WO2021053841A1 - 移動体、システム、プログラム、及び制御方法 - Google Patents

移動体、システム、プログラム、及び制御方法 Download PDF

Info

Publication number
WO2021053841A1
WO2021053841A1 PCT/JP2020/002805 JP2020002805W WO2021053841A1 WO 2021053841 A1 WO2021053841 A1 WO 2021053841A1 JP 2020002805 W JP2020002805 W JP 2020002805W WO 2021053841 A1 WO2021053841 A1 WO 2021053841A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
communication
wireless communication
optical wireless
mobile body
Prior art date
Application number
PCT/JP2020/002805
Other languages
English (en)
French (fr)
Inventor
弘道 今井
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to CN202080065699.3A priority Critical patent/CN114423678A/zh
Priority to KR1020227009138A priority patent/KR20220065774A/ko
Priority to GB2203039.9A priority patent/GB2601963B/en
Publication of WO2021053841A1 publication Critical patent/WO2021053841A1/ja
Priority to US17/686,424 priority patent/US20220185474A1/en
Priority to IL291199A priority patent/IL291199A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/38Arrangement of visual or electronic watch equipment, e.g. of periscopes, of radar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G7/00Traffic control systems for simultaneous control of two or more different kinds of craft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G9/00Traffic control systems for craft where the kind of craft is irrelevant or unspecified
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS

Definitions

  • the present invention relates to a mobile body, a system, a program, and a control method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-166256
  • a moving body may include an optical wireless communication unit that executes optical wireless communication with another mobile body.
  • the moving body may include an object detection unit that detects an object around the self-moving body.
  • the moving body may include an object information transmitting unit that transmits the first object information including the position information of the object to another moving body by optical wireless communication or radio wave communication.
  • the moving body may include an object information receiving unit that receives second object information including position information of an object around the other moving body from the other moving body by optical wireless communication or radio wave communication.
  • the moving body may include a movement control unit that controls the movement of the self-moving body so that the object does not position on the optical axis of the optical wireless communication based on the first object information and the second object information.
  • the object detection unit may detect an object around the self-moving object using at least one of a camera, radar, LiDAR, sonar, and an ultrasonic sensor.
  • the object information transmitting unit transmits the first object information including the position information indicating the relative position of the object starting from the self-moving body to the other moving body by the optical wireless communication or the radio wave communication.
  • the object detection unit may detect the movement status of the object, and the object information transmission unit may transmit the position information of the object and the first object information including the movement status of the object by the optical wireless communication or the radio wave. It may be transmitted to the other mobile body by communication.
  • the object detection unit may detect the moving direction and moving speed of the object
  • the object information transmitting unit may detect the moving direction and moving speed of the object, and the first object including the position information of the object and the moving direction and moving speed status of the object.
  • the information may be transmitted to the other mobile body by the optical wireless communication or the radio wave communication.
  • the movement control unit prevents the approaching object from being positioned on the optical axis of the optical wireless communication based on the position and moving direction of the approaching object which is an object predicted to enter the optical axis of the optical wireless communication.
  • the movement of the self-moving body may be controlled.
  • the movement control unit determines which of the self-moving body and the other moving body moves by communicating with the other moving body by the optical wireless communication or the radio wave communication, and the self-moving body moves.
  • the movement of the self-moving body may be controlled so that the approaching object does not position on the optical axis of the optical wireless communication.
  • the movement control unit has the position and moving direction of the approaching object, the positional relationship between the self-moving body and the object around the self-moving body, and the other moving body and the object around the other moving body. Which of the self-moving body and the other moving body moves may be determined based on the positional relationship.
  • the moving body may be an unmanned aerial vehicle.
  • the moving body may be an underwater moving body that moves in water.
  • the system may include the mobile and a first radio base station connected to the mobile via a cable.
  • the first radio base station may communicate with a second radio base station connected to the other mobile body via a cable via optical wireless communication with the other mobile body by the mobile body.
  • a program for making a computer function as the communication device is provided.
  • a control method executed by a computer mounted on a mobile body may include an object detection step of detecting an object around the self-moving body.
  • the control method may include an object information transmission step of transmitting the first object information including the position information of the object to another mobile body by optical wireless communication or radio wave communication.
  • the control method may include an object information receiving stage in which the second object information including the position information of the object around the other mobile body is received from the other mobile body by optical wireless communication or radio wave communication.
  • the control method may include a movement control step of controlling the movement of the self-moving body so that the object does not position on the optical axis of the optical wireless communication based on the first object information and the second object information.
  • An example of the unmanned aerial vehicle 100 is shown schematically.
  • An example of the movement of the unmanned aerial vehicle 100 is shown schematically.
  • An example of the movement of the unmanned aerial vehicle 100 is shown schematically.
  • An example of the configuration of the unmanned aerial vehicle 100 is shown schematically.
  • An example of the processing flow by the unmanned aerial vehicle 100 is shown schematically.
  • An example of the system 30 is shown schematically.
  • An example of the underwater mobile body 400 is shown schematically.
  • An example of the hardware configuration of the computer 1200 functioning as the control device 130 is schematically shown.
  • FIG. 1 schematically shows an example of an unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 may be an example of a moving body.
  • the unmanned aerial vehicle 100 has a function of executing optical wireless communication with another unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 detects a surrounding object, shares the object information including the position information of the object with the other unmanned aerial vehicle 100 by optical wireless communication or radio communication, and based on the shared information, The movement of the unmanned aerial vehicle 100 is controlled so that no object is located on the optical axis of optical wireless communication between the unmanned aerial vehicle 100 and another unmanned aerial vehicle 100.
  • Optical wireless communication is an effective communication means because it has features such as high-speed communication and communication in an environment where radio wave communication cannot be performed such as underwater. There is a problem that communication cannot be performed if is shielded.
  • the unmanned aerial vehicle 100 according to the present embodiment is equipped with a sensor for detecting a surrounding object, shares the information of the detected object with a communication partner of optical wireless communication, and shields the optical axis or seems to shield the optical axis. It recognizes various objects and controls the movement of its own aircraft so as to secure the line of sight of the optical axis.
  • the unmanned aerial vehicle 100 shares, for example, information on a detected object with a communication partner by optical wireless communication. Further, the unmanned aerial vehicle 100 may share the detected object information with the communication partner by radio wave communication. The unmanned aerial vehicle 100 shares the information of the detected object with the communication partner by, for example, directly communicating with the communication partner by radio communication.
  • the radio communication method may be any method. Examples of radio wave communication methods include WiFi (registered trademark), Bluetooth (registered trademark), and inter-airframe communication using the 920 MHz band. Further, the unmanned aerial vehicle 100 may share the information of the detected object with the communication partner by communicating with the communication partner by radio communication via, for example, a radio base station and a WiFi access point.
  • the mobile communication system to which the unmanned aerial vehicle 100 conforms is the 3G (3rd Generation) communication system, the LTE (Long Generation) communication system, the 5G (5th Generation) communication system, and the communication system after the 6G (6th Generation) communication system. It may be either.
  • the unmanned aerial vehicle 100 includes a gimbal 108 and a communication unit 110 rotatably supported by the gimbal 108.
  • the gimbal 108 is a gimbal having one or more axes.
  • the gimbal 108 is, for example, a biaxial gimbal or a triaxial gimbal.
  • the communication unit 110 includes a camera 112 and an optical wireless communication unit 114.
  • the unmanned aerial vehicle 100 includes a millimeter-wave radar 123 and a LiDAR (Light Detection and Ranking, Laser Imaging Detection and Ranking) 124.
  • LiDAR Light Detection and Ranking, Laser Imaging Detection and Ranking
  • the camera 112, the millimeter wave radar 123, and the LiDAR 124 may be examples of sensors that detect objects around the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 may include only one of these, or may include only two of them. Further, the unmanned aerial vehicle 100 may be provided with sensors other than these.
  • the unmanned aerial vehicle 100 includes an ultrasonic sensor. Also, for example, the unmanned aerial vehicle 100 includes sonar.
  • the optical wireless communication unit 114 has a light emitting port 116 and a light receiving port 118.
  • the type of light used for optical wireless communication by the optical wireless communication unit 114 may be any type, and for example, light having a wavelength between infrared rays and visible light is used.
  • LEDs Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • infrared rays since the wavelength of infrared rays is longer than that of visible light, it is possible to reach a long distance with a small output. In addition, it is safe for the eyes and invisible to the naked eye, so that communication can be concealed.
  • the camera 112 captures the optical wireless communication direction of the optical wireless communication unit 114.
  • the camera 112 captures, for example, the light emitting direction by the light emitting port 116.
  • the vector of the optical wireless communication direction of the optical wireless communication unit 114 and the vector of the image pickup main direction by the camera 112 may be the same.
  • the image pickup main direction by the camera 112 is, for example, the direction of the optical axis of the lens included in the camera 112.
  • Optical wireless communication has high directivity, and communication is not possible unless the optical axes of the communication ports of the communication targets match.
  • the unmanned aerial vehicle 100 according to the present embodiment has a mechanism for automatically matching the optical axis of the optical wireless communication unit 114 with the optical axis of the optical wireless communication unit of the communication partner.
  • the unmanned aerial vehicle 100 (may be described as own aircraft) and the communication partner unmanned aerial vehicle 100 (may be described as communication partner aircraft) capture images captured by their respective cameras 112. It analyzes and recognizes each other, and tracks each other by continuously adjusting the angle of the communication unit 110 with the gimbal 108. Then, the own unit and the communication partner unit establish an optical wireless communication link when it is determined from the image captured by the camera 112 that the optical axes of the optical wireless communication units 114 match each other.
  • the own unit and the communication partner unit recognize each other's captured images captured by the respective cameras 112, and adjust the angle of the communication unit 110 by the gimbal 108 to each other.
  • the tracking of the above is continued, and the state in which the optical axes of the optical wireless communication units 114 are aligned with each other is maintained.
  • the unmanned aerial vehicle 100 detects objects around the unmanned aerial vehicle 100 by each sensor.
  • the unmanned aerial vehicle 100 detects an object in front of the unmanned aerial vehicle 100 by, for example, a camera 112. Further, the unmanned aerial vehicle 100 detects an object in the entire circumferential direction of the unmanned aerial vehicle 100 by, for example, a millimeter wave radar 123. Further, the unmanned aerial vehicle 100 detects an object in the entire circumferential direction of the unmanned aerial vehicle 100 by, for example, LiDAR124.
  • the unmanned aerial vehicle 100 may acquire position information indicating the position of an object.
  • the unmanned aerial vehicle 100 acquires, for example, position information indicating a relative position of an object starting from the position of the unmanned aerial vehicle 100. Further, the unmanned aerial vehicle 100 may acquire the absolute position of the object.
  • the unmanned aerial vehicle 100 may acquire the movement status of the object. For example, the unmanned aerial vehicle 100 acquires the moving direction of an object. Also, for example, the unmanned aerial vehicle 100 acquires the moving speed of an object.
