WO2024001531A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024001531A1
WO2024001531A1 PCT/CN2023/092977 CN2023092977W WO2024001531A1 WO 2024001531 A1 WO2024001531 A1 WO 2024001531A1 CN 2023092977 W CN2023092977 W CN 2023092977W WO 2024001531 A1 WO2024001531 A1 WO 2024001531A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
base station
message
flight
user equipment
Prior art date
Application number
PCT/CN2023/092977
Other languages
English (en)
French (fr)
Inventor
李�杰
彭文杰
赵力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001531A1 publication Critical patent/WO2024001531A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the embodiments of the present application relate to the field of communication, and in particular, to a communication method and device.
  • UAV Uncrewed Aerial Vehicle
  • cellular networks can provide wider signal coverage for drones.
  • the base station cannot control the access of the drone when it is connected to the drone.
  • this application provides a communication method and device.
  • the base station can identify whether the flight status of the drone requesting access is legal based on the restrictive information of the drone's flight range to determine whether to access the drone, which can achieve UAV access control.
  • this application provides a communication method, which is applied to a first network device.
  • the method includes: obtaining first flight status information of the first user equipment; obtaining first flight range information of the first user equipment; wherein the first user equipment is requesting to establish a communication connection with the first network device.
  • the first type is a drone type.
  • the first network device is a base station.
  • the base station may be the base station that the UAV requests access from the idle state. It may also be the base station the UAV requests access from the inactive state. It may also be the base station the UAV switches from the source base station to the target base station. target base station at the time.
  • the first flight status information may include, but is not limited to, flight status information such as flight altitude, flight position, maximum flight altitude, etc.
  • the base station when the UAV requests to access the base station, can obtain the flight status information of the UAV and the first flight range information that limits the flight range of the UAV, and based on the first flight range information and the flight status information , to determine whether the base station has established a communication connection with the UAV.
  • This application can combine the restrictive information of the UAV's flight range to determine whether the flight status of the UAV is legal. For example, if the UAV's flight status is illegal, the base station may refuse to access the UAV. On the contrary, if the UAV's flight status is legal, the base station may access the UAV. In this way, the legality of the flight status of the UAV requesting access to the base station is identified, and the access control of UAV is realized.
  • the first flight range information may include first authorization information of the first user equipment, wherein the first authorization information includes the first flight range authorized for the first user equipment. .
  • the authorization information is also called contract information.
  • the base station when the base station identifies the legality of the UAV requesting access, it can identify whether the UAV's flight status is legal based on the UAV's authorization information, such as whether it is in a no-fly zone and/or the flight altitude exceeds For example, if the UAV's flight altitude exceeds the allowed flight altitude range restricted by the authorization information, or the UAV's flight position is in the no-fly zone corresponding to the UAV, the base station can determine that the UAV's flight status is illegal and refuse to access the UAV. .
  • the base station when it identifies the legality of the UAV, it can identify the legality of the UAV's flight status in combination with the flight range restricted by the UAV's authorization information, so that when different UAVs request to access the base station, the base station can combine
  • the authorization information of the UAV requesting access is used for specific legality identification, which can better match the flight requirements of the UAV. For example, after the base station determines that the UAV is illegal, the base station can notify the core network equipment to supervise the illegal UAV to avoid UAV flight safety problems.
  • the first network device includes a preset flight range
  • the first flight range information includes the preset flight range
  • the base station when the base station identifies the legality of the UAV requesting access, it can identify whether the flight status of the UAV is legal based on the preset flight range information preconfigured by the base station itself, such as whether it is in a no-fly area and / or the flight altitude exceeds, etc., for example, the UAV's flight altitude exceeds the allowed flight altitude range limited by the preset flight range, or the UAV's flight position is in the no-fly zone corresponding to the preset flight range, then the base station can determine that the UAV The flight status is illegal to deny access to the UAV. Then when the base station identifies the legality of the UAV, it does not need to obtain the authorization information of the UAV.
  • determining whether to establish a communication connection with the first user equipment based on the first flight status information and the first flight range information includes: based on the first flight status information and the first flight range information, and when it is determined that the first flight status information exceeds the flight range limited by the first flight range information, establishment of a communication connection with the first user equipment is refused.
  • the flight range limited by the first flight range information may include a preset flight range and/or a first flight range.
  • the base station determines that the first flight status information exceeds the flight range limited by the first flight range information based on the flight status information of the UAV requesting access and the first flight range information of the UAV. , the base station may determine that the flight status of the UAV is illegal, and the base station may refuse to establish a communication connection with the first user equipment. Therefore, no matter whether it is a UAV requesting access to the base station from the idle state or inactive state, or the UAV is to be switched from the source base station to the UAV of this base station, this base station can detect whether the flight status of the UAV is legal, and after determining When it is illegal, access to illegal UAVs can be denied.
  • the obtaining the first flight range information of the first user equipment includes: receiving a third message from a core network device, where the third message includes the first authorization information.
  • the core network device may be an AMF
  • the base station may obtain the first authorization information of the first user equipment (UAV here) from the AMF. This is to facilitate the use of the authorization information of the UAV requesting access to identify whether the UAV's flight status is legal, and to determine whether to access the UAV.
  • UAV first user equipment
  • the obtaining the first flight status information of the first user equipment includes: sending a first message to the first user equipment, wherein the first message is used to indicate the first user equipment.
  • a network device supports communication with the first type of user equipment; receiving a second message from the first user equipment, wherein the second message includes the first flight status information, and the second message is the response message to the first message.
  • the second message may be an RRC connection restoration completion message or an RRC connection restoration request message.
  • the first message may be a system broadcast message, and the second message may be an RRC establishment request message or an RRC establishment completion message, etc.
  • the first message may also be an RRC reconfiguration message, and the second message may be an RRC reconfiguration complete message.
  • the base station when it obtains the flight status information of the UAV, it can send a first message to the UAV.
  • the first message can carry the capability information of the base station.
  • the capability information of the base station can include base station support and UAV type.
  • the UE performs communication connection.
  • the UAV after receiving the first message, the UAV can respond to the capability information carried by the first message and carry the UAV's flight status in the second message, so as to report the UAV's flight status to the base station through the second message.
  • the base station realizes the acquisition of the flight status of the UAV, so as to promptly identify whether the flight status of the UAV is legal.
  • the refusal to establish a communication connection with the first user equipment includes: sending a fourth message to the core network device, wherein the fourth message is used to indicate that the first user equipment The flight status of the user device is illegal.
  • the base station when the base station recognizes that the flight status of the UAV requesting access is illegal, the base station may send a message indicating that the flight status of the UAV is illegal to the core network device.
  • the core network device can send a message to the UAS-NF indicating that the flight status of the UAV is illegal. In this way, the illegal UAV can be controlled to avoid flight safety problems of the illegal UAV.
  • the refusal to establish a communication connection with the first user equipment includes: releasing the communication connection established with the first user equipment.
  • the method further includes: sending a fifth message to the first type of user equipment, wherein the fifth message includes second flight range information, wherein the second flight range Range information is used to limit the flight range of at least one user equipment of the first type; receiving a sixth message from the first user equipment, wherein the first user equipment is in an idle state or an inactive state, and the The first user equipment of the A flight status information exceeds the target flight range, wherein the sixth message is a response message to the fifth message; wherein the at least one first type of user equipment includes the first user equipment; the sixth message The message is used to instruct the first user equipment to request to establish a communication connection with the first network device; the target flight range is the flight range corresponding to the first user equipment in the second flight range information.
  • the fifth message may be a system broadcast message.
  • the second flight range information may include: a no-fly zone common to multiple UAVs (for example, a preset flight range preconfigured by the base station itself), and/or a no-fly zone corresponding to each UAV ( For example, the flight range limited by the authorization information of each UAV).
  • the sixth message and the above-mentioned second message may be the same or different, and this application does not limit this.
  • the base station when the UAV is in the idle state or inactive state and resides in the cell of the base station, the base station carries flight range restriction information (such as restricted altitude or no-fly zone location, etc.) in the system broadcast message.
  • the UAV is combined with the system to broadcast messages.
  • the UAV detects that its flight altitude is higher than the restricted altitude or the flight position is in a no-fly zone, the UAV can be triggered to request to establish a connection with the base station to request to enter the connection state.
  • the base station when the UAV is not connected to the base station, the base station cannot determine whether the flight status of the UAV is illegal, which is not conducive to the flight supervision of the UAV.
  • the base station in order to realize the supervision of the flight status of the UAV, the base station can carry the restriction information of the UAV's flight range such as the no-fly zone in the system broadcast message. Then, when the UAV is not connected to the base station (for example, in idle state), When the flight status is illegal (or inactive state), the method of the present application can trigger the UAV to send a message requesting to establish a communication connection with the base station.
  • the UAV when the UAV enters the connected state, it can report its flight altitude or location information to the base station.
  • the base station obtains the authorization information of the UAV through the core network equipment, and combines the authorization information and the base station's own preset flight range. , and by comparing it with the flight status information reported by the UAV, you can determine whether the UAV's flight status is legal.
  • the base station After the base station detects that the flight status of the UAV is illegal, it can refuse to access the UAV and promptly notify the core network equipment to control the UAV, so as to control the illegal UAV in the idle state or inactive state.
  • the second flight range information includes the preset flight range, and/or the respective authorization information of the at least one first type of user equipment.
  • the base station can determine whether the flight status of the UAV is legal by combining its own preconfigured flight range and/or requesting authorization information for the UAV that accesses the base station.
  • the first user equipment is in the inactive state
  • the method further includes: receiving a seventh message from the second network device, wherein the seventh message includes the Context information of a user equipment, wherein the second network device is the network device that has recently communicated with the first user equipment; in the case that the seventh message does not include the first authorization information, receive The third message from the core network device.
  • the inactive UAV when the inactive UAV requests to resume connection with the base station, if the UAV reports flight status to the base station, and the last serving base station that communicated before the UAV was in the inactive state, it does not support the connection with the unmanned aircraft.
  • the base station that communicates with the aircraft-type UE the base station can obtain the authorization information of the UAV from the core network equipment, so as to use the authorization information and/or the base station's own preconfigured restrictive information to determine the flight status.
  • the legality of the UAV is identified to determine whether the flight status of the UAV is legal.
  • the base station in the embodiment of the present application can still use the authorization information of the UAV obtained from the core network device to deactivate the UAV.
  • the legality of the flight status of the UAV that dynamically requests access to the base station is detected, so that the base station of this application can cover more application scenarios and improve the reliability of the legality detection of the UAV's flight status.
  • the first user equipment is a user equipment determined by the third network device to be switched to the first network device for communication connection.
  • the third network device may be the source base station, and the first network device may be the target base station.
  • the UAV needs to switch the base station to which it is connected.
  • the source base station can determine that the base station connected to the UAV is switched from the source base station to the target base station.
  • the target base station to which the UAV is to be switched can be determined by the source base station.
  • the target base station can check the legality of the flight status of the UAV to determine whether to access the UAV to achieve access control of the UAV. For a UAV whose flight status is illegal on the target base station side, the target base station may refuse to switch the base station for the UAV. For a UAV whose flight status is legal on the target base station side, the target base station can switch the base station connected to the UAV from the source base station to the target base station.
  • the obtaining the first flight status information of the first user equipment includes: receiving an eighth message from the third network device, wherein the eighth message includes the first Flight status; the obtaining the first flight range information of the first user equipment includes: receiving the eighth message from the third network device, wherein the eighth message includes the first authorization information .
  • the target base station can obtain the UAV to be accessed from the source base station.
  • Authorization information and its flight status information are used to determine whether the UAV's flight status is legal at the target base station.
  • the target base station can access the UAV, otherwise the handover request can be ignored.
  • the UAV's flight status at the source base station is legal, but the UAV's flight status at the target base station may be illegal.
  • the target base station of this application can combine the authorization information of the UAV and/or its own preset flight range to decide whether the flight status of the UAV is legal at the target base station, which can avoid the situation where it is legal at the source base station but illegal at the target base station.
  • the UAV switches from the source base station to the communication connection with the target base station.
  • the obtaining the first flight range information of the first user equipment includes: receiving a ninth message from the third network device, wherein the ninth message includes: Information indicating that the device type of the first user equipment is the first type; receiving the first authorization information from the core network device.
  • the handover request sent by the source base station to the target base station may include the UE's capability information.
  • the capability information of the UE is used to indicate that the equipment type of the UE is a drone type.
  • the handover request does not include UAV authorization information and flight status information. This makes it impossible for the target base station to obtain the authorization information and flight status information of the UAV from the handover request of the source base station, and to identify the legality of the flight status of the connected UAV.
  • the target base station can obtain the authorization of the UAV from the core network device. information and instructs the UAV to report flight status information through the source base station in order to identify the legality of the UAV's flight status.
  • the obtaining the first flight status information of the first user equipment includes: sending a tenth message to the third network device, wherein the tenth message includes a message indicating that the The first user equipment reports flight status information; and receives an eleventh message from the first user equipment, where the eleventh message includes the first flight status information.
  • the tenth message may include an RRC reconfiguration message for UAV configuration, and the RRC reconfiguration message may carry information indicating the flight status reported by the UAV.
  • the eleventh message may be an RRC reconfiguration complete message.
  • the RRC reconfiguration message configured by the target base station to the UAV may carry information instructing the UAV to report flight status.
  • the RRC reconfiguration complete message can carry the UAV's status information (such as flight altitude or position or maximum flight altitude, etc.).
  • the target base station can instruct the UAV to report the flight status to the target base station through the source base station to obtain the flight status of the UAV.
  • the target base station can use the coverage of the target cell (optional), the authorization information obtained from the core network equipment, or its own preset flight range to identify whether the flight status of the UAV is legal on the target base station side. To decide whether to access the UAV to implement its base station switching.
  • this application provides a communication method, applied to a first user equipment, wherein the equipment type of the first user equipment is a first type.
  • the method includes: receiving a first message from a first network device, wherein the first message is used to indicate that the first network device supports communication with the first type of user equipment; and sending a message to the first network device.
  • the device sends a second message, wherein the second message includes first flight status information of the first user equipment; wherein the first network device is configured to based on the first flight status information and the first flight range information to determine whether to establish a communication connection with the first user equipment; wherein the first flight range information includes information for limiting the flight range of the first user equipment; wherein the first user equipment is requesting User equipment that establishes a communication connection with the first network device.
  • the first flight range information includes first authorization information of the first user equipment, wherein the first authorization information includes the first flight authorization information for the first user equipment. scope.
  • the first network device includes a preset flight range
  • the first flight range information includes the preset flight range
  • the method further includes: receiving a third message from the first network device, wherein the third message Used to indicate rejection and The first user equipment establishes a communication connection, wherein the first flight status information exceeds the flight range limited by the first flight range information.
  • the third message may be a release RRC connection message.
  • the first flight range information includes the first authorization information
  • the first authorization information is obtained by the first network device from a core network device.
  • the method further includes: receiving a fourth message from the first network device, wherein the fourth message includes second flight range information, wherein the second flight range The information is used to limit the flight range of at least one user equipment of the first type, wherein the at least one user equipment of the first type includes the first user equipment; sending a fourth message to the first network device, Wherein, the first user equipment is in an idle state or an inactive state, and the first flight status information of the first user equipment exceeds the target flight range; the fourth message is used to indicate to the first user equipment Requesting to establish a communication connection with the first network device; the target flight range is the flight range corresponding to the first user equipment in the second flight range information.
  • the second flight range information includes the preset flight range, and/or the respective authorization information of the at least one first type of user equipment.
  • the effects of the communication method applied to the first user equipment side in the above embodiments are similar to the effects of the communication method applied to the first network device side in the above embodiments, and will not be described again here.
  • this application provides a communication device applied to a first network device, and the communication device is configured to perform a method in any implementation mode applied to the first network device.
  • the effect of the communication device of this implementation is similar to the effect of the communication method applied to the first network device in each of the above implementations, and will not be described again here.
  • this application provides a communication device applied to a first user equipment, and the communication device is configured to perform a method in any implementation manner applied to the first user equipment.
  • the present application provides a communication device.
  • the communication device includes: a memory and a processor, the memory is coupled to the processor; wherein the memory includes program instructions, and the program instructions When run by the processor, the device is caused to execute the method applied in any implementation of the first network device.
  • the effect of the communication device of this implementation is similar to the effect of the communication method applied to the first network device in each of the above implementations, and will not be described again here.
  • the present application provides a communication device.
  • the communication device includes: a memory and a processor, the memory is coupled to the processor; wherein the memory includes program instructions, and the program refers to When executed by the processor, the apparatus is caused to execute the method in any implementation manner applied to the first user equipment.
  • this application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and the computer program is called by the processor to execute the method in any of the above implementations applied to the first network device.
  • the effect of the computer-readable storage medium of this implementation is similar to the effect of the communication method applied to the first network device in each of the above implementations, and will not be described again here.
  • this application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and the computer program is called by the processor to execute the method in any of the above implementations applied to the first user equipment.
  • the effect of the computer-readable storage medium in this implementation is similar to the effect of the communication method applied to the first user equipment in each of the above implementations, and will not be described again here.
  • this application provides a computer program product.
  • the computer program product includes a software program.
  • the software program is executed by a computer or a processor, the method in any of the above implementations applied to the first network device is executed.
  • this application provides a computer program product.
  • the computer program product includes a software program.
  • the software program is executed by a computer or a processor, the method in any of the above implementations applied to the first user equipment is executed.
  • Figure 1 is a schematic diagram illustrating the process of UE accessing a base station in the prior art
  • Figure 2 is a schematic diagram illustrating the process of a UE accessing a base station from an inactive state in the prior art
  • Figure 3 is a schematic diagram illustrating the process of UE switching base stations in the prior art
  • Figure 4a is a schematic diagram of an exemplary communication system
  • Figure 4b is a schematic diagram of an exemplary communication system
  • Figure 4c is a schematic diagram of an exemplary communication system
  • Figure 5 is a schematic diagram of the work flow of an exemplary base station
  • Figure 6 is a flow chart of an exemplary communication method
  • Figure 7 is a flow chart of an exemplary communication method
  • Figure 8 is a flow chart of an exemplary communication method
  • Figure 9 is a flow chart of an exemplary communication method
  • Figure 10 is a flow chart of an exemplary communication method
  • Figure 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • UE User equipment
  • UE accesses the network side through a base station.
  • a base station For example, it can be a handheld terminal device, a laptop, a subscriber unit, a cellular phone, or a smart phone.
  • wireless data card personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone), or Wireless local loop (WLL) stations, machine type communication (MTC) terminals or other devices that can access the network.
  • PDA personal digital assistant
  • modem modem
  • handheld device handheld
  • laptop computer laptop computer
  • cordless phone cordless phone
  • WLL Wireless local loop
  • MTC machine type communication
  • Unmanned Aerial Vehicle It is a new type of aircraft and a special type UE.
  • the communication environment of UAVs is quite different from that of ordinary UEs. It mainly flies above the base station, communicates with the base station through the Uu interface, and mainly communicates with the line of sight (LOS, line of sight) path. In addition, different drones can fly at different heights.
  • LOS line of sight
  • Uu interface It is the most important open interface in the Wideband Code Division Multiple Access (WCDMA) system.
  • WCDMA Wideband Code Division Multiple Access
  • Base station Mainly responsible for wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • the base station can be used to support UE access.
  • BTS base transceiver station
  • BSC base station controller
  • Node B (node B) and radio network controller (RNC) evolved base station (evolved nodeB, eNB) in 4G access technology communication system
  • TRP transmission reception point
  • relay node relay node
  • AP access point
  • devices that provide wireless communication functions for terminals are collectively called network equipment or base stations.
  • Core network equipment It can be access and mobility management function (AMF), which is mainly responsible for access control, mobility management (MM), attachment and detachment, gateway selection and other functions.
  • AMF access and mobility management function
  • MM mobility management
  • attachment and detachment gateway selection and other functions.
  • the core network equipment involved in the embodiments of this application is not limited to AMF.
  • the main functions of AMF include the termination point of the wireless access network control plane, the termination point of non-access signaling, mobility management, lawful interception, access authorization ⁇ authentication, etc.
  • TA Tracking Area It is a geographical area composed of a continuous coverage of cells, used for UE location management of long term evolution/System Architecture Evolution (long term evolution/System Architecture Evolution) systems.
  • Idle state When the UE successfully camps in a cell, if the UE does not perform any data services, the UE is in the radio communication (Radio Resource Control, RRC) idle state.
  • RRC Radio Resource Control
  • Inactive state (inactive): The inactive state is a new RRC state added to 5G. The purpose is to enable the UE to quickly restore the RRC connection state without reconnecting.
  • the main functions include packet routing and forwarding, Quality of Service (QoS) processing of user plane data, etc.
  • QoS Quality of Service
  • the UPF can also be MB-UPF, which can provide multicast data transmission function.
  • the UE accessing the base station mentioned in this article is used to indicate that the UE establishes a communication connection with the base station, which will not be described in detail below.
  • Figure 1 is an exemplary flow chart of a process for a UE to access a base station from an idle state.
  • the process may include the following steps:
  • the UE sends a radio communication (Radio Resource Control, RRC) establishment request message to a base station (such as a base station such as gNodeB or gNB).
  • a radio communication Radio Resource Control, RRC
  • RRC Radio Resource Control
  • the RRC Setup Request (RRCSetupRequest) message is used to indicate that the UE requests to establish a communication connection with the base station.
  • the RRC establishment request message may carry the RRC establishment reason and UE identification.
  • the base station sends an RRC setup (RRCSetup) message to the UE.
  • RRC setup RRCSetup
  • the base station may respond to the RRC establishment request message in S101 and send an RRC establishment message to the UE.
  • the RRC establishment message may carry detailed information of signaling radio bearer (SRB) 1 resource configuration.
  • SRB signaling radio bearer
  • the UE sends an RRC setup complete (RRCSetupComplete) message to the base station.
  • RRCSetupComplete RRC setup complete
  • the UE can use the RRC establishment message to establish RRC. After the RRC establishment is successful, the UE sends an RRC establishment completion message to the base station (such as gNodeB).
  • the RRCSetupComplete message carries the Selected public land mobile network identity (selectedPLMN-Identity), Registered access and mobility management function (Registered access and mobility management function, registeredAMF) and single network slice selection support information list ( Single Network Slice Selection Assistance Information list, s-nssai-list).
  • the RRC establishment complete message is used to indicate that the UE has completed RRC establishment.
  • S104 The base station sends the initial UE message to the AMF.
  • the base station may send an Initial UE (Initial UE) message to the AMF.
  • Initial UE Initial UE
  • gNodeB allocates a dedicated radio access network UE NG Application Protocol identity (RAN-UE-NGAP-ID) to the UE, and gNodeB assigns it according to selectedPLMN-Identity, registeredAMF, s-nssai- list selects the AMF node, and then sends the non-access stratum (NAS) carried in the RRCSetupComplete message to the AMF through the Initial UE Message to trigger the establishment of the NG-C connection.
  • NAS is a functional layer between UE and core network equipment. The non-access layer supports the transmission of business and signaling messages between core network equipment and UE.
  • the gNodeB transparently transmits the NAS direct message between the UE and the AMF to complete the identity query, authentication, NAS security mode and registration process.
  • the AMF sends an initial context setup request (Initial Context Setup Request) message to the base station.
  • Initial Context Setup Request Initial Context Setup Request
  • the AMF may respond to the initial UE message and send an initial context establishment request message to the base station.
  • the AMF sends an initial context establishment request message to the gNodeB to start the initial context establishment process.
  • the base station sends a security mode command message to the UE.
  • the base station may send a security mode command (SecurityModeCommand) message to the UE in response to the initial context establishment request message from the AMF.
  • a security mode command SecurityModeCommand
  • the gNodeB sends a security mode command message to the UE to notify the UE to start the integrity protection and encryption process. After this, downstream encryption is initiated.
  • S107 The UE sends a security mode completion message to the base station.
  • the UE may respond to the security mode command message by sending a security mode completion (SecurityModeComplete) message to the base station.
  • a security mode completion SecurityModeComplete
  • the UE derives the key according to the integrity protection and encryption algorithm indicated by the SecurityModeCommand message, and then replies the security mode completion message to the gNodeB. Thereafter, upstream encryption is initiated.
  • the base station sends an RRC reconfiguration message to the UE.
  • the base station may respond to the security mode completion message by sending an RRC reconfiguration (RRCReconfiguration) message to the UE.
  • RRC reconfiguration RRCReconfiguration
  • the gNodeB sends an RRC reconfiguration message to the UE, instructing the establishment of SRB2 and data radio bearer (Data Radio Bearer, DRB).
  • DRB Data Radio Bearer
  • the UE may respond to the RRC reconfiguration message by sending an RRC reconfiguration complete (RRCReconfigurationComplete) message to the base station.
  • RRC reconfiguration complete RRCReconfigurationComplete
  • the UE After receiving the RRCReconfiguration message, the UE starts to establish SRB2 and DRB.
  • the UE performs the following operations according to the message instructions:
  • PDCP Packet Data Convergence Protocol
  • Radio Link Control Protocol Radio Link Control, RLC
  • DTCH dedicated Traffic Channel
  • the UE replies to the gNodeB with an RRCReconfigurationComplete message.
  • the base station sends an initial context establishment response message to the AMF.
  • the base station may respond to the initial context establishment request message from the AMF in S105 and send an initial context establishment response (Initial Context Setup Response) message to the AMF.
  • initial context establishment response Initial Context Setup Response
  • the initial context establishment response message is used to indicate that the initial context establishment is completed.
  • Figure 2 is a flow chart illustrating a process for a UE to recover from an inactive state to a connected state.
  • the process may include the following steps:
  • the UE is in RRC inactive state.
  • RRC Inactive state is a new RRC state added to 5G. The purpose is to enable the UE to quickly restore to the RRC connected state without re-accessing.
  • the UE in RRC Inactive state can suspend data processing.
  • the UE recovers from the RRC inactive state and sends an RRC connection resumption request message to the base station.
  • the RRC connection resumption request (RRCResumeRequest) message may include the inactive radio network temporary identifier (I-RNTI) assigned to the UE by the last serving base station.
  • I-RNTI the inactive radio network temporary identifier assigned to the UE by the last serving base station.
  • the last serving base station is the base station with which the UE has recently communicated and connected.
  • the last serving base station may be the base station that established a communication connection with the UE for the last time before the UE was in the RRC inactive state.
  • S202 The base station sends a Retrieve UE Context Request message to the last serving base station.
  • the base station can parse the identity of the last serving base station included in the I-RNTI, the base station can send a request message to the last serving base station to retrieve the context of the UE, so as to request the last serving base station to provide the context data of the UE.
  • the serving base station sends a response message to retrieve the UE context to the base station.
  • the final serving base station can respond to the request message to retrieve the UE context in S202, and carry the context data of the UE in the response message to retrieve the UE context (Retrieve UE Context Response) to request the UE for the current connection.
  • the base station provides context data for the UE.
  • the base station sends an RRC connection recovery message to the UE.
  • the base station may send an RRC connection recovery (RRCResume) message to the UE based on the context data of the UE to instruct the UE to restore the connection state from the inactive state.
  • RRCResume RRC connection recovery
  • the UE completes switching from the inactive state to the connected state according to the configuration information contained in the RRC connection recovery message.
  • S205 The UE sends an RRC recovery connection completion message to the base station.
  • the RRC recovery connection completion (RRCResumeComplete) message is used to indicate that the RRC recovery is completed.
  • the base station sends the forwarding address to the last serving base station.
  • the base station can provide the forwarding address (Xn-U Address Indication) to the last serving base station.
  • S207 The base station sends a path switching request message to the AMF.
  • the path switch request (Path Switch Request) message is used to instruct the path to be switched to this base station.
  • the AMF sends a path switch request response (Path Switch Request Response) message to the base station.
  • Path Switch Request Response Path Switch Request Response
  • S209 The base station sends a UE context release message to the last serving base station.
  • the UE Context Release message is used to instruct the last serving base station to release the UE context.
  • the base station may send a UE context release message to the last serving base station to trigger the last serving base station to release resources for the UE.
