WO2021052483A1 - 多天线系统及电子设备 - Google Patents

多天线系统及电子设备 Download PDF

Info

Publication number
WO2021052483A1
WO2021052483A1 PCT/CN2020/116291 CN2020116291W WO2021052483A1 WO 2021052483 A1 WO2021052483 A1 WO 2021052483A1 CN 2020116291 W CN2020116291 W CN 2020116291W WO 2021052483 A1 WO2021052483 A1 WO 2021052483A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electronic device
gap
switch
frame
Prior art date
Application number
PCT/CN2020/116291
Other languages
English (en)
French (fr)
Inventor
尤佳庆
王汉阳
朱贤滨
王岩
沈来伟
薛亮
徐求良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/641,198 priority Critical patent/US11996625B2/en
Priority to EP20864983.0A priority patent/EP4024607A4/en
Publication of WO2021052483A1 publication Critical patent/WO2021052483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to the field of antenna technology, in particular to a multi-antenna system applied in electronic equipment.
  • full-screen industrial design has become a design trend for portable electronic devices such as mobile phones.
  • Full screen means a huge screen-to-body ratio (usually above 90%).
  • the width of the frame of the full screen has been greatly reduced, and the internal components of the mobile phone, such as the front camera, receiver, fingerprint reader, antenna, etc., need to be re-arranged.
  • the headroom area is reduced, and the antenna space is further compressed.
  • the size, bandwidth, and efficiency of the antenna are interrelated and affect each other. If the size (space) of the antenna is reduced, the efficiency-bandwidth product of the antenna is bound to decrease. Therefore, the full-screen ID brings great challenges to the antenna design of mobile phones.
  • the embodiment of the present invention provides an electronic device.
  • a smart multi-antenna solution in which antennas are arranged on the top, side, and bottom of the electronic device, three antenna groups at the top, middle, and bottom are formed, which will take into account free space scenes and verticals.
  • the antenna performance in multiple scenarios such as the screen holding scene (such as the voice call scene) and the horizontal screen holding scene (such as the game playing scene) improves the antenna radiation efficiency.
  • the present application provides an electronic device including a multi-antenna system.
  • the housing of the electronic device has a peripheral conductive structure.
  • the peripheral conductive structure may be formed of conductive materials such as metal.
  • the peripheral conductive structure can extend around the periphery of the electronic device and the display screen, and the peripheral conductive structure can specifically surround the four sides of the display screen to help fix the display screen.
  • the peripheral conductive structure may include an upper frame, a lower frame, and a side frame.
  • the upper frame may have at least one top gap
  • the lower frame may have at least one bottom gap
  • the side frame may have at least one side gap.
  • the multi-antenna system may include: a top antenna, a bottom antenna, a side antenna, and a first antenna switch.
  • the top antenna may include: an upper frame, a top gap, and a top feeding point, and the top feeding point is arranged on the upper frame.
  • the bottom antenna may include: a bottom frame, a bottom gap, and a bottom feed point, and the bottom feed point is set on the bottom frame.
  • the side antenna may include: a side frame, a side gap, and a side feeding point, and the side feeding point is arranged on the side frame.
  • the top antenna, bottom antenna, and side antenna are connected to the first antenna switch, and the first antenna switch is used to select one of the top antenna, bottom antenna, and side antenna as the main antenna for cellular mobile communication.
  • the antenna design solution provided by the first aspect uses a smart multi-antenna solution with antennas on the top, side, and bottom of the electronic device to form three antenna groups at the top, middle, and bottom, which will take into account free space scenarios.
  • the upper frame can be arranged on the top of the electronic device, and the lower frame can be arranged on the bottom of the electronic device.
  • the first side frame and the second side frame can be respectively disposed on both sides of the electronic device.
  • the upper frame may include one horizontal part and two vertical parts. The length of the vertical part does not exceed the first length, for example 20 mm.
  • the lower frame may also include a horizontal part and two vertical parts. The length of the vertical part does not exceed the second length.
  • the second length may be the same as the first length, and may both be 20 mm, for example. The second length can also be different from the first length.
  • the first antenna switch can be specifically used to select the antenna with the best signal quality from the top antenna, bottom antenna, and side antenna as the main antenna for cellular mobile communications.
  • the first antenna switch can also be used to select one of the top antenna, bottom antenna, and side antenna as a diversity antenna for cellular mobile communications.
  • the first antenna switch can be specifically used to select an antenna with sub-optimal signal quality from the top antenna, bottom antenna, and side antenna as a diversity antenna for cellular mobile communications.
  • the top gap may include: a first top gap and a second top gap.
  • the first top gap may be opened on the first side of the horizontal portion of the upper frame, and the second top gap may be opened on the first side of the horizontal portion of the upper frame.
  • the top feeding point may include: a first top feeding point, a second top feeding point, the first top feeding point may be set on the first side of the upper frame, and the second top feeding point may be set on the first side of the upper frame Two sides.
  • the top antenna may include: a first top antenna and a second top antenna, where the first top antenna may include: a first part of the upper frame, a first top feeding point, and a first top gap.
  • the second top antenna may include: a second part of the upper frame, a first top feeding point, and a second top gap. The first part may be on the first side and the second part on the second side.
  • the side frame may include: a first side frame and a second side frame, the first side frame may be located on the first side of the electronic device, and the second side frame may be located on the second side of the electronic device .
  • the side gap may include: a first side gap opened on the first side frame, and a second side gap opened on the second side frame.
  • the side feeding point may include: a first side feeding point arranged on the first side frame, and a second side feeding point arranged on the second side frame.
  • the side antenna may include: a first side antenna and a second side antenna, where the first side antenna may include: a first side frame, a first side feeding point, and a first side gap.
  • the second side antenna may include: a second side frame, a second side feeding point, and a second side gap.
  • the bottom antenna and the second top antenna can be used as the main antenna and the diversity antenna in cellular mobile communications by default.
  • the first antenna switch can be specifically connected to the bottom antenna, the second top antenna, the first side antenna, and the second side antenna.
  • the first antenna switch can be specifically used to switch from the bottom antenna, the second top antenna, and the The main antenna is selected from the first side antenna and the second side antenna.
  • a grounding point (which may be referred to as a first grounding point) may be set between adjacent antennas in a multi-antenna system.
  • a ground point (may be referred to as a second ground point) can be provided on the peripheral conductive structure between the bottom feed point of the bottom antenna and the second side feed point of the second side antenna.
  • a ground point (may be referred to as a third ground point) can be provided on the peripheral conductive structure between the second side feed point of the second side antenna and the second top feed point of the second top antenna.
  • a ground point (may be referred to as a fourth ground point) can be provided on the peripheral conductive structure between the first top feed point of the first top antenna and the second top feed point of the second top antenna.
  • a ground point (may be referred to as a fifth ground point) can be provided on the peripheral conductive structure between the first top feed point of the first top antenna and the first side feed point of the first side antenna.
  • the peripheral conductive structure can be connected to a tuning switch to perform: Tuning and improving antenna performance through switch combination status.
  • the Wi-Fi antenna of the electronic device may be implemented by the top antenna by default.
  • the first top antenna can be used as a Wi-Fi 2.4G Core0 antenna
  • the second top antenna can be used as a Wi-Fi 2.4G Core1 antenna.
  • Core0 antenna and Core1 antenna form dual WiFi antennas, and both antennas can be used for signal transmission and reception.
  • the Wi-Fi antenna in a Wi-Fi usage scenario, when the signal quality of the top antenna is poor, the Wi-Fi antenna can also be switched from the top antenna to the middle antenna.
  • the Wi-Fi antenna can be switched between the top antenna and the middle antenna to achieve performance improvements similar to cellular mobile communication antennas.
  • the specific implementation of this antenna switching may be as follows: the multi-antenna system may also include a second antenna switching switch and a third antenna switching switch.
  • the second antenna switch is connected to the second side antenna and the second top antenna, and the second antenna switch is used to select the antenna with better signal quality from the second side antenna and the second top antenna as the wireless high-fidelity Wi -Fi antenna.
  • the third antenna switch is connected to the first side antenna and the first top antenna.
  • the third antenna switch is used to select the antenna with better signal quality from the first side antenna and the first top antenna as the wireless high-fidelity Wi-Fi antenna.
  • the multi-antenna system can be implemented as a 4 ⁇ current system cellular mobile antenna, and the 4 receiving antennas for signal reception are distributed at the top, middle, and bottom of the electronic device. , It can adapt to various user holding scenarios and ensure the signal receiving performance of electronic devices.
  • Several implementation methods can be as follows:
  • the bottom antenna can be used as the main antenna, and the second top antenna can be used as the diversity antenna.
  • the first top antenna and the second side antenna can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the bottom antenna, the second top antenna, the second side antenna, and the first side antenna.
  • the Wi-Fi 2.4G Core0 antenna can be switched between the first top antenna and the first side antenna.
  • the Wi-Fi 2.4G Core1 antenna can be switched between the second side antenna and the second top antenna.
  • the first top antenna and the second side antenna can also be used for cellular mobile communications to form 4 receiving antennas, supporting 4 ⁇ 4 MIMO architecture.
  • the bottom antenna can be used as the main antenna, and the second top antenna can be used as the diversity antenna.
  • the first top antenna and the second side antenna can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the bottom antenna, the second top antenna, the second side antenna, and the first side antenna.
  • the Wi-Fi 2.4G Core0 antenna can be switched between the first top antenna and the first side antenna.
  • the Wi-Fi 2.4G Core1 antenna can be switched between the second side antenna and the second top antenna.
  • the second side antenna and the first side antenna can also be used for cellular mobile communications to form 4 receiving antennas, supporting 4 ⁇ 4 MIMO architecture.
  • the bottom antenna can be used as the main antenna, and the second top antenna can be used as the diversity antenna.
  • the first top antenna and the second side antenna can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the bottom antenna, the second top antenna, the second side antenna, and the first side antenna.
  • the Wi-Fi 2.4G Core0 antenna can be switched between the first top antenna and the first side antenna.
  • the Wi-Fi 2.4G Core1 antenna can be switched between the second side antenna and the second top antenna.
  • the first top antenna and the second side antenna can also be used for cellular mobile communications to form 4 receiving antennas, supporting 4 ⁇ 4 MIMO architecture.
  • the bottom antenna can be used as the main antenna, and the second side antenna can be used as the diversity antenna.
  • the first top antenna and the second top antenna can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the bottom antenna, the second top antenna, the second side antenna, and the first side antenna.
  • the Wi-Fi 2.4G Core0 antenna can be switched between the first top antenna and the first side antenna.
  • the Wi-Fi 2.4G Core1 antenna can be switched between the second side antenna and the second top antenna.
  • the second top antenna and the first top antenna can also be used for cellular mobile communications to form 4 receiving antennas, supporting 4 ⁇ 4 MIMO architecture.
  • the present application provides an electronic device including a multi-antenna system.
  • the housing of the electronic device has a peripheral conductive structure.
  • the peripheral conductive structure may be formed of conductive materials such as metal.
  • the peripheral conductive structure can extend around the periphery of the electronic device and the display screen, and the peripheral conductive structure can specifically surround the four sides of the display screen to help fix the display screen.
  • the peripheral conductive structure may include an upper frame, a lower frame, and a first side frame.
  • the upper frame may have at least one top gap
  • the lower frame may have at least one bottom gap
  • the first side frame may have at least one first side gap.
  • the multi-antenna system may include: a first antenna, a second antenna, a first antenna switch, and multiple tuning switches. specific:
  • the first antenna may include a lower frame, a bottom gap, and a first feeding point, as well as a first side frame and a first side gap.
  • the first feeding point is arranged on the peripheral conductive structure between the bottom gap and the first side gap.
  • the second antenna may include an upper frame, a top gap, and a second feeding point, and the second feeding point is arranged on the upper frame.
  • the first antenna switch can be connected to the first antenna and the second antenna, and the first antenna switch is used to select an antenna with better signal quality from the first antenna and the second antenna.
  • the plurality of tuning switches may include at least one first tuning switch connected to the lower frame and at least one second tuning switch connected to the first side frame.
  • the first tuning switch can be arranged on one side or both sides of the bottom gap, and the second tuning switch can be arranged on one side or both sides of the first side gap.
  • the first tuning switch can be used to selectively turn off or on, and the second tuning switch can be used to selectively turn off or on.
  • the antenna design solution provided by the second aspect can realize intelligent switching between the first antenna and the second antenna through the first antenna switch connecting the first antenna and the second antenna.
  • the first antenna has two radiation modes, and the radiation mode of the first antenna can be switched by adjusting the combined state of the first tuning switch and the second tuning switch. In this way, it can be adapted to more application scenarios and improve the antenna radiation efficiency.
  • the upper frame can be arranged on the top of the electronic device, and the lower frame can be arranged on the bottom of the electronic device.
  • the first side frame and the second side frame can be respectively disposed on both sides of the electronic device.
  • the upper frame may include one horizontal part and two vertical parts. The length of the vertical part does not exceed the first length, for example 20 mm.
  • the lower frame may also include a horizontal part and two vertical parts. The length of the vertical part does not exceed the second length.
  • the second length may be the same as the first length, and may both be 20 mm, for example. The second length can also be different from the first length.
  • the first antenna switch can be used to select the antenna with the best signal quality from the first antenna and the second antenna.
  • the selected antenna with the best signal quality can be used as the main antenna.
  • the first tuning switch when the first tuning switch is in the open state and the second tuning switch is in the closed state, the lower frame is fully excited and can be used as a radiator to generate radiation.
  • the radiation mode of is a horizontal mode, which is not affected by the first side gap when the hand is held, and the radiation efficiency is good when the hand is held.
  • the first tuning switch can also be used to switch the radiation frequency band of the lower frame in the horizontal mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the first side frame when the second tuning switch is in the open state and the first tuning switch is in the closed state, the first side frame is fully excited and can act as a radiator to generate radiation outwards.
  • the radiation pattern of an antenna is the longitudinal pattern, and the free space radiation efficiency is good.
  • the second tuning switch can also be used to switch the radiation frequency band of the first side frame in the vertical mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the multi-antenna system may further include: a third antenna, the third antenna includes a second side frame, a second side gap, and a third feeding point, the third feeding point is arranged on the second side frame.
  • the first antenna switch can also be connected to the third antenna, which is specifically used to select the antenna with the best signal quality from the first antenna, the second antenna, and the third antenna.
  • the present application provides an electronic device including a multi-antenna system.
  • the housing of the electronic device has a peripheral conductive structure.
  • the peripheral conductive structure may be formed of conductive materials such as metal.
  • the peripheral conductive structure can extend around the periphery of the electronic device and the display screen, and the peripheral conductive structure can specifically surround the four sides of the display screen to help fix the display screen.
  • the peripheral conductive structure may include an upper frame, a lower frame, and a first side frame and a second side frame.
  • the upper frame may have at least one top gap
  • the lower frame may have at least one bottom gap
  • the first side frame may have at least one first side gap
  • the second side frame may have at least one second side gap.
  • the multi-antenna system may include: a first antenna, a second antenna, a first antenna switch, and multiple tuning switches. specific:
  • the first antenna may include a lower frame, a bottom gap, and a first feeding point, as well as a first side frame and a first side gap.
  • the first feeding point is arranged on the peripheral conductive structure between the bottom gap and the first side gap.
  • the second antenna may include an upper frame, a top gap, and a second feeding point, and a second side frame and a second side gap.
  • the second feeding point is arranged on the peripheral conductive structure between the top gap and the second side gap.
  • the first antenna switch can be connected to the first antenna and the second antenna, and the first antenna switch is used to select an antenna with better signal quality from the first antenna and the second antenna.
  • the plurality of tuning switches may include at least one first tuning switch connected to the lower frame, at least one second tuning switch connected to the first side frame, at least one third tuning switch connected to the upper frame, and at least one first tuning switch connected to the second side frame.
  • the first tuning switch can be set on one or both sides of the bottom gap
  • the second tuning switch can be set on one or both sides of the first side gap
  • the third tuning switch can be set on one or both sides of the top gap
  • the fourth tuning switch can be arranged on one side or both sides of the second side gap.
  • the first tuning switch can be used to selectively disconnect or conduct
  • the second tuning switch can be used to selectively disconnect or conduct
  • the third tuning switch can be used to selectively disconnect or conduct
  • the fourth tuning switch can be used to selectively Disconnect or conduct.
  • the antenna solution provided by the third aspect further extends the second antenna from the top upper frame 11-5 to the side frame 11-1, which can pass through the top gap 21- 2.
  • the side gap 25 radiates electromagnetic waves outward, so it has two radiation modes. In this way, by adjusting the combined state of the third tuning switch and the fourth tuning switch, the radiation mode of the second antenna can also be switched, which can adapt to more application scenarios and improve the antenna radiation efficiency.
  • the present application provides an antenna switching method of an electronic device.
  • the electronic device may have a housing, a display screen, a first SAR sensor, a second SAR sensor, and a motion sensor.
  • the housing may have a peripheral conductive structure, and the peripheral conductive structure may include an upper frame, a lower frame, and a side frame. There is a top gap on the upper frame, a bottom gap on the lower frame, and a side gap on the side frame.
  • the first SAR sensor is arranged on the top of the electronic device, and the second SAR sensor is arranged on the bottom of the electronic device.
  • the electronic device also has a top antenna group distributed on the top of the electronic device, a bottom antenna group distributed on the bottom of the electronic device, and a middle antenna group distributed on the middle of the electronic device.
  • the antenna switching method may include: if the display screen is in the off-screen state, the electronic device selects the bottom antenna group as the first antenna group. If the display screen is in the bright screen state, the electronic device determines the current scene through the first SAR sensor, the second SAR sensor, and the motion sensor, and selects from the top antenna group, bottom antenna group, and middle antenna group according to the current scene The first antenna group. Then, the electronic device can perform antenna switching in the first antenna group according to the signal quality.
  • the current scene includes any of the following: a scene where the user holds the bottom of the electronic device in a vertical screen, a scene where the user holds the top of the electronic device in a vertical screen, a scene where the user holds the middle of the electronic device in a vertical screen, and a user holds in a horizontal screen.
  • the scene at the bottom of the electronic device the scene where the user holds the top of the electronic device in the horizontal screen, the scene where the user holds the top and bottom of the electronic device in the horizontal screen, and the scene where the user holds the middle of the electronic device in the horizontal screen.
  • the electronic device performs antenna switching in the first antenna group according to the signal quality, which may specifically include: selecting an antenna with the best signal quality from the first antenna group of the electronic device.
  • the electronic device can select the top antenna group as the optimal antenna group. If it is determined that the current scene is a scene where the top of the electronic device is held by the user in a vertical screen, the electronic device may select the bottom antenna group as the optimal antenna group. If it is determined that the current scene is a scene in which the middle of the electronic device is held by the user in the vertical screen, the electronic device may select the bottom antenna group as the optimal antenna group.
  • the electronic device can select the top antenna group as the optimal antenna group. If it is determined that the current scene is a scene where the top of the electronic device is held by the user with a horizontal screen, the electronic device may select the bottom antenna group as the optimal antenna group. If it is determined that the current scene is a scene where the top and bottom of the electronic device are both held by the user in the horizontal screen (for example, the horizontal screen is handheld 3), the electronic device can select the central antenna group as the optimal antenna group. If it is determined that the current scene is a scene in which the middle of the electronic device is held by the user in a horizontal screen, the electronic device may select the bottom antenna group as the optimal antenna group.
  • the upper frame may be disposed on the top of the electronic device, and the lower frame may be disposed on the bottom of the electronic device.
  • the first side frame and the second side frame can be respectively disposed on both sides of the electronic device.
  • the upper frame may include one horizontal part and two vertical parts. The length of the vertical part does not exceed the first length, for example 20 mm.
  • the lower frame may also include a horizontal part and two vertical parts. The length of the vertical part does not exceed the second length.
  • the second length may be the same as the first length, and may both be 20 mm, for example. The second length can also be different from the first length.
  • FIG. 1 is a schematic diagram of the structure of an electronic device on which the antenna design solution provided by the present application is based;
  • FIGS. 2A-2B are structural schematic diagrams of the peripheral conductive structure involved in the present application.
  • 3A-3D are schematic diagrams of several prior art designs of antennas using peripheral conductive structures
  • FIG. 4 is a schematic diagram of the layout of the three antenna groups in the electronic device and the application scenarios of the three antenna groups provided by the present application;
  • FIG. 5 is a schematic diagram of several typical vertical screen hand holding scenarios involved in the antenna design solution provided by the present application.
  • FIG. 6 is a schematic diagram of several typical horizontal screen hand-holding scenarios involved in the antenna design solution provided by the present application.
  • FIG. 7A is a schematic structural diagram of a medium and high frequency multi-antenna system provided by the present application.
  • Fig. 7B is a schematic diagram of feeding and grounding of the multi-antenna system of Fig. 7A;
  • FIG. 7C is a schematic diagram of the position of the tuning switch in the multi-antenna system of FIG. 7A;
  • 8A-8D are schematic diagrams of several implementations of 4 ⁇ 4 MIMO cellular mobile antennas provided by this application.
  • FIG. 9A is a schematic structural diagram of a low-frequency multi-antenna system provided by the present application.
  • Fig. 9B is a schematic diagram of feeding and grounding of the multi-antenna system of Fig. 9A;
  • FIG. 9C is a schematic diagram of the position of the tuning switch in the multi-antenna system of FIG. 9A;
  • 10A is a schematic structural diagram of another low-frequency multi-antenna system provided by the present application.
  • FIG. 10B is a schematic diagram of feeding and grounding of the multi-antenna system of FIG. 10A;
  • FIG. 10C is a schematic diagram of the position of the tuning switch in the multi-antenna system of FIG. 10A;
  • FIG. 11A is a schematic structural diagram of yet another low-frequency multi-antenna system provided by the present application.
  • Fig. 11B is a schematic diagram of feeding and grounding of the multiple antenna system of Fig. 11A;
  • FIG. 11C is a schematic diagram of the position of the tuning switch in the multi-antenna system of FIG. 11A;
  • 12A-12B are schematic diagrams of the structure of a foldable electronic device
  • FIG. 13A is an antenna switching solution for a foldable electronic device in an unfolded state provided by the present application
  • FIG. 13B is an antenna switching solution for a foldable electronic device in a folded state provided by the present application.
  • Figure 14 is a schematic diagram of the layout of the SAR sensor and the motion sensor in the electronic device
  • 15A-15C are schematic diagrams of setting SAR sensor sensing branches provided by the present application.
  • 16A-16C are another schematic diagrams of setting SAR sensor sensing branches provided by the present application.
  • FIG. 17 is a schematic diagram of a multi-antenna switching solution for a 1T4R antenna architecture provided by the present application.
  • FIG. 18 is a schematic diagram of a multi-antenna switching solution for a 2T4R antenna architecture provided by the present application.
  • FIG. 19 is a schematic diagram of a sensor layout for a foldable electronic device provided by the present application.
  • FIG. 20 is a schematic diagram of a structure of the tuning switch involved in the present application.
  • the technical solution provided in this application is applicable to electronic devices using one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity, Wi-Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication Technology, 5G communication technology, SUB-6G communication technology and other future communication technologies, etc.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (PDA), and so on.
  • Fig. 1 exemplarily shows the internal environment of the electronic device on which the antenna design solution provided in this application is based.
  • the electronic device 10 may include: a glass cover 13, a display screen 15, a printed circuit board PCB 17, a housing 19 and a back cover 12.
  • the glass cover 13 can be arranged close to the display screen 15 and can be mainly used to protect the display screen 15 from dust.
  • the display screen 15 of the electronic device 10 may be a large-size display screen, and the screen-to-body ratio may reach over 90%.
  • the printed circuit board PCB17 can be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is a code name for the grade of flame-resistant material
  • Rogers dielectric board is a high-frequency board.
  • a metal layer can be provided on the side of the printed circuit board PCB17 close to the housing 19, and the metal layer can be formed by etching metal on the surface of the PCB17. The metal layer can be used to ground the electronic components carried on the printed circuit board PCB17 to prevent users from getting electric shock or equipment damage.
  • the shell 19 mainly supports the whole machine.
  • the housing 19 may include a peripheral conductive structure 11, and the structure 11 may be formed of a conductive material such as metal.
  • the structure 11 can extend around the periphery of the electronic device 10 and the display screen 15, and the structure 11 can specifically surround the four sides of the display screen 15 to help fix the display screen 15.
  • the structure 11 made of a metal material can be directly used as a metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for a metal ID.
  • the outer surface of the structure 11 may also be provided with a non-metal frame, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
