センサ25によって検出された自動車の周囲の大気圧を示す電気信号をA/D変換し、このようにA/D変換した電気信号をCPU17に入力する。 Next, as shown in FIG. 1, the A / D converter 15 A / D-converts an electric signal indicating the atmospheric pressure around the automobile detected by the atmospheric pressure sensor 25, and thus A / D-converts. The generated electric signal is input to the CPU 17.
 メモリ16は、不揮発性の記憶装置により構成され、ギヤポジション故障検知装置1の動作を制御する各種制御プログラム及びマップデータ等の制御用データを格納している。 The memory 16 is composed of a non-volatile storage device, and stores various control programs for controlling the operation of the gear position failure detection device 1 and control data such as map data.
 CPU17は、メモリ16内に記憶された制御プログラムを実行することにより、エンジン回転数算出部17a、スロットル開度算出部17b、車速算出部17c、ギヤポジション算出部17d、推定ギヤポジション算出部17e、クラッチスイッチ検出部17f、クラッチ状態推定部17g、及び故障判定部17hとして機能する。 By executing the control program stored in the memory 16, the CPU 17 includes an engine speed calculation unit 17a, a throttle opening calculation unit 17b, a vehicle speed calculation unit 17c, a gear position calculation unit 17d, and an estimated gear position calculation unit 17e. It functions as a clutch switch detection unit 17f, a clutch state estimation unit 17g, and a failure determination unit 17h.
 エンジン回転数算出部17aは、波形整形回路11から入力された電気信号を用いて自動車のエンジン回転数(エンジンの回転速度)を算出し、このように算出したエンジン回転数は推定ギヤポジション算出部17e及びクラッチ状態推定部17gで用いられる。 The engine rotation speed calculation unit 17a calculates the engine rotation speed (engine rotation speed) of the automobile using the electric signal input from the waveform shaping circuit 11, and the engine rotation speed calculated in this way is the estimated gear position calculation unit. It is used in 17e and the clutch state estimation unit 17g.
 スロットル開度算出部17bは、A/D変換器12から入力された電気信号を用いて自動車のスロットル開度を算出し、このように算出したスロットル開度はクラッチ状態推定部17gで用いられる。 The throttle opening calculation unit 17b calculates the throttle opening of the automobile using the electric signal input from the A / D converter 12, and the throttle opening calculated in this way is used by the clutch state estimation unit 17g.
 車速算出部17cは、波形整形回路13から入力された電気信号を用いて自動車の車速を算出し、このように算出した車速(駆動輪車速)は推定ギヤポジション算出部17eで用いられる。 The vehicle speed calculation unit 17c calculates the vehicle speed of the automobile using the electric signal input from the waveform shaping circuit 13, and the vehicle speed (driving wheel vehicle speed) calculated in this way is used by the estimated gear position calculation unit 17e.
 ギヤポジション算出部17dは、A/D変換器14から入力された電気信号を用いて自動車のギヤポジションを算出し、このように算出したギヤポジションは故障判定部17hで用いられる。 The gear position calculation unit 17d calculates the gear position of the automobile using the electric signal input from the A / D converter 14, and the gear position calculated in this way is used by the failure determination unit 17h.
 推定ギヤポジション算出部17eは、エンジン回転数算出部17aによって算出されたエンジン回転数と車速算出部17cによって算出された車速とに基づいて、典型的にはこれらの比をとってそれがどのギヤポジションに相当するのかをマップデータ等を参照して判断することにより、推定ギヤポジションを算出し、このように算出した推定ギヤポジションは故障判定部17hで用いられる。 The estimated gear position calculation unit 17e typically takes a ratio between the engine speed calculated by the engine speed calculation unit 17a and the vehicle speed calculated by the vehicle speed calculation unit 17c, and which gear is the gear. The estimated gear position is calculated by determining whether or not it corresponds to the position with reference to map data or the like, and the estimated gear position calculated in this way is used by the failure determination unit 17h.
 クラッチスイッチ検出部17fは、図示を省略するクラッチ操作部材であるクラッチレバーにおける典型的にはフルグリップに相当する操作位置(クラッチレバーが完全に握られた操作位置)になったときのみオンされるクラッチスイッチ26から入力される電気信号を用いて、クラッチレバーの操作位置を検出する。このようにクラッチスイッチ検出部17fが検出したクラッチレバーの操作位置は、一般的には、クラッチ機構に相当するメインクラッチ61の切り離し及び接続、つまり断続(クラッチ板同士の離間・当接)を示すものであるため、クラッチスイッチ検出部17fは、クラッチスイッチ26から入力される電気信号を用いてメインクラッチ61の断続を検出することもできるが、本実施形態では、メインクラッチ61のクラッチ板同士が相対回転しながら当接する半クラッチ状態(半接続状態)をも反映するために、クラッチスイッチ検出部17fとは別に、クラッチ状態推定部17gを設けている。 The clutch switch detection unit 17f is turned on only when the clutch lever, which is a clutch operating member (not shown), typically has an operating position corresponding to a full grip (an operating position in which the clutch lever is completely gripped). The operating position of the clutch lever is detected by using the electric signal input from the clutch switch 26. The operating position of the clutch lever detected by the clutch switch detection unit 17f in this way generally indicates disconnection and connection of the main clutch 61 corresponding to the clutch mechanism, that is, disengagement (separation / contact between the clutch plates). Therefore, the clutch switch detection unit 17f can detect the engagement and disengagement of the main clutch 61 by using the electric signal input from the clutch switch 26, but in the present embodiment, the clutch plates of the main clutch 61 are connected to each other. In order to reflect the half-clutch state (half-connected state) in which the clutch is in contact while rotating relative to each other, a clutch state estimation unit 17g is provided separately from the clutch switch detection unit 17f.