  • FIG. 3 is a flowchart illustrating an exemplary process of a UE switching a base station to which it accesses.
  • the UE is handed over from the source base station to the target base station due to movement.
  • NR handover technology does not require the participation of the 5G core network in the preparation and execution stages of NR internal air interface handover, that is, preparation messages are exchanged directly between base stations.
  • the process may include the following steps:
  • the source base station sends measurement control information to the UE.
  • the source base station delivers measurement control information to the UE through the RRC reconfiguration message.
  • the measurement control information may include, but is not limited to: measurement objects (same frequency/inter-frequency), measurement report configuration, measurement interval (GAP) configuration and other information.
  • the UE receives the measurement control information from the source base station and performs corresponding operations to obtain the measurement results.
  • S302 The UE sends a measurement result reporting message to the source base station.
  • the measurement result reporting message may include the measurement result.
  • the source base station makes a handover decision (Handover Decision) based on the measurement results.
  • the source base station can make a handover strategy and target cell/frequency decision based on the measurement results; and can make a decision based on the Reference Signal Receiving Power (RSRP), etc.
  • RSRP Reference Signal Receiving Power
  • S304 The source base station sends a handover request to the target base station.
  • the source base station determines to switch the base station to the UE according to the measurement results, it can determine the target base station to be switched to, and sends a handover request to the target base station, where the handover request may include information such as the target cell ID to which the UE is to be handed over.
  • S305 The target base station performs access control.
  • the target gNodeB after receiving the handover request (Handover Request), the target gNodeB performs admission control and allocates UE instances and transmission resources after allowing admission.
  • the target base station does not perform legality detection on the UE and directly allows access to the target base station.
  • the target base station sends a handover request confirmation message to the source base station.
  • the Handover Request Acknowledge message is used to indicate that handover of the base station is allowed. For example, if some protocol data unit (PDU) session switching fails, the switching request confirmation message needs to carry the failed PDU Session list.
  • PDU protocol data unit
  • the target base station prepares for handover and sends a handover request confirmation message to the source base station.
  • the handover request confirmation message may include an RRC reconfiguration message to be sent by the target base station to the UE.
  • RAN radio access network
  • RAN radio access network
  • the source base station may send the RRC reconfiguration message carried in S306 to the UE.
  • the RRC reconfiguration message may include information such as the target cell ID.
  • the source base station sends an Early Status Transfer (Early Status Transfer) message to the target base station,
  • the source base station sends an early status transfer message to the target base station and executes S308b. If the DRBs are not configured with DAPS, there is no need to perform S308a.
  • DAPS Dual Active Protocol Stack
  • the source base station sends a sequence number status transfer (SN Status Transfer) message to the target base station.
  • SN Status Transfer sequence number status transfer
  • the UE may send an RRC reconfiguration complete message to the target base station.
  • the target base station sends a handover success message to the source base station.
  • the source base station sends SN Status Transfer to the target base station again.
  • the target base station sends a path switching request to the AMF.
  • the AMF sends a path switching request confirmation message to the target base station.
  • the target base station sends a UE Context Release (UE Context Release) message to the source base station.
  • UE Context Release UE Context Release
  • the above is the process of switching the base station connected to the UE from the source base station to the target base station in the prior art.
  • this application provides a communication method and communication system.
  • FIG 4a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include base stations (including base station 1 and base station 2), core network equipment, and UEs (drones and mobile phones are shown here). It should be noted that in actual applications, the number of base stations and the number of UEs of various types of UEs can be one or more. The number of base stations, mobile phones, and drones in the communication system shown in Figure 4a is only an example of adaptability. This application does not limit this.
  • a UE can access at least one base station.
  • a base station can also access at least one UE.
  • the drone is connected to the base station 2
  • the mobile phone is connected to the base station 2.
  • communication connections can also be made between different base stations.
  • the core network equipment can be connected to at least one base station.
  • the core network equipment has established communication connections with base station 1 and base station 2 respectively.
  • this communication interface is called Uu interface in this application.
  • the core network equipment There are communication interfaces between the core network equipment and the base station 1 and the base station 2 respectively, so that the core network equipment can communicate with the base station 1 and the base station 1 respectively.
  • the communication interface is called N2 interface or NG interface in this application.
  • the two can communicate directly.
  • the direct communication means that the two base stations do not need to communicate through core network equipment or other equipment.
  • the communication interface between base station 1 and base station 2 may be called an Xn interface.
  • base station 1 If there is no communication interface between base station 1 and base station 1, they cannot communicate directly. In one possible way, two base stations without communication interfaces can communicate through core network equipment.
  • the above communication system can be used to support fourth generation (4G) access technology, such as long term evolution (LTE) access technology; alternatively, the communication system can also support fifth generation (5G) ) access technology, such as new radio (NR) access technology; or, the communication system can also be used to support third generation (3G) access technology, such as universal mobile telecommunications systems (universal mobile telecommunications) system, UMTS) access technology; or the communication system can also be used to support second generation (2G) access technology, such as global system for mobile communications (GSM) access technology; or, the The communication system can also be used in a communication system that supports multiple wireless technologies, such as LTE technology and NR technology.
  • 4G fourth generation
  • 5G fifth generation
  • NR new radio
  • 3G universal mobile telecommunications systems
  • UMTS universal mobile telecommunications
  • 2G global system for mobile communications
  • GSM global system for mobile communications
  • the communication system can also be applied to narrowband-internet of things (NB-IoT), enhanced data rate for GSM evolution (EDGE), and broadband code division multiple access systems.
  • NB-IoT narrowband-internet of things
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000 system
  • TD-SCDMA time division synchronous code division multiple access system
  • long-term evolution system long term evolution, LTE
  • future-oriented communication technology future-oriented communication technology.
  • the base stations involved in the embodiments of the present application may be the next generation base station (next generation NodeB, gNB) or the next generation evolved base station (next generation- evolved NodeB, ng-eNB).
  • gNB provides UE with new radio (NR) user plane functions and control plane functions
  • ng-eNB provides UE with evolved universal terrestrial wireless access (evolved universal terrestrial radio access (E-UTRA) user plane functions and control plane functions.
  • E-UTRA evolved universal terrestrial wireless access
  • gNB and ng-eNB are only names used to indicate base stations that support 5G network systems and do not have restrictive meanings.
  • the base station involved in each embodiment may also be a base transceiver station (BTS) in the GSM system or CDMA system, a base station (nodeB, NB) in the WCDMA system, or an evolved base station in the LTE system. (evolutional node B, eNB or eNodeB).
  • BTS base transceiver station
  • nodeB base station
  • NB base station
  • the base station involved in each embodiment may also be a relay station, an access point, a vehicle-mounted device, a wearable device, a network-side device in a network after 5G or a network device in a future evolved PLMN network, or a roadside site unit ( road site unit (RSU), etc.
  • base stations may also be collectively referred to as network devices.
  • the base station of this application can obtain the flight status information of the UAV, and obtain the restrictive information of the flight range of the UAV (used to limit the flight range of the UAV).
  • the base station can identify whether the UAV is in a no-fly zone or super-altitude based on the flight status information and the restrictive information to determine whether the UAV's flight status is legal.
  • the base station (for example, in a base station switching scenario, here is the target base station) may deny access to the UAV or reject the UAV's base station switching request. Therefore, when the UAV accesses or switches the base station, the base station can identify the legality of the UAV's flight status to reject the access of the illegal UAV or reject the base station switching request of the illegal UAV.
  • the base station of this application can issue restrictive information about the UAV's flight range to the UAV. Then when the UAV determines that the UAV is in a no-fly zone or super high altitude based on its own flight status and the received above-mentioned restrictive information, Then the UAV can request to establish a communication connection with the base station, so that the base station can promptly and effectively notify and supervise the UAV to avoid causing flight safety problems for the UAV.
  • FIG. 5 is an exemplary workflow diagram of a base station of the present application.
  • the base station may be base station 2 in Figure 4a
  • the first user equipment communicating with the base station may be the drone in Figure 4a.
  • the process may include the following steps:
  • the base station obtains the first flight status information of the first user equipment.
  • the first user equipment is a first type of user equipment that requests to establish a communication connection with the base station.
  • the first type may be a user equipment indicating a UAV type, for example, the first user equipment is the UAV shown in Figure 4a.
  • Examples of scenarios where the UAV requests to connect to the base station may include but are not limited to:
  • Scenario 1 UAV accesses the base station from idle state.
  • the UAV communicates with the base station 2 through the Uu interface from the idle state to request access to the base station 2.
  • the base station 2 can identify whether the UAV is legal to determine whether to access the UAV.
  • Scenario 2 The UAV accesses the base station from the inactive state, so that the UAV switches from the inactive state to the connected state.
  • the UAV communicates with the base station 2 through the Uu interface from the inactive state to request access to the base station 2.
  • the base station 2 can identify whether the UAV is legal to determine whether to access the UAV.
  • Scenario 3 The UAV's flight position changes, causing the UAV to switch the base station it is connected to.
  • the UAV was originally connected to base station 1 through the Uu interface. Due to the change in flight position, the UAV flew to the cell where base station 2 is located according to the flight direction of the dotted arrow, so that the base station that the UAV accessed A handover may occur causing the UAV to request a communication connection with base station 2.
  • base station 2 can communicate with base station 1 and the UAV respectively to identify whether the UAV is legal. Among them, the base station 2 communicates with the UAV through the Uu interface. Base station 2 can determine whether to switch the base station connected to the UAV from base station 1 to base station 2 based on the identification result of whether the UAV is legal.
  • the communication link between the UAV and the base station 1 based on the Uu interface will be disconnected as shown by the dotted double arrow.
  • the UAV and the base station 2 can communicate through the Uu interface.
  • Figure 4b and Figure 4c are partial schematic diagrams combined with Figure 4a respectively. Other similar parts are not shown. Please refer to Figure 4a and related descriptions, which will not be described again here.
  • the first flight status information in S101 is used to indicate the flight status of the UAV.
  • the first flight status information of the UAV may include but is not limited to at least one of the following: flight altitude information of the UAV, flight position information of the UAV, or maximum flight altitude information of the UAV.
  • the first flight status information may also include more unlisted flight status information, and this application does not limit the first flight status information.
  • the base station obtains the first flight range information of the first user equipment.
  • the first flight range information includes information used to limit the flight range of the first user equipment.
  • the first flight range information may include first authorization information of the first user equipment, wherein the first authorization information includes a first authorization information for the first user equipment. flight range.
  • the base station does not include a preset flight range.
  • the first authorization information may include, but is not limited to: information used to limit the flight altitude of the UAV, and/or information used to limit the flight position of the UAV.
  • the information used to limit the flight altitude of the UAV may be blacklist and/or whitelist information.
  • the UAV blacklist information and whitelist information may be restricted flight altitude information.
  • the UAV blacklist information may include no-fly height information above 50 meters and similar no-fly altitude information.
  • the UAV whitelist information may include similar permitted flight height information such as the height range of 40 to 50 meters. .
  • the information used to limit the flight position of the UAV may also be blacklist and/or whitelist information.
  • the granularity of the information limiting the flight position of the UAV may include but is not limited to at least one of the following: cell granularity, TA granularity, or actual geographical fence (such as an actual geographical range surrounded by longitude and latitude) granularity.
  • the UAV blacklist information may include that the UAV is prohibited from flying in Area 1
  • the UAV whitelist information may include that the UAV is allowed to fly in Area 2. This application does not limit the specific form of the UAV's first authorization information.
  • the base station when the base station identifies the legality of the UAV requesting access, it can identify whether the flight status of the UAV is legal based on the authorization information of the UAV, such as whether it is in a no-fly zone and/or the flight altitude exceeds, etc., for example, the UAV If the flight altitude of the UAV exceeds the allowed flight altitude range limited by the authorization information, or if the UAV's flight position is in the no-fly zone corresponding to the UAV, the base station can determine that the UAV's flight status is illegal and refuse to access the UAV.
  • the base station when it identifies the legality of the UAV, it can identify the legality of the UAV's flight status in combination with the flight range restricted by the UAV's authorization information, so that when different UAVs request to access the base station, the base station can combine
  • the authorization information of the UAV requesting access is used for specific legality identification, which can better match the flight requirements of the UAV. For example, after the base station determines that the UAV is illegal, the base station can notify the core network equipment to supervise the illegal UAV to avoid UAV flight safety problems.
  • the base station may be configured with a preset flight range, and then the first flight range information may include the base station's own preset flight range.
  • the preset flight range information may also include, but is not limited to: information for limiting the flight altitude of the UAV, and/or information for limiting the flight position of the UAV. .
  • both the UAV's authorization information and the preset flight range information in the base station can be used to limit the UAV's flight range.
  • the difference between the two is that the authorization information of a certain UAV is the authorization information of the specific UAV and is used to limit the flight altitude and/or flight position of a specific UAV.
  • the preset flight range information configured in the base station can be used to limit the flight altitude and/or flight position of some or all UAVs requesting access to the base station.
  • the example of the authorization information in the above implementation is similar. It can also be blacklist and/or whitelist information.
  • the granularity of the location information can include but is not limited to at least one of the following: cell granularity, TA granularity, or actual geofence (such as the actual geographical range surrounded by longitude and latitude), etc. granularity. I won’t go into details again, please refer to the detailed introduction about UAV authorization information.
  • the base station's own preconfigured blacklist information is: UAV1 is prohibited from flying in area 1 and area 3; UAV2 is prohibited from flying in area 2.
  • the base station's own preconfigured whitelist information is: UAV1 is allowed to fly in area 2; UAV2 is allowed to fly in area 1 and area 3. In this way, the base station can perform access control on specific UAVs.
  • the blacklist information preconfigured by the base station itself is any UAV requesting access, which is prohibited from flying in areas 1 and 3; the whitelist information is any UAV requesting access, and flying is allowed in area 2. .
  • the base station can limit the accessed UAV to a specific flight range.
  • the base station when the base station identifies the legality of the UAV requesting access, it can identify whether the UAV's flight status is legal based on the preset flight range information preconfigured by the base station itself, such as whether it is in a no-fly zone and/or flight altitude. Exceed, etc., for example, the flight height of the UAV exceeds the allowed flight height range limited by the preset flight range, or the UAV's flight position is in the no-fly zone corresponding to the preset flight range, the base station can determine that the UAV's flight status is illegal. , to deny access to the UAV. Then when the base station identifies the legality of the UAV, it does not need to obtain the authorization information of the UAV.
  • the preset flight range information preconfigured by the base station itself such as whether it is in a no-fly zone and/or flight altitude.
  • the base station can determine that the UAV's flight status is illegal. , to deny access to the UAV.
  • the first flight range information may include the preset flight range and first authorization information of the first user equipment.
  • the base station when the base station identifies the legality of the UAV requesting access, it can combine the UAV's authorization information and the preset flight range information preconfigured by the base station itself to identify whether the UAV's flight status is legal.
  • the base station determines that the UAV's flight status is illegal, it can deny access to the UAV.
  • the base station identifies the legality of the UAV, it can refer to the specific authorization information of the UAV and the preset range information applicable to the base station and common to multiple UAVs to make more flexible decisions to identify whether the UAV is legal. For example, after the base station determines that the UAV is illegal, the base station can notify the core network equipment to supervise the illegal UAV to avoid UAV flight safety problems.
  • the base station determines whether to establish a communication connection with the first user equipment based on the first flight status information and the first flight range information.
  • the flight range limited by the first flight range information may include the preset flight range and/or the first flight range.
  • the base station determines that the first flight status information exceeds the first flight range information based on the first flight status information and the first flight range information.
  • the base station may determine that the flight state of the UAV is illegal, and the base station may refuse to establish a communication connection with the first user equipment.
  • the flight range limited by the first flight range information includes the above-mentioned first flight range corresponding to the first authorization information of the UAV, and the preset flight range preconfigured by the base station.
  • the base station detects that the first flight status information (flight altitude and/or flight position) exceeds either of the first flight range and the preset flight range, the base station may determine that the The UAV's flight status is illegal.
  • the preset The priority of the flight range may be higher than the priority of the first flight range. Then the base station can preset the flight range to mainly determine whether the UAV is legal. When the base station detects that the first flight status information (flying altitude and/or flight position) exceeds the preset flight range, regardless of whether the first flight status information is Within the first flight range, the base station identifies the UAV as having an illegal flight status.
  • the base station can use the same policy for multiple UAVs requesting access to the base station to identify whether the UAV flight status is legal, which facilitates management and control of the UAVs.
  • this implementation method is more in line with the flight restrictions of the base station itself on the accessed UAV.
  • the base station determines that the first flight status information exceeds the flight range limited by the first flight range information based on the flight status information of the UAV requesting access and the first flight range information of the UAV. , the base station may determine that the flight status of the UAV is illegal, and the base station may refuse to establish a communication connection with the first user equipment. Therefore, no matter whether it is a UAV requesting access to the base station from the idle state or inactive state, or the UAV is to be switched from the source base station to the UAV of this base station, this base station can detect whether the flight status of the UAV is legal, and after determining When it is illegal, access to illegal UAVs can be denied.
  • the base station when the base station refuses to establish a communication connection with the first user equipment, the base station may send a fourth message to the core network device, where the fourth message Used to indicate that the flight status of the first user equipment (for example, the UAV requesting access) is illegal (for example, the flight altitude is illegal, and/or the flight position is illegal, etc.).
  • the fourth message Used to indicate that the flight status of the first user equipment (for example, the UAV requesting access) is illegal (for example, the flight altitude is illegal, and/or the flight position is illegal, etc.).
  • the base station when the base station recognizes that the flight status of the UAV requesting access is illegal, the base station may send a message indicating that the flight status of the UAV is illegal to the core network device.
  • the core network device can send a message to the UAS-NF indicating that the flight status of the UAV is illegal. In this way, the illegal UAV can be controlled to avoid flight safety problems of the illegal UAV.
  • the base station when the base station refuses to establish a communication connection with the first user equipment, it may send a message to the first user equipment for refusing to establish a communication connection with the first user equipment. Message to establish communication connection.
  • the message may be a release RRC connection message, which is a message used to instruct the UAV to release the RRC connection established with the base station.
  • the message may also be an RRC reject message, which is a message used to indicate the refusal to restore the RRC connection to the UAV.
  • RRC reject message is a message used to indicate the refusal to restore the RRC connection to the UAV.
  • the base station when the base station recognizes that the flight status of the UAV requesting access is illegal, it can send a connection rejection message to the UAV to avoid access to the illegal UAV.
  • the base station determines that the first flight status information is in the first flight range based on the first flight status information and the first flight range information.
  • the base station can determine that the flight status of the UAV is legal, and then the base station can establish a communication connection with the first user equipment.
  • the base station when the base station establishes a communication connection with the UAV, the base station can send a corresponding message to the UAV and/or the core network device so that the UAV establishes a communication connection with the base station. There is no limit on the messages sent by the base station.
  • the base station when the base station performs S101 to obtain the first flight status information of the first user equipment, the base station may send a first message to the first user equipment. , wherein the first message is used to indicate that the first network device supports communication with the first type of user equipment; the base station receives the second message from the first user equipment.
  • the second message includes the first flight status information.
  • the second message is a response message to the first message.
  • the first message may be a system broadcast message (System Information Block, SIB).
  • SIB System Information Block
  • the base station can periodically send an SIB to each UE within the base station's signal coverage, and the SIB can carry the base station's capability information. This capability information indicates that the base station supports communication with UAV-type UEs.
  • the first message may also be an existing message sent by the base station to the UAV during the process of the UAV accessing the base station and related to the UAV accessing the base station.
  • the base station may add a new message indicating the capability information of the base station to the existing message. field to carry the above capability information in the newly added field.
  • the first message may be an RRC reconfiguration message, which is not limited in this application.
  • the second message may be an existing message sent by the UAV to the base station during the process of the UAV accessing the base station.
  • the base station may add a new message indicating the flight status of the UAV to the existing message. field (such as a status information field) to carry the flight status of the UAV in the newly added status information field to implement reporting of the UAV's flight status.
  • the second message may be an RRC establishment request message, an RRC establishment completion message, or an RRC reconfiguration completion message.
  • the second message may also be an RRC connection restoration completion message, or an RRC connection restoration request message, or the like. This application does not impose specific restrictions on the second message.
  • the second message may also be a new message used by the UAV to report flight status during the process of the UAV accessing the base station, such as the first status reporting message involved in the embodiment of Figure 6 below, Or the second status reporting message, etc.
  • the base station when it obtains the flight status information of the UAV, it can send a first message to the UAV.
  • the first message can carry the capability information of the base station.
  • the capability information of the base station can include base station support and UAV type.
  • UE communicates.
  • the UAV can respond to the capability information, and the second message carries the flight status of the UAV, so as to report the flight status of the UAV to the base station through the second message.
  • the base station realizes the acquisition of the flight status of the UAV, so as to promptly identify whether the flight status of the UAV is legal.
  • Scenario 1 UAV accesses the base station from idle state.
  • the UAV communicates with the base station 2 through the Uu interface from the idle state to request access to the base station 2.
  • the base station 2 can identify whether the UAV is legal to determine whether to access the UAV.
  • FIG. 6 is an exemplary illustration of the process of the communication method of the communication system of the present application in Scenario 1. The process may include the following steps:
  • S400 The base station sends a system broadcast message to each UAV.
  • the system broadcast message may carry information on whether the base station supports communication with UAV-type UEs.
  • the UAV sends an RRC establishment request message to the base station.
  • the UAV may respond to the system broadcast message in S400.
  • Capability information of the base station and carries its own flight status information in the RRC establishment request message to report flight status information during the process of requesting access to the base station.
  • S401 is similar to S101 in Figure 1. Please refer to the above for details and will not be described again here.
  • the base station sends an RRC establishment message to the UAV.
  • the RRC establishment message may carry information on whether the base station supports communication with UAV-type UEs.
  • the UAV in this embodiment can respond to the capability information of the base station and report the flight status, which facilitates the base station to obtain the UAV's Flight status.
  • S402 the implementation details of S402 are similar to S102 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV sends an RRC establishment completion message to the base station.
  • the UAV may respond to the base station's capability information (for example, the capability information carried by the system broadcast message in S400, or the capability information carried by the RRC setup message in S402), and carry its own flight information in the RRC setup complete message. Status information to report flight status information during the process of requesting access to the base station.
  • the base station's capability information for example, the capability information carried by the system broadcast message in S400, or the capability information carried by the RRC setup message in S402
  • Status information to report flight status information during the process of requesting access to the base station.
  • S403 are similar to S103 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV sends a first status report (State Report) message to the base station.
  • State Report first status report
  • the UAV when the system broadcast message in S400 includes the capability information of the base station, and the UAV does not report the flight status information through the message shown in S401 or S403, the UAV also In response to the system broadcast message, flight status information can be reported separately using a new signaling, for example First status reporting message as described here.
  • the UAV can also report the same flight status information multiple times through multiple messages to ensure that the base station can reliably receive the flight status information.
  • the UAV can report the same flight status information through S401, S403, and S404 respectively, and this application does not limit this.
  • S405 The base station sends the initial UE message to the AMF.
  • S405 are similar to S104 in Figure 1. Please refer to the above for details and will not be described again here.
  • the AMF sends an initial context establishment request message to the base station.
  • the initial context establishment request message may include authorization information of at least one UAV.
  • the at least one UAV here includes the UAV in FIG. 6 .
  • the core network device may carry the authorization information of the UAV in the initial context establishment request message based on the identity of the UAV carried in the initial UE message in S405, and feed it back to the base station.
  • the core network device may also send the respective authorization information of multiple UAVs to the base station through the initial context establishment request message.
  • S406 other implementation details of S406 are similar to S105 in Figure 1. Please refer to the above for details and will not be described again here.
  • the base station can obtain the authorization information of the UAV. If the SIB described in S400 carries the capability information of the base station, the base station can easily obtain the flight status information of the UAV through at least one of the messages in S401, S403, and S404 sent by the UAV. Then the base station can perform S407 based on the authorization information of the UAV and the status information of the UAV.
  • the base station determines whether to access the UAV.
  • the base station may determine whether to establish a communication connection with the UAV based on the authorization information of the UAV obtained from the core network device and the status information of the UAV reported by the UAV.
  • the base station determines to deny access to the UAV. Then when the base station refuses to access the UAV, the base station can execute S408 and S409, thereby triggering the AMF to execute S410 and ending the process.
  • the base station may send a release RRC connection message to the UAV.
  • the UAV may release the established RRC connection.
  • the UAV may release the RRC connection, thereby switching the UAV from the connected state to the idle state.
  • the base station may notify the AMF that the flight status of the UAV is illegal.
  • the base station may send a notification message to the AMF, and the message may carry information indicating that the flight status of the UAV is illegal.
  • the notification message is a new message generated by the base station and is used to notify the flight status of the UAV. illegal.
  • the base station may also add a field regarding whether the flight status of the UAV is legal in the existing message sent to the AMF, so as to notify the AMF that the flight status of the UAV is illegal through the existing message.
  • This application does not impose specific restrictions on the notification message.
  • the AMF can notify the Unmanned Aerial System Network Function (UAS-NF) that the flight status of the UAV is illegal.
  • UAS-NF Unmanned Aerial System Network Function
  • the AMF may send a notification message to the UAS-NF.
  • the message may carry information indicating that the flight status of the UAV is illegal.
  • the notification message is a newly generated message by the AMF and is used to notify the UAV that the flight status is illegal.
  • the AMF may also add a field regarding whether the UAV's flight status is legal in the existing message sent to the UAS-NF, so as to notify the UAS-NF that the UAV's flight status is illegal through the existing message.
  • This application does not impose specific restrictions on the notification message.
  • the base station determines that the flight status of the UAV is legal, and then determines to access the UAV. Then the base station can continue to execute S411 according to the UE access process.
  • the UAV cannot report the flight status in any of the messages in S401, S403, and S404, so there is no need to perform S407 to S409.
  • the base station can receive S406 After the initial context establishment request message in , S411 is directly executed.
  • the base station sends a safe mode command message to the UAV.
  • the base station may carry the above information, such as the base station's capability information, in the security mode command message.
  • S411 the implementation details of S411 are similar to S106 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV sends a safe mode completion message to the base station.
  • the UAV may respond to the base station's capability information sent by the base station (which may be carried in the SIB, or may be carried in the security mode command message.
  • This application does not limit the information carrier of the base station's capability information.
  • the safe mode completion message carries flight status information for reporting of flight status.
  • S412 are similar to S107 in Figure 1. Please refer to the above for details and will not be described again here.
  • the base station sends an RRC reconfiguration message to the UAV.
  • the base station may carry the above information, such as the base station's capability information, in the RRC reconfiguration message.
  • S413 are similar to S108 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV sends an RRC reconfiguration completion message to the base station.
  • the UAV may respond to the base station's capability information sent by the base station (which may be carried in the SIB, or may be carried in the security mode command message.
  • This application does not limit the information carrier of the base station's capability information.
  • the RRC reconfiguration completion message carries flight status information for reporting flight status.
  • the UAV may respond to the base station's capability information in the RRC reconfiguration message and carry the flight status information in the RRC reconfiguration complete message to report the status information.
  • S414 are similar to S109 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV sends a second status report (State Report) message to the base station.
  • State Report second status report
  • the UAV can separately report the flight status information using a new signaling, such as the second one described here. Status reporting message.
  • the UAV can also report the same flight status information multiple times through multiple messages to ensure that the base station can reliably receive the flight status information.
  • the UAV does not report the same flight status information through S401, S403, and S404, thus not triggering the execution of S407 to S410.
  • the UAV can report the flight status through at least one message in S412, S414, and S415. This application does not Make restrictions.
  • the base station determines whether to access the UAV.
  • the base station determines that the flight status of the UAV is illegal, and then determines to deny access to the UAV. Then when the base station refuses to access the UAV, the base station can execute S417 and S418, thereby triggering the AMF to execute S419 and ending the process.
  • the base station may send a release RRC connection message to the UAV.
  • the base station may notify the AMF that the flight status of the UAV is illegal.
  • the AMF may notify the UAS-NF that the flight status of the UAV is illegal.