  • the unmanned aerial vehicle 100 acquires the position information of the object and the movement status of the object by analyzing the captured images continuously captured by the camera 112, for example. Further, the unmanned aerial vehicle 100 may acquire the position information of the object and the movement status of the object from LiDAR124.
  • LiDAR124 may be a so-called image LiDAR. Further, the LiDAR 124 may be a so-called FMCW (Frequency-Modulated Continuous Wave) LiDAR. Further, LiDAR124 may be Doppler LiDAR.
  • image LiDAR may be a so-called image LiDAR.
  • FMCW Frequency-Modulated Continuous Wave
  • LiDAR124 may be Doppler LiDAR.
  • one unmanned aerial vehicle 100 transmits the object information of the wall 230 to the other unmanned aerial vehicle 100 by optical wireless communication or radio wave communication. Further, the other unmanned aerial vehicle 100 transmits the object information of the aircraft 210 and the object information of the vehicle 220 to the one unmanned aerial vehicle 100 by optical wireless communication or radio wave communication. Thereby, both unmanned aerial vehicles 100 can grasp the situation of the aircraft 210, the vehicle 220, and the wall 230.
  • FIGS. 2 and 3 schematically show an example of the movement of the unmanned aerial vehicle 100.
  • the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 share object information of surrounding objects, and the optical axis of optical wireless communication between the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100.
  • the case where the first unmanned aerial vehicle 100 moves so that the aircraft 210 is not located at 115 will be described as an example.
  • the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 predict that the aircraft 210 will enter the optical axis 115 based on the shared object information.
  • the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 share that the aircraft 210 is about to enter the optical axis 115 by optical wireless communication, and determine which one will move.
  • Either one of the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 may decide to move, or both may decide to move.
  • the description will be continued assuming that the first unmanned aerial vehicle 100 has decided to move.
  • the first unmanned aerial vehicle 100 moves so that the aircraft 210 is not located on the optical axis 115.
  • the first unmanned aerial vehicle 100 refers to the shared object information to determine a movement route that does not collide with other objects while maintaining optical wireless communication with the second unmanned aerial vehicle 100. You may move the determined movement route.
  • By moving the first unmanned aerial vehicle 100 it is possible to prevent the optical wireless communication from being interrupted by the aircraft 210, and it is possible to maintain the optical wireless communication.
  • the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 share each other's position information by radio communication and move in a direction to escape from the shielded state.
  • Optical wireless communication can be reconnected.
  • FIG. 4 schematically shows an example of the configuration of the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 includes a main body 102, a propeller 104, legs 106, a gimbal 108, a communication unit 110, a millimeter wave radar 123, and a LiDAR 124.
  • the main body 102 includes a GNSS unit 120, an acceleration sensor 121, a gyro sensor 122, and a control device 130.
  • the GNSS unit 120 identifies the position of the unmanned aerial vehicle 100 and outputs the position information.
  • the acceleration sensor 121 detects the acceleration.
  • the gyro sensor 122 detects the angular velocity.
  • the control device 130 controls the unmanned aerial vehicle 100.
  • the control device 130 includes a movement control unit 132, a communication control unit 134, and an object detection unit 136.
  • the movement control unit 132 controls the movement of the unmanned aerial vehicle 100.
  • the movement control unit 132 executes flight control of the unmanned aerial vehicle 100 by controlling the propeller 104 based on the information output from various sensors.
  • the movement control unit 132 may control the movement of the unmanned aerial vehicle 100 according to the operation from the outside. Further, the movement control unit 132 may control the movement of the unmanned aerial vehicle 100 so as to fly on the route defined in the operation plan by referring to the information indicating the operation plan.
  • the communication control unit 134 controls the communication of the unmanned aerial vehicle 100.
  • the communication control unit 134 controls the optical wireless communication by the optical wireless communication unit 114.
  • the communication control unit 134 may perform radio wave communication with another unmanned aerial vehicle 100 via an antenna (not shown).
  • the communication control unit 134 communicates with another unmanned aerial vehicle 100 by radio wave, for example, by WiFi communication. Further, the communication control unit 134 communicates with another unmanned aerial vehicle 100 by radio wave, for example, by Bluetooth communication. Further, the communication control unit 134 performs radio wave communication with another unmanned aerial vehicle 100 by, for example, inter-aircraft communication using the 920 MHz band.
  • the communication control unit 134 may communicate with the radio base station via an antenna (not shown).
  • the communication control unit 134 may execute communication via the mobile communication network via the radio base station.
  • the mobile communication network complies with any of the 3G (3rd Generation) communication method, the LTE (Long Term Evolution) communication method, the 5G (5th Generation) communication method, and the 6G (6th Generation) communication method or later. Good.
  • the communication control unit 134 may access the mobile communication network via a WiFi (registered trademark) access point or the like.
  • the object detection unit 136 detects an object around the unmanned aerial vehicle 100 (may be described as its own aircraft).
  • the object detection unit 136 may detect an object around the own machine by using at least one of the camera 112, the millimeter wave radar 123, and the LiDAR 124.
  • the object detection unit 136 may detect the movement status of the object.
  • the object detection unit 136 detects, for example, the moving direction of the object. Further, the object detection unit 136 detects, for example, the moving speed of the object.
  • the communication control unit 134 transmits the object information (may be described as own machine object information) including the position information of the object detected by the object detection unit 136 to the unmanned aerial vehicle 100 (communication partner) which is a communication partner of optical wireless communication. It may be described as a machine.).
  • the communication control unit 134 transmits, for example, its own object information to the communication partner unit by optical wireless communication by the optical wireless communication unit 114. Further, the communication control unit 134 transmits, for example, the object information of the own machine to the communication partner unit by radio wave communication.
  • the position information of the object may indicate the relative position of the object starting from the own machine. Further, the position information of the object may indicate an absolute position.
  • the communication control unit 134 may transmit object information including the movement status of the object detected by the object detection unit 136 to the communication partner unit.
  • the communication control unit 134 may be an example of an object information transmission unit.
  • the communication control unit 134 may also receive object information (may be described as object information of another machine) including position information of an object around the communication partner unit from the communication partner unit.
  • the communication control unit 134 receives, for example, object information of another machine from a communication partner unit by optical wireless communication by the optical wireless communication unit 114. Further, the communication control unit 134 receives, for example, object information of another machine from the communication partner unit by radio wave communication.
  • the position information of the object may indicate the relative position of the object starting from the communication partner. Further, the position information of the object may indicate an absolute position.
  • the communication control unit 134 may receive object information including the movement status of the object from the communication partner unit.
  • the communication control unit 134 may be an example of an object information receiving unit.
  • the movement control unit 132 may control the movement of the own machine based on the own machine object information and the other machine object information so that the object does not position on the optical axis of the optical wireless communication by the optical wireless communication unit 114.
  • the movement control unit 132 uses the position information and movement status of the object included in the object information of the own machine and the position information and movement status of the object included in the object information of the other machine, and the optical axis 115 of the optical wireless communication unit 114. You may predict that an object will enter.
  • the approach here means that the object moves into the optical axis 115, or the object moves into the optical axis 115 by moving at least one of the own device and the communication partner. This also includes the movement of at least one of the own unit and the communication partner unit, so that the object advances into the optical axis 115.
  • the movement control unit 132 prevents the approaching object from being positioned on the optical axis 115 of the optical wireless communication unit 114 based on the position of the approaching object which is an object predicted to enter the optical axis 115 of the optical wireless communication unit 114. You may control the movement of your own machine.
  • the movement control unit 132 may control the movement of its own machine so that the approaching object does not position on the optical axis 115 of the optical wireless communication unit 114 based on the position, the moving direction, and the moving speed of the approaching object.
  • the movement control unit 132 determines which of the own unit and the communication partner unit moves by communicating with the communication partner unit by optical wireless communication by the optical wireless communication unit 114 via the communication control unit 134. When it is determined that only the own machine or both of them move, the movement of the own machine may be controlled so that the intruding object does not position on the optical axis 115 of the optical wireless communication unit 114.
  • the movement control unit 132 and the own machine are based on the position of the approaching object, the positional relationship between the own machine and the objects around the own machine, and the positional relationship between the communication partner machine and the objects around the communication partner machine. You may decide which one with the communication partner moves.
  • the movement control unit 132 determines the position, moving direction, and moving speed of the approaching object, the positional relationship between the own machine and the objects around the own machine, and the communication partner unit and the communication partner machine. It may be decided whether the own unit or the communication partner unit moves based on the positional relationship with the surrounding objects.
  • the movement control unit 132 may be described as, for example, a movement (shielding prevention movement) for preventing the approaching object from entering the optical axis 115 among the own unit and the communication partner unit, whichever is closer to the approaching object. ) Is decided to be performed.
  • the movement control unit 132 may determine that the smaller number of surrounding objects among the own unit and the communication partner unit performs the shielding prevention movement.
  • the movement control unit 132 prevents shielding if it is not flying on the route specified in the operation plan. You may decide to move.
  • the movement control unit 132 and the own machine Of the communication partners determine the shield prevention movement. Further, for example, when the approaching object is moving, the movement control unit 132 performs the shielding prevention movement when the approaching object is moving with a moving vector closer to the moving vector of the approaching object among the own unit and the communication partner unit. Decide to do.
  • the movement control unit 132 determines that the own machine performs the shielding prevention movement, the movement control unit 132 moves the own machine in a direction in which no surrounding objects exist. In addition, the movement control unit 132 moves its own machine in a direction that does not deviate from the area specified by law. For example, the movement control unit 132 moves its own aircraft in a direction that does not allow it to enter the DID (Densely Inhabited District), the sky above the airport, or the like.
