WO2021052425A1 - 一种无人机系统的飞行授权方法、装置及系统 - Google Patents

一种无人机系统的飞行授权方法、装置及系统 Download PDF

Info

Publication number
WO2021052425A1
WO2021052425A1 PCT/CN2020/115950 CN2020115950W WO2021052425A1 WO 2021052425 A1 WO2021052425 A1 WO 2021052425A1 CN 2020115950 W CN2020115950 W CN 2020115950W WO 2021052425 A1 WO2021052425 A1 WO 2021052425A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
network element
uav
flight
information
Prior art date
Application number
PCT/CN2020/115950
Other languages
English (en)
French (fr)
Inventor
李刚
朱浩仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021052425A1 publication Critical patent/WO2021052425A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a flight authorization method, device and system for an unmanned aerial vehicle system.
  • the UAV operating remotely beyond the visual range through the cellular network is mainly combined with the flight plan, and the UAV cloud system completes the beyond visual range verification.
  • the main problems with this method are:
  • the drone operator needs to actively submit the flight plan, and the drone cloud system will judge the flight plan. Then, the UAV cloud system belongs to the application layer, and the reliability of judgment is low.
  • the drone operator will not submit a flight plan, so it is impossible to determine whether the drone is allowed to fly.
  • This application provides a flight authorization method, device and system for an unmanned aerial vehicle system to solve the problems mentioned in the background art.
  • this application provides a flight authorization method for an unmanned aerial vehicle system, which includes: an unmanned aerial vehicle control network element receiving a notification message, the notification message being used to notify the unmanned aerial vehicle control network element of drone access Network, the notification message contains the identification information of the drone; in the case that the identification information of the drone is not included in the drone whitelist, the drone control network element corresponds to the drone
  • the UAV strategy of the UAV sends first information to the first network element of the core network, and the first information is used by the first network element to perform an over-the-horizon restricted flight of the UAV.
  • the network element of the cellular network (the first network element) can authorize the flight of drones (including cooperative drones and non-cooperative drones of the cellular network), and the unmanned aerial vehicle that has not submitted a flight plan can be authorized.
  • Aircraft that is, not included in the UAV whitelist
  • the drone system is used for the flight authorization (belonging to the application layer).
  • the embodiment of the present invention is more reliable for drone flight authorization, and reduces the application risk of cellular networked drones, and reduces the security risk of the drone application service platform; on the other hand, the present invention is more reliable for the cellular network.
  • Both cooperative drones and non-cooperative drones of the network can be authorized to fly, which helps prevent the safety hazards caused by the random flight of non-cooperative drones that have not submitted a flight plan.
  • the UAV strategy includes at least one of the fence range of the UAV, the maximum flying height of the UAV, the maximum distance between the UAV and the remote control, the flight time, and the restriction strategy.
  • the restriction strategy includes conditions for restrictions on the flight of UAVs by various countries.
  • the UAV strategy includes the maximum flying height of the UAV and the maximum distance between the UAV and the remote control; the UAV control network element is based on the unmanned
  • the drone strategy corresponding to the drone, sending the first information to the first network element of the core network includes: the drone control network element determines that the flying height of the drone is greater than the maximum flying height, or determining that the flying height of the drone is greater than the maximum flying height.
  • the first information is sent to the first network element, and the first information is drone flight warning information; or, the none The human-machine control network element determines that the flying height of the drone is less than or equal to the maximum flying height, and that the distance between the drone and the remote control is less than or equal to the maximum distance, then the first A network element sends the first information, where the first information is drone flight notification information.
  • the drone control network element obtains the pairing relationship between the drone and the remote control from a data management network element.
  • the drone control network element obtains the drone strategy from a data management network element, or the drone control network element, or a database, or a policy control network element.
  • the drone control network element obtains the drone whitelist from a data management network element or the drone control network element.
  • the drone control network element when the identification information of the drone is included in the drone whitelist, the drone control network element sends the drone to the first network element Flight notification information.
  • the first network element is a mobility management network element or an application function network element.
  • this application provides a flight authorization device for an unmanned aerial vehicle system.
  • the device may be an unmanned aerial vehicle control network element or a chip used for an unmanned aerial vehicle control network element.
  • the device has the function of realizing the above-mentioned first aspect or each embodiment of the first aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • this application provides a flight authorization device for an unmanned aerial vehicle system.
  • the device may be an unmanned aerial vehicle control network element or a chip used for an unmanned aerial vehicle control network element.
  • the device has the function of realizing the above-mentioned first aspect or each embodiment of the first aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a flight authorization device for an unmanned aerial vehicle system, including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer stored in the memory The instructions are executed to cause the device to execute the method described in any of the above-mentioned first aspects.
  • the device can be a UAV control network element or a chip used for the UAV control network element.
  • the present application provides a flight authorization device for an unmanned aerial vehicle system, including: a unit or means for executing each step of the above-mentioned aspects.
  • the device can be a UAV control network element.
  • the present application provides a flight authorization device for an unmanned aerial vehicle system, including a processor and an interface circuit, and the processor is configured to implement any of the methods described in the first aspect through the interface circuit.
  • the processor includes one or more.
  • the device can be a chip used to control the network element of the drone.
  • the present application provides a flight authorization device for an unmanned aerial vehicle system, including a processor, configured to be connected to a memory, and used to call a program stored in the memory to execute any of the methods described in the first aspect above .
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the device can be a UAV control network element or a chip used for the UAV control network element.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes a processor to execute any of the methods described in the first aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute any of the methods described in the first aspect.
  • the present application also provides a chip system, including a processor, configured to execute any of the methods described in the first aspect.
  • Figure 1 is a schematic diagram of a possible network architecture provided by this application.
  • Figure 2 is a schematic diagram of a flight authorization method for an unmanned aerial vehicle system provided by this application;
  • Figure 3 is a schematic diagram of yet another method for flight authorization of an unmanned aerial vehicle system provided by this application.
  • FIG. 4 is a schematic diagram of a UAV information configuration method provided by this application.
  • Figure 5 is a schematic diagram of a flight authorization device for an unmanned aerial vehicle system provided by this application.
  • Fig. 6 is a schematic diagram of another flight authorization device for an unmanned aerial vehicle system provided by this application.
  • FIG. 7 is a schematic diagram of another flight authorization system of an unmanned aerial vehicle system provided by this application.
  • FIG. 1 it is a schematic diagram of the fifth generation (5G) network architecture based on a service-oriented architecture.
  • the 5G network architecture shown in FIG. 1 may include three parts, namely a terminal equipment part, a data network (DN), and an operator network part.
  • DN data network
  • Operator network part The functions of some of the network elements are briefly introduced below.
  • the operator network may include one or more of the following network elements: network exposure function (NEF) network elements, policy control function (PCF) network elements, unified data management (unified data management) , UDM) network element, network storage function (Network Repository Function, NRF) network element, application function (AF) network element, access and mobility management function (access and mobility management function, AMF) network element, session Management function (session management function, SMF) network elements, radio access network (RAN), unified data repository (Unified Data Repository, UDR) network elements, and user plane function (UPF) network elements Wait.
  • NRF network Exposure Function
  • PCF policy control function
  • UDM network management network element
  • NRF Network Repository Function
  • AF application function
  • AMF access and mobility management function
  • SMF session Management function
  • RAN radio access network
  • UDR Unified Data Repository
  • UPF user plane function
  • Terminal device also called user equipment (user equipment, UE)
  • UE user equipment
  • Terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water It can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in unmanned driving (self-driving) (such as remote controls, drones, etc.), wireless terminals in remote medical (remote medical), wireless terminals in smart grid, Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the terminal equipment in this application mainly relates to remote controllers and drones.
  • the above-mentioned terminal equipment can establish a connection with the operator's network through an interface (such as N1, etc.) provided by the operator's network, and use the data and/or voice services provided by the operator's network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and terminal equipment, and may provide other services such as data and/or voice for the terminal equipment.
  • the specific form of expression of the above-mentioned third party can be determined according to actual application scenarios, and is not limited here.
  • RAN is a sub-network of an operator's network, and an implementation system between service nodes and terminal equipment in the operator's network.
  • the terminal device To access the operator's network, the terminal device first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • the RAN device in this application is a device that provides wireless communication functions for terminal devices, and the RAN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base stations (gnodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B in 5G (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand) unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base stations gnodeB, gNB
  • evolved node B evolved node B
  • RNC radio network controller
  • node B in 5G node B, NB
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • TRP transmission point
  • the AMF network element is mainly responsible for the mobility management in the mobile network, such as user location update, user registration network, user handover, etc.
  • the SMF network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions such as assigning IP addresses to users, selecting UPF that provides message forwarding functions, and so on.
  • the UPF network element is mainly responsible for processing user messages, such as forwarding and charging.
  • a DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs, and multiple services can be deployed on the DN, which can provide data and/or voice services for terminal devices.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • a control server for the sensors is deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • the DN is the internal office network of a company.
  • the mobile phones or computers of the employees of the company can be terminal devices, and the mobile phones or computers of the employees can access the information and data resources on the internal office network of the company.
  • UDM network element used to store user data, such as contract information, authentication/authorization information.
  • UDR provides storage and retrieval of subscription data, including: storing and retrieving strategy data for PCF, storing and retrieving structured data, and NEF application data.
  • NEF network elements are mainly used to support the opening of capabilities and events.
  • the AF network element is responsible for providing services to the 3rd generation partnership project (3GPP) network, such as influencing service routing and interacting with PCF for policy control.
  • 3GPP 3rd generation partnership project
  • the PCF network element is responsible for providing strategies to AMF and SMF, such as Quality of Service (QoS) strategies, slice selection strategies, etc.
  • QoS Quality of Service
  • slice selection strategies etc.
  • NRF network elements provide network capabilities and event opening capabilities to third-party entities, such as application functions, edge computing, and expected terminal device behavior.
  • This application adds a drone control network element based on the above 5G network architecture.
  • This network element may also be called an unmanned aircraft system (UAS) control function (UAS Control Function, UCF) network element , which can be referred to as UCF network element for short.
  • UFS unmanned aircraft system
  • UCF UFS Control Function
  • This network element is used to realize the functions of verifying the position difference between the remote control and the drone, judging the electronic fence of the drone, and verifying the height of the drone. The line-of-sight of the aircraft restricts flight.
  • Nnef, Npcf, Nudm, Naf, Namf, Nsmf, Nudr, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meaning of these interface serial numbers can be referred to the meaning defined in the 3GPP standard protocol, which is not limited here.
  • the interface of UCF network element can be called Nucf.
  • the mobility management network element session management network element, policy control network element, application function network element, access network equipment, network open function network element, user plane network element, data management network element, database, and unmanned network elements in this application