  • S420 The base station sends an initial context establishment response message to the AMF.
  • S420 are similar to S110 in Figure 1. Please refer to the above for details and will not be described again here.
  • the UAV After the base station executes S407, the UAV does not need to report flight status information in S412 and S414, and the above method does not need to execute S415, S416, S417, S418, and S419, but transfers from S414 to S420.
  • the base station indicates that the base station supports communication with UAV type UEs in a system broadcast message or an RRC reconfiguration message or an RRC setup message. Then when the UAV receives any of the above messages, it can actively report its flight altitude/or flight position information to the base station in response to the message. The way to report the flight status can be to add a new message to the existing message sent by the UAV to the base station. Flight status field to add flight status, and you can also add a message indicating flight status. The base station then obtains the authorization information of the UAV through the core network equipment.
  • the base station can compare the UAV's authorization information and/or the base station's own preconfigured restrictive information about the flight range with the flight status information reported by the UAV, thereby realizing the identification function of UAVs with illegal flight status to deny access.
  • Illegal UAV Moreover, when the UAV's flight status is illegal, the base station can notify the core network equipment to control the UAV, thereby realizing control of the UAV requesting access.
  • this application provides a communication system to solve the problem that the existing technology cannot trigger the illegal UAV to request to establish a communication connection with the base station. and communication methods to solve the above technical problems, which will be described in detail below in conjunction with Figure 7.
  • the process may include the following steps:
  • the base station may obtain authorization information of at least one UAV from the core network device.
  • the at least one UAV here may be part or all of the UAVs residing in the cell of the base station.
  • the at least one UAV includes the UAV in the idle state or inactive state shown in FIG. 7 that resides in the base station cell.
  • S400 The base station sends a system broadcast message to each UAV.
  • the system broadcast message may carry information indicating a no-fly zone.
  • the system broadcast message may carry information about the base station's preset flight range.
  • the no-fly zone includes the preset flight range.
  • the system broadcast message may carry the respective authorization information of at least one UAV (for example, multiple UAVs) obtained by the base station from the core network device in S4001.
  • the no-fly zone includes multiple UAVs. their respective authorization information.
  • the no-fly zone may include the preset flight range and respective authorization information of the multiple UAVs.
  • system broadcast message and the system broadcast message in Figure 6 can be the same message. Then the system broadcast message sent by the base station to each UAV can not only carry the capability information of the base station, but also carry the no-fly zone for the UAV. Information.
  • the message carrying the no-fly zone information may be different from the message carrying the base station's capability information, and this application does not limit this.
  • the UAV residing in the cell of the base station can receive the system broadcast message in S400. For example, if the UAV is in the idle state or inactive state, then the UAV can receive the system broadcast message in S400.
  • the information carried in the no-fly zone identifies the information corresponding to the no-fly zone of the UAV, including, for example, the authorization information of the UAV and the preset flight range of the base station.
  • the UAV is determined to be in the no-fly zone corresponding to the UAV.
  • the UAV may respond to the system broadcast message in S400 to obtain its own flight status; and compare its own flight status with the information corresponding to the no-fly zone of the UAV. If the flight status (such as flying If the flight status (such as flight altitude or flight position) is not in the no-fly zone of the UAV, it can be determined that the flight status of the UAV is illegal; if the flight status (such as flight altitude or flight position) is not in the no-fly zone of the UAV, then the flight status of the UAV can be determined Status is legal.
  • the UAV sends an RRC establishment request message to the base station.
  • implementation details of S401 in Figure 7 may be the same as the implementation details of S101 in Figure 1 in the prior art, and will not be described again here.
  • S401 in Figure 7 may be the same as S401 in Figure 6, and will not be described again here.
  • the base station can send information including a no-fly zone used to limit the flight range of at least one UAV to the UAV type UE, then when the UAV in the idle state detects that its flight status is in the no-fly zone , the UAV can be triggered to send an RRC establishment request message to the base station to request to establish a communication connection with the base station.
  • the process shown in Figure 6 can be followed.
  • the base station of this application sends the no-fly zone information to the UAV to trigger the illegal UAV request in the idle state to establish a connection with the base station.
  • the base station can perform access control on the UAV requesting access.
  • the specific process can be referred to the description of the embodiment in Figure 6.
  • the UAV can report its own flight status according to the method in the embodiment of Figure 6.
  • the base station can perform access control on the UAV based on the UAV's authorization information obtained from the core network equipment and the base station's preset flight range in conjunction with the UAV's flight status, thereby informing the AMF that the UAV's flight status is illegal.
  • UAS-NF the flight status of the UAV is illegal, in order to achieve timely and effective notification supervision of illegal UAVs and reduce the flight accident rate of the UAV.
  • the UAV sends an RRC connection recovery request message to the base station.
  • implementation details of S501 in Figure 7 may be the same as the implementation details of S201 in Figure 2 in the prior art, and will not be described again here.
  • S501 in Figure 7 may be the same as S501 in Figure 8 and will not be described again here.
  • the base station may send information including a no-fly zone used to limit the flight range of at least one UAV to the UAV type UE. Then, when the UAV in the inactive state detects that its own flight status is in the no-fly zone zone, the UAV can be triggered to send an RRC connection resumption request message to the base station to request resumption of communication connection with the base station. It can be understood that the UAV's request to restore the communication connection with the base station is also a way for the UAV to request to establish a communication connection with the base station.
  • the process shown in Figure 8 can be followed.
  • the base station of this application sends no-fly zone information to the UAV to trigger an inactive illegal UAV request to establish a connection with the base station.
  • the base station can perform access control on the inactive UAV requesting access.
  • the UAV can report its flight status according to the method in the embodiment of Figure 8, and the base station can combine the flight status of the UAV based on the authorization information of the UAV obtained from the core network device and the preset flight range of the base station.
  • the access control performed on the UAV thereby informing the AMF that the flight status of the UAV is illegal, and the AMF notifies the UAS-NF that the flight status of the UAV is illegal to achieve timely and effective notification supervision of illegal UAVs and reduce the flight status of the UAV.
  • Accident rate The access control performed on the UAV, thereby informing the AMF that the flight status of the UAV is illegal, and the AMF notifies the UAS-NF that the flight status of the UAV is illegal to achieve timely and effective notification supervision of illegal UAVs and reduce the flight status of the UAV.
  • the base station when the UAV is in the idle state or inactive state and resides in the cell of the base station, the base station carries flight range restriction information (such as restricted altitude or no-fly zone location, etc.) in the system broadcast message. ), UAV Combined with the system broadcast message, when the UAV detects that its flight altitude is higher than the restricted altitude or the flight position is in a no-fly zone, the UAV can be triggered to request to establish a connection with the base station to request to enter the connection state.
  • flight range restriction information such as restricted altitude or no-fly zone location, etc.
  • the base station when the UAV is not connected to the base station, the base station cannot determine whether the flight status of the UAV is illegal, which is not conducive to the flight supervision of the UAV.
  • the base station in order to realize the supervision of the flight status of the UAV, the base station can carry the restriction information of the UAV's flight range such as the no-fly zone in the system broadcast message. Then, when the UAV is not connected to the base station (for example, in idle state), When the flight status is illegal (or inactive state), the method of the present application can trigger the UAV to send a message requesting to establish a communication connection with the base station.
  • the UAV when the UAV enters the connected state, it can report its flight altitude or location information to the base station.
  • the base station obtains the authorization information of the UAV through the core network equipment, and combines the authorization information and the base station's own preset flight range. , and by comparing it with the flight status information reported by the UAV, you can determine whether the UAV's flight status is legal.
  • the base station After the base station detects that the flight status of the UAV is illegal, it can refuse to access the UAV and promptly notify the core network equipment to control the UAV, so as to control the illegal UAV in the idle state or inactive state.
  • Scenario 2 The UAV accesses the base station from the inactive state, so that the UAV switches from the inactive state to the connected state.
  • the UAV communicates with the base station 2 through the Uu interface from the inactive state to request access to the base station 2.
  • the base station 2 can identify whether the flight status of the UAV is legal to determine whether to access the base station. UAV.
  • Figure 8 illustrates an exemplary process of managing and controlling a UAV in an inactive state when the UAV is accessing a base station.
  • FIG. 8 is an exemplary illustration of the communication method process of the communication system of the present application in Scenario 2.
  • the process may include the following steps:
  • the UAV sends an RRC connection recovery request message to the base station.
  • the system broadcast message sent by the base station in S400 may include not only the information of the no-fly zone, but also the capability information of the base station.
  • the UAV can carry the UAV's flight status information (such as flight altitude, and/or flight position information, and/or maximum flight altitude) in the RRC connection restoration request message. etc.) to report the flight status to the base station in response to the system broadcast message.
  • flight status information such as flight altitude, and/or flight position information, and/or maximum flight altitude
  • S501 is similar to S201 in Figure 2 of the prior art, and will not be described again here.
  • the base station sends a request message to retrieve the UE context to the last serving base station of the UAV.
  • the last serving base station is the base station that served the UAV for the last time before the UAV was in the RRC inactive state.
  • S502 is similar to S202 in Figure 2 of the prior art, and will not be described again here.
  • the base station receives a response message for retrieving the UE context from the last serving base station.
  • the response message may include context information of the UAV.
  • the response message may include UAV authorization information.
  • the response message does not include the authorization information of the UAV. If the last serving base station supports communication with a UAV type UE, the response message may include authorization information of the UAV.
  • S503 is similar to S203 in Figure 2 of the prior art, and will not be described again here.
  • the UAV performs the flight through the RRC connection restoration request message in S501. If the status is reported, and the last serving base station supports communication with the UAV type UE, the base station can obtain the authorization information of the UAV from the last serving base station through S503 for use in the determination of S505. In this implementation, there is no need to execute S504. After S503, S505 is executed.
  • the base station when the inactive UAV requests to resume connection with the base station, if the UAV reports flight status to the base station, and the last serving base station that communicated before the UAV was in the inactive state, in order to support the connection with the UAV type of base station that the UE communicates with, the base station can obtain the authorization information of the UAV from the last serving base station, which is conducive to using the authorization information and/or the base station's own preconfigured restrictive information to determine the legality of the flight status. Identification is performed to determine whether the UAV's flight status is legal. During this process, the base station does not need to request the authorization information of the UAV from the core network equipment. In the process of requesting access to the base station from the inactive UAV to restore the connected state, the base station can quickly check the legality of the UAV's flight status. Detect and improve the decision-making efficiency of whether to access the UAV.
  • the UAV reports the flight status through the RRC connection restoration request message in S501, and the final serving base station does not support communication with the UAV type UE, then the base station can execute after S503 S504 is to obtain the authorization information of the UAV from the core network device for use in the determination of S505.
  • the inactive UAV when the inactive UAV requests to resume connection with the base station, if the UAV reports flight status to the base station, and the last serving base station that communicated before the UAV was in the inactive state, it does not support the connection with the unmanned aircraft. If the base station communicates with an aircraft-type UE, the base station can obtain the authorization information of the UAV from the core network device, so as to facilitate the use of the authorization information and/or the base station's own preconfigured restrictive information to determine the flight status. Legality identification to determine whether the flight status of the UAV is legal.
  • the base station in the embodiment of the present application can still use the authorization information of the UAV obtained from the core network device to deactivate the UAV.
  • the legality of the flight status of the UAV that dynamically requests access to the base station is detected, so that the base station of this application can cover more application scenarios and improve the reliability of the legality detection of the UAV's flight status.
  • the UAV does not report the flight status through the RRC connection restoration request message in S501, then regardless of whether the last serving base station is a base station that supports communication with UAV-type UEs (in other words, regardless of whether S503 (Whether the response message for retrieving the UE context carries the authorization information of the UAV), there is no need to execute S504, S505, S506b, S507 and S508, but directly execute S506a.
  • the base station when the UAV does not report the flight status in the RRC connection restoration request message, the base station cannot identify whether the UAV's flight status is legal. Therefore, there is no need to obtain the UAV's flight status from the core network device. authorization information, and to determine whether to access the UAV, the RRC connection of the UAV can be restored through S506a in response to the RRC connection restoration request message in S501, so that the UAV is in a connected state. After the UAV reports its flight status, the legality of the UAV's flight status will be determined to determine whether to access the UAV.
  • the base station obtains the UAV authorization information (Subscription Data) from the AMF.
  • what the base station obtains from the AMF may be the authorization information of one or more UAVs, and the authorization information may include the authorization information of the UAV requesting to restore the connection in Figure 8.
  • This application does not specify the number of corresponding UAVs in S504. Make restrictions.
  • the specific manner in which the base station obtains the authorization information of the UAV from the core network device may adopt any method in known technologies, and this application does not limit this.
  • the base station determines whether to access the UAV.
  • the base station may combine the UAV's authorization information to determine whether the flight status exceeds the restricted flight range.
  • the base station refuses to access the UAV; otherwise, the base station allows access to the UAV.
  • the base station can also combine the base station's own preset flight range to determine whether the flight status exceeds the restricted flight range. For specific decision-making strategies, please refer to the relevant description of S103 in the embodiment of FIG. 5 and will not be described again here.
  • the base station determines that the flight status of the UAV is legal, determines that the UAV can be accessed, and then proceeds to S506a.
  • the base station determines that the flight status of the UAV is illegal, and the base station may refuse to access the UAV, and then proceeds to S506b.
  • the base station sends an RRC rejection message to the UAV.
  • RRC reject (RRRCeject) message may refer to the above, and will not be described again here.
  • the RRC rejection message may include a preset duration set by the base station.
  • the UAV After receiving the RRC rejection message, the UAV will no longer send the RRC connection recovery request message described in S501 within the preset time period, so that the UAV will no longer access the base station within a certain time period. It can avoid the base station's multiple responses to the access request of the illegal UAV in flight status, reduce the signaling overhead in the process of the base station responding to the access request of the illegal UAV, and help improve the performance of the base station.
  • the base station notifies the AMF that the flight status of the UAV is illegal.
  • the base station may execute S507.
  • the AMF notifies the UAS-NF that the flight status of the UAV is illegal.
  • the base station when an inactive UAV requests to establish a connection with the base station, can combine the authorization information of the UAV (obtained from the last serving base station of the UAV, or obtained from the core network equipment), and/or the base station It uses its own preset flight range to identify whether the flight status reported by the UAV is super high or in a no-fly zone.
  • the base station uses its own preset flight range to identify whether the flight status reported by the UAV is super high or in a no-fly zone.
  • the flight altitude of the UAV is too high or it is in a no-fly zone
  • the connection with the UAV can be refused to be restored, and the core network equipment is notified to control the illegal UAV, which can realize the deactivation state.
  • the legality of the UAV's flight status is detected to facilitate the supervision of the UAV's flight status.
  • S506a The base station sends an RRC connection recovery (RRCResume) message to the UAV.
  • RRCResume RRC connection recovery
  • the base station when the base station determines that the flight status of the UAV is legal through the decision-making process S505, or the base station does not obtain the flight status reported by the UAV, the base station can send an RRC recovery connection message to the UAV to change the UAV from the inactive state. Return to connected state.
  • the UAV after the UAV responds to the RRC recovery connection message in S506a and restores the RRC connection, the UAV establishes a communication connection with the base station and is in the connected state. Then the UAV can send an RRC restoration connection completion message to the base station.
  • the RRC restoration connection completion message may carry flight status information of the UAV.
  • the base station if the UAV fails to report flight status through S501, the base station is unable to make an access decision through S505 and directly accesses the UAV. Then the UAV can report its own flight status information in the RRC restoration connection completion message here, so that the base station can detect the legality of the UAV's flight status and determine whether to access the UAV.
  • the flight status information reported by the UAV may be the UAV's response information to the base station capability information carried in the SIB issued by the base station.
  • S509 are similar to S205 in Figure 2 of the prior art, and will not be described again here.
  • the UAV reports the flight status through the RRC connection restoration request message in S509, and the last serving base station supports communication with the UAV type UE, then the base station can use S503 to report the flight status from the last serving base station to the UAV.
  • the base station obtains the authorization information of the UAV for use in the determination of S511. In this implementation, there is no need to execute the following S510. After S509, the process goes to S511.
  • the UAV reports the flight status through the RRC connection restoration request message in S509, and the last serving base station does not support communication with the UAV type UE, then the base station can execute after S509 S510 obtains the authorization information of the UAV from the core network device for use in the determination of S511.
  • the UAV has reported its flight status to the base station through S501, and the scenario in which the UAV executes S509 is that the base station determines in S505 that the UAV's flight status is legal and can access the UAV, thereby passing S506a Go to execution S509. Then the UAV does not need to report the flight status through the RRC connection restoration request message in S509. Then, if the flight status information is not included in S509, after S509, the base station proceeds to execute the following S206. In other words, the base station only needs to execute the access decision through S505 or S511 without repeated judgment. In this way, the base station can be prevented from testing the legality of the flight status of the UAV multiple times during the response to an access request of the same UAV, which can reduce unnecessary signaling overhead.
  • the base station obtains UAV authorization information from the AMF.
  • the base station determines whether to access the UAV.
  • the base station when the base station detects the legality of the UAV's flight status through S511, S506a has been executed, indicating that the UAV has been connected to the UAV without passing the legality judgment. Then after this S511 detection, if it is determined that the flight status of the UAV is illegal, the base station can refuse to connect with the UAV, which may include executing S512 and S513 to disconnect the established connection between the UAV and the base station and notify Core network equipment is used to control the illegal UAV.
  • the base station sends a release RRC connection message to the UAV.
  • release RRC connection message is specifically referred to the above, and will not be described again here.
  • the base station notifies the AMF that the flight status of the UAV is illegal.
  • the AMF notifies the UAS-NF that the flight status of the UAV is illegal.
  • the base station when the base station detects the legality of the UAV's flight status through S511, S506a has been executed, indicating that the UAV has been connected to the UAV without passing the legality judgment. Then after this S511 detection, if it is determined that the UAV's flight status is legal, the base station can connect to the UAV, which may include executing S206 to S209.
  • the base station sends the forwarding address to the last serving base station.
  • S207 The base station sends a path switching request message to the AMF.
  • S208 The AMF sends a response message to the path switching request to the base station.
  • S209 The base station sends a UE context release message to the last serving base station.
  • the message about the UAV reporting flight status is not limited to the example of Figure 8.
  • the UAV can also independently report the flight status using a new signaling method. This application does not Make restrictions.
  • the UAV when the UAV in the inactive state requests to access the base station, the UAV can report the flight status in response to the base station's capability information carried in the base station's system broadcast message, for example, when the RRC restores the connection. message, or reported in the RRC restoration connection completion message.
  • the base station obtains the authorization information of the UAV
  • the base station can obtain the context message of the UAV from the message reported by the last serving base station. , obtain the authorization information of the UAV.
  • the base station can obtain the authorization information of the UAV from the core network device. In this way, the base station can combine its own preconfigured restrictive information (such as a preset flight range) and/or the UAV's authorization information to identify whether the UAV's flight altitude is super high or its flight position is in a no-fly zone, to determine whether the UAV's flight altitude is too high or its flight position is in a no-fly zone. Whether the UAV's flight status is legal.
  • preconfigured restrictive information such as a preset flight range
  • Scenario 3 The UAV's flight position changes, causing the UAV to switch the base station it is connected to.
  • the UAV was originally connected to the source base station (here, base station 1) through the Uu interface. Due to the change in flight position, the UAV followed the flight direction of the dotted arrow and flew to the target base station (here, base station 1). 2)
  • the cell where the UAV is located allows the base station accessed by the UAV to be switched, allowing the UAV to communicate with the base station 2.
  • the base station 1 can determine to communicate with the UAV
  • the connected base station is switched from base station 1 to base station 2.
  • the target base station to which the UAV is to be switched can be determined by the source base station.
  • the target base station can check the validity of the flight status of the UAV to determine whether to access the UAV. For a UAV whose flight status is illegal on the target base station side, the target base station may refuse to switch the base station for the UAV. For a UAV whose flight status is legal on the target base station side, the target base station can switch the base station connected to the UAV from the source base station to the target base station.
  • scene 3 it can be divided into scene 3a and scene 3b.
  • both the source base station and the target base station support communication with UAV-type UEs.
  • the source base station does not support communication with UAV-type UEs
  • the target base station supports communication with UAV-type UEs.
  • scenario 3a combines scenario 3b respectively to describe the specific process for the target base station to detect the legality of the accessed UAV and perform control in the base station switching scenario.
  • FIG. 9 is an exemplary illustration of the process of the communication method of the communication system of the present application under scenario 3a.
  • the process may include the following steps:
  • the source base station sends measurement control information to the UAV.
  • the source base station may deliver measurement control (Measurement Control) information to the UE through an RRC reconfiguration message.
  • the RRC reconfiguration message may include information indicating that the UAV reports flight status.
  • the UAV sends a measurement report (Measurement Reports) message to the base station.
  • the measurement results may include flight status information of the UAV.
  • the source base station makes a handover decision based on the measurement results.
  • the source base station may determine the target cell of the UAV.
  • the source base station sends a handover request to the target base station.
  • the switching request may include the authorization information of the UAV and the flight status information of the UAV.
  • the flight status information is the flight status information reported by the UAV in S602.
  • the flight status information of the UAV obtained by the target base station from the source base station is the latest flight status information of the UAV, which facilitates accurate base station switching control decisions.
  • the authorization information of the UAV carried by the source base station in the handover request may be the authorization information of the UAV obtained by the source base station from the AMF when the UAV accesses the source base station.
  • the base station can obtain the authorization information of the UAV.
  • the handover request may include the ID of the target cell.
  • both the source base station and the target base station support communication with the UAV.
  • the target base station can obtain the authorization information and flight status information of the UAV to be accessed from the source base station, and optionally, combine the target base station's own preset flight range to make the decision. Whether the UAV's flight status is legal at the target base station. When it is determined that the flight status of the UAV is legal at the target base station, the target base station can access the UAV, otherwise the handover request can be ignored.
  • the UAV's flight status at the source base station is legal, but the UAV's flight status at the target base station may be illegal.
  • the target base station of this application can combine the authorization information of the UAV and/or its own preset flight range to decide whether the flight status of the UAV is legal at the target base station, which can avoid the situation where it is legal at the source base station but illegal at the target base station.
  • the UAV switches from the source base station to the communication connection with the target base station.
  • S605 The target base station performs access control.
  • the target base station can obtain the UAV's authorization information and its flight status from the source base station.
  • the target base station may include a preset flight range.
  • the target base station may identify whether the flight status of the UAV is legal based on the authorization information of the UAV, and/or the preset flight range of the target base station, and/or the coverage area of the target cell (optional).
  • the target base station can access the UAV to switch the UAV from the source base station to the target base station for connection, so that the communication method can include S606 to S609.
  • the target base station can ignore the handover request in S604 to refuse access to the UAV to avoid switching the UAV with an illegal flight status at the target base station to the target base station. connect.
  • this application does not limit the method of denying access to the UAV, and other existing or new denial methods can also be used.
  • the target base station does not need to send a message indicating that the UAV is illegal to the AMF for UAV control.
  • the specific strategy used by the target base station to identify the UAV's flight status as illegal may include but is not limited to:
  • Strategy 2 If the preset flight range does not completely coincide with the flight range restricted by the UAV's authorization information, and/or, if the preset flight range does not completely coincide with the flight range restricted by the target cell. Then the target base station can make a judgment based on the preset flight range. When the UAV's flight status exceeds the preset flight range, the target base station can identify the UAV's flight status as illegal; when the UAV's flight status is within the preset flight range within the time, the target base station can recognize the flight status of the UAV as legal.
  • the target base station does not include the preset flight range.
  • the target base station can send the UAV to the target base station.
  • the flight status of the UAV is identified as illegal; when the flight status of the UAV does not exceed the above two flight ranges, the target base station can identify the flight status of the UAV as legal.
  • the target base station does not include the preset flight range, and the flight range restricted by the UAV's authorization information does not completely coincide with the flight range restricted by the target cell. Then the target base station can make a determination based on the UAV's authorization information. When the UAV's flight status exceeds the flight range restricted by the UAV's authorization letter, the target base station can determine the UAV's authorization information. The UAV's flight status is identified as illegal; when the UAV's flight status is within the flight range restricted by the UAV's authorization letter, the target base station can identify the UAV's flight status as legal.
  • Target base station When the target base station identifies whether the flight status of the UAV is legal, it may not combine the flight range restricted by the target cell (such as the coverage area of the target cell), but may combine the UAV's authorization information and/or the preset flight range of the target base station. to make a judgment.
  • the preset flight range can also be used as a benchmark for judgment.
  • the specific principle is similar to the principle of the foregoing strategy. Reference can be made to the description of the relevant implementation of S103 in Figure 5, which will not be described again here.
  • the granularity of the information about the UAV's no-fly zone is not a cell or a TA, but actual geographical information, such as an actual geographical range bounded by longitude and latitude.
  • the granularity of the UAV control range of the target base station is the actual geographical control range surrounded by longitude and latitude, and the granularity of the UAV authorization information is also the geographical range.
  • the source base station side can only obtain the UAV control range at the cell or TA granularity of the target base station. Therefore, the source base station side cannot decide whether the geographical range corresponding to the UAV authorization information is within the actual geographical control range of the target base station.
  • the source base station can report the UAV's geographic information granularity authorization information and the UAV's flight status to the target base station, and the target base station decides whether the UAV's flight status is legal at the target base station to determine whether to access the UAV.
  • the target base station determines whether the flight status of the UAV is legal, if the target base station detects that the geographical range corresponding to the UAV's authorization information is not within the UAV control range of the target base station, the target base station can determine the flight status of the UAV. illegal.
  • the target base station determines whether the UAV's flight status is legal, if the target base station detects that the geographical range corresponding to the UAV's authorization information is within the UAV control range of the target base station, but the UAV's flight status is not authorized by the UAV If the information is within the corresponding geographical range, the target base station can determine that the flight status of the UAV is illegal.
  • the target base station also includes a preset flight range. Then when the target base station determines whether the UAV's flight status is legal, if the target base station detects that the geographical range corresponding to the UAV's authorization information is within the UAV control range of the target base station, For the UAV's authorization information and preset flight range, the preset flight range of the target base station can be used as a reference. If the UAV's flight status is not within the preset flight range, the UAV's flight status is illegal.
  • the target base station includes preconfigured restrictive information of the flight range (such as the preset flight range described in the previous embodiment). Since the source base station cannot obtain the preset flight range information, the source base station The side cannot decide whether the flight status of the UAV is within the preset flight range of the target base station side. In order to implement access control when the UAV switches base stations, the source base station still needs to report the UAV's authorization information and flight status information to the target base station, and the target base station determines whether the UAV's flight status is legal based on the preset flight range. Or the target base station determines whether the UAV's flight status is legal based on the preset flight range and the UAV's authorization information. To determine whether to access the UAV.
  • the source base station still needs to report the UAV's authorization information and flight status information to the target base station, and the target base station determines whether the UAV's flight status is legal based on the preset flight range.
  • the target base station determines whether the UAV's flight status is legal based on
  • the target base station sends handover request confirmation information to the source base station.
  • the handover request confirmation information may include the RRC reconfiguration message.
  • the RRC reconfiguration message is a message sent by the target base station to the UAV and needs to be forwarded by the source base station to the UAV.
  • the source base station forwards the RRC reconfiguration message from the target base station to the UAV.
  • the RRC reconfiguration message may include information such as the ID of the target cell.
  • the RRC reconfiguration message here may be the RRC reconfiguration message carried in the above handover request confirmation message.
  • the source base station sends an early state transfer message to the target base station.
  • S608b The source base station sends a sequence number status transfer message to the target base station.
  • S609 The UAV sends an RRC reconfiguration completion message to the target base station.
  • the UAV may respond to the RRC reconfiguration message in S607 to send a message indicating that the RRC reconfiguration is completed to the target base station.
  • the communication method may also include S310 to S315 as shown in FIG. 3 in the prior art. Specifically, refer to FIG. 3 and will not be described again here.
  • both the source base station and the target base station support UAV.