 クラッチ状態推定部17gは、エンジン回転数算出部17aによって算出されたエンジン回転数を用いて、メインクラッチ61が切り離されている状態又は半クラッチ状態にある可能性のある領域、つまり、メインクラッチ61のクラッチ板同士が完全に離間して当接していない状態又はメインクラッチ61のクラッチ板同士が相対回転しながら当接した半クラッチ状態に相当する可能性がある領域に対応するメインクラッチ61の解除領域を示す解除領域値を算出する解除領域値算出部17iを備えている。クラッチ状態推定部17gは、スロットル開度算出部17bによって算出されたスロットル開度が解除領域値の示す範囲(解除範囲)から逸脱している場合、メインクラッチ61が接続されている状態(クラッチ板同士が当接して相対回転しない状態)にあると判断し、故障判定部17hがギヤポジションセンサ24の故障判定を実行することを許可する。なお、解除領域値算出部17iは、クラッチ状態推定部17gとは別にその外部の機能ブロックとして設けられてもかまわない。 The clutch state estimation unit 17g uses the engine speed calculated by the engine speed calculation unit 17a to provide a region in which the main clutch 61 may be disengaged or in a half-clutch state, that is, the main clutch 61. Release of the main clutch 61 corresponding to a region in which the clutch plates of the main clutch 61 are not completely separated from each other and are not in contact with each other, or a half-clutch state in which the clutch plates of the main clutch 61 are in contact with each other while rotating relative to each other. The release area value calculation unit 17i for calculating the release area value indicating the area is provided. The clutch state estimation unit 17g is in a state in which the main clutch 61 is connected (clutch plate) when the throttle opening degree calculated by the throttle opening degree calculation unit 17b deviates from the range indicated by the release region value (release range). It is determined that the gears are in contact with each other and do not rotate relative to each other), and the failure determination unit 17h is allowed to execute the failure determination of the gear position sensor 24. The release area value calculation unit 17i may be provided as an external functional block separately from the clutch state estimation unit 17g.
 解除領域値算出部17iは、メインクラッチ61がエンジンと駆動力伝達装置との間の駆動力の伝達がないように切り離された状態にあって、これを介してエンジンと駆動伝達装置との間で駆動力が伝達しないと想定されるスロットル開度である無伝達スロットル開度を含むように、メインクラッチ61が切り離されている状態又は半クラッチ状態にある可能性のある解除領域を示す解除領域値を、エンジン回転数に対応して算出する。詳しくは、解除領域値算出部17iは、図2Bに示すようなメインクラッチ61の解除領域R3を含むと共に、2軸直交座標系を成すエンジン回転数NEとスロットル開度THとで規定したマップデータから、例えば、任意のエンジン回転数をNE1とすると、エンジン回転数NE1に対応する解除領域値、具体的には、解除範囲(TH3≦スロットル開度TH≦TH2)の下限値TH3及び上限値TH2を算出する。かかる無伝達スロットル開度TH1に関しては、エンジンの駆動力がエンジンのその抵抗力(機械的な摩擦力や潤滑油の粘弾性力等)と釣り合って、エンジンと駆動輪との間で駆動力が伝達されないエンジンの運転状態に対応するノーロードスロットル開度が無伝達スロットル開度TH1に相当するとみなして、ノーロードスロットル開度を無伝達スロットル開度TH1に設定したものである。これは、運転者によるクラッチ操作を伴う変速操作が行われていれば、スロットル開度はノーロードスロットル開度及びその上下の近傍のスロットル開度の領域の値となる可能性が高いとの観点から、ノーロードスロットル開度を無伝達スロットル開度THに設定したためであり、換言すれば、ノーロードスロットル開度及びその上下の近傍のスロットル開度の領域を逸脱した領域では、運転者によるクラッチ操作を伴う変速操作が行われている可能性がないとみなしていることを意味している。 The release area value calculation unit 17i is in a state in which the main clutch 61 is disconnected so that the driving force is not transmitted between the engine and the driving force transmission device, and the main clutch 61 is interposed between the engine and the driving force transmission device. A release area indicating a release area in which the main clutch 61 may be disengaged or in a half-clutch state so as to include a non-transmission throttle opening, which is a throttle opening that is assumed that the driving force is not transmitted. The value is calculated according to the engine speed. Specifically, the release area value calculation unit 17i includes the release area R3 of the main clutch 61 as shown in FIG. 2B, and the map data defined by the engine speed NE and the throttle opening TH forming a two-axis orthogonal coordinate system. Therefore, for example, assuming that an arbitrary engine speed is NE1, the release region value corresponding to the engine speed NE1, specifically, the lower limit value TH3 and the upper limit value TH2 of the release range (TH3 ≤ throttle opening TH ≤ TH2). Is calculated. With respect to the non-transmission throttle opening TH1, the driving force of the engine is balanced with the resistance force of the engine (mechanical frictional force, viscoelastic force of lubricating oil, etc.), and the driving force is generated between the engine and the driving wheels. It is assumed that the no-load throttle opening corresponding to the operating state of the engine that is not transmitted corresponds to the non-transmission throttle opening TH1, and the no-load throttle opening is set to the non-transmission throttle opening TH1. This is from the viewpoint that if a shift operation accompanied by a clutch operation is performed by the driver, the throttle opening is likely to be a value in the region of the no-load throttle opening and the throttle opening in the vicinity above and below it. This is because the no-load throttle opening is set to the non-transmission throttle opening TH. In other words, in the region deviating from the region of the no-load throttle opening and the throttle opening in the vicinity above and below it, the driver operates the clutch. It means that it is considered that there is no possibility that the shift operation is being performed.