  • the machine control network elements can be AMF, SMF, PCF, AF, RAN, NEF, UPF, UDM, UDR, UCF as shown in Figure 1, or they can be future communications such as the sixth generation (6G) network with the Network elements with functions of AMF, SMF, PCF, AF, RAN, NEF, UPF, UDM, UDR, and UCF are not limited in this application.
  • this application uses mobility management network elements, session management network elements, policy control network elements, application function network elements, access network equipment, network open function network elements, user plane network elements, data management network elements, and database
  • UAV control network elements are the above-mentioned AMF, SMF, PCF, AF, RAN, NEF, UPF, UDM, UDR, UCF as examples for illustration.
  • the terminal device is referred to as UE for short in this application.
  • Unmanned aerial vehicle system that is, unmanned aerial vehicle system, including remote control and unmanned aerial vehicle.
  • the data communication link (Data Communication Link) between the remote control and the UAV is called Command and Control (Command and Control, C2).
  • the communication methods between the remote control and the drone include:
  • Type 1 Through point-to-point wireless communication
  • Type 2 Wireless communication via mobile cellular networking
  • Type 3 Via wired communication.
  • This application mainly relates to flight authorization for remote controllers and drones that use the above-mentioned Type 2 communication method to communicate.
  • UAVs At present, some countries preliminarily classify UAVs according to their weight. Small and light UAVs that meet the line-of-sight flight conditions do not need to submit a flight plan, which is exempt from flying. Medium and large UAVs, small and light UAVs that do not meet the flight conditions, and over-the-horizon flying, etc. all need to submit a flight plan.
  • UAVs controlled through point-to-point control are easy to lose control if blocked by obstacles and limited by power. Therefore, it is generally difficult to achieve long-distance driving and over-the-horizon flight.
  • UAVs connected to the cellular network (type 2 above) have the ability to operate beyond the line of sight. Therefore, various countries are currently more cautious about cellular networked UAVs. For example, the Japanese Radio Law requires unauthorized flight plans and approvals, and it is strictly prohibited. Remote control of drones via cellular networking.
  • the maximum take-off weight of civil unmanned aircraft is less than or equal to 7 kg
  • the flying speed is not more than 120 kilometers per hour
  • Plant protection drones are suitable for flying in the airspace, located in the airspace suitable for flying by light drones, with a true height of no more than 30 meters, and above the agricultural, forestry and scenic area.
  • this application proposes a flight authorization method for an unmanned aerial vehicle system, in which the mobile operator supports the networked unmanned aerial vehicle business, recognizes the line-of-sight and beyond-line-of-sight operation unmanned aerial vehicle, and performs flight Authorization. Specifically, by combining the drone's flight plan, configuring the pairing relationship between the cellular network drone and the remote control, and the drone whitelist, the UAV that is connected to the mobile cellular network is authenticated and certified. , So as to realize the flight control of the cellular networked UAV system.
  • this application provides a flight authorization method for an unmanned aerial vehicle system.
  • the method includes the following steps:
  • step 201 the UCF receives a notification message, which is used to notify the UCF drone to access the network.
  • the notification message contains the identification information of the drone.
  • the notification message may also be referred to as a registration request message, or a registration message, or a registration message, etc.
  • the AMF may send the above notification message to the UCF, and the notification message is used to notify the UCF that the drone has been connected to the network.
  • Step 202 UCF judges whether the identification information of the drone is included in the drone whitelist.
  • the UAV whitelist includes the identification information of one or more UAVs.
  • the UAV corresponding to the UAV identification information in the UAV whitelist has a flight plan, so there is no flight restriction, that is, it can be exempted from flying.
  • step 204 If the identification information of the aforementioned drone is included in the drone whitelist, indicating that the drone has a flight plan, there is no need to restrict the flight of the drone system (including remote control and drone), so skip to step 203. If the UAV’s identification information is not included in the UAV whitelist, indicating that the UAV does not have a flight plan, the UAV system (including the remote control and UAV) needs to be restricted in flight, that is, it can only be visualized. To fly, so perform the following step 204.
  • the UAV whitelist can be configured in UDM or UCF.
  • Step 203 UCF sends drone flight notification information to the first network element.
  • the first network element is a network element of the core network, and specifically may be AMF or AF.
  • the drone flight notification information may include information such as the current flight altitude of the drone, the distance between the drone and the remote control, etc., so that the first network element can determine to allow the drone based on the drone flight notification information. Plane flying.
  • the UAV flight notification information may also include information for indicating that the UAV is allowed to fly, so that the first network element may determine that the UAV is allowed to fly according to the UAV flight notification information. This step is optional.
  • Step 204 UCF sends the first information to the first network element according to the drone strategy corresponding to the drone.
  • the drone strategy can be configured in UDM, or UCF, or PCF, or UDR, so UCF can obtain the drone strategy from UDM, or local, or PCF, or UDR.
  • the UAV strategy includes one or more of the UAV fence range, the maximum flying height of the UAV, the maximum distance between the UAV and the remote control, the flight time, and the restriction strategy.
  • the UAV fence refers to the range of the UAV flight area (including height restrictions and distance restrictions).
  • the maximum flying height of the drone refers to the maximum height that the drone is allowed to fly (a kind of over-the-horizon limit), and the maximum distance between the drone and the remote control refers to the allowable drone and the remote control
  • the flight time refers to the time range that the UAV is allowed to fly.
  • Restriction strategies include: various countries restrict the flight conditions of drones.
  • the allowable height for drone flight is the height indicated by the drone fence and the drone's maximum flight height. The smaller value between heights. If the drone strategy includes both the drone fence and the maximum distance between the drone and the remote control, the allowable distance for the drone to fly is the distance indicated by the drone fence and the remote control. The smaller value between the maximum distance between.
  • step 204 Taking the UAV strategy including the maximum flying height of the UAV and the maximum distance between the UAV and the remote controller as an example, the implementation method of step 204 is as follows:
  • UCF determines that the flying height of the drone is greater than the maximum flying height of the drone, or that the distance between the drone and the remote control is greater than the maximum distance between the drone and the remote
  • the element sends first information, and the first information is UAV flight warning information.
  • the UAV flight warning information may include information such as the flying height of the UAV and the distance between the UAV and the remote control.
  • the drone flight warning information may also include indication information for indicating that the drone is not allowed to fly.
  • UCF determines that the flying height of the drone is less than or equal to the maximum flying height of the drone, and that the distance between the drone and the remote control is less than or equal to the maximum distance between the drone and the remote control ,
  • the first information is sent to the first network element, and the first information is the UAV flight notification information.
  • the UAV flight notification information includes information such as the flying height of the UAV and the distance between the UAV and the remote control.
  • the drone flight notification information may also include instruction information for indicating that the drone is allowed to fly.
  • the pair relationship between the drone and the remote controller may be configured in the UDM, so the UCF can obtain the pair relationship between the drone and the remote controller from the UDM.
  • the network element of the cellular network (that is, the above-mentioned first network element) authorizes the flight of drones (including cooperative drones and non-cooperative drones of the cellular network).
  • UAVs that is, not included in the UAV whitelist
  • the drone system is used for the flight authorization (belonging to the application layer).
  • the embodiment of the present invention is more reliable for drone flight authorization, and reduces the application risk of cellular networked drones, and reduces the security risk of the drone application service platform; on the other hand, the present invention is more reliable for the cellular network.
  • Both cooperative drones and non-cooperative drones of the network can be authorized to fly, which helps prevent the safety hazards caused by the random flight of non-cooperative drones that have not submitted a flight plan.
  • a flight authorization method for an unmanned aerial vehicle system is provided for this application.
  • the method includes:
  • AF configures UAV strategy to UDR, or PCF, or UDM, or UCF.
  • the corresponding drone strategies of different levels of drones can be configured to UDR, or PCF, or UDM, or UCF.
  • the UCF network element When the UAV strategy is configured in UDR, PCF, or UDM, the UCF network element is powered on and obtains the UAV strategy from UDR, PCF, or UDM.
  • step 301 the remote control and the drone are turned on, and a registration process is initiated to the AMF and UDM.
  • step 302 the AMF judges whether the device type is a drone.
  • the device type here is sent to the AMF when the drone is registered to the network.
  • step 303 If it is a drone, go to step 303.
  • step 303 the AMF sends a notification message to the UCF to notify the UCF that the drone has been connected to the network, and the notification message includes the identification information of the drone.
  • the notification message here may be, for example, Nucf_UAV_Registration request.
  • Step 304 After receiving the notification message, the UCF obtains the drone whitelist, and judges whether the identification information of the drone is in the drone whitelist.
  • the UCF will send it to AF or AMF UAV flight notification information.
  • the UAV’s identification information is not in the UAV whitelist, it indicates that the UAV does not have a flight plan, and the UAV system (including the remote control and the UAV) needs to be restricted in flight. Perform the following steps 305a to 305d.
  • the drone whitelist can be pre-configured on the UCF by a drone service supplier (UAS Service Supplier, USS), so the UCF can obtain the drone whitelist locally.
  • UFS Service Supplier USS
  • USS drone service supplier
  • the drone whitelist may be pre-configured on the UDM by the USS, so UCF can obtain the drone whitelist from the UDM.
  • step 305a the UCF obtains the pairing relationship between the drone and the remote controller from the UDM.
  • UCF obtains the information of the remote controller that forms a pair relationship with the UAV from the UDM.
  • the UCF periodically obtains the location information of the drone and the remote control from a location management function (Location Management Function, LMF) network element.
  • LMF Location Management Function
  • the position information may be three-dimensional spatial position information.
  • the LMF network element here may be a network element used to obtain the location information of the remote control and the drone in the 5G architecture shown in FIG. 1.
  • step 305c the UCF checks the height of the drone according to the drone strategy.
  • the drone In the initial state, the drone has not taken off, so the height of the drone generally meets the maximum height limit in the drone strategy.
  • the height of the drone may not meet the maximum height limit in the drone strategy.
  • step 305d the UCF checks the distance between the remote control and the drone according to the drone strategy.
  • the drone does not take off, so the distance between the remote controller and the drone generally meets the maximum distance limit in the drone strategy.
  • the distance between the remote control and the drone may not meet the maximum distance limit in the drone strategy.
  • the device type can indicate whether the device is a UAV, on the other hand, when the device type indicates When the device is a drone, the device type can also indicate the level of the drone (such as light, small, medium, etc.). Therefore, in this step 305, UCF is the drone strategy corresponding to the level of the drone. Determine whether the drone can fly.
  • Step 306 UCF sends UAV flight warning information or UAV flight notification information to AF or AMF.
  • UCF can send the drone to AMF or AF Flight warning information, used to warn: the drone has exceeded the maximum height limit of the drone, or the distance between the remote control and the drone has exceeded the maximum distance limit, etc.
  • the UCF can notify the AMF or AF drone flight information, For example, it includes the current altitude of the drone, the current distance between the remote control and the drone, and so on.
  • the network element of the cellular network authorizes the flight of drones (including cooperative drones and non-cooperative drones of the cellular network), and the drones that have not submitted a flight plan (that is, are not included in the (UAV whitelist) to conduct over-the-horizon restricted flights.
  • the drone system is used for the flight authorization (belonging to the application layer).
  • the embodiment of the present invention is more reliable for drone flight authorization, and reduces the application risk of cellular networked drones, and reduces the security risk of the drone application service platform; on the other hand, the present invention is more reliable for the cellular network.
  • Both cooperative drones and non-cooperative drones of the network can be authorized to fly, which helps prevent the safety hazards caused by the random flight of non-cooperative drones that have not submitted a flight plan.
  • the method includes the following steps:
  • step 401 the drone operator (via the remote control APP, etc.) submits a flight plan application to the USS.
  • the flight plan includes: flight mission, operator, drone information, remote control information, and so on.