  • the source base station can carry the flight status of the UAV, its authorization information, and the target cell ID (optional) in the handover request sent to the target base station, so that the target base station can obtain the flight status of the UAV and the authorization information of the UAV from the source base station.
  • target cell ID (optional).
  • the target base station can identify the legality of the UAV's flight status based on its own flight range restriction information (if any), the UAV's authorization information, and the coverage of the target cell (optional). The illegal UAV on the target base station side switches to the target base station in a flight-denied state.
  • both the source base station and the target base station support UAV.
  • the UAV's no-fly zone is actual geographical information, or the target base station has preconfigured flight range restrictive information (such as preset set flight range). Then the target base station can identify the flight status of the UAV of the base station to be switched based on the authorization message and flight status of the UAV obtained from the source base station, the target cell ID (optional) and the preset flight range (if any). Is it legal? When the UAV's flight status is illegal at the target base station, it can be refused to switch to the target base station.
  • Scenario 3b The source base station does not support communication with UAV-type UEs, and the target base station supports communication with UAV-type UEs.
  • Figure 10 is an exemplary illustration of the communication method process of the communication system of the present application in scenario 3b.
  • the process may include the following steps:
  • the source base station sends measurement control information to the UAV.
  • the source base station may deliver measurement control information to the UE through an RRC reconfiguration message.
  • S701 and S601 may include: in S701, the RRC reconfiguration message does not include information indicating that the UAV reports flight status. Because the source base station does not support communication connections with UAV-type UEs, the UAV will not report flight status to the source base station. In addition, even if the UAV reports to the source base station The flight status is changed, and the source base station cannot identify the flight status information.
  • S702 The UAV sends a measurement result reporting message to the base station.
  • the difference between S702 and S602 is that the measurement results in S702 do not include the flight status information of the UAV.
  • the source base station makes a handover decision based on the measurement results.
  • the source base station may determine the target cell of the UAV.
  • S704 The source base station sends a handover request to the target base station.
  • the handover request may include capability information of the UE.
  • the capability information of the UE may be information indicating that the equipment type of the UE to be switched to a base station is a drone.
  • the handover request may also include the ID of the target cell.
  • S705 The target base station performs access control.
  • the target base station obtains the UAV authorization information from the AMF.
  • the handover request sent by the source base station to the target base station may include the UE's capability information. , does not include UAV authorization information and flight status information. This makes it impossible for the target base station to obtain the authorization information and flight status information of the UAV from the handover request of the source base station, and to identify the legality of the flight status of the connected UAV.
  • the target base station can obtain the authorization of the UAV from the core network device. information and instructs the UAV to report flight status information through the source base station in order to identify the legality of the UAV's flight status.
  • what the target base station obtains from the AMF here can be the authorization information of the above-mentioned UAV for the base station to be switched, or it can be the authorization information of multiple UAVs.
  • the multiple UAVs here include the ones in Figure 10 UAV, this application does not limit this.
  • the target base station sends a handover request confirmation message to the source base station.
  • the handover request confirmation information may include the RRC reconfiguration message.
  • the RRC reconfiguration message is a message sent by the target base station to the UAV and needs to be forwarded by the source base station to the UAV.
  • the difference between the RRC reconfiguration message in this embodiment and the RRC reconfiguration message SRRC reconfiguration information included in the handover request confirmation message in S606 in Figure 9 is that: the corresponding RRC reconfiguration message in S707 can carry instructions
  • the above-mentioned UAV reports flight status (such as flight altitude or flight position or maximum flight altitude, etc.), which will not be done here. restrictions) information.
  • the information used to instruct the UAV to report flight status may be measurement configuration information, which is not limited in this application.
  • S708 The source base station forwards the RRC reconfiguration message from the target base station to the UAV.
  • the RRC reconfiguration message here may include information used to instruct the UAV to report flight status.
  • the source base station sends an early state transfer message to the target base station.
  • S709b The source base station sends a sequence number status transfer message to the target base station.
  • the UAV may respond to the RRC reconfiguration message in S708 to send a message indicating that the RRC reconfiguration is completed to the target base station.
  • the UAV may obtain its own flight status in response to the information carried by the RRC reconfiguration message in S708 for instructing the UAV to report flight status, and carry the flight status information in the RRC reconfiguration complete message, so as to Report its own flight status to the target base station.
  • S710 is similar to S109 in Figure 1. Please refer to the above for details and will not be described again here.
  • the RRC reconfiguration message configured by the target base station to the UAV may carry information instructing the UAV to report flight status.
  • the RRC reconfiguration completion message sent by the UAV to the target base station can carry the status information of the UAV (such as flight altitude or position or maximum flight altitude, etc.).
  • the target base station can instruct the UAV to report the flight status to the target base station through the source base station to obtain the flight status of the UAV.
  • the target base station can use the coverage of the target cell (optional), the authorization information obtained from the core network equipment, or its own preset flight range to identify whether the flight status of the UAV is legal on the target base station side. To decide whether to access the UAV to implement its base station switching.
  • the information sent by the target base station including instructing the UAV to report flight status is not limited to the RRC reconfiguration message exemplified in this implementation. It can also be separate signaling to instruct the UAV to report flight status, or in other ways.
  • the existing message forwarded by the target base station to the UAV through the source base station instructs the UAV to report flight status.
  • This application does not limit the messages carrying information indicating the UAV to report flight status. In the same way, this application does not limit the messages belonging to the flight status reported by the UAV to the RRC reconfiguration completion message.
  • the target base station determines whether to access the UAV.
  • the target base station may identify whether the flight status of the UAV is legal based on the authorization information of the UAV, and/or the preset flight range of the target base station, and/or the coverage area of the target cell (optional).
  • the specific strategy used by the target base station to identify the UAV's flight status as illegal may include but is not limited to:
  • Strategy 2 If the preset flight range does not completely coincide with the flight range restricted by the UAV's authorization information, and/or, if the preset flight range does not completely coincide with the flight range restricted by the target cell. Then the target base station can make a judgment based on the preset flight range. When the UAV's flight status exceeds the preset flight range, the target base station can identify the UAV's flight status as illegal; when the UAV's flight status is within the preset flight range within the time, the target base station can recognize the flight status of the UAV as legal.
  • the target base station does not include the preset flight range.
  • the target base station can send the UAV to the target base station.
  • the flight status of the UAV is identified as illegal; when the flight status of the UAV does not exceed the above two flight ranges, the target base station can identify the flight status of the UAV as legal.
  • the target base station does not include the preset flight range, and the flight range restricted by the UAV's authorization information does not completely coincide with the flight range restricted by the target cell. Then the target base station can use the UAV's authorization information as a basis to make a determination. When the UAV's flight status exceeds the flight range restricted by the UAV's authorization letter, the target base station can identify the UAV's flight status as illegal; when the UAV's flight status is within When the UAV is within the flight range restricted by the authorization letter, the target base station can identify the UAV's flight status as legal.
  • Target base station When the target base station identifies whether the flight status of the UAV is legal, it may not combine the flight range restricted by the target cell (such as the coverage area of the target cell), but may combine the UAV's authorization information and/or the preset flight range of the target base station. to make a judgment.
  • the preset flight range can also be used as a benchmark for judgment.
  • the specific principle is similar to the principle of the foregoing strategy. Reference can be made to the description of the relevant implementation of S103 in Figure 5, which will not be described again here.
  • the target base station determines to access the UAV to perform base station switching on the UAV, thereby switching the base station connected to the UAV from the source base station to the target base station.
  • the specific process can be referred to S310 to S315 in Figure 3, which will not be described again here.
  • the target base station may refuse to access the UAV to the target base station. For example, as shown in Figure 10, after the determination in S711, If it is determined not to access the UAV, S712 to S714 may be executed.
  • the target base station sends a release RRC connection message to the UAV.
  • S712 are similar to S408 in Figure 6. Please refer to the above for details and will not be described again here.
  • the target base station notifies the AMF that the flight status of the UAV is illegal.
  • S713 are similar to S409 in Figure 6. Please refer to the above for details and will not be described again here.
  • the AMF notifies the UAS-NF that the flight status of the UAV is illegal.
  • S714 are similar to S410 in Figure 6. Please refer to the above for details and will not be described again here.
  • the target base station when the UAV's flight status is illegal on the target base station side, can send a release RRC connection message to the UAV and notify the core network device that the UAV's flight status is illegal, so that the core network device can Notify UAS-NF that the UAV's flight status is illegal.
  • This not only avoids illegal UAVs in flight status at the target base station and switches from the source base station to the target base station for communication connections, but the target base station can also supervise UAVs in illegal flight status through the core network equipment to avoid UAVs in the target base station.
  • the source base station is a traditional base station (which does not support UAV), and the target base station supports UAV.
  • the target base station can obtain the UAV's capability information and target cell ID (optionally) from the source base station, and obtain the UAV's authorization information from the AMF.
  • the target base station can identify the legality of the UAV's flight status based on its own flight range restriction information (if any), the UAV's authorization information, and the coverage of the target cell (optional).
  • To reject the base station switching of UAV with illegal flight status and notify the core network equipment to supervise the UAV. For example, for an illegal UAV, the target base station releases its RRC connection and notifies the AMF that the UAV is illegal, and the AMF notifies the UAS-NF to manage the illegal UAV.
  • the communication method and communication system of this application can be applied to any scenario where the location of the UE is limited. For example, if a UAV moves to a special environment where UAVs are prohibited, illegal UAVs in the special environment can also be identified through the communication method and communication system of the present application.
  • this application also provides a communication method, applied to a first user equipment, the equipment type of the first user equipment is a drone type, the method includes: the first user equipment receives a first message from a first network device, wherein the first message is used to indicate that the first network device supports communication with the first type of user equipment; the first user equipment sends a message to the first network device Send a second message, wherein the second message includes first flight status information of the first user equipment; wherein the first network device is used for the first user equipment based on the first flight status information and the first flight status information.
  • the device is a user device that requests to establish a communication connection with the first network device.
  • the first network device may be a base station.
  • the first flight range information includes first authorization information of the first user equipment, wherein the first authorization information includes the first flight authorization information for the first user equipment. scope.
  • the first network device includes a preset flight range
  • the first flight range information includes the preset flight range
  • the method further includes: the first user equipment receives a third message from the first network device. , wherein the third message is used to indicate refusal to establish a communication connection with the first user equipment, wherein the first flight status information exceeds the flight range limited by the first flight range information.
  • the first flight range information includes the first authorization information
  • the first authorization information is obtained by the first network device from a core network device.
  • the method further includes: the first user equipment receiving a fourth message from the first network device, wherein the fourth message includes second flight range information, wherein the The second flight range information is used to limit the flight range of at least one user equipment of the first type, wherein the at least one user equipment of the first type includes the first user equipment; the first user equipment sends a signal to the first user equipment.
  • a network device sends a fourth message, wherein the first user equipment is in an idle state or an inactive state, and the first flight status information of the first user equipment exceeds the target flight range; the fourth message is Instructing the first user equipment to request the The first network device establishes a communication connection; the target flight range is the flight range corresponding to the first user equipment in the second flight range information.
  • the second flight range information includes the preset flight range, and/or respective authorization information of at least one user equipment of the drone type.
  • an embodiment of the present application provides a communication device.
  • the communication device is applied to the first network device, and the communication device is used to: obtain the first flight status information of the first user equipment; obtain the first flight range information of the first user equipment; wherein, the first user equipment It is a first type of user equipment that requests to establish a communication connection with the first network device; wherein the first flight range information includes information for limiting the flight range of the first user equipment; based on the first Flight status information and the first flight range information determine whether to establish a communication connection with the first user equipment.