  • the peripheral conductive structure 11 can be divided into 4 parts, which can be named according to their respective positions in the electronic device: upper frame 11-5, lower frame 11-7, and Side frame 11-3, side frame 11-1.
  • the upper frame 11-5 can be arranged on the top of the electronic device 10
  • the lower frame 11-7 can be arranged on the bottom of the electronic device 10.
  • the side frames 11-3 and 11-1 can be respectively disposed on both sides of the electronic device 10.
  • the top of the electronic device 10 may be provided with a front camera (not shown), an earpiece (not shown), a proximity light sensor (not shown) and other devices.
  • the bottom of the electronic device 10 may be provided with a USB charging port (not shown), a microphone (not shown), and the like.
  • the side of the electronic device 10 may be provided with a volume adjustment button (not shown) and a power button (not shown).
  • the upper frame 11-5 may include a horizontal part 11-5A and two vertical parts 11-5B and 11-5C.
  • the length of the vertical part does not exceed the first length, for example 20 mm.
  • the lower frame 11-7 may also include a horizontal part 11-7A and two vertical parts 11-7B and 11-7C.
  • the length of the vertical part does not exceed the second length.
  • the second length may be the same as the first length, and may both be 20 mm, for example.
  • the second length can also be different from the first length.
  • the back cover 12 is a back cover made of a non-conductive material, such as a glass back cover, a plastic back cover and other non-metal back covers.
  • FIG. 1 only schematically shows some components included in the electronic device 10, and the actual shape, actual size, and actual structure of these components are not limited by FIG. 1.
  • the antenna of the electronic device 10 may be formed by the structure 11, and the structure 11 may have a gap through which electromagnetic waves are radiated outward.
  • the gap can be filled with materials such as polymers, glass, ceramics, or a combination of these materials.
  • FIGS 3A-3D show several existing technologies that use the structure 11 to implement an antenna of an electronic device.
  • the peripheral conductive structure 11 has a gap at a position close to the bottom of the side of the electronic device 10. Since the gap is on both sides, the antenna provided by the prior art 1 has good free space efficiency. However, in a scenario where a user holds the electronic device 10 in a vertical screen to make a call, the user's hand can easily hold or cover the gap, causing the antenna to be blocked, and the antenna signal is extremely weak, or even no signal.
  • the peripheral conductive structure 11 has a gap at the bottom of the electronic device 10 near both sides.
  • the antenna design provided by the prior art 2 has a small antenna radiator and low antenna efficiency. It is necessary to increase the antenna headroom to improve the antenna performance. This conflicts with the problem of reducing the antenna headroom area of the antenna design under the full-screen ID.
  • the user’s hand is relatively close to the gap. In extreme cases, the user’s hand may just hold or cover the gap, causing the antenna to be completely blocked, and the antenna signal is extremely high. Weak, even no signal.
  • the peripheral conductive structure 11 has gaps at the bottom and top of the electronic device 10 near both sides, and the four antennas include MIMO Ant1, diversity Ant1, MIMO Ant2 and the main set Ant0.
  • MIMO Ant2 is built on the internal support. Since the internal antenna clearance area is small, the antenna height is very small, for example, within 1.5 mm, resulting in low antenna radiation efficiency. Moreover, in a scenario where the user holds the electronic device 10 while making a call, coupled with the influence of the user's hand, the antenna performance of the MIMO Ant2 will be further deteriorated.
  • the peripheral conductive structure 11 has gaps at the positions close to the top and the bottom on both sides of the electronic device 10, and the four antennas are all implemented using the structure 11.
  • the four antennas include MIMO Ant1, diversity Ant1, MIMO Ant2, and main Ant0.
  • the main set Ant0 and the diversity Ant1 can be switched through the smart antenna switch (transmit antenna switch, TAS) technology.
  • TAS transmit antenna switch
  • the main antenna can be cut up to the top antenna Ant1
  • the diversity antenna can be cut down to the bottom antenna Ant0, which can ensure the antenna performance of the main antenna.
  • the diversity antenna is cut down to the bottom antenna, the radiation efficiency drops significantly.
  • the above-described prior art 3 and prior art 4 may be referred to as "upper and bottom antenna layout".
  • the bottom antenna is usually the main antenna
  • the top antenna is usually a diversity antenna.
  • “up” refers to close to the top of the electronic device
  • “down” refers to close to the bottom of the electronic device.
  • This antenna layout combined with the intelligent switching technology of the bottom antenna can overcome the influence of the user's hand grip in the call scene.
  • the intelligent switching technology of the upper and bottom antennas means that the antenna with the best signal is selected as the main antenna according to the signal strength of the bottom antenna and the top antenna.
  • the main antenna can be cut up to the top antenna, and the diversity antenna can be cut down to the bottom antenna, which can ensure the antenna performance of the main antenna.
  • the diversity antenna is cut down to the bottom antenna, the radiation efficiency drops significantly.
  • the existing technologies are constantly improving the antenna design under the full-screen ID to reduce the impact of the user's hand on the antenna performance and improve some scenarios (such as the user holding the electronic device 10 in the vertical screen and talking Scenario) antenna performance.
  • the existing technology cannot cope with antenna performance problems in more scenarios.
  • the present application provides a multi-antenna system.
  • a multi-antenna system In which antennas are arranged on the top, side, and bottom of the electronic device 10, three antenna groups at the top, middle, and bottom are formed, which will take into account free space scenes and verticals.
  • Fig. 4 exemplarily shows the layout of the three antenna groups provided in the present application in the electronic device and the respective applicable scenarios of the three antenna groups.
  • the three antenna groups include: the top antenna group, the middle antenna group and the bottom antenna group.
  • the top antenna group can be distributed on the top of the electronic device 10 and can be mainly realized by the upper frame 11-5 of the structure 11.
  • the central antenna group may be distributed in the middle of the electronic device 10, and may be mainly realized by the side frames 11-3 and 11-1 of the structure 11.
  • the bottom antenna group may be distributed at the bottom of the electronic device 10, and may be mainly realized by the lower frame 11-7 of the structure 11.
  • the top antenna group can be mainly used as a radiating antenna in a vertical screen hand-held scene.
  • the central antenna group can be mainly used as a radiating antenna in a landscape hand-held scene.
  • the bottom antenna group can be mainly used as a radiating antenna in a free space scene.
  • the free space scene may refer to a scene where the electronic device 10 is not held by the user.
  • the vertical screen holding scene may be a scene where the user holds the electronic device in the vertical screen, which may include, but is not limited to, the user holds the electronic device in the vertical screen to read, the user holds the electronic device in the vertical screen to play games, and the user holds the electronic device in the vertical screen to make calls, etc.
  • the horizontal screen holding scene may be a scene where the user holds the electronic device in the horizontal screen, and may include, but is not limited to, scenes where the user holds the electronic device in the horizontal screen to play games, and the user holds the electronic device in the horizontal screen to watch TV.
  • the several holding postures involved in the vertical screen holding scene can be shown in (A)-(B) in Figure 5, where (A), (C), and (D) in Figure 5 show the user One hand holds the bottom, top, and middle postures of the electronic device in the vertical screen.
  • (B) in FIG. 5 shows the posture of the user holding the middle and bottom of the electronic device in the vertical screen with both hands.
  • the several hand gestures involved in the horizontal screen holding scene can be shown in Figure 6 (A)-(D), where Figure 6 (A) and (B) show that the user holds the horizontal screen with one hand.
  • the posture of holding the top or bottom of the electronic device Fig. 6(C) shows the posture of the user holding the top and bottom of the electronic device with both hands horizontally
  • Fig. 6(D) shows the user’s one-handed horizontal screen
  • the structure 11 on the top, side, and bottom of the electronic device 10 is provided with gaps. These gaps divide the structure 11 into a plurality of peripheral conductive segments, which can be used for The three antenna groups exemplarily shown in FIG. 4 are formed.
  • the multi-antenna system provided by each embodiment of the present application will be described in detail below.
  • the multi-antenna system provided in the first embodiment may include: antenna 0, antenna 1, antenna 2, antenna 3, and antenna 4.
  • the plurality of antennas may be formed by a peripheral conductive structure 11 (hereinafter referred to as structure 11) having a plurality of gaps.
  • the upper frame 11-5 of the structure 11 may have two top gaps: 21-1 and 21-2.
  • the top gaps 21-1 and 21-2 can be respectively opened on the left and right sides of the horizontal part of the upper frame 11-5.
  • the lower frame 11-7 of the structure 11 may have two bottom gaps: 23-1 and 23-2.
  • the bottom gaps 23-1 and 23-2 can be respectively opened on the left and right sides of the horizontal part of the lower frame 11-7.
  • the left side frame 11-3 and the right side frame 11-1 of the structure 11 may each have 1 side gap: 27, 25.
  • the side gaps 27 and 25 can be respectively opened on the upper sides of the side frames 11-3 and 11-1.
  • the multiple gaps divide the structure 11 into multiple peripheral conductive segments.
  • the antenna 0 may include a lower frame 11-7 of the structure 11, a bottom gap, and a bottom feeding point 31-3.
  • the feeding point 31-3 can be set on the lower frame 11-7.
  • the feed point 31-3 can be used to connect the feed of the antenna 0 to excite the antenna 0 to generate radiation. Because it is located at the bottom of the structure 11, the antenna 0 can also be called a bottom antenna, which can radiate electromagnetic waves outward through the bottom gaps, such as gaps 23-1 and 23-2.
  • the feeding point 31-3 can be arranged on the right side of the bottom gap 23-2. Not limited to this, the feeding point 31-3 may also be arranged on the left side of the bottom gap 23-2 and the right side of the bottom gap 23-1, that is, between the two gaps.
  • the feeding point 31-3 can also be arranged on the left side of the bottom gap 23-1.
  • the antenna 1 may include an upper frame 11-5, a top gap 21-2, and a top feeding point 31-2.
  • the feeding point 31-2 can be set on the upper frame 11-5.
  • the feeding point 31-2 can be used to connect the feeding of the antenna 1 to excite the antenna 1 to generate radiation. Because it is arranged on the top of the structure 11, the antenna 1 can also be called a top antenna, which can radiate electromagnetic waves outward through the top gap 21-2.
  • the feeding point 31-2 can be arranged on the right side of the top gap 21-2. Not limited to this, the feeding point 31-2 may also be arranged on the peripheral conductive segment on the left side of the top gap 21-2.
  • the antenna 1 includes the left part of the upper frame 11-5.
  • the left part may be referred to as the first part of the upper frame 11-5.
  • the antenna 2 may include an upper frame 11-5, a top gap 21-1, and a top feeding point 31-1.
  • the feeding point 31-1 can be set on the upper frame 11-5.
  • the feeding point 31-1 can be used to connect the feeding of the antenna 2 to excite the antenna 2 to generate radiation. Because it is arranged on the top of the structure 11, the antenna 2 can also be called a top antenna, which can radiate electromagnetic waves outward through the top gap 21-1.
  • the feeding point 31-1 may be arranged on the left side of the top gap 21-1. Not limited to this, the feeding point 31-1 may also be arranged on the right side of the top gap 21-1.
  • the antenna 2 includes the right part of the upper frame 11-5. The right part may be referred to as the second part of the upper frame 11-5.
  • the antenna 3 may include a right side frame 11-1, a side gap 25, and a side feeding point 31-5.
  • the feeding point 31-5 can be arranged on the side frame 11-1.
  • the feeding point 31-5 can be used to connect the feeding of the antenna 3 to excite the antenna 3 to generate radiation. Because it is arranged on both sides of the structure 11, and the two sides are located in the middle of the electronic device 10, the antenna 3 can also be called a middle antenna, and can radiate electromagnetic waves outward through the side gap 25.
  • the feeding point 31-5 may be provided on the upper side of the gap 25. Not limited to this, the feeding point 31-5 may also be arranged on the lower side of the gap 25.
  • the antenna 4 may include a left side frame 11-3, a side gap 27, and a side feeding point 31-7.
  • the side gap 27 may be opened on the upper side of the side frame 11-3.
  • the feeding point 31-7 can be arranged on the side frame 11-3.
  • the feeding point 31-7 can be used to connect the feeding of the antenna 4 to excite the antenna 4 to generate radiation. Because it is arranged on both sides of the structure 11 and the two sides are located in the middle of the electronic device 10, the antenna 4 can also be referred to as a middle antenna, which can radiate electromagnetic waves outward through the side gap 27.
  • the feeding point 31-7 may be provided on the upper side of the gap 27. Not limited to this, the feeding point 31-7 may also be arranged on the lower side of the gap 27.
  • the left and right sides are only used to facilitate the description of the relative position of each element, such as each frame, gap, and feed point, and are not used to limit the position of each element in the actual complete machine model.
  • the upper side refers to the side closer to the top frame 11-5, which is relative to the lower side
  • the lower side refers to the side closer to the bottom frame 11-7.
  • the left side refers to the side closer to the left side frame 11-3, which is relative to the right side
  • the right side refers to the side closer to the right side frame 11-1.
  • the left side may be referred to as the first side
  • the right side may be referred to as the second side.
  • the central antennas such as antenna 3 and antenna 4 can be arranged in the middle or upper position of the side frame.
  • the side clearance also starts at the middle or upper position of the side frame accordingly.
  • the central antenna can also be adjusted within a range of 20 mm above and below the middle of the side frame.
  • antenna 0 can be called the bottom antenna
  • antenna 2 and antenna 1 can be called the first top antenna and the second top antenna, respectively
  • antenna 4 and antenna 3 can be called the first side antenna and the second side respectively.
  • Side antenna The top feeding point 31-1 and the top feeding point 31-2 may be referred to as the first top feeding point and the second top feeding point, respectively.
  • the top gap 21-1 and the top gap 21-2 may be referred to as the first top gap and the second top gap, respectively.
  • the side frame 11-3 and the side frame 11-1 may be referred to as a first side frame and a second side frame, respectively.
  • the side feeding point 31-7 and the side feeding point 31-5 may be referred to as the first side feeding point and the second side feeding point, respectively.
  • the side gap 27 and the side gap 25 may be referred to as a first side gap and a second side gap, respectively.
  • a grounding point can be set between adjacent antennas in a multi-antenna system.
  • the structure 11 between the feed point 31-3 of the antenna 0 and the feed point 31-5 of the antenna 3 may be provided with a ground point 32-5.
  • the structure 11 between the feeding point 31-5 of the antenna 3 and the feeding point 31-2 of the antenna 1 may be provided with a grounding point 32-3.
  • the structure 11 between the feed point 31-2 of the antenna 1 and the feed point 31-1 of the antenna 2 may be provided with a ground point 32-7.
  • the structure 11 between the feed point 31-1 of the antenna 2 and the feed point 31-7 of the antenna 4 may be provided with a ground point 32-1.
  • grounding of these grounding points can be achieved by connecting conductors such as metal shrapnel to the ground, or by connecting a tuning switch to the ground. These ground points can also be used to ground each antenna.
  • FIG. 7C exemplarily shows the position where the tuning switch can be set in the multi-antenna system of the first embodiment.
  • the structure 11 can be connected to a tuning switch to perform the following:
  • the tuning switch at position A (ie, the right side of the gap 23-2) can be used to adjust the operating frequency band of the peripheral conductive segment between the bottom gap 23-2 and the ground point 32-5.
  • the tuning switch at position B (ie, the left side of the gap 23-2 or the right side of the gap 23-1) can be used to adjust the operating frequency band of the peripheral conductive segment between the bottom gap 23-2 and the bottom gap 23-1.
  • the tuning switch at the position K ie, the lower side of the gap 25
  • the tuning switch at the position K (ie, the lower side of the gap 25) can be used to adjust the operating frequency band of the peripheral conductive segment between the side gap 25 and the ground point 32-5.
  • the tuning switches at positions K and D can be set to a closed state, such as cutting 0 ohm to ground, and the tuning switches at positions E and J can be set to an open state.
  • the radiation of the peripheral conductive segments on the upper side of the side gaps 27 and 25 can be enhanced, and the radiation of the peripheral conductive segments on the lower side of the side gaps 27 and 25 can be reduced, which improves the antenna performance of the antennas 3 and 4, and can avoid users Hand grip influence.
  • the tuning switches at positions E and J can be set to the closed state, such as cutting 0 ohm to ground, and the tuning switches at positions K and D can be set to the open state.
  • the radiation of the peripheral conductive segments on the lower side of the side gaps 27 and 25 can be enhanced, and the radiation of the peripheral conductive segments on the upper side of the side gaps 27 and 25 can be reduced, which improves the antenna performance of the antennas 3 and 4, which can avoid users Hand grip influence.
  • antenna 0 and antenna 1 can be used as the main antenna and diversity antenna in cellular mobile communications, respectively.
  • the main antenna is generally responsible for the transmission and reception of radio frequency signals.
  • Diversity antennas in cellular mobile communications generally only receive radio frequency signals but not transmit radio frequency signals.
  • the electronic device will select the signal with better signal quality from the signals received from the two antenna ports for demodulation.
  • Antenna 0, Antenna 1, Antenna 3, and Antenna 4 can all be connected to an antenna switch (not shown).
  • the antenna switching switch may be referred to as the first antenna switching switch.
  • the first antenna switch can be used to select the antenna with the best signal quality from antenna 0, antenna 1, antenna 3, and antenna 4.
  • the selected antenna with the best signal quality can be used as the main antenna.
  • the antenna switch can also select the antenna with the second best signal quality from antenna 0, antenna 1, antenna 3, and antenna 4 as the diversity antenna.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the top antenna, the middle antenna, and the bottom antenna to adapt to various application scenarios and ensure the antenna performance during cellular mobile communication.
  • the signal quality of the bottom antenna deteriorates due to being held by the user's hand.
  • the signal quality of the top antenna and the middle antenna is good.
  • the main antenna can be switched to the top antenna or the middle antenna, and the diversity antenna can be switched to the top antenna or the middle antenna. In this way, the antenna performance of the main antenna can be ensured, and the antenna performance of the diversity antenna can be ensured, and the problem of the performance degradation of the diversity antenna caused by the upper cutting and the decomposition lower cutting of the main antenna in the traditional "upper and bottom antenna layout" can be avoided.
  • the signal quality of the top antenna deteriorates due to the user holding it, while the bottom antenna ,
  • the signal quality of the central antenna is excellent.
  • the bottom antenna can be used as the main antenna, which can present good antenna performance.
  • the diversity antenna can be switched to the central antenna to ensure the antenna performance of the diversity antenna.
  • the signal quality of the top antenna and the bottom antenna are both degraded due to being held by the user’s hand.
  • the signal quality of the central antenna is good.
  • Both the main antenna and the diversity antenna can be switched to the middle antenna, so that both the main antenna and the diversity antenna exhibit good antenna performance.
  • the signal quality of the central antenna deteriorates due to being held by the user's hand, and
  • the signal quality of the top antenna and bottom antenna is good.
  • the bottom antenna can be used as the main antenna, and the top antenna can be used as the diversity antenna.
  • the multi-antenna system provided in the first embodiment can also be applied to other hand-held scenarios, present good antenna performance, and improve the quality of cellular mobile communication.
  • the Wi-Fi antenna of the electronic device 10 can be implemented by the top antenna by default.
  • antenna 2 can be used as a Wi-Fi 2.4G Core0 antenna
  • antenna 1 can be used as a Wi-Fi 2.4G Core1 antenna.
  • Core0 antenna and Core1 antenna form dual WiFi antennas, and both antennas can be used for signal transmission and reception.
  • the Wi-Fi antenna when the signal quality of the top antenna is poor, the Wi-Fi antenna can also be switched from the top antenna to the middle antenna. In other words, the Wi-Fi antenna can be switched between the top antenna and the middle antenna to achieve performance improvements similar to cellular mobile communication antennas.
  • the specific implementation of this antenna switching can be as follows:
  • the antenna 1 and the antenna 3 may be connected to a second antenna switch (not shown).
  • the second antenna switch can be used to select an antenna with better signal quality from antenna 1 and antenna 3 as the Wi-Fi antenna.
  • the antenna 2 and the antenna 4 may be connected to a third antenna switch.
  • the third antenna switch can be used to select the antenna with better signal quality from the antenna 2 and the antenna 4 as the Wi-Fi antenna.
  • the frequency divider can be used (Combiner) or time division multiplexing to achieve multiplexing.
  • Wi-Fi usage scenarios refer to scenarios where electronic devices turn on Wi-Fi and communicate via Wi-Fi (such as video calls, web browsing, etc.).
  • the electronic device can determine whether the electronic device is in a Wi-Fi usage scenario by whether Wi-Fi is turned on, and whether a specific application or function (such as video call, video playback) is started.
  • the multi-antenna system in the first embodiment may include 4 ⁇ 4 MIMO cellular mobile antennas.
  • Figures 8A-8D show several implementations of 4 ⁇ 4 MIMO cellular mobile antennas.
  • MIMO refers to multi-input multi-output (multi-input multi-output).
  • antenna 0 can be used as a main antenna, and antenna 1 can be used as a diversity antenna.
  • Antenna 2 and Antenna 3 can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between antenna 0, antenna 1, antenna 3, and antenna 4.
  • the Wi-Fi 2.4G Core0 antenna can be switched between antenna 2 and antenna 4.
  • Wi-Fi 2.4G Core1 antenna can be switched between antenna 3 and antenna 1.
  • antenna 2 and antenna 3 can also be used for cellular mobile communications, thereby forming 4 receiving antennas and supporting 4 ⁇ 4 MIMO architecture.
  • antenna 0 can be used as a main antenna, and antenna 1 can be used as a diversity antenna.
  • Antenna 2 and Antenna 3 can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between antenna 0, antenna 1, antenna 3, and antenna 4.
  • the Wi-Fi 2.4G Core0 antenna can be switched between antenna 2 and antenna 4.
  • Wi-Fi 2.4G Core1 antenna can be switched between antenna 3 and antenna 1.
  • antenna 3 and antenna 4 can also be used for cellular mobile communications, thereby forming 4 receiving antennas and supporting 4 ⁇ 4 MIMO architecture.
  • antenna 0 can be used as the main antenna, and antenna 1 can be used as the diversity antenna.
  • Antenna 2 and Antenna 3 can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between antenna 0, antenna 1, antenna 3, and antenna 4.
  • the Wi-Fi 2.4G Core0 antenna can be switched between antenna 2 and antenna 4.
  • Wi-Fi 2.4G Core1 antenna can be switched between antenna 3 and antenna 1.
  • antenna 2 and antenna 3 can also be used for cellular mobile communications, thereby forming 4 receiving antennas and supporting 4 ⁇ 4 MIMO architecture.
  • antenna 0 can be used as a main antenna
  • antenna 3 can be used as a diversity antenna.
  • Antenna 2 and Antenna 1 can be used as Wi-Fi antennas.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between antenna 0, antenna 1, antenna 3, and antenna 4.
  • the Wi-Fi 2.4G Core0 antenna can be switched between antenna 2 and antenna 4.
  • Wi-Fi 2.4G Core1 antenna can be switched between antenna 3 and antenna 1.
  • antenna 1 and antenna 2 can also be used for cellular mobile communications, thereby forming 4 receiving antennas and supporting a 4 ⁇ 4 MIMO architecture.
  • the four receiving antennas used for signal reception are distributed on the top, middle, and bottom of the electronic device, which can adapt to various user holding scenarios and ensure the signal receiving performance of the electronic device.
  • the performance of the receiving antenna at the bottom will be significantly deteriorated, but the performance of the receiving antenna at the top and middle is good, and signals can be received normally.
  • the performance of the top receiving antenna will be significantly deteriorated, but the bottom and middle receiving antennas have good performance and can receive signals normally.
  • the performance of the top and bottom receiving antennas will be significantly deteriorated, but the performance of the receiving antenna in the middle is good and can receive signals normally.
  • the multi-antenna system provided in the first embodiment can work in the mid-to-high frequency band (1670MHz-2.5G Hz).
  • the multi-antenna system can perform well in multiple scenarios such as free space scenes, vertical screen hand-held scenes, and horizontal hand-held scenes. ⁇ radiation efficiency.
  • the multi-antenna system provided in the first embodiment can also support the 5G sub6G/5G sub3G frequency band, that is, the 5G Sub6G/5G sub3G antenna of the electronic device 10 and the medium and high frequency antenna can share a radiator.
  • the feed position can be changed and the feed resistance can be designed. Anti-matching, or set tuning switches on both sides of the gap to achieve.
  • the multi-antenna system provided in the second embodiment may include: antenna 0 and antenna 1.
  • the two antennas may be formed by a peripheral conductive structure 11 (hereinafter referred to as structure 11) having multiple gaps.
  • the upper frame 11-5 of the structure 11 may have two top gaps: 21-1 and 21-2.
  • the top gaps 21-1 and 21-2 can be respectively opened on the left and right sides of the upper frame 11-5.
  • the lower frame 11-7 of the structure 11 may have two bottom gaps: 23-1 and 23-2.
  • the bottom gaps 23-1 and 23-2 can be respectively opened on the left and right sides of the lower frame 11-7.
  • the left side frame 11-3 and the right side frame 11-1 of the structure 11 may each have 1 side gap: 27, 25.
  • the side gaps 27 and 25 can be respectively opened on the upper sides of the side frames 11-3 and 11-1.
  • the multiple gaps divide the structure 11 into multiple peripheral conductive segments.
  • the antenna 0 may include a lower frame 11-7, bottom gaps 23-1, 23-2 and a feeding point 32-1 of the structure 11, and a left frame 11-3 and a side gap 27 of the structure 11.
  • the feeding point 32-1 may be provided on the peripheral conductive section between the bottom gap 23-1 and the side gap 27.
  • the feed point 32-1 can be used to connect the feed of the antenna 0 to excite the antenna 0 to generate radiation.
  • the antenna 0 in the second embodiment extends from the lower frame 11-7 at the bottom to the side frame 11-3, and it can pass through the bottom gap 23-1 and the side gap 27 outward. Radiating electromagnetic waves.
  • the antenna 1 may include an upper frame 11-5, a top gap 21-2, and a top feeding point 32-3.
  • the feeding point 32-3 can be set on the upper frame 11-5.
  • the feeding point 32-3 can be used to connect the feeding of the antenna 1 to excite the antenna 1 to generate radiation. Because it is arranged on the top of the structure 11, the antenna 1 can also be called a top antenna, which can radiate electromagnetic waves outward through the top gap 21-2.
  • the feeding point 32-3 may be arranged on the right side of the top gap 21-2. Not limited to this, the feeding point 32-3 may also be provided on the peripheral conductive segment on the left side of the top gap 21-2.
  • grounding points can be set between adjacent antennas in a multi-antenna system.
  • the structure 11 between the feed point 32-1 of the antenna 0 and the feed point 32-3 of the antenna 1 may be provided with ground points 33-1 and 33-2.
  • the grounding of these grounding points can be achieved by connecting conductors such as metal shrapnel to the ground, or by connecting devices to the ground. These ground points can also be used to ground each antenna.
  • FIG. 9C exemplarily shows the position where the tuning switch can be set in the multiple antenna system of the second embodiment.
  • the structure 11 can be connected to a tuning switch to perform:
  • the tuning switch at position D (ie, the left side of the gap 21-2) can be used to adjust the operating frequency band of the peripheral conductive segment on the left side of the gap 21-2.
  • the tuning switch at position E (ie, the right side of the gap 21-2) can be used to adjust the working frequency band of the peripheral conductive segment on the right side of the gap 21-2.
  • the tuning switch at position B (ie, the left side of the gap 23-1) can be used to adjust the operating frequency band of the peripheral conductive segment on the left side of the gap 23-1.
  • antenna 0 and antenna 1 can be used as the main antenna and diversity antenna in cellular mobile communications, respectively.
  • Both antenna 0 and antenna 1 can be connected to an antenna switch (not shown).
  • the antenna switch can be referred to as the first antenna switch.
  • the first antenna switch can be used to select the antenna with the best signal quality from antenna 0 and antenna 1.
  • the selected antenna with the best signal quality can be used as the main antenna.