  • the drone information includes a mobile subscriber international ISDN/PSTN number (Mobile Subscriber International ISDN/PSTN number, MSISDN), and the MSISDN is used to identify the drone.
  • the remote control information includes an MSISDN, which is used to identify the remote control.
  • ISDN is the abbreviation for Integrated Service Digital Network
  • PSTN is the abbreviation for Public Switched Telephone Network (Public Switched Telephone Network).
  • step 402 the USS configures the pairing relationship between the remote control and the UAV to the UDM through the NEF.
  • USS configures the pairing relationship between the remote control and the UAV to the UDM, as well as the MSISDN of the remote control and the MSISDN of the UAV.
  • UDM queries the International Mobile Subscriber Identity (IMSI) of the drone based on the MSISDN of the drone, and queries the IMSI of the remote control based on the MSISDN of the remote control.
  • IMSI International Mobile Subscriber Identity
  • the UDM stores the pair relationship between the IMSI of the drone and the IMSI of the remote control.
  • step 403a the USS configures the UAV whitelist in the UDM through NEF.
  • the UAV whitelist configured by the USS through NEF to UDM includes one or more MSISDNs, where one MSISDN identifies one UAV.
  • the UCF obtains the IMSI corresponding to the MSISDN locally through the received MSISDN, so that the drone whitelist stored in the UDM includes one or more IMSIs, and one IMSI identifies one drone.
  • step 403b the USS configures the UAV whitelist in the UCF through NEF.
  • the UAV whitelist configured by USS through NEF to UCF includes one or more MSISDNs, where one MSISDN identifies one UAV.
  • UCF obtains the IMSI corresponding to the MSISDN from the UDM through the received MSISDN, so that the UCF whitelist of drones stored in the UCF includes one or more IMSIs, and one IMSI identifies one drone.
  • steps 403a and 403b are performed alternatively, that is, step 403a or step 403b is performed.
  • step 403a or step 403b is performed.
  • the pairing relationship between the remote control and the drone is configured on the UDM
  • the drone whitelist is configured on the UDM and/or UCF, so that when the drone needs to be authorized to fly, You can quickly obtain the whitelist of drones that need to be used, and the pairing relationship between the remote control and the drone.
  • the pairing relationship between the remote control and the drone is always configured on the UDM.
  • the drone strategy includes but is not limited to the configuration shown in Table 2 below. .
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals can use different methods for each specific application to realize the described functions, but such realization should not be considered as going beyond the scope of the present invention.
  • the device 500 may exist in the form of software or hardware.
  • the apparatus 500 may include: a communication unit 501 and a processing unit 502.
  • the communication unit 501 may include a receiving unit and a sending unit.
  • the processing unit 502 is used to control and manage the actions of the device 500.
  • the communication unit 501 is used to support communication between the device 500 and other network entities.
  • the processing unit 502 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processing (digital signal processing, DSP), and an application specific integrated circuit (application specific integrated circuit). circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 501 is an interface circuit of the device for receiving signals from other devices or sending information to other devices.
  • the communication unit 501 is an interface circuit used by the chip to receive signals from other chips or devices, and/or an interface circuit used to send signals to other chips or devices.
  • the device 500 may be the UAV control network element in the above-mentioned embodiment, and may also be a chip used for the UAV control network element.
  • the processing unit 502 may be a processor, for example, and the communication unit 501 may be a transmitter and/or a receiver, for example.
  • the transmitter and receiver may include radio frequency circuits
  • the storage unit may be, for example, a memory.
  • the processing unit 502 may be a processor, for example, and the communication unit 501 may be an input/output interface, a pin, or a circuit, for example.
  • the processing unit 502 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the drone control network element.
  • Storage units located outside the chip such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the device may be the drone control network element in the above-mentioned embodiment.
  • the communication unit 501 is configured to receive a notification message, the notification message being used to notify the drone control network element that the drone is connected to the network, and the notification message Contains the identification information of the drone;
  • the processing unit 502 is configured to send to the core according to the drone strategy corresponding to the drone when the identification information of the drone is not included in the drone whitelist.
  • the first network element of the network sends first information, and the first information is used by the first network element to perform an over-the-horizon restricted flight of the UAV.
  • the UAV strategy includes at least one of the fence range of the UAV, the maximum flying height of the UAV, the maximum distance between the UAV and the remote control, the flight time, and the restriction strategy.
  • the restriction strategy includes conditions for restrictions on the flight of UAVs by various countries.
  • the UAV strategy includes the maximum flying height of the UAV and the maximum distance between the UAV and the remote control; the processing unit 502 is specifically configured to: determine the The flying height of the drone is greater than the maximum flying height, or it is determined that the distance between the drone and the remote control is greater than the maximum distance, the first information is sent to the first network element, and the The first information is drone flight warning information; or, it is determined that the flying height of the drone is less than or equal to the maximum flying height, and it is determined that the distance between the drone and the remote control is less than or equal to the The maximum distance, the first information is sent to the first network element, and the first information is drone flight notification information.
  • the communication unit 501 is further configured to obtain the pair relationship between the drone and the remote control from a data management network element.
  • the communication unit 501 is further configured to obtain the drone policy from a data management network element, or the drone control network element, or a database, or a policy control network element.
  • the communication unit 501 is further configured to obtain the drone whitelist from a data management network element or the drone control network element.
  • the processing unit 502 is further configured to send no information to the first network element when the identification information of the drone is included in the drone whitelist.
  • Man-machine flight notification information is further configured to send no information to the first network element when the identification information of the drone is included in the drone whitelist.
  • the first network element is a mobility management network element or an application function network element.
  • the unmanned aerial vehicle control network element is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the UAV control network element may adopt the form shown in FIG. 6.
  • the processor 602 in FIG. 6 may invoke the computer execution instructions stored in the memory 601 to make the drone control network element execute the method in the above method embodiment.
  • the function/implementation process of the communication unit 501 and the processing unit 502 in FIG. 5 may be implemented by the processor 602 in FIG. 6 calling a computer execution instruction stored in the memory 601.
  • the function/implementation process of the processing unit 502 in FIG. 5 may be implemented by the processor 602 in FIG. 6 calling computer execution instructions stored in the memory 601, and the function/implementation process of the communication unit 501 in FIG.
  • the communication interface 603 in 6 is implemented.
  • the function/implementation process of the communication unit 501 may also be implemented by pins or circuits.
  • FIG. 6 a schematic diagram of another flight authorization device of an unmanned aerial vehicle system provided by this application, which may be the unmanned aerial vehicle control network element in the above-mentioned embodiment.
  • the device 600 includes a processor 602 and a communication interface 603.
  • the device 600 may further include a memory 601.
  • the apparatus 600 may further include a communication line 604.
  • the communication interface 603, the processor 602, and the memory 601 may be connected to each other through a communication line 604;
  • the communication line 604 may be a peripheral component interconnection standard (peripheral component interconnect, PCI for short) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus and so on.
  • the communication line 604 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the processor 602 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application.
  • the communication interface 603 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 601 can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or can be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through the communication line 604. The memory can also be integrated with the processor.
  • the communication interface 603 is used to receive and transmit code instructions to the processor 602, and the processor 602 controls the execution, so as to realize the flight authorization method of the UAV system provided by the above method embodiment of the present application.
  • the code instruction may come from the memory 601, or it may be obtained from other places.
  • the memory 601 is used to store computer-executable instructions for executing the solution of the present application, and the processor 602 controls the execution.
  • the processor 602 is configured to execute the computer-executable instructions stored in the memory 601, so as to implement the flight authorization method for the UAV system provided in the foregoing embodiment of the present application.
  • the function/implementation process of the communication interface 603 can also be implemented through pins or circuits.
  • the memory may be a storage unit in the chip, such as a register, a cache, and the like.
  • the memory may also be a storage unit located outside the chip.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • this application also provides a flight authorization system for an unmanned aerial vehicle system, which includes a mobility management network element and an unmanned aerial vehicle control network element.
  • a flight authorization system for an unmanned aerial vehicle system which includes a mobility management network element and an unmanned aerial vehicle control network element.
  • it also includes one or more of a database, a data management network element, a policy control network element, and a UAV service provider.
  • the mobility management network element is used to send a notification message to the drone control network element, the notification message is used to notify the drone control network element that the drone is connected to the network, and the notification message includes The identification information of the drone; the drone control network element is used to receive the notification message from the mobility management network element, where the identification information of the drone is not included in the drone whitelist
  • first information is sent to the first network element of the core network, and the first information is used by the first network element to supervise the drone. Sight distance limit flight.
  • the UAV strategy includes at least one of the fence range of the UAV, the maximum flying height of the UAV, the maximum distance between the UAV and the remote control, the flight time, and the restriction strategy.
  • the restriction strategy includes conditions for restrictions on the flight of UAVs by various countries.
  • the UAV strategy includes the maximum flying height of the UAV and the maximum distance between the UAV and the remote control; the UAV control network element is specifically used for: It is determined that the flying height of the drone is greater than the maximum flying height, or it is determined that the distance between the drone and the remote control is greater than the maximum distance, then the first information is sent to the first network element
  • the first information is drone flight warning information; or the drone control network element determines that the flying height of the drone is less than or equal to the maximum flying height, and determines that the drone is connected to the remote control If the distance between the drones is less than or equal to the maximum distance, the first information is sent to the first network element, and the first information is drone flight notification information.
  • the data management network element is used to store the pairing relationship between the drone and the remote controller; the drone control network element is also used to retrieve the data from the The management network element obtains the pairing relationship between the drone and the remote controller.
  • a database is used to store the UAV strategy; the UAV control network element is also used to obtain the UAV strategy from the database; or, a strategy control network Element, used to store the UAV strategy; the UAV control network element, is also used to obtain the UAV strategy from the strategy control network element; or, the UAV control network element, It is also used to obtain the UAV strategy from the UAV control network element.
  • the data management network element is used to store the UAV strategy; the UAV control network element is also used to obtain the UAV strategy from the data management network element .
  • the data management network element is used to store the drone whitelist; the drone control network element is also used to obtain the drone from the data management network element whitelist.
  • the drone control network element is also used to obtain the drone whitelist from the drone control network element.
  • the drone control network element is also used to send the drone to the first network when the identification information of the drone is included in the drone whitelist. Yuan sends drone flight notification information.
  • the drone service provider is used to configure the drone whitelist to the drone control network element or data management network element.
  • At least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • Multiple refers to two or more than two, and other quantifiers are similar.
  • "a device” means to one or more such devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in the ASIC.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请提供一种无人机系统的飞行授权方法、装置及系统。该方法包括:无人机控制网元接收通知消息,通知消息用于通知无人机控制网元无人机接入网络,通知消息包含无人机的标识信息;在无人机的标识信息未包含于无人机白名单的情况下,无人机控制网元根据无人机对应的无人机策略,向核心网的第一网元发送第一信息,该第一信息用于第一网元对无人机进行超视距限制飞行。一方面,由于是蜂窝网的网元(即第一网元)执行对无人机进行飞行授权,相较于现有技术通过无人机系统对无人机进行飞行授权更加可靠;另一方面,本发明对于蜂窝网的合作无人机和非合作无人机都可以进行飞行授权,有助于预防未提交飞行计划的非合作无人机的随意飞行带来的安全隐患。