  • the first flight range information includes first authorization information of the first user equipment, wherein the first authorization information includes the first flight authorization information for the first user equipment. scope.
  • the first network device includes a preset flight range
  • the first flight range information includes the preset flight range
  • the communication device is specifically configured to: based on the first flight status information and the first flight range information, determine that the first flight status information exceeds the first flight range. information limits the flight range, then refuse to establish a communication connection with the first user equipment.
  • the communication device is specifically configured to: receive a third message from a core network device, where the third message includes the first authorization information.
  • the communication device is specifically configured to: send a first message to the first user equipment, wherein the first message is used to indicate that the first network device supports the communication with the first user equipment.
  • the first type of user equipment communicates; receiving a second message from the first user equipment, wherein the second message includes the first flight status information, and the second message is a modification of the first message. Respond to the message.
  • the communication device is specifically configured to: send a fourth message to the core network device, wherein the fourth message is used to indicate that the flight status of the first user equipment is illegal. .
  • the communication device is further configured to: send a fifth message to the first type of user equipment, wherein the fifth message includes second flight range information, wherein the The second flight range information is used to limit the flight range of at least one user equipment of the first type; receiving a sixth message from the first user equipment, wherein the first user equipment is in an idle state or an inactive state. , and the first flight status information of the first user equipment exceeds the target flight range, wherein the sixth message is a response message to the fifth message; wherein the at least one first type user equipment including the first user equipment; the sixth message is used to instruct the first user equipment to request to establish a communication connection with the first network device; the target flight range is the same as the second flight range information.
  • the flight range corresponding to the first user equipment is a fifth message to the first type of user equipment.
  • the second flight range information includes the preset flight range, and/or respective authorization information of the at least one first type of user equipment.
  • the first user equipment is in the inactive state
  • the communication device Also configured to: receive a seventh message from a second network device, wherein the seventh message includes context information of the first user equipment, wherein the second network device is closest to the first user equipment.
  • a network device making a communication connection if the seventh message does not include the first authorization information, receive the third message from the core network device.
  • the first user equipment is a user equipment determined by the third network device to be switched to the first network device for communication connection by the third network device.
  • the communication device is specifically configured to: receive an eighth message from the third network device, wherein the eighth message includes the first flight status and the first Authorization information.
  • the communication device is specifically configured to: receive a ninth message from the third network device, wherein the ninth message includes a device indicating the first user equipment
  • the type is the information of the first type; receiving the first authorization information from the core network device.
  • the communication device is specifically configured to: send a tenth message to the third network device, wherein the tenth message includes an instruction for instructing the first user equipment to report flight status. information; receiving an eleventh message from the first user equipment, wherein the eleventh message includes the first flight status information.
  • an embodiment of the present application provides a communication device.
  • the communication device is applied to a first user equipment, wherein the device type of the first user equipment is a first type, and the communication device is configured to: receive a first message from a first network device, wherein the first message for instructing the first network device to support communication with the first type of user equipment; sending a second message to the first network device, wherein the second message includes the first user equipment a flight status information; wherein the first network device is configured to determine whether to establish a communication connection with the first user equipment based on the first flight status information and first flight range information; wherein the first flight The range information includes information used to limit the flight range of the first user equipment; wherein the first user equipment is a user equipment that requests to establish a communication connection with the first network device.
  • the first flight range information includes first authorization information of the first user equipment, wherein the first authorization information includes the first flight authorization information for the first user equipment. scope.
  • the first network device includes a preset flight range
  • the first flight range information includes the preset flight range
  • the communication device is further configured to: receive a third message from the first network device, wherein the third message is used to indicate a refusal to establish communication with the first user equipment. Connection, wherein the first flight status information exceeds the flight range limited by the first flight range information.
  • the first flight range information includes the first authorization information
  • the first authorization information is obtained by the first network device from a core network device.
  • the communication device is further configured to: receive a fourth message from the first network device, wherein the fourth message includes second flight range information, wherein the second The flight range information is used to limit the flight range of at least one user equipment of the first type, wherein the at least one first type of user equipment User equipment includes the first user equipment; sending a fourth message to the first network equipment, wherein the first user equipment is in an idle state or an inactive state, and the first user equipment of the first user equipment The flight status information exceeds the target flight range; the fourth message is used to instruct the first user equipment to request to establish a communication connection with the first network device; the target flight range is the same as the second flight range information.
  • the flight range corresponding to the first user equipment.
  • the second flight range information includes the preset flight range, and/or the respective authorization information of the at least one first type of user equipment.
  • the device includes a processing module 701 (eg, a processor) and a communication module 702.
  • the device also includes a storage module 703 (such as a memory).
  • the processing module 701, the communication module 702 and the storage module 703 are connected through a communication bus.
  • the communication module 702 may be a device with transceiver functions, used to communicate with other network devices or communication networks.
  • the storage module 703 may include one or more memories, which may be devices used to store programs or data in one or more devices or circuits.
  • the storage module 703 can exist independently and is connected to the processing module 701 through a communication bus.
  • the storage module may also be integrated with the processing module 701.
  • Apparatus 700 may be used in network equipment, user equipment (eg, UAV), circuitry, hardware components, or chips.
  • user equipment eg, UAV
  • circuitry e.g., circuitry, hardware components, or chips.
  • the device 700 may be a network device in the embodiment of the present application, such as base station 1 or base station 1 .
  • the schematic diagram of the base station can be shown in Figure 4a.
  • the communication module 702 of the device 700 may include an antenna and a transceiver of a base station.
  • the communication module 702 may also include a network interface of the base station, such as the network interface (such as the Uu interface) in Figure 4b and Figure 4c.
  • the device 700 may be a chip in the network equipment (for example, source base station, target base station, AMF, etc.) in the embodiment of the present application.
  • the communication module 702 may be an input or output interface, a pin or a circuit, etc.
  • the storage module can store computer execution instructions for the base station side method, so that the processing module 701 executes the base station side method in the above embodiment.
  • the storage module 703 can be a register, cache or RAM, etc., and the storage module 703 can be integrated with the processing module 701; the storage module 703 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module 703 can be integrated with the processing module 701.
  • the processing module 701 is independent.
  • the transceiver can be integrated on the device 700 .
  • the device 700 is a network device or a chip in the network device in the embodiment of the present application
  • the method performed by the network device can be implemented.
  • the device 700 may also be user equipment in the embodiment of the present application, such as a UAV.
  • the schematic diagram of the UAV can be shown in Figure 4a.
  • the communication module 702 of the device 700 may include a UAV antenna and transceiver.
  • the communication module 702 may also include a network interface of the UAV, such as the network interfaces in Figure 4b and Figure 4c (e.g. Uu interface).
  • the device 700 may be a chip in the user equipment (for example, UAV, etc.) in the embodiment of the present application.
  • the communication module 702 may be an input or output interface, a pin or a circuit, etc.
  • the storage module can store computer execution instructions for the method on the user equipment side, so that the processing module 701 executes the method on the user equipment side in the above embodiment.
  • the storage module 703 can be a register, cache or RAM, etc., and the storage module 703 can be integrated with the processing module 701; the storage module 703 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module 703 can be integrated with the processing module 701.
  • the processing module 701 is independent.
  • the transceiver can be integrated on the device 700 .
  • the device 700 is the user equipment or a chip in the user equipment in the embodiment of the present application, the method performed by the user equipment (such as UAV, etc.) in the above embodiment can be implemented.
  • An embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the above embodiments can be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functionality may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media may include computer storage media and communication media and may include any medium that can transfer a computer program from one place to another. Storage media can be any available media that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or instruct instructions or data structures.
  • the required program code is stored in a form and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave are used to transmit software from a website, server, or other remote source
  • coaxial cable, fiber optic cable , twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of medium.
  • Disk and optical disk includes compact disk (CD), laser disk, optical disk, digital versatile disk (DVD), floppy disk, and Blu-ray disk, where disks typically reproduce data magnetically, while discs reproduce data optically using lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • An embodiment of the present application also provides a computer program product.
  • the methods described in the above embodiments can be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on a computer, the processes or functions described in the above method embodiments are generated in whole or in part.
  • the above-mentioned computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user equipment, or other programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,涉及通信领域,该方法包括:基站基于请求接入的无人机的飞行范围的限制性信息,来识别无人机的飞行状态是否合法,以确定是否接入该无人机,能够实现对无人机的接入管控。

Description

通信方法及装置
本申请要求于2022年06月29日提交中国国家知识产权局、申请号为202210748355.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
目前,无人机(UAV,Uncrewed Aerial Vehicle)作为一种新型的飞行器,由于其灵活方便,如今已经越来越普及。并且,蜂窝网络能够为无人机提供更广泛的信号覆盖。
在已有的通信系统中,基站在接入无人机时,无法对无人机进行接入管控。
发明内容
为了解决上述技术问题,本申请提供一种通信方法及装置。在该方法中,基站可对请求接入的无人机,基于该无人机的飞行范围的限制性信息,来识别其飞行状态是否合法,以确定是否接入该无人机,能够实现对无人机的接入管控。
在一种可能的实现方式中,本申请提供一种通信方法,应用于第一网络设备。该方法包括:获取第一用户设备的第一飞行状态信息;获取所述第一用户设备的第一飞行范围信息;其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的第一类型的用户设备;其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接。
示例性的,第一类型为无人机类型。
示例性的,第一网络设备为基站,该基站可以是UAV从空闲态请求接入的基站,也可以是UAV从非激活态请求接入的基站,还可以是UAV从源基站切换至目标基站时的目标基站。
示例性的,第一飞行状态信息可包括但不限于飞行高度、飞行位置、最大飞行高度等飞行状态信息。
在本实现方式中,在UAV请求接入基站时,基站可获取该UAV的飞行状态信息以及限制该UAV的飞行范围的第一飞行范围信息,并基于该第一飞行范围信息和该飞行状态信息,来确定基站是否与该UAV建立通信连接。本申请可结合UAV的飞行范围的限制性信息,来确定该UAV的飞行状态是否合法。示例性的,该UAV的飞行状态非法,则基站可拒绝接入该UAV,相反,如果该UAV的飞行状态合法,则基站可接入该UAV。以此,了对请求接入基站的无人机实现了飞行状态的合法性的识别,实现了对UAV的接入管控。
在一种可能的实现方式中,第一飞行范围信息可包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
示例性的,该授权信息也称签约信息。
在本实现方式中,基站在对请求接入的UAV的合法性进行识别时,可基于该UAV的授权信息,来识别UAV的飞行状态是否合法,例如是否处于禁飞区和/或飞行高度超过等,例如UAV的飞行高度超出授权信息所限制的允许的飞行高度范围,或,UAV的飞行位置处于该UAV对应的禁飞区域,则基站可确定UAV的飞行状态非法,以拒绝接入该UAV。那么基站在对UAV的合法性进行识别时,可结合关于该UAV的授权信息所限制的飞行范围,来识别UAV的飞行状态的合法性,使得在不同的UAV请求接入基站时,基站可结合请求接入的UAV的授权信息进行特定的合法性识别,可更匹配该UAV的飞行需求。示例性的,在基站确定UAV非法后,基站可通知核心网设备来对该非法UAV进行监管,避免UAV发生飞行安全问题。
在一种可能的实现方式中,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
在本实现方式中,基站在对请求接入的UAV的合法性进行识别时,可基于基站自身预配置的预设飞行范围信息,来识别UAV的飞行状态是否合法,例如是否处于禁飞区域和/或飞行高度超过等,例如UAV的飞行高度超出该预设飞行范围所限制的允许的飞行高度范围,或,UAV的飞行位置处于该预设飞行范围对应的禁飞区域,则基站可确定UAV的飞行状态非法,以拒绝接入该UAV。那么基站在对UAV的合法性进行识别时,无需获取UAV的授权信息,只需利用自身预配置的飞行范围的限制性信息来进行决策,可在识别UAV是否合法时,减少信令开销,提升识别效率,且更符合该基站侧对UAV的飞行范围的控制需求。示例性的,在基站确定UAV非法后,基站可通知核心网设备来对该非法UAV进行监管,避免UAV发生飞行安全问题。
在一种可能的实现方式中,所述基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接,包括:基于所述第一飞行状态信息和所述第一飞行范围信息,确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则拒绝与所述第一用户设备建立通信连接。
示例性的,该第一飞行范围信息所限制的飞行范围可包括预设飞行范围和/或第一飞行范围。
在本实现方式中,基站在基于请求接入的UAV的飞行状态信息,以及该UAV的第一飞行范围信息,而确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则基站可确定该UAV的飞行状态不合法,那么基站可拒绝与所述第一用户设备建立通信连接。从而不论是从空闲态还是非激活态请求接入基站的UAV,亦或是该UAV从源基站待切换至本基站的UAV,本基站均可对该UAV的飞行状态是否合法进行检测,在确定其不合法时,能够拒绝非法UAV的接入。
在一种可能的实现方式中,所述获取所述第一用户设备的第一飞行范围信息,包括:接收来自核心网设备的第三消息,所述第三消息包括所述第一授权信息。
示例性的,核心网设备可为AMF,基站可从AMF获取第一用户设备(这里的UAV)的第一授权信息。以利于利用请求接入的UAV的授权信息,来识别该UAV的飞行状态是否合法,以确定是否接入该UAV。
在一种可能的实现方式中,所述获取第一用户设备的第一飞行状态信息,包括:向所述第一用户设备发送第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;接收来自所述第一用户设备的第二消息,其中,所述第二消息包括所述第一飞行状态信息,所述第二消息为所述第一消息的响应消息。
示例性的,在UAV从非激活态请求接入基站的场景下,该第二消息可以是RRC恢复连接完成消息,也可以是RRC恢复连接的请求消息。
示例性的,在UAV从空闲态请求接入基站的场景下,该第一消息可以是系统广播消息,第二消息可以是RRC建立请求消息或RRC建立完成消息等。此外,该第一消息还可以是RRC重配置消息,第二消息可以是RRC重配置完成消息。
在本实现方式中,基站在获取UAV的飞行状态信息时,可通过向UAV发送第一消息,该第一消息可携带基站的能力信息,例如基站的能力信息可包括基站支持与无人机类型的UE进行通信连接。那么UAV在接收到该第一消息后,可响应于该第一消息所携带的能力信息,而在第二消息中携带UAV的飞行状态,以通过第二消息来向基站上报UAV的飞行状态。这样,基站就实现了对UAV的飞行状态的获取,以便于及时识别该UAV的飞行状态是否合法。
在一种可能的实现方式中,所述拒绝与所述第一用户设备建立通信连接,包括:向所述核心网设备发送第四消息,其中,所述第四消息用于指示所述第一用户设备的飞行状态不合法。
在本实现方式中,在基站识别到请求接入的UAV的飞行状态不合法时,则基站可向核心网设备发送用于指示该UAV的飞行状态不合法的消息。示例性的,核心网设备可向UAS-NF发送用于指示该UAV的飞行状态不合法的消息,这样,可实现对非法UAV的管控,以避免该非法UAV发生飞行安全问题。
在一种可能的实现方式中,所述拒绝与所述第一用户设备建立通信连接,包括:释放与所述第一用户设备建立的通信连接。
在一种可能的实现方式中,所述方法还包括:发送第五消息至所述第一类型的用户设备,其中,所述第五消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围;接收来自所述第一用户设备的第六消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第 一飞行状态信息超出目标飞行范围,其中,所述第六消息为所述第五消息的响应消息;其中,所述至少一个第一类型的用户设备包括所述第一用户设备;所述第六消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
示例性的,第五消息可为系统广播消息。
示例性的,第二飞行范围信息,可包括:可以包括通用于多个UAV的禁飞区(例如基站自身预配置的预设飞行范围),和/或,可以对应各个UAV的禁飞区(例如各UAV的授权信息所限制的飞行范围)。
示例性的,第六消息与上述第二消息可以相同,或不同,本申请对此不做限制。
在本实现方式中,当UAV处于空闲态或非激活态并驻留在基站的小区内,基站通过在系统广播消息中携带飞行范围的限制信息(如限制的高度或禁飞区域位置等),UAV结合于该系统广播消息,当UAV检测到自身飞行高度高于该限制高度时或飞行位置处于禁飞区域位置时,则可触发UAV请求与基站建立连接,以请求进入连接态。
在现有技术中,在UAV没有与基站连接时,基站无法确定该UAV的飞行状态是否非法,不利于UAV的飞行监管。在本实施例中,为了实现无人机的飞行状态的监管,基站可在系统广播消息中携带UAV的禁飞区等飞行范围的限制信息,那么在未与基站连接的UAV(例如处于空闲态或处于非激活态)的飞行状态非法时,本申请的方法可触发UAV发送请求与该基站建立通信连接的消息。
此外,在UAV接入进入连接态的过程中,可上报自身飞行高度或位置信息给基站,基站再通过核心网设备来获取该UAV的授权信息,并将授权信息、基站自身的预设飞行范围,与UAV上报的飞行状态信息进行比较,就可以对UAV的飞行状态是否合法。在基站检测到该UAV的飞行状态非法后,可拒绝接入该UAV,以及及时通知核心网设备进行该UAV的管控,以实现对处于空闲态或非激活态的非法UAV的管控。
在一种可能的实现方式中,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
本实现方式中,基站可结合自身预配置的预设飞行范围,和/或,请求接入基站的UAV的授权信息,来确定该UAV的飞行状态是否合法。
在一种可能的实现方式中,所述第一用户设备处于所述非激活态,所述方法还包括:接收来自第二网络设备的第七消息,其中,所述第七消息包括所述第一用户设备的上下文信息,其中,所述第二网络设备为与所述第一用户设备最近进行通信连接的网络设备;在所述第七消息不包括所述第一授权信息的情况下,接收来自所述核心网设备的所述第三消息。