  • DID Dens Inhabited District
  • the movement control unit 132 performs the shield prevention movement in the direction along the route. If it is not possible to avoid shielding the optical axis 115 by an approaching object in the direction along the route, the movement control unit 132 moves the aircraft in a direction in which it is easy to return to the route. For example, the movement control unit 132 moves the unmanned aerial vehicle 100 in the vector direction with less change with respect to the movement vector along the route. For example, if the vehicle moves in the direction opposite to the direction of movement along the route, the load for returning to the route increases, but the angle changes less with respect to the direction of movement along the route. By doing so, it is possible to make it easier to return to the route.
  • FIG. 5 schematically shows an example of the processing flow by the unmanned aerial vehicle 100.
  • the state in which the own unit is executing optical wireless communication with the communication partner unit and periodically shares the object information will be described as the start state.
  • step 102 the step may be abbreviated as S
  • the movement control unit 132 uses the light of the optical wireless communication unit 114 between the own unit and the communication partner unit based on the shared object information. Search for moving objects approaching axis 115. If a moving object is detected (YES in S104), the process proceeds to S106, and if it is not detected (NO in S104), the process returns to S102.
  • the movement control unit 132 determines whether or not the moving object is rising. If it is determined that the vehicle is rising, the process proceeds to S108, and if it is determined that the vehicle is not rising, the process proceeds to S110.
  • the movement control unit 132 lowers the own machine. At this time, the communication partner also lowers itself.
  • the movement control unit 132 raises the timing. At this time, the communication partner also lowers itself.
  • the movement control unit 132 determines whether or not the optical axis 115 deviates from the moving direction of the moving object. If it is determined that it has not come off, the process returns to S106, and if it is determined that it has come off, the process proceeds to S114.
  • the movement control unit 132 determines whether or not to end the process for avoiding the shielding of the optical axis 115. For example, if the movement control unit 132 has received the end instruction, it determines that it has ended, and if it has not received it, it determines that it does not end. If it is determined that the process does not end, the process returns to S102.
  • FIG. 6 schematically shows an example of the system 30.
  • the system 30 includes a plurality of unmanned aerial vehicles 100 and a plurality of radio base stations 300, each of which is connected to the unmanned aerial vehicle 100 via a cable 302.
  • FIG. 6 illustrates a case where the system 30 includes two sets of a first unmanned aerial vehicle 100 and a first radio base station 300, and a second unmanned aerial vehicle 100 and a second radio base station 300. ..
  • the first unmanned aerial vehicle 100 executes optical wireless communication with the second unmanned aerial vehicle 100.
  • the first unmanned aerial vehicle 100 communicates with the second radio base station 300 via optical wireless communication with the second unmanned aerial vehicle 100 by the first unmanned aerial vehicle 100.
  • the first radio base station 300 and the second radio base station 300 are configured to communicate with each other via optical radio communication between the first unmanned aircraft 100 and the second unmanned aircraft 100.
  • the first radio base station 300 and the second radio base station 300 are placed in a place where it is difficult to lay a cable between the first radio base station 300 and the second radio base station 300. Can be installed.
  • the first radio base station 300 and the second radio base station 300 can be connected to each other. Communication is possible, but in that case, if an object such as a bird or an unmanned aircraft is located on the optical axis of the optical radio communication unit, the communication between the first radio base station 300 and the second radio base station 300 is cut off. It ends up.
  • the first unmanned aerial vehicle 100 and the second unmanned aerial vehicle 100 according to the present embodiment, the first radio base is moved by appropriately moving so that the object is not positioned on the optical axis of the optical wireless communication. Communication between the station 300 and the second radio base station 300 can be maintained.
  • FIG. 6 shows an example in which each of the two unmanned aerial vehicles 100 is connected to the radio base station 300 via the cable 302, but the present invention is not limited to this.
  • one unmanned aerial vehicle 100 is connected to the radio base station 300 via a cable 302
  • the other unmanned aerial vehicle 100 is connected to a ship via a cable 302.
  • communication between the radio base station 300 and the ship can be realized via the optical wireless communication of the unmanned aerial vehicle 100.
  • the two unmanned aerial vehicles 100 may be connected to each of any objects for which communication is desired to be performed.
  • FIG. 7 schematically shows an example of the underwater mobile body 400.
  • the unmanned aerial vehicle 100 is mainly mentioned as an example of the moving body, but the present invention is not limited to this.
  • moving objects include airplanes, helicopters, automobiles, and the like.
  • an underwater mobile body 400 that moves in water is also mentioned as an example.
  • the underwater moving body 400 includes an underwater moving mechanism 404, a communication unit 410, and an underwater LiDAR 424.
  • the communication unit 410 may be the same as the communication unit 110.
  • the underwater moving body 400 includes a GNSS unit (not shown), an acceleration sensor, a gyro sensor, and a control device (not shown).
  • the GNSS unit, the acceleration sensor, the gyro sensor, and the control device may be the same as the GNSS unit 120, the acceleration sensor 121, the gyro sensor 122, and the control device 130.
  • the underwater mobile body 400 can operate in the same manner as the unmanned aerial vehicle 100.
  • the underwater mobile body 400 executes optical wireless communication with another underwater mobile body 400.
  • the underwater moving body 400 transmits the object information of the surrounding object to the other underwater moving body 400 by optical wireless communication, and the object information of the surrounding object of the other underwater moving body 400 is lighted from the other underwater moving body 400.
  • Object information is shared by receiving by wireless communication.
  • the underwater mobile body 400 controls the movement of the underwater mobile body 400 based on the shared object information so that the object is not positioned on the optical axis of optical wireless communication.
  • the underwater mobile body 400 is connected to the submersible 500 via a cable 502, for example, as shown in FIG.
  • the submersible 500 to which the underwater mobile body 400 is connected can communicate with another submersible 500 via the underwater mobile body 400.
  • Underwater it is difficult to realize communication by radio waves, but according to the underwater mobile body 400 according to the present embodiment, it is possible to easily communicate with each other underwater devices such as the submersible 500.
  • FIG. 8 schematically shows an example of the hardware configuration of the computer 1200 that functions as the control device 130.
  • a program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or causes the computer 1200 to perform an operation associated with the device according to the present embodiment or the one or more.
  • a plurality of "parts" can be executed and / or a computer 1200 can be made to execute a process according to the present embodiment or a stage of the process.
  • Such a program may be run by the CPU 1212 to cause the computer 1200 to perform certain operations associated with some or all of the blocks of the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphic controller 1216, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes an input / output unit such as a communication interface 1222, a storage device 1224, and an IC card drive, which are connected to the host controller 1210 via an input / output controller 1220.
  • the storage device 1224 may be a hard disk drive, a solid state drive, or the like.
  • the computer 1200 also includes a legacy I / O unit such as a ROM 1230 and a keyboard, which are connected to the I / O controller 1220 via an I / O chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphic controller 1216 acquires the image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or itself so that the image data is displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via the network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
  • the ROM 1230 stores a boot program or the like executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
  • the input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a USB port, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program is provided by a computer-readable storage medium such as an IC card.
  • the program is read from a computer-readable storage medium, installed in a storage device 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above.
  • the device or method may be configured to implement the operation or processing of information in accordance with the use of the computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads the transmission data stored in the transmission buffer area provided in the recording medium such as the RAM 1214, the storage device 1224, or the IC card, and sends the read transmission data to the network.
  • the received data transmitted or received from the network is written in the reception buffer area or the like provided on the recording medium.
  • the CPU 1212 allows the RAM 1214 to read all or necessary parts of a file or database stored in an external recording medium such as a storage device 1224 or an IC card, and performs various types of processing on the data on the RAM 1214. May be executed. The CPU 1212 may then write back the processed data to an external recording medium.
  • an external recording medium such as a storage device 1224 or an IC card
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 is the first of the plurality of entries. The attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the first attribute that satisfies the predetermined condition is selected. You may get the attribute value of the associated second attribute.
  • the program or software module described above may be stored on a computer 1200 or in a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network.
  • the blocks in the flowchart and the block diagram in this embodiment may represent the stage of the process in which the operation is executed or the "part" of the device having a role of executing the operation.
  • Specific stages and “parts” are supplied with dedicated circuits, programmable circuits supplied with computer-readable instructions stored on computer-readable storage media, and / or with computer-readable instructions stored on computer-readable storage media. It may be implemented by the processor.
  • Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits include logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like. , Flip-flops, registers, and reconfigurable hardware circuits, including memory elements.
  • the computer-readable storage medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable storage medium having the instructions stored therein is in a flow chart or block diagram. It will include a product that contains instructions that can be executed to create means for performing the specified operation.
  • Examples of the computer-readable storage medium may include an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like. More specific examples of computer-readable storage media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM or flash memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Blu-ray® Disc Memory Stick
  • Integrated circuit card etc.
  • Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc. Includes either source code or object code written in any combination of one or more programming languages, including languages and traditional procedural programming languages such as the "C" programming language or similar programming languages. Good.
  • Computer-readable instructions are used to generate means for a general-purpose computer, a special-purpose computer, or the processor of another programmable data processing device, or a programmable circuit, to perform an operation specified in a flowchart or block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Optical Communication System (AREA)
  • Traffic Control Systems (AREA)
  • Automation & Control Theory (AREA)