Description

一种无人机系统的飞行授权方法、装置及系统
相关申请的交叉引用
本申请要求在2019年09月18日提交中国专利局、申请号为201910881119.7、申请名称为“一种无人机系统的飞行授权方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种无人机系统的飞行授权方法、装置及系统。
背景技术
目前的现有技术中,通过蜂窝网络远程超视距作业的无人机,主要结合飞行计划,由无人机云系统完成超视距校验。该方法存在的主要问题是:
第一,需要无人机运营人主动提交飞行计划,并且由无人机云系统对飞行计划进行判断。然后,无人机云系统属于应用层,判断的可靠性较低。
第二,仅适用于蜂窝网的合作无人机,对于蜂窝联网的非合作无人机,无人机运营人不会提交飞行计划,因而无法判断是否允许该无人机的飞行。
发明内容
本申请提供一种无人机系统的飞行授权方法、装置及系统,用以解决背景技术中提到的问题。
第一方面,本申请提供一种无人机系统的飞行授权方法,包括:无人机控制网元接收通知消息,所述通知消息用于通知所述无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;在所述无人机的标识信息未包含于无人机白名单的情况下,所述无人机控制网元根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
通过上述方案,实现了由蜂窝网的网元(第一网元)对无人机(包括蜂窝网的合作无人机和非合作无人机)进行飞行授权,对没有提交飞行计划的无人机(即不包含于无人机白名单)进行超视距限制飞行。一方面,由于是蜂窝网的网元执行对无人机进行飞行授权(属于网络层的飞行授权),相较于现有技术通过无人机系统对无人机进行飞行授权(属于应用层的飞行授权),本发明实施例对无人机进行飞行授权更加可靠,并且减少了蜂窝联网无人机的应用风险,减轻了无人机应用服务平台的安全风险;另一方面,本发明对于蜂窝网的合作无人机和非合作无人机都可以进行飞行授权,因而有助于预防未提交飞行计划的非合作无人机的随意飞行带来的安全隐患。
在一种可能的实现方法中,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策 略包括各个国家对无人机的飞行限制的条件。
在一种可能的实现方法中,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;所述无人机控制网元根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,包括:所述无人机控制网元确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或,所述无人机控制网元确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通知信息。
在一种可能的实现方法中,所述无人机控制网元从数据管理网元获取所述无人机与所述遥控器之间的组对关系。
在一种可能的实现方法中,所述无人机控制网元从数据管理网元、或所述无人机控制网元、或数据库、或策略控制网元获取所述无人机策略。
在一种可能的实现方法中,所述无人机控制网元从数据管理网元或所述无人机控制网元获取所述无人机白名单。
在一种可能的实现方法中,在所述无人机的标识信息包含于所述无人机白名单的情况下,所述无人机控制网元向所述第一网元发送无人机飞行通知信息。
在一种可能的实现方法中,所述第一网元为移动性管理网元或应用功能网元。
第二方面,本申请提供一种无人机系统的飞行授权装置,该装置可以是无人机控制网元,还可以是用于无人机控制网元的芯片。该装置具有实现上述第一方面或第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请提供一种无人机系统的飞行授权装置,该装置可以是无人机控制网元,还可以是用于无人机控制网元的芯片。该装置具有实现上述第一方面或第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种无人机系统的飞行授权装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面任意所述的方法。该装置可以是无人机控制网元或用于无人机控制网元的芯片。
第五方面,本申请提供一种无人机系统的飞行授权装置,包括:包括用于执行上述各方面的各个步骤的单元或手段(means)。该装置可以是无人机控制网元。
第六方面,本申请提供一种无人机系统的飞行授权装置,包括处理器和接口电路,所述处理器用于通过接口电路实现上述第一方面任意所述的方法。该处理器包括一个或多个。该装置可以是用于无人机控制网元的芯片。
第七方面,本申请提供一种无人机系统的飞行授权装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面任意所述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。该装置可以是无人机控制网元或用于无人机控制网元的芯片。
第八方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储 有指令,当其在计算机上运行时,使得处理器执行上述第一方面任意所述的方法。
第九方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面任意所述的方法。
第十方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面任意所述的方法。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为本申请提供的一种无人机系统的飞行授权方法示意图;
图3为本申请提供的又一种无人机系统的飞行授权方法示意图;
图4为本申请提供的一种无人机信息配置方法示意图;
图5为本申请提供的一种无人机系统的飞行授权装置示意图;
图6为本申请提供的又一种无人机系统的飞行授权装置示意图;
图7为本申请提供的又一种无人机系统的飞行授权系统示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,为基于服务化架构的第五代(5th generation,5G)网络架构示意图。图1所示的5G网络架构中可包括三部分,分别是终端设备部分、数据网络(data network,DN)和运营商网络部分。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括以下网元中的一个或多个:网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、网络存储功能(Network Repository Function,NRF)网元、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(radioaccess network,RAN)、统一的数据存储库(Unified Data Repository,UDR)网元以及用户面功能(user plane function,UPF)网元等。上述运营商网络中,除无线接入网部分之外的部分可以称为核心网络部分。
终端设备(terminal device),也可以称为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端(如遥控器、无人机等)、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请中的终端设备主要涉及遥控器和无人机。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
RAN是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。本申请中的RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
AMF网元,主要负责移动网络中的移动性管理,如用户位置更新、用户注册网络、用户切换等。
SMF网元,主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF等。
UPF网元,主要负责对用户报文进行处理,如转发、计费等。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
UDM网元,用于存储用户数据,如签约信息、鉴权/授权信息。
UDR,提供存储和检索订阅数据,包括:给PCF存储和检索策略数据,存储和检索结构化数据,NEF的应用数据。
NEF网元,主要用于支持能力和事件的开放。
AF网元,负责向第三代合作伙伴计划(3rd generation partnership project,3GPP)网络提供业务,如影响业务路由、与PCF之间交互以进行策略控制等。
PCF网元,负责向AMF、SMF提供策略,如服务质量(Quality of Service,QoS)策略、切片选择策略等。
NRF网元,提供网络能力和事件开放能力给第三方实体,如应用功能、边缘计算、预期的终端设备的行为等。
本申请在上述5G网络架构的基础上新增一个无人机控制网元,该网元也可以称为无人驾驶航空器系统(Unmanned Aircraft System,UAS)控制功能(UAS Control Function,UCF)网元,进一步地可以简称为UCF网元,该网元用于实现遥控器与无人机的位置差值校验、无人机电子围栏判断以及无人机高度校验等功能,从而实现对无人机的视距限制飞 行。
图1中Nnef、Npcf、Nudm、Naf、Namf、Nsmf、Nudr、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。并且,UCF网元的接口可以称为Nucf。
本申请中的移动性管理网元、会话管理网元、策略控制网元、应用功能网元、接入网设备、网络开放功能网元、用户面网元、数据管理网元、数据库、无人机控制网元分别可以是图1中的AMF、SMF、PCF、AF、RAN、NEF、UPF、UDM、UDR、UCF,也可以是未来通信如第六代(6th generation,6G)网络中具有上述AMF、SMF、PCF、AF、RAN、NEF、UPF、UDM、UDR、UCF的功能的网元,本申请对此不限定。为方便说明,本申请以移动性管理网元、会话管理网元、策略控制网元、应用功能网元、接入网设备、网络开放功能网元、用户面网元、数据管理网元、数据库、无人机控制网元分别为上述AMF、SMF、PCF、AF、RAN、NEF、UPF、UDM、UDR、UCF为例进行说明。并且,本申请中将终端设备简称为UE。
下面首先对本申请涉及的背景知识进行介绍。
一、无人机系统
无人机系统,即无人驾驶航空器系统,包括遥控器与无人机。遥控器与无人机之间的数据通信链路(Data Communication Link)称为指挥与控制(Command and Control,C2)。遥控器与无人机之间的通信方式包括:
类型1:通过点到点的无线通信方式;
类型2:通过移动蜂窝联网的无线通信方式;
类型3:通过有线通信方式。
本申请主要涉及对使用上述类型2的通信方式进行通信的遥控器和无人机进行飞行授权。
二、无人机政策法规
当前一些国家对无人机按照重量初步分类,满足视距飞行条件的轻小无人机无需提交飞行计划,即豁免飞行。中大型无人机,不满足飞行条件的轻小无人机,以及超视距飞行等均需提交飞行计划。
通过点到点控制的无人机(上述类型1),如果受到障碍物的遮挡和功率限制,很容易失去控制,因此一般较难实现远程驾驶、超视距飞行。通过蜂窝联网的无人机(上述类型2),具有超视距作业的能力,因此当前各个国家对于蜂窝联网无人机都比较慎重,如日本电波法就要求未经允许和审批飞行计划,严禁蜂窝联网远程控制无人机。但是随着无人机技术的成熟,5G等移动通信技术的发展,越来越多的用户通过蜂窝联网无人机远程作业,但有时候并未严格执行相关法规,因此移动运营商需要能检测并发现通过蜂窝联网的合法与非法无人机。