在本实现方式中,非激活态的UAV请求与基站恢复连接时,如果UAV上报飞行状态至基站,且在该UAV处于非激活态之前最后进行通信连接的最后服务基站,为不支持与无人机类型的UE进行通信连接的基站,则基站可从核心网设备来获取到该UAV的授权信息,以利于利用该授权信息和/或基站的自身预配置的限制性信息,来对该飞行状态 的合法性进行识别,以确定该UAV的飞行状态是否合法。该过程中,即便该UAV的最后服务基站为传统的不支持与UAV通信连接的基站,本申请实施例的基站仍旧可以利用从核心网设备获取到的该UAV的授权信息,来对从非激活态请求接入基站的UAV的飞行状态的合法性进行检测,以使本申请的基站能够覆盖更多的应用场景,提升对UAV的飞行状态的合法性检测的可靠性。
在一种可能的实现方式中,所述第一用户设备为第三网络设备确定的由所述第三网络设备切换至所述第一网络设备进行通信连接的用户设备。
示例性的,第三网络设备可为源基站,第一网络设备可为目标基站。
UAV因飞行位置发生变化,而导致UAV需要切换与之连接的基站。
在本实现方式中,源基站可确定与该UAV通信连接的基站从该源基站切换至目标基站,换言之,UAV待切换至的目标基站可源基站来确定。在该基站切换的场景下,目标基站可对该UAV进行飞行状态的合法性检测,以确定是否接入该UAV,以实现对UAV的接入控制。对于在目标基站侧飞行状态非法的UAV,目标基站可拒绝对该UAV切换基站。对于在目标基站侧飞行状态合法的UAV,目标基站可将该UAV连接的基站,从源基站切换至目标基站。
在一种可能的实现方式中,所述获取第一用户设备的第一飞行状态信息,包括:接收来自所述第三网络设备的第八消息,其中,所述第八消息包括所述第一飞行状态;所述获取所述第一用户设备的第一飞行范围信息,包括:接收来自所述第三网络设备的所述第八消息,其中,所述第八消息包括所述第一授权信息。
在本实现方式中,在UAV切换基站的场景下,源基站和目标基站均为支持与无人机类型的UE进行通信连接的基站时,目标基站可从源基站处获取待接入的UAV的授权信息及其飞行状态信息,并可选地,结合目标基站的自身的预设飞行范围,来决策该UAV的飞行状态在目标基站处是否合法。在确定UAV的飞行状态在目标基站处合法时,目标基站可接入该UAV,否则可忽略该切换请求。在UAV切换基站的一些场景下,UAV在源基站处的飞行状态是合法的,但是该UAV的飞行状态在目标基站处可能是非法的。本申请的目标基站可结合UAV的授权信息和/或自身的预设飞行范围,来决策该UAV的飞行状态在目标基站处是否合法,能够避免在源基站处合法,而在目标基站处非法的UAV从源基站切换至与目标基站通信连接。
在一种可能的实现方式中,所述获取所述第一用户设备的第一飞行范围信息,包括:接收来自所述第三网络设备的第九消息,其中,所述第九消息包括用于指示所述第一用户设备的设备类型为所述第一类型的信息;接收来自所述核心网设备的所述第一授权信息。
在本实现方式中,在源基站不支持与无人机类型的UE相连接(简述为源基站不支持UAV)的情况下,源基站向目标基站发送的切换请求中可包括UE的能力信息,该UE的能力信息用于指示该UE的设备类型为无人机类型。该切换请求并不包括UAV的授权 信息及飞行状态信息。使得目标基站无法从源基站的切换请求中获取到UAV的授权信息以及飞行状态信息,对接入的UAV的飞行状态的合法性进行识别,此时目标基站可从核心网设备获取该UAV的授权信息并通过源基站指示UAV上报飞行状态信息,以便于对该UAV的飞行状态的合法性进行识别。
在一种可能的实施方式中,所述获取第一用户设备的第一飞行状态信息,包括:向所述第三网络设备发送第十消息,其中,所述第十消息包括用于指示所述第一用户设备上报飞行状态的信息;接收来自所述第一用户设备的第十一消息,其中,所述第十一消息包括所述第一飞行状态信息。
示例性的,第十消息可包括对UAV配置的RRC重配置消息,该RRC重配置消息可携带指示UAV上报飞行状态的信息。
示例性的,第十一消息可为RRC重配置完成消息。
在本实现方式中,目标基站在向UAV配置的RRC重配置消息中,可携带指示UAV上报飞行状态的信息。那么UAV响应于该RRC重配置消息,向目标基站发送的RRC重配完成消息时,该RRC重配置完成消息则可携带UAV的状态信息(如飞行高度或位置或最大飞行高度等)。那么在源基站不支持UAV的场景下,目标基站可通过源基站指示UAV上报飞行状态至目标基站,以获取到UAV的飞行状态。这样,目标基站就可以利用目标小区的覆盖范围(可选地)、从核心网设备获取到的授权信息、或自身的预设飞行范围,来识别该UAV的飞行状态在目标基站侧是否合法,以决定是否接入该UAV,以实现其基站切换。
在一种可能的实现方式中,本申请提供一种通信方法,应用于第一用户设备,其中,所述第一用户设备的设备类型为第一类型。该方法包括:接收来自第一网络设备的第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;向所述第一网络设备发送第二消息,其中,所述第二消息包括所述第一用户设备的第一飞行状态信息;其中,所述第一网络设备用于基于所述第一飞行状态信息和第一飞行范围信息,确定是否与所述第一用户设备建立通信连接;其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的用户设备。
在一种可能的实现方式中,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
在一种可能的实现方式中,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
在一种可能的实现方式中,所述向所述第一网络设备发送第二消息之后,所述方法还包括:接收来自所述第一网络设备的第三消息,其中,所述第三消息用于指示拒绝与 所述第一用户设备建立通信连接,其中,所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围。
示例性的,第三消息可以为释放RRC连接消息。
在一种可能的实现方式中,所述第一飞行范围信息包括所述第一授权信息,所述第一授权信息由所述第一网络设备从核心网设备获取。
在一种可能的实现方式中,所述方法还包括:接收来自所述第一网络设备的第四消息,其中,所述第四消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围,其中,所述至少一个第一类型的用户设备包括所述第一用户设备;向所述第一网络设备发送第四消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围;所述第四消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
在一种可能的实现方式中,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
上述各实施方式的应用于第一用户设备侧的通信方法的效果,与上述各实施方式的应用于第一网络设备侧的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种通信装置,应用于第一网络设备,所述通信装置用于执行应用于第一网络设备的任意一种实现方式中的方法。
本实现方式的通信装置的效果,与上述各实现方式的应用于第一网络设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种通信装置,应用于第一用户设备,所述通信装置用于执行应用于第一用户设备的任意一种实现方式中的方法。
上述各实现方式的通信装置的效果,与上述各实现方式的应用于第一用户设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种通信装置,该通信装置包括:存储器与处理器,所述存储器与所述处理器耦合;其中,所述存储器包括程序指令,所述程序指令被所述处理器运行时,使得所述装置执行应用于第一网络设备的任意一种实现方式中的方法。
本实现方式的通信装置的效果,与上述各实现方式的应用于第一网络设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种通信装置,该通信装置包括:存储器与处理器,所述存储器与所述处理器耦合;其中,所述存储器包括程序指令,所述程序指 令被所述处理器运行时,使得所述装置执行应用于第一用户设备的任意一种实现方式中的方法。
本实现方式的通信装置的效果,与上述各实现方式的应用于第一用户设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种计算机可读存储介质。计算机可读存储介质存储有计算机程序,计算机程序被处理器调用以执行应用于第一网络设备的上述任意一种实现方式中的方法。
本实现方式的计算机可读存储介质的效果,与上述各实现方式的应用于第一网络设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种计算机可读存储介质。计算机可读存储介质存储有计算机程序,计算机程序被处理器调用以执行应用于第一用户设备的上述任意一种实现方式中的方法。
本实现方式的计算机可读存储介质的效果,与上述各实现方式的应用于第一用户设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种计算机程序产品。计算机程序产品包含软件程序,当软件程序被计算机或处理器执行时,使得应用于第一网络设备的上述任意一个实现方式中的方法被执行。
本实现方式的计算机程序产品的效果,与上述各实现方式的应用于第一网络设备的通信方法的效果类似,这里不再赘述。
在一种可能的实现方式中,本申请提供一种计算机程序产品。计算机程序产品包含软件程序,当软件程序被计算机或处理器执行时,使得应用于第一用户设备的上述任意一个实现方式中的方法被执行。
本实现方式的计算机程序产品的效果,与上述各实现方式的应用于第一用户设备的通信方法的效果类似,这里不再赘述。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为示例性示出的现有技术中的UE接入基站的过程示意图;
图2为示例性示出的现有技术中的UE从非激活态接入基站的过程示意图;
图3为示例性示出的现有技术中的UE切换基站的过程示意图;
图4a为示例性示出的通信系统的示意图;
图4b为示例性示出的通信系统的示意图;
图4c为示例性示出的通信系统的示意图;
图5为示例性示出的基站的工作流程示意图;
图6为示例性示出的通信方法的流程图;
图7为示例性示出的通信方法的流程图;
图8为示例性示出的通信方法的流程图;
图9为示例性示出的通信方法的流程图;
图10为示例性示出的通信方法的流程图;
图11为本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
在介绍本申请之前,首先对本申请各实施例中可能涉及的各网元、各专业词进行如下描述:
用户设备(user equipment,UE):UE是通过基站来实现接入网络侧的,例如可以是手持终端设备、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他可以接入网络的设备。
无人机(Uncrewed Aerial Vehicle,UAV):是一种新型的飞行器,是一种特殊类型的 UE。无人机的通信环境与普通UE存在较大区别,其主要在基站上方飞行,与基站通过Uu接口连接通信,视距(LOS,line of sight)径通信为主。此外,不同的无人机的飞行高度也可不同。
Uu接口:是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中最重要的开放接口。
基站:主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。基站可用于支持UE接入,例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。为方便描述,本申请所有实施例中,为终端提供无线通信功能的装置统称为网络设备或基站。
核心网设备:可以是接入和移动性管理功能(access and mobility management function,AMF),主要负责接入控制、移动性管理(mobility management,MM)、附着与去附着以及网关选择等功能。本申请实施例所涉及的核心网设备不限于AMF。AMF的主要功能包括无线接入网络控制平面的终结点,非接入信令的终结点,移动性管理,合法监听,接入授权\鉴权等等。
跟踪区(Tracking Area,TA):是由一片连续覆盖的小区组成的地理区域,用于长期演进/系统架构演进(long term evolution/System Architecture Evolution)系统的UE位置管理。
空闲态(idle):当UE成功驻留到一个小区后,如果UE不进行任何数据业务,则UE处于无线通信(Radio Resource Control,RRC)空闲态。
非激活态(inactive):非激活态是5G新增的一种RRC状态,目的是使UE可以快速恢复RRC连接态,而无需重新接入。
用户平面功能(User Plane Function,UPF):主要功能包括分组路由和转发,用户面数据的服务质量(Quality of Service,QoS)处理等。可选地,UPF也可以为MB-UPF,其可提供多播的数据传输功能。
下面结合图1、图2、图3来分别对现有技术中的UE初始接入基站的过程、UE从非激活态接入基站的过程,以及UE切换接入的基站的过程进行描述。
示例性的,本文提及的UE接入基站用于表示UE与基站建立通信连接,后文不再一一赘述。
请参照图1,为示例性示出的UE从空闲态接入基站的过程的流程图,该过程可包括以下步骤:
S101,UE发送无线通信(Radio Resource Control,RRC)建立请求消息给基站(例如gNodeB或gNB等基站)。
其中,RRC建立请求(RRCSetupRequest)消息用于表示UE请求与基站建立通信连接。
其中,RRC建立请求消息可携带RRC建立原因和UE标识。
S102,基站发送RRC建立(RRCSetup)消息给UE。
其中,基站可响应于S101的RRC建立请求消息,向UE发送RRC建立消息。
其中,RRC建立消息可携带信令无线承载(SRB)1资源配置的详细信息。RRC建立消息用于建立SRB1。
S103,UE发送RRC建立完成(RRCSetupComplete)消息给基站。
UE可利用RRC建立消息来建立RRC,RRC建立成功后,UE向基站(例如gNodeB)发送RRC建立完成消息。RRCSetupComplete消息中携带选择公共陆地移动网身份(Selected public land mobile network identity,selectedPLMN-Identity)、注册接入和移动性管理功能(Registered access and mobility management function,registeredAMF)和单网络切片选择支撑信息列表(Single Network Slice Selection Assistance Information list,s-nssai-list)。
其中,RRC建立完成消息用于表示UE建立完成RRC。
S104,基站发送初始UE消息给AMF。
其中,基站在接收到S103的RRC建立完成消息之后,可向AMF发送初始UE(Initial UE)消息。
示例性的,gNodeB为UE分配专用的无线接入网UE NG应用协议身份(radio access network UE NG Application Protocol identity,RAN-UE-NGAP-ID),gNodeB根据selectedPLMN-Identity、registeredAMF、s-nssai-list选择AMF节点,然后将RRCSetupComplete消息中携带的非接入层(non-access stratum,NAS)通过初始UE消息(Initial UE Message)发送给AMF,触发NG-C连接建立。NAS是UE和核心网设备之间的一个功能层。非接入层支持核心网设备和UE之间业务和信令消息的传输。
在基站发送初始UE消息之后,gNodeB透传UE和AMF之间的NAS直传消息,完成身份(Identity)查询、鉴权、NAS安全模式和注册过程等。
S105,AMF给基站发送初始上下文建立请求(Initial Context Setup Request)消息。
其中,AMF可响应于该初始UE消息,向基站发送初始上下文建立请求消息。
示例性的,AMF向gNodeB发送初始上下文建立请求消息,启动初始上下文建立过程。
S106,基站发送安全模式命令消息给UE。
其中,基站可响应于来自AMF的初始上下文建立请求消息,向UE发送安全模式命令(SecurityModeCommand)消息。
示例性的,gNodeB向UE发送安全模式命令消息,可通知UE启动完整性保护和加密过程。此后,启动下行加密。
S107,UE给基站发送安全模式完成消息。
其中,UE可响应于该安全模式命令消息,向基站发送安全模式完成(SecurityModeComplete)消息。
示例性的,UE根据SecurityModeCommand消息指示的完整性保护和加密算法,派生出密钥,然后向gNodeB回复安全模式完成消息。此后,启动上行加密。
S108,基站给UE发送RRC重配置消息。
其中,基站可响应于该安全模式完成消息,向UE发送RRC重配置(RRCReconfiguration)消息。
示例性的,gNodeB向UE下发RRC重配置消息,指示建立SRB2和数据无线承载(Data Radio Bearer,DRB)。
S109,UE通知基站RRC重配置完成消息。
其中,UE可响应于该RRC重配置消息,向基站发送RRC重配置完成(RRCReconfigurationComplete)消息。
示例性的,UE收到RRCReconfiguration消息后,开始建立SRB2和DRB。UE根据消息指示进行如下操作:
建立对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体并配置相关安全参数。
建立并配置无线链路层控制协议(Radio Link Control,RLC)实体。
建立并配置专用控制信道(DedicatedControlCHannel,DCCH)。
建立并配置专用业务信道(Dedicated Traffic Channel,DTCH)。
示例性的,SRB2和DRB建立成功后,UE向gNodeB回复RRCReconfigurationComplete消息。
S110,基站给AMF发送初始上下文建立响应消息。
其中,基站可响应于S105中来自AMF的初始上下文建立请求消息,而向AMF发送初始上下文建立响应(Initial Context Setup Response)消息。
其中,初始上下文建立响应消息用于表示初始上下文建立完成。
以上为现有技术中UE初始接入基站的过程。
请参照图2,为示例性示出的UE从非激活态恢复到连接态的过程的流程图,该过程可包括以下步骤:
首先,UE处于RRC非激活态。
RRC Inactive态是5G新增的一种RRC状态,目的是使UE可以快速恢复到RRC连接态,而无需重新接入。在RRC Inactive态的UE可暂停数据处理。
然后,S201,UE从RRC非激活态恢复,发送RRC恢复连接的请求消息至基站。
其中,RRC恢复连接的请求(RRCResumeRequest)消息可包括最后服务基站分配给该UE的非激活态无线网络临时标识(Inactive radio network temporary identifier,I-RNTI)。
其中,最后服务基站为与该UE最近进行通信连接的基站。
示例性的,最后服务基站可为UE处于RRC非激活态之前,最后一次与该UE建立通信连接的基站。
S202,基站向最后服务基站发送取回UE上下文的请求(Retrieve UE Context Request)消息。
其中,如果基站能够解析包含在I-RNTI中的最后服务基站的身份,则基站可向最后服务基站发送取回上述UE的上下文的请求消息,以请求最后服务基站提供该UE的上下文数据。
S203,最后服务基站向基站发送取回UE上下文的响应消息。
其中,最后服务基站可响应于S202的取回UE上下文的请求消息,来将该UE的上下文数据携带在该取回UE上下文的响应(Retrieve UE Context Response)消息中,以向UE当前请求连接的基站提供UE的上下文数据。
S204,基站向UE发送RRC恢复连接消息。
其中,基站可基于UE的上下文数据,来向UE发送RRC恢复连接(RRCResume)消息,以指示UE从非激活态恢复为连接态。
UE根据RRC恢复连接消息中包含的配置信息,完成从非激活态切换为连接态。
S205,UE向基站发送RRC恢复连接完成消息。
其中,RRC恢复连接完成(RRCResumeComplete)消息用于表示RRC恢复完成。
可选地,S206,基站发送转发地址到最后服务基站。
示例性的,如果要防止在最后服务基站中缓冲的该UE的下行用户数据的丢失,则可由基站提供转发地址(Xn-U Address Indication)给最后服务基站。
S207,基站发送路径切换请求消息至AMF。
其中,该路径切换请求(Path Switch Request)消息用于指示将路径切换到本基站上。
S208,AMF向基站发送路径切换请求的响应(Path Switch Request Response)消息。
S209,基站向最后服务基站发送UE上下文释放消息。
其中,UE上下文释放(UE Context Release)消息用于指示最后服务基站释放UE上下文。
其中,基站可向最后服务基站发送UE上下文释放消息,以触发最后服务基站对该UE的资源释放。
以上为现有技术中UE从非激活态接入基站的过程。
请参照图3,为示例性示出的UE切换接入的基站的过程的流程图。
在图3中,UE因移动使得UE从源基站切换到目标基站。
NR切换技术,在NR内部空口切换的准备和执行阶段都不需要5G核心网的参与,即准备消息在基站之间直接进行交换。
如图3所示,该过程可包括以下步骤:
S301,源基站向UE发送测量控制信息。
源基站通过RRC重配置消息向UE下发测量控制信息。示例性的,测量控制信息可包括但不限于:测量对象(同频/异频)、测量报告配置和测量间隔(GAP)配置等信息。
其中,UE收到源基站的测量控制信息进行相应操作,得到测量结果。
S302,UE向源基站发送测量结果上报消息。
其中,测量结果上报消息可包括测量结果。
S303,源基站根据测量结果进行切换决定(Handover Decision)。
示例性的,源基站可根据测量结果进行切换策略和目标小区/频点判决;以及可以根据参考信号接收功率(Reference Signal Receiving Power,RSRP)等进行判决。
S304,源基站向目标基站发送切换请求。
其中,源基站在根据测量结果确定对UE切换基站后,可确定待切换至的目标基站, 并向目标基站发送切换请求,其中,该切换请求可包括UE待切换至的目标小区ID等信息。
S305,目标基站执行接入控制。
示例性的,目标gNodeB收到切换请求(Handover Request)后,进行准入控制,允许准入后分配UE实例和传输资源。这里目标基站不对UE进行合法性检测,直接准许接入该目标基站。
S306,目标基站发送切换请求确认消息给源基站。
其中,切换请求确认(Handover Request Acknowledge)消息用于指示允许切换基站。示例性的,如果有部分协议数据单元(protocol data unit,PDU)会话(Session)切换失败,切换请求确认消息中需要携带失败的PDU Session列表。
其中,目标基站准备切换,并发送切换请求确认消息给源基站。
其中,该切换请求确认消息可包括目标基站待发送至UE的RRC重配置消息。
S307,RAN(radio access network,RAN,无线电接入网)开始切换。
其中,源基站可发送S306中携带的RRC重配置消息给UE。该RRC重配置消息可包括所述目标小区ID等信息。
可选地,S308a,源基站发送早期状态转移(Early Status Transfer)消息给目标基站,
如果数据无线承载(Data Radio Bearer,DRBS)配置了双激活协议栈(Dual Active Protocol Stack,DAPS),则源基站发送early status transfer消息给目标基站,以及执行S308b。如果DRBs没有配置DAPS,则无需执行S308a。
S308b,源基站发送序列号状态转移(SN Status Transfer)消息给目标基站。
S309,RAN侧切换完成。
其中,UE可发送RRC重配置完成消息给目标基站。
S310,目标基站向源基站发送切换成功消息。
S311,源基站再次发送SN Status Transfer给目标基站。
S312,目标基站发送路径切换请求给AMF。
S313,在UPF进行路径切换。
S314,AMF发送路径切换请求确认消息至目标基站。
S315,目标基站向源基站发送UE上下文释放(UE Context Release)消息。
以上为现有技术中UE连接的基站从源基站切换至目标基站的过程。
结合以上现有技术,在UE为UAV时,可存在以下技术问题:
问题1,在图1的过程中,在UAV请求接入基站时,基站无法识别UAV的飞行状态是否合法(例如UAV处于禁飞区,则UAV为非法UAV),更无法拒绝非法UAV的接入。
问题2,结合图1和图2,在处于空闲态或非激活态的UAV为非法UAV(例如UAV处于禁飞区)时,现有技术无法触发该非法UAV来请求与基站建立通信连接。那么当UAV超过限制的飞行高度时或飞到禁飞区时,现有技术则无法对非法UAV进行及时、有效的通知监管,可能会造成飞行安全问题。
问题3,在图3的过程中,在UAV切换基站的场景下,目标基站无法对UAV的飞 行状态是否合法进行识别,更无法拒绝非法UAV的基站切换请求。
针对以上技术问题,本申请提供了一种通信方法及通信系统。在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的通信系统进行说明。
参见图4a,为本申请实施例提供的一种通信系统示意图。该通信系统可包括基站(包括基站1和基站2)、核心网设备,以及UE(这里示出了无人机和手机)。需要说明的是,在实际应用中,基站的数量、各类UE的UE数量均可以为一个或多个,图4a所示通信系统的基站与手机、无人机的数量仅为适应性举例,本申请对此不做限制。
如图4a所示,一个UE可以接入至少一个基站。一个基站也可以接入至少一个UE。例如,无人机与基站2相连接,手机与基站2相连接。此外,不同基站之间也可以进行通信连接。以及核心网设备可与至少一个基站相连接。例如核心网设备与基站1和基站2分别建立了通信连接。
其中,无人机与基站之间存在通信接口,这样,无人机与基站可以进行通信。例如该通信接口在本申请中称为Uu接口。
其中,核心网设备分别与基站1和基站2之间存在通信接口,这样核心网设备可以分别与基站1和基站1进行通信。例如该通信接口在本申请中称为N2接口或者NG接口。
若基站1和基站1之间有通信接口,则两者可以直接通信,这里的直接通信是指两个基站可以不需要通过核心网设备或者其他设备进行通信。例如,基站1和基站2之间的通信接口可以称为Xn接口。
若基站1和基站1之间没有通信接口,则两者不可以直接通信,在一种可能的方式中,没有通信接口的两个基站可以通过核心网设备进行通信。
上述通信系统可以用于支持第四代(fourth generation,4G)接入技术,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以支持第五代(fifth generation,5G)接入技术,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以用于支持第三代(third generation,3G)接入技术,例如通用移动通信系统(universal mobile telecommunications system,UMTS)接入技术;或者通信系统也可以用于支持第二代(second generation,2G)接入技术,例如全球移动通讯系统(global system for mobile communications,GSM)接入技术;或者,该通信系统还可以用于支持多种无线技术的通信系统,例如支持LTE技术和NR技术。另外,该通信系统也可以适用于窄带物联网系统(narrow band-internet of things,NB-IoT)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)以及面向未来的通信技术。
需要说明的是,本申请各实施例中涉及的基站(例如源基站、最后服务基站、或者目标基站等)可以是下一代基站(next generation NodeB,gNB)或者下一代演进型基站(next generation-evolved NodeB,ng-eNB)。其中,gNB为UE提供新空口(new radio,NR)的用户面功能和控制面功能,ng-eNB为UE提供演进型通用陆地无线接入(evolved  universal terrestrial radio access,E-UTRA)的用户面功能和控制面功能,需要说明的是,gNB和ng-eNB仅是一种名称,用于表示支持5G网络系统的基站,并不具有限制意义。各实施例中涉及的基站还可以为GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB)。或者,各实施例中涉及的基站还可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备、路边站点单元(road site unit,RSU)等。在一些实施例中,基站也可统称为网络设备。
可选地,结合于图4a所示的通信系统以及相应的通信方法。针对问题1和问题3,本申请的基站可获取UAV的飞行状态信息,以及获取该UAV的飞行范围的限制性信息(用于限制该UAV的飞行范围)。基站可根据该飞行状态信息和该限制性信息,来识别该UAV是否处于禁飞区或超高,以确定该UAV的飞行状态是否合法。在确定该UAV的飞行状态非法时,基站(示例性的,在基站切换场景下,这里为目标基站)可拒绝接入该UAV或拒绝该UAV的基站切换请求。从而在UAV接入或切换基站时,基站可对UAV的飞行状态的合法性进行识别,以拒绝非法UAV的接入或拒绝非法UAV的基站切换请求。
针对问题2,本申请的基站可向UAV下发UAV的飞行范围的限制性信息,那么在UAV根据自身的飞行状态和接收到的上述限制性信息而确定UAV处于禁飞区或超高时,则UAV可请求与该基站建立通信连接,以使基站可对该UAV进行及时、有效的通知监管,避免造成该UAV的飞行安全问题。
在一个实施例中,图5为示例性示出的本申请的基站的工作流程图。
示例性的,结合图4a,该基站可为图4a中的基站2,与基站通信的第一用户设备可为图4a中的无人机。如图5所示,该流程可包括以下步骤:
S101,基站获取第一用户设备的第一飞行状态信息。
其中,所述第一用户设备为请求与所述基站建立通信连接的第一类型的用户设备。
示例性的,第一类型可为指示无人机类型的用户设备,例如第一用户设备为图4a所示的UAV。
示例性的,该UAV请求与基站相连接的场景可包括但不限于:
场景1:UAV从空闲态接入基站。
例如,在图4b所示的场景中,UAV从空闲态通过Uu接口与基站2通信,来请求接入基站2,基站2可对UAV是否合法进行识别,以确定是否接入该UAV。
场景2:UAV从非激活态接入基站,以使UAV从非激活态切换为连接态。
例如,在图4b所示的场景中,UAV从非激活态通过Uu接口与基站2通信,来请求接入基站2,基站2可对UAV是否合法进行识别,以确定是否接入该UAV。
场景3:UAV因飞行位置发生变化,而导致UAV需要切换与之连接的基站。
例如,在图4c所示的场景中,UAV原本与基站1通过Uu接口相连接,因飞行位置发生变化,UAV按照虚线箭头的飞行方向,飞向基站2所在的小区,使得UAV接入的基站可发生切换,而使UAV请求与基站2进行通信连接。
示例性的,如图4c所示,基站2可分别与基站1、UAV进行通信,来对UAV是否合法进行识别。其中,基站2与UAV通过Uu接口进行通信。基站2可根据对UAV是否合法的识别结果,来确定是否将UAV连接的基站从基站1切换至基站2。
示例性的,如图4c所示,在基站2确定与UAV相连接之后,UAV与基站1之间基于Uu接口的通信链路将如虚线的双箭头所示而断开连接。UAV与基站2可通过Uu接口进行通信连接。
其中,图4b、图4c分别为结合图4a的部分示意图,其他类似部分未示出,请参照图4a及相关描述,这里不再赘述。
示例性的,S101中的第一飞行状态信息用于指示该UAV的飞行状态。
示例性的,UAV的第一飞行状态信息可包括但不限于以下至少之一:UAV所处的飞行高度信息、UAV的飞行位置信息、或UAV的最大飞行高度信息等。第一飞行状态信息还可包括更多未列举的飞行状态的信息,本申请对于第一飞行状态信息不做限制。
S102,基站获取所述第一用户设备的第一飞行范围信息。
其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息。
在一种可能的实现方式中,所述第一飞行范围信息可包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。可选地,该基站不包括预设飞行范围。
示例性的,第一授权信息可包括但不限于:用于限制该UAV的飞行高度的信息,和/或,用于限制该UAV的飞行位置的信息。
示例性的,用于限制该UAV的飞行高度的信息,可以是黑名单和/或白名单的信息。
示例性的,UAV的黑名单的信息和白名单的信息可以是限制的飞行高度的信息。例如UAV的黑名单的信息可包括50米以上高度禁飞等类似的禁飞高度信息,例如UAV的白名单的信息可包括40米至50米的高度范围内可飞等类似的允许飞行高度信息。
示例性的,用于限制该UAV的飞行位置的信息,同样可以是黑名单和/或白名单的信息。此外,关于该限制该UAV的飞行位置的信息的粒度,可以包括但不限于以下至少一种:小区粒度、TA粒度、或实际的地理围栏(如由经纬度围成的实际地理范围)等粒度。示例性的,UAV的黑名单的信息可包括该UAV在区域1内禁飞,该UAV的白名单的信息可包括该UAV在区域2内允许飞行。本申请对于UAV的第一授权信息的具体形式不做限制。
这样,基站在对请求接入的UAV的合法性进行识别时,可基于该UAV的授权信息,来识别UAV的飞行状态是否合法,例如是否处于禁飞区和/或飞行高度超过等,例如UAV的飞行高度超出授权信息所限制的允许的飞行高度范围,或,UAV的飞行位置处于该UAV对应的禁飞区域,则基站可确定UAV的飞行状态非法,以拒绝接入该UAV。那么基站在对UAV的合法性进行识别时,可结合关于该UAV的授权信息所限制的飞行范围,来识别UAV的飞行状态的合法性,使得在不同的UAV请求接入基站时,基站可结合请求接入的UAV的授权信息进行特定的合法性识别,可更匹配该UAV的飞行需求。示例性的,在基站确定UAV非法后,基站可通知核心网设备来对该非法UAV进行监管,避免UAV发生飞行安全问题。
在一种可能的实现方式中,该基站可配置有预设飞行范围,那么该第一飞行范围信息可包括该基站自身的预设飞行范围。
与UAV的授权信息(例如上述第一授权信息)类似,预设飞行范围信息同样可包括但不限于:用于限制UAV的飞行高度的信息,和/或,用于限制UAV的飞行位置的信息。
示例性的,UAV的授权信息与基站内的预设飞行范围信息均可用于限制UAV的飞行范围。二者的区别在于,某个UAV的授权信息为该特定的所述UAV的授权信息,用于限制特定的一个UAV的飞行高度和/或飞行位置。而基站内配置的预设飞行范围信息,则可用于限制部分或所有请求接入该基站的UAV的飞行高度和/或飞行位置。
关于在预设飞行范围内的:用于限制UAV的飞行高度的信息,和/或,用于限制UAV的飞行位置的信息的实现方式,与上述实现方式中,关于对授权信息的举例类似。同样可为黑名单和/或白名单的信息,位置信息的粒度可包括但不限于以下至少一种:小区粒度、TA粒度、或实际的地理围栏(如由经纬度围成的实际地理范围)等粒度。具体不再赘述,请参照关于UAV的授权信息的详细介绍。
例如基站自身预配置的黑名单的信息为:UAV1在区域1和区域3内禁飞;UAV2在区域2内禁飞。基站自身预配置的白名单的信息为:UAV1在区域2内允许飞行;UAV2在区域1和区域3内允许飞行。这样,基站可对特定的UAV进行接入控制。
又或者,基站自身预配置的黑名单的信息为任意一个请求接入的UAV,在区域1和区域3内禁飞;白名单的信息为任意一个请求接入的UAV,在区域2内允许飞行。这样,基站可将接入的UAV限制在特定的飞行范围内。
这样,基站在对请求接入的UAV的合法性进行识别时,可基于基站自身预配置的预设飞行范围信息,来识别UAV的飞行状态是否合法,例如是否处于禁飞区域和/或飞行高度超过等,例如UAV的飞行高度超出该预设飞行范围所限制的允许的飞行高度范围,或,UAV的飞行位置处于该预设飞行范围对应的禁飞区域,则基站可确定UAV的飞行状态非法,以拒绝接入该UAV。那么基站在对UAV的合法性进行识别时,无需获取UAV的授权信息,只需利用自身预配置的飞行范围的限制性信息来进行决策,可在识别UAV是否合法时,减少信令开销,提升识别效率,且更符合该基站侧对UAV的飞行范围的控制需求。示例性的,在基站确定UAV非法后,基站可通知核心网设备来对该非法UAV进行监管,避免UAV发生飞行安全问题。
在一种可能的实现方式中,所述第一飞行范围信息可包括所述预设飞行范围以及所述第一用户设备的第一授权信息。
示例性的,关于预设飞行范围以及第一授权信息的实现细节请参照上述实现方式,这里不再赘述。
这样,基站在对请求接入的UAV的合法性进行识别时,可结合UAV的授权信息,以及该基站自身预配置的预设飞行范围信息,来识别UAV的飞行状态是否合法。在基站确定UAV的飞行状态非法时,可拒绝接入该UAV。那么基站在对UAV的合法性进行识别时,可参考UAV的特定的授权信息,以及适用于该基站且通用于多个UAV的预设范围信息,以更灵活的决策,来识别UAV是否合法。示例性的,在基站确定UAV非法后,基站可通知核心网设备来对该非法UAV进行监管,避免UAV发生飞行安全问题。
S103,基站基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接。
示例性的,第一飞行范围信息所限制的飞行范围可包括所述预设飞行范围和/或所述第一飞行范围。
结合于上述任意一种实现方式,在一种可能的实现方式中,基站在基于所述第一飞行状态信息和所述第一飞行范围信息,确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则基站可确定该UAV的飞行状态不合法,那么基站可拒绝与所述第一用户设备建立通信连接。
示例性的,在一种可能的实现方式中,在第一飞行范围信息限制的飞行范围包括该UAV的第一授权信息所对应的上述第一飞行范围,以及该基站预先配置的预设飞行范围时,在基站检测到该第一飞行状态信息(飞行高度和/或飞行位置)超出第一飞行范围和该预设飞行范围这两种飞行范围中的任意一个飞行范围时,则基站可确定该UAV的飞行状态不合法。
在一种可能的实现方式中,在第一飞行范围信息限制的飞行范围包括该UAV的第一授权信息所对应的上述第一飞行范围,以及该基站预先配置的预设飞行范围时,预设飞行范围的优先级可高于第一飞行范围的优先级。那么基站可以预设飞行范围为主进行UAV是否合法的判定,在基站检测到第一飞行状态信息(飞行高度和/或飞行位置)超出该预设飞行范围时,不论该第一飞行状态信息是否在该第一飞行范围内,基站均将该UAV识别为飞行状态不合法。这样,基站可对请求接入该基站的多个UAV采用同一策略来识别UAV飞行状态是否合法,便于对UAV进行管控。并且,该实现方式也更加符合基站自身对接入的UAV的飞行限制。
在本实现方式中,基站在基于请求接入的UAV的飞行状态信息,以及该UAV的第一飞行范围信息,而确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则基站可确定该UAV的飞行状态不合法,那么基站可拒绝与所述第一用户设备建立通信连接。从而不论是从空闲态还是非激活态请求接入基站的UAV,亦或是该UAV从源基站待切换至本基站的UAV,本基站均可对该UAV的飞行状态是否合法进行检测,在确定其不合法时,能够拒绝非法UAV的接入。
结合于上述任意一种实现方式,在一种可能的实现方式中,基站在拒绝与所述第一用户设备建立通信连接时,基站可向核心网设备发送第四消息,其中,该第四消息用于指示第一用户设备(例如上述请求接入的该UAV)的飞行状态不合法(例如飞行高度不合法,和/或,飞行位置不合法等)。