  • the antenna 0 in the second embodiment extends from the lower frame 11-7 at the bottom to the side frame 11-3, and it can pass through the bottom gap 23-1 and the side gap 27 outward.
  • Radiating electromagnetic waves can form two radiation modes on the bottom and sides: horizontal mode and vertical mode.
  • the lateral mode may refer to a radiation pattern in which the lateral lower frame 11-7 is used as the main radiator to radiate outward.
  • the longitudinal mode may refer to a radiation mode in which the longitudinal side frame 11-3 is used as the main radiator to radiate outward.
  • antenna 0 When the radiation pattern of antenna 0 is the horizontal mode, antenna 0 can be used as the bottom antenna, similar to the antenna 0 in implementation one; when the radiation pattern of antenna 0 is the longitudinal mode, antenna 0 can be used as the middle antenna, similar to the implementation Antenna 3 or Antenna 4 in Example 1.
  • the second embodiment it is possible to adjust whether the radiation mode of the antenna 0 is the horizontal mode or the vertical mode by changing the state (such as the open state or the closed state) of the tuning switch connecting the lower frame 11-7 and the side frame 11-3.
  • the tuning switch connected to the lower frame 11-7 may be referred to as the first tuning switch.
  • the first tuning switch may be specifically connected to the lower frame 11-7 on one or both sides of the bottom gap 23-1, for example, at the position B shown in FIG. 9C.
  • the first tuning switch may be specifically arranged on the left side of the bottom gap 23-1.
  • the tuning switch connected to the side frame 11-3 may be referred to as a second tuning switch.
  • the second tuning switch may be specifically connected to the side frame 11-3 on one or both sides of the side gap 27, for example, at the position C shown in FIG. 9C.
  • the second tuning switch can be specifically arranged on the lower side of the side gap 27.
  • the first tuning switch When the first tuning switch is in the open state and the second tuning switch is in the closed state, the lower frame 11-7 is fully excited and can be used as a radiator to generate radiation. At this time, the radiation mode of antenna 0 is transverse mode, which is not affected. The effect of holding the side gap 27 with the hand, the radiation efficiency of the holding is good.
  • the first tuning switch can also be used to switch the radiation frequency band of the lower frame 11-7 in the horizontal mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the side frame 11-3 When the second tuning switch is in the open state and the first tuning switch is in the closed state, the side frame 11-3 is fully excited and can be used as a radiator to generate radiation. At this time, the radiation mode of the antenna 0 is longitudinal mode, free space The radiation efficiency is good.
  • the second tuning switch can also be used to switch the radiation frequency band of the side frame 11-3 in the vertical mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the radiation mode of the antenna 0 can be switched and adjusted, and the antenna performance can be improved through the switch combination state, and frequency band tuning can also be achieved.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the top, middle, and bottom of the electronic device, adapting to various applications Scenarios to ensure good antenna performance during cellular mobile communication.
  • the bottom of the electronic device is held by the user.
  • the horizontal mode performance of antenna 0 is poor, but the performance of antenna 1 at the top is good, and the vertical mode performance of antenna 0 is good.
  • the main antenna can be switched to antenna 1 on the top, and the diversity antenna can be switched to the longitudinal mode of antenna 0. In this way, the antenna performance of the main antenna and the diversity antenna can be ensured, and the problem of the degradation of the performance of the diversity antenna caused by the main set up-cutting and diversity down-cutting in the traditional "top and bottom antenna layout" can also be avoided.
  • the performance of antenna 1 deteriorates, but the performance of antenna 0 is good, especially the antenna
  • the landscape mode performance of 0 is good.
  • the main antenna can be switched to the horizontal mode of antenna 0, which can ensure that the antenna performance of the main antenna is good.
  • the performance of antenna 1 deteriorates, and the horizontal mode performance of antenna 0 is poor, but the vertical mode of antenna 0 Mode performance is good.
  • the main antenna can be switched to the longitudinal mode of antenna 0, which can ensure that the antenna performance of the main antenna is good.
  • the longitudinal mode performance of antenna 0 is poor, but the performance of antenna 1 and antenna 0 is poor.
  • the main antenna can be switched to the horizontal mode of antenna 0, and antenna 1 can be used as a diversity antenna. In this way, good antenna performance of the main antenna and diversity antenna can be ensured.
  • the multi-antenna system provided in the second embodiment can also be applied to other hand-held scenarios, present good antenna performance, and improve the quality of cellular mobile communication.
  • the multi-antenna system provided in the second embodiment can work in a low frequency band (for example, 960 MHz).
  • the multi-antenna system can exhibit good radiation efficiency in multiple scenarios such as free space scenes, vertical screen hand-held scenes, and horizontal hand-held scenes.
  • the multi-antenna system provided in the second embodiment and the multi-antenna system provided in the first embodiment can be implemented in combination, so as to realize that it can adapt to multiple scenes at low frequencies and medium and high frequencies, and exhibit good radiation efficiency.
  • the antenna 1 on the top of the electronic device can also be designed like antenna 0, that is, the antenna 1 can extend from the upper frame 11-5 on the top to the side frame 11-1, and it can pass through the top gap 21-2 and the side
  • the gap 25 radiates electromagnetic waves outward, which can support more horizontal and vertical screen hand-held scenes.
  • the antenna 1 may include an upper frame 11-5, top gaps 21-1, 21-2, and a feeding point 32-3 of the structure 11, and a right frame 11-1 of the structure 11, Side gap 25.
  • the feeding point 32-3 may be provided on the peripheral conductive segment between the top gap 21-2 and the side gap 25.
  • the feeding point 32-3 can be used to connect the feeding of the antenna 1 to excite the antenna 1 to generate radiation.
  • the antenna 1 in Figs. 9A-9C extends from the upper frame 11-5 at the top to the side frame 11-1, which can pass through the top gap 21-2, and the side frame 11-1.
  • the gap 25 radiates electromagnetic waves outward.
  • antenna 1 can form two radiation patterns on the top and sides: horizontal mode and vertical mode.
  • the lateral mode may refer to a radiation pattern in which the lateral upper frame 11-5 is used as the main radiator to radiate outward.
  • the longitudinal mode may refer to a radiation mode in which the longitudinal side frame 11-1 is used as the main radiator to radiate outward.
  • the antenna 1 can be used as the top antenna; when the radiation pattern of the antenna 1 is the vertical mode, the antenna 1 can be used as the middle antenna, similar to the antenna 3 or the antenna 4 in the first embodiment .
  • Whether the radiation mode of the antenna 1 is a horizontal mode or a vertical mode can be adjusted by changing the state (such as an open state or a closed state) of the tuning switch connected to the upper frame 11-5 and the side frame 11-1.
  • the tuning switch connected to the upper frame 11-5 may be referred to as the third tuning switch.
  • the third tuning switch may be specifically connected to the upper frame 11-5 on one or both sides of the top gap 21-2, for example, at the position D shown in FIG. 10C.
  • the tuning switch connected to the side frame 11-1 may be referred to as a fourth tuning switch.
  • the fourth tuning switch may be specifically connected to the side frame 11-1 on one or both sides of the side gap 25, for example, at the position E and the position F shown in FIG. 10C.
  • the third tuning switch When the third tuning switch is in the open state and the fourth tuning switch is in the closed state, the upper frame 11-5 is fully excited and can be used as a radiator to generate radiation. At this time, the radiation mode of the antenna 1 is transverse mode, which is not affected. The effect of hand holding the side gap 25, the hand holding radiation efficiency is good.
  • the third tuning switch can also be used to switch the radiation frequency band of the upper frame 11-5 in the horizontal mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the fourth tuning switch When the fourth tuning switch is in the open state and the third tuning switch is in the closed state, the side frame 11-1 is fully excited and can be used as a radiator to radiate outwards. At this time, the radiation mode of the antenna 1 is longitudinal mode, free space The radiation efficiency is good.
  • the fourth tuning switch can also be used to switch the radiation frequency band of the side frame 11-1 in the vertical mode, for example, to switch between low frequency frequency bands such as LTE B5, LTE B8, and LTE B28.
  • the radiation mode of the antenna 1 can be switched and adjusted, and the antenna performance can be improved through the switch combination state, and frequency band tuning can also be achieved.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the top, middle, and bottom of the electronic device. More application scenarios to ensure good antenna performance in cellular mobile communications.
  • the horizontal mode performance of antenna 1 is poor, but the vertical mode performance of antenna 1 Good, the performance of antenna 0 is good, especially the transverse mode performance of antenna 0 is good.
  • the main antenna can be switched to the horizontal mode of antenna 0, and the diversity antenna can be switched to the vertical mode of antenna 1, which can ensure good antenna performance of the main and diversity antennas.
  • the horizontal mode performance of antenna 1 is poor, and the horizontal mode performance of antenna 0 is poor, but the antenna 0.
  • the longitudinal mode of antenna 1 has good performance.
  • the main antenna can be switched to the longitudinal mode of antenna 0, and the diversity antenna can be switched to the longitudinal mode of antenna 1, which can ensure good antenna performance of the main and diversity antennas.
  • the multi-antenna system provided in the second embodiment may also include antenna 2.
  • the antenna 2 may include: a side frame 11-1, a side gap 25, and a feeding point 32-5.
  • the feeding point 32-5 can be arranged on the side frame 11-1.
  • the feeding point 32-5 can be used to connect the feeding of the antenna 2 to excite the antenna 2 to generate radiation.
  • the feeding point 32-5 may be provided on the lower side of the side gap 25.
  • the grounding point 33-2 arranged between the feeding point 32-5 and the feeding point 32-3 can improve the isolation between the antenna 2 and the antenna 1, and is arranged at the feeding point 32
  • the grounding point 33-3 between -5 and the feeding point 32-1 can improve the isolation between the antenna 2 and the antenna 0.
  • the tuning switch connected to the side frame 11-1 can perform frequency band tuning for the antenna 2.
  • the tuning switch can be set on one or both sides of the side gap 25, for example at position F.
  • the horizontal mode of antenna 0 can be used as the main antenna in cellular mobile communication
  • antenna 1 can be used as the diversity antenna in cellular mobile communication.
  • antenna 2 can also be connected to the first antenna switch.
  • the first antenna switch can be used to select the antenna with the best signal quality from antenna 0, antenna 1, and antenna 2.
  • the selected antenna with the best signal quality can be used as the main antenna.
  • the first antenna switch can also select antennas with sub-optimal signal quality from antenna 0, antenna 1 and antenna 2 as the diversity antenna.
  • the main antenna and diversity antenna of cellular mobile communication can be switched between the top antenna, the middle antenna, and the bottom antenna to adapt to various application scenarios and ensure the antenna performance during cellular mobile communication.
  • the horizontal mode performance of antenna 0 is poor, but the vertical mode of antenna 0
  • the signal quality of antenna 1 and antenna 2 is good.
  • the main antenna can be switched to antenna 1, and the diversity antenna can be switched to the longitudinal mode of antenna 0 or antenna 2.
  • the antenna performance of the main antenna can be ensured, and the antenna performance of the diversity antenna can be ensured, and the problem of the performance degradation of the diversity antenna caused by the upper cutting and the decomposition lower cutting of the main antenna in the traditional "upper and bottom antenna layout" can be avoided.
  • the signal quality of antenna 1 is deteriorated due to the user holding, while antenna 0 ,
  • the signal quality of antenna 2 is excellent.
  • the transverse mode of antenna 0 can be used as the main antenna, which can present good antenna performance.
  • the diversity antenna can be switched to antenna 2, which can ensure the antenna performance of the diversity antenna.
  • the performance of antenna 0 in the horizontal mode and antenna 1 is poor, but the vertical mode of antenna 0 , The performance of antenna 2 is good.
  • the main antenna can be switched to antenna 2, and the diversity antenna can be switched to the longitudinal mode of antenna 0.
  • the diversity antenna can be switched to antenna 2, and the main antenna can be switched to the longitudinal mode of antenna 0. In this way, both the main antenna and the diversity antenna can exhibit good antenna performance.
  • the longitudinal mode of antenna 0 and the performance of antenna 2 are both poor, but the antenna In the horizontal mode of 0, the performance of antenna 1 is good.
  • the transverse mode of antenna 0 can be used as the main antenna, and antenna 1 can be used as the diversity antenna.
  • the multi-antenna system shown in FIGS. 11A-11B can also be applied to other hand-held scenarios, presenting good antenna performance, and improving the quality of cellular mobile communication.
  • the left side frame 11-3 and the right side frame 11-1 may be referred to as the first side frame and the second side frame, respectively.
  • Antenna 0 may be referred to as the first antenna
  • antenna 1 may be referred to as the second antenna
  • antenna 2 may be referred to as the third antenna.
  • the feeding point 32-1 may be referred to as a first feeding point.
  • the feeding point 32-3 may be referred to as a second feeding point.
  • the feeding point 32-5 may be referred to as a third feeding point.
  • the side gap 27 and the side gap 25 may be referred to as a first side gap and a second side gap, respectively.
  • This embodiment is designed for a foldable electronic device (such as a foldable mobile phone).
  • the display screen 15 of the foldable electronic device is a flexible screen.
  • the flexible screen may include: a main screen 15-1 and a secondary screen 15-3.
  • the foldable electronic device may further include a rotating shaft 16 which connects the main screen 15-1 and the auxiliary screen 15-3.
  • the width (w1) of the main screen 15-1 and the width (w2) of the auxiliary screen 15-3 may be equal or not equal.
  • the main screen may be referred to as the first screen
  • the secondary screen may be referred to as the second screen.
  • the peripheral conductive structure 11 may include a main screen peripheral conductive structure 11-1 and a secondary screen peripheral conductive structure 11-3.
  • the flexible screen 15 can be bent at the rotating shaft 16.
  • being bent may include the flexible screen 15 being bent outward and the flexible screen 15 being bent inward.
  • Folded outwards means that the flexible screen 15 appears on the outside after being bent, the back cover of the electronic device appears on the inside, and the display content on the flexible screen 15 is visible to the user.
  • Being bent inward means that the flexible screen 15 hides the inside after being bent, the back cover of the electronic device is presented on the outside, and the display content on the flexible screen 15 is not visible to the user.
  • the flexible screen 15 has two modes: an open state and a folded state.
  • the expanded state may refer to the state when the included angle ⁇ between the main screen and the secondary screen exceeds the first angle (for example, 120°).
  • the folded state may refer to a state when the included angle ⁇ between the main screen and the secondary screen is smaller than the second angle (for example, 15°).
  • the electronic device when the flexible screen 15 is in the unfolded state, the electronic device may be exemplarily shown in FIG. 12A; when the flexible screen 15 is in the folded state, the electronic device may be exemplarily shown in FIG. 12B.
  • the foldable electronic device may have the multi-antenna system described in the first embodiment.
  • the multi-antenna switching scheme of the foldable electronic device needs to be selected according to the specific mode (expanded state or folded state) of the flexible screen. specific:
  • the antenna switching solution of the foldable electronic device is the same as the antenna switching solution in the first embodiment. That is: the main antenna and diversity antenna of cellular mobile communication can be switched between the top antenna, the middle antenna, and the bottom antenna to adapt to various application scenarios and ensure the antenna performance during cellular mobile communication.
  • main and diversity antenna switching please refer to the related content in the first embodiment for details, which will not be repeated here.
  • Wi-Fi usage scenario when the signal quality of the top antenna is poor, the Wi-Fi antenna can also be switched from the top antenna to the middle antenna.
  • Wi-Fi antenna switching please refer to the related content in the first embodiment, which will not be repeated here.
  • the antenna switching scheme of the main antenna and the diversity antenna of the cellular mobile communication can be a 3-antenna switching scheme. That is, the main antenna and the diversity antenna can be switched between the middle antenna (antenna 3, antenna 4) and the bottom antenna (antenna 0).
  • the Wi-Fi antenna is switched to the central antenna: antenna 3 and antenna 4.
  • the present application also provides an antenna selection solution.
  • the application scenarios shown in Figure 5 to Figure 6 are identified, the optimal antenna group is selected according to the application scenario, and the TAS/MAS antenna switching technology is adopted.
  • the antenna selection is performed in the optimal antenna group. In this way, antenna group switching and intra-antenna group switching can be realized, and the signal coverage of antennas in each scene can be increased.
  • a substantial increase in antenna performance (8-15dB) is achieved, and at the same time, the power consumption of electronic equipment is reduced and the standby time is prolonged.
  • the antenna selection scheme provided by this application may specifically include the following stages:
  • the electronic device can determine whether the display screen is in the on-screen state or in the off-screen state. If the display screen is in the off-screen state, the electronic device can select the antenna group at the bottom of the electronic device as the optimal antenna group by default. If the bottom antenna group has only antenna 0 as shown in FIG. 7A, then antenna 0 is the optimal antenna. If the bottom antenna group includes multiple antennas, the electronic device can use the TAS/MAS antenna switching technology to select the optimal antenna from the multiple antennas. If the display screen is in the bright screen state, the electronic device can perform antenna selection through the method described in the subsequent stage.
  • the electronic device can identify application scenarios based on the SAR sensor and motion sensor in the electronic device, such as several vertical screen hand-holding scenarios shown in (A)-(B) in Figure 5, and (A)-(D) in Figure 6 ) Shows several landscape hand holding scenes.
  • Motion sensors may include accelerometers, gyroscopes, magnetic sensors, and so on.
  • the top and bottom of the electronic device can be provided with SAR sensors, which can be used to detect the proximity of the top and bottom of the electronic device to the human body.
  • the electronic device can determine whether the user is holding the top or bottom.
  • the electronic device can determine the posture of the electronic device.
  • the posture of the electronic device may include: resting on a horizontal surface, being held by the user in a vertical screen, or being held in a horizontal screen by the user, etc.
  • Figures 15A-15C and Figure 16A-16C show several ways of setting the sensing branches of the SAR sensor.
  • the induction stub can be implemented by using existing components in the electronic device, such as the bracket antenna on the back of the electronic device, or the peripheral conductive structure 11 of the housing 19.
  • the induction stub can also be an induction stub specially set for the SAR sensor.
  • the SAR sensor can be connected to several floating and ungrounded induction stubs.
  • FIG. 15A shows that the SAR sensor is connected to two vertical suspension sensing branches.
  • FIG. 15B shows that the SAR sensor is connected to a vertical suspension induction stub and a horizontal suspension induction stub.
  • the horizontal suspension induction stub is a suspended peripheral conductive segment formed by two gap dividing structures 11.
  • Figure 15C shows that the SAR sensor is connected to two vertical suspension sensing branches and one horizontal suspension branch.
  • the SAR sensor can be connected to several floating ungrounded induction stubs and one grounded induction stub.
  • the SAR sensor is connected to a floating induction stub and a grounded induction stub.
  • the grounding induction stubs in Fig. 16A and Fig. 16B are different.
  • the SAR sensor is connected to two vertical floating induction stubs and a grounded induction stub.
  • Phase 3 Antenna group switching
  • the electronic device can switch the antenna group according to the scene identified in stage 2, so as to select an antenna group with good performance suitable for the scene.
  • the selected antenna group may be referred to as the first antenna group.
  • FIGs 17 and 18 exemplarily show one-transmit and four-receive (1T4R) and two-transmit and four-receive (2T4R) antenna architectures.
  • the antenna groups Ant0, Ant1, Ant2, and Ant3 can be connected to the same antenna switch, which can be used to select the main antenna and the diversity antenna from the antenna groups Ant0, Ant1, Ant2, and Ant3.
  • the antenna groups Ant0 and Ant1 can be connected to the same antenna switch, and the antenna groups Ant2 and Ant3 can be connected to another antenna switch, which can be used to select the main set from the antenna groups Ant0 and Ant1
  • Antennas and diversity antennas can also be used to select another antenna group for signal transmission from the antenna groups Ant2 and Ant3.
  • Table 1 shows the antenna group switching scheme for several vertical screen holding scenarios under the one-transmit and four-receive (1T4R) and two-transmit and four-receive (2T4R) antenna architectures exemplarily shown in FIG. 17 and FIG. 18.
  • Table 2 shows the antenna group switching solutions for several horizontal screen holding scenarios under the one-transmit and four-receive (1T4R) and two-transmit and four-receive (2T4R) antenna architectures exemplarily shown in FIG. 17 and FIG. 18.
  • FIG. 17 and FIG. 18 show an antenna structure formed by seven gap division structures 11, each of which has: a bottom antenna group Ant0, a top antenna group Ant1, a top antenna group Ant2, and a middle antenna group Ant3.
  • the antenna group Ant0 includes two antennas: Ant0-1, Ant0-2, the antenna group Ant1 includes two antennas: Ant1-1, Ant1-2, the antenna group Ant2 includes two antennas: Ant2-1, Ant2-2, the antenna group Ant3 has only one antenna Ant3.
  • the detection result of the top SAR sensor is “1", which means that the top of the electronic device is held by the user; the detection result of the top SAR sensor is “0”, which means that the top of the electronic device is not held by the user.
  • the detection result of the bottom SAR sensor is “1”, which means that the bottom of the electronic device is held by the user; the detection result of the bottom SAR sensor is “0”, which means that the bottom of the electronic device is not held by the user.
  • the detection result of the motion sensor is “1”, which means that the electronic device is held by the user in the horizontal screen; the detection result of the motion sensor is "0”, which means the electronic device is held by the user in the vertical screen.
  • the "1” and “0” in the table are used to distinguish the two states detected by the sensor, such as “handheld” and “not held”, and are not used to limit the detection value of the sensor. It should be understood that multiple detection results "1" may actually correspond to different detection values, for example, different SAR sensor detection values indicate different proximity between the human body and the electronic device.
  • the portrait scenes can include: standby, portrait handheld 1 (as shown in Figure 5 (A) and (B)), portrait handheld 2 (as shown in Figure 5 (C)), portrait Hold 3 (as shown in Figure 5 (D)).
  • These vertical screen scenes can be determined by the detection results of the top SAR sensor, the bottom SAR sensor, and the motion sensor.
  • the electronic device can select the top antenna group (for example, Ant1) as the optimal antenna group. If it is determined that the current scene is a scene where the top of the electronic device is held by the user in the vertical screen (for example, hand held 2 in the vertical screen), the electronic device can select the bottom antenna group (for example, Ant0) as the optimal antenna group. If it is determined that the current scene is a scene in which the middle of the electronic device is held by the user in the vertical screen (such as holding 3 in the vertical screen), the electronic device can select the bottom antenna group (for example, Ant0) as the optimal antenna group. In the scenario of holding 1 in the vertical screen, the antenna group Ant1 is selected as the optimal antenna group. Compared with the default selection of the bottom antenna group, the income can be increased by about 8-12dB.
  • the landscape scene can include: standby, landscape handheld 1 (as shown in Figure 6 (A)), landscape handheld 2 (as shown in Figure 6 (B)), landscape handheld 3 (as shown in Figure 6 (B)) Figure 6 (C)), the horizontal screen handheld 4 ( Figure 6 (D)).
  • These horizontal screen scenes can be determined by the detection results of the top SAR sensor, the bottom SAR sensor and the motion sensor.
  • the electronic device can select the top antenna group (for example, Ant1) as the optimal antenna group. If it is determined that the current scene is a scene where the top of the electronic device is held horizontally by the user (for example, the horizontal screen is handheld 2), the electronic device can select the bottom antenna group (for example, Ant0) as the optimal antenna group. If it is determined that the current scene is a scene in which the top and bottom of the electronic device are both held by the user in the horizontal screen (for example, the horizontal screen is handheld 3), the electronic device can select the central antenna group (for example, Ant3) as the optimal antenna group.
  • the top antenna group for example, Ant1
  • the electronic device can select the top antenna group (for example, Ant1) as the optimal antenna group.
  • the electronic device can select the bottom antenna group (for example, Ant0) as the optimal antenna group.
  • the electronic device can select the central antenna group (for example, Ant3) as the optimal antenna group.
  • the electronic device can select the bottom antenna group (for example, Ant0) as the optimal antenna group.
  • the antenna group Ant1 as the optimal antenna group, compared to the default selection of the bottom antenna group, can increase the income by about 8-12dB.
  • selecting the antenna group Ant3 as the optimal antenna group, compared to the default selection of the bottom antenna group can increase the income by about 5-8dB.
  • the current scene may include any of the following: a scene where the user holds the bottom of the electronic device in a vertical screen, a scene where the user holds the top of the electronic device in a vertical screen, and a user holds the middle of the electronic device in a vertical screen.
  • antenna group switching can also be performed based on the TAS/MAS algorithm, that is, antenna group selection is based on the actual signal transmission and reception quality of each antenna group, which can adapt to more complex and changeable hand-held scenes, and can further improve antenna switching The benefits brought by.
  • Phase 4 Antenna switching in the optimal antenna group
  • the electronic device can perform antenna switching according to the TAS/MAS algorithm, that is, perform antenna switching based on the signal transmission and reception quality of each antenna in the optimal antenna group. Specifically, the electronic device may select the antenna with the best signal quality in the first antenna group according to the TAS/MAS algorithm. For example, if the optimal antenna group is Ant0, antenna switching can be performed between Ant0-1 and Ant0-2 through the TAS/MAS algorithm. For another example, if the optimal antenna group is Ant1, antenna switching can be performed between Ant1-1 and Ant1-2 through the TAS/MAS algorithm.
  • the antenna switching scheme described in the above stage 1 to stage 4 can also be applied to foldable electronic devices.
  • the setting of the SAR sensor and the motion sensor can refer to the antenna switching scheme described in the above stage 1-phase 4
  • the sensing branch of the SAR sensor can also refer to the above Antenna switching scheme described in phase 1 to phase 4.
  • the top antenna group area and the bottom antenna group area can also refer to Figure 14 for setting SAR sensors.
  • the setting of the sensing branches of the SAR sensor please refer to the two methods shown in FIGS. 15A-15C and 16A-16C.
  • the tuning switch mentioned in the above embodiment may be as shown in FIG. 20 and may have multiple grounding points, such as grounding point 61, grounding point 63, and grounding point 65.
  • Each ground point can be connected in series with the RLC lumped device, for example, the ground point 61 is in series with the lumped device L1, the ground point 63 is in series with the lumped device L2, and the ground point 65 is in series with the lumped device L3.
  • L1, L2, and L3 have different lumped parameter values.
  • the tuning switch can selectively turn on the ground points of different lumped devices connected in series to achieve frequency adjustment.
  • the tuning switch mentioned in the above embodiment is in the closed state, which can also be referred to as the tuning switch being switched to the on state.
  • the tuning switch mentioned in the above embodiment is in the off state, which can also be referred to as the tuning switch being switched to the off state.
  • the tuning switch is in the closed state, which may mean that the tuning switch turns on a certain lumped device, for example, the tuning switch turns on a 0 ohm lumped device to achieve closed grounding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Telephone Set Structure (AREA)