每个国家制定了不同的无人机视距飞行法规(飞行高度与距离),无法做到全球一致。并且各国针对无人机还提出了不同的无人机围栏等级限制。中国民航局在2016年发布的《MD-TM-2016-004民用无人驾驶航空器系统空中交通管理办法》,对无人机的视距飞行提出了要求,具体如下:
第五条在本办法第二条规定的民用航空使用空域范围内开展民用无人驾驶航空器系 统飞行活动,除满足以下全部条件的情况外,应通过地区管理局评审:
(一)机场净空保护区以外;
(二)民用无人驾驶航空器最大起飞重量小于或等于7千克;
(三)在视距内飞行,且天气条件不影响持续可见无人驾驶航空器;
(四)在昼间飞行;
(五)飞行速度不大于120千米/小时;
(六)民用无人驾驶航空器符合适航管理相关要求;
(七)驾驶员符合相关资质要求;
(八)在进行飞行前驾驶员完成对民用无人驾驶航空器系统的检查;
(九)不得对飞行活动以外的其他方面造成影响,包括地面人员、设施、环境安全和社会治安等;
(十)运营人应确保其飞行活动持续符合以上条件。
除此之外,无人机的飞行还应遵循其他限制要求,《无人机飞行管理暂行条例(征求意见稿)》限制无人机相关飞行高度和距离。
第二十八条划设以下空域为轻型无人机管控空域:
(一)真高120米以上空域;
(二)空中禁区以及周边5000米范围;
(三)空中危险区以及周边2000米范围;
(四)军用机场净空保护区,民用机场障碍物限制面水平投影范围的上方;
(五)有人驾驶航空器临时起降点以及周边2000米范围的上方;
(六)国界线到我方一侧5000米范围的上方,边境线到我方一侧2000米范围的上方;
(七)军事禁区以及周边1000米范围的上方,军事管理区、设区的市级(含)以上党政机关、核电站、监管场所以及周边200米范围的上方;
(八)射电天文台以及周边5000米范围的上方,卫星地面站(含测控、测距、接收、导航站)等需要电磁环境特殊保护的设施以及周边2000米范围的上方,气象雷达站以及周边1000米范围的上方;
(九)生产、储存易燃易爆危险品的大型企业和储备可燃重要物资的大型仓库、基地以及周边150米范围的上方,发电厂、变电站、加油站和中大型车站、码头、港口、大型活动现场以及周边100米范围的上方,高速铁路以及两侧200米范围的上方,普通铁路和国道以及两侧100米范围的上方;
(十)军航低空、超低空飞行空域;
(十一)省级人民政府会同战区确定的管控空域。
未经批准,轻型无人机禁止在上述管控空域飞行。管控空域外,无特殊情况均划设为轻型无人机适飞空域。
植保无人机适飞空域,位于轻型无人机适飞空域内,真高不超过30米,且在农林牧区域的上方。
除中国之外,世界其他各国针对轻小无人机的视距飞行也做出了不同的要求,如表1所示:
表1各国无人机政策法规
Figure PCTCN2020115950-appb-000001
为解决背景技术所述的问题,本申请提出一种无人机系统的飞行授权方法,其中,移动运营商支持联网无人机业务,识别视距和超视距作业无人机,并进行飞行授权。具体的,通过结合无人机的飞行计划,配置蜂窝联网无人机和遥控器组对关系、无人机白名单,对于通过移动蜂窝网络联网的超视距作业无人机进行鉴权和认证,从而实现对蜂窝联网无人机系统的飞行管控。
下面对本申请方法进行介绍说明。基于图1所示的网络架构,如图2所示,本申请提供一种无人机系统的飞行授权方法,该方法包括以下步骤:
步骤201,UCF接收通知消息,通知消息用于通知UCF无人机接入网络。
该通知消息包含无人机的标识信息。该通知消息也可以称为注册请求消息、或注册消息、或注册登记消息等。
具体的,无人机在接入至网络,如5G网络之后,AMF可以向UCF发送上述通知消息,该通知消息用于通知UCF:该无人机已经接入网络。
步骤202,UCF判断无人机的标识信息是否包含于无人机白名单。
无人机白名单包括一个或多个无人机的标识信息,无人机白名单内的无人机标识信息对应的无人机是有飞行计划的,因此没有飞行限制,即可以豁免飞行。
如果上述无人机的标识信息包含于无人机白名单,表明该无人机有飞行计划,则无需对无人机系统(包括遥控器和无人机)进行飞行限制,因此跳转到步骤203。如果无人机的标识信息未包含于无人机白名单,表明该无人机没有飞行计划,则需要对无人机系统(包括遥控器和无人机)进行飞行限制,即只能进行视距飞行,因此执行以下步骤204。
可选的,无人机白名单可以配置在UDM或UCF中。
步骤203,UCF向第一网元发送无人机飞行通知信息。
该第一网元为核心网的网元,具体可以是AMF或AF。
该无人机飞行通知信息可以包括该无人机的当前飞行高度、无人机与遥控器之间的距 离等信息,从而第一网元可以根据该无人机飞行通知信息确定允许该无人机飞行。可选的,该无人机飞行通知信息也可以包括用于指示允许无人机飞行的信息,从而第一网元可以根据该无人机飞行通知信息确定允许该无人机飞行。该步骤可选。
步骤204,UCF根据无人机对应的无人机策略,向第一网元发送第一信息。
可选的,无人机策略可以是配置在UDM、或UCF、或PCF、或UDR中,因此UCF可以从UDM、或本地、或PCF、或UDR中获取无人机策略。
可选的,无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的一个或多个。
其中,无人机围栏范围指的是无人机飞行的区域范围(包括高度限制、距离限制)。无人机的最大飞行高度指的是允许无人机飞行的最大高度(是一种超视距限制),无人机与遥控器之间的最大距离指的是允许的无人机与遥控器之间的最大距离(是一种超视距限制),飞行时间指的是允许无人机飞行的时间范围。限制策略包括:各个国家对无人机的飞行限制的条件。
需要说明的是,若无人机策略同时包括无人机围栏范围和无人机的最大飞行高度,则无人机飞行允许的高度为无人机围栏范围指示的高度与无人机的最大飞行高度之间的较小值。若无人机策略同时包括无人机围栏范围和无人机与遥控器之间的最大距离,则无人机飞行允许的距离为无人机围栏范围指示的距离与,无人机与遥控器之间的最大距离之间的较小值。
以无人机策略包括无人机的最大飞行高度和无人机与遥控器之间的最大距离为例,则该步骤204的实现方法如下:
情形一,UCF确定无人机的飞行高度大于无人机的最大飞行高度、或确定无人机与遥控器之间的距离大于无人机与遥控器之间的最大距离,则向第一网元发送第一信息,该第一信息为无人机飞行告警信息。无人机飞行告警信息可以包含无人机的飞行高度、无人机与遥控器之间的距离等信息。可选的,无人机飞行告警信息还可以包括用于指示不允许无人机飞行的指示信息。
情形二,UCF确定所述无人机的飞行高度小于或等于无人机的最大飞行高度、且确定无人机与遥控器之间的距离小于或等于无人机与遥控器之间的最大距离,则向第一网元发送第一信息,该第一信息为无人机飞行通知信息。该无人机飞行通知信息包括无人机的飞行高度、无人机与遥控器之间的距离等信息。可选的,无人机飞行通知信息还可以包括用于指示允许无人机飞行的指示信息。
可选的,无人机与遥控器之间的组对关系可以是配置在UDM中的,因此UCF可以从UDM获取无人机与遥控器之间的组对关系。
通过上述方案,实现了由蜂窝网的网元(即上述第一网元)对无人机(包括蜂窝网的合作无人机和非合作无人机)进行飞行授权,对没有提交飞行计划的无人机(即不包含于无人机白名单)进行超视距限制飞行。一方面,由于是蜂窝网的网元执行对无人机进行飞行授权(属于网络层的飞行授权),相较于现有技术通过无人机系统对无人机进行飞行授权(属于应用层的飞行授权),本发明实施例对无人机进行飞行授权更加可靠,并且减少了蜂窝联网无人机的应用风险,减轻了无人机应用服务平台的安全风险;另一方面,本发明对于蜂窝网的合作无人机和非合作无人机都可以进行飞行授权,因而有助于预防未提交飞行计划的非合作无人机的随意飞行带来的安全隐患。
下面结合具体示例,对图2所示的方法进行介绍说明。如图3所示,为本申请提供的一种无人机系统的飞行授权方法。该方法包括:
AF向UDR、或PCF、或UDM、或UCF配置无人机策略。
作为一种实现方法,可以依据无人机的等级,例如:轻型、小型、中型等,将不同等级的无人机分别对应的无人机策略配置到UDR、或PCF、或UDM、或UCF。
当无人机策略配置在UDR、或PCF、或UDM时,则UCF网元上电后,向UDR、或PCF、或UDM获取无人机策略。
步骤301,遥控器和无人机开机,向AMF、UDM发起注册流程。
步骤302,AMF判断设备类型是否为无人机。
这里的设备类型是无人机在注册至网络时发送至AMF的。
如果是无人机,则跳转到步骤303。
如果不是无人机,则流程结束。
步骤303,AMF向UCF发送通知消息,用于通知UCF:该无人机已经接入到网络,通知消息包括无人机的标识信息。
这里的通知消息例如可以是Nucf_UAV_Registration request。
步骤304,UCF收到通知消息后,获取无人机白名单,判断无人机的标识信息是否在无人机白名单内。
如果无人机的标识信息在无人机白名单内,表明该无人机有飞行计划,则无需对无人机系统(包括遥控器和无人机)进行飞行限制,UCF向AF或AMF发送无人机飞行通知信息。
如果无人机的标识信息不在无人机白名单内,表明该无人机没有飞行计划,则需要对无人机系统(包括遥控器和无人机)进行飞行限制,执行以下步骤305a至步骤305d。
作为一种实现方法,无人机白名单可以是由无人机服务供应商(UAS Service Supplier,USS)预先配置在UCF上的,因此UCF可以从本地获取无人机白名单。
作为又一种实现方法,无人机白名单可以是由USS预先配置在UDM上的,因此UCF可以从UDM获取无人机白名单。
其中,USS的其他功能类似于现有技术中的无人机云系统,不再赘述。
步骤305a,UCF从UDM获取无人机与遥控器的组对关系。
即UCF从UDM获取与该无人机构成组对关系的遥控器的信息。
步骤305b,UCF周期性向位置管理功能(Location Management Function,LMF)网元获取无人机及遥控器的位置信息。
该位置信息可以是三维的空间位置信息。
这里的LMF网元可以是图1所示的5G架构中的用于获取遥控器和无人机的位置信息的网元。
步骤305c,UCF根据无人机策略,对无人机进行高度进行检查。
初始状态下,无人机未起飞,因此一般地无人机的高度是符合无人机策略中的最大高度限制的。
当然,在飞行过程中,随着无人机的升高,无人机的高度可能会不符合无人机策略中的最大高度限制。
步骤305d,UCF根据无人机策略,对遥控器与无人机之间的距离进行检查。
初始状态下,无人机未起飞,因此一般地遥控器与无人机之间的距离是符合无人机策略中的最大距离限制的。
当然,在飞行过程中,随着无人机的升高,遥控器与无人机之间的距离可能会不符合无人机策略中的最大距离限制。
作为一种实现方法,当无人机策略是基于无人机的等级粒度进行划分时,则本申请中,一方面,设备类型可以指示设备是否为无人机,另一方面,当设备类型指示设备为无人机时,该设备类型还可以指示无人机的等级(如轻型、小型、中型等),因此该步骤305中,UCF是根据该无人机的等级对应的无人机策略,判断该无人机是否可以飞行。
步骤306,UCF向AF或AMF发送无人机的无人机飞行告警信息或无人机飞行通知信息。
其中,当上述步骤305a至步骤305d中,确定无人机超出了遥控器与无人机之间的距离,或者超出了无人机飞行的最大高度,则UCF可以向AMF或AF发送无人机飞行告警信息,用于告警:该无人机已经超出无人机的最大高度限制、或者遥控器与无人机之间的距离超出了最大距离限制等。
当上述步骤305a至步骤305d中,确定无人机没有遥控器与无人机之间的距离,且没有超出无人机飞行的最大高度,则UCF可以向AMF或AF无人机飞行通知信息,例如包括无人机的当前高度、遥控器与无人机之间的当前距离等。
通过上述方案,实现了由蜂窝网的网元对无人机(包括蜂窝网的合作无人机和非合作无人机)进行飞行授权,对没有提交飞行计划的无人机(即不包含于无人机白名单)进行超视距限制飞行。一方面,由于是蜂窝网的网元执行对无人机进行飞行授权(属于网络层的飞行授权),相较于现有技术通过无人机系统对无人机进行飞行授权(属于应用层的飞行授权),本发明实施例对无人机进行飞行授权更加可靠,并且减少了蜂窝联网无人机的应用风险,减轻了无人机应用服务平台的安全风险;另一方面,本发明对于蜂窝网的合作无人机和非合作无人机都可以进行飞行授权,因而有助于预防未提交飞行计划的非合作无人机的随意飞行带来的安全隐患。
下面给出一种USS向UDM配置遥控器与无人机的组对关系,以及向UCF或UDM配置无人机白名单的具体实现方法。如图4所示,为本申请提供的一种无人机系统信息配置方法示意图。