在本实现方式中,在基站识别到请求接入的UAV的飞行状态不合法时,则基站可向核心网设备发送用于指示该UAV的飞行状态不合法的消息。示例性的,核心网设备可向UAS-NF发送用于指示该UAV的飞行状态不合法的消息,这样,可实现对非法UAV的管控,以避免该非法UAV发生飞行安全问题。
结合于上述任意一种实现方式,在一种可能的实现方式中,基站在拒绝与所述第一用户设备建立通信连接时,可向该第一用户设备发送用于拒绝与该第一用户设备建立通信连接的消息。
示例性的,该消息可以是释放RRC连接消息,该消息为用于指示UAV释放与该基站建立的RRC连接的消息。
示例性的,该消息还可以是RRC拒绝消息,该消息为用于指示拒绝对该UAV恢复RRC连接的消息。
这样,在基站识别到请求接入的UAV的飞行状态不合法时,可向该UAV发送拒绝连接的消息,以避免对非法UAV的接入。
结合于上述任意一种实现方式,在一种可能的实现方式中,基站在基于所述第一飞行状态信息和所述第一飞行范围信息,确定所述第一飞行状态信息在所述第一飞行范围信息限制的飞行范围内时,则基站可确定该UAV的飞行状态合法,那么基站可与所述第一用户设备建立通信连接。
示例性的,基站与UAV建立通信连接时,基站可向UAV和/或核心网设备发送相应消息,以使UAV与该基站建立通信连接,这里对基站所发送的消息不做限制。
结合于上述任意一种实现方式,在一种可能的实现方式中,基站在执行S101,以获取第一用户设备的第一飞行状态信息时,基站可向所述第一用户设备发送第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;基站接收来自所述第一用户设备的第二消息。
示例性的,所述第二消息包括所述第一飞行状态信息。
可选地,所述第二消息为所述第一消息的响应消息。
示例性的,第一消息可以是系统广播消息(System Information Block,SIB)。基站可向基站信号覆盖范围内的每个UE周期性的发送SIB,该SIB可携带基站的能力信息。该能力信息为表示该基站支持与无人机类型的UE进行通信。
示例性的,该第一消息也可以是UAV接入基站的过程中,基站向UAV发送的涉及UAV接入基站的已有消息,基站可在该已有消息中新增表示基站的能力信息的字段,以在该新增的字段内携带上述能力信息。例如第一消息可为RRC重配置消息,本申请对此不做限制。
示例性的,该第二消息可以是UAV接入基站的过程中,UAV向该基站发送的涉及UAV接入基站的已有消息,基站可在该已有消息中新增表示该UAV的飞行状态的字段(例如状态信息字段),以在该新增的状态信息字段内携带UAV的飞行状态,以实现UAV的飞行状态的上报。例如第二消息可为RRC建立请求消息,或RRC建立完成消息,或RRC重配置完成消息。示例性的,在UAV从非激活态触发请求与基站建立连接的场景下,该第二消息还可以是RRC恢复连接完成消息,也可以是RRC恢复连接的请求消息等。本申请对于第二消息不做具体限制。
示例性的,该第二消息还可以是UAV接入基站的过程中,UAV新增的一种用于上报飞行状态的消息,例如下述图6的实施例所涉及的第一状态上报消息,或第二状态上报消息等。
在本实现方式中,基站在获取UAV的飞行状态信息时,可通过向UAV发送第一消息,该第一消息可携带基站的能力信息,例如基站的能力信息可包括基站支持与无人机类型的UE进行通信。那么UAV在接收到该第一消息后,可响应于该第一消息所携带的 能力信息,而在第二消息中携带UAV的飞行状态,以通过第二消息来向基站上报UAV的飞行状态。这样,基站就实现了对UAV的飞行状态的获取,以便于及时识别该UAV的飞行状态是否合法。
结合于上述任意一种实现方式,下面结合不同场景来对本申请的通信方法进行阐述。
场景1:UAV从空闲态接入基站。
例如,在图4b所示的场景中,UAV从空闲态通过Uu接口与基站2通信,来请求接入基站2,基站2可对UAV是否合法进行识别,以确定是否接入该UAV。
结合于场景1,图6为示例性示出的本申请的通信系统在场景1下的通信方法的过程。该过程可包括如下步骤:
S400,基站向各UAV发送系统广播消息。
可选地,该系统广播消息(SIB)中可携带该基站是否支持与无人机类型的UE进行通信的信息。
需要说明的是,由于基站可定期发送系统广播消息,因此,本申请对于S400与图6中其他步骤之间的执行顺序不做限制。
S401,UAV向基站发送RRC建立请求消息。
可选的,如果UAV接收到的SIB中携带了该基站支持与无人机类型的UE进行通信的信息(简称“基站的能力信息”),则UAV可响应于S400中该系统广播消息中的基站的能力信息,而在RRC建立请求消息中携带自身的飞行状态信息,以在请求接入基站的过程中进行飞行状态信息的上报。
示例性的,S401的其他实现细节与图1中的S101类似,具体参照上文,这里不再赘述。
S402,基站向UAV发送RRC建立消息。
可选地,该RRC建立消息中可携带该基站是否支持与无人机类型的UE进行通信的信息。
在RRC建立消息中携带基站支持与UAV进行通信的信息(例如上述基站的能力信息)时,则本实施例的UAV则可响应于该基站的能力信息,而上报飞行状态,便于基站获取UAV的飞行状态。
示例性的,S402的实现细节与图1中的S102类似,具体参照上文,这里不再赘述。
S403,UAV向基站发送RRC建立完成消息。
可选的,UAV可响应于基站的能力信息(例如S400中该系统广播消息携带的该能力信息,或S402中RRC建立消息携带的该能力信息),而在RRC建立完成消息中携带自身的飞行状态信息,以在请求接入基站的过程中进行飞行状态信息的上报。
示例性的,S403的其他实现细节与图1中的S103类似,具体参照上文,这里不再赘述。
可选地,S404,UAV向基站发送第一状态上报(State Report)消息。
示例性的,以系统广播消息携带基站的能力信息为例,在S400中的系统广播消息包括基站的能力信息,且UAV未通过S401或S403所示的消息进行飞行状态信息的上报时,UAV还可以响应于该系统广播消息,以一种新的信令单独进行飞行状态信息的上报,例 如这里所述的第一状态上报消息。
当然,在一些实现方式中,UAV也可以通过多个消息来对同一飞行状态信息进行多次上报,以确保基站对该飞行状态信息的可靠性接收。例如UAV可分别通过S401、S403、S404进行同一飞行状态信息的上报,本申请对此不做限制。
S405,基站向AMF发送初始UE消息。
示例性的,S405的实现细节与图1中的S104类似,具体参照上文,这里不再赘述。
S406,AMF向基站发送初始上下文建立请求消息。
其中,该初始上下文建立请求消息可包括至少一个UAV的授权信息。这里的至少一个UAV包括图6中的UAV。
示例性的,核心网设备可基于S405中的初始UE消息所携带的UAV的标识,来将该UAV的授权信息携带在初始上下文建立请求消息中,反馈给基站。
示例性的,核心网设备也可以将多个UAV各自的授权信息均通过该初始上下文建立请求消息,来发送至基站。
关于UAV的授权信息的解释,可参照上述实现方式中对于第一授权信息的解释,原理类似,这里不再赘述。
示例性的,S406的其他实现细节与图1中的S105类似,具体参照上文,这里不再赘述。
可选地,在基站接收到核心网设备(这里为AMF)发送的初始上下文建立请求消息之后,则基站可获取到该UAV的授权信息。如果S400中所述的SIB携带了基站的能力信息,则基站易通过UAV发送的S401、S403、S404中的至少一种消息内获取到该UAV的飞行状态信息。那么基站可基于该UAV的授权信息和该UAV的状态信息,来执行S407。
可选地,S407,基站确定是否接入该UAV。
示例性的,基站可基于从核心网设备获取到的该UAV的授权信息,以及该UAV上报的该UAV的状态信息,来确定是否与该UAV建立通信连接。
S407的具体实现细节和判断策略,可参照图5实施例中关于S103的相关实施例的具体描述,这里不再赘述。
可选地,在S407之后,基站确定UAV的飞行状态不合法,则基站确定拒绝接入该UAV。那么基站在拒绝接入UAV时,基站可执行S408和S409,从而触发AMF执行S410,并结束流程。
S408,基站可向UAV发送释放RRC连接消息。
示例性的,UAV接收到该释放RRC连接(RRCRelease)消息后,可释放已建立完成的RRC连接。
示例性的,UAV响应于该释放RRC连接消息后,可释放RRC连接,从而使得该UAV从连接态切换为空闲态。
S409,基站可通知AMF该UAV的飞行状态不合法。
示例性的,基站可向AMF发送通知(notification)消息,并且,该消息可携带表示该UAV的飞行状态不合法的信息。
示例性的,该notification消息为基站新生成的一种消息,用于通知UAV的飞行状态 不合法。
示例性的,基站也可以在向AMF发送的已有消息中新增关于UAV的飞行状态是否合法的字段,以通过该已有消息通知AMF该UAV的飞行状态不合法。
本申请对于该通知消息不做具体限制。
S410,AMF可通知无人机系统网元(Unmanned Aerial System Network Function,UAS-NF)该UAV的飞行状态不合法。
示例性的,AMF可向UAS-NF发送notification消息,示例性的,该消息可携带表示该UAV的飞行状态不合法的信息。
示例性的,该notification消息为AMF新生成的一种消息,用于通知UAV的飞行状态不合法。
示例性的,AMF也可以在向UAS-NF发送的已有消息中新增关于UAV的飞行状态是否合法的字段,以通过该已有消息通知UAS-NF该UAV的飞行状态不合法。
本申请对于该通知消息不做具体限制。
可选地,在S407之后,基站确定UAV的飞行状态合法,则确定接入该UAV。那么基站可按照UE接入流程继续执行S411。
可选地,如果S400中的SIB内不包括基站的能力信息,则UAV无法在S401、S403、S404中任意一个消息中进行飞行状态的上报,从而无需执行S407至S409,基站可在接收到S406中的初始上下文建立请求消息之后,直接执行S411。
S411,基站向UAV发送安全模式命令消息。
可选地,在SIB中不包括基站是否支持与无人机类型的UE进行通信的信息的情况下,基站可在该安全模式命令消息中携带上述信息,例如基站的能力信息。
示例性的,S411的实现细节与图1中的S106类似,具体参照上文,这里不再赘述。
S412,UAV向基站发送安全模式完成消息。
可选地,UAV可响应于基站发送的基站的能力信息(可以是SIB中携带的,或者也可以是该安全模式命令消息中携带的,本申请对于该基站的能力信息的信息载体不做限制),而在该安全模式完成消息中携带飞行状态信息,以进行飞行状态的上报。
示例性的,S412的实现细节与图1中的S107类似,具体参照上文,这里不再赘述。
S413,基站向UAV发送RRC重配置消息。
可选地,在SIB中不包括基站是否支持与无人机类型的UE进行通信的信息的情况下,基站可在该RRC重配置消息中携带上述信息,例如基站的能力信息。
示例性的,S413的实现细节与图1中的S108类似,具体参照上文,这里不再赘述。
S414,UAV向基站发送RRC重配置完成消息。
可选地,UAV可响应于基站发送的基站的能力信息(可以是SIB中携带的,或者也可以是该安全模式命令消息中携带的,本申请对于该基站的能力信息的信息载体不做限制),而在该RRC重配置完成消息中携带飞行状态信息,以进行飞行状态的上报。
示例性的,UAV可响应于该RRC重配置消息中的基站的能力信息,而在RRC重配置完成消息中携带飞行状态信息进行状态信息上报。
示例性的,S414的实现细节与图1中的S109类似,具体参照上文,这里不再赘述。
可选地,S415,UAV向基站发送第二状态上报(State Report)消息。
示例性的,在UAV发送RRC重配置完成消息之后,UAV未通过任意一个消息进行飞行状态的上报,那么UAV可以一种新的信令单独进行飞行状态信息的上报,例如这里所述的第二状态上报消息。
当然,在一些实现方式中,UAV也可以通过多个消息来对同一飞行状态信息进行多次上报,以确保基站对该飞行状态信息的可靠性接收。例如UAV未通过S401、S403、S404进行同一飞行状态信息的上报,从而未触发S407至S410的执行,UAV可通过S412、S414、S415中的至少一个消息进行飞行状态的上报,本申请对此不做限制。
可选地,S416,基站确定是否接入该UAV。
示例性的,S416的实现原理与S407类似,这里不再赘述。
可选地,在S416之后,基站确定UAV的飞行状态不合法,则确定拒绝接入该UAV。那么基站在拒绝接入UAV时,可基站执行S417和S418,从而触发AMF执行S419,并结束流程。
S417,基站可向UAV发送释放RRC连接消息。
示例性的,S417的实现原理与S408类似,这里不再赘述。
S418,基站可通知AMF该UAV的飞行状态不合法。
示例性的,S418的实现原理与S409类似,这里不再赘述。
S419,AMF可通知UAS-NF该UAV的飞行状态不合法。
示例性的,S419的实现原理与S410类似,这里不再赘述。
S420,基站向AMF发送初始上下文建立响应消息。
示例性的,S420的实现细节与图1中的S110类似,具体参照上文,这里不再赘述。
在一种可能的实现方式中,在图6中,如果基站已经通过S401、S403或S404接收到UAV上报的飞行状态信息,且基站执行了S407,则UAV可无需在S412、S414中进行飞行状态信息的上报,并且上述方法中可无需执行S415、S416、S417、S418、S419,而从S414转至执行S420。
在一种可能的实现方式中,在图6中,如果基站没有通过S401、S403或S404接收到UAV上报的飞行状态信息,则上述方法中无需执行S407至S410。那么UAV可在S412、S414或S415中进行飞行状态信息的上报,在UAV的飞行状态非法时,使得下述步骤S416、S417、S418、S419可被执行,并结束流程。
基站执行了S407,则UAV可无需在S412、S414中进行飞行状态信息的上报,并且上述方法中可无需执行S415、S416、S417、S418、S419,而从S414转至执行S420。
在图6对应的实现方式中,基站通过在系统广播消息或RRC重配置消息或RRC建立消息中指示基站支持与UAV类型的UE进行通信。那么当UAV收到上述任意一种消息后,则可响应于该消息主动上报其飞行高度/或飞行位置信息至基站,上报飞行状态的方式可以是在UAV向基站发送的已有消息中新增飞行状态字段以添加飞行状态,也可以新增一种指示飞行状态的消息。基站再通过核心网设备来获取该UAV的授权信息。那么基站可将UAV的授权信息和/或基站自身预配置的关于飞行范围的限制性信息,来与UAV上报的飞行状态信息进行比较,从而实现飞行状态非法的UAV的识别功能,以拒绝接入 非法UAV。并且,在UAV的飞行状态非法时,基站可通知核心网设备来对该UAV进行管控,实现了对请求接入的UAV的控制。
在处于空闲态或非激活态的UAV为非法UAV(例如UAV处于禁飞区)时,针对现有技术无法触发该非法UAV来请求与基站建立通信连接的问题,本申请提供了一种通信系统及通信方法以解决上述技术问题,下面结合图7来进行详细描述。
如图7所示,该过程可包括如下步骤:
可选地,S4001,基站可从核心网设备获取至少一个UAV的授权信息。
示例性的,这里的至少一个UAV可为驻留在该基站的小区内的部分或全部UAV。其中,该至少一个UAV包括图7所示的驻留在该基站小区内的处于空闲态或非激活态的UAV。
S400,基站向各UAV发送系统广播消息。
示例性的,该系统广播消息可携带指示禁飞区的信息。
在一种可能的实现方式中,在基站自身预配置有预设飞行范围时,该系统广播消息可携带该基站的预设飞行范围的信息,例如禁飞区包括该预设飞行范围。
在一种可能的实现方式中,该系统广播消息可携带S4001中基站从核心网设备获取到的上述至少一个UAV(例如多个UAV)的各自的授权信息,例如该禁飞区包括多个UAV各自的授权信息。
在一种可能的实现方式中,该禁飞区可包括该预设飞行范围和该多个UAV各自的授权信息。
示例性的,该系统广播消息与图6中的系统广播消息可以为同一消息,那么基站下发至各个UAV的系统广播消息中不仅可携带基站的能力信息,还可携带对UAV的禁飞区的信息。
在其他实施例中,携带该禁飞区的信息的消息,可以与携带基站的能力信息的消息不同,本申请对此不做限制。
如图7所示,驻留在该基站的小区内的UAV可接收到S400中的系统广播消息,例如该UAV处于空闲态或非激活态,那么该UAV可在该S400内的系统广播消息所携带的禁飞区的信息中识别到对应于本UAV的禁飞区的信息,例如包括该UAV的授权信息以及该基站的预设飞行范围。
S4002,UAV确定处于该UAV对应的禁飞区。
示例性的,UAV可响应于S400中的系统广播消息,来获取自身的飞行状态;并将该自身的飞行状态,与对应于该UAV的禁飞区的信息进行比较,如果飞行状态(例如飞行高度或飞行位置)处于该UAV的禁飞区,则可确定该UAV的飞行状态非法;如果飞行状态(例如飞行高度或飞行位置)未处于该UAV的禁飞区,则可确定该UAV的飞行状态合法。
关于UAV基于该UAV对应的禁飞区的信息,以及该UAV的飞行状态,来确定该UAV的飞行状态是否合法的具体实现原理,可参照图5相关实施例中关于S103的细节,这里不再赘述。
请继续参照图7,如果该UAV处于空闲态,那么UAV识别到自身的飞行状态非法,则可以触发S401的执行。
可选地,S401,UAV向基站发送RRC建立请求消息。
示例性的,图7的S401的实现细节可与现有技术中图1中的S101的实现细节相同,这里不再赘述。
或者,示例性的,图7的S401的实现细节可与图6中的S401相同,这里不再赘述。
在本实现方式中,基站可向无人机类型的UE发送包括用于限制至少一个UAV的飞行范围的禁飞区的信息,那么当处于空闲态的UAV检测到自身飞行状态处于该禁飞区时,则可触发UAV向基站发送RRC建立请求消息,以请求与基站建立通信连接。
可选地,如图7所示,S401之后,可接图6所示的过程。那么本申请的基站通过向UAV发送禁飞区的信息,以触发空闲态的非法UAV请求与基站建立连接后。可选地,基站可对该请求接入的UAV进行接入控制,具体过程可参照图6实施例的描述,简而言之,UAV可按照图6实施例的方法来上报自身的飞行状态,基站可基于从核心网设备获取到的该UAV的授权信息以及基站的预设飞行范围,来结合UAV的飞行状态对UAV执行的接入控制,从而告知AMF该UAV的飞行状态非法,AMF在告知UAS-NF,该UAV的飞行状态非法,以实现对非法UAV的及时和有效的通知监管,降低该UAV的飞行事故率。
请继续参照图7,如果该UAV处于空闲态,那么UAV识别到自身的飞行状态非法,则可以触发S501的执行。
可选地,S501,UAV向基站发送RRC恢复连接的请求消息。
示例性的,图7的S501的实现细节可与现有技术中图2中的S201的实现细节相同,这里不再赘述。
或者,示例性的,图7的S501的实现细节可与图8中的S501相同,这里不再赘述。
在本实现方式中,基站可向无人机类型的UE发送包括用于限制至少一个UAV的飞行范围的禁飞区的信息,那么当处于非激活态的UAV检测到自身飞行状态处于该禁飞区时,则可触发UAV向基站发送RRC恢复连接的请求消息,以请求与基站恢复通信连接。可以理解的是,UAV请求与基站恢复通信连接也是UAV的一种请求与基站建立通信连接的方式。
可选地,如图7所示,S501之后,可接图8所示的过程。本申请的基站通过向UAV发送禁飞区的信息,以触发非激活态的非法UAV请求与基站建立连接后。可选地,结合于图8的过程,基站可对该请求接入的非激活态的UAV进行接入控制,具体过程可参照下述图8实施例的描述。简而言之,UAV可按照图8实施例的方法来上报自身的飞行状态,基站可基于从核心网设备获取到的该UAV的授权信息以及基站的预设飞行范围,来结合UAV的飞行状态对UAV执行的接入控制,从而告知AMF该UAV的飞行状态非法,AMF在告知UAS-NF,该UAV的飞行状态非法,以实现对非法UAV的及时和有效的通知监管,降低该UAV的飞行事故率。
在图7的实施例中,当UAV处于空闲态或非激活态并驻留在基站的小区内,基站通过在系统广播消息中携带飞行范围的限制信息(如限制的高度或禁飞区域位置等),UAV 结合于该系统广播消息,当UAV检测到自身飞行高度高于该限制高度时或飞行位置处于禁飞区域位置时,则可触发UAV请求与基站建立连接,以请求进入连接态。
在现有技术中,在UAV没有与基站连接时,基站无法确定该UAV的飞行状态是否非法,不利于UAV的飞行监管。在本实施例中,为了实现无人机的飞行状态的监管,基站可在系统广播消息中携带UAV的禁飞区等飞行范围的限制信息,那么在未与基站连接的UAV(例如处于空闲态或处于非激活态)的飞行状态非法时,本申请的方法可触发UAV发送请求与该基站建立通信连接的消息。
此外,在UAV接入进入连接态的过程中,可上报自身飞行高度或位置信息给基站,基站再通过核心网设备来获取该UAV的授权信息,并将授权信息、基站自身的预设飞行范围,与UAV上报的飞行状态信息进行比较,就可以对UAV的飞行状态是否合法。在基站检测到该UAV的飞行状态非法后,可拒绝接入该UAV,以及及时通知核心网设备进行该UAV的管控,以实现对处于空闲态或非激活态的非法UAV的管控。
场景2:UAV从非激活态接入基站,以使UAV从非激活态切换为连接态。
例如,在图4b所示的场景中,UAV从非激活态通过Uu接口与基站2通信,来请求接入基站2,基站2可对UAV的飞行状态是否合法进行识别,以确定是否接入该UAV。
图8为示例性示出的处于非激活态的UAV在接入基站的过程中,对该UAV进行管控的过程。
结合于场景2,图8为示例性示出的本申请的通信系统在场景2下的通信方法的过程。该过程可包括如下步骤:
S501,UAV向基站发送RRC恢复连接的请求消息。
可选地,结合图7实施例的描述,S400中基站下发的系统广播消息不仅可包括禁飞区的信息,还可包括基站的能力信息。那么在一种可选的实现方式中,S501中UAV可在RRC恢复连接的请求消息中携带该UAV的飞行状态信息(如飞行高度,和/或,飞行位置信息,和/或,最大飞行高度等),以响应于该系统广播消息,而向基站上报飞行状态。
示例性的,S501的其他实现细节与现有技术的图2中的S201类似,这里不再赘述。
S502,基站向该UAV的最后服务基站发送取回UE上下文的请求消息。
可以理解的是,最后服务基站为在该UAV处于RRC非激活态之前,最后一次服务该UAV的基站。
示例性的,S502的实现原理与现有技术的图2中的S202类似,这里不再赘述。
S503,基站接收来自最后服务基站的取回UE上下文的响应消息。
示例性的,该响应消息可包括该UAV的上下文信息。
可选地,该响应消息可包括UAV的授权信息。
示例性的,如果最后服务基站不支持与无人机类型的UE通信,则该响应消息不包括该UAV的授权信息。如果最后服务基站支持与无人机类型的UE通信,则该响应消息可包括该UAV的授权信息。
示例性的,S503的其他实现细节与现有技术的图2中的S203类似,这里不再赘述。
在一种可能的实现方式中,UAV在S501中通过RRC恢复连接的请求消息进行了飞 行状态的上报,且最后服务基站支持与无人机类型的UE通信,则基站可通过S503来从最后服务基站获取到该UAV的授权信息,以用于S505的判定。该实现方式中,无需执行S504,在S503之后转至执行S505。
在本实现方式中,非激活态的UAV请求与基站恢复连接时,如果UAV上报飞行状态至基站,且在该UAV处于非激活态之前最后进行通信连接的最后服务基站,为支持与无人机类型的UE进行通信的基站,则基站可从该最后服务基站获取到该UAV的授权信息,利于利用该授权信息和/或基站的自身预配置的限制性信息,来对该飞行状态的合法性进行识别,以确定该UAV的飞行状态是否合法。该过程中,基站无需从核心网设备再请求该UAV的授权信息,在从非激活态的UAV请求接入基站以恢复连接态的过程中,基站能够快速的对UAV的飞行状态的合法性进行检测,提升是否接入该UAV的决策效率。
在一种可能的实现方式中,UAV在S501中通过RRC恢复连接的请求消息进行了飞行状态的上报,且最后服务基站不支持与无人机类型的UE通信,则基站在S503之后,可执行S504来从核心网设备获取到该UAV的授权信息,以用于S505的判定。
在本实现方式中,非激活态的UAV请求与基站恢复连接时,如果UAV上报飞行状态至基站,且在该UAV处于非激活态之前最后进行通信连接的最后服务基站,为不支持与无人机类型的UE进行通信的基站,则基站可从核心网设备来获取到该UAV的授权信息,以利于利用该授权信息和/或基站的自身预配置的限制性信息,来对该飞行状态的合法性进行识别,以确定该UAV的飞行状态是否合法。该过程中,即便该UAV的最后服务基站为传统的不支持与UAV通信连接的基站,本申请实施例的基站仍旧可以利用从核心网设备获取到的该UAV的授权信息,来对从非激活态请求接入基站的UAV的飞行状态的合法性进行检测,以使本申请的基站能够覆盖更多的应用场景,提升对UAV的飞行状态的合法性检测的可靠性。
在另一种可能的实现方式中,UAV未在S501中通过RRC恢复连接的请求消息上报飞行状态,那么不论该最后服务基站是否为支持与无人机类型的UE通信的基站(换言之,不论S503中的取回UE上下文的响应消息中是否携带该UAV的授权信息),则无需执行S504、S505、S506b、S507以及S508,而直接执行S506a。
在本实现方式中,在UAV未在RRC恢复连接的请求消息中上报飞行状态的情况下,则基站无法对该UAV的飞行状态是否合法进行识别,因此,也无需从核心网设备获取该UAV的授权信息,以及进行是否接入该UAV的判定,可响应于S501中的RRC恢复连接的请求消息,通过S506a来恢复UAV的RRC连接,使得UAV处于连接态。后续待UAV上报飞行状态后,再对UAV的飞行状态的合法性进行判定,以决定是否接入该UAV。
可选地,S504,基站从AMF获取UAV的授权信息(Subscription Data)。
示例性的,基站从AMF获取到的可以是一个或多个UAV的授权信息,并且该授权信息可包括图8中请求恢复连接的UAV的授权信息,本申请对于S504中相应的UAV的数量不做限制。
示例性的,关于基站从核心网设备获取UAV的授权信息的具体方式可采用已知技术中的任意一种方式,本申请对此不做限制。
可选地,S505,基站确定是否接入UAV。
示例性的,S505的实现原理与图6中的S407、S416的实现原理类似,这里不再赘述。
示例性的,基站在确定是否接入UAV时,可结合UAV的授权信息来确定飞行状态是否超出限制的飞行范围。其中,在飞行状态超出相应的飞行范围时,则基站拒绝接入该UAV,否则,基站允许接入该UAV。当然,基站也可以结合基站自身的预设飞行范围,来确定飞行状态是否超出限制的飞行范围。具体决策策略可参考图5实施例中S103的相关描述,这里不再赘述。
在一种可能的实现方式中,在S505中,基站确定该UAV的飞行状态合法,确定可接入该UAV,则转至执行S506a。
在另一种可能的实现方式中,在S505中,基站确定该UAV的飞行状态不合法,基站可拒绝接入该UAV,则转至执行S506b。
可选地,S506b,基站向UAV发送RRC拒绝消息。
示例性的,RRC拒绝(RRCReject)消息的解释可参照上文,这里不再赘述。
可选的,该RRC拒绝消息中可包括基站设置的一个预设时长。该UAV在接收到该RRC拒绝消息后,在该预设时长内UAV不再发送S501所述的RRC恢复连接的请求消息,使得UAV在一定时长内不再接入该基站。可避免基站对飞行状态非法的UAV的接入请求的多次响应,减少基站在响应该非法UAV的接入请求的过程中的信令开销,利于提升基站性能。
可选地,S507,基站向AMF通知该UAV的飞行状态不合法。
在S506b之后,基站可执行S507。
示例性的,S507的实现原理与图6中的S409的实现原理类似,这里不再赘述。
可选地,S508,AMF向UAS-NF通知该UAV的飞行状态不合法。
示例性的,S508的实现原理与图6中的S410的实现原理类似,这里不再赘述。
在S508之后,则结束流程。
在本实现方式中,在非激活态的UAV请求与基站建立连接时,基站可结合该UAV的授权信息(从该UAV的最后服务基站获取,或者从核心网设备获取),和/或,基站自身的预设飞行范围,来识别UAV上报的飞行状态是否存在超高或处于禁飞区域等情况。在确定UAV的飞行高度超高或处于禁飞区域时,则确定该UAV为非法UAV,可拒绝与该UAV恢复连接,并通知核心网设备来对该非法UAV进行管控,能够实现从非激活态恢复至连接态的场景进行UAV的飞行状态的合法性的检测,以利于对UAV的飞行状态的监管。
S506a,基站向UAV发送RRC恢复连接(RRCResume)消息。
如上文所述,在基站经过S505的决策,确定该UAV的飞行状态合法,或者基站未获取到UAV上报的飞行状态时,则基站可向UAV发送RRC恢复连接消息,以将UAV从非激活态恢复至连接态。
关于RRC恢复连接消息的解释可参照图2中的S204,这里不再赘述。
S509,UAV向基站发送RRC恢复连接完成消息。
示例性的,如图8所示,在UAV响应于S506a中的RRC恢复连接消息,而恢复RRC连接后,使得UAV与该基站建立了通信连接,而处于连接态。那么该UAV可发送RRC恢复连接完成消息至基站。
可选地,该RRC恢复连接完成消息可携带该UAV的飞行状态信息。
在一种可能的实现方式中,参照图8,在UAV未通过S501上报飞行状态的情况下,则使得基站无法通过S505进行接入决策,而直接接入该UAV。那么UAV可在这里的RRC恢复连接完成消息中上报自身的飞行状态信息,以便于基站对该UAV的飞行状态的合法性进行检测,以确定是否接入该UAV。
示例性的,UAV上报的飞行状态信息,可以是UAV对基站下发的SIB中携带的基站能力信息的响应信息。
示例性的,S509的其他实现细节与现有技术的图2中的S205类似,这里不再赘述。
在一种可能的实现方式中,UAV在S509中通过RRC恢复连接的请求消息进行了飞行状态的上报,且最后服务基站支持与无人机类型的UE通信,则基站可通过S503来从最后服务基站获取到该UAV的授权信息,以用于S511的判定。该实现方式中,无需执行下述S510,在S509之后转至执行S511。
在一种可能的实现方式中,UAV在S509中通过RRC恢复连接的请求消息进行了飞行状态的上报,且最后服务基站不支持与无人机类型的UE通信,则基站在S509之后,可执行S510来从核心网设备获取到该UAV的授权信息,以用于S511的判定。
在另一种可能的实现方式中,UAV已通过S501上报了自身飞行状态至基站,则UAV执行S509的场景为基站在S505中确定该UAV的飞行状态合法,可接入该UAV,从而通过S506a转至执行S509。则UAV可无需在S509中通过RRC恢复连接的请求消息上报飞行状态。那么在S509中不包括飞行状态信息的情况下,在S509之后,基站转至执行下述S206。换言之,基站只需要通过S505或S511来执行接入决策即可,无需重复判断。这样,可避免基站在对同一UAV的一次接入请求的响应过程中,多次对该UAV的飞行状态的合法性进行检测,可减少不必要的信令开销。
可选地,S510,基站从AMF获取UAV的授权信息。
示例性的,S510的实现原理与S504的实现原理类似,这里不再赘述。
可选地,S511,基站确定是否接入UAV。
示例性的,S511的实现原理与S505类似,这里不再赘述。
在一种可能的实现方式中,基站通过S511检测UAV的飞行状态的合法性时,S506a已执行,说明该UAV未经过合法性判断已接入UAV。那么经过本次S511的检测,如果确定该UAV的飞行状态非法,则基站可拒绝与该UAV连接,具体可包括执行S512和S513,使得该UAV与该基站已建立的连接被断开,并通知核心网设备来对该非法UAV进行管控。
可选地,S512,基站向UAV发送释放RRC连接消息。
示例性的,释放RRC连接消息的解释具体参照上文,这里不再赘述。
可选地,S513,基站向AMF通知该UAV的飞行状态不合法。
示例性的,S513的实现原理与S507的实现原理类似,这里不再赘述。
可选地,S514,AMF向UAS-NF通知该UAV的飞行状态不合法。
示例性的,S514的实现原理与S508的实现原理类似,这里不再赘述。
在S514之后,结束流程。
在一种可能的实现方式中,基站通过S511检测UAV的飞行状态的合法性时,S506a已执行,说明该UAV未经过合法性判断已接入UAV。那么经过本次S511的检测,如果确定该UAV的飞行状态合法,则基站可与该UAV连接,具体可包括执行S206至S209。
可选地,S206,基站向最后服务基站发送转发地址。
示例性的,这里的S206的实现原理与图2中的S206的实现原理类似,这里不再赘述。
S207,基站向AMF发送路径切换请求消息。
示例性的,这里的S207的实现原理与图2中的S207的实现原理类似,这里不再赘述。
S208,AMF向基站发送路径切换请求的响应消息。
示例性的,这里的S208的实现原理与图2中的S208的实现原理类似,这里不再赘述。
S209,基站向最后服务基站发送UE上下文释放消息。
示例性的,这里的S209的实现原理与图2中的S209的实现原理类似,这里不再赘述。
需要说明的是,在图8实施例中,关于UAV上报飞行状态的消息并不限制于图8的示例,UAV还可以新的信令方式,来单独进行飞行状态的上报,本申请对此不做限制。
在图8对应的实现方式中,在处于非激活态的UAV请求接入基站时,UAV可响应于基站的系统广播消息所携带的基站的能力信息,而上报飞行状态,例如在RRC恢复连接的消息,或者在RRC恢复连接完成消息中上报。而基站在获取该UAV的授权信息时,如果该UAV的最后服务基站为支持与无人机类型的UE通信的基站时,则基站可从该最后服务基站上报的包括该UAV的上下文的消息中,获取到该UAV的授权信息。如果UAV的最后服务基站为不支持与无人机类型的UE通信的基站时,则基站可从核心网设备获取到该UAV的授权信息。这样,基站可结合自身的预配置的限制性信息(例如预设飞行范围)和/或该UAV的授权信息,来识别该UAV的飞行高度超高或飞行位置是否处于禁飞区域,以确定该UAV的飞行状态是否合法。在确定该UAV的飞行状态不合法时,可拒绝接入该UAV,并通知核心网设备来对该非法UAV进行管控,避免造成该UAV的飞行安全问题。在确定该UAV的飞行状态合法时,则可接入该UAV,以使该UAV从非激活态恢复至连接态。
场景3:UAV因飞行位置发生变化,而导致UAV需要切换与之连接的基站。
例如,在图4c所示的场景中,UAV原本与源基站(这里为基站1)通过Uu接口相连接,因飞行位置发生变化,UAV按照虚线箭头的飞行方向,飞向目标基站(这里为基站2)所在的小区,使得UAV接入的基站可发生切换,而使UAV与基站2进行通信连接。
在图4c所示的无人机的飞行位置发生变化的情况下,基站1可确定与该UAV通信 连接的基站从该基站1切换至基站2,换言之,UAV待切换至的目标基站可源基站来确定。在该基站切换的场景下,结合于图5实施例,目标基站可对该UAV进行飞行状态的合法性检测,以确定是否接入该UAV。对于在目标基站侧飞行状态非法的UAV,目标基站可拒绝对该UAV切换基站。对于在目标基站侧飞行状态合法的UAV,目标基站可将该UAV连接的基站,从源基站切换至目标基站。
在场景3中,可划分为场景3a和场景3b。
在场景3a中,源基站和目标基站均支持与无人机类型的UE进行通信。
在场景3b中,源基站不支持与无人机类型的UE进行通信,目标基站支持与无人机类型的UE进行通信。
下面分别结合场景3a和场景3b,来对基站切换场景下,目标基站对接入的UAV的合法性进行检测及执行控制的具体过程。
结合于场景3a,图9为示例性示出的本申请的通信系统在场景3a下的通信方法的过程。该过程可包括如下步骤:
S601,源基站向UAV发送测量控制信息。
示例性的,源基站可通过RRC重配置消息向UE下发测量控制(Measurement Control)信息。示例性的,RRC重配置消息中可包括用于指示该UAV上报飞行状态的信息。
这里的S601的其他实现细节与图3中的S301的实现原理类似,这里不再赘述。
S602,UAV向该基站发送测量结果上报(Measurement Reports)消息。
示例性的,该测量结果可包括UAV的飞行状态信息。
示例性的,这里的S602的其他实现细节与图3中的S302的实现原理类似,这里不再赘述。
S603,源基站根据测量结果进行切换决定。
示例性的,源基站可确定UAV的目标小区。
示例性的,这里的S603的实现原理与图3中的S303的实现原理类似,这里不再赘述。
S604,源基站向目标基站发送切换请求。
示例性的,该切换请求可包括上述UAV的授权信息,以及该UAV的飞行状态信息。例如该飞行状态信息为UAV在S602中上报的飞行状态信息。这样,目标基站从源基站侧获取到的该UAV的飞行状态信息为该UAV的最新飞行状态信息,以利于准确地进行基站切换的控制决策。
源基站携带在该切换请求中的该UAV的授权信息,可以是在UAV接入该源基站时,源基站从AMF获取到的该UAV的授权信息。
示例性的,结合于场景1的图6实施例可以确定,在UAV接入基站(例如这里的源基站)的过程中,基站可获取到该UAV的授权信息。
示例性的,该切换请求可包括上述目标小区的ID。
示例性的,这里的S604的其他实现细节与图3中的S304的实现细节类似,这里不再赘述。
在本实现方式中,在UAV切换基站的场景下,源基站和目标基站均为支持与无人机 类型的UE进行通信的基站时,目标基站可从源基站处获取待接入的UAV的授权信息及其飞行状态信息,并可选地,结合目标基站的自身的预设飞行范围,来决策该UAV的飞行状态在目标基站处是否合法。在确定UAV的飞行状态在目标基站处合法时,目标基站可接入该UAV,否则可忽略该切换请求。在UAV切换基站的一些场景下,UAV在源基站处的飞行状态是合法的,但是该UAV的飞行状态在目标基站处可能是非法的。本申请的目标基站可结合UAV的授权信息和/或自身的预设飞行范围,来决策该UAV的飞行状态在目标基站处是否合法,能够避免在源基站处合法,而在目标基站处非法的UAV从源基站切换至与目标基站通信连接。
S605,目标基站执行接入控制。
示例性的,目标基站可从源基站获取到UAV的授权信息及其飞行状态。
可选地,目标基站可包括预设飞行范围。
目标基站可根据UAV的授权信息,和/或,目标基站的预设飞行范围,和/或目标小区的覆盖范围(可选地),来识别该UAV的飞行状态是否合法。
示例性的,如果该UAV的飞行状态合法,则目标基站可接入该UAV,以将UAV从源基站切换至目标基站进行连接,使得该通信方法可包括S606至S609。
示例性的,如果该UAV的飞行状态不合法(即非法),则目标基站可忽略S604的切换请求,以拒绝接入该UAV,避免将在目标基站处飞行状态非法的UAV切换至目标基站相连接。当然,本申请对于拒绝接入该UAV的方式不做限制,还可是其他已有或新增的拒绝方式。
此外,考虑到该UAV尚未切换至该目标基站,目标基站可无需向AMF发送表示该UAV不合法的消息以进行UAV的管控。
示例性的,目标基站将UAV的飞行状态识别为非法的具体策略可包括但不限于:
策略1:在UAV的飞行状态超出以下任意一个飞行范围(UAV的授权信息限制的飞行范围、该预设飞行范围、目标小区所限制的飞行范围)时,目标基站可将该UAV的飞行状态识别为非法;在UAV的飞行状态没有超出上述三种飞行范围的情况下,则目标基站可将UAV的飞行状态识别为合法。
策略2:如果预设飞行范围与UAV的授权信息限制的飞行范围不完全重合,和/或,如果预设飞行范围与目标小区限制的飞行范围不完全重合。那么目标基站可以预设飞行范围为基准进行判定,当UAV的飞行状态超出预设飞行范围时,则目标基站可将该UAV的飞行状态识别为非法;当UAV的飞行状态在预设飞行范围之内时,则目标基站可将该UAV的飞行状态识别为合法。
策略3:该目标基站不包括预设飞行范围,在UAV的飞行状态超出UAV的授权信息限制的飞行范围、或目标小区所限制的飞行范围中的任意一个飞行范围时,目标基站可将该UAV的飞行状态识别为非法;在UAV的飞行状态没有超出上述两种飞行范围的情况下,则目标基站可将UAV的飞行状态识别为合法。
策略4:该目标基站不包括预设飞行范围,并且UAV的授权信息限制的飞行范围和目标小区所限制的飞行范围不完全重合。那么目标基站可以UAV的授权信息为基准进行判定,当UAV的飞行状态超出UAV的授权信所限制的飞行范围时,则目标基站可将该 UAV的飞行状态识别为非法;当UAV的飞行状态在UAV的授权信所限制的飞行范围之内时,则目标基站可将该UAV的飞行状态识别为合法。
策略5:目标基站在识别UAV的飞行状态是否合法时,可不结合目标小区所限制的飞行范围(例如目标小区的覆盖范围),可结合UAV的授权信息和/或目标基站的预设飞行范围,来进行判定。可选地,还可以预设飞行范围为基准进行判断,具体原理与前述策略的原理类似,可参考图5中S103的相关实现方式的描述,这里不再一一赘述。
在一种可能的实现方式中,UAV的禁飞区(限制的飞行范围)的信息的粒度并非小区或TA,而是实际的地理信息,例如由经纬度围成的实际地理范围。示例性的,目标基站的UAV控制范围的粒度是由经纬度围成的实际地理控制范围,该UAV的授权信息的粒度也是地理范围。而源基站侧仅可以获取到目标基站的小区或TA粒度的UAV控制范围,因此,源基站侧无法决策该UAV的授权信息对应的地理范围是否在该目标基站的实际地理控制范围内。所以源基站可将UAV的地理信息粒度的授权信息以及该UAV的飞行状态上报至目标基站,由目标基站决策该UAV的飞行状态是否在目标基站处合法,以确定是否接入该UAV。
示例性的,目标基站在确定UAV的飞行状态是否合法时,若目标基站检测到UAV的授权信息对应的地理范围不在该目标基站的UAV控制范围之内,则目标基站可确定该UAV的飞行状态非法。
示例性的,目标基站在确定UAV的飞行状态是否合法时,若目标基站检测到UAV的授权信息对应的地理范围在该目标基站的UAV控制范围之内,但是UAV的飞行状态不在该UAV的授权信息对应地理范围之内,则目标基站可确定该UAV的飞行状态非法。
示例性的,目标基站还包括预设飞行范围,那么目标基站在确定UAV的飞行状态是否合法时,若目标基站检测到UAV的授权信息对应的地理范围在该目标基站的UAV控制范围之内,对于UAV的授权信息和预设飞行范围,可以目标基站的预设飞行范围为基准,如果该UAV的飞行状态不在该预设飞行范围之内,则该UAV的飞行状态非法。
其他策略不再一一列举,具体可结合上述策略1至策略5中的任意一个策略进行决策,这里不再赘述。
在一种可能的实现方式中,目标基站包括预配置的飞行范围的限制性信息(例如前述实施例描述的预设飞行范围),由于源基站无法获取到该预设飞行范围信息,那么源基站侧无法决策该UAV的飞行状态是否处于该目标基站侧的预设飞行范围内。为了实现UAV切换基站时的接入控制,源基站仍旧需要将该UAV的授权信息以及飞行状态信息上报至目标基站,由目标基站依据该预设飞行范围确定UAV的飞行状态是否合法。或者目标基站依据预设飞行范围和UAV的授权信息确定UAV的飞行状态是否合法。以确定是否接入该UAV。
S606,目标基站向源基站发送切换请求确认信息。
示例性的,该切换请求确认信息可包括该RRC重配置消息,该RRC重配置消息为目标基站向该UAV发送的、需要由源基站转发至该UAV的消息。
示例性的,这里的S606的其他实现细节与图3中的S306的实现细节类似,这里不再赘述。
S607,源基站向UAV转发来自目标基站的RRC重配置消息。
示例性的,RRC重配置消息可包括目标小区的ID等信息。
示例性的,这里的RRC重配置消息可为上述切换请求确认消息中携带的RRC重配置消息。
可选地,S608a,源基站向目标基站发送早期状态转移消息。
示例性的,这里的S608a的实现原理与图3中的S308a的实现原理类似,这里不再赘述。
S608b,源基站向目标基站发送序列号状态转移消息。
示例性的,这里的S608b的实现原理与图3中的S308b的实现原理类似,这里不再赘述。
S609,UAV向目标基站发送RRC重配置完成消息。
示例性的,UAV可响应于S607中的RRC重配置消息,来向目标基站发送表示RRC重配置完成的消息。
可选地,在S609之后,该通信方法还可包括如现有技术中的图3所示的S310至S315,具体参照图3,这里不再赘述。
在图9的实施例中,UAV切换基站的场景下,源基站和目标基站均支持UAV。那么源基站可在发送至目标基站的切换请求中携带UAV的飞行状态以及其授权信息,目标小区ID(可选地),这样目标基站可从源基站处获得UAV的飞行状态、UAV的授权信息、目标小区ID(可选地)。并且,目标基站可根据自身的飞行范围的限制信息(如果有)和UAV的授权信息、目标小区的覆盖范围(可选地),来对UAV的飞行状态的合法性进行识别。以拒绝飞行状态在目标基站侧非法的UAV切换至目标基站。
此外,UAV切换基站的场景下,源基站和目标基站均支持UAV,可选地,UAV的禁飞区是实际的地理信息,或者,目标基站存在预配置的飞行范围的限制性信息(例如预设飞行范围)。那么目标基站可根据从源基站获得的UAV的授权消息和飞行状态、目标小区ID(可选地)以及预设飞行范围(如果有),来识别待切换基站的UAV的飞行状态,在目标基站处是否合法。在该UAV的飞行状态在目标基站处不合法时,可拒绝其切换至目标基站。
场景3b:源基站不支持与无人机类型的UE进行通信,目标基站支持与无人机类型的UE进行通信。
在UAV切换基站的场景下,图10为示例性示出的本申请的通信系统在场景3b下的通信方法的过程。该过程可包括如下步骤:
S701,源基站向UAV发送测量控制信息。
示例性的,源基站可通过RRC重配置消息向UE下发测量控制信息。
这里的S701的其他实现细节与图3中的S301的实现原理类似,这里不再赘述。
需要说明的是,S701和S601的区别可包括:在S701中,该RRC重配置消息中不包括用于指示该UAV上报飞行状态的信息。因为,源基站不支持与无人机类型的UE进行通信连接,那么该UAV不会向源基站上报飞行状态,此外,即便UAV向源基站上报 了飞行状态,该源基站也无法识别该飞行状态的信息。
S702,UAV向该基站发送测量结果上报消息。
示例性的,S702与S602区别之处在于,这里S702中的测量结果不包括UAV的飞行状态信息。
示例性的,这里的S702的其他实现细节与图3中的S302的实现原理类似,这里不再赘述。
S703,源基站根据测量结果进行切换决定。
示例性的,源基站可确定UAV的目标小区。
示例性的,这里的S703的实现原理与图3中的S603的实现原理类似,这里不再赘述。
S704,源基站向目标基站发送切换请求。
示例性的,该切换请求可包括UE的能力信息。
示例性的,这里的UE为UAV,那么该UE的能力信息可为用于指示待切换基站的UE的设备类型为无人机的信息。
示例性的,该切换请求还可包括上述目标小区的ID。
示例性的,这里的S704的其他实现细节与图3中的S304的实现细节类似,这里不再赘述。
S705,目标基站执行接入控制。
示例性的,这里的S705的实现细节与图3中的S305的实现原理类似,这里不再赘述。
S706,目标基站从AMF获取UAV的授权信息。
示例性的,这里的S706的实现细节与图7中的S504的实现细节类似,这里不再赘述。
在本实现方式中,在源基站不支持与无人机类型的UE相连接(简述为源基站不支持UAV)的情况下,源基站向目标基站发送的切换请求中可包括UE的能力信息,并不包括UAV的授权信息及飞行状态信息。使得目标基站无法从源基站的切换请求中获取到UAV的授权信息以及飞行状态信息,对接入的UAV的飞行状态的合法性进行识别,此时目标基站可从核心网设备获取该UAV的授权信息并通过源基站指示UAV上报飞行状态信息,以便于对该UAV的飞行状态的合法性进行识别。
与前文实施例类似,这里目标基站从AMF获取到的可以是针对待切换基站的上述UAV的授权信息,也可以是多个UAV各自的授权信息,其中,这里的多个UAV包括图10中的UAV,本申请对此不做限制。
S707,目标基站发送切换请求确认消息至源基站。
示例性的,该切换请求确认信息可包括该RRC重配置消息,该RRC重配置消息为目标基站向该UAV发送的、需要由源基站转发至该UAV的消息。
本实施例中的RRC重配置消息与图9中S606中的切换请求确认消息所包括的RRC重配置消息SRRC重配置信息的区别之处在于:S707中相应的RRC重配置消息可携带用于指示上述UAV上报飞行状态(如飞行高度或飞行位置或最大飞行高度等,这里不做 限制)的信息。
示例性的,该用于指示UAV上报飞行状态的信息可以是测量配置信息,本申请对此不做限制。
示例性的,这里的S707的其他实现细节与图3中的S306的实现细节类似,这里不再赘述。
S708,源基站向UAV转发来自目标基站的RRC重配置消息。
示例性的,这里的RRC重配置消息可包括用于指示UAV上报飞行状态的信息。
可选地,S709a,源基站向目标基站发送早期状态转移消息。
示例性的,这里的S709a的实现原理与图9中的S608a的实现原理类似,这里不再赘述。
S709b,源基站向目标基站发送序列号状态转移消息。
示例性的,这里的S709b的实现原理与图9中的S608b的实现原理类似,这里不再赘述。
S710,UAV向目标基站发送RRC重配置完成消息。
示例性的,UAV可响应于S708中的RRC重配置消息,来向目标基站发送表示RRC重配置完成的消息。
示例性的,UAV可响应于S708中RRC重配置消息所携带的用于指示UAV上报飞行状态的信息,而获取自身的飞行状态,并将该飞行状态信息携带在RRC重配置完成消息中,以向目标基站上报自身飞行状态。
示例性的,S710的其他实现细节与图1中的S109类似,具体参照上文,这里不再赘述。
在本实现方式中,目标基站在向UAV配置的RRC重配置消息中,可携带指示UAV上报飞行状态的信息。那么UAV向目标基站发送的RRC重配完成消息,则可携带UAV的状态信息(如飞行高度或位置或最大飞行高度等)。那么在源基站不支持UAV的场景下,目标基站可通过源基站指示UAV上报飞行状态至目标基站,以获取到UAV的飞行状态。这样,目标基站就可以利用目标小区的覆盖范围(可选地)、从核心网设备获取到的授权信息、或自身的预设飞行范围,来识别该UAV的飞行状态在目标基站侧是否合法,以决定是否接入该UAV,以实现其基站切换。
需要说明的是,目标基站发送的包括指示UAV上报飞行状态的信息,并不限于本实现方式举例的RRC重配置消息,还可以是单独的信令以指示UAV进行飞行状态的上报,或者在其他的目标基站通过源基站转发至UAV的已有消息中,指示UAV上报飞行状态,本申请对于携带指示UAV上报飞行状态的信息的消息不做限制。同理,本申请对于UAV上报的飞行状态所属的消息也不限制为RRC重配置完成消息。
S711,目标基站确定是否接入UAV。
示例性的,目标基站可根据UAV的授权信息,和/或,目标基站的预设飞行范围,和/或目标小区的覆盖范围(可选地),来识别该UAV的飞行状态是否合法。
示例性的,目标基站将UAV的飞行状态识别为非法的具体策略可包括但不限于:
策略1:在UAV的飞行状态超出以下任意一个飞行范围(UAV的授权信息限制的飞 行范围、该预设飞行范围、目标小区所限制的飞行范围)时,目标基站可将该UAV的飞行状态识别为非法;在UAV的飞行状态没有超出上述三种飞行范围的情况下,则目标基站可将UAV的飞行状态识别为合法。
策略2:如果预设飞行范围与UAV的授权信息限制的飞行范围不完全重合,和/或,如果预设飞行范围与目标小区限制的飞行范围不完全重合。那么目标基站可以预设飞行范围为基准进行判定,当UAV的飞行状态超出预设飞行范围时,则目标基站可将该UAV的飞行状态识别为非法;当UAV的飞行状态在预设飞行范围之内时,则目标基站可将该UAV的飞行状态识别为合法。
策略3:该目标基站不包括预设飞行范围,在UAV的飞行状态超出UAV的授权信息限制的飞行范围、或目标小区所限制的飞行范围中的任意一个飞行范围时,目标基站可将该UAV的飞行状态识别为非法;在UAV的飞行状态没有超出上述两种飞行范围的情况下,则目标基站可将UAV的飞行状态识别为合法。
策略4:该目标基站不包括预设飞行范围,并且UAV的授权信息限制的飞行范围和目标小区所限制的飞行范围不完全重合。那么目标基站可以UAV的授权信息为基准进行判定,当UAV的飞行状态超出UAV的授权信所限制的飞行范围时,则目标基站可将该UAV的飞行状态识别为非法;当UAV的飞行状态在UAV的授权信所限制的飞行范围之内时,则目标基站可将该UAV的飞行状态识别为合法。
策略5:目标基站在识别UAV的飞行状态是否合法时,可不结合目标小区所限制的飞行范围(例如目标小区的覆盖范围),可结合UAV的授权信息和/或目标基站的预设飞行范围,来进行判定。可选地,还可以预设飞行范围为基准进行判断,具体原理与前述策略的原理类似,可参考图5中S103的相关实现方式的描述,这里不再一一赘述。
在一种可能的实现方式中,在目标基站确定UAV的飞行状态合法时,则目标基站确定接入该UAV,以对UAV进行基站切换,从而将UAV相连接的基站从源基站切换至目标基站,具体过程可参考图3中的S310至S315,这里不再赘述。
在一种可能的实现方式中,在目标基站确定UAV的飞行状态不合法时,则目标基站可拒绝将UAV接入该目标基站,示例性的,如图10所示,在经S711的判定,确定不接入该UAV,则可执行S712至S714。
可选地,S712,目标基站向UAV发送释放RRC连接消息。
示例性的,S712的实现细节与图6中的S408类似,具体参照上文,这里不再赘述。
可选地,S713,目标基站通知AMF该UAV的飞行状态不合法。
示例性的,S713的实现细节与图6中的S409类似,具体参照上文,这里不再赘述。
可选地,S714,AMF通知UAS-NF该UAV的飞行状态不合法。
示例性的,S714的实现细节与图6中的S410类似,具体参照上文,这里不再赘述。
在本实现方式中,在UAV的飞行状态在目标基站侧是非法的情况下,目标基站可向UAV发送释放RRC连接消息,以及通知核心网设备该UAV的飞行状态不合法,以便于核心网设备通知UAS-NF通知该UAV的飞行状态不合法。这样不仅可避免在目标基站处飞行状态非法的UAV,从源基站切换至目标基站进行通信连接,而且目标基站还可通过核心网设备来对飞行状态非法的UAV进行监管,以避免该UAV在目标基站的覆盖范围 内发生飞行事故(例如撞机事件等)。
在图10实施例中,UAV切换基站的场景下,源基站是传统的基站(不支持UAV),目标基站支持UAV。目标基站可从源基站处获得UAV的能力信息、目标小区ID(可选地),从AMF获取该UAV的授权信息。并且,目标基站可根据自身的飞行范围的限制信息(如果有)和UAV的授权信息、目标小区的覆盖范围(可选地),来对UAV的飞行状态的合法性进行识别。以拒绝飞行状态非法的UAV的基站切换,并通知核心网设备对该UAV进行监管。例如对非法的UAV,目标基站释放其RRC连接,并通知AMF该UAV非法,AMF通知UAS-NF管理非法UAV。
结合于上述任意一种实现方式,本申请的通信方法和通信系统可应用到UE的位置受限的任意一种场景。例如UAV移动至禁止UAV的特殊环境中,则通过本申请的通信方法和通信系统,同样可对该特殊环境中的非法UAV进行识别。
在一种可能的实现方式中,本申请还提供了一种通信方法,应用于第一用户设备,该第一用户设备的设备类型为无人机类型,所述方法包括:第一用户设备接收来自第一网络设备的第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;第一用户设备向所述第一网络设备发送第二消息,其中,所述第二消息包括所述第一用户设备的第一飞行状态信息;其中,所述第一网络设备用于第一用户设备基于所述第一飞行状态信息和第一飞行范围信息,确定是否与所述第一用户设备建立通信连接;其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的用户设备。
示例性的,该第一网络设备可为基站。
在一种可能的实现方式中,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
在一种可能的实现方式中,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
在一种可能的实现方式中,所述第一用户设备向所述第一网络设备发送第二消息之后,所述方法还包括:第一用户设备接收来自所述第一网络设备的第三消息,其中,所述第三消息用于指示拒绝与所述第一用户设备建立通信连接,其中,所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围。
在一种可能的实现方式中,所述第一飞行范围信息包括所述第一授权信息,所述第一授权信息由所述第一网络设备从核心网设备获取。
在一种可能的实现方式中,所述方法还包括:第一用户设备接收来自所述第一网络设备的第四消息,其中,所述第四消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围,其中,所述至少一个第一类型的用户设备包括所述第一用户设备;第一用户设备向所述第一网络设备发送第四消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围;所述第四消息用于指示所述第一用户设备请求与所 述第一网络设备建立通信连接;所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
在一种可能的实现方式中,所述第二飞行范围信息包括所述预设飞行范围,和/或,无人机类型的至少一个用户设备各自的授权信息。
上述实现方式的方法的效果和实现方式,与上述各实现方式的方法的效果类似,这里不再赘述。
在一种可能的实施方式中,本申请实施例提供一种通信装置。通信装置应用于第一网络设备,所述通信装置用于:获取第一用户设备的第一飞行状态信息;获取所述第一用户设备的第一飞行范围信息;其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的第一类型的用户设备;其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接。
在一种可能的实施方式中,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
在一种可能的实施方式中,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
在一种可能的实施方式中,所述通信装置,具体用于:基于所述第一飞行状态信息和所述第一飞行范围信息,确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则拒绝与所述第一用户设备建立通信连接。
在一种可能的实施方式中,所述通信装置,具体用于:接收来自核心网设备的第三消息,所述第三消息包括所述第一授权信息。
在一种可能的实施方式中,所述通信装置,具体用于:向所述第一用户设备发送第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;接收来自所述第一用户设备的第二消息,其中,所述第二消息包括所述第一飞行状态信息,所述第二消息为所述第一消息的响应消息。
在一种可能的实施方式中,所述通信装置,具体用于:向所述核心网设备发送第四消息,其中,所述第四消息用于指示所述第一用户设备的飞行状态不合法。
在一种可能的实施方式中,所述通信装置,还用于:发送第五消息至所述第一类型的用户设备,其中,所述第五消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围;接收来自所述第一用户设备的第六消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围,其中,所述第六消息为所述第五消息的响应消息;其中,所述至少一个第一类型的用户设备包括所述第一用户设备;所述第六消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
在一种可能的实施方式中,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
在一种可能的实施方式中,所述第一用户设备处于所述非激活态,所述通信装置, 还用于:接收来自第二网络设备的第七消息,其中,所述第七消息包括所述第一用户设备的上下文信息,其中,所述第二网络设备为与所述第一用户设备最近进行通信连接的网络设备;在所述第七消息不包括所述第一授权信息的情况下,接收来自所述核心网设备的所述第三消息。
在一种可能的实施方式中,所述第一用户设备为第三网络设备确定的由所述第三网络设备切换至所述第一网络设备进行通信连接的用户设备。
在一种可能的实施方式中,所述通信装置,具体用于:接收来自所述第三网络设备的第八消息,其中,所述第八消息包括所述第一飞行状态和所述第一授权信息。
在一种可能的实施方式中,所述通信装置,具体用于:接收来自所述第三网络设备的第九消息,其中,所述第九消息包括用于指示所述第一用户设备的设备类型为所述第一类型的信息;接收来自所述核心网设备的所述第一授权信息。
在一种可能的实施方式中,所述通信装置,具体用于:向所述第三网络设备发送第十消息,其中,所述第十消息包括用于指示所述第一用户设备上报飞行状态的信息;接收来自所述第一用户设备的第十一消息,其中,所述第十一消息包括所述第一飞行状态信息。
上述任意实施方式的通信装置的结构、功能及效果可参照相关方法实施例的描述,这里不再赘述。
在一种可能的实施方式中,本申请实施例提供一种通信装置。通信装置应用于第一用户设备,其中,所述第一用户设备的设备类型为第一类型,所述通信装置用于:接收来自第一网络设备的第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;向所述第一网络设备发送第二消息,其中,所述第二消息包括所述第一用户设备的第一飞行状态信息;其中,所述第一网络设备用于基于所述第一飞行状态信息和第一飞行范围信息,确定是否与所述第一用户设备建立通信连接;其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的用户设备。
在一种可能的实施方式中,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
在一种可能的实施方式中,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
在一种可能的实施方式中,所述通信装置还用于:接收来自所述第一网络设备的第三消息,其中,所述第三消息用于指示拒绝与所述第一用户设备建立通信连接,其中,所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围。
在一种可能的实施方式中,所述第一飞行范围信息包括所述第一授权信息,所述第一授权信息由所述第一网络设备从核心网设备获取。
在一种可能的实施方式中,所述通信装置还用于:接收来自所述第一网络设备的第四消息,其中,所述第四消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围,其中,所述至少一个第一类型的 用户设备包括所述第一用户设备;向所述第一网络设备发送第四消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围;所述第四消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
在一种可能的实施方式中,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
上述各实施方式的通信装置的结构、功能及效果和实现方式,可参照相关方法实施例的描述,这里不再赘述。
下面介绍本申请实施例提供的一种装置。如图11所示:
该装置包括处理模块701(例如处理器)和通信模块702。可选的,该装置还包括存储模块703(例如存储器)。处理模块701、通信模块702和存储模块703通过通信总线相连。
通信模块702可以是具有收发功能的装置,用于与其他网络设备或者通信网络进行通信。
存储模块703可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储模块703可以独立存在,通过通信总线与处理模块701相连。存储模块也可以与处理模块701集成在一起。
装置700可以用于网络设备、用户设备(例如UAV)、电路、硬件组件或者芯片中。
装置700可以是本申请实施例中的网络设备,例如:基站1或基站1。基站的示意图可以如图4a所示。可选的,装置700的通信模块702可以包括基站的天线和收发机。通信模块702还可以包括基站的网络接口,例如图4b、图4c中的网络接口(例如Uu接口)。
装置700可以是本申请实施例中的网络设备(例如:源基站、目标基站、AMF等)中的芯片。通信模块702可以是输入或者输出接口、管脚或者电路等。可选的,存储模块可以存储基站侧的方法的计算机执行指令,以使处理模块701执行上述实施例中基站侧的方法。存储模块703可以是寄存器、缓存或者RAM等,存储模块703可以和处理模块701集成在一起;存储模块703可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块703可以与处理模块701相独立。可选的,随着无线通信技术的发展,收发机可以被集成在装置700上。
当装置700是本申请实施例中的网络设备或者网络设备中的芯片时,可以实现上述实施例中网络设备(例如基站、核心网设备等)执行的方法。
装置700还可以是本申请实施例中的用户设备,例如:UAV。UAV的示意图可以如图4a所示。可选的,装置700的通信模块702可以包括UAV的天线和收发机。通信模块702还可以包括UAV的网络接口,例如图4b、图4c中的网络接口(例如 Uu接口)。
装置700可以是本申请实施例中的用户设备(例如:UAV等)中的芯片。通信模块702可以是输入或者输出接口、管脚或者电路等。可选的,存储模块可以存储用户设备侧的方法的计算机执行指令,以使处理模块701执行上述实施例中用户设备侧的方法。存储模块703可以是寄存器、缓存或者RAM等,存储模块703可以和处理模块701集成在一起;存储模块703可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块703可以与处理模块701相独立。可选的,随着无线通信技术的发展,收发机可以被集成在装置700上。
当装置700是本申请实施例中的用户设备或者用户设备中的芯片时,可以实现上述实施例中用户设备(例如UAV等)执行的方法。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何可用介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或可用于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种通信方法,其特征在于,应用于第一网络设备,所述方法包括:
    获取第一用户设备的第一飞行状态信息;
    获取所述第一用户设备的第一飞行范围信息;
    其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的第一类型的用户设备;
    其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;
    基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接。
  2. 根据权利要求1所述的方法,其特征在于,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述基于所述第一飞行状态信息和所述第一飞行范围信息,确定是否与所述第一用户设备建立通信连接,包括:
    基于所述第一飞行状态信息和所述第一飞行范围信息,确定所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围时,则拒绝与所述第一用户设备建立通信连接。
  5. 根据权利要求2至4中任意一项所述的方法,其特征在于,所述获取所述第一用户设备的第一飞行范围信息,包括:
    接收来自核心网设备的第三消息,所述第三消息包括所述第一授权信息。
  6. 根据权利要求1至5中任意一项所述的方法,其特征在于,所述获取第一用户设备的第一飞行状态信息,包括:
    向所述第一用户设备发送第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;
    接收来自所述第一用户设备的第二消息,其中,所述第二消息包括所述第一飞行状态信息,所述第二消息为所述第一消息的响应消息。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述拒绝与所述第一用户设备建立通信连接,包括:
    向所述核心网设备发送第四消息,其中,所述第四消息用于指示所述第一用户设备 的飞行状态不合法。
  8. 根据权利要求1至7中任意一项所述的方法,其特征在于,所述方法还包括:
    发送第五消息至所述第一类型的用户设备,其中,所述第五消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围;
    接收来自所述第一用户设备的第六消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围,其中,所述第六消息为所述第五消息的响应消息;
    其中,所述至少一个第一类型的用户设备包括所述第一用户设备;
    所述第六消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;
    所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
  9. 根据权利要求8所述的方法,其特征在于,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一用户设备处于所述非激活态,所述方法还包括:
    接收来自第二网络设备的第七消息,其中,所述第七消息包括所述第一用户设备的上下文信息,其中,所述第二网络设备为与所述第一用户设备最近进行通信连接的网络设备;
    在所述第七消息不包括所述第一授权信息的情况下,接收来自所述核心网设备的所述第三消息。
  11. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述第一用户设备为第三网络设备确定的由所述第三网络设备切换至所述第一网络设备进行通信连接的用户设备。
  12. 根据权利要求11所述的方法,其特征在于,
    所述获取第一用户设备的第一飞行状态信息,包括:
    接收来自所述第三网络设备的第八消息,其中,所述第八消息包括所述第一飞行状态;
    所述获取所述第一用户设备的第一飞行范围信息,包括:
    接收来自所述第三网络设备的所述第八消息,其中,所述第八消息包括所述第一授权信息。
  13. 根据权利要求11所述的方法,其特征在于,所述获取所述第一用户设备的第一飞行范围信息,包括:
    接收来自所述第三网络设备的第九消息,其中,所述第九消息包括用于指示所述第一用户设备的设备类型为所述第一类型的信息;
    接收来自所述核心网设备的所述第一授权信息。
  14. 根据权利要求13所述的方法,其特征在于,所述获取第一用户设备的第一飞行状态信息,包括:
    向所述第三网络设备发送第十消息,其中,所述第十消息包括用于指示所述第一用户设备上报飞行状态的信息;
    接收来自所述第一用户设备的第十一消息,其中,所述第十一消息包括所述第一飞行状态信息。
  15. 一种通信方法,其特征在于,应用于第一用户设备,其中,所述第一用户设备的设备类型为第一类型,所述方法包括:
    接收来自第一网络设备的第一消息,其中,所述第一消息用于指示所述第一网络设备支持与所述第一类型的用户设备进行通信;
    向所述第一网络设备发送第二消息,其中,所述第二消息包括所述第一用户设备的第一飞行状态信息;
    其中,所述第一网络设备用于基于所述第一飞行状态信息和第一飞行范围信息,确定是否与所述第一用户设备建立通信连接;
    其中,所述第一飞行范围信息包括用于限制所述第一用户设备的飞行范围的信息;
    其中,所述第一用户设备为请求与所述第一网络设备建立通信连接的用户设备。
  16. 根据权利要求15所述的方法,其特征在于,所述第一飞行范围信息包括所述第一用户设备的第一授权信息,其中,所述第一授权信息包括对所述第一用户设备授权的第一飞行范围。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一网络设备包括预设飞行范围,所述第一飞行范围信息包括所述预设飞行范围。
  18. 根据权利要求15至17中任意一项所述的方法,其特征在于,所述向所述第一网络设备发送第二消息之后,所述方法还包括:
    接收来自所述第一网络设备的第三消息,其中,所述第三消息用于指示拒绝与所述第一用户设备建立通信连接,其中,所述第一飞行状态信息超出所述第一飞行范围信息限制的飞行范围。
  19. 根据权利要求15至18中任意一项所述的方法,其特征在于,所述第一飞行范围信息包括所述第一授权信息,所述第一授权信息由所述第一网络设备从核心网设备获取。
  20. 根据权利要求15至19中任意一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一网络设备的第四消息,其中,所述第四消息包括第二飞行范围信息,其中,所述第二飞行范围信息用于限制至少一个所述第一类型的用户设备的飞行范围,其中,所述至少一个第一类型的用户设备包括所述第一用户设备;
    向所述第一网络设备发送第四消息,其中,所述第一用户设备处于空闲态或非激活态、且所述第一用户设备的所述第一飞行状态信息超出目标飞行范围;
    所述第四消息用于指示所述第一用户设备请求与所述第一网络设备建立通信连接;
    所述目标飞行范围为所述第二飞行范围信息中与所述第一用户设备对应的飞行范围。
  21. 根据权利要求20所述的方法,其特征在于,所述第二飞行范围信息包括所述预设飞行范围,和/或,所述至少一个第一类型的用户设备各自的授权信息。
  22. 一种通信装置,其特征在于,应用于第一网络设备,所述通信装置用于执行如权利要求1至14中任意一项所述的方法。
  23. 一种通信装置,其特征在于,应用于第一用户设备,所述通信装置用于执行如权利要求15至21中任意一项所述的方法。
  24. 一种通信装置,其特征在于,包括:
    存储器与处理器,所述存储器与所述处理器耦合;
    其中,所述存储器包括程序指令,所述程序指令被所述处理器运行时,使得所述装置执行如权利要求1至14中任意一项所述的方法,或如权利要求15至21中任意一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器调用以执行如权利要求1至14中任意一项所述的方法,或如权利要求15至21中任意一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括软件程序,当所述软件程序被计算机或处理器执行时,使得权利要求1至14任一项所述的方法的步骤,或权利要求15至21任一项所述的方法的步骤被执行。
PCT/CN2023/092977 2022-06-29 2023-05-09 通信方法及装置 WO2024001531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210748355.3A CN117354890A (zh) 2022-06-29 2022-06-29 通信方法及装置
CN202210748355.3 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001531A1 true WO2024001531A1 (zh) 2024-01-04

Family

ID=89360019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092977 WO2024001531A1 (zh) 2022-06-29 2023-05-09 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117354890A (zh)
WO (1) WO2024001531A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810941A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种网络接入方法、网络设备及终端
CN109218344A (zh) * 2017-06-29 2019-01-15 华为技术有限公司 选择参数配置的方法、设备以及系统
CN112533139A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种无人机系统的飞行授权方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810941A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种网络接入方法、网络设备及终端
CN109218344A (zh) * 2017-06-29 2019-01-15 华为技术有限公司 选择参数配置的方法、设备以及系统
CN112533139A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种无人机系统的飞行授权方法、装置及系统
WO2021052425A1 (zh) * 2019-09-18 2021-03-25 华为技术有限公司 一种无人机系统的飞行授权方法、装置及系统

Also Published As

Publication number Publication date
CN117354890A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US11464067B2 (en) Core network awareness of user equipment, UE, state
US10631212B2 (en) Resource management method and apparatus for use in wireless communication system
EP2213115B1 (en) System and method for selection of security algorithms
JP2024045709A (ja) User Equipment及びその方法
WO2016123809A1 (zh) 一种信令优化方法和设备
EP3338485B1 (en) User equipment, base station and associated methods
US10470108B2 (en) Signal transmission and reception method by remote UE in a wireless communication system and device for same
EP3461216B1 (en) Multi-connection communication method and device
WO2014032502A1 (zh) 终端接入方法、系统和终端
CN110720238A (zh) 用于实施群组切换的方法和装置
US11419032B2 (en) Method and apparatus for managing mobility in wireless communication system
US11317374B2 (en) RAN paging handling
KR102329926B1 (ko) 작은 셀 시스템에서의 ue의 제어, 과금 및 위치 지정을 위한 방법
WO2017023129A1 (ko) 무선 통신 시스템에서 단말의 컨텍스트 정보를 이용한 통신 방법 및 기지국
US10244448B2 (en) Method for controlling user equipment to access communications network of high-speed moving vehicle
WO2016141789A1 (zh) 通信方法、核心网控制面节点设备和基站
US20220030489A1 (en) Communications device, infrastructure equipment and methods
WO2016177106A1 (zh) 专用核心网的选择方法和装置
WO2018010583A1 (zh) 网络系统
EP2809109A1 (en) Wireless communication system, radio base station, radio terminal, and wireless communication method
WO2024001531A1 (zh) 通信方法及装置
CN116939544A (zh) 一种支持无人驾驶飞行器移动的方法和设备
CN108307548B (zh) 一种管理集群通信系统资源的方法
WO2023065865A1 (zh) 一种通信方法及设备
WO2023092448A1 (en) 5g new radio mobility enhancements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829717

Country of ref document: EP

Kind code of ref document: A1