Abstract

提供了一种多天线系统,通过在电子设备的顶部、侧边、底部都布局天线的智能多天线方案,分别形成顶部、中部、底部三个天线群,将兼顾自由空间场景、竖屏手握场景、横屏手握场景等多场景下的天线性能,提升了天线辐射效率。

Description

多天线系统及电子设备
本申请要求于2019年09月18日提交中国专利局、申请号为201910883759.1、申请名称为“多天线系统及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,特别涉及应用在电子设备中的多天线系统。
背景技术
为了给用户带来更为舒适的视觉感受,全面屏工业设计(industry design,ID)已成为手机等便携式电子设备的设计趋势。全面屏意味着极大的屏占比(通常在90%以上)。全面屏的边框宽度大幅缩减,需要对手机内部器件,如前置摄像头、受话器、指纹识别器、天线等,进行重新布局。尤其对于天线设计来说,净空区域缩减,天线空间进一步被压缩。而天线的尺寸、带宽、效率是相互关联、相互影响的,减小天线尺寸(空间),天线的效率带宽积(efficiency-bandwidth product)势必减小。因此,全面屏ID给手机的天线设计带来了极大的挑战。
同时,随着移动互联网发展,用户使用场景也开始增多,如通话场景、横竖屏游戏场景、横屏影音场景、竖屏上网场景等。在不同的用户使用场景中,用户握持手机等电子设备的姿势千变万化。由于天线的辐射效率极易受到临近人体组织的干扰,如手握、头部靠近的干扰,因此,亟需一套在多种用户使用场景都表现优良的天线系统。
发明内容
本发明实施例提供了一种电子设备,通过在电子设备的顶部、侧边、底部都布局天线的智能多天线方案,分别形成顶部、中部、底部三个天线群,将兼顾自由空间场景、竖屏手握场景(例如语音通话场景)、横屏手握场景(例如玩游戏场景)等多场景下的天线性能,提升了天线辐射效率。
第一方面,本申请提供了一种电子设备,该电子设备包括多天线系统。电子设备的壳体具有外围传导性结构。外围传导性结构可以由金属等传导性材料形成。外围传导性结构可以绕电子设备和显示屏的外围延伸,外围传导性结构具体可以包围显示屏的四个侧边,帮助固定显示屏。外围传导性结构可以包括上边框、下边框,以及侧边框。上边框可具有至少一个顶部间隙,下边框可具有至少一个底部间隙,侧边框可具有至少一个侧边间隙。
其中,多天线系统可包括:顶部天线、底部天线、侧边天线、第一天线切换开关。
顶部天线可包括:上边框、顶部间隙和顶部馈电点,顶部馈电点设置在上边框上。底部天线可包括:下边框、底部间隙和底部馈电点,底部馈电点设置在下边框上。侧边天线可包括:侧边框、侧边间隙和侧边馈电点,侧边馈电点设置在侧边框上。
顶部天线、底部天线、侧边天线与第一天线切换开关连接,第一天线切换开关用于从顶部天线、底部天线、侧边天线中选择其中之一作为蜂窝移动通信的主集天线。
可以看出,第一方面提供的天线设计方案,通过在电子设备的顶部、侧边、底部都布局天线的智能多天线方案,分别形成顶部、中部、底部三个天线群,将兼顾自由空间场景、竖屏手握场景、横屏手握场景等多场景下的天线性能,提升了天线辐射效率。
第一方面中,上边框可设置于电子设备的顶部,下边框可设置于电子设备的底部。第一侧边框和第二侧边框可分别设置于电子设备的两侧。上边框可包括一个水平部分和两个竖直部分。竖直部分的长度不超过第一长度,例如20毫米。类似的,下边框也可以包括一个水平部分和两个竖直部分。竖直部分的长度不超过第二长度。第二长度可以同于第一长度,可都为例如20毫米。第二长度也可以不同于第一长度。
结合第一方面,在一些实施例中,第一天线切换开关可具体用于从顶部天线、底部天线、侧边天线中选择信号质量最优的天线作为蜂窝移动通信的主集天线。
结合第一方面,在一些实施例中,第一天线切换开关还可用于从顶部天线、底部天线、侧边天线中选择其中之一作为蜂窝移动通信的分集天线。
结合第一方面,在一些实施例中,第一天线切换开关还可具体用于从顶部天线、底部天线、侧边天线中选择信号质量次优的天线作为蜂窝移动通信的分集天线。
结合第一方面,在一些实施例中,顶部间隙可包括:第一顶部间隙、第二顶部间隙,第一顶部间隙可开设于上边框的水平部分的第一侧,第二顶部间隙可开设于上边框的水平部分的第二侧。顶部馈电点可包括:第一顶部馈电点、第二顶部馈电点,第一顶部馈电点可设于上边框的第一侧,第二顶部馈电点可设于上边框的第二侧。顶部天线可包括:第一顶部天线和第二顶部天线,其中,第一顶部天线可包括:上边框的第一部分、第一顶部馈电点、第一顶部间隙。第二顶部天线可包括:上边框的第二部分、第一顶部馈电点、第二顶部间隙。第一部分可位于第一侧,第二部分位于第二侧。
结合第一方面,在一些实施例中,侧边框可包括:第一侧边框、第二侧边框,第一侧边框可位于电子设备的第一侧,第二侧边框可位于电子设备第二侧。侧边间隙可包括:开设于第一侧边框上的第一侧边间隙、开设于第二侧边框上的第二侧边间隙。侧边馈电点可包括:设置于第一侧边框上的第一侧边馈电点、设置于第二侧边框上的第二侧边馈电点。侧边天线可包括:第一侧边天线和第二侧边天线,其中,第一侧边天线可包括:第一侧边框、第一侧边馈电点、第一侧边间隙。第二侧边天线可包括:第二侧边框、第二侧边馈电点、第二侧边间隙。
结合第一方面,在一些实施例中,在自由空间场景下,底部天线、第二顶部天线可默认分别用作蜂窝移动通信中的主集天线、分集天线。第一天线切换开关可具体连接底部天线、第二顶部天线、第一侧边天线和第二侧边天线,第一天线切换开关可具体用于根据信号收发质量从底部天线、第二顶部天线、第一侧边天线和第二侧边天线中选出主集天线。
结合第一方面,在一些实施例中,为了提高相邻天线之间的隔离度,多天线系统中的相邻天线之间可以设置接地点(可称为第一接地点)。底部天线的底部馈电点与第二侧边天线的第二侧边馈电点之间的外围传导性结构上可设置接地点(可称为第二接地点)。第二侧边天线的第二侧边馈电点与第二顶部天线的第二顶部馈电点之间的外围传导性结构上可设置接地点(可称为第三接地点)。第一顶部天线的第一顶部馈电点与第二顶部天线的第二顶部馈电点之间的外围传导性结构上可设置接地点(可称为第四接地点)。第一顶部 天线的第一顶部馈电点与第一侧边天线的第一侧边馈电点之间的外围传导性结构上可设置接地点(可称为第五接地点)。
结合第一方面,在一些实施例中,在顶部间隙、底部间隙、侧边间隙的一侧或两侧,外围传导性结构可以连接调谐开关,以对间隙两侧的外围传导性片段进行:频段调谐、通过开关组合状态提升天线性能。
结合第一方面,在一些实施例中,电子设备的Wi-Fi天线可默认通过顶部天线来实现。例如,第一顶部天线可用作Wi-Fi 2.4G Core0天线,第二顶部天线可用作Wi-Fi 2.4G Core1天线。Core0天线和Core1天线构成WiFi双天线,双天线都可用于信号收发。
结合第一方面,在一些实施例中,在Wi-Fi使用场景下,在顶部天线的信号质量差的情况下,Wi-Fi天线还可以从顶部天线切换到中部天线。也即是说,Wi-Fi天线可以在顶部天线和中部天线之间切换,以实现类似蜂窝移动通信天线的性能提升。这种天线切换的具体实现可如下:多天线系统还可包括第二天线切换开关、第三天线切换开关。其中,第二天线切换开关连接第二侧边天线、第二顶部天线,第二天线切换开关用于从第二侧边天线、第二顶部天线中选择信号质量较优的天线作为无线高保真Wi-Fi天线。第三天线切换开关连接第一侧边天线、第一顶部天线,第三天线切换开关用于从第一侧边天线、第一顶部天线中选择信号质量较优的天线作为无线高保真Wi-Fi天线。
结合第一方面,在一些实施例中,多天线系统可以实现为4×现为系统可以蜂窝移动天线,用于信号接收的4个接收天线分布在电子设备的顶部、中部、底部这三个位置,能够适应各种用户握持场景,确保电子设备的信号接收性能。几种实现方式可如下:
方式1.底部天线可用作主集天线,第二顶部天线可用作分集天线。第一顶部天线、第二侧边天线可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在底部天线、第二顶部天线、第二侧边天线、第一侧边天线之间切换。Wi-Fi 2.4G Core0天线可以在第一顶部天线、第一侧边天线之间切换。Wi-Fi 2.4G Core1天线可以在第二侧边天线、第二顶部天线之间切换。除了用作主集天线的底部天线、用作分集天线的第二顶部天线外,第一顶部天线、第二侧边天线也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
方式2.底部天线可用作主集天线,第二顶部天线可用作分集天线。第一顶部天线、第二侧边天线可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在底部天线、第二顶部天线、第二侧边天线、第一侧边天线之间切换。Wi-Fi 2.4G Core0天线可以在第一顶部天线、第一侧边天线之间切换。Wi-Fi 2.4G Core1天线可以在第二侧边天线、第二顶部天线之间切换。除了用作主集天线的底部天线、用作分集天线的第二顶部天线外,第二侧边天线、第一侧边天线也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
如图8C所示,底部天线可用作主集天线,第二顶部天线可用作分集天线。第一顶部天线、第二侧边天线可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在底部天线、第二顶部天线、第二侧边天线、第一侧边天线之间切换。Wi-Fi 2.4G Core0天线可以在第一顶部天线、第一侧边天线之间切换。Wi-Fi 2.4G Core1天线可以在第二侧边天线、第二顶部天线之间切换。除了用作主集天线的底部天线、用作分集天线的第二顶部天线外,第一顶 部天线、第二侧边天线也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
如图8D所示,底部天线可用作主集天线,第二侧边天线可用作分集天线。第一顶部天线、第二顶部天线可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在底部天线、第二顶部天线、第二侧边天线、第一侧边天线之间切换。Wi-Fi 2.4G Core0天线可以在第一顶部天线、第一侧边天线之间切换。Wi-Fi 2.4G Core1天线可以在第二侧边天线、第二顶部天线之间切换。除了用作主集天线的底部天线、用作分集天线的第二侧边天线外,第二顶部天线、第一顶部天线也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
第二方面,本申请提供了一种电子设备,该电子设备包括多天线系统。电子设备的壳体具有外围传导性结构。外围传导性结构可以由金属等传导性材料形成。外围传导性结构可以绕电子设备和显示屏的外围延伸,外围传导性结构具体可以包围显示屏的四个侧边,帮助固定显示屏。外围传导性结构可以包括上边框、下边框,以及第一侧边框。上边框可具有至少一个顶部间隙,下边框可具有至少一个底部间隙,第一侧边框可具有至少一个第一侧边间隙。
其中,多天线系统可包括:第一天线、第二天线、第一天线切换开关、多个调谐开关。具体的:
第一天线可包括下边框、底部间隙和第一馈电点,以及第一侧边框、第一侧边间隙。第一馈电点设置在底部间隙和第一侧边间隙之间的外围传导性结构上。第二天线可包括上边框、顶部间隙和第二馈电点,第二馈电点设置在上边框上。
第一天线切换开关可连接第一天线、第二天线,第一天线切换开关用于从第一天线、第二天线中选择出信号质量较优的天线。
多个调谐开关可包括连接下边框的至少一个第一调谐开关、连接第一侧边框的至少一个第二调谐开关。第一调谐开关可设置在底部间隙的一侧或两侧,第二调谐开关可设置在第一侧边间隙的一侧或两侧。第一调谐开关可用于选择性断开或者导通,第二调谐开关可用于选择性断开或者导通。
可以看出,第二方面提供的天线设计方案,通过连接第一天线和第二天线的第一天线切换开关可实现第一天线和第二天线之间的智能切换。而且,第一天线具有两种辐射模式,通过调节第一调谐开关、第二调谐开关的组合状态,可切换第一天线的辐射模式。这样,可适应更多应用场景,提升天线辐射效率。
第二方面中,上边框可设置于电子设备的顶部,下边框可设置于电子设备的底部。第一侧边框和第二侧边框可分别设置于电子设备的两侧。上边框可包括一个水平部分和两个竖直部分。竖直部分的长度不超过第一长度,例如20毫米。类似的,下边框也可以包括一个水平部分和两个竖直部分。竖直部分的长度不超过第二长度。第二长度可以同于第一长度,可都为例如20毫米。第二长度也可以不同于第一长度。
结合第二方面,在一些实施例中,第一天线切换开关可用于从第一天线、第二天线中选择出信号质量最优的天线。选择出的信号质量最优的天线可作为主集天线。
结合第二方面,在一些实施例中,当第一调谐开关处于断开状态,第二调谐开关处于 闭合状态时,下边框被充分激励,可作为辐射体向外产生辐射,此时第一天线的辐射模式为横向模式,不受手握住第一侧边间隙的影响,手握辐射效率好。第一调谐开关还可用于在横向模式下切换下边框的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
结合第二方面,在一些实施例中,当第二调谐开关处于断开状态,第一调谐开关处于闭合状态时,第一侧边框被充分激励,可作为辐射体向外产生辐射,此时第一天线的辐射模式为纵向模式,自由空间辐射效率好。第二调谐开关还可用于在纵向模式下切换第一侧边框的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
结合第二方面,在一些实施例中,第二侧边框上可具有至少一个第二侧边间隙。多天线系统还可包括:第三天线,第三天线包括第二侧边框、第二侧边间隙和第三馈电点,第三馈电点设置在第二侧边框上。第一天线切换开关还可连接第三天线,具体用于从第一天线、第二天线、第三天线中选择出信号质量最优的天线。
第三方面,本申请提供了一种电子设备,该电子设备包括多天线系统。电子设备的壳体具有外围传导性结构。外围传导性结构可以由金属等传导性材料形成。外围传导性结构可以绕电子设备和显示屏的外围延伸,外围传导性结构具体可以包围显示屏的四个侧边,帮助固定显示屏。外围传导性结构可以包括上边框、下边框,以及第一侧边框、第二侧边框。上边框可具有至少一个顶部间隙,下边框可具有至少一个底部间隙,第一侧边框可具有至少一个第一侧边间隙,第二侧边框可具有至少一个第二侧边间隙。
其中,多天线系统可包括:第一天线、第二天线、第一天线切换开关、多个调谐开关。具体的:
第一天线可包括下边框、底部间隙和第一馈电点,以及第一侧边框、第一侧边间隙。第一馈电点设置在底部间隙和第一侧边间隙之间的外围传导性结构上。第二天线可包括上边框、顶部间隙和第二馈电点,以及第二侧边框、第二侧边间隙。第二馈电点设置在顶部间隙和第二侧边间隙之间的外围传导性结构上。
第一天线切换开关可连接第一天线、第二天线,第一天线切换开关用于从第一天线、第二天线中选择出信号质量较优的天线。
多个调谐开关可包括连接下边框的至少一个第一调谐开关、连接第一侧边框的至少一个第二调谐开关、连接上边框的至少一个第三调谐开关、连接第二侧边框的至少一个第四调谐开关。第一调谐开关可设置在底部间隙的一侧或两侧,第二调谐开关可设置在第一侧边间隙的一侧或两侧,第三调谐开关可设置在顶部间隙的一侧或两侧,第四调谐开关可设置在第二侧边间隙的一侧或两侧。第一调谐开关可用于选择性断开或者导通,第二调谐开关可用于选择性断开或者导通,第三调谐开关可用于选择性断开或者导通,第四调谐开关可用于选择性断开或者导通。
可以看出,第三方面提供的天线方案,相比第二方面的天线方案,进一步将第二天线,从顶部的上边框11-5向侧边框11-1延伸,其可通过顶部间隙21-2、侧边间隙25向外辐射电磁波,因此具有两种辐射模式。这样,通过调节第三调谐开关、第四调谐开关的组合状态,还可切换第二天线的辐射模式,可适应更多应用场景,提升天线辐射效率。
第四方面,本申请提供了一种电子设备的天线切换方法。电子设备可具有壳体、显示 屏、第一SAR传感器、第二SAR传感器、运动传感器。壳体可具有外围传导性结构,外围传导性结构可包括上边框、下边框,以及侧边框。上边框上具有顶部间隙,下边框上具有底部间隙,侧边框上具有侧边间隙。第一SAR传感器设置在电子设备顶部,第二SAR传感器设置在电子设备底部。电子设备还具有分布于电子设备顶部的顶部天线群、分布于电子设备底部的底部天线群、分布于电子设备中部的中部天线群。
该天线切换方法可包括:如果显示屏处于熄屏状态,则电子设备选择底部天线群作为第一天线群。如果显示屏处于亮屏状态,则电子设备通过第一SAR传感器、第二SAR传感器、运动传感器确定当前所处场景,并根据当前所处场景从顶部天线群、底部天线群、中部天线群中选择第一天线群。然后,电子设备可根据信号质量在第一天线群中进行天线切换。
其中,当前所处场景包括以下任一项:用户竖屏手握电子设备底部的场景、用户竖屏手握电子设备顶部的场景、用户竖屏手握电子设备中部的场景、用户横屏手握电子设备底部的场景、用户横屏手握电子设备顶部的场景、用户横屏手握电子设备顶部和底部的场景、用户横屏手握电子设备中部的场景。
结合第四方面,在一些实施例中,电子设备根据信号质量在第一天线群中进行天线切换,具体可包括:电子设备第一天线群中选择信号质量最优的天线。
结合第四方面,在一些实施例中,如果确定当前场景为电子设备的底部被用户竖屏握持的场景,则电子设备可以选择顶部天线群为最优天线群。如果确定当前场景为电子设备的顶部被用户竖屏握持的场景,则电子设备可以选择底部天线群为最优天线群。如果确定当前场景为电子设备的中部被用户竖屏握持的场景,则电子设备可以选择底部天线群为最优天线群。
结合第四方面,在一些实施例中,如果确定当前场景为电子设备的底部被用户横屏握持的场景,则电子设备可以选择顶部天线群为最优天线群。如果确定当前场景为电子设备的顶部被用户横屏握持的场景,则电子设备可以选择底部天线群为最优天线群。如果确定当前场景为电子设备的顶部、底部都被用户横屏握持的场景(如横屏手持3),则电子设备可以选择中部天线群为最优天线群。如果确定当前场景为电子设备的中部都被用户横屏握持的场景,则电子设备可以选择底部天线群为最优天线群。
在上述第一方面、第二方面、第三方面和第四方面中,上边框可设置于电子设备的顶部,下边框可设置于电子设备的底部。第一侧边框和第二侧边框可分别设置于电子设备的两侧。上边框可包括一个水平部分和两个竖直部分。竖直部分的长度不超过第一长度,例如20毫米。类似的,下边框也可以包括一个水平部分和两个竖直部分。竖直部分的长度不超过第二长度。第二长度可以同于第一长度,可都为例如20毫米。第二长度也可以不同于第一长度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请提供的天线设计方案所基于的电子设备的结构示意图;
图2A-图2B是本申请涉及的外围传导性结构的结构示意图;
图3A-图3D是利用外围传导性结构设计天线的几种现有技术的示意图;
图4是本申请提供的三个天线群在电子设备中的布局以及三个天线群各自的适用场景的示意图;
图5是本申请提供的天线设计方案涉及的几种典型竖屏手握场景的示意图;
图6是本申请提供的天线设计方案涉及的几种典型横屏手握场景的示意图;
图7A是本申请提供一种中高频多天线系统的结构示意图;
图7B是图7A多天线系统的馈电和接地的示意图;
图7C是图7A多天线系统的可设置调谐开关的位置的示意图;
图8A-图8D是本申请提供的几种4×4MIMO蜂窝移动天线的实现方式的示意图;
图9A是本申请提供一种低频多天线系统的结构示意图;
图9B是图9A多天线系统的馈电和接地的示意图;
图9C是图9A多天线系统的可设置调谐开关的位置的示意图;
图10A是本申请提供另一种低频多天线系统的结构示意图;
图10B是图10A多天线系统的馈电和接地的示意图;
图10C是图10A多天线系统的可设置调谐开关的位置的示意图;
图11A是本申请提供再一种低频多天线系统的结构示意图;
图11B是图11A多天线系统的馈电和接地的示意图;
图11C是图11A多天线系统的可设置调谐开关的位置的示意图;
图12A-图12B是可折叠的电子设备的结构示意图;
图13A是本申请提供的针对处于展开态的可折叠的电子设备的天线切换方案;
图13B是本申请提供的针对处于折叠态的可折叠的电子设备的天线切换方案;
图14是SAR传感器、运动传感器在电子设备内的布局示意图;