该方法包括以下步骤:
步骤401,无人机运营人(通过遥控器APP等)向USS提交飞行计划申请,飞行计划包含:飞行任务、运营人、无人机信息、遥控器信息等。
其中,无人机信息包括一个移动用户国际ISDN/PSTN码(Mobile Subscriber International ISDN/PSTN number,MSISDN),该MSISDN用于标识无人机。遥控器信息包括一个MSISDN,该MSISDN用于标识遥控器。
其中,ISDN是综合业务数字网(Integrated Service Digital Network)的简称,PSTN是公共交换电话网络(Public Switched Telephone Network)的简称。
步骤402,USS通过NEF向UDM配置遥控器和无人机的组对关系。
作为一种实现方法,USS向UDM配置遥控器和无人机的组对关系,以及配置遥控器 的MSISDN和无人机的MSISDN。UDM基于无人机的MSISDN查询到无人机的国际移动用户识别码(International Mobile Subscriber Identity,IMSI),以及基于遥控器的MSISDN查询到遥控器的IMSI。UDM中存储无人机的IMSI与遥控器的IMSI之间的组对关系。
步骤403a,USS通过NEF向UDM中配置无人机白名单。
作为一种实现方法,USS通过NEF向UDM配置的无人机白名单包括一个或多个MSISDN,其中,一个MSISDN标识一个无人机。UCF通过接收到的MSISDN从本地获取MSISDN对应的IMSI,从而UDM存储的无人机白名单中包括一个或多个IMSI,一个IMSI标识一个无人机。
步骤403b,USS通过NEF向UCF中配置无人机白名单。
作为一种实现方法,USS通过NEF向UCF配置的无人机白名单包括一个或多个MSISDN,其中,一个MSISDN标识一个无人机。UCF通过接收到的MSISDN从UDM获取MSISDN对应的IMSI,从而UCF存储的无人机白名单中包括一个或多个IMSI,一个IMSI标识一个无人机。
需要说明的是,上述步骤403a和步骤403b为二选一执行,即执行步骤403a或步骤403b。当然,也可以既执行步骤403a也执行步骤403b,对此本申请不做限定。
通过上述方案,实现了将遥控器和无人机的组对关系配置在UDM上,以及将无人机白名单配置在UDM和/或UCF上,以便于需要对无人机进行飞行授权时,可以快速获取到需要使用的无人机白名单,及遥控器和无人机的组对关系。
综上所述,本申请中,遥控器和无人机的组对关系始终配置在UDM上,而对于无人机白名单,无人机策略,包括但不限于以下表2所示的配置方式。
表2
Figure PCTCN2020115950-appb-000002
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
如图5所示,为本申请所涉及的无人机系统的飞行授权装置的一种可能的示例性框图,该装置500可以以软件或硬件的形式存在。装置500可以包括:通信单元501和处理单元502。作为一种实现方式,通信单元501可以包括接收单元和发送单元。处理单元502用于对装置500的动作进行控制管理。通信单元501用于支持装置500与其他网络实体的通信。
其中,处理单元502可以是处理器或控制器,例如可以是通用中心处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元501是该装置的接口电路,用于从其它装置接收信号或向其它装置发送信息。例如,当该装置以芯片的方式实现时,该通信单元501是该芯片用于从其它芯片或装置接收信号的接口电路,和/或用于向其它芯片或装置发送信号的接口电路。
该装置500可以为上述实施例中的无人机控制网元,还可以为用于无人机控制网元的芯片。例如,当装置500为无人机控制网元时,该处理单元502例如可以是处理器,该通信单元501例如可以是发送器和/或接收器。可选的,该发送器和接收器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置500为用于无人机控制网元的芯片时,该处理单元502例如可以是处理器,该通信单元501例如可以是输入/输出接口、管脚或电路等。该处理单元502可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该无人机控制网元内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
该装置可以为上述实施例中的无人机控制网元,通信单元501,用于接收通知消息,所述通知消息用于通知无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;处理单元502,用于在所述无人机的标识信息未包含于无人机白名单的情况下,根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
在一种可能的实现方法中,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策略包括各个国家对无人机的飞行限制的条件。
在一种可能的实现方法中,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;所述处理单元502,具体用于:确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或,确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通 知信息。
在一种可能的实现方法中,所述通信单元501,还用于从数据管理网元获取所述无人机与所述遥控器之间的组对关系。
在一种可能的实现方法中,所述通信单元501,还用于从数据管理网元、或所述无人机控制网元、或数据库、或策略控制网元获取所述无人机策略。
在一种可能的实现方法中,所述通信单元501,还用于从数据管理网元或所述无人机控制网元获取所述无人机白名单。
在一种可能的实现方法中,所述处理单元502,还用于在所述无人机的标识信息包含于所述无人机白名单的情况下,则向所述第一网元发送无人机飞行通知信息。
在一种可能的实现方法中,所述第一网元为移动性管理网元或应用功能网元。
若该装置500是无人机控制网元,则无人机控制网元以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该无人机控制网元可以采用图6所示的形式。
比如,图6中的处理器602可以通过调用存储器601中存储的计算机执行指令,使得无人机控制网元执行上述方法实施例中的方法。
具体的,图5中的通信单元501和处理单元502的功能/实现过程可以通过图6中的处理器602调用存储器601中存储的计算机执行指令来实现。或者,图5中的处理单元502的功能/实现过程可以通过图6中的处理器602调用存储器601中存储的计算机执行指令来实现,图5中的通信单元501的功能/实现过程可以通过图6中的通信接口603来实现。
可选的,当该装置600是芯片或电路时,则通信单元501的功能/实现过程还可以通过管脚或电路等来实现。
如图6所示,为本申请提供的又一种无人机系统的飞行授权装置示意图,该装置可以是上述实施例中的无人机控制网元。该装置600包括:处理器602和通信接口603,可选的,装置600还可以包括存储器601。可选的,装置600还可以包括通信线路604。其中,通信接口603、处理器602以及存储器601可以通过通信线路604相互连接;通信线路604可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路604可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器602可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口603,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器601可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、 数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路604与处理器相连接。存储器也可以和处理器集成在一起。
其中,通信接口603,用于接收代码指令并传输至处理器602,并由处理器602来控制执行,从而实现本申请上述方法实施例提供的无人机系统的飞行授权方法。其中,代码指令可以是来自存储器601,也可以是从其他地方获取。
其中,存储器601用于存储执行本申请方案的计算机执行指令,并由处理器602来控制执行。处理器602用于执行存储器601中存储的计算机执行指令,从而实现本申请上述实施例提供的无人机系统的飞行授权方法。
可选的,当该装置600是芯片时,那么通信接口603的功能/实现过程还可以通过管脚或电路等来实现。可选地,当该装置600是芯片时,所述存储器可以为所述芯片内的存储单元,如寄存器、缓存等。当然,当该装置600是芯片时,所述存储器还可以是位于所述芯片外部的存储单元。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
如图7所示,本申请还提供一种无人机系统的飞行授权系统,该系统包括移动性管理网元和无人机控制网元。可选的,还包括数据库、数据管理网元、策略控制网元、无人机服务供应商中的一个或多个。
所述移动性管理网元,用于向所述无人机控制网元发送通知消息,所述通知消息用于通知所述无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;所述无人机控制网元,用于从所述移动性管理网元接收所述通知消息,在所述无人机的标识信息未包含于无人机白名单的情况下,根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
在一种可能的实现方法中,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策略包括各个国家对无人机的飞行限制的条件。
在一种可能的实现方法中,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;所述无人机控制网元,具体用于:确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或所述无人机控制网元确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通知信息。
在一种可能的实现方法中,数据管理网元,用于存储所述无人机与所述遥控器之间的组对关系;所述无人机控制网元,还用于从所述数据管理网元获取所述无人机与所述遥控器之间的组对关系。
在一种可能的实现方法中,数据库,用于存储所述无人机策略;所述无人机控制网元,还用于从所述数据库获取所述无人机策略;或者,策略控制网元,用于存储所述无人机策 略;所述无人机控制网元,还用于从所述策略控制网元获取所述无人机策略;或者,所述无人机控制网元,还用于从所述无人机控制网元获取所述无人机策略。
在一种可能的实现方法中,数据管理网元,用于存储所述无人机策略;所述无人机控制网元,还用于从所述数据管理网元获取所述无人机策略。
在一种可能的实现方法中,数据管理网元,用于存储所述无人机白名单;所述无人机控制网元,还用于从所述数据管理网元获取所述无人机白名单。
在一种可能的实现方法中,所述无人机控制网元,还用于从所述无人机控制网元获取所述无人机白名单。
在一种可能的实现方法中,所述无人机控制网元,还用于在所述无人机的标识信息包含于所述无人机白名单的情况下,则向所述第一网元发送无人机飞行通知信息。
在一种可能的实现方法中,无人机服务供应商,用于向所述无人机控制网元或数据管理网元配置所述无人机白名单。
本领域普通技术人员可以理解:本申请中涉及的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类 似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (30)