Abstract

移動体であって、他移動体との間で光無線通信を実行する光無線通信部と、自移動体の周囲の物体を検知する物体検知部と、物体の位置情報を含む第1物体情報を光無線通信又は電波通信によって他移動体に送信する物体情報送信部と、他移動体の周囲の物体の位置情報を含む第2物体情報を光無線通信又は電波通信によって他移動体から受信する物体情報受信部と、第1物体情報及び第2物体情報に基づいて、光無線通信の光軸に物体が位置しないように自移動体の移動を制御する移動制御部とを備える移動体を提供する。

Description

移動体、システム、プログラム、及び制御方法
 本発明は、移動体、システム、プログラム、及び制御方法に関する。
 光無線通信機能を搭載した移動体が知られていた。(例えば、特許文献1参照)。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2018-166256号公報
解決しようとする課題
 光無線通信を安定して実行することを支援する技術を提供することが望ましい。
一般的開示
 本発明の第1の態様によれば、移動体が提供される。移動体は、他移動体との間で光無線通信を実行する光無線通信部を備えてよい。移動体は、自移動体の周囲の物体を検知する物体検知部を備えてよい。移動体は、物体の位置情報を含む第1物体情報を光無線通信又は電波通信によって他移動体に送信する物体情報送信部を備えてよい。移動体は、他移動体の周囲の物体の位置情報を含む第2物体情報を光無線通信又は電波通信によって他移動体から受信する物体情報受信部を備えてよい。移動体は、第1物体情報及び第2物体情報に基づいて、光無線通信の光軸に物体が位置しないように自移動体の移動を制御する移動制御部を備えてよい。
 上記物体検知部は、カメラ、レーダ、LiDAR、ソナー、及び超音波センサの少なくともいずれかを用いて上記自移動体の周囲の物体を検知してよい。上記物体情報送信部は、上記自移動体を起点とした上記物体の相対位置を示す上記位置情報を含む上記第1物体情報を上記光無線通信又は上記電波通信によって上記他移動体に送信してよい。上記物体検知部は、上記物体の移動状況を検知してよく、上記物体情報送信部は、上記物体の位置情報及び上記物体の移動状況を含む上記第1物体情報を上記光無線通信又は上記電波通信によって上記他移動体に送信してよい。上記物体検知部は、上記物体の移動方向及び移動速度を検知してよく、上記物体情報送信部は、上記物体の位置情報と、上記物体の移動方向及び移動速度状況とを含む上記第1物体情報を上記光無線通信又は上記電波通信によって上記他移動体に送信してよい。上記移動制御部は、上記光無線通信の光軸に進入することが予測される物体である進入物の位置及び移動方向に基づいて、上記光無線通信の光軸に上記進入物が位置しないように上記自移動体の移動を制御してよい。上記移動制御部は、上記光無線通信又は上記電波通信によって上記他移動体と通信することにより、上記自移動体と上記他移動体とのいずれが移動するかを決定し、上記自移動体が移動すると決定した場合、上記光無線通信の光軸に上記進入物が位置しないように上記自移動体の移動を制御してよい。上記移動制御部は、上記進入物の位置及び移動方向と、上記自移動体と上記自移動体の周囲の物体との位置関係と、上記他移動体と上記他移動体の周囲の物体との位置関係とに基づいて、上記自移動体と上記他移動体とのいずれが移動するかを決定してよい。上記移動体は、無人航空機であってよい。上記移動体は、水中を移動する水中移動体であってよい。
 本発明の第2の態様によれば、システムが提供される。システムは、上記移動体と、ケーブルを介して上記移動体と連結される第1無線基地局とを備えてよい。上記第1無線基地局は、上記移動体による上記他移動体との光無線通信を介して、上記他移動体にケーブルを介して連結される第2無線基地局と通信してよい。
 本発明の第3の態様によれば、コンピュータを、上記通信装置として機能させるためのプログラムが提供される。
 本発明の第4の態様によれば、移動体に搭載されるコンピュータによって実行される制御方法が提供される。制御方法は、自移動体の周囲の物体を検知する物体検知段階を備えてよい。制御方法は、物体の位置情報を含む第1物体情報を光無線通信又は電波通信によって他移動体に送信する物体情報送信段階を備えてよい。制御方法は、他移動体の周囲の物体の位置情報を含む第2物体情報を光無線通信又は電波通信によって他移動体から受信する物体情報受信段階を備えてよい。制御方法は、第1物体情報及び第2物体情報に基づいて、光無線通信の光軸に物体が位置しないように自移動体の移動を制御する移動制御段階を備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
無人航空機100の一例を概略的に示す。 無人航空機100の移動の一例を概略的に示す。 無人航空機100の移動の一例を概略的に示す。 無人航空機100の構成の一例を概略的に示す。 無人航空機100による処理の流れの一例を概略的に示す。 システム30の一例を概略的に示す。 水中移動体400の一例を概略的に示す。 制御装置130として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、無人航空機100の一例を概略的に示す。無人航空機100は、移動体の一例であってよい。無人航空機100は、他の無人航空機100との間で光無線通信を実行する機能を有する。
 本実施形態に係る無人航空機100は、周囲の物体を検知して、当該物体の位置情報を含む物体情報を光無線通信又は電波通信によって他の無人航空機100と共有し、共有情報に基づいて、無人航空機100と他の無人航空機100との間の光無線通信の光軸に物体が位置しないように、無人航空機100の移動を制御する。
 光無線通信は、高速通信が可能である、水中のように電波による通信が実行できない環境でも通信可能である、等の特徴を有し、有効な通信手段であるが、光無線通信の光軸が遮蔽されると通信できないという課題がある。本実施形態に係る無人航空機100は、周囲の物体を検知するためのセンサを搭載し、検知した物体の情報を光無線通信の通信相手と共有し、光軸を遮蔽する又は光軸を遮蔽しそうな物体を認識して、光軸の見通しを確保するように自機の移動を制御する。
 無人航空機100は、例えば、検知した物体の情報を光無線通信によって通信相手と共有する。また、無人航空機100は、検知した物体の情報を電波通信によって通信相手と共有してもよい。無人航空機100は、例えば、電波通信によって通信相手と直接通信することによって、検知した物体の情報を通信相手と共有する。電波通信の方式は、任意の方式であってよい。電波通信の方式の例として、WiFi(登録商標)、Bluetooth(登録商標)、及び920MHz帯を用いた機体間通信等が挙げられる。また、無人航空機100は、例えば、無線基地局及びWiFiアクセスポイント等を介した電波通信によって、通信相手と通信することによって、検知した物体の情報を通信相手と共有してもよい。無人航空機100が準拠する移動体通信方式は、3G(3rd Generation)通信方式、LTE(Long Term Evolution)通信方式、5G(5th Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれであってもよい。
 無人航空機100は、ジンバル108と、ジンバル108によって回転可能に支持された通信ユニット110とを備える。ジンバル108は、1軸以上のジンバルである。ジンバル108は、例えば、2軸ジンバル又は3軸ジンバルである。通信ユニット110は、カメラ112及び光無線通信部114を有する。また、無人航空機100は、ミリ波レーダ123及びLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)124を備える。
 カメラ112、ミリ波レーダ123、及びLiDAR124は、無人航空機100の周囲の物体を検知するセンサの例であってよい。無人航空機100は、これらのうちの1つのみを備えてもよく、また、これらのうちの2つのみを備えてもよい。また、無人航空機100は、これら以外のセンサを備えてもよい。例えば、無人航空機100は、超音波センサを備える。また、例えば、無人航空機100は、ソナーを備える。
 光無線通信部114は、発光ポート116及び受光ポート118を有する。光無線通信部114による光無線通信に用いられる光の種類は任意の種類であってよく、例えば、赤外線から可視光線までの間の波長の光が用いられる。
 例えば、可視光を用いる場合、各種波長のLED(Light Emitting Diode)を安価に入手することができるので、多重波長の重畳による広帯域化が容易であったり、無人航空機100の製造コストを低減したりすることができる。また、例えば、赤外線を用いる場合、赤外線は波長が可視光より長いので、小出力で遠距離まで届かせることができる。また、目に安全であるとともに、肉眼では見えないので、通信していることを秘匿できる。
 カメラ112は、光無線通信部114の光無線通信方向を撮像する。カメラ112は、例えば、発光ポート116による発光方向を撮像する。光無線通信部114の光無線通信方向のベクトルと、カメラ112による撮像主方向のベクトルとは、同一であってよい。カメラ112による撮像主方向とは、例えば、カメラ112が備えるレンズの光軸の方向である。
 光無線通信は指向性が高く、通信対象同士の通信ポートの光軸が一致していなければ通信をすることができない。本実施形態に係る無人航空機100は、光無線通信部114の光軸と、通信相手の光無線通信部の光軸とを自動的に一致させるための機構を有する。