 ここで、図2Bに示すマップデータにおいて、線L1は、エンジン回転数NEに対応して複数設けられた無伝達スロットル開度の値を結んだ線を表す無伝達ライン、線L2は、かかる無伝達スロットル開度に正の所定値ΔTH1を各々加算した複数の値を結んだ線を表す半クラッチ状態の上限ライン、及び線L3は、かかる無伝達スロットル開度に負の所定値ΔTH2を各々加算した複数の値を結んだ線を表す半クラッチ状態の下限ラインを示している。また、図2Bに示す領域R1は、領域R3に対してスロットル開度THの大きい値の側でこれに連なって配置され、エンジンが駆動輪を駆動するポジティブトルクゾーンを示し、領域R2は、領域R3に対してスロットル開度THの小さい値の側でこれに連なって配置され、エンジンが駆動輪に駆動されるネガティブトルクゾーンを示している。但し、領域R2は、エンジン回転数NEの中回転領域以下では現れてこないために設定されてはいない。メインクラッチ61がエンジンと駆動力伝達装置との間の駆動力の伝達がないように切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域R3は、無伝達ラインL1を含むと共に、半クラッチ状態の上限ラインL2と半クラッチ状態の下限ラインL3との間で挟まれた領域として設定されている。無伝達ラインL1は、エンジン回転数NEが増加すると共に増加する直線状の特性線を示すが、エンジン回転数NEの低中回転数でその傾きが増加するような変曲点を有するものとして設定されている。正の所定値ΔTH1及び負の所定値ΔTH2は、各々、無伝達スロットル開度の近傍のスロットル開度の範囲、つまり半クラッチ状態のスロットル開度の範囲に相当するとみなしたものであって、自動車の仕様等に応じて設定される値であるが、典型的には、所定の固定値であって、互いの大きさは等しく設定すれば足りる。かかるマップデータは、停止、加速走行、減速走行や惰性走行が組み合わさったような一般的な走行パターンに適合するものである。 Here, in the map data shown in FIG. 2B, the line L1 is a non-transmission line representing a line connecting a plurality of non-transmission throttle opening values provided corresponding to the engine speed NE, and the line L2 is such a non-transmission line. The upper limit line in the half-clutch state and the line L3, which represent a line connecting a plurality of values obtained by adding a positive predetermined value ΔTH1 to the transmission throttle opening, add a negative predetermined value ΔTH2 to the transmission throttle opening. It shows the lower limit line in the half-clutch state, which represents the line connecting the multiple values. Further, the region R1 shown in FIG. 2B is arranged so as to be connected to the region R3 on the side of the large value of the throttle opening TH, and indicates a positive torque zone in which the engine drives the drive wheels, and the region R2 is a region. A negative torque zone in which the engine is driven by the drive wheels is shown which is arranged in series with the throttle opening TH on the side where the throttle opening degree TH is small with respect to R3. However, the region R2 is not set because it does not appear below the medium rotation speed region of the engine speed NE. The release region R3, which is a region where the main clutch 61 may be disconnected or in a half-clutch state so as not to transmit the driving force between the engine and the driving force transmission device, is a non-transmission line L1. In addition to including, it is set as a region sandwiched between the upper limit line L2 in the half-clutch state and the lower limit line L3 in the half-clutch state. The non-transmission line L1 shows a linear characteristic line that increases as the engine speed NE increases, but is set as having an inflection point such that the slope increases at low and medium speeds of the engine speed NE. Has been done. The positive predetermined value ΔTH1 and the negative predetermined value ΔTH2 are regarded as corresponding to the range of the throttle opening in the vicinity of the non-transmission throttle opening, that is, the range of the throttle opening in the half-clutch state. It is a value that is set according to the specifications of the above, but typically, it is sufficient that the values are fixed values and the sizes of the two are set to be equal to each other. Such map data fits into common driving patterns such as a combination of stopping, accelerating, decelerating and coasting.
 故障判定部17hは、ギヤポジション算出部17dが算出したギヤポジションと推定ギヤポジション算出部17dが算出した推定ギヤポジションとを比較して、ギヤポジションと推定ギヤポジションが一致しない場合、ギヤポジションセンサ24が故障していると判定する。 The failure determination unit 17h compares the gear position calculated by the gear position calculation unit 17d with the estimated gear position calculated by the estimated gear position calculation unit 17d, and if the gear position and the estimated gear position do not match, the gear position sensor 24 Is determined to be out of order.
 〔動作〕
 次に、図3を参照して、本実施形態におけるギヤポジション故障検知装置1の動作について説明する。
〔motion〕
Next, the operation of the gear position failure detection device 1 in the present embodiment will be described with reference to FIG.
 図3は、本実施形態におけるギヤポジション故障検知装置の動作を示すタイムチャートである。 FIG. 3 is a time chart showing the operation of the gear position failure detection device in this embodiment.
 本実施形態におけるギヤポジション故障検知装置1では、自動車のイグニッションスイッチがオン状態である間、所定の制御周期毎に、解除領域値算出部17iが、エンジン回転数NEに対応するメインクラッチ61の解除領域を示す解除領域値を算出する。そして、クラッチ状態推定部17gは、スロットル開度THが解除領域値の範囲(解除範囲)から逸脱している場合、メインクラッチ61が接続されている状態(クラッチ板同士が当接して相対回転しない状態)にあると判断し、かかる場合に、図3に示す時間t=t1以前の期間、時間t=t7以降時間t=t8以前の期間や時間t=t9以後の期間のように、故障判定部17hがギヤポジションセンサ24の故障判定を実行することを許可することになる。 In the gear position failure detection device 1 of the present embodiment, while the ignition switch of the automobile is in the ON state, the release area value calculation unit 17i releases the main clutch 61 corresponding to the engine speed NE at each predetermined control cycle. Calculate the release area value indicating the area. When the throttle opening TH deviates from the range of the release region value (release range), the clutch state estimation unit 17g is in a state where the main clutch 61 is connected (the clutch plates are in contact with each other and do not rotate relative to each other). (State), and in such a case, a failure determination such as a period before time t = t1, a period after time t = t7 and before time t = t8, and a period after time t = t9 shown in FIG. The unit 17h is allowed to execute the failure determination of the gear position sensor 24.
 ここで、図3に示す例では、時間t=t1以前の期間では、図3(b)に示すスロットル開度算出部17bが算出したスロットル開度THが図3(a)に示す無伝達ラインL1上の値である無伝達スロットル開度に対して負の所定値ΔTH2の大きさより小さな値でもって小さくなっているので、エンジンと駆動輪との駆動関係は、図2Bに示すようなエンジンが駆動輪に駆動されるネガティブトルクゾーンR2内にあり、これに対応して、図3(f)に示すネガティブトルクゾーンフラグFNの値が1(これ以外はネガティブトルクゾーンフラグFNの値が0)になっている。また、時間t=t6以後の期間では、図3(b)に示すスロットル開度算出部17bが算出したスロットル開度THが図3(a)に示す無伝達ラインL1上の値である無伝達スロットル開度に対して正の所定値ΔTH1よりも大きな値でもって大きくなっているので、エンジンと駆動輪との駆動関係は、図2Bに示すようなエンジンが駆動輪を駆動するポジティブトルクゾーンR1内にあり、これに対応して、図3(e)に示すポジティブトルクゾーンフラグFPの値が1(これ以外はポジティブトルクゾーンフラグFPの値が0)になっている。一方で、時間t=t1から時間t=t6までの期間では、図3(b)に示すスロットル開度算出部17bが算出したスロットル開度THが図3(a)に示す無伝達ラインL1上の値である無伝達スロットル開度と一致するか、又は無伝達スロットル開度に所定の正の所定値ΔTH1を加えた上限値と無伝達スロットル開度に負の所定値ΔTH2を加えた下限値との間の範囲内にあるため、エンジンと駆動輪との駆動関係は、図2Bに示すようなエンジンと駆動輪との駆動力の伝達が切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域R3にある。ここで、エンジン回転数NEの経時変化は、図3(c)に示され、駆動輪車速VSPの経時変化は、図3(d)に示される。 Here, in the example shown in FIG. 3, in the period before the time t = t1, the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3 (b) is the non-transmission line shown in FIG. 3 (a). Since the drive relationship between the engine and the drive wheels is smaller than the magnitude of the negative predetermined value ΔTH2 with respect to the non-transmission throttle opening value, which is the value on L1, the engine as shown in FIG. 2B has a drive relationship. It is in the negative torque zone R2 driven by the drive wheels, and the value of the negative torque zone flag FN shown in FIG. 3 (f) is 1 (otherwise, the value of the negative torque zone flag FN is 0). It has become. Further, in the period after the time t = t6, the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3B is a value on the non-transmission line L1 shown in FIG. 3A. Since the value is larger than the positive predetermined value ΔTH1 with respect to the throttle opening, the drive relationship between the engine and the drive wheels is the positive torque zone R1 in which the engine drives the drive wheels as shown in FIG. 2B. Correspondingly, the value of the positive torque zone flag FP shown in FIG. 3 (e) is 1 (otherwise, the value of the positive torque zone flag FP is 0). On the other hand, in the period from time t = t1 to time t = t6, the throttle opening TH calculated by the throttle opening calculation unit 17b shown in FIG. 3B is on the non-transmission line L1 shown in FIG. 3A. The upper limit of the non-transmission throttle opening, which is the value of, or the non-transmission throttle opening plus a predetermined positive predetermined value ΔTH1, and the lower limit of the non-transmission throttle opening plus a negative predetermined value ΔTH2. Since it is within the range between the engine and the drive wheels, the drive relationship between the engine and the drive wheels may be in a state in which the transmission of the drive force between the engine and the drive wheels is disconnected or in a half-clutch state as shown in FIG. 2B. It is in the release area R3, which is a certain area. Here, the change with time of the engine speed NE is shown in FIG. 3 (c), and the change with time of the driving wheel vehicle speed VSP is shown in FIG. 3 (d).
 また、時間t=t1以前の期間及び時間t=t4以後の期間では、図3(g)に示すクラッチスイッチ検出部17fが検出するクラッチスイッチ信号CSは、クラッチレバーが解放(リリース)されたことを示すオフ信号(例えば出力電圧がゼロ)となる一方で、時間t=t3から時間t=t5までの期間では、クラッチスイッチ検出部17fが検出するクラッチスイッチ信号CSは、クラッチレバーが実質的に完全に握られた(フルグリップされた)ことを示すオン信号(例えば出力電圧が正の所定値)となっている。ここで、時間t=t3から時間t=t5までの期間では、メインクラッチ61のクラッチ板同士が完全に離間された状態にあって、エンジンと前記駆動力伝達装置との間の駆動力の伝達がないことが分かるが、他の期間では、メインクラッチ61が半クラッチ状態にあるのか、又は接続されている状態(クラッチ板同士が当接して相対回転しない状態)にあるのか、が区別できない。ここで、図3(h)に示すギヤポジションセンサ24のギヤポジション信号GSは、時間t=t8で、ギヤポジションが切り替わっていることを示し、時間t=t8以前の期間で、ギヤポジション算出部17dが算出するギヤポジションは2速であることを示し、時間t=t8以降の期間で、ギヤポジション算出部17dが算出するギヤポジションは3速であることを示している。 Further, in the period before the time t = t1 and the period after the time t = t4, the clutch lever was released (released) in the clutch switch signal CS detected by the clutch switch detection unit 17f shown in FIG. 3 (g). On the other hand, in the period from time t = t3 to time t = t5, the clutch switch signal CS detected by the clutch switch detection unit 17f is substantially the clutch lever. It is an on signal (for example, the output voltage is a positive predetermined value) indicating that the vehicle is completely gripped (fully gripped). Here, in the period from time t = t3 to time t = t5, the clutch plates of the main clutch 61 are completely separated from each other, and the driving force is transmitted between the engine and the driving force transmission device. However, in other periods, it is not possible to distinguish whether the main clutch 61 is in the half-clutch state or in the connected state (the clutch plates are in contact with each other and do not rotate relative to each other). Here, the gear position signal GS of the gear position sensor 24 shown in FIG. 3H indicates that the gear position is switched at time t = t8, and the gear position calculation unit is in the period before time t = t8. The gear position calculated by 17d indicates that the gear position is the second gear, and the gear position calculated by the gear position calculation unit 17d indicates that the gear position is the third gear in the period after the time t = t8.
 また、推定ギヤポジション算出部17eが算出する推定ギヤポジション(瞬時推定ギヤポジション値)は、時間t=t2以前の期間及び時間t=t6から時間t=t8までの期間では、エンジン回転数算出部17aによって算出されたエンジン回転数と車速算出部17cによって算出された車速との比が図3(i)に示す2速ギヤの所定範囲(2速ギヤ正常範囲)内に入り、時間t=t3から時間t=t5までの期間、及び時間t=t8以後の期間では、エンジン回転数算出部17aによって算出されたエンジン回転数と車速算出部17cによって算出された車速との比が図3(i)に示す3速ギヤの所定範囲(3速ギヤ正常範囲)内に入る一方で、時間t=t2から時間t=t3までの期間、及び時間t=t5から時間t=t6までの期間では、エンジン回転数算出部17aによって算出されたエンジン回転数と車速算出部17cによって算出された車速との比が図3(i)に示す2速ギヤの所定範囲(2速ギヤ正常範囲)外、及び3速ギヤの所定範囲(3速ギヤ正常範囲)外にあって、これらから逸脱して、これらの一方から他方に遷移する途中である。これに対応して、時間t=t2以前の期間、時間t=t3から時間t=t5までの期間、及び時間t=t6以後の期間では、図3(k)に示すギヤ正常領域判定フラグFDの値が1(これ以外の期間ではギヤ正常領域判定フラグFDの値は0)になっている。 Further, the estimated gear position (instantaneous estimated gear position value) calculated by the estimated gear position calculation unit 17e is the engine rotation speed calculation unit in the period before the time t = t2 and in the period from the time t = t6 to the time t = t8. The ratio of the engine speed calculated by 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c falls within the predetermined range of the 2nd gear (normal range of the 2nd gear) shown in FIG. 3 (i), and the time t = t3. In the period from time t = t5 to time t = t5, and in the period after time t = t8, the ratio of the engine speed calculated by the engine speed calculation unit 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c is shown in FIG. 3 (i). ) Is within the predetermined range of the 3rd gear (normal range of the 3rd gear), while the period from time t = t2 to time t = t3 and the period from time t = t5 to time t = t6 The ratio of the engine speed calculated by the engine speed calculation unit 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c is outside the predetermined range of the 2nd gear (normal range of the 2nd gear) shown in FIG. 3 (i), and It is outside the predetermined range of the 3rd gear (normal range of the 3rd gear), deviates from these, and is in the process of transitioning from one of them to the other. Correspondingly, in the period before the time t = t2, the period from the time t = t3 to the time t = t5, and the period after the time t = t6, the gear normal region determination flag FD shown in FIG. The value of is 1 (the value of the gear normal region determination flag FD is 0 in other periods).
 ここで、図3(l)に減算タイマとして示されるギヤポジション安定タイマTMは、エンジン回転数算出部17aによって算出されたエンジン回転数と車速算出部17cによって算出された車速との比が図3(i)に示す2速ギヤの所定範囲(2速ギヤ正常範囲)又は3速ギヤの所定範囲(3速ギヤ正常範囲)に入るか又はそれから出る際にカウントを開始しており(図中では減算タイマのカウントダウンの場合を例示)、時間t=t4、時間t=t7及び時間t=t9でタイムアップ(カウント残がゼロ)しており、また時間t=t2以前の期間でもギヤポジション安定タイマTMがタイムアップ(カウント残がゼロ)している。これに対応して、図3(m)に示す安定推定ギヤポジション値ESは、時間t=t4で2速から3速に切り替わり、時間t=t7で3速から2速に切り替わり、及び時間t=t9で2速から3速に切り替わっており、時間t=t2以前の期間、時間t=t4から時間t=t5までの期間、時間t=t7から時間t=t8までの期間、及び時間t=t9以後の期間では、図3(n)に示す推定ギヤポジション更新可否フラグFEの値が1(これ以外の期間では推定ギヤポジション更新可否フラグFEの値は0)になっている。 Here, in the gear position stabilization timer TM shown as the subtraction timer in FIG. 3 (l), the ratio of the engine speed calculated by the engine speed calculation unit 17a to the vehicle speed calculated by the vehicle speed calculation unit 17c is shown in FIG. Counting is started when entering or exiting the predetermined range of the 2nd gear (normal range of the 2nd gear) or the predetermined range of the 3rd gear (normal range of the 3rd gear) shown in (i) (in the figure). (Example of countdown of subtraction timer), time is up at time t = t4, time t = t7 and time t = t9 (count remaining is zero), and gear position stabilization timer even in the period before time t = t2 TM is timed up (the remaining count is zero). Correspondingly, the stable estimated gear position value ES shown in FIG. 3 (m) switches from the 2nd speed to the 3rd speed at the time t = t4, switches from the 3rd speed to the 2nd speed at the time t = t7, and the time t. = T9 switches from 2nd gear to 3rd gear, the period before time t = t2, the period from time t = t4 to time t = t5, the period from time t = t7 to time t = t8, and time t. In the period after = t9, the value of the estimated gear position updateability flag FE shown in FIG. 3 (n) is 1 (the value of the estimated gear position updateability flag FE is 0 in other periods).
 そして、図3(n)に示す推定ギヤポジション更新可否フラグFEの値に加えて、ギヤポジション信号GSの安定性(出力電圧の一定性等)の程度を考慮すると、図3(o)に示すギヤポジション最終判断許可フラグFAの値は、時間t=t1以前の期間、時間t=t7から時間t=t8までの期間、及び時間t=t9以後の期間で1(これ以外の期間ではギヤポジション最終判断許可フラグFAの値は0)になっている。つまり、時間t=t1以前の期間、時間t=t7から時間t=t8までの期間、及び時間t=t9以後の期間では、故障判定部17hがギヤポジションセンサ24の故障判定をすることが許可されており、かかる期間で、故障判定部17hは、ギヤポジション算出部17dが算出したギヤポジションと推定ギヤポジション算出部17dが算出した推定ギヤポジションとを比較して、ギヤポジションと推定ギヤポジションが一致しない場合、ギヤポジションセンサ24が故障していると判定することになる。 Then, in addition to the value of the estimated gear position updateability flag FE shown in FIG. 3 (n), the degree of stability of the gear position signal GS (constancy of output voltage, etc.) is taken into consideration, and is shown in FIG. 3 (o). The value of the gear position final judgment permission flag FA is 1 in the period before time t = t1, the period from time t = t7 to time t = t8, and the period after time t = t9 (gear position in other periods). The value of the final judgment permission flag FA is 0). That is, during the period before time t = t1, the period from time t = t7 to time t = t8, and the period after time t = t9, the failure determination unit 17h is permitted to determine the failure of the gear position sensor 24. During this period, the failure determination unit 17h compares the gear position calculated by the gear position calculation unit 17d with the estimated gear position calculated by the estimated gear position calculation unit 17d, and the gear position and the estimated gear position are determined. If they do not match, it is determined that the gear position sensor 24 is out of order.
 以上の説明から明らかなように、本実施形態におけるギヤポジション故障検知装置1では、クラッチ状態推定部17gが、エンジンの回転速度及びエンジンに設けられる吸気制御弁の弁開度で規定される領域であって、メインクラッチ61が切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域の下限値以上で上限値以下の解除範囲における解除領域値を、クランク角センサ21の出力に基づいて算出する解除領域値算出部17iを備え、クラッチ状態推定部17gが、スロットル開度センサ22の出力に基づいて算出するスロットル開度が解除範囲から逸脱する場合には、メインクラッチ61が接続されている状態にあると判断して、故障判定部17hが故障判定を実行することを許可するので、メインクラッチ61が接続されている状態のときにのみ確実にギヤポジションセンサ24の故障検知の判定を行うことができる。これにより、ギヤポジションセンサ24に関して誤判定が生じることを抑制することができる。 As is clear from the above description, in the gear position failure detection device 1 of the present embodiment, the clutch state estimation unit 17g is in a region defined by the rotation speed of the engine and the valve opening degree of the intake control valve provided in the engine. Therefore, the output of the crank angle sensor 21 is the release area value in the release range that is equal to or greater than the lower limit of the release region and is less than or equal to the upper limit, which is the region where the main clutch 61 may be disengaged or half-clutched. When the clutch state estimation unit 17g includes a release area value calculation unit 17i that calculates based on the above, and the throttle opening degree calculated based on the output of the throttle opening sensor 22 deviates from the release range, the main clutch 61 is set. Since it is determined that the gear is in the connected state and the failure determination unit 17h is allowed to execute the failure determination, the failure detection of the gear position sensor 24 is surely performed only when the main clutch 61 is connected. Can be determined. As a result, it is possible to prevent an erroneous determination of the gear position sensor 24 from occurring.
 また、本実施形態におけるギヤポジション故障検知装置1では、解除領域値算出部17iが、エンジン回転数に対応して、かつ、無伝達スロットル開度を含むように、解除範囲を算出するものであり、解除範囲が、任意のエンジン回転数NE1に対して上限値TH2と下限値TH3との間の範囲に設定されると共に、上限値TH2は、無伝達スロットル開度TH1に正の所定値ΔTH1を加算した値に設定され、下限値TH3は、無伝達スロットル開度TH1に負の所定値TH2を加算した値に設定されるので、演算負荷を増大させないようにメインクラッチ61が接続されている状態にあると判断するための解除範囲を算出することができる。 Further, in the gear position failure detection device 1 of the present embodiment, the release area value calculation unit 17i calculates the release range so as to correspond to the engine speed and include the non-transmission throttle opening degree. , The release range is set to a range between the upper limit value TH2 and the lower limit value TH3 for an arbitrary engine speed NE1, and the upper limit value TH2 sets a positive predetermined value ΔTH1 to the non-transmission throttle opening degree TH1. The lower limit value TH3 is set to the added value, and the lower limit value TH3 is set to the value obtained by adding the negative predetermined value TH2 to the non-transmission throttle opening TH1. Therefore, the main clutch 61 is connected so as not to increase the calculation load. It is possible to calculate the release range for determining that it is in.
 〔変形例〕
 図4は、本実施形態におけるギヤポジション故障検知装置に適用されるメインクラッチ61の解除領域の無伝達ラインを基準大気圧毎に示す模式図である。図4において、線L4は、高地の大気圧に相当する基準大気圧Aにおける無伝達ラインを示し、線L5は、基準大気圧Aよりも気圧の高い低地の大気圧に相当する基準大気圧Bにおける無伝達ラインを示す。
[Modification example]
FIG. 4 is a schematic view showing a non-transmission line in the release region of the main clutch 61 applied to the gear position failure detection device in the present embodiment for each reference atmospheric pressure. In FIG. 4, the line L4 shows a non-transmission line at the reference atmospheric pressure A corresponding to the high-altitude atmospheric pressure, and the line L5 is the reference atmospheric pressure B corresponding to the low-lying atmospheric pressure higher than the reference atmospheric pressure A. The non-transmission line in.
 本変形例では、解除領域値算出部17iは、エンジン回転数に対応し、かつ、複数の基準大気圧に各々対応して予め設定された複数の大気圧補正基準開度(図4に示す例では、スロットル開度TH=THH及びTHL)に基づいて、解除領域値の範囲を算出するものである。この場合、無伝達スロットル開度は、大気圧センサ25によって検出された大気圧に基づいて、図4に示す複数の大気圧補正基準開度の間の値として補間演算される値とする。具体的には、図4に示す例では、エンジン回転数がNE1であり、大気圧センサ25によって検出された大気圧が大気圧Cである場合、大気圧Cにおける無伝達スロットル開度の値は、(THH-THL)×(B-C)/(B-A)+THLという計算式の計算値として得られることになる。 In this modification, the release area value calculation unit 17i corresponds to a plurality of atmospheric pressure correction reference openings (example shown in FIG. 4) that correspond to the engine speed and are preset corresponding to each of the plurality of reference atmospheric pressures. Then, the range of the release region value is calculated based on the throttle opening degree TH = THH and THL). In this case, the non-transmission throttle opening degree is a value that is interpolated as a value between a plurality of atmospheric pressure correction reference openings shown in FIG. 4 based on the atmospheric pressure detected by the atmospheric pressure sensor 25. Specifically, in the example shown in FIG. 4, when the engine speed is NE1 and the atmospheric pressure detected by the atmospheric pressure sensor 25 is atmospheric pressure C, the value of the non-transmission throttle opening at atmospheric pressure C is , (THH-THL) × (BC) / (BA) + THL.
 以上の説明から明らかなように、本変形例におけるギヤポジション故障検知装置1では、メインクラッチ61が接続されている状態にあると判断するための解除範囲を規定するための無伝達スロットル開度の算出精度を向上することができ、ギヤポジションセンサ24の故障を検知する故障検知の精度を向上することができる。 As is clear from the above description, in the gear position failure detection device 1 in this modified example, the non-transmission throttle opening degree for defining the release range for determining that the main clutch 61 is in the engaged state is defined. The calculation accuracy can be improved, and the accuracy of failure detection for detecting the failure of the gear position sensor 24 can be improved.
 なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiment in terms of the type, shape, arrangement, number, etc. of the members, and the gist of the invention is described by appropriately substituting the constituent elements with those having the same effect and effect. Of course, it can be changed as appropriate without deviation.
 以上のように、本発明は、自動車に搭載され手動多段式ギヤ比切り替え機構を備える駆動力伝達装置のギヤポジションを検出するギヤポジションセンサの故障を精度よく検知するギヤポジション故障検知装置を提供することができるものであり、その汎用普遍的な性格から自動車に広く適用され得るものと期待される。 As described above, the present invention provides a gear position failure detection device that accurately detects a failure of a gear position sensor that detects a gear position of a driving force transmission device mounted on an automobile and provided with a manual multi-stage gear ratio switching mechanism. It is expected that it can be widely applied to automobiles due to its general-purpose universal nature.
 1…ギヤポジション故障検知装置
 11…波形整形回路
 12…A/D(Analog to Digital)変換器
 13…波形整形回路
 14…A/D変換器
 15…A/D変換器
 16…メモリ
 17…CPU(Central Processing Unit)
 17a…エンジン回転数算出部
 17b…スロットル開度算出部
 17c…車速算出部
 17d…ギヤポジション算出部
 17e…推定ギヤポジション算出部
 17f…クラッチスイッチ検出部
 17g…クラッチ状態推定部
 17h…故障判定部
 17i…解除領域値算出部
 21…クランク角センサ
 22…スロットル開度センサ
 23…駆動輪車速センサ
 24…ギヤポジションセンサ
 25…大気圧センサ
 26…クラッチセンサ
 31…シフトペダル
 32…シフトシャフト
 33…シフトアーム
 34…シフトギヤ
 41…シフトドラム
 42…ドラムシャフト
 43…カム溝
 44…シフトフォーク
 51…固定変速ギヤ
 52…フリー変速ギヤ
 53…スライド変速ギヤ
 56…インプットシャフト
 57…ドライブシャフト
 61…メインクラッチ
 71…クランクシャフト
 S…シフト機構
 T…ドッグ式変速機
1 ... Gear position failure detection device 11 ... Waveform shaping circuit 12 ... A / D (Analog to Digital) converter 13 ... Waveform shaping circuit 14 ... A / D converter 15 ... A / D converter 16 ... Memory 17 ... CPU ( Central Processing Unit)
17a ... Engine speed calculation unit 17b ... Throttle opening calculation unit 17c ... Vehicle speed calculation unit 17d ... Gear position calculation unit 17e ... Estimated gear position calculation unit 17f ... Clutch switch detection unit 17g ... Clutch state estimation unit 17h ... Failure determination unit 17i ... Release area value calculation unit 21 ... Crank angle sensor 22 ... Throttle opening sensor 23 ... Drive wheel vehicle speed sensor 24 ... Gear position sensor 25 ... Atmospheric pressure sensor 26 ... Clutch sensor 31 ... Shift pedal 32 ... Shift shaft 33 ... Shift arm 34 ... Shift gear 41 ... Shift drum 42 ... Drum shaft 43 ... Cam groove 44 ... Shift fork 51 ... Fixed transmission gear 52 ... Free transmission gear 53 ... Slide transmission gear 56 ... Input shaft 57 ... Drive shaft 61 ... Main clutch 71 ... Crankshaft S ... shift mechanism T ... dog type transmission

Claims (3)

  1.  自動車に搭載され手動多段式ギヤ比切り替え機構を有する駆動力伝達装置のギヤポジションを検出するギヤポジションセンサの故障を検知するギヤポジション故障検知装置であって、
     前記ギヤポジションセンサの出力からギヤポジションを算出する第1のギヤポジション算出部と、
     前記自動車の駆動輪の回転速度から車速を検出する車速センサの出力と前記駆動力伝達装置に接続されるエンジンの回転速度を検出するエンジン回転速度センサの出力とに基づいて、推定ギヤポジションを算出する第2のギヤポジション算出部と、
     前記第1のギヤポジション算出部が算出した前記ギヤポジションと前記第2のギヤポジション算出部が算出した前記推定ギヤポジションとを比較して、前記ギヤポジションと前記推定ギヤポジションが一致しない場合には、前記ギヤポジションセンサが故障していると判定する故障判定部と、
     前記エンジンと前記駆動力伝達装置との間の駆動力の伝達を断続するクラッチ機構が接続されている状態にあるか否かを推定するクラッチ状態推定部と、
    を備え、
     前記クラッチ状態推定部は、前記エンジンの前記回転速度及び前記エンジンに設けられる吸気制御弁の弁開度で規定される領域であって、前記クラッチ機構が切り離されている状態又は半クラッチ状態にある可能性のある領域である解除領域の下限値以上で上限値以下の解除範囲における解除領域値を、前記エンジン回転速度センサの前記出力に基づいて算出する解除領域値算出部を有し、
     前記クラッチ状態推定部は、前記弁開度を検出する弁開度センサの出力に基づいて算出される前記弁開度が前記解除範囲から逸脱する場合には、前記クラッチ機構が接続されている状態にあると判断して、前記故障判定部が故障判定を実行することを許可することを特徴とするギヤポジション故障検知装置。
    A gear position failure detection device that detects a failure of the gear position sensor that detects the gear position of a driving force transmission device that is mounted on an automobile and has a manual multi-stage gear ratio switching mechanism.
    A first gear position calculation unit that calculates the gear position from the output of the gear position sensor, and
    The estimated gear position is calculated based on the output of the vehicle speed sensor that detects the vehicle speed from the rotation speed of the drive wheels of the automobile and the output of the engine rotation speed sensor that detects the rotation speed of the engine connected to the driving force transmission device. The second gear position calculation unit and
    When the gear position calculated by the first gear position calculation unit is compared with the estimated gear position calculated by the second gear position calculation unit, and the gear position and the estimated gear position do not match, , A failure determination unit that determines that the gear position sensor is defective,
    A clutch state estimation unit that estimates whether or not a clutch mechanism that interrupts the transmission of driving force between the engine and the driving force transmission device is connected, and a clutch state estimation unit.
    With
    The clutch state estimation unit is a region defined by the rotational speed of the engine and the valve opening degree of an intake control valve provided in the engine, and is in a state in which the clutch mechanism is disconnected or in a half-clutch state. It has a release area value calculation unit that calculates the release area value in the release range that is equal to or more than the lower limit value of the release area that is a possibility area and is less than or equal to the upper limit value based on the output of the engine rotation speed sensor.
    The clutch state estimation unit is in a state in which the clutch mechanism is connected when the valve opening degree calculated based on the output of the valve opening degree sensor that detects the valve opening degree deviates from the release range. A gear position failure detection device, characterized in that the failure determination unit permits the failure determination to execute the failure determination.
  2.  前記解除領域値算出部は、前記エンジンの前記回転速度に対応して、かつ、前記クラッチ機構を介して前記エンジンから前記駆動伝達装置に駆動力が伝達しないと想定される前記弁開度である無伝達弁開度を含むように、前記解除範囲を算出するものであり、
     前記解除範囲は、前記エンジンの前記回転速度に対して第1推定閾値と第2推定閾値との間の範囲に設定され、
     前記第1推定閾値は、前記無伝達弁開度に正の所定値を加算した値に設定され、
     前記第2推定閾値は、前記無伝達弁開度に負の所定値を加算した値に設定されることを特徴とする請求項1に記載のギヤポジション故障検知装置。
    The release region value calculation unit is the valve opening degree that corresponds to the rotational speed of the engine and is assumed that the driving force is not transmitted from the engine to the drive transmission device via the clutch mechanism. The release range is calculated so as to include the non-transmission valve opening degree.
    The release range is set to a range between the first estimated threshold value and the second estimated threshold value with respect to the rotational speed of the engine.
    The first estimated threshold value is set to a value obtained by adding a positive predetermined value to the non-transmission valve opening degree.
    The gear position failure detection device according to claim 1, wherein the second estimated threshold value is set to a value obtained by adding a negative predetermined value to the non-transmission valve opening degree.
  3.  前記解除領域値算出部は、前記エンジンの前記回転速度に対応して、かつ、複数の基準大気圧に各々対応して予め設定された複数の大気圧補正基準開度に基づいて、前記解除範囲を算出するものであり、
     前記無伝達弁開度は、前記自動車に設けられた大気圧センサによって検出された大気圧に基づいて、前記複数の大気圧補正基準開度の間の値で補間演算される値であることを特徴とする請求項2に記載のギヤポジション故障検知装置。
    The release area value calculation unit is based on a plurality of atmospheric pressure correction reference openings set in advance corresponding to the rotation speed of the engine and corresponding to each of the plurality of reference atmospheric pressures. Is to calculate
    The non-transmission valve opening degree is a value that is interpolated by a value between the plurality of atmospheric pressure correction reference openings based on the atmospheric pressure detected by the atmospheric pressure sensor provided in the automobile. The gear position failure detection device according to claim 2.
PCT/JP2020/035272 2019-09-20 2020-09-17 Gear position failure detection device WO2021054396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020004458.0T DE112020004458T5 (en) 2019-09-20 2020-09-17 gear position error detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-171498 2019-09-20
JP2019171498A JP7299118B2 (en) 2019-09-20 2019-09-20 Gear position failure detector

Publications (1)

Publication Number Publication Date
WO2021054396A1 true WO2021054396A1 (en) 2021-03-25

Family

ID=74878186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035272 WO2021054396A1 (en) 2019-09-20 2020-09-17 Gear position failure detection device

Country Status (3)

Country Link
JP (1) JP7299118B2 (en)
DE (1) DE112020004458T5 (en)
WO (1) WO2021054396A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596978A (en) * 1991-10-09 1993-04-20 Mazda Motor Corp Control device for engine
JP2011021702A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Coasting control auxiliary device
WO2016175238A1 (en) * 2015-04-28 2016-11-03 ヤマハ発動機株式会社 Straddle-type vehicle
JP2018123893A (en) * 2017-02-01 2018-08-09 株式会社ケーヒン Electronic controller
JP2019019773A (en) * 2017-07-19 2019-02-07 株式会社ケーヒン Drive force control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171352A (en) 1990-10-31 1992-06-18 Suzuki Motor Corp Judgement of gear position
JP4275647B2 (en) 2005-05-11 2009-06-10 三菱電機株式会社 Fuel injection control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596978A (en) * 1991-10-09 1993-04-20 Mazda Motor Corp Control device for engine
JP2011021702A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Coasting control auxiliary device
WO2016175238A1 (en) * 2015-04-28 2016-11-03 ヤマハ発動機株式会社 Straddle-type vehicle
JP2018123893A (en) * 2017-02-01 2018-08-09 株式会社ケーヒン Electronic controller
JP2019019773A (en) * 2017-07-19 2019-02-07 株式会社ケーヒン Drive force control device

Also Published As

Publication number Publication date
JP7299118B2 (en) 2023-06-27
JP2021046935A (en) 2021-03-25
DE112020004458T5 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
US7894964B2 (en) Engine control apparatus
WO2012127965A1 (en) Gear-shifting control device for hybrid vehicle
KR20140142665A (en) Method for determining a wear of a clutch
JP6420126B2 (en) Driving force control device
US8412428B2 (en) System for and method of detecting clutch engagement of a manual transmission
GB2466040A (en) Method of confirming that a manual transmission is in a safe neutral state
JP2011080449A (en) Vehicular control apparatus
JP6730945B2 (en) Electronic control unit
WO2021054396A1 (en) Gear position failure detection device
CN108025643B (en) Rotating speed display device
US9540009B2 (en) Transmission system for vehicle
JP2011117500A (en) Device of determining abnormality of clutch switch
JP2010276117A (en) Control device of automatic clutch
JP7170003B2 (en) Gear position failure detector
EP2868904B1 (en) Control device for internal combustion engine
JP4872966B2 (en) Vehicle control device
WO2016121381A1 (en) Control device for internal combustion engine
JP6650891B2 (en) Electronic equipment
JP2021116749A (en) Failure detection device
JP4858282B2 (en) Engine control device
JP2018141423A (en) Driving force control device
JP6678495B2 (en) Electronic control unit
JP2021032123A (en) Control device of internal combustion engine
JP7063054B2 (en) Engine automatic stop starter
WO2021166886A1 (en) Determination device, kick-down control device, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865185

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20865185

Country of ref document: EP

Kind code of ref document: A1