  1. 一种无人机系统的飞行授权方法,其特征在于,包括:
    无人机控制网元接收通知消息,所述通知消息用于通知所述无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;
    在所述无人机的标识信息未包含于无人机白名单的情况下,所述无人机控制网元根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
  2. 如权利要求1所述的方法,其特征在于,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策略包括各个国家对无人机的飞行限制的条件。
  3. 如权利要求1或2所述的方法,其特征在于,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;
    所述无人机控制网元根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,包括:
    所述无人机控制网元确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或,
    所述无人机控制网元确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通知信息。
  4. 如权利要求3所述的方法,其特征在于,还包括:
    所述无人机控制网元从数据管理网元获取所述无人机与所述遥控器之间的组对关系。
  5. 如权利要求2-4任一所述的方法,其特征在于,还包括:
    所述无人机控制网元从数据管理网元、或所述无人机控制网元、或数据库、或策略控制网元获取所述无人机策略。
  6. 如权利要求1-5任一所述的方法,其特征在于,还包括:
    所述无人机控制网元从数据管理网元或所述无人机控制网元获取所述无人机白名单。
  7. 如权利要求1或2所述的方法,其特征在于,还包括:
    在所述无人机的标识信息包含于所述无人机白名单的情况下,所述无人机控制网元向所述第一网元发送无人机飞行通知信息。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述第一网元为移动性管理网元或应用功能网元。
  9. 一种无人机系统的飞行授权装置,其特征在于,包括:
    通信单元,用于接收通知消息,所述通知消息用于通知无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;
    处理单元,用于在所述无人机的标识信息未包含于无人机白名单的情况下,根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
  10. 如权利要求9所述的装置,其特征在于,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策略包括各个国家对无人机的飞行限制的条件。
  11. 如权利要求9或10所述的装置,其特征在于,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;
    所述处理单元,具体用于:
    确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或,
    确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通知信息。
  12. 如权利要求11所述的装置,其特征在于,所述通信单元,还用于从数据管理网元获取所述无人机与所述遥控器之间的组对关系。
  13. 如权利要求10-12任一所述的装置,其特征在于,所述通信单元,还用于从数据管理网元、或所述无人机控制网元、或数据库、或策略控制网元获取所述无人机策略。
  14. 如权利要求9-13任一所述的装置,其特征在于,所述通信单元,还用于从数据管理网元或所述无人机控制网元获取所述无人机白名单。
  15. 如权利要求9或10所述的装置,其特征在于,所述处理单元,还用于在所述无人机的标识信息包含于所述无人机白名单的情况下,则向所述第一网元发送无人机飞行通知信息。
  16. 如权利要求9-13任一所述的装置,其特征在于,所述第一网元为移动性管理网元或应用功能网元。
  17. 一种无人机系统的飞行授权系统,其特征在于,包括移动性管理网元和无人机控制网元;
    所述移动性管理网元,用于向所述无人机控制网元发送通知消息,所述通知消息用于通知所述无人机控制网元无人机接入网络,所述通知消息包含无人机的标识信息;
    所述无人机控制网元,用于从所述移动性管理网元接收所述通知消息,在所述无人机的标识信息未包含于无人机白名单的情况下,根据所述无人机对应的无人机策略,向核心网的第一网元发送第一信息,所述第一信息用于所述第一网元对所述无人机进行超视距限制飞行。
  18. 如权利要求17所述的系统,其特征在于,所述无人机策略包括无人机围栏范围、无人机的最大飞行高度、无人机与遥控器之间的最大距离、飞行时间、限制策略中的至少一个,所述限制策略包括各个国家对无人机的飞行限制的条件。
  19. 如权利要求17或18所述的系统,其特征在于,所述无人机策略包括无人机的最大飞行高度,及无人机与遥控器之间的最大距离;
    所述无人机控制网元,具体用于:确定所述无人机的飞行高度大于所述最大飞行高度、或确定所述无人机与遥控器之间的距离大于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行告警信息;或
    所述无人机控制网元确定所述无人机的飞行高度小于或等于所述最大飞行高度、且确 定所述无人机与遥控器之间的距离小于或等于所述最大距离,则向所述第一网元发送所述第一信息,所述第一信息为无人机飞行通知信息。
  20. 如权利要求19所述的系统,其特征在于,所述系统还包括数据管理网元,用于存储所述无人机与所述遥控器之间的组对关系;
    所述无人机控制网元,还用于从所述数据管理网元获取所述无人机与所述遥控器之间的组对关系。
  21. 如权利要求18-20任一所述的系统,其特征在于,所述系统还包括数据库,用于存储所述无人机策略;所述无人机控制网元,还用于从所述数据库获取所述无人机策略;或者,
    所述系统还包括策略控制网元,用于存储所述无人机策略;所述无人机控制网元,还用于从所述策略控制网元获取所述无人机策略;或者,
    所述无人机控制网元,还用于从所述无人机控制网元获取所述无人机策略。
  22. 如权利要求18或19所述的系统,其特征在于,所述系统还包括数据管理网元,用于存储所述无人机策略;所述无人机控制网元,还用于从所述数据管理网元获取所述无人机策略。
  23. 如权利要求17-19、21任一所述的系统,其特征在于,所述系统还包括数据管理网元,用于存储所述无人机白名单;所述无人机控制网元,还用于从所述数据管理网元获取所述无人机白名单。
  24. 如权利要求17-22任一所述的系统,其特征在于,所述无人机控制网元,还用于从所述无人机控制网元获取所述无人机白名单。
  25. 如权利要求17-24任一所述的系统,其特征在于,所述无人机控制网元,还用于在所述无人机的标识信息包含于所述无人机白名单的情况下,则向所述第一网元发送无人机飞行通知信息。
  26. 如权利要求17所述的系统,其特征在于,所述系统还包括无人机服务供应商,用于向所述无人机控制网元或数据管理网元配置所述无人机白名单。
  27. 一种无人机系统的飞行授权装置,其特征在于,包括:处理器和接口电路,所述处理器用于通过所述接口电路实现通信,并执行如权利要求1-8任一所述的方法。
  28. 一种无人机系统的飞行授权装置,其特征在于,包括处理器,用于与存储器相连,调用所述存储器中存储的程序,以执行如权利要求1-8任一所述的方法。
  29. 一种无人机系统的飞行授权装置,其特征在于,包括处理器和存储器,所述处理器调用所述存储器中存储的程序,以使得所述装置执行如权利要求1-8任一所述的方法。
  30. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得处理器执行如权利要求1-8任一所述的方法。
PCT/CN2020/115950 2019-09-18 2020-09-17 一种无人机系统的飞行授权方法、装置及系统 WO2021052425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910881119.7 2019-09-18
CN201910881119.7A CN112533139B (zh) 2019-09-18 2019-09-18 一种无人机系统的飞行授权方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2021052425A1 true WO2021052425A1 (zh) 2021-03-25

Family

ID=74883372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115950 WO2021052425A1 (zh) 2019-09-18 2020-09-17 一种无人机系统的飞行授权方法、装置及系统

Country Status (2)

Country Link
CN (1) CN112533139B (zh)
WO (1) WO2021052425A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393712A (zh) * 2021-06-11 2021-09-14 航天时代飞鹏有限公司 一种基于固定翼无人机电子围栏的交通管制方法
WO2024001531A1 (zh) * 2022-06-29 2024-01-04 华为技术有限公司 通信方法及装置
WO2024060130A1 (en) * 2022-09-22 2024-03-28 Qualcomm Incorporated Authentication and authorization for network-assisted aerial services

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996393A (zh) * 2021-10-19 2023-04-21 华为技术有限公司 一种通信方法及通信装置
CN117499854A (zh) * 2022-07-25 2024-02-02 中国电信股份有限公司 一种支持核心网网元获取飞行器空间位置的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025021A1 (en) * 2015-07-22 2017-01-26 Samsung Sds Co., Ltd. Drone control apparatus and method
CN107210000A (zh) * 2015-01-29 2017-09-26 高通股份有限公司 用于限制无人机空域访问的系统和方法
CN108076433A (zh) * 2016-11-16 2018-05-25 中国电信股份有限公司 无人机禁飞区辅助设置的方法、装置、系统和无人机
CN109756261A (zh) * 2019-02-03 2019-05-14 飞牛智能科技(南京)有限公司 基于移动运营商网络的无人机身份标识告警与通知方法
CN109785671A (zh) * 2019-02-03 2019-05-21 中睿通信规划设计有限公司 无人机标识报告区告警方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8977275B2 (en) * 2005-12-30 2015-03-10 Google Technology Holdings LLC In-vehicle pico-cell system and methods therefor
US9392570B1 (en) * 2013-12-04 2016-07-12 Garini Technologies Corporation Pte. Ltd. Method of using aircraft for providing mobile network connection and locating subscribers in specified areas
WO2019032162A2 (en) * 2017-05-13 2019-02-14 Airspace Systems Inc. SECURE DRIVE AND BEACON SYSTEM FOR IDENTIFICATION OF PILOT AND REMOTE DRONE
EP3443451B1 (en) * 2016-04-14 2023-09-20 Rhombus Systems Group, Inc. System for verification of integrity of unmanned aerial vehicles
EP3671694A4 (en) * 2017-09-06 2020-09-09 Beijing Xiaomi Mobile Software Co., Ltd. PILOTLESS AIR VEHICLE ACCESS PROCESS AND DEVICE
CN107591035B (zh) * 2017-09-15 2021-01-29 山东东进航空科技有限公司 基于数字身份识别的飞行器综合管控系统及其方法
CN109120354A (zh) * 2018-08-29 2019-01-01 无锡若飞科技有限公司 无人机监管方法和系统和计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210000A (zh) * 2015-01-29 2017-09-26 高通股份有限公司 用于限制无人机空域访问的系统和方法
US20170025021A1 (en) * 2015-07-22 2017-01-26 Samsung Sds Co., Ltd. Drone control apparatus and method
CN108076433A (zh) * 2016-11-16 2018-05-25 中国电信股份有限公司 无人机禁飞区辅助设置的方法、装置、系统和无人机
CN109756261A (zh) * 2019-02-03 2019-05-14 飞牛智能科技(南京)有限公司 基于移动运营商网络的无人机身份标识告警与通知方法
CN109785671A (zh) * 2019-02-03 2019-05-21 中睿通信规划设计有限公司 无人机标识报告区告警方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393712A (zh) * 2021-06-11 2021-09-14 航天时代飞鹏有限公司 一种基于固定翼无人机电子围栏的交通管制方法
CN113393712B (zh) * 2021-06-11 2022-10-14 航天时代飞鹏有限公司 一种基于固定翼无人机电子围栏的交通管制方法
WO2024001531A1 (zh) * 2022-06-29 2024-01-04 华为技术有限公司 通信方法及装置
WO2024060130A1 (en) * 2022-09-22 2024-03-28 Qualcomm Incorporated Authentication and authorization for network-assisted aerial services

Also Published As

Publication number Publication date
CN112533139A (zh) 2021-03-19
CN112533139B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021052425A1 (zh) 一种无人机系统的飞行授权方法、装置及系统
US10712743B2 (en) Augmentative control of drones
EP3349085B1 (en) Secure control of unmanned vehicles
US10312994B2 (en) Drone network switchover between wireless networks
WO2020034748A1 (zh) 一种基于移动网络的无人机监管方法及装置
US11343311B2 (en) Edge computing for internet of things security with blockchain authentication
CN105225540A (zh) 无人飞行器的飞行区域监控装置及其监控方法
Ivancic et al. Flying drones beyond visual line of sight using 4g LTE: Issues and concerns
CN205121346U (zh) 无人飞行器的调度装置及调度系统
CN106373434A (zh) 无人机管制装置及管制方法
CN105259916A (zh) 无人飞行器的调度装置及其调度方法
CN205050360U (zh) 无人飞行器的飞行区域监控装置
CN111436050B (zh) 无线网络通信方法、网络设备和终端
US20170255194A1 (en) Reverse drm geo-fencing of uav method and apparatus
US8973101B1 (en) Method and apparatus for authenticating information received at an airport surface wireless node
CN114301784A (zh) 网络靶场训练环境构建方法和装置、电子设备及存储介质
Sumra et al. Security issues and challenges in MANET-VANET-FANET: A survey
US11082862B1 (en) Cell site placement system
JP6643962B2 (ja) サーバ装置、ドローン、ドローン制御システム、プログラム
CN109756261B (zh) 基于移动运营商网络的无人机身份标识告警与通知方法
EP3846543A1 (en) Method and device for supervising unmanned aerial vehicle
Lee et al. Ubiquitous agent-based communication in construction
WO2020063655A1 (zh) 飞行器的控制方法及装置
Pigatto et al. The internet of flying things
Vieira et al. Performance of greedy forwarding in geographic routing for the internet of drones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864682

Country of ref document: EP

Kind code of ref document: A1