 例えば、無人航空機100(自機と記載する場合がある。)と、通信相手の無人航空機100(通信相手機と記載する場合がある。)とは、それぞれのカメラ112によって撮像される撮像画像を解析してお互いを認識し、ジンバル108によって通信ユニット110の角度を継続的に調整することによって、お互いをトラッキングする。そして、自機及び通信相手機は、カメラ112による撮像画像によって、お互いの光無線通信部114の光軸が一致していると判定した場合に、光無線通信リンクを確立する。
 光無線通信リンクが確立した後は、自機と通信相手機とが、それぞれのカメラ112によって撮像される撮像画像をお互いに認識し、ジンバル108によって通信ユニット110の角度を調整することによって、お互いのトラッキングを継続し、互いの光無線通信部114の光軸が一致している状態を維持する。
 無人航空機100は、各センサによって、無人航空機100の周囲の物体を検知する。無人航空機100は、例えば、カメラ112によって、無人航空機100の前方の物体を検知する。また、無人航空機100は、例えば、ミリ波レーダ123によって、無人航空機100の全周方向の物体を検知する。また、無人航空機100は、例えば、LiDAR124によって、無人航空機100の全周方向の物体を検知する。
 無人航空機100は、物体の位置を示す位置情報を取得してよい。無人航空機100は、例えば、無人航空機100の位置を起点とする、物体の相対位置を示す位置情報を取得する。また、無人航空機100は、物体の絶対位置を取得してもよい。無人航空機100は、物体の移動状況を取得してもよい。例えば、無人航空機100は、物体の移動方向を取得する。また、例えば、無人航空機100は、物体の移動速度を取得する。
 無人航空機100は、例えば、カメラ112によって連続して撮像された撮像画像を解析することによって、物体の位置情報及び物体の移動状況を取得する。また、無人航空機100は、LiDAR124から、物体の位置情報及び物体の移動状況を取得してもよい。
 LiDAR124は、いわゆる画像LiDARであってよい。また、LiDAR124は、いわゆるFMCW(Frequency-Modulated Continuous Wave) LiDARであってもよい。また、LiDAR124は、ドップラーLiDARであってもよい。
 図1に示す例において、一方の無人航空機100は、壁230の物体情報を光無線通信又は電波通信によって他方の無人航空機100に送信する。また、他方の無人航空機100は、航空機210の物体情報及び車両220の物体情報を光無線通信又は電波通信によって一方の無人航空機100に送信する。これにより、両方の無人航空機100が、航空機210、車両220、及び壁230の状況を把握することができる。
 図2及び図3は、無人航空機100の移動の一例を概略的に示す。ここでは、第1の無人航空機100と第2の無人航空機100とが周囲の物体の物体情報を共有して、第1の無人航空機100と第2の無人航空機100との光無線通信の光軸115に航空機210が位置しないように第1の無人航空機100が移動する場合を例に挙げて説明する。
 第1の無人航空機100と第2の無人航空機100とは、共有している物体情報によって、航空機210が光軸115に進入することを予測する。第1の無人航空機100と第2の無人航空機100とは、光無線通信によって、航空機210が光軸115に進入しようとしていることを共有し、いずれが移動するかを決定する。
 第1の無人航空機100と第2の無人航空機100とは、いずれか一方が移動することを決定してもよく、また、両方が移動することを決定してもよい。ここでは、第1の無人航空機100が移動することを決定したものとして説明を続ける。
 第1の無人航空機100は、光軸115に航空機210が位置しないように移動する。第1の無人航空機100は、共有している物体情報を参照して、第2の無人航空機100との間で光無線通信を維持しつつ、他の物体に衝突しない移動経路を決定して、決定した移動経路を移動してよい。第1の無人航空機100が移動することによって、航空機210によって、光無線通信が遮断されてしまうことを防止でき、光無線通信を維持することができる。
 第1の無人航空機100と第2の無人航空機100とは、物体によって光軸が遮蔽されてしまっても、電波通信によってお互いの位置情報を共有し、遮蔽状態から脱する方向へ移動することで光無線通信を再接続することができる。
 図4は、無人航空機100の構成の一例を概略的に示す。無人航空機100は、本体部102、プロペラ104、脚部106、ジンバル108、通信ユニット110、ミリ波レーダ123、及びLiDAR124を備える。
 本体部102は、GNSSユニット120、加速度センサ121、ジャイロセンサ122、及び制御装置130を備える。GNSSユニット120は、無人航空機100の位置を特定して、位置情報を出力する。加速度センサ121は、加速度を検出する。ジャイロセンサ122は、角速度を検出する。
 制御装置130は、無人航空機100を制御する。制御装置130は、移動制御部132、通信制御部134、及び物体検知部136を有する。
 移動制御部132は、無人航空機100の移動を制御する。移動制御部132は、各種センサから出力される情報に基づいてプロペラ104を制御することによって、無人航空機100の飛行制御を実行する。移動制御部132は、外部からの操縦に従って、無人航空機100の移動を制御してよい。また、移動制御部132は、運行計画を示す情報を参照して、運行計画で定められた経路を飛行するように無人航空機100の移動を制御してもよい。
 通信制御部134は、無人航空機100の通信を制御する。通信制御部134は、光無線通信部114による光無線通信を制御する。
 通信制御部134は、不図示のアンテナを介して、他の無人航空機100と電波通信してよい。通信制御部134は、例えば、WiFi通信によって、他の無人航空機100と電波通信する。また、通信制御部134は、例えば、Bluetooth通信によって、他の無人航空機100と電波通信する。また、通信制御部134は、例えば、920MHz帯を用いた機体間通信によって、他の無人航空機100と電波通信する。
 通信制御部134は、不図示のアンテナを介して、無線基地局と通信してもよい。通信制御部134は、無線基地局を介して、移動体通信ネットワークを介した通信を実行してよい。移動体通信ネットワークは、3G(3rd Generation)通信方式、LTE(Long Term Evolution)通信方式、5G(5th Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてよい。通信制御部134は、WiFi(登録商標)アクセスポイント等を介して、移動体通信ネットワークにアクセスしてもよい。
 物体検知部136は、無人航空機100(自機と記載する場合がある。)の周囲の物体を検知する。物体検知部136は、カメラ112、ミリ波レーダ123、及びLiDAR124の少なくともいずれかを用いて、自機の周囲の物体を検知してよい。
 物体検知部136は、物体の移動状況を検知してもよい。物体検知部136は、例えば、物体の移動方向を検知する。また、物体検知部136は、例えば、物体の移動速度を検知する。
 通信制御部134は、物体検知部136が検知した物体の位置情報を含む物体情報(自機物体情報と記載する場合がある。)を、光無線通信の通信相手である無人航空機100(通信相手機と記載する場合がある。)に送信してよい。通信制御部134は、例えば、自機物体情報を、光無線通信部114による光無線通信によって通信相手機に送信する。また、通信制御部134は、例えば、自機物体情報を、電波通信によって通信相手機に送信する。物体の位置情報は、自機を起点とした物体の相対位置を示してよい。また、物体の位置情報は、絶対位置を示してもよい。通信制御部134は、物体検知部136が検知した物体の移動状況をさらに含む物体情報を通信相手機に送信してもよい。通信制御部134は、物体情報送信部の一例であってよい。
 通信制御部134は、また、通信相手機の周囲の物体の位置情報を含む物体情報(他機物体情報と記載する場合がある。)を、通信相手機から受信してよい。通信制御部134は、例えば、他機物体情報を、光無線通信部114による光無線通信によって通信相手機から受信する。また、通信制御部134は、例えば、他機物体情報を、電波通信によって通信相手機から受信する。物体の位置情報は、通信相手機を起点とした物体の相対位置を示してよい。また、物体の位置情報は、絶対位置を示してもよい。通信制御部134は、物体の移動状況をさらに含む物体情報を通信相手機から受信してもよい。通信制御部134は、物体情報受信部の一例であってよい。
 移動制御部132は、自機物体情報及び他機物体情報に基づいて、光無線通信部114による光無線通信の光軸に物体が位置しないように、自機の移動を制御してよい。移動制御部132は、自機物体情報に含まれる物体の位置情報及び移動状況と、他機物体情報に含まれる物体の位置情報及び移動状況とを用いて、光無線通信部114の光軸115に物体が進入することを予測してよい。ここでいう進入は、物体が移動することによって光軸115に進んで入ることも、自機及び通信相手機の少なくともいずれかが移動することによって物体が光軸115に進んで入ることも、物体と、自機及び通信相手機の少なくともいずれかが移動することによって物体が光軸115に進んで入ることも含む。
 移動制御部132は、光無線通信部114の光軸115に進入することが予測される物体である進入物の位置に基づいて、光無線通信部114の光軸115に進入物が位置しないように自機の移動を制御してよい。移動制御部132は、進入物の位置、移動方向、及び移動速度に基づいて、光無線通信部114の光軸115に進入物が位置しないように自機の移動を制御してもよい。