图15A-图15C是本申请提供的一种设置SAR传感器感应枝节的示意图;
图16A-图16C是本申请提供的另一种设置SAR传感器感应枝节的示意图;
图17是本申请提供的一种针对1T4R天线架构的多天线切换方案的示意图;
图18是本申请提供的一种针对2T4R天线架构的多天线切换方案的示意图;
图19是本申请提供的一种针对可折叠的电子设备的传感器布局示意图;
图20是本申请涉及的调谐开关的一种结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。本申请中,电子设备可以是手机、平板 电脑、个人数码助理(personal digital assistant,PDA)等等。
图1示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境。如图1所示,电子设备10可包括:玻璃盖板13、显示屏15、印刷电路板PCB17、壳体19和后盖12。
其中,玻璃盖板13可以紧贴显示屏15设置,可主要用于对显示屏15起到保护防尘作用。电子设备10的显示屏15可以是大尺寸显示屏,屏占比可以达到90%以上。
其中,印刷电路板PCB17可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。印刷电路板PCB17靠近壳体19的一侧可以设置一金属层,该金属层可以通过在PCB17的表面蚀刻金属形成。该金属层可用于印刷电路板PCB17上承载的电子元件接地,以防止用户触电或设备损坏。
其中,壳体19主要起整机的支撑作用。壳体19可以包括外围传导性结构11,结构11可以由金属等传导性材料形成。结构11可以绕电子设备10和显示屏15的外围延伸,结构11具体可以包围显示屏15的四个侧边,帮助固定显示屏15。在一种实现中,金属材料制成的结构11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属ID。在另一种实现中,结构11的外表面还可以设置非金属边框,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
如图2A所示,外围传导性结构11可以划分为4个部分,这4个部分根据各自在电子设备中的位置不一样而可以命名为:上边框11-5、下边框11-7,以及侧边框11-3、侧边框11-1。上边框11-5可设置于电子设备10的顶部,下边框11-7可设置于电子设备10的底部。侧边框11-3和11-1可分别设置于电子设备10的两侧。电子设备10顶部可设置有前置摄像头(未示出)、听筒(未示出)、接近光传感器(未示出)等器件。电子设备10底部可设置有USB充电接口(未示出)、麦克风(未示出)等。电子设备10侧边可设置有音量调节按键(未示出)、电源键(未示出)。
如图2B所示,上边框11-5可包括一个水平部分11-5A和两个竖直部分11-5B、11-5C。竖直部分的长度不超过第一长度,例如20毫米。类似的,下边框11-7也可以包括一个水平部分11-7A和两个竖直部分11-7B、11-7C。竖直部分的长度不超过第二长度。第二长度可以同于第一长度,可都为例如20毫米。第二长度也可以不同于第一长度。
其中,后盖12是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
针对全面屏ID带来的天线净空区域缩减的问题,电子设备10的天线可以通过结构11形成,结构11可具有间隙,通过该间隙向外辐射电磁波。间隙可以使用例如聚合物、玻璃、陶瓷等材料或者这些材料的组合填充。
图3A-图3D示出了利用结构11实现电子设备的天线的几种现有技术。
现有技术一,如图3A示例性所示,外围传导性结构11在电子设备10的侧边靠近底部的位置处具有间隙。由于间隙开在两侧,现有技术一提供的天线具有良好的自由空间效率。 但是,在用户竖屏手握电子设备10通话的场景下,用户的手部极易握住或覆盖住间隙,导致天线被阻塞,天线信号极弱,甚至没有信号。
现有技术二,如图3B示例性所示,外围传导性结构11在电子设备10的底部靠近两侧的位置处具有间隙。现有技术二提供的天线设计的天线辐射体较小,天线效率不高,需要通过增加天线净空来提升天线性能,这与全面屏ID下的天线设计的天线净空区域缩减这一问题冲突。而且,在用户竖屏手握电子设备10通话的场景下,用户的手部离间隙比较近,极端情况下,用户的手部可能正好握住或覆盖间隙,导致天线完全被阻塞,天线信号极弱,甚至没有信号。
现有技术三,如图3C示例性所示的4*4MIMO天线设计,外围传导性结构11在电子设备10的底部、顶部靠近两侧的位置处各具有间隙,四个天线包括MIMO Ant1、分集Ant1、MIMO Ant2和主集Ant0。其中,MIMO Ant2做在内部支架上,由于内部天线净空区域小,因此天线高度很小,例如1.5毫米以内,导致天线辐射效率很低。而且,在用户手握电子设备10通话的场景下,加上用户手握的影响,MIMO Ant2的天线性能就会进一步恶化。
现有技术四,如图3D示例性所示的4*4MIMO天线设计,外围传导性结构11在电子设备10两侧靠近顶部、底部的位置处各具有间隙,四个天线均使用结构11实现,四个天线包括MIMO Ant1、分集Ant1、MIMO Ant2和主集Ant0。主集Ant0和分集Ant1之间可以通过智能天线切换(transmit antenna switch,TAS)技术进行切换。这样,在用户手握电子设备10通话的场景下,采用TAS技术,主集天线可以上切到顶部天线Ant1,分集天线可以下切到底部天线Ant0,可以确保主集天线的天线性能。但是,分集天线下切到底部天线后,辐射效率显著下降。
上面描述的现有技术三和现有技术四可以称为“上底部天线布局”。在这种天线布局中,底部天线通常为主天线,顶部天线通常为分集天线。这里,“上”是指靠近电子设备的顶部,“下”是指靠近电子设备的底部。这种天线布局结合上底部天线智能切换技术,可以克服通话场景下的用户手握影响。上底部天线智能切换技术是指,根据底部天线、顶部天线的信号强弱选择信号最好的天线作为主集天线。这样,在用户手握电子设备10通话的场景下,采用上底部天线智能切换技术,主集天线可以上切到顶部天线,分集天线可以下切到底部天线,可以确保主集天线的天线性能。但是,分集天线下切到底部天线后,辐射效率显著下降。
另外,随着移动游戏越来越受欢迎,用户横屏手握电子设备进行游戏的时间越长。在用户横屏手握电子设备玩游戏的场景下,上面现有技术描述的“上底部天线布局”,顶部天线和底部天线都容易受用户手握影响,天线信号极弱,这会严重影响用户的游戏体验,尤其对于时延要求较高的游戏。
综合上面几种现有技术的分析,现有技术在不断改进全面屏ID下的天线设计,以降低用户手握对天线性能的影响,改善部分场景(如用户竖屏手握电子设备10通话的场景)下的天线性能。但是,现有技术无法应对更多场景下存在的天线性能问题。
本申请提供了一种多天线系统,通过在电子设备10的顶部、侧边、底部都布局天线的智能多天线方案,分别形成顶部、中部、底部三个天线群,将兼顾自由空间场景、竖屏手 握场景、横屏手握场景等多场景下的天线性能,提升了天线辐射效率。
图4示例性示出了本申请提供的三个天线群在电子设备中的布局以及三个天线群各自的适用场景。如图4所示,三个天线群包括:顶部天线群、中部天线群和底部天线群。顶部天线群可分布于电子设备10的顶部,可主要由结构11的上边框11-5实现。中部天线群可分布于电子设备10的中部,可主要由结构11的侧边框11-3、11-1实现。底部天线群可分布于电子设备10的底部,可主要由结构11的下边框11-7实现。顶部天线群可主要用作竖屏手握场景下的辐射天线。中部天线群可主要用作横屏手握场景下的辐射天线。底部天线群可主要用作自由空间场景下的辐射天线。
自由空间场景可以是指电子设备10没有被用户手握的场景。竖屏手握场景可以是用户竖屏手握电子设备的场景,可以包括但不限于用户竖屏手握电子设备阅读、用户竖屏手握电子设备玩游戏、用户竖屏手握电子设备通话等场景。横屏手握场景可以是用户横屏手握电子设备的场景,可以包括但不限于用户横屏手握电子设备玩游戏、用户横屏手握电子设备看电视等场景。竖屏手握场景涉及的几种手握姿势可如图5中的(A)-(B)所示,其中,图5中的(A)、(C)、(D)分别示出了用户单手竖屏握持电子设备的底部、顶部、中部的姿势,图5中的(B)示出了用户双手竖屏握持电子设备的中部和底部的姿势。横屏手握场景涉及的几种手握姿势可如图6中的(A)-(D)所示,其中,图6中的(A)、(B)示出了用户单手横屏握持电子设备的顶部或底部的姿势,图6中的(C)示出了用户双手横屏握持电子设备的顶部和底部的姿势,图6中的(D)示出了用户单手横屏握持电子设备的中部的姿势。
本申请提供的天线设计方案中,电子设备10的顶部、侧边、底部的结构11上都开设间隙,这些间隙将结构11分割成多个外围传导性片段,这多个外围传导性片段可用来形成图4示例性所示的三个天线群。下面将详细说明本申请的各个实施例提供的多天线系统。
实施例一
如图7A-图7B所示,实施例一提供的多天线系统可包括:天线0、天线1、天线2、天线3和天线4。这多个天线可由具有多个间隙的外围传导性结构11(以下简称为结构11)形成。结构11的上边框11-5可具有2个顶部间隙:21-1、21-2。顶部间隙21-1、21-2可分别开设于上边框11-5的水平部分的左侧、右侧。结构11的下边框11-7可具有2个底部间隙:23-1、23-2。底部间隙23-1、23-2可分别开设于下边框11-7的水平部分的左侧、右侧。结构11的左侧侧边框11-3、右侧侧边框11-1可各具有1个侧边间隙:27、25。侧边间隙27、25可分别开设于侧边框11-3、11-1的上侧。这多个间隙将结构11分割为多个外围传导性片段。
下面天线结构、天线隔离、天线调谐、天线切换这几方面介绍实施例一的多天线系统。
1、天线结构
天线0可包括结构11的下边框11-7、底部间隙、底部馈电点31-3。馈电点31-3可设置在下边框11-7上。馈电点31-3可用于连接天线0的馈电,以激励天线0产生辐射。因设置在结构11的底部,天线0又可称为底部天线,其可通过底部间隙,如间隙23-1、23-2,向外辐射电磁波。如图7B所示,馈电点31-3可设置于底部间隙23-2右侧。不限于此,馈 电点31-3也可设置于底部间隙23-2的左侧、底部间隙23-1的右侧,即这两间隙之间。馈电点31-3也可以设置于底部间隙23-1左侧。
天线1可包括上边框11-5、顶部间隙21-2、顶部馈电点31-2。馈电点31-2可设置在上边框11-5上。馈电点31-2可用于连接天线1的馈电,以激励天线1产生辐射。因设置在结构11的顶部,天线1又可以称为顶部天线,可通过顶部间隙21-2向外辐射电磁波。如图7B所示,馈电点31-2可设置在顶部间隙21-2右侧。不限于此,馈电点31-2也可设置在顶部间隙21-2左侧的外围传导性片段上。具体的,天线1包括上边框11-5的左侧部分。左侧部分可以称为上边框11-5的第一部分。
天线2可包括上边框11-5、顶部间隙21-1、顶部馈电点31-1。馈电点31-1可设置在上边框11-5上。馈电点31-1可用于连接天线2的馈电,以激励天线2产生辐射。因设置在结构11的顶部,天线2又可以称为顶部天线,可通过顶部间隙21-1向外辐射电磁波。如图7B所示,馈电点31-1可设置在顶部间隙21-1左侧。不限于此,馈电点31-1也可设置在顶部间隙21-1右侧。具体的,天线2包括上边框11-5的右侧部分。右侧部分可以称为上边框11-5的第二部分。
天线3可包括右侧侧边框11-1、侧边间隙25和侧边馈电点31-5。馈电点31-5可设置在侧边框11-1上。馈电点31-5可用于连接天线3的馈电,以激励天线3产生辐射。因设置在结构11的两侧边,两侧边位于电子设备10的中部,天线3又可以称为中部天线,可通过侧边间隙25向外辐射电磁波。如图7B所示,馈电点31-5可设置在间隙25上侧。不限于此,馈电点31-5也可设置在间隙25下侧。
天线4可包括左侧侧边框11-3、侧边间隙27和侧边馈电点31-7。侧边间隙27可开设于侧边框11-3的上侧。馈电点31-7可设置在侧边框11-3上。馈电点31-7可用于连接天线4的馈电,以激励天线4产生辐射。因设置在结构11的两侧边,两侧边位于电子设备10的中部,天线4又可以称为中部天线,可通过侧边间隙27向外辐射电磁波。如图7B所示,馈电点31-7可设置间隙27的上侧。不限于此,馈电点31-7也可设置在间隙27下侧。
上面内容中,左侧、右侧仅是为了便于描述各个元素,如各边框、间隙、馈电点,之间的相对位置关系,并不用来限定各个元素在实际整机模型中的位置。上面内容中,上侧是指更靠近顶部边框11-5的一侧,是相对于下侧而言的,下侧是指更靠近底部边框11-7的一侧。上面内容中,左侧是指更靠近左侧边框11-3的一侧,是相对于右侧而言的,右侧是指更靠近右侧边框11-1的一侧。本申请中,左侧可以称为第一侧,右侧可以称为第二侧。
中部天线,如天线3、天线4,可以布局于侧边框的中部或偏上位置处。侧边间隙也相应的开始于侧边框的中部或偏上位置处。不限于此,中部天线也可以在侧边框中部的上下20毫米范围内调整。
实施例一中,天线0可以称为底部天线,天线2、天线1可以分别称为第一顶部天线、第二顶部天线,天线4、天线3可以分别称为第一侧边天线、第二侧边天线。顶部馈电点31-1、顶部馈电点31-2可以分别称为第一顶部馈电点、第二顶部馈电点。顶部间隙21-1、顶部间隙21-2可以分别称为第一顶部间隙、第二顶部间隙。侧边框11-3、侧边框11-1可以分别称为第一侧边框、第二侧边框。侧边馈电点31-7、侧边馈电点31-5可以分别称为第一侧边馈电点、第二侧边馈电点。侧边间隙27、侧边间隙25可以分别称为第一侧边间隙、 第二侧边间隙。
2、天线隔离
为了提高相邻天线之间的隔离度,多天线系统中的相邻天线之间可以设置接地点。如图7B所示,天线0的馈电点31-3与天线3的馈电点31-5之间的结构11上可设置接地点32-5。天线3的馈电点31-5与天线1的馈电点31-2之间的结构11上可设置接地点32-3。天线1的馈电点31-2与天线2的馈电点31-1之间的结构11上可设置接地点32-7。天线2的馈电点31-1与天线4的馈电点31-7之间的结构11上可设置接地点32-1。
这些接地点的接地可以通过金属弹片等导体连接到地来实现,也可以通过接调谐开关选频到地来实现。这些接地点也可用来实现各个天线的接地。
3、天线调谐
图7C示例性示出了实施例一的多天线系统中可设置调谐开关的位置。如图7C所示,在位置A至位置K中一个或多个位置处,即在间隙的一侧或两侧,结构11可以连接调谐开关,以对间隙两侧的外围传导性片段进行:
1)频段调谐
例如,位置A处(即间隙23-2右侧)的调谐开关可用来调节底部间隙23-2与接地点32-5之间的外围传导性片段的工作频段。又例如,位置B处(即间隙23-2左侧或间隙23-1右侧)的调谐开关可用来调节底部间隙23-2与底部间隙23-1之间的外围传导性片段的工作频段。再例如,位置K处(即间隙25下侧)的调谐开关可用来调节侧边间隙25与接地点32-5之间的外围传导性片段的工作频段。
2)通过开关组合状态提升天线性能
例如,在电子设备10底部被用户握住的场景下,位置K、D处的调谐开关可设置为闭合状态,如切0欧姆接地,位置E、J处的调谐开关可设置为断开状态。这样可以增强侧边间隙27、25上侧的外围传导性片段的辐射,减弱侧边间隙27、25下侧的外围传导性片段的辐射,提高了天线3、天线4的天线性能,可避免用户手握影响。
例如,在电子设备10顶部被用户握住的场景下,位置E、J处的调谐开关可设置为闭合状态,如切0欧姆接地,位置K、D处的调谐开关可设置为断开状态。这样可以增强侧边间隙27、25下侧的外围传导性片段的辐射,减弱侧边间隙27、25上侧的外围传导性片段的辐射,提高了天线3、天线4的天线性能,可避免用户手握影响。
4、实体天线切换
在自由空间场景下,天线0、天线1可分别用作蜂窝移动通信中的主集天线、分集天线。
主集天线一般负责射频信号的发送和接收。蜂窝移动通信中的分集天线一般只接收射频信号但不发送射频信号。当来自基站的信号通过下行传递给电子设备天线的时候,电子设备会把从这两个天线端口收到的信号中,选择信号质量较好的一路信号进行解调。
天线0、天线1、天线3和天线4都可连接到一天线切换开关(未示出)。该天线切换 开关可以称为第一天线切换开关。第一天线切换开关可用于从天线0、天线1、天线3和天线4中选择出信号质量最优的天线。选择出的信号质量最优的天线可作为主集天线。该天线切换开关还可以从天线0、天线1、天线3和天线4中选择出信号质量次优的天线作为分集天线。也即是说,蜂窝移动通信的主集天线、分集天线可以在顶部天线、中部天线、底部天线之间切换,适应各种应用场景,确保蜂窝移动通信时的天线性能。
例如,在电子设备的底部被用户握持的场景下,如图5中(A)、图6中(A)所示的场景,底部天线因被用户手部握住而出现信号质量恶化,而顶部天线、中部天线的信号质量良好。主集天线可以切换到顶部天线或中部天线,分集天线可切换到顶部天线或中部天线。这样,既能确保主集天线的天线性能,也能确保分集天线的天线性能,避免出现传统的“上底部天线布局”中主集上切、分解下切而导致的分集天线性能恶化的问题。
例如,在电子设备的顶部被用户握持的场景下,如图5中(C)、图6中(B)所示的场景,顶部天线因被用户握持而出现信号质量恶化,而底部天线、中部天线的信号质量优良。底部天线可用作主集天线,可以呈现良好的天线性能。分集天线可以切换到中部天线,可以确保分集天线的天线性能。
例如,在电子设备的顶部、底部都被用户握持的场景下,如图6中(C)所示的场景,顶部天线、底部天线均因被用户手部握住而出现信号质量恶化,而中部天线的信号质量良好。主集天线、分集天线都可以切换到中部天线,使得主集天线、分集天线都呈现出良好的天线性能。
例如,在电子设备的中部被用户握持的场景下,如图5中(D)、图6中(D)所示的场景,中部天线因被用户手部握住而出现信号质量恶化,而顶部天线、底部天线的信号质量良好。底部天线可用作主集天线,顶部天线可用作分集天线。
不限于上述几种示例,实施例一提供的多天线系统还可以适用其他手握场景,呈现良好的天线性能,提高蜂窝移动通信质量。
5、天线复用
电子设备10的Wi-Fi天线可默认通过顶部天线来实现。例如,天线2可用作Wi-Fi 2.4G Core0天线,天线1可用作Wi-Fi 2.4G Core1天线。Core0天线和Core1天线构成WiFi双天线,双天线都可用于信号收发。
在Wi-Fi使用场景下,在顶部天线的信号质量差的情况下,Wi-Fi天线还可以从顶部天线切换到中部天线。也即是说,Wi-Fi天线可以在顶部天线和中部天线之间切换,以实现类似蜂窝移动通信天线的性能提升。这种天线切换的具体实现可如下:
天线1和天线3可连接到第二天线切换开关(未示出)。第二天线切换开关可用于从天线1、天线3中选择信号质量较好的天线作为Wi-Fi天线。天线2和天线4可连接到第三天线切换开关。第三天线切换开关可用于从天线2、天线4中选择信号质量较好的天线作为Wi-Fi天线。
当Wi-Fi天线和蜂窝移动天线切换到相同的天线时,如Wi-Fi 2.4G Core0天线和蜂窝移动天线(如主集天线、分集天线等)都切换到天线4时,可通过频分器(合路器)或时分复用的方式实现复用。
Wi-Fi使用场景是指电子设备开启Wi-Fi,通过Wi-Fi进行通讯(如视频通话、网页浏览等)的场景。电子设备可以通过Wi-Fi是否开启,特定应用或功能(如视频通话、视频播放)是否启动,来判断电子设备是否处于Wi-Fi使用场景。
6、4×4MIMO蜂窝移动天线
实施例一的多天线系统可以包括4×4 MIMO蜂窝移动天线。图8A-图8D示出了几种4×4MIMO蜂窝移动天线的实现方式。MIMO是指多输入多输出(multi input multi output)。
如图8A所示,天线0可用作主集天线,天线1可用作分集天线。天线2、天线3可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在天线0、天线1、天线3、天线4之间切换。Wi-Fi 2.4G Core0天线可以在天线2、天线4之间切换。Wi-Fi 2.4G Core1天线可以在天线3、天线1之间切换。除了用作主集天线的天线0、用作分集天线的天线1外,天线2、天线3也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
如图8B所示,天线0可用作主集天线,天线1可用作分集天线。天线2、天线3可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在天线0、天线1、天线3、天线4之间切换。Wi-Fi 2.4G Core0天线可以在天线2、天线4之间切换。Wi-Fi 2.4G Core1天线可以在天线3、天线1之间切换。除了用作主集天线的天线0、用作分集天线的天线1外,天线3、天线4也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
如图8C所示,天线0可用作主集天线,天线1可用作分集天线。天线2、天线3可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在天线0、天线1、天线3、天线4之间切换。Wi-Fi 2.4G Core0天线可以在天线2、天线4之间切换。Wi-Fi 2.4G Core1天线可以在天线3、天线1之间切换。除了用作主集天线的天线0、用作分集天线的天线1外,天线2、天线3也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
如图8D所示,天线0可用作主集天线,天线3可用作分集天线。天线2、天线1可用作Wi-Fi天线。蜂窝移动通信的主集天线、分集天线可以在天线0、天线1、天线3、天线4之间切换。Wi-Fi 2.4G Core0天线可以在天线2、天线4之间切换。Wi-Fi 2.4G Core1天线可以在天线3、天线1之间切换。除了用作主集天线的天线0、用作分集天线的天线3外,天线1、天线2也还可以用于蜂窝移动通信,从而形成4个接收天线,支持4×4 MIMO架构。
从图8A至图8D可以看出,用于信号接收的4个接收天线分布在电子设备的顶部、中部、底部这三个位置,能够适应各种用户握持场景,确保电子设备的信号接收性能。例如,当用户单手竖屏握住电子设备的底部时,底部的接收天线的性能会明显恶化,但顶部、中部的接收天线的性能良好,可以正常接收信号。又例如,当用户单手竖屏握住电子设备的顶部时,顶部的接收天线的性能会明显恶化,但底部、中部的接收天线的性能良好,可以正常接收信号。再例如,当用户双手横屏握住电子设备的顶部和底部时,顶部和底部的接收天线的性能会明显恶化,但中部的接收天线的性能良好,可以正常接收信号。
实施例一提供的多天线系统可工作在中高频频段(1670MHz-2.5G Hz),该多天线系统能够在自由空间场景、竖屏手握场景、横屏手握场景等多场景下都呈现良好的辐射效率。
实施例一提供的多天线系统还可以支持5G sub6G/5G sub3G频段,即电子设备10的5G Sub6G/5G sub3G天线和中高频天线可以共辐射体,具体可通过馈电位置的改变、设计馈电阻抗匹配,或者在间隙两侧设置调谐开关来实现。
实施例二
如图9A-图9B所示,实施例二提供的多天线系统可包括:天线0和天线1。这两个天线可由具有多个间隙的外围传导性结构11(以下简称为结构11)形成。结构11的上边框11-5可具有2个顶部间隙:21-1、21-2。顶部间隙21-1、21-2可分别开设于上边框11-5的左侧、右侧。结构11的下边框11-7可具有2个底部间隙:23-1、23-2。底部间隙23-1、23-2可分别开设于下边框11-7的左侧、右侧。结构11的左侧侧边框11-3、右侧侧边框11-1可各具有1个侧边间隙:27、25。侧边间隙27、25可分别开设于侧边框11-3、11-1的上侧。这多个间隙将结构11分割为多个外围传导性片段。
下面天线结构、天线隔离、天线调谐、天线切换这几方面介绍实施例二的多天线系统。
1、天线结构
天线0可包括结构11的下边框11-7、底部间隙23-1、23-2和馈电点32-1,以及结构11的左侧边框11-3、侧边间隙27。馈电点32-1可设置在底部间隙23-1和侧边间隙27之间的外围传导性片段上。馈电点32-1可用于连接天线0的馈电,以激励天线0产生辐射。和实施例一中的天线0不同的是,实施例二中的天线0从底部的下边框11-7向侧边框11-3延伸,其可通过底部间隙23-1、侧边间隙27向外辐射电磁波。
天线1可包括上边框11-5、顶部间隙21-2和顶部馈电点32-3。馈电点32-3可设置在上边框11-5上。馈电点32-3可用于连接天线1的馈电,以激励天线1产生辐射。因设置在结构11的顶部,天线1又可以称为顶部天线,可通过顶部间隙21-2向外辐射电磁波。如图9B所示,馈电点32-3可设置在顶部间隙21-2右侧。不限于此,馈电点32-3也可设置在顶部间隙21-2左侧的外围传导性片段上。
2、天线隔离
为了提高相邻天线0和天线1之间的隔离度,多天线系统中的相邻天线之间可以设置接地点。如图9B所示,天线0的馈电点32-1与天线1的馈电点32-3之间的结构11上可设置接地点33-1、33-2。这些接地点的接地可以通过金属弹片等导体连接到地来实现,也可以通过接器件选频到地。这些接地点也可用来实现各个天线的接地。
3、天线的调谐开关
图9C示例性示出了实施例二的多天线系统中可设置调谐开关的位置。如图9C所示,在位置A至位置E中一个或多个位置处,即在间隙的一侧或两侧,结构11可以连接调谐开关,以对间隙两侧的外围传导性片段进行:
1)频段调谐
例如,位置D处(即间隙21-2左侧)的调谐开关可用来调节间隙21-2左侧的外围传导性片段的工作频段。又例如,位置E处(即间隙21-2右侧)的调谐开关可用来调节间隙21-2右侧的外围传导性片段的工作频段。再例如,位置B处(即间隙23-1左侧)的调谐开关可用来调节间隙23-1左侧的外围传导性片段的工作频段。
2)通过调谐开关的组合状态实现虚拟天线切换
后续内容中会详细介绍虚拟天线切换,这里先不赘述。
4、天线切换
(1)实体天线切换
在自由空间场景下,天线0、天线1可分别用作蜂窝移动通信中的主集天线、分集天线。
天线0、天线1都可连接到一天线切换开关(未示出)。实施例二中,该天线切换开关可以称为第一天线切换开关。第一天线切换开关可用于从天线0、天线1中选择出信号质量最优的天线。选择出的信号质量最优的天线可作为主集天线。
(2)虚拟天线切换
和实施例一中的天线0不同的是,实施例二中的天线0从底部的下边框11-7向侧边框11-3延伸,其可通过底部间隙23-1、侧边间隙27向外辐射电磁波,可以在底部、侧边形成两个辐射模式:横向模式和纵向模式。这里,横向模式可以是指横向的下边框11-7作为主辐射体向外辐射的辐射模式。这里,纵向模式可以是指纵向的侧边框11-3作为主辐射体向外辐射的辐射模式。当天线0的辐射模式为横向模式时,天线0可用作底部天线,类似于实施一中的天线0;当天线0的辐射模式为纵向模式时,天线0可用作中部天线,类似于实施例一中的天线3或天线4。
实施例二中,可通过改变连接下边框11-7、侧边框11-3的调谐开关的状态(如断开状态或闭合状态)来调节天线0的辐射模式是横向模式还是纵向模式。
连接下边框11-7的调谐开关可以称为第一调谐开关。第一调谐开关可具体连接在底部间隙23-1一侧或两侧的下边框11-7上,例如图9C所示的位置B处。第一调谐开关可具体设于底部间隙23-1左侧。连接侧边框11-3的调谐开关可以称为第二调谐开关。第二调谐开关可具体连接在侧边间隙27一侧或两侧的侧边框11-3上,例如图9C所示的位置C处。第二调谐开关可具体设于侧边间隙27下侧。
当第一调谐开关处于断开状态,第二调谐开关处于闭合状态时,下边框11-7被充分激励,可作为辐射体向外产生辐射,此时天线0的辐射模式为横向模式,不受手握住侧边间隙27的影响,手握辐射效率好。第一调谐开关还可用于在横向模式下切换下边框11-7的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
当第二调谐开关处于断开状态,第一调谐开关处于闭合状态时,侧边框11-3被充分激励,可作为辐射体向外产生辐射,此时天线0的辐射模式为纵向模式,自由空间辐射效率好。第二调谐开关还可用于在纵向模式下切换侧边框11-3的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
可以看出,通过调节第一调谐开关、第二调谐开关的组合状态,可切换调节天线0的 辐射模式,通过开关组合状态提升天线性能,而且,还可实现频段调谐。
(3)天线切换对全场景的支持
结合上述(1)中的实体天线切换和上述(2)中的虚拟天线切换,可实现蜂窝移动通信的主集天线、分集天线在电子设备的顶部、中部、底部之间切换,适应各种应用场景,确保蜂窝移动通信时的天线性能良好。
例如,在电子设备的底部被用户握持的场景下,如图5中(A)、图6中(A)所示的场景,电子设备的底部被用户握住。此场景下,天线0的横向模式性能较差,但顶部的天线1的性能良好,天线0的纵向模式性能良好。主集天线可以切换到顶部的天线1,分集天线可以切换到天线0的纵向模式。这样,可确保主集天线、分集天线的天线性能,也可避免出现传统的“上底部天线布局”中主集上切、分集下切而导致的分集天线性能恶化的问题。
例如,在电子设备的顶部被用户握持的场景下,如图5中(C)、图6中(B)所示的场景,天线1的性能恶化,但天线0的性能良好,尤其是天线0的横向模式性能良好。主集天线可以切换到天线0的横向模式,可以确保主集天线的天线性能良好。
例如,在电子设备的顶部、底部都被用户握持的场景下,如图6中(C)所示的场景,天线1的性能恶化,天线0的横向模式性能较差,但天线0的纵向模式性能良好。主集天线可以切换到天线0的纵向模式,可以确保主集天线的天线性能良好。
例如,在电子设备的中部被用户握持的场景下,如图5中(D)、图6中(D)所示的场景,天线0的纵向模式性能较差,但天线1、天线0的横向模式性能良好。主集天线可切换到天线0的横向模式,天线1可用作分集天线。这样,可确保主集天线、分集天线的天线性能良好。
不限于上述几种示例,实施例二提供的多天线系统还可以适用其他手握场景,呈现良好的天线性能,提高蜂窝移动通信质量。
实施例二提供的多天线系统可工作在低频频段(如960MHz),该多天线系统能够在自由空间场景、竖屏手握场景、横屏手握场景等多场景下都呈现良好的辐射效率。
实施例二提供的多天线系统和实施例一提供的多天线系统可以结合实施,以实现在低频、中高频都能适应多场景,呈现良好的辐射效率。
实施例二的扩展
扩展1
(1)电子设备顶部的天线1也可以做类似天线0的天线设计,即天线1可以从顶部的上边框11-5向侧边框11-1延伸,其可通过顶部间隙21-2、侧边间隙25向外辐射电磁波,可以支持更多的横竖屏手握场景。
如图10A-图10B所示,天线1可包括结构11的上边框11-5、顶部间隙21-1、21-2和馈电点32-3,以及结构11的右侧边框11-1、侧边间隙25。馈电点32-3可设置在顶部间隙21-2和侧边间隙25之间的外围传导性片段上。馈电点32-3可用于连接天线1的馈电,以激励天线1产生辐射。和图9A-图9C中的天线1不同的是,图10A-图10C中的天线1从顶部的上边框11-5向侧边框11-1延伸,其可通过顶部间隙21-2、侧边间隙25向外辐射电 磁波。
类似天线0,天线1可以在顶部、侧边形成两个辐射模式:横向模式和纵向模式。这里,横向模式可以是指横向的上边框11-5作为主辐射体向外辐射的辐射模式。这里,纵向模式可以是指纵向的侧边框11-1作为主辐射体向外辐射的辐射模式。当天线1的辐射模式为横向模式时,天线1可用作顶部天线;当天线1的辐射模式为纵向模式时,天线1可用作中部天线,类似于实施例一中的天线3或天线4。
天线1的辐射模式是横向模式还是纵向模式,可通过改变连接上边框11-5、侧边框11-1的调谐开关的状态(如断开状态或闭合状态)来调节。
连接上边框11-5的调谐开关可以称为第三调谐开关。第三调谐开关可具体连接在顶部间隙21-2一侧或两侧的上边框11-5上,例如图10C所示的位置D处。连接侧边框11-1的调谐开关可以称为第四调谐开关。第四调谐开关可具体连接在侧边间隙25一侧或两侧的侧边框11-1上,例如图10C所示的位置E、位置F处。
当第三调谐开关处于断开状态,第四调谐开关处于闭合状态时,上边框11-5被充分激励,可作为辐射体向外产生辐射,此时天线1的辐射模式为横向模式,不受手握住侧边间隙25的影响,手握辐射效率好。第三调谐开关还可用于在横向模式下切换上边框11-5的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
当第四调谐开关处于断开状态,第三调谐开关处于闭合状态时,侧边框11-1被充分激励,可作为辐射体向外产生辐射,此时天线1的辐射模式为纵向模式,自由空间辐射效率好。第四调谐开关还可用于在纵向模式下切换侧边框11-1的辐射频段,例如在LTE B5、LTE B8、LTE B28等低频频段之间切换。
可以看出,通过调节第三调谐开关、第四调谐开关的组合状态,可切换调节天线1的辐射模式,通过开关组合状态提升天线性能,而且,还可实现频段调谐。
(2)支持更多手握场景
结合天线1和天线0之间的实体天线切换,以及天线0、天线1的虚拟天线切换,可实现蜂窝移动通信的主集天线、分集天线在电子设备的顶部、中部、底部之间切换,适应更多应用场景,确保蜂窝移动通信时的天线性能良好。
例如,在电子设备的顶部被用户握持的场景下,如图5中(C)、图6中(B)所示的场景,天线1的横向模式性能较差,但天线1的纵向模式性能良好,天线0的性能良好,尤其是天线0的横向模式性能良好。主集天线可以切换到天线0的横向模式,分集天线可以切换到天线1的纵向模式,可以确保主集、分集天线的天线性能良好。
例如,在电子设备的顶部、底部都被用户握持的场景下,如图6中(C)所示的场景,天线1的横向模式性能较差,天线0的横向模式性能较差,但天线0、天线1的纵向模式均性能良好。主集天线可以切换到天线0的纵向模式,分集天线可以切换到天线1的纵向模式,可以确保主集、分集天线的天线性能良好。
扩展2
(1)增加侧边的天线2
除了图9A-图9C中的天线0、天线1,如图11A-图11B所示,实施例二提供的多天线系统还可以包括天线2。天线2可包括:侧边框11-1、侧边间隙25和馈电点32-5。馈电点 32-5可设置在侧边框11-1上。馈电点32-5可用于连接天线2的馈电,以激励天线2产生辐射。如图11B所示,馈电点32-5可设置在侧边间隙25的下侧。
另外,如图11B所示,设置在馈电点32-5和馈电点32-3之间的接地点33-2可提高天线2和天线1之间的隔离度,设置在馈电点32-5和馈电点32-1之间的接地点33-3可提高天线2和天线0之间的隔离度。
(2)天线2的频段调谐
如图11C所示,连接侧边框11-1的调谐开关可以对天线2进行频段调谐。具体的,该调谐开关可设置在侧边间隙25一侧或两侧,例如位置F处。
(3)实体天线切换
在自由空间场景下,天线0的横向模式可用作蜂窝移动通信中的主集天线,天线1可用作蜂窝移动通信中的分集天线。
和天线0、天线1一样,天线2也可连接到第一天线切换开关。第一天线切换开关可用于从天线0、天线1和天线2中选择出信号质量最优的天线。选择出的信号质量最优的天线可作为主集天线。第一天线切换开关还可以从天线0、天线1和天线2选择出信号质量次优的天线作为分集天线。也即是说,蜂窝移动通信的主集天线、分集天线可以在顶部天线、中部天线、底部天线之间切换,适应各种应用场景,确保蜂窝移动通信时的天线性能。
例如,在电子设备的底部被用户握持的场景下,如图5中(A)、图6中(A)所示的场景,天线0的横向模式性能较差,但天线0的纵向模式、天线1以及天线2的信号质量良好。主集天线可以切换到天线1,分集天线可切换到天线0的纵向模式或者天线2。这样,既能确保主集天线的天线性能,也能确保分集天线的天线性能,避免出现传统的“上底部天线布局”中主集上切、分解下切而导致的分集天线性能恶化的问题。
例如,在电子设备的顶部被用户握持的场景下,如图5中(C)、图6中(B)所示的场景,天线1因被用户握持而出现信号质量恶化,而天线0、天线2的信号质量优良。天线0的横向模式可用作主集天线,可以呈现良好的天线性能。分集天线可以切换到天线2,可以确保分集天线的天线性能。
例如,在电子设备的顶部、底部都被用户握持的场景下,如图6中(C)所示的场景,天线0的横向模式、天线1的性能都较差,但天线0的纵向模式、天线2的性能良好。主集天线可以切换到天线2,分集天线可以切换到天线0的纵向模式。或者,分集天线可以切换到天线2,主集天线可以切换到天线0的纵向模式。这样,可使得主集天线、分集天线都呈现出良好的天线性能。
例如,在电子设备的中部被用户握持的场景下,如图5中(D)、图6中(D)所示的场景,天线0的纵向模式、天线2的性能都较差,但天线0的横向模式、天线1的性能良好。天线0的横向模式可用作主集天线,天线1可用作分集天线。
不限于上述几种示例,图11A-图11B所示的多天线系统还可以适用其他手握场景,呈现良好的天线性能,提高蜂窝移动通信质量。
实施二中,左侧侧边框11-3、右侧侧边框11-1可以分别称为第一侧边框、第二侧边框。 天线0可以称为第一天线,天线1可以称为第二天线,天线2可以称为第三天线。馈电点32-1可以称为第一馈电点。馈电点32-3可以称为第二馈电点。馈电点32-5可以称为第三馈电点。侧边间隙27、侧边间隙25可以分别称为第一侧边间隙、第二侧边间隙。
实施例三
本实施例针对可折叠的电子设备(如折叠手机)而设计。
如图12A-图12B所示,可折叠的电子设备的显示屏15是柔性屏。该柔性屏可包括:主屏15-1,以及副屏15-3。可折叠的电子设备还可包括转轴16,转轴16将主屏15-1和副屏15-3相连接。主屏15-1的宽度(w1)和副屏15-3的宽度(w2)可以相等,也可以不相等。本申请中,可以将主屏成为第一屏,可以将副屏称为第二屏。外围传导性结构11可包括主屏外围传导性结构11-1和副屏外围传导性结构11-3。
柔性屏15可在转轴16处被弯折。这里,被弯折可以包括柔性屏15向外被弯折、柔性屏15向内被弯折。向外被弯折是指被弯折后柔性屏15呈现在外侧,电子设备的后盖呈现在内侧,柔性屏15中的显示内容对用户可视。向内被弯折是指被弯折后柔性屏15隐藏内侧,电子设备的后盖呈现在外侧,柔性屏15中的显示内容对用户不可视。柔性屏15具有两种模式:展开(open)态和折叠(folded)态。展开态可以是指主屏和副屏之间的夹角α超过第一角度(如120°)时的状态。折叠态可以是指主屏和副屏之间的夹角α小于第二角度(如15°)时的状态。其中,当柔性屏15处于展开态时,电子设备可如图12A示例性所示;当柔性屏15处于折叠态时,电子设备可如图12B示例性所示。
可折叠的电子设备可具有前述实施例一所描述的多天线系统。但是,可折叠的电子设备的多天线切换方案需要根据柔性屏所处的具体模式(展开态或折叠态)来选择。具体的:
如图13A所示,当可折叠的电子设备的显示屏处于展开态时,可折叠的电子设备的天线切换方案和实施例一中的天线切换方案相同。即:蜂窝移动通信的主集天线、分集天线可以在顶部天线、中部天线、底部天线之间切换,适应各种应用场景,确保蜂窝移动通信时的天线性能。关于如何实现主分集天线切换,具体可参考实施例一中的相关内容,这里不再赘述。另外,在Wi-Fi使用场景下,在顶部天线的信号质量差的情况下,Wi-Fi天线还可以从顶部天线切换到中部天线。关于如何实现Wi-Fi天线切换,具体可参考实施例一中的相关内容,这里不再赘述。
如图13B所示,当可折叠的电子设备的显示屏处于折叠态时,考虑到处于折叠态时顶部天线和底部天线之间的隔离问题,可折叠的电子设备的天线切换方案不同于实施例一中的天线切换方案。具体如下:蜂窝移动通信的主集天线、分集天线的天线切换方案可以是3天线切换方案。即,主集天线、分集天线可以在中部天线(天线3、天线4)、底部天线(天线0)之间切换。在Wi-Fi使用场景下,Wi-Fi天线切换到中部天线:天线3、天线4。
基于前述实施例描述的多天线系统,本申请还提供了一种天线选择方案。通过电子设备内的电磁波吸收率(specific absorption rate,SAR)传感器、运动传感器识别图5-图6所示的几种应用场景,根据应用场景选择最优天线群,然后采用TAS/MAS天线切换技术在最优天线群内进行天线选择。这样,可实现天线群切换、天线群内切换,可增加每个场景 下的天线的信号覆盖。在图5-图6所示的几种典型应用场景下实现大幅度天线性能提升(8~15dB),同时也就降低电子设备的功耗,延长待机时间。
本申请提供的天线选择方案可具体包括以下几个阶段:
阶段1:亮熄屏识别
电子设备可以判断显示屏是处于亮屏状态还是处于熄屏状态。如果显示屏处于熄屏状态,则电子设备可以默认选择电子设备底部的天线群作为最优天线群。底部天线群若如图7A所示只有天线0,则天线0即最优天线。底部天线群若包括多个天线,则电子设备可以利用TAS/MAS天线切换技术从这个多个天线中选择最优天线。如果显示屏处于亮屏状态,则电子设备可以通过后续阶段描述的方法来进行天线选择。
阶段2:场景识别
电子设备可以根据电子设备内的SAR传感器、运动传感器识别应用场景,例如图5中的(A)-(B)所示的几种竖屏手握场景、图6中的(A)-(D)所示的几种横屏手握场景。运动传感器可包括加速度计、陀螺仪、磁传感器等等。
如图14所示,电子设备的顶部、底部可设置有SAR传感器,可用于检测电子设备的顶部、底部和人体的接近度。也即是说,通过分布于顶部、底部的SAR传感器,电子设备可确定用户是否手握顶部、底部。进一步,结合设置于电子设备内部的运动传感器,电子设备可以确定电子设备的姿态。电子设备的姿态可包括:静置于水平面、被用户竖屏握持、被用户横屏握持等。
图15A-图15C和图16A-图16C示出了几种设置SAR传感器的感应枝节的方式。感应枝节可以利用电子设备中的已有部件来实现,例如电子设备背部的支架天线,或壳体19的外围传导性结构11。感应枝节也可以是为SAR传感器专门设置的感应枝节。
如图15A-图15C所示,SAR传感器可以连接数个悬浮不接地的感应枝节。其中,图15A示出了SAR传感器连接两个竖直悬浮感应枝节。图15B示出了SAR传感器连接一个竖直悬浮感应枝节、一个水平悬浮感应枝节,其中水平悬浮感应枝节为悬浮的外围传导性片段,该外围传导性片段由两个间隙分割结构11形成。图15C示出了SAR传感器连接两个竖直悬浮感应枝节、一个水平悬浮枝节。
如图16A-图16C所示,SAR传感器可以连接数个悬浮不接地的感应枝节以及一个接地的感应枝节。图16A、图16B中,SAR传感器都连接一悬浮感应枝节,以及一接地感应枝节。但图16A、图16B中的接地感应枝节不同。图16C中,SAR传感器连接两个竖直悬浮感应枝节,以及一接地感应枝节。
图15A-图15C和图16A-图16C所示的设置SAR传感器的感应枝节的方式,不仅适用电子设备顶部天线群,也适用电子设备底部天线群。
阶段3:天线群切换
电子设备可以根据阶段2中已识别出的场景来进行天线群切换,以选出适用该场景的性能良好的天线群。选出的天线群可以称为第一天线群。
图17和图18示例性示出了一发四收(1T4R)、二发四收(2T4R)天线架构。一发四收(1T4R)架构中,天线群Ant0、Ant1、Ant2、Ant3可连接到同一天线切换开关,可用于从天线群Ant0、Ant1、Ant2、Ant3中选出主集天线、分集天线。二发四收(2T4R)架 构中,天线群Ant0、Ant1可连接到同一天线切换开关,天线群Ant2、Ant3可连接到另一天线切换开关,可用于从天线群Ant0、Ant1中选择出主集天线、分集天线,还可用于从天线群Ant2、Ant3中选出另一个用于信号发射的天线群。
表1示出了图17和图18示例性所示的一发四收(1T4R)、二发四收(2T4R)天线架构下,适应几种竖屏握持场景的天线群切换方案。表2示出了图17和图18示例性所示的一发四收(1T4R)、二发四收(2T4R)天线架构下,适应几种横屏握持场景的天线群切换方案。其中,图17、图18示出了由7个间隙分割结构11形成的天线架构,均具有:底部天线群Ant0、顶部天线群Ant1、顶部天线群Ant2、中部天线群Ant3。天线群Ant0包括两个天线:Ant0-1、Ant0-2,天线群Ant1包括两个天线:Ant1-1、Ant1-2,天线群Ant2包括两个天线:Ant2-1、Ant2-2,天线群Ant3仅具有一个天线Ant3。
Figure PCTCN2020116291-appb-000001
表1
横屏 待机 手持1 手持2 手持3 手持4
顶部SAR传感器 0 1 0 1 0
底部SAR传感器 0 0 1 1 0
运动传感器 1 1 1 1 1
择优天线群 Ant0 Ant1 Ant0 Ant3 Ant0
收益 0 8~12 0 5~8 0
表2
表1、表2中,顶部SAR传感器的检测结果为“1”,表示电子设备的顶部被用户手持;顶部SAR传感器的检测结果为“0”,表示电子设备的顶部没有被用户手持。底部SAR传感器的检测结果为“1”,表示电子设备的底部被用户手持;底部SAR传感器的检测结果为“0”,表示电子设备的底部没有被用户手持。运动传感器的检测结果为“1”,表示电子设备被用户横屏握持;运动传感器的检测结果为“0”,表示电子设备被用户竖屏握持。这里,表中的“1”、“0”用来区分传感器检测到两种状态,例如“有被手持”、“没被手持”,并不用来限定传感器的检测数值。应理解的,多个检测结果“1”可实际对应不同的检测数值,例如不同的SAR传感器检测数值表示人体和电子设备的不同接近度。
表1中,竖屏场景可包括:待机、竖屏手持1(如图5中(A)、(B)所示)、竖屏手持2(如图5中(C)所示)、竖屏手持3(如图5中(D)所示)。这些竖屏场景可通过顶部SAR传感器、底部SAR传感器和运动传感器的检测结果确定出来。
可以看出,如果确定当前场景为电子设备的底部被用户竖屏握持的场景(如竖屏手持1),则电子设备可以选择顶部天线群(例如Ant1)为最优天线群。如果确定当前场景为电子设备的顶部被用户竖屏握持的场景(如竖屏手持2),则电子设备可以选择底部天线群(例如Ant0)为最优天线群。如果确定当前场景为电子设备的中部被用户竖屏握持的场景(如竖屏手持3),则电子设备可以选择底部天线群(例如Ant0)为最优天线群。在竖屏手持1的场景下,选择天线群Ant1作为最优天线群,相比于默认选择底部天线群,可提高收益约8~12dB。
表2中,横屏场景可包括:待机、横屏手持1(如图6中(A)所示)、横屏手持2(如图6中(B)所示)、横屏手持3(如图6中(C)所示)、横屏手持4(如图6中(D)所示)。这些横屏场景可通过顶部SAR传感器、底部SAR传感器和运动传感器的检测结果确定出来。
可以看出,如果确定当前场景为电子设备的底部被用户横屏握持的场景(如横屏手持1),则电子设备可以选择顶部天线群(例如Ant1)为最优天线群。如果确定当前场景为电子设备的顶部被用户横屏握持的场景(如横屏手持2),则电子设备可以选择底部天线群(例如Ant0)为最优天线群。如果确定当前场景为电子设备的顶部、底部都被用户横屏握持的场景(如横屏手持3),则电子设备可以选择中部天线群(例如Ant3)为最优天线群。如果确定当前场景为电子设备的中部都被用户横屏握持的场景(如横屏手持4),则电子设备可以选择底部天线群(例如Ant0)为最优天线群。在横屏手持1的场景下,选择天线群Ant1作为最优天线群,相比于默认选择底部天线群,可提高收益约8~12dB。在横屏手持3的场景下,选择天线群Ant3作为最优天线群,相比于默认选择底部天线群,可提高收益约5~8dB。
即,当前所处场景可以包括以下任一项:用户竖屏手握所述电子设备底部的场景、用户竖屏手握所述电子设备顶部的场景、用户竖屏手握所述电子设备中部的场景、用户横屏手握所述电子设备底部的场景、用户横屏手握所述电子设备顶部的场景、用户横屏手握所述电子设备顶部和底部的场景、用户横屏手握所述电子设备中部的场景。
除了场景识别,天线群切换还可以基于TAS/MAS算法来进行,即基于各个天线群的实际信号收发质量来进行天线群选择,可适应更为复杂多变的手握场景,可以进一步提高天线切换所带来的收益。
阶段4:在最优天线群内进行天线切换
在选择出的最优天线群内,电子设备可以根据TAS/MAS算法来进行天线切换,即基于最优天线群内各个天线的信号收发质量进行天线切换。具体的,电子设备可以根据TAS/MAS算法在第一天线群内选出信号质量最优的天线。例如,如果最优天线群是Ant0,则可以通过TAS/MAS算法在天线Ant0-1、Ant0-2之间进行天线切换。又例如,如果最优天线群是Ant1,则可以通过TAS/MAS算法在天线Ant1-1、Ant1-2之间进行天线切换。
上述阶段1-阶段4描述的天线切换方案也可以适用可折叠的电子设备。如图19所示,在可折叠的电子设备的主屏15-1中,SAR传感器、运动传感器的设置方式可参考上述阶段1-阶段4描述的天线切换方案,SAR传感器的感应枝节也可参考上述阶段1-阶段4描述的天线切换方案。在可折叠的电子设备的副屏15-3中,顶部天线群区域、底部天线群区域也 可参考图14设置SAR传感器。SAR传感器感应枝节的设置也可参考图15A-图15C和图16A-图16C所示的两种方式。
以上实施例中提及的调谐开关,可以如图20所示,可具有多个接地点,例如接地点61、接地点63、接地点65。每个接地点可串联RLC集总器件,例如,接地点61串联集总器件L1,接地点63串联集总器件L2,接地点65串联集总器件L3。L1、L2、L3的集总参数值不同。调谐开关可以选择性导通串联了不同的集总器件接地点,以实现频率调节。
以上实施例中提及的调谐开关处于闭合状态,又可以称为调谐开关切至开(on)态。以上实施例中提及的调谐开关处于断开状态,又可以称为调谐开关切至关(off)态。调谐开关处于闭合状态,可以是指调谐开关导通某个集总器件,例如调谐开关导通0欧姆集总器件实现闭合接地。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种电子设备,包括多天线系统,其特征在于,所述电子设备的壳体具有外围传导性结构,所述外围传导性结构包括上边框、下边框,以及侧边框;所述上边框具有至少一个顶部间隙,所述下边框具有至少一个底部间隙,所述侧边框具有至少一个侧边间隙;所述多天线系统包括:顶部天线、底部天线、侧边天线、第一天线切换开关;其中,
    所述顶部天线包括:所述上边框、所述顶部间隙和顶部馈电点,所述顶部馈电点设置在所述上边框上;所述底部天线包括:所述下边框、所述底部间隙和底部馈电点,所述底部馈电点设置在所述下边框上;所述侧边天线包括:所述侧边框、所述侧边间隙和侧边馈电点,所述侧边馈电点设置在所述侧边框上;
    所述顶部天线、所述底部天线、所述侧边天线与所述第一天线切换开关连接,所述第一天线切换开关用于从所述顶部天线、所述底部天线、所述侧边天线中选择其中之一作为蜂窝移动通信的主集天线。
  2. 如权利要求1所述的电子设备,其特征在于,所述第一天线切换开关具体用于从所述顶部天线、所述底部天线、所述侧边天线中选择信号质量最优的天线作为蜂窝移动通信的主集天线。
  3. 如权利要求1或2所述的电子设备,其特征在于,所述第一天线切换开关还用于从所述顶部天线、所述底部天线、所述侧边天线中选择其中之一作为蜂窝移动通信的分集天线。
  4. 如权利要求3所述的电子设备,其特征在于,所述第一天线切换开关还具体用于从所述顶部天线、所述底部天线、所述侧边天线中选择信号质量次优的天线作为蜂窝移动通信的分集天线。
  5. 如权利要求1-4中任一项所述的电子设备,其特征在于,所述至少一个顶部间隙包括:第一顶部间隙、第二顶部间隙,所述第一顶部间隙开设于所述上边框的第一侧,所述第二顶部间隙开设于所述上边框的第二侧;
    所述顶部馈电点包括:第一顶部馈电点、第二顶部馈电点,所述第一顶部馈电点设于所述上边框的第一侧,所述第二顶部馈电点设于所述上边框的第二侧;
    所述顶部天线包括:第一顶部天线和第二顶部天线,其中,所述第一顶部天线包括:所述上边框的第一部分、所述第一顶部馈电点、所述第一顶部间隙;所述第二顶部天线包括:所述上边框的第二部分、所述第一顶部馈电点、所述第二顶部间隙;所述第一部分位于所述第一侧,所述第二部分位于所述第二侧。
  6. 如权利要求1-5中任一项所述的电子设备,其特征在于,所述侧边框包括:第一侧边框、第二侧边框,所述第一侧边框位于所述电子设备的第一侧,所述第二侧边框位于所述电子设备第二侧;
    所述至少一个侧边间隙包括:开设于所述第一侧边框上的第一侧边间隙、开设于所述第二侧边框上的第二侧边间隙;
    所述侧边馈电点包括:设置于所述第一侧边框上的第一侧边馈电点、设置于所述第二侧边框上的第二侧边馈电点;
    所述侧边天线包括:第一侧边天线和第二侧边天线,其中,所述第一侧边天线包括:所述第一侧边框、所述第一侧边馈电点、所述第一侧边间隙;所述第二侧边天线包括:所述第二侧边框、所述第二侧边馈电点、所述第二侧边间隙。
  7. 如权利要求6所述的电子设备,其特征在于,所述第一天线切换开关具体连接所述底部天线、所述第二顶部天线、所述第一侧边天线和所述第二侧边天线,所述第一天线切换开关具体用于从所述底部天线、所述第二顶部天线、所述第一侧边天线和所述第二侧边天线中选出所述主集天线。
  8. 如权利要求6或7所述的电子设备,其特征在于,还包括:第二天线切换开关、第三天线切换开关;
    所述第二天线切换开关连接所述第二侧边天线、所述第二顶部天线,所述第二天线切换开关用于从所述第二侧边天线、所述第二顶部天线中选择信号质量较优的天线作为无线高保真Wi-Fi天线;
    所述第三天线切换开关连接所述第一侧边天线、所述第一顶部天线,所述第三天线切换开关用于从所述第一侧边天线、所述第一顶部天线中选择信号质量较优的天线作为无线高保真Wi-Fi天线。
  9. 一种电子设备,包括多天线系统,其特征在于,所述电子设备的壳体具有外围传导性结构,所述外围传导性结构包括上边框、下边框、第一侧边框;所述上边框上具有至少一个顶部间隙,所述下边框上具有至少一个底部间隙,所述第一侧边框上具有至少一个第一侧边间隙;所述多天线系统包括:第一天线、第二天线、第一天线切换开关、多个调谐开关;其中,
    所述第一天线包括所述下边框、所述底部间隙和第一馈电点,以及所述第一侧边框、第一侧边间隙;所述第一馈电点设置在所述底部间隙和所述第一侧边间隙之间的外围传导性结构上;
    所述第二天线包括所述上边框、所述顶部间隙和第二馈电点,所述第二馈电点设置在所述上边框上;
    所述第一天线切换开关连接所述第一天线、所述第二天线,所述第一天线切换开关用于从所述第一天线、所述第二天线中选择出信号质量较优的天线;
    所述多个调谐开关包括连接所述下边框的至少一个第一调谐开关、连接所述第一侧边框的至少一个第二调谐开关;所述第一调谐开关设置在所述底部间隙的一侧或两侧,所述第二调谐开关设置在所述第一侧边间隙的一侧或两侧;所述第一调谐开关用于选择性断开或者导通,所述第二调谐开关用于选择性断开或者导通。
  10. 如权利要求9所述的电子设备,其特征在于,如果所述第一调谐开关断开,所述第二调谐开关导通,则所述下边框被激励向外产生辐射;如果所述第一调谐开关导通,所述第二调谐开关断开,则所述第一侧边框被激励向外产生辐射。
  11. 如权利要求7所述的电子设备,其特征在于,所述第二侧边框上具有至少一个第二侧边间隙;还包括:第三天线,所述第三天线包括第二侧边框、所述第二侧边间隙和第三馈电点,所述第三馈电点设置在所述第二侧边框上;
    所述第一天线切换开关还连接所述第三天线,具体用于从所述第一天线、所述第二天线、所述第三天线中选择出信号质量最优的天线。
  12. 一种电子设备,包括多天线系统,其特征在于,所述电子设备的壳体具有外围传导性结构,所述外围传导性结构包括上边框、下边框、第一侧边框和第二侧边框;所述上边框上具有顶部间隙,所述下边框上具有至少一个底部间隙,所述第一侧边框上具有至少一个第一侧边间隙,所述第二侧边框上具有至少一个第二侧边间隙;所述多天线系统包括:第一天线、第二天线、第一天线切换开关、多个调谐开关;其中,
    所述第一天线包括所述下边框、所述底部间隙和第一馈电点,以及所述第一侧边框、所述第一侧边间隙;所述第一馈电点设置在所述底部间隙和所述第一侧边间隙之间的外围传导性结构上;
    所述第二天线包括所述上边框、所述顶部间隙和第二馈电点,以及所述第二侧边框、所述第二侧边间隙,所述第二馈电点设置在所述顶部间隙和所述第二侧边间隙之间的外围传导性结构上;
    所述第一天线切换开关连接所述第一天线、所述第二天线,所述第一天线切换开关用于从所述第一天线、所述第二天线中选择出信号质量较优的天线;
    所述多个调谐开关包括连接所述下边框的至少一个第一调谐开关、连接所述第一侧边框的至少一个第二调谐开关、连接所述上边框的至少一个第三调谐开关、连接所述第二侧边框的至少一个第四调谐开关;所述第一调谐开关设置在所述底部间隙的一侧或两侧,所述第二调谐开关设置在所述第一侧边间隙的一侧或两侧,所述第三调谐开关设置在所述顶部间隙的一侧或两侧,所述第四调谐开关设置在所述第二侧边间隙的一侧或两侧;所述第一调谐开关用于选择性断开或者导通,所述第二调谐开关用于选择性断开或者导通,所述第三调谐开关用于选择性断开或者导通,所述第四调谐开关用于选择性断开或者导通。
  13. 如权利要求12所述的电子设备,其特征在于,如果所述第一调谐开关断开,所述第二调谐开关导通,则所述下边框被激励向外产生辐射;如果所述第一调谐开关导通,所述第二调谐开关断开,则所述第一侧边框被激励向外产生辐射。
  14. 如权利要求12或13所述的电子设备,其特征在于,如果所述第三调谐开关断开,所述第四调谐开关导通,则所述上边框被激励向外产生辐射;如果所述第三调谐开关导通, 所述第四调谐开关断开,则所述第二侧边框被激励向外产生辐射。
  15. 一种电子设备的天线切换方法,所述电子设备具有壳体、显示屏、第一SAR传感器、第二SAR传感器、运动传感器,其特征在于,所述壳体具有外围传导性结构,所述外围传导性结构包括上边框、下边框,以及侧边框;所述上边框上具有顶部间隙,所述下边框上具有底部间隙,所述侧边框上具有侧边间隙;所述第一SAR传感器设置在所述电子设备顶部,所述第二SAR传感器设置在所述电子设备底部;所述电子设备还具有分布于所述电子设备顶部的顶部天线群、分布于所述电子设备底部的底部天线群、分布于所述电子设备中部的中部天线群;
    所述方法包括:
    如果所述显示屏处于熄屏状态,则所述电子设备选择所述底部天线群作为第一天线群;
    如果所述显示屏处于亮屏状态,则所述电子设备通过所述第一SAR传感器、所述第二SAR传感器、所述运动传感器确定当前所处场景,并根据所述当前所处场景从顶部天线群、底部天线群、中部天线群中选择所述第一天线群;
    所述电子设备根据信号质量在所述第一天线群中进行天线切换;
    其中,所述当前所处场景包括以下任一项:用户竖屏手握所述电子设备底部的场景、用户竖屏手握所述电子设备顶部的场景、用户竖屏手握所述电子设备中部的场景、用户横屏手握所述电子设备底部的场景、用户横屏手握所述电子设备顶部的场景、用户横屏手握所述电子设备顶部和底部的场景、用户横屏手握所述电子设备中部的场景。
  16. 如权利要求15所述的方法,其特征在于,所述电子设备根据信号质量在所述第一天线群中进行天线切换,具体包括:所述电子设备所述第一天线群中选择信号质量最优的天线。
  17. 如权利要求15或16所述的方法,其特征在于,所述根据所述当前所处场景从顶部天线群、底部天线群、中部天线群中选择所述第一天线群,具体包括:
    如果所述当前所处场景为所述用户竖屏手握所述电子设备底部的场景或所述用户横屏手握所述电子设备底部的场景,则所述电子设备选择所述顶部天线群作为所述第一天线群;
    或者,
    如果所述当前所处场景为所述用户竖屏手握所述电子设备顶部的场景或所述用户横屏手握所述电子设备顶部的场景,则所述电子设备选择所述底部天线群作为所述第一天线群;
    或者,
    如果所述当前所处场景为所述用户横屏手握所述电子设备顶部和底部的场景,则所述电子设备选择所述中部天线群作为所述第一天线群。
PCT/CN2020/116291 2019-09-18 2020-09-18 多天线系统及电子设备 WO2021052483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/641,198 US11996625B2 (en) 2019-09-18 2020-09-18 Multi-antenna system and electronic device
EP20864983.0A EP4024607A4 (en) 2019-09-18 2020-09-18 MULTIPLE ANTENNA SYSTEM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910883759.1A CN112615136A (zh) 2019-09-18 2019-09-18 多天线系统及电子设备
CN201910883759.1 2019-09-18

Publications (1)

Publication Number Publication Date
WO2021052483A1 true WO2021052483A1 (zh) 2021-03-25

Family

ID=74488478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116291 WO2021052483A1 (zh) 2019-09-18 2020-09-18 多天线系统及电子设备

Country Status (4)

Country Link
US (1) US11996625B2 (zh)
EP (1) EP4024607A4 (zh)
CN (2) CN112310605B (zh)
WO (1) WO2021052483A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210054336A (ko) * 2019-11-05 2021-05-13 삼성전자주식회사 그립 감지 방법 및 이를 지원하는 전자 장치
KR20210054262A (ko) * 2019-11-05 2021-05-13 삼성전자주식회사 안테나 구조체 및 이를 포함하는 전자 장치
US11917559B2 (en) * 2020-08-26 2024-02-27 Qualcomm Incorporated Time-averaged radio frequency (RF) exposure per antenna group
US11637385B2 (en) * 2021-02-08 2023-04-25 Motorola Mobility Llc Communication device having antenna pairing based on relative positions of housing portions
CN115275564A (zh) * 2021-04-30 2022-11-01 Oppo广东移动通信有限公司 天线装置和移动终端
CN113594697B (zh) * 2021-06-25 2022-06-24 荣耀终端有限公司 一种低sar天线及电子设备
CN216057092U (zh) * 2021-08-23 2022-03-15 Oppo广东移动通信有限公司 电子设备
CN115189128A (zh) * 2022-07-11 2022-10-14 Oppo广东移动通信有限公司 电子设备、天线选择方法、装置及计算机可读介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305101A (zh) * 2015-11-17 2016-02-03 小米科技有限责任公司 天线系统及天线系统的控制方法
WO2018082334A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种天线系统及终端设备、天线切换控制方法及装置
CN108134199A (zh) * 2017-12-29 2018-06-08 Tcl移动通信科技(宁波)有限公司 一种移动终端天线及其切换方法
CN109743119A (zh) * 2018-12-04 2019-05-10 Oppo广东移动通信有限公司 电磁干扰控制方法及相关装置
CN209056587U (zh) * 2018-12-26 2019-07-02 珠海市魅族科技有限公司 天线切换系统及移动终端
CN110165373A (zh) * 2019-05-14 2019-08-23 华为技术有限公司 天线装置及电子设备

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750798B2 (en) * 2010-07-12 2014-06-10 Blackberry Limited Multiple input multiple output antenna module and associated method
US9985353B1 (en) * 2013-09-30 2018-05-29 Ethertronics, Inc. Antenna system for metallized devices
KR102352490B1 (ko) * 2015-06-11 2022-01-18 삼성전자주식회사 안테나 및 이를 구비한 전자 장치
US9413058B1 (en) * 2015-07-10 2016-08-09 Amazon Technologies, Inc. Loop-feeding wireless area network (WAN) antenna for metal back cover
CN107306143B (zh) * 2016-04-25 2020-10-13 北京小米移动软件有限公司 移动终端及确定天线的方法
KR102456541B1 (ko) * 2016-06-22 2022-10-19 삼성전자 주식회사 Sar 저감을 위한 안테나 스위칭 방법 및 이를 지원하는 전자 장치
KR102621757B1 (ko) 2016-09-07 2024-01-08 삼성전자주식회사 무선 통신을 위한 안테나 및 이를 포함하는 전자 장치
CN107124212A (zh) 2017-04-28 2017-09-01 广东欧珀移动通信有限公司 移动终端及其天线切换方法、天线切换装置
CN207338621U (zh) * 2017-06-09 2018-05-08 瑞声精密制造科技(常州)有限公司 天线系统以及移动终端
CN107453056B (zh) * 2017-06-22 2020-08-21 瑞声科技(新加坡)有限公司 天线系统以及通讯设备
US10700416B2 (en) * 2017-08-30 2020-06-30 Lg Electronics Inc. Mobile terminal
CN107911126A (zh) 2017-12-12 2018-04-13 北京松果电子有限公司 天线切换方法、装置及存储介质
CN109921174B (zh) 2017-12-12 2022-03-22 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108055410A (zh) * 2017-12-29 2018-05-18 广东欧珀移动通信有限公司 天线切换电路、天线切换方法以及电子装置
KR102442509B1 (ko) * 2018-01-22 2022-09-14 삼성전자주식회사 안테나를 포함하는 전자 장치 및 신호 송신 또는 수신 방법
CN108281753B (zh) 2018-01-25 2020-11-20 瑞声科技(南京)有限公司 一种天线系统及移动终端
US10833410B2 (en) 2018-02-22 2020-11-10 Apple Inc. Electronic device antennas having multiple signal feed terminals
CN108494957A (zh) * 2018-03-13 2018-09-04 广东欧珀移动通信有限公司 天线切换方法、装置、存储介质和电子设备
CN108429833A (zh) * 2018-04-02 2018-08-21 Oppo广东移动通信有限公司 壳体组件、天线组件、电子设备及制造方法
JP7103556B2 (ja) * 2018-05-15 2022-07-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンテナシステム及び端末デバイス
CN108429863B (zh) * 2018-05-29 2021-04-13 Oppo(重庆)智能科技有限公司 切换天线的方法、移动终端以及计算机可读存储介质
CN208539942U (zh) 2018-05-29 2019-02-22 Oppo广东移动通信有限公司 电子装置
CN108736130B (zh) * 2018-07-11 2020-01-14 Oppo广东移动通信有限公司 天线组件以及电子设备
CN109167601B (zh) 2018-07-18 2021-10-08 深圳市万普拉斯科技有限公司 移动设备
CN108963425A (zh) 2018-07-23 2018-12-07 Oppo广东移动通信有限公司 具有多频天线的终端设备
US11189909B2 (en) * 2018-08-30 2021-11-30 Apple Inc. Housing and antenna architecture for mobile device
CN110875512B (zh) * 2018-08-31 2022-04-12 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109348002B (zh) * 2018-09-10 2021-06-25 Oppo广东移动通信有限公司 壳体组件及电子设备
CN109088973B (zh) * 2018-09-21 2020-06-30 维沃移动通信有限公司 一种天线控制方法、装置和移动终端
CN208738425U (zh) * 2018-09-30 2019-04-12 Oppo广东移动通信有限公司 天线组件及电子设备
CN109449595B (zh) 2018-12-05 2023-11-24 深圳市信维通信股份有限公司 一种mimo天线
CN109687105B (zh) * 2018-12-21 2020-10-13 惠州Tcl移动通信有限公司 电子设备
CN109616765B (zh) * 2018-12-25 2021-06-22 深圳市万普拉斯科技有限公司 天线外壳调节方法、装置及移动终端
CN111384581B (zh) * 2018-12-29 2021-09-21 Oppo广东移动通信有限公司 电子设备
US12009576B2 (en) * 2019-12-03 2024-06-11 Apple Inc. Handheld electronic device
CN113517556A (zh) * 2020-04-10 2021-10-19 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305101A (zh) * 2015-11-17 2016-02-03 小米科技有限责任公司 天线系统及天线系统的控制方法
WO2018082334A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种天线系统及终端设备、天线切换控制方法及装置
CN108134199A (zh) * 2017-12-29 2018-06-08 Tcl移动通信科技(宁波)有限公司 一种移动终端天线及其切换方法
CN109743119A (zh) * 2018-12-04 2019-05-10 Oppo广东移动通信有限公司 电磁干扰控制方法及相关装置
CN209056587U (zh) * 2018-12-26 2019-07-02 珠海市魅族科技有限公司 天线切换系统及移动终端
CN110165373A (zh) * 2019-05-14 2019-08-23 华为技术有限公司 天线装置及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024607A4

Also Published As

Publication number Publication date
EP4024607A1 (en) 2022-07-06
US11996625B2 (en) 2024-05-28
US20220344807A1 (en) 2022-10-27
CN112615136A (zh) 2021-04-06
CN112310605B (zh) 2021-11-19
CN112310605A (zh) 2021-02-02
EP4024607A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2021052483A1 (zh) 多天线系统及电子设备
EP3961811B1 (en) Antenna apparatus and electronic device
CN111555769B (zh) 无线通信装置
CN106410371B (zh) 具有多频带天线的电子设备
CN107851884B (zh) 金属边框天线和终端设备
JP7256230B2 (ja) 3スロット付きアンテナ装置及び方法
EP3087639B1 (en) Electronic device with near-field antennas
US8774068B2 (en) Dual swapping switches to meet linearity demands of carrier aggregation
JP3200838U (ja) 近接場通信回路及び非近接場通信回路用の共有アンテナ構造体
CN105144473B (zh) 实现薄窄边框显示器电话的天线布置
JP2019022218A (ja) 調節可能な多重入出力アンテナ構造体
EP2302816A1 (en) Wireless device
CN214542523U (zh) 电子设备
WO2018148973A1 (zh) 一种支持多进多出技术的通信设备
CN106252875A (zh) 一种天线结构及电子设备
US20160064802A1 (en) Multiband antenna arrangement
CN116937137A (zh) 一种天线结构及电子设备
WO2023116353A1 (zh) 电子设备
US11289811B2 (en) Closed-loop antenna with multiple grounding points
WO2024078533A1 (zh) 可折叠电子设备
US10411326B1 (en) Single feed passive antenna for a metal back cover
CN106356648A (zh) 具有与外廓导体形成电容耦合的天线的电子设备
US10283845B2 (en) Loop antenna structure with one or more auxiliary electronic elements for use in an electronic device
CN115000684A (zh) 天线装置及电子设备
KR101740831B1 (ko) 무 분절 외곽 도체를 이용한 캐리어-어그리게이션(ca) 지원을 위한 다중대역 안테나를 포함하는 전자 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864983

Country of ref document: EP

Effective date: 20220330