 移動制御部132は、通信制御部134を介して、光無線通信部114による光無線通信によって通信相手機と通信することにより、自機と通信相手機とのいずれが移動するかを決定し、自機のみ又は両方が移動すると決定した場合に、光無線通信部114の光軸115に進入物が位置しないように自機の移動を制御してよい。
 移動制御部132は、進入物の位置と、自機と自機の周囲の物体との位置関係と、通信相手機と通信相手機の周囲の物体との位置関係とに基づいて、自機と通信相手機とのいずれが移動するかを決定してよい。移動制御部132は、進入物が移動している場合、進入物の位置、移動方向及び移動速度と、自機と自機の周囲の物体との位置関係と、通信相手機と通信相手機の周囲の物体との位置関係とに基づいて、自機と通信相手機とのいずれが移動するかを決定してもよい。
 移動制御部132は、例えば、自機及び通信相手機のうち、進入物により近い方が、進入物が光軸115に進入することを防ぐための移動(遮蔽防止移動と記載する場合がある。)を行うと決定する。移動制御部132は、自機及び通信相手機のうち、周囲の物体の数がより少ない方が、遮蔽防止移動を行うと決定してもよい。移動制御部132は、自機及び通信相手機のうち、一方のみが、運行計画で定められた経路を飛行している場合、運行計画で定められた経路を飛行していない方が、遮蔽防止移動を行うと決定してもよい。
 移動制御部132は、例えば、進入物が静止しており、自機及び通信相手機が移動することによって、進入物が光無線通信部114の光軸115に進入しようとしている場合、自機と通信相手機とのうち、進入物に接近する運動を行っている方が、遮蔽防止移動を行うと決定する。また、移動制御部132は、例えば、進入物が移動している場合、自機と通信相手機とのうち、進入物の移動ベクトルに近い移動ベクトルで移動している方が、遮蔽防止移動を行うと決定する。
 移動制御部132は、自機が遮蔽防止移動を行うと決定した場合、周囲の物体が存在しない方向に自機を移動させる。また、移動制御部132は、法令で定められたエリアを逸脱しないような方向に自機を移動させる。例えば、移動制御部132は、DID(Densely Inhabited District)及び空港上空等に入らない方向に自機を移動させる。
 また、移動制御部132は、自機が運行計画で定められた経路を飛行している場合、経路に沿った方向に遮蔽防止移動を行う。経路に沿った方向では、進入物による光軸115の遮蔽を回避できない場合、移動制御部132は、経路への復帰が容易な方向に自機を移動させる。例えば、移動制御部132は、経路に沿った移動ベクトルに対する変化がより少ないベクトル方向に無人航空機100を移動させる。例えば、経路に沿った移動方向とは真逆の方向に移動してしまうと、経路に復帰するための負荷が高まってしまうが、経路に沿った移動方向に対する角度の変化がより少ない方向に移動することによって、経路への復帰をより容易にすることができる。
 図5は、無人航空機100による処理の流れの一例を概略的に示す。ここでは、自機が通信相手機と光無線通信を実行しており、定期的に物体情報を共有している状態を開始状態として説明する。
 ステップ(ステップをSと省略して記載する場合がある。)102では、移動制御部132が、共有している物体情報に基づいて、自機と通信相手機との光無線通信部114の光軸115に接近する移動物体を検索する。移動物体を検知した場合(S104でYES)、S106に進み、検知していない場合(S104でNO)、S102に戻る。
 S106では、移動制御部132が、移動物体が上昇しているか否かを判定する。上昇していると判定した場合、S108に進み、上昇していないと判定した場合、S110に進む。S108では、移動制御部132が自機を下降させる。このとき、通信相手機も自らを下降させる。S110では、移動制御部132が時期を上昇させる。このとき、通信相手機も自らを下降させる。このように移動物体の上昇下降方向とは逆の方向に自機及び通信相手機が移動することによって、一旦遮蔽を回避した後に、また航空機210が光軸115に近づいてしまうという事態の発生を抑制することができる。
 S112では、移動制御部132が、光軸115が移動物体の移動方向から外れたか否かを判定する。外れていないと判定した場合、S106に戻り、外れたと判定した場合、S114に進む。
 S114では、移動制御部132が、光軸115の遮蔽を回避するための処理を終了させるか否かを判定する。移動制御部132は、例えば、終了指示を受領していた場合、終了と判定し、受領していない場合、終了しないと判定する。終了しないと判定した場合、S102に戻る。
 図6は、システム30の一例を概略的に示す。システム30は、複数の無人航空機100と、それぞれがケーブル302を介して無人航空機100と連結される複数の無線基地局300とを備える。図6では、システム30が、第1の無人航空機100及び第1の無線基地局300と、第2の無人航空機100及び第2の無線基地局300との2組を備える場合を例示している。
 第1の無人航空機100は、第2の無人航空機100との間で光無線通信を実行する。第1の無人航空機100は、第1の無人航空機100による第2の無人航空機100との光無線通信を介して、第2の無線基地局300と通信する。このように、第1の無線基地局300と第2の無線基地局300とが、第1の無人航空機100と第2の無人航空機100との間の光無線通信を介して通信するように構成することによって、第1の無線基地局300と第2の無線基地局300との間にケーブルを敷設することが困難な場所に、第1の無線基地局300と第2の無線基地局300とを設置することができる。
 第1の無線基地局300と第2の無線基地局300とのそれぞれに、固定の光無線通信部を設置することによっても、第1の無線基地局300と第2の無線基地局300とを通信可能にできるが、その場合、光無線通信部の光軸に、鳥及び無人航空機等の物体が位置すると、第1の無線基地局300と第2の無線基地局300との通信が切断されてしまう。それに対して、本実施形態に係る第1の無人航空機100及び第2の無人航空機100によれば、光無線通信の光軸に物体が位置しないように適宜移動することによって、第1の無線基地局300と第2の無線基地局300との間の通信を維持することができる。
 なお、図6では、2つの無人航空機100のそれぞれがケーブル302を介して無線基地局300に連結される例を挙げたが、これに限らない。例えば、一方の無人航空機100がケーブル302を介して無線基地局300に連結され、他方の無人航空機100がケーブル302を介して船に連結される。これにより、無人航空機100の光無線通信を介した、無線基地局300と船との通信を実現することができる。2つの無人航空機100は、通信を実行させたい任意の対象のそれぞれに連結されてよい。
 図7は、水中移動体400の一例を概略的に示す。図1から図6では、移動体の例として主に無人航空機100を挙げたが、これに限らない。移動体の例としては、飛行機、ヘリコプター、及び自動車等が挙げられる。また、図7に示すように、水中を移動する水中移動体400もその例として挙げられる。
 水中移動体400は、水中移動機構404、通信ユニット410、及び水中LiDAR424を備える。通信ユニット410は、通信ユニット110と同様であってよい。
 また、水中移動体400は、不図示のGNSSユニット、加速度センサ、ジャイロセンサ、及び制御装置を備える。GNSSユニット、加速度センサ、ジャイロセンサ、及び制御装置は、GNSSユニット120、加速度センサ121、ジャイロセンサ122、及び制御装置130と同様であってよい。
 水中移動体400は、無人航空機100と同様に動作可能である。水中移動体400は、他の水中移動体400との間で光無線通信を実行する。水中移動体400は、周囲の物体の物体情報を他の水中移動体400に光無線通信によって送信するとともに、他の水中移動体400の周囲の物体の物体情報を他の水中移動体400から光無線通信によって受信することにより、物体情報を共有する。水中移動体400は、共有している物体情報に基づいて、光無線通信の光軸に物体が位置しないように水中移動体400の移動を制御する。
 水中移動体400は、例えば、図7に示すように、ケーブル502を介して潜水船500に連結される。水中移動体400が連結された潜水船500は、水中移動体400を介して、他の潜水船500と通信することができる。水中では、電波による通信を実現することが難しいが、本実施形態に係る水中移動体400によれば、潜水船500等の水中の機器同士を容易に通信可能にすることができる。
 図8は、制御装置130として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムは、ICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、記憶装置1224、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
30 システム、100 無人航空機、102 本体部、104 プロペラ、106 脚部、108 ジンバル、110 通信ユニット、112 カメラ、114 光無線通信部、115 光軸、116 発光ポート、118 受光ポート、120 GNSSユニット、121 加速度センサ、122 ジャイロセンサ、123 ミリ波レーダ、124 LiDAR、130 制御装置、132 移動制御部、134 通信制御部、136 物体検知部、210 航空機、220 車両、230 壁、300 無線基地局、302 ケーブル、400 水中移動体、404 水中移動機構、410 通信ユニット、424 水中LiDAR、500 潜水船、502 ケーブル、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ

Claims (13)

  1.  移動体であって、
     他移動体との間で光無線通信を実行する光無線通信部と、
     自移動体の周囲の物体を検知する物体検知部と、
     前記物体の位置情報を含む第1物体情報を前記光無線通信又は電波通信によって前記他移動体に送信する物体情報送信部と、
     前記他移動体の周囲の物体の位置情報を含む第2物体情報を前記光無線通信又は前記電波通信によって前記他移動体から受信する物体情報受信部と、
     前記第1物体情報及び前記第2物体情報に基づいて、前記光無線通信の光軸に物体が位置しないように前記自移動体の移動を制御する移動制御部と
     を備える移動体。
  2.  前記物体検知部は、カメラ、レーダ、LiDAR、ソナー、及び超音波センサの少なくともいずれかを用いて前記自移動体の周囲の物体を検知する、請求項1に記載の移動体。
  3.  前記物体情報送信部は、前記自移動体を起点とした前記物体の相対位置を示す前記位置情報を含む前記第1物体情報を前記光無線通信又は前記電波通信によって前記他移動体に送信する、請求項1又は2に記載の移動体。
  4.  前記物体検知部は、前記物体の移動状況を検知し、
     前記物体情報送信部は、前記物体の位置情報及び前記物体の移動状況を含む前記第1物体情報を前記光無線通信又は前記電波通信によって前記他移動体に送信する、請求項1から3のいずれか一項に記載の移動体。
  5.  前記物体検知部は、前記物体の移動方向及び移動速度を検知し、
     前記物体情報送信部は、前記物体の位置情報と、前記物体の移動方向及び移動速度状況とを含む前記第1物体情報を前記光無線通信又は前記電波通信によって前記他移動体に送信する、請求項4に記載の移動体。
  6.  前記移動制御部は、前記光無線通信の光軸に進入することが予測される物体である進入物の位置及び移動方向に基づいて、前記光無線通信の光軸に前記進入物が位置しないように前記自移動体の移動を制御する、請求項1から5のいずれか一項に記載の移動体。
  7.  前記移動制御部は、前記光無線通信又は前記電波通信によって前記他移動体と通信することにより、前記自移動体と前記他移動体とのいずれが移動するかを決定し、前記自移動体が移動すると決定した場合、前記光無線通信の光軸に前記進入物が位置しないように前記自移動体の移動を制御する、請求項6に記載の移動体。
  8.  前記移動制御部は、前記進入物の位置及び移動方向と、前記自移動体と前記自移動体の周囲の物体との位置関係と、前記他移動体と前記他移動体の周囲の物体との位置関係とに基づいて、前記自移動体と前記他移動体とのいずれが移動するかを決定する、請求項7に記載の移動体。
  9.  前記移動体は、無人航空機である、請求項1から8のいずれか一項に記載の移動体。
  10.  前記移動体は、水中を移動する水中移動体である、請求項1から8のいずれか一項に記載の移動体。
  11.  請求項1から9のいずれか一項に記載の移動体と、
     ケーブルを介して前記移動体と連結される第1無線基地局と
     を備え、
     前記第1無線基地局は、前記移動体による前記他移動体との光無線通信を介して、前記他移動体にケーブルを介して連結される第2無線基地局と通信する、システム。
  12.  コンピュータを、請求項1から10のいずれか一項に記載の移動体として機能させるためのプログラム。
  13.  移動体に搭載されるコンピュータによって実行される制御方法であって、
     自移動体の周囲の物体を検知する物体検知段階と、
     前記物体の位置情報を含む第1物体情報を光無線通信又は電波通信によって他移動体に送信する物体情報送信段階と、
     前記他移動体の周囲の物体の位置情報を含む第2物体情報を前記光無線通信又は前記電波通信によって前記他移動体から受信する物体情報受信段階と、
     前記第1物体情報及び前記第2物体情報に基づいて、前記光無線通信の光軸に物体が位置しないように前記自移動体の移動を制御する移動制御段階と
     を備える制御方法。
PCT/JP2020/002805 2019-09-20 2020-01-27 移動体、システム、プログラム、及び制御方法 WO2021053841A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080065699.3A CN114423678A (zh) 2019-09-20 2020-01-27 移动体、系统、程序以及控制方法
KR1020227009138A KR20220065774A (ko) 2019-09-20 2020-01-27 이동체, 시스템, 프로그램, 및 제어 방법
GB2203039.9A GB2601963B (en) 2019-09-20 2020-01-27 Moving body, system, program, and control method
US17/686,424 US20220185474A1 (en) 2019-09-20 2022-03-04 Moving body, system, computer readable recording medium, and control method
IL291199A IL291199A (en) 2019-09-20 2022-03-08 Body movement, system, program and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-171742 2019-09-20
JP2019171742A JP6656459B1 (ja) 2019-09-20 2019-09-20 移動体、システム、プログラム、及び制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/686,424 Continuation US20220185474A1 (en) 2019-09-20 2022-03-04 Moving body, system, computer readable recording medium, and control method

Publications (1)

Publication Number Publication Date
WO2021053841A1 true WO2021053841A1 (ja) 2021-03-25

Family

ID=69997904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002805 WO2021053841A1 (ja) 2019-09-20 2020-01-27 移動体、システム、プログラム、及び制御方法

Country Status (7)

Country Link
US (1) US20220185474A1 (ja)
JP (1) JP6656459B1 (ja)
KR (1) KR20220065774A (ja)
CN (1) CN114423678A (ja)
GB (1) GB2601963B (ja)
IL (1) IL291199A (ja)
WO (1) WO2021053841A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139671A1 (ja) * 2022-01-19 2023-07-27 日本電信電話株式会社 通信器、通信方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017984A1 (ja) * 2015-07-29 2017-02-02 株式会社日立製作所 移動体識別システムおよび識別方法
WO2017170148A1 (ja) * 2016-03-31 2017-10-05 株式会社ニコン 飛行装置、電子機器およびプログラム
JP2018016203A (ja) * 2016-07-28 2018-02-01 株式会社テクノアクセルネットワークス 通信システム及び通信パスの設定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789162B2 (ja) 2017-03-28 2020-11-25 株式会社日立情報通信エンジニアリング 可視光通信システムおよび可視光通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017984A1 (ja) * 2015-07-29 2017-02-02 株式会社日立製作所 移動体識別システムおよび識別方法
WO2017170148A1 (ja) * 2016-03-31 2017-10-05 株式会社ニコン 飛行装置、電子機器およびプログラム
JP2018016203A (ja) * 2016-07-28 2018-02-01 株式会社テクノアクセルネットワークス 通信システム及び通信パスの設定方法

Also Published As

Publication number Publication date
CN114423678A (zh) 2022-04-29
JP2021047818A (ja) 2021-03-25
KR20220065774A (ko) 2022-05-20
GB2601963B (en) 2023-09-27
IL291199A (en) 2022-05-01
GB202203039D0 (en) 2022-04-20
JP6656459B1 (ja) 2020-03-04
GB2601963A (en) 2022-06-15
US20220185474A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN106249750B (zh) 在无人驾驶飞行器上自主执行决策以完成任务的方法和装置
US10649087B2 (en) Object detection system for mobile platforms
WO2019067695A1 (en) FLIGHT CONTROL USING VISION BY COMPUTER
US10671068B1 (en) Shared sensor data across sensor processing pipelines
US20200317339A1 (en) Wireless communication relay system using unmanned device and method therefor
US11410299B2 (en) System and method for counteracting unmanned aerial vehicles
JP7035252B2 (ja) 通信装置、通信方法、及びプログラム
US11579302B2 (en) System and method for detecting unmanned aerial vehicles
US20200191946A1 (en) Methods and systems for controlling weather radar and electro-optical and imaging systems of search and rescue vehicles
Richardson et al. Automated vision‐based recovery of a rotary wing unmanned aerial vehicle onto a moving platform
WO2021053841A1 (ja) 移動体、システム、プログラム、及び制御方法
EP3799009A1 (en) System and method for counteracting unmanned aerial vehicles
WO2021053840A1 (ja) 移動体、プログラム、及び制御方法
CN112580421A (zh) 用于探测无人驾驶飞行器的系统和方法
US10989797B2 (en) Passive altimeter system for a platform and method thereof
Sharma et al. Target identification and control model of autopilot for passive homing missiles
KR102289743B1 (ko) 복수의 무인항공기를 이용한 목표를 탐색하기 위한 장치 및 이를 위한 방법
JP6934964B2 (ja) 経路決定装置、プログラム、経路決定方法、及びシステム
Nyasulu et al. Comparison study of low-cost obstacle sensing solutions for Unmanned Aerial Vehicles in wildlife scenery
WO2021005817A1 (ja) 誘導システム、航空母艦、管理装置、プログラム、及び管理方法
Weiwei et al. Autonomous track and land a MAV using a modified tracking-learning-detection framework
JP6546005B2 (ja) 射撃管制システム、射撃管制装置、および射撃管制方法
Wildt et al. Sensor data fusion for automated threat recognition in manned-unmanned infantry platoons
JP2020203548A (ja) 無人航空機、プログラム、方法、及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202203039

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200127

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP