WO2020063655A1 - 飞行器的控制方法及装置 - Google Patents

飞行器的控制方法及装置 Download PDF

Info

Publication number
WO2020063655A1
WO2020063655A1 PCT/CN2019/107777 CN2019107777W WO2020063655A1 WO 2020063655 A1 WO2020063655 A1 WO 2020063655A1 CN 2019107777 W CN2019107777 W CN 2019107777W WO 2020063655 A1 WO2020063655 A1 WO 2020063655A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
information
fly
network element
amf network
Prior art date
Application number
PCT/CN2019/107777
Other languages
English (en)
French (fr)
Inventor
孙满利
葛翠丽
杨艳梅
马景旺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19867201.6A priority Critical patent/EP3848771B1/en
Publication of WO2020063655A1 publication Critical patent/WO2020063655A1/zh
Priority to US17/215,780 priority patent/US20210216083A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and device for controlling an aircraft.
  • a drone is a common aircraft, and a ground controller communicates with the drone through a control link, and a user holds the ground controller to control the drone to fly.
  • a ground controller communicates with the drone through a control link, and a user holds the ground controller to control the drone to fly.
  • multiple electronic fences are usually installed at the edges of the no-fly zone.
  • the electronic fence can block the communication between the drone and the ground controller. In this case, the drone stops moving forward and returns in the same way, which prevents the drone from entering the no-fly zone.
  • an aircraft control method includes: accessing a management function AMF network element to obtain information on a no-fly area of the aircraft; when the shortest distance between the aircraft and the no-fly area is less than When equal to or equal to the first preset value, the AMF network element sends reference information to the control device, wherein the reference information includes at least one of first indication information and position information of the aircraft, and the first An indication information is used to indicate that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the control device sends the information of the no-fly area to the aircraft via the AMF network element, and the AMF network element can monitor whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the AMF network element can notify the control device to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the information of the no-fly region includes: a network identifier of the no-fly region, or a geographical identifier of the no-fly region.
  • the method further includes: determining, by the AMF network element, that the shortest distance between the aircraft and the no-fly area is less than or equal to The first preset value is described.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell
  • the AMF network element is based on the position information of the aircraft and
  • the information of the no-fly region, determining that the shortest distance between the aircraft and the no-fly region is less than or equal to the first preset value includes: determining, by the AMF network element, based on the position information of the aircraft A distance between the aircraft and a center point of a coverage area of any one of the at least one cell is less than or equal to the first preset value.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell
  • the method further includes: when the AMF network element determines When the aircraft accesses any one of the at least one cell, the AMF network element determines that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value. When the aircraft accesses any cell, the AMF network element determines that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the AMF network element determines that the shortest distance between the aircraft and the no-fly area is greater than a first preset value. It should be noted that the coverage area of the base station forms a cell, and the aircraft accesses the cell, that is, the aircraft is connected to the base station forming the cell.
  • the information of the no-fly area includes the geographical identification of the no-fly area
  • the method further includes: the AMF network element determining the network of the no-fly area according to the geographical identification of the no-fly area Logo.
  • the acquiring the information of the no-fly area by the AMF network element includes: receiving, by the AMF network element, a geographical identifier of the no-fly area from a control device or a unified data management UDM network element.
  • the information of the no-fly area includes a network identifier of the no-fly area
  • the obtaining, by the AMF network element, of the no-fly area of the aircraft includes: receiving, by the AMF network element, a policy control function PCF network element Or the network identifier of the no-fly zone of the UDM network element.
  • the method further includes: sending, by the AMF network element, a network identifier or a geographical identifier of the no-fly area to the aircraft.
  • the method further includes: the AMF network element sends identification information to the aircraft, the identification information is used to identify a device that allows the aircraft to communicate with it; the AMF network element sends to the aircraft Second instruction information and / or third instruction information; wherein the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first prediction When the value is set and the aircraft is in a limited service state, the aircraft stops processing information from devices other than the device corresponding to the identification information; the third instruction information is used to instruct the aircraft: When the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft is in a restricted service state, the aircraft stops sending information to a device corresponding to the identification information.
  • the aircraft stops processing information from devices other than the device corresponding to the identification information, which can prevent the aircraft from being controlled by devices other than the device corresponding to the identification information, so that when the aircraft enters a limited service state, only It can be controlled by the device corresponding to the identification information.
  • the aircraft stops sending information to devices other than the device corresponding to the identification information, which can prevent the aircraft from sending information that needs to be kept secret to other devices when it is in a no-fly area or near the no-fly area, thereby preventing information leakage.
  • the position information of the aircraft is the position information of the aircraft reported by the aircraft to the AMF network element, or the position information of the aircraft located by the AMF network element, or the AMF network
  • the location information determined by the element is based on the location information of the aircraft reported to the AMF network element by the aircraft and the location information of the aircraft located by the AMF network element. That is, the AMF network element can determine the position information of the aircraft in multiple ways, and the position information of the aircraft determined based on the position information obtained by multiple devices is more accurate.
  • a method for controlling an aircraft includes: the aircraft receives information on a no-fly area of the aircraft from an AMF network element; and the shortest distance between the aircraft and the no-fly area When it is less than or equal to the first preset value, the aircraft deregisters, enters a restricted service state, or sends position information of the aircraft to a control device or the AMF network element. After the aircraft is deregistered, it will usually land in place or return according to the original route to prevent the aircraft from flying in the no-fly zone.
  • the information of the no-fly region includes a network identifier of the no-fly region or a geographical identifier of the no-fly region.
  • the method further includes: the aircraft determines that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value according to the information of the no-fly area.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell
  • the method further includes: when the aircraft determines that the aircraft When an aircraft accesses any one of the at least one cell, the aircraft determines that the shortest distance between the aircraft and the no-fly zone is less than or equal to the first preset value; or when the aircraft determines When the wireless signal strength of any one of the at least one cell is greater than or equal to a second preset value, the aircraft determines that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value value.
  • the wireless signal strength of the cell measured by the aircraft is negatively related to the distance between the aircraft and the cell. That is, when the aircraft is closer to the cell, the wireless signal strength of the cell measured by the aircraft is stronger; when the aircraft is closer to the campus, the wireless signal strength of the cell is weaker. Therefore, the aircraft can determine the distance between the aircraft and each cell based on the measured wireless signal strength of each cell. When the aircraft determines that the wireless signal strength of any one of the at least one cell is greater than or equal to the second preset value, the aircraft determines that the shortest distance between the aircraft and the no-fly zone is less than or equal to the first preset value. When the aircraft determines that the wireless signal strength of each cell is less than the second preset value, the aircraft determines that the shortest distance between the aircraft and the no-fly zone is greater than the first preset value.
  • the method further includes: the aircraft receives identification information from the AMF network element, the identification information is used to identify a device that allows the aircraft to communicate with it; and the aircraft receives from the AMF network Second instruction information, which is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft When in the restricted service state, stopping processing information from devices other than the device corresponding to the identification information; the aircraft entering the restricted service state includes: the aircraft according to the second instruction information, Stop processing information from the other device.
  • the method further includes: the aircraft receives third instruction information from the AMF network element, where the third instruction information is used to indicate a shortest distance between the aircraft and the no-fly area When it is less than or equal to the first preset value and the aircraft is in the restricted service state, the aircraft stops sending information to the other devices; the aircraft enters a restricted service state, including the aircraft Stopping sending information to the other device according to the third instruction information.
  • the method further includes: the aircraft receives identification information from the AMF network element, the identification information is used to identify a device that allows the aircraft to communicate with it; and the aircraft receives from the AMF network Third instruction information, which is used to indicate when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft is in the receiving
  • the aircraft stops sending information to devices other than the device corresponding to the identification information; the aircraft enters a limited service state, including: the aircraft stops sending information to the third instruction information The other device sends information.
  • an aircraft control method further includes: the control device receives reference information of the aircraft from an AMF network element, where the reference information includes first instruction information and position information of the aircraft. At least one piece of information, the first indication information is used to indicate that a shortest distance between the aircraft and a no-fly area of the aircraft is less than or equal to a first preset value; and the control device sends a The aircraft sends a control instruction, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • the reference information includes position information of the aircraft
  • the control device sends a control instruction to the aircraft according to the reference information, including: the control device according to the position of the aircraft in the reference information The information and the geographical indication of the no-fly area, and send the control instruction to the aircraft.
  • the method further comprises: the control device receives position information from the aircraft; and the control device reports the position information of the aircraft in the reference information and the geographical identifier of the no-fly area to the control device.
  • the sending of the control instruction by the aircraft includes: determining, by the control device, the location information of the aircraft and the location information from the aircraft in the reference information, and the geographical identification of the no-fly area. Whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value; when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, The control device sends the control instruction to the aircraft.
  • the control device after receiving the reference information reported by the AMF network element, the control device, if receiving the position information of the aircraft, re-determines the position information of the aircraft based on the received position information of the aircraft. After that, the control device judges again whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value according to the position information and the geographical indication of the no-fly area, so as to determine whether the aircraft needs to be controlled, so Prevent the AMF network element from misjudging whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the method further includes: the control device sending the geographical identification of the no-fly area to the AMF network element, PCF network element, or UDM network element.
  • an aircraft control method includes: acquiring a geographical identifier of a no-fly region of the aircraft; determining a network identifier of the no-fly region according to the geographical identifier of the no-fly region; The network element or the aircraft sends a network identifier of the no-fly zone.
  • acquiring the geographic information of the no-fly region of the aircraft includes: receiving a geographical identifier of the no-fly region from a control device.
  • an aircraft control device which may be located in an AMF network element.
  • the aircraft control device includes: an acquisition module for acquiring information on a no-fly zone of the aircraft; a first sending module for When the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value, sending reference information to the control device; wherein the reference information includes: first instruction information and position information of the aircraft At least one piece of information, the first indication information is used to indicate that a shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the information of the no-fly region includes: a network identifier of the no-fly region, or a geographical identifier of the no-fly region.
  • control device of the aircraft further includes: a first determining module, configured to determine a shortest distance between the aircraft and the no-fly area according to the position information of the aircraft and the no-fly area information. The distance is less than or equal to the first preset value.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell, and the first determining module is configured to: Position information of the aircraft, determining that a distance between the aircraft and a center point of a coverage area of any one of the at least one cell is less than or equal to the first preset value.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell, and the control device of the aircraft further includes a second determining module. For determining that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value when it is determined that the aircraft accesses any one of the at least one cell.
  • the information of the no-fly area includes the geographical identification of the no-fly area
  • the control device of the aircraft further includes: a third determining module for determining the according to the geographical identification of the no-fly area.
  • Network identification of no-fly zone is the information of the no-fly area.
  • the acquisition module is configured to receive a geographic identifier of the no-fly area from a control device or a UDM network element.
  • the information of the no-fly zone includes a network identifier of the no-fly zone
  • the obtaining module is configured to receive the network identifier of the no-fly zone from a PCF network element or a UDM network element.
  • control device of the aircraft further includes: a second sending module, configured to send a network identifier or a geographical identifier of the no-fly area to the aircraft.
  • a second sending module configured to send a network identifier or a geographical identifier of the no-fly area to the aircraft.
  • control device of the aircraft further includes: a third sending module for sending identification information to the aircraft, the identification information is used to identify a device that allows the aircraft to communicate with it; a fourth sending module, Configured to send second instruction information and / or third instruction information to the aircraft; wherein the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than Or equal to the first preset value and the aircraft is in a limited service state, the aircraft stops processing information from devices other than the device corresponding to the identification information; the third instruction information is used for Instructing the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft is in a limited service state, the aircraft stops A device other than the device corresponding to the identification information sends information.
  • a third sending module for sending identification information to the aircraft, the identification information is used to identify a device that allows the aircraft to communicate with it
  • a fourth sending module Configured to send second instruction information and / or third
  • the position information of the aircraft is the position information of the aircraft reported by the aircraft to the AMF network element, or the position information of the aircraft located by the AMF network element, or the AMF network
  • the location information determined by the element is based on the location information of the aircraft reported to the AMF network element by the aircraft and the location information of the aircraft located by the AMF network element.
  • a control device for an aircraft which may be located on the aircraft.
  • the control device of the aircraft includes: a first receiving module for receiving information on a no-fly area of the aircraft from an AMF network element; a processing module For registering when the shortest distance between the aircraft and the no-fly zone is less than or equal to a first preset value, entering a restricted service state, or sending the control device or the AMF network element Aircraft position information.
  • the information of the no-fly region includes a network identifier of the no-fly region or a geographical identifier of the no-fly region.
  • control device for the aircraft further includes: a first determining module configured to determine, based on the information of the no-fly area, that the shortest distance between the aircraft and the no-fly area is less than or equal to the first A preset value.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell
  • the first determining module is configured to: When the aircraft accesses any one of the at least one cell, determine that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value; or, in determining the at least one cell When the wireless signal strength of any one cell is greater than or equal to a second preset value, it is determined that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • control device of the aircraft further includes: a second receiving module configured to receive identification information from the AMF network element, where the identification information is used to identify a device that allows the aircraft to communicate with it;
  • a receiving module configured to receive second instruction information from the AMF network element, where the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to The first preset value, and when the aircraft is in the limited service state, stopping processing information from devices other than the device corresponding to the identification information;
  • the processing module is configured to: Two instructions, stop processing information from the other device.
  • control device of the aircraft further includes: a fourth receiving module, configured to receive third instruction information from the AMF network element, where the third instruction information is used to indicate when the aircraft is in contact with the prohibited device.
  • the aircraft stops sending information to the other devices; the processing module is configured to: Stopping sending information to the other device according to the third instruction information.
  • control device of the aircraft further includes: a fifth receiving module, configured to receive identification information from the AMF network element, where the identification information is used to identify a device that allows the aircraft to communicate with it;
  • a receiving module configured to receive third instruction information from the AMF network element, where the third instruction information is used to indicate when the shortest distance between the aircraft and the no-fly area is less than or equal to the first pre-
  • the processing module is configured to: according to the third instruction Information, stop sending information to the other device.
  • an aircraft control device which may be located on the control device.
  • the control device of the aircraft further includes: a first receiving module configured to receive reference information of the aircraft from the AMF network element, where the reference information includes At least one of first indication information and position information of the aircraft, the first indication information is used to indicate that a shortest distance between the aircraft and a no-fly area of the aircraft is less than or equal to a first preset Value; a first sending module, configured to send a control instruction to the aircraft according to the reference information, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • the reference information includes position information of the aircraft
  • the first sending module includes a sending unit configured to: according to the position information of the aircraft in the reference information and a geographical identifier of the no-fly area , Sending the control instruction to the aircraft.
  • control device of the aircraft further includes: a second receiving module, configured to receive position information from the aircraft; and the sending unit is configured to: according to the position information of the aircraft and the location information in the reference information.
  • the location information from the aircraft and the geographical indication of the no-fly area to determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value; when the aircraft and When the shortest distance between the no-fly zones is less than or equal to the first preset value, the control instruction is sent to the aircraft.
  • control device of the aircraft further includes: a second sending module, configured to send the geographical identifier of the no-fly area to the AMF network element, PCF network element, or UDM network element.
  • a second sending module configured to send the geographical identifier of the no-fly area to the AMF network element, PCF network element, or UDM network element.
  • a control device for an aircraft includes: an acquisition module for acquiring a geographic identifier of a no-fly region of the aircraft; and a determination module for acquiring the geographic identifier of the no-fly region. To determine a network identifier of the no-fly region; a sending module configured to send the network identifier of the no-fly region to an AMF network element or the aircraft.
  • the obtaining module is configured to receive a geographical identifier of the no-fly area from a control device.
  • a communication system including: an AMF network element, an aircraft, and a control device,
  • the AMF network element includes a device for performing the method according to the first aspect
  • the aircraft comprises means for performing the method according to the second aspect
  • the control device comprises means for performing the method according to the third aspect.
  • the communication system further includes: a PCF network element or a UDM network element, and both the PCF network element and the UDM network element include: a device for performing the method according to the fourth aspect.
  • the AMF network element further includes: a device for performing the method described in the fourth aspect.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method according to the first aspect is implemented; or the computer program is processed.
  • the processor executes, the method described in the second aspect is implemented; or, when the computer program is executed by a processor, the method described in the third aspect is implemented; or, when the computer program is executed by the processor, the method described in the fourth aspect is implemented method.
  • a computer program product containing instructions, when the computer program product runs on a computer, causing the computer to execute the method described in the first aspect; or when the computer program product is on a computer When running, causing a computer to execute the method according to the second aspect; or when the computer program product is running on a computer, causing the computer to perform the method according to the third aspect; or when the computer program product is on a computer When run, the computer is caused to execute the method described in the fourth aspect.
  • a communication device includes at least one processor, at least one interface, a memory, and at least one communication bus.
  • the processor is configured to execute a program stored in the memory to implement The method described in the first aspect; or the processor is configured to execute a program stored in the memory to implement the method described in the second aspect; or the processor is configured to execute a program stored in the memory, To implement the method described in the third aspect; or the processor is configured to execute a program stored in the memory to implement the method described in the fourth aspect.
  • FIG. 1 provides a schematic structural diagram of a communication system
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a first aircraft control method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of positions of an aircraft and a community provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a second aircraft control method according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a third aircraft control method according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a fourth method for controlling an aircraft according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a fifth aircraft control method according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a sixth aircraft control method according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a seventh aircraft control method according to an embodiment of the present application.
  • FIG. 11 is a flowchart of an eighth aircraft control method according to an embodiment of the present application.
  • FIG. 12 is a flowchart of a ninth aircraft control method according to an embodiment of the present application.
  • FIG. 13 is a flowchart of a tenth control method for an aircraft according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an aircraft control device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • 16 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • 21 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • 25 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • 26 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • FIG. 1 illustrates a communication system, which may be a 5th-generation (5th-Generation) system or a future-evolved communication system.
  • the communication system may include: an aircraft (such as a drone), an access management function (AMF) network element, a policy control function (PCF) network element, unified data management (UDM) ) Network element, (radio) access network ((R) AN) network element, user plane function (UPF) network element, authentication service function (AUSF) network element 1.
  • AMF access management function
  • PCF policy control function
  • UDM unified data management
  • R radio access network
  • UPF user plane function
  • AUSF authentication service function
  • the aircraft may be a user equipment (UE) in the communication system.
  • the aircraft and the RAN network element communicate with each other using some air interface technology.
  • the UE can be a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, Wireless modem (modem), handheld device (laptop computer), cordless phone (wireless phone) or wireless local loop (WLL) station, machine type communication (MTC) ) Terminal or other equipment that can access the network.
  • PDA personal digital assistant
  • modem modem
  • handheld device laptop computer
  • cordless phone wireless phone
  • WLL wireless local loop
  • MTC machine type communication
  • the RAN network element is responsible for functions such as radio resource management, quality of service (QoS) management, data compression, and encryption at the air interface side.
  • the RAN network element includes various types of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, and access points.
  • the AMF network element belongs to the core network network element and is mainly responsible for signaling processing, such as: access control, mobility management, attachment and detachment, and gateway selection.
  • signaling processing such as: access control, mobility management, attachment and detachment, and gateway selection.
  • an AMF network element provides services for a session in a terminal device, it provides storage resources on the control plane for the session to store the session identifier, the SMF network element identifier associated with the session identifier, and so on.
  • the SMF network element is responsible for UPF network element selection, UPF network element redirection, Internet protocol (IP) address allocation, bearer establishment, modification and release, and QoS control.
  • IP Internet protocol
  • the UPF network element is responsible for forwarding and receiving user data in the UE.
  • the UPF network element can receive user data from a Data Network (DN) and transmit it to the UE through the RAN network element.
  • the UPF network element can also receive user data from the UE through the RAN network element and forward it to the data network.
  • DN Data Network
  • the transmission resources and scheduling functions that provide services to the UE in the UPF network element are managed and controlled by the SMF network element.
  • PCF network elements support a unified policy framework to control network behavior, provide policy rules to control layer network elements, and are responsible for obtaining user contract information related to policy decisions.
  • AUSF network elements support providing authentication and authentication functions.
  • NEF network elements support the secure interaction between 3rd Generation Partnership Project (3GPP) networks and third-party applications. NEF network elements can safely expose network capabilities and events to third parties to enhance or improve the quality of application services.
  • the 3GPP network can also securely obtain relevant data from third parties to enhance the intelligent decision-making of the network; at the same time, the NEF network element supports recovering structured data from UDR network elements or storing structured data in UDR network elements.
  • UDR network elements are responsible for storing structured data.
  • the stored content includes contract data and policy data, externally exposed structured data, and application-related data.
  • the AF network element supports interaction with the 3GPP network to provide services, such as influencing data routing decisions, policy control functions, or providing third-party services to the network side.
  • UDM network elements support the following functions: generate 3GPP authentication and key agreement (AKA) authentication credentials, user identity processing (such as storage), subscription authorization based on subscription data, and user service element Registration management (such as AMF for the storage service UE, SMF for providing Protocol Data Unit (PDU) sessions for the UE), support for service / session continuity, legal monitoring functions, contract management, and short message service SMS) management, etc.
  • AKA 3GPP authentication and key agreement
  • user identity processing such as storage
  • subscription authorization based on subscription data subscription data
  • user service element Registration management such as AMF for the storage service UE, SMF for providing Protocol Data Unit (PDU) sessions for the UE
  • PDU Protocol Data Unit
  • control layer device may include: AMF network element, PCF network element, UDM network element, AUSF network element, SMF network element, NSSF network element, NEF network element, and NRF network element.
  • the user layer device may include an aircraft and a UPF network element. Both the AF network element and the RAN network element can be a control layer device and a user layer device at the same time.
  • control layer devices in the communication system may be integrated on one server or multiple servers, or each control layer device is a separate server, which is not limited.
  • the communication system shown in FIG. 1 may further include other user-layer devices (such as a drone controller, which may be a remote controller, a mobile phone, or a tablet computer) in addition to the aircraft, the RAN network element, and the UPF network element.
  • Multiple user-layer devices can access a data network (DN) through an operator's network and connect through the data network.
  • DN data network
  • the control method of an aircraft provided in this application relates to an aircraft and a network element in the above-mentioned communication system, and the control method of an aircraft provided in this application also relates to a control device.
  • the control device may include a user-layer device located in a data network.
  • the control device may be referred to as an Unmanned Aerial Vehicle Traffic Management (UTM) network element.
  • UTM network element mainly has the functions that a third-party drone cloud server can provide, and can also be called a "drone transport service platform". It can interact with network elements in the communication system to provide communication services for the drone.
  • the UTM network The element can be integrated in the AF network element.
  • the control device may include a control layer device.
  • the control device may be referred to as an Unmanned Aerial Management Function (UMF) network element.
  • UMF Unmanned Aerial Management Function
  • the UMF network element may be integrated in an AMF network element or a PCF network element. Or NEF network element.
  • the control device may include both a control layer device and a user layer device with a communication connection established.
  • the user layer device may communicate with other control layer devices (such as an AMF network element or a PCF network element) through the control layer device. , UDM network elements, etc.) communication.
  • the control device includes a control layer device as an example.
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be any one of the devices in FIG. 1.
  • the communication device 200 may include a processor 201, a memory 202, a communication interface 203, and a bus 204.
  • the processor 201, the memory 202, and the communication interface 203 are communicatively connected through a bus 204.
  • the communication interface 203 may be one or more, and is used to communicate with other devices under the control of the processor 201.
  • the memory 202 is used to store computer instructions; the processor 201 can call the computer instructions stored in the memory 202 through the bus 204.
  • the communication device shown in FIG. 2 may be an AMF network element or a chip or a system on a chip located on the AMF network element.
  • the processor 201 can call the computer instructions stored in the memory 202 through the bus 204 to execute the following method embodiments. Action of AMF network element.
  • the communication device shown in FIG. 2 may also be any other device (different from an AMF network element) or a chip or a system on a chip located on the other device involved in the method embodiments described below.
  • the processor 201 can call the memory through the bus 204 Computer instructions stored in 202 to perform actions of any other device in the method embodiments described below.
  • FIG. 3 is a flowchart of a first control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be performed by an AMF network element in the communication system shown in FIG. No restrictions on implementation. The details are as follows.
  • Step 301 The AMF network element obtains information on a no-fly area of the aircraft.
  • the information on the no-fly zone may be a network identifier of the no-fly zone, where the network identifier may include an identifier of at least one cell, and the cell corresponding to the cell identifier belongs to the no-fly zone.
  • the information on the no-fly zone can also be the geographical indication of the no-fly zone, such as place name, latitude and longitude information, and so on.
  • the AMF network element obtains the information of the no-fly area of the aircraft in multiple ways.
  • the AMF network element may obtain information on the no-fly area of the aircraft by receiving information on the no-fly area of the aircraft sent by other devices.
  • the other devices may include a control device, an NEF network element, a PCF network element, or a UDM network element.
  • the AMF network element receives the geographical identification from the no-fly area of the control device or UDM network element, and the AMF network element receives the network identification from the no-fly area of the PCF network element or UDM network element.
  • the AMF network element obtains the information of the no-fly area of the aircraft according to the trigger operation of the user of the AMF network element on the AMF network element, which is not limited.
  • Step 302 When the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, the AMF network element sends reference information to the control device.
  • the reference information may include at least one of first indication information and position information of the aircraft.
  • the reference information can be used by the control device to determine whether the aircraft is approaching or located in a no-fly area, so that the control device can send control instructions to the aircraft in time.
  • control instruction may be a hovering instruction, a return instruction, an in-situ landing instruction, or an instruction to fly in a designated route in a direction away from the no-fly area.
  • control instructions can control the flight of the aircraft and achieve the effect of prohibiting the aircraft from flying in the no-fly area.
  • the first indication information is used to indicate that the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the AMF network element obtains information about the no-fly area of the aircraft.
  • the AMF network element sends reference information to the control device So that the control device can control the aircraft in time according to the reference information. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the method further includes: before step 302, the AMF network element determines the shortest distance between the aircraft and the no-fly area according to the position information of the aircraft and the no-fly area. Whether the distance is less than or equal to the first preset value.
  • the AMF network element can obtain the position information of the aircraft in various ways.
  • the position information of the aircraft may be the position information of the aircraft reported by the aircraft to the AMF network element.
  • the AMF network element determines whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value according to the position information of the aircraft and the no-fly area information, the AMF network element needs to receive the aircraft sent by the aircraft Location information.
  • the aircraft may periodically send the position information of the aircraft to the AMF network element; or after the AMF network element receives the information of the no-fly area, the AMF network element sends the information of the no-fly area to the aircraft, so that the aircraft may Information of the flying area, when it is determined that the shortest distance between the aircraft and the no-flying area is less than or equal to the first preset value, the position information of the aircraft is reported to the AMF network element.
  • the position information of the aircraft may be the position information of the aircraft positioned by the AMF network element.
  • the AMF network element can be connected to multiple measuring devices, and each measuring device can measure the strength of the signal sent by the aircraft, and the strength of the signal measured by the measuring device is negative to the distance between the measuring device and the aircraft. Correlation, ie the strength of the signal measured by the measuring device can reflect the distance between the measuring device and the aircraft. Therefore, the AMF can combine the strength of the signal from the aircraft measured by multiple measurement devices, and the relationship between the strength of the signals and the distance, determine the distance between each measurement device and the aircraft, and combine the position of each measurement device to the aircraft. Position.
  • the position information of the aircraft is position information determined by the AMF network element according to the position information of the aircraft reported by the aircraft to the AMF network element and the position information of the aircraft positioned by the AMF network element.
  • the AMF network element may determine whether the distance between the position indicated by the position information of the aircraft positioned by the AMF network element and the position indicated by the position information reported by the aircraft is less than or equal to a preset distance threshold. If the distance between the position indicated by the position information of the aircraft positioned by the AMF network element and the position indicated by the position information reported by the aircraft is greater than a preset distance threshold, the AMF network element determines the position information of the aircraft it locates as the position of the aircraft information.
  • the AMF determines the position information of the aircraft positioned by the aircraft as the position of the aircraft information.
  • the AMF network element determines an intermediate position between the position indicated by the position information of the aircraft sent by the aircraft and the position indicated by the position information of the aircraft positioned by the AMF network element, and determines that the information indicating the intermediate position is the position information of the aircraft .
  • the process by which the AMF network element determines whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value may have multiple achievable ways, and several examples thereof will be described below.
  • the information of the no-fly zone obtained by the AMF network element in step 301 may be a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell, and the at least one cell may be called At least one cell corresponding to the no-fly zone.
  • the AMF network element determines the center point of the coverage area of each cell corresponding to the no-fly region according to the identity of at least one cell corresponding to the no-fly region.
  • the AMF network element may determine the distance between the aircraft and the center point of the coverage area of each cell corresponding to the no-fly area based on the position information of the aircraft and the center point of the coverage area of each cell corresponding to the no-fly area. The distance is compared with a first preset value. When the distance between the aircraft and the center point of the coverage area of any cell corresponding to the no-fly area is less than or equal to the first preset value, the AMF network element determines that the shortest distance between the aircraft and the no-fly area is less than or equal to The first preset value.
  • the AMF network element determines that the shortest distance between the aircraft and the no-fly area is greater than the first preset value. For example, as shown in FIG. 4, assuming the aircraft is located at point A, the network identification of the no-fly zone includes the identification of cell 1 and the identification of cell 2, and the center point of the coverage area of cell 1 is point B and the coverage of cell 2 The center point of the range is point C.
  • the AMF network element can determine the distance between the aircraft and the center point of the coverage area of cell 1. Less than or equal to the first preset value.
  • the information of the no-fly area obtained by the AMF network element in step 301 may be a network identifier of the no-fly area, and the AMF network element may detect whether the aircraft accesses any cell corresponding to the no-fly area.
  • the AMF network element determines that the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value.
  • the AMF network element may determine that the shortest distance between the aircraft and the no-fly region is greater than a first preset value.
  • the coverage area of the base station forms a cell, and the aircraft accesses the cell, that is, the aircraft accesses the mobile communication network through the cell, and it can also be understood that the aircraft is connected to the base station forming the cell.
  • the information of the no-fly area obtained by the AMF network element in step 301 is the geographical identification of the no-fly area
  • the AMF network element may convert the geographical identification of the no-fly area to the network identification of the no-fly area. Then, the AMF network element may determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value according to the network identifier of the no-fly area.
  • the process of determining whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value according to the network identification of the no-fly area can refer to the second and third examples described above.
  • the information of the no-fly area obtained by the AMF network element in step 301 is the geographical identification of the no-fly area.
  • the AMF network element may directly determine the closest aircraft in the no-fly area based on the geographical identification of the no-fly area. And then the AMF network element can determine whether the distance between the aircraft position and the edge position is less than or equal to a first preset value. When the distance between the edge position and the position of the aircraft is less than or equal to the first preset value, the AMF network element may determine that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value. When the distance between the edge position and the position of the aircraft is greater than the first preset value, the AMF network element may determine that the shortest distance between the aircraft and the no-fly area is greater than the first preset value.
  • the AMF network element can determine in real time whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the AMF network element can also periodically determine the distance between the aircraft and the no-fly area. Whether the shortest distance is less than or equal to the first preset value, or the AMF network element may determine whether the shortest distance between the aircraft and the no-fly zone is less than or equal to the first preset value each time the aircraft accesses a cell; or The AMF network element may determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value each time the aircraft accesses a cell corresponding to a no-fly area, which is not limited.
  • the foregoing method further includes: sending, by the AMF network element, a network identifier or a geographical identifier of the no-fly area to the aircraft.
  • the network identification or geographical identification of the no-fly zone can be used by the aircraft to determine whether the aircraft is approaching or located in the no-fly zone, thereby enabling the aircraft to determine whether the minimum distance between the aircraft and the no-fly zone is less than or equal to a first preset value.
  • Register enter the restricted service state, or send the position information of the aircraft to the control device or AMF network element.
  • the aircraft After the aircraft receives the control instruction sent by the control device, if the aircraft deregisters (that is, the aircraft is not registered in the network, there is no valid position information or routing information of the aircraft in the AMF, so the aircraft is not reachable by the AMF) , The aircraft will land or return home (that is, return to the original route), which can prevent the aircraft from flying in the no-fly area.
  • the aircraft sends the position information of the aircraft to the AMF network element, which can be used by the AMF network element to report the position information of the aircraft determined by the AMF network element to the control device according to the position information sent by the aircraft, so that the control device can send the position information to the aircraft based on the position information sent by the AMF network element.
  • Send control instructions Send control instructions.
  • the aircraft sends the position information of the aircraft to the AMF network element, and the AMF network element may also perform a de-registration process on the aircraft.
  • the aircraft sends the position information of the aircraft to the control device, which can be used by the control device to determine whether the aircraft is approaching or located in the no-fly area, so that the control device can send control instructions to the aircraft in time, thereby achieving the effect of prohibiting the aircraft from flying in the no-fly area.
  • the aircraft stops processing information from devices other than the device corresponding to the identification information, which can prevent the aircraft from being controlled by devices other than the device corresponding to the identification information, thereby allowing the aircraft to enter In a limited service state, it can only be controlled by the device corresponding to the identification information.
  • the aircraft stops sending information to any device or the aircraft stops sending information to devices other than the device corresponding to the identification information, which can prevent the aircraft from being in or near the no-fly area In this case, information that needs to be kept secret from other devices is sent to devices other than the control device, thereby preventing information leakage.
  • the foregoing method further includes: the AMF network element sends identification information to the aircraft, and the identification information is used to identify a device that allows the aircraft to communicate with it; the AMF network element sends a second to the aircraft Instruction information and / or third instruction information.
  • the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value and the aircraft is in a limited service state, the aircraft stops processing from the device corresponding to the identification information Information of other devices;
  • the third instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value and the aircraft is in a restricted service state, the aircraft stops A device other than the device corresponding to the identification information sends information.
  • the AMF network element may re-determine whether the shortest distance between the aircraft and the no-fly area is based on the position information of the aircraft and the updated no-fly area information. Less than or equal to the first preset value.
  • the AMF network element may re-send reference information to the control device.
  • FIG. 5 is a flowchart of a second control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by the aircraft in the communication system shown in FIG. 1, and may also be executed by other devices with similar functions. Be restricted. The details are as follows.
  • Step 401 The aircraft receives the no-fly area information of the aircraft from the AMF network element.
  • Step 402 When the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, the aircraft deregisters, enters a restricted service state, or sends the position information of the aircraft to the control device or the AMF network element.
  • the aircraft deregisters, enters the restricted service state, and sends the position information of the aircraft to the control device or the AMF network element.
  • the control device or the AMF network element For details, refer to the related description in the embodiment shown in FIG.
  • the information of the no-fly area is transmitted to the aircraft through the AMF network element.
  • the aircraft can register and enter the first service Status, sending the aircraft's position information to the AMF network element or control device to achieve or trigger the effect of banning the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the aircraft control method may further include: the aircraft receives identification information from an AMF network element, and the identification information is used to identify a device that allows the aircraft to communicate with it.
  • the aircraft receives the second instruction information from the AMF network element.
  • For the second instruction information reference may be made to the related description in the embodiment shown in FIG. 3, and details are not described herein again.
  • the aircraft enters a limited service state, including: the aircraft stops processing information from other devices according to the second instruction information.
  • the control method of the aircraft may further include: the aircraft receives the third instruction information from the AMF network element.
  • the third indication information reference may be made to related descriptions in the embodiment shown in FIG. 3, and details are not described herein again.
  • the aircraft enters a restricted service state, including: the aircraft stops sending information to other devices according to the third instruction information.
  • control method of the aircraft may further include: the aircraft receives identification information from the AMF network element, and the identification information is used to identify a device that allows the aircraft to communicate with the aircraft; the aircraft receives a third from the AMF network element Instructions.
  • the third indication information reference may be made to related descriptions in the embodiment shown in FIG. 3, and details are not described herein again.
  • the aircraft enters a restricted service state, including: the aircraft stops sending information to other devices according to the third instruction information.
  • control method of the aircraft may further include: the aircraft determines whether the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the information of the no-fly region.
  • the information of the no-fly zone received by the aircraft in step 401 is a network identifier of the no-fly zone, and the network identifier includes an identifier of at least one cell.
  • the aircraft may detect whether the aircraft accesses any one of the at least one cell. When the aircraft accesses any one of the at least one cell, the aircraft may determine that the shortest distance between the aircraft and the no-fly area at this time is less than or equal to the first preset value. When the aircraft is not connected to the at least one cell, the aircraft may determine that the shortest distance between the aircraft and the no-fly area is greater than a first preset value.
  • the information of the no-fly area received by the aircraft in step 401 is the network identification of the no-fly area.
  • the aircraft may measure a wireless signal strength of each of the at least one cell. It should be noted that the wireless signal strength of the cell measured by the aircraft is negatively related to the distance between the aircraft and the cell. That is, when the aircraft is closer to the cell, the wireless signal strength of the cell measured by the aircraft is stronger; when the aircraft is closer to the campus, the wireless signal strength of the cell is weaker. Therefore, the aircraft can determine the distance between the aircraft and each cell based on the measured wireless signal strength of each cell.
  • the aircraft may determine that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the aircraft may determine that the shortest distance between the aircraft and the no-fly area is greater than the first preset value.
  • the information of the no-fly area received by the aircraft in step 401 may be a geographical identification of the no-fly area.
  • the aircraft may directly determine the closest to the aircraft in the no-fly area based on the geographical identification of the no-fly area. The edge position, and then the aircraft can determine whether the distance between the position of the aircraft and the edge position is less than or equal to the first preset value. When the distance between the edge position and the position of the aircraft is less than or equal to the first preset value, the aircraft may determine that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • the aircraft can determine in real time whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft can also periodically determine whether the shortest distance between the aircraft and the no-fly area is less than or Is equal to the first preset value, or the aircraft may determine whether the shortest distance between the aircraft and the no-fly zone is less than or equal to the first preset value each time a cell is registered, or the aircraft may When each cell in at least one cell performs registration, it is determined whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, which is not limited.
  • the aircraft may re-determine whether the shortest distance between the aircraft and the no-fly area is based on the position information of the aircraft and the updated no-fly area information. Less than or equal to the first preset value.
  • the aircraft may deregister, enter a limited service state, or send the position information of the aircraft to the control device or AMF network element.
  • control method of the aircraft may further include: the aircraft receives a control instruction from the control device, and then the aircraft executes the control instruction.
  • the control instruction is a hovering instruction
  • the aircraft may hover according to the control instruction.
  • the aircraft does not enter the no-fly area and does not fly in a direction close to the no-fly area, so the aircraft can be prevented from flying in the no-fly area;
  • the control instruction is a return instruction, the aircraft can return to the home according to the control instruction.
  • the aircraft is flying away from the no-fly zone, so the aircraft can be prevented from flying in and out of the no-fly zone; when the control instruction is an in-situ landing instruction, the aircraft can land in place according to the control instruction. At this time, the aircraft is not in a flying state, so the aircraft can also be prevented from flying in and out of the no-fly zone.
  • the control instruction is an instruction to fly on a designated route away from the no-fly area, the aircraft can follow the control instruction according to the control instruction. Designated flight route. At this time, the aircraft is flying away from the no-fly zone, so the aircraft can be prevented from flying in and out of the no-fly zone.
  • FIG. 6 is a flowchart of a third aircraft control method according to an embodiment of the present application.
  • the aircraft control method may be executed by a control device in the communication system shown in FIG. 1, or may be executed by other devices with similar functions. No restrictions. The details are as follows.
  • Step 501 The control device receives reference information of an aircraft from an AMF network element.
  • Step 502 The control device sends a control instruction to the aircraft according to the reference information.
  • control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • control device may determine that the current aircraft has entered the no-fly area of the aircraft or is about to enter the no-fly area of the aircraft. At this time, the control device may directly send the control to the aircraft. instruction.
  • control instruction For the control instruction, refer to the related description in the embodiment shown in FIG. 3.
  • the reference information is sent to the control device through the AMF network element, so as to trigger the control device to send the control instruction to the aircraft for prohibiting the aircraft from flying in the no-fly area, so as to prevent the aircraft from flying in the no-fly area
  • the purpose is to reduce security risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the reference information includes the position information of the aircraft.
  • the control device may send a control instruction to the aircraft according to the position information of the aircraft and the geographical identification of the no-fly area in the reference information. For example, the control device may re-determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value according to the position information of the aircraft and the geographical identification of the no-fly area in the reference information, and then re-determine the aircraft and the no-fly area.
  • the control device When the shortest distance between the flying areas is less than or equal to the first preset value, the control device sends the above control instruction to the aircraft, thereby preventing the AMF network element from determining whether the shortest distance between the aircraft and the no-flying area is less than or equal to the first Misjudgment of the preset value is not limited.
  • the control device may send a hovering instruction, a return command, an in-situ landing instruction, or an instruction to fly in a designated route away from the no-fly zone to the aircraft; when the aircraft enters the no-fly zone, At that time, the control device may send a home return instruction, an in-situ landing instruction, or an instruction to fly on a designated route in a direction away from the no-fly area to the aircraft.
  • control method of the aircraft may further include: the control device receives position information from the aircraft.
  • the aircraft may periodically send the position information of the aircraft to the control device; or, after the AMF network element receives the identification of the no-fly area, the AMF network element may send the identification of the no-fly area to the aircraft, so that the aircraft can
  • the identification of the no-fly area determines that when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, the position information of the aircraft is reported to the control device.
  • the control device sends the control instruction to the aircraft according to the position information of the aircraft and the geographical indication of the no-fly area in the reference information, including: the control device according to the position information of the aircraft and the position information from the aircraft in the reference information, and the no-fly area To determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value; when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, the control device sends the aircraft to the aircraft Send control instructions.
  • the control device determines whether the shortest distance between the aircraft and the no-fly region is less than or equal to the first preset value according to the position information of the aircraft and the position information from the aircraft in the reference information, and the geographical indication of the no-fly region, which may include: :
  • the control device determines the position information of the aircraft according to the position information of the aircraft and the position information from the aircraft in the reference information, and the process can refer to the position information of the AMF network element according to the AMF network element positioning and the aircraft transmission in the embodiment shown in FIG. 3
  • the process of determining the position information of the aircraft is omitted here.
  • the control device may determine whether the shortest distance between the aircraft and the no-fly region is less than or equal to the first preset value according to the determined position information of the aircraft and the geographical identification of the no-fly region.
  • the method for controlling the aircraft may further include: the control device sends the geographical indication of the no-fly area to the AMF network element, the PCF network element, or the UDM network element.
  • the geographical identification of the no-fly zone may be a triggering operation on the control device by the user of the control device, so that the geographical identification obtained by the control device. For example, a geographic identifier entered by the user on the control device, or a geographic identifier selected by the user among a plurality of geographic identifiers preset in the control device.
  • the geographical identification of the no-fly area may also be a geographical identification received by the control device from other devices, which is not limited.
  • the control device may send the geographical indication to the AMF network element, the PCF network element, or the UDM network element, so that the AMF network element, the PCF network element, or the UDM network element may be based on the geographical indication.
  • the AMF network element sends the network identification to the aircraft
  • the PCF network element and UDM network element send the network identification to the AMF network element
  • both the AMF network element and the aircraft can monitor whether the shortest distance between the aircraft and the no-fly area is less than the first preset value according to the network identification, and the shortest distance between the aircraft and the no-fly area is less than At the first preset value, corresponding operations are performed to achieve the effect of the no-flying aircraft flying in the no-flying area.
  • the control device may send the updated geographic identification of the no-fly zone to the AMF network element, the PCF network element, or the UDM network element.
  • FIG. 7 is a flowchart of a fourth control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by a PCF network element, a UDM network element, or an AMF network element in the communication system shown in FIG. 1. It can be performed by network elements with other similar functions without limitation. The details are as follows.
  • Step 601 Obtain a geographic identifier of a no-fly area of the aircraft.
  • the network element used to execute the method shown in FIG. 7 may obtain the geographical identifier of the no-fly area of the aircraft.
  • the geographical identification of the no-fly area may be a geographical identification provided by the control device.
  • Each of the PCF network element, UDM network element, or AMF network element can receive the geographical indication directly from the control device, and can also receive the AMF network element, NEF network element, PCF network element, and UDM network element.
  • the geographical identifiers sent by other network elements different from the network elements implementing the method shown in FIG. 7 are not limited thereto.
  • Step 602 Determine the network identification of the no-fly area according to the geographical identification of the no-fly area.
  • the network element used to execute the method shown in FIG. 7 may preset a correspondence relationship between geographical identifiers and network identifiers of multiple regions, and the network identifier of each region may include at least one cell (communication cell) identifier, and the The area is located within the coverage of at least one cell identity.
  • the corresponding relationship can be shown in Table 1.
  • the network identifiers corresponding to the geographical identifier D1 of the region Q1 include: cell identifiers X11 and X12, and the network identifiers corresponding to the geographical identifier D2 of the region Q2 include: cell identifier X21, and the geographical identifier of region Q3
  • the network identifiers corresponding to the identifier D3 include: cell identifiers X31, X32, and X33. It should be noted that the cell identities summarized by the network identities in each area may or may not overlap, which is not limited.
  • the network element used to execute the method shown in FIG. 7 may query the correspondence between the geographical identifier and the network identifier in the preset multiple regions according to the geographic identifier of the no-fly zone to determine the prohibited relationship in the correspondence.
  • the cell identifier in the network identifier of the no-fly zone may be referred to as a cell identifier.
  • Step 603 Send the network identification of the no-fly area to the AMF network element or the aircraft.
  • the PCF network element or UDM network element may send the no-fly region information to the AMF network element after obtaining the network identification of the no-fly region.
  • Network identification After obtaining the network identification of the no-fly area, the AMF network element can monitor whether the shortest distance between the aircraft and the no-fly area is less than the first preset value according to the network identification of the no-fly area. When the distance is less than or equal to the first preset value, the AMF network element can notify the control device to control the aircraft to prohibit the aircraft from flying in the no-fly area. There is no need to install an electronic fence on the edge of the no-fly zone, which simplifies the preparation process in advance and reduces costs.
  • the AMF network element may send the network identification of the no-fly region to the aircraft after obtaining the network identification of the no-fly region. After acquiring the information of the no-fly area, the aircraft can monitor whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the aircraft can register itself to land or return home; or the aircraft can also send the position information of the aircraft to the control device or AMF network element to trigger
  • the control device sends control instructions to the aircraft to prohibit the aircraft from flying in the no-fly area; or enters a restricted service state.
  • an AMF network element, a PCF network element, or a UDM network element receives a geographic identifier from a no-fly area of a control device, converts the geographic identifier into a network identifier of the no-fly area, and uses the network identifier Send to the aircraft or AMF network element. So that the aircraft or AMF network element can monitor whether the shortest distance between the aircraft and the no-fly zone is less than the first preset value after receiving the network identifier, and between the aircraft and the no-fly zone. When the shortest distance is less than or equal to the first preset value, a message is sent to the control device to trigger the control device to control the aircraft in time. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the no-fly area there may be an update situation in the no-fly area.
  • the AMF network element, the PCF network element, or the UDM network element may update the geographical identification of the no-fly region , Determine the updated network identification of the no-fly area, and send the updated network identification of the no-fly area to the AMF network element or the aircraft.
  • FIG. 8 is a flowchart of a fifth control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by multiple devices in the communication system shown in FIG. 1. The details are as follows.
  • Step 701 The control device acquires a geographic identifier of a no-fly area.
  • Step 702 The control device sends the geographical identification of the no-fly area to the PCF network element.
  • control device may send the geographical identification of the no-fly area to the PCF network element through the NEF network element.
  • the control device may first send the geographical identification of the no-fly area to the NEF network element.
  • the NEF network element may forward the geographical identification to the PCF network element.
  • the NEF network element may also send feedback information that the geographical indication has been received to the control device. It should be noted that the control device may also send the geographical indication of the no-fly area to the PCF network element through other methods, which is not limited.
  • Step 703 The PCF network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • step 703 reference may be made to the related description in the embodiment shown in FIG. 7, and details are not described herein.
  • Step 704 The PCF network element sends the network identification of the no-fly area to the AMF network element.
  • the PCF network element may send the network identity of the no-fly area to the AMF network element.
  • Step 705 The AMF network element determines whether the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the position information of the aircraft and the network identifier of the no-fly region.
  • step 706 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 705 is performed, that is, It is repeatedly determined whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • step 705 is performed, that is, It is repeatedly determined whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value.
  • Step 706 The AMF network element sends the reference information of the aircraft to the control device.
  • the reference information includes at least one of first instruction information and position information of the aircraft.
  • the first instruction information is used to indicate the no-fly area of the aircraft and the aircraft. The shortest distance between them is less than or equal to the first preset value.
  • step 706 reference may be made to the related description in the embodiment shown in FIG. 3, and details are not described herein.
  • Step 707 The control device sends a control instruction to the aircraft according to the reference information, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • step 707 reference may be made to related descriptions in the embodiment shown in FIG. 6, and details are not described herein.
  • Step 708 The aircraft executes a control instruction.
  • step 708 reference may be made to related descriptions in the embodiment shown in FIG. 5, and details are not described herein.
  • the aircraft when it receives the control instruction, it may also enter a limited service state.
  • a limited service state reference may be made to the related description in the embodiment shown in FIG. 5, and details are not described herein.
  • the control device since the control device sends the information of the no-fly area to the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than or equal to It is equal to the first preset value for monitoring.
  • the AMF network element can notify the control device to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 9 is a flowchart of a sixth control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by multiple devices in the communication system shown in FIG. 1, as described below.
  • Step 901 The control device acquires a geographical identifier of a no-fly area.
  • step 901 reference may be made to step 701, which is not described in the embodiment of the present application.
  • Step 902 The control device sends the geographical identification of the no-fly area to the UDM network element.
  • control device may send the geographical identification of the no-fly area to the UDM network element through the NEF network element.
  • the control device may first send the geographical identification of the no-fly area to the NEF network element.
  • the NEF network element may forward the geographical identification to the UDM network element.
  • the NEF network element may also send feedback information that the geographical indication has been received to the control device. It should be noted that the control device may also send the geographical indication of the no-fly area to the UDM network element through other methods, which is not limited.
  • Step 903 The UDM network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region. For the process of determining the network identity of the no-fly zone by the UDM network element in step 903, reference may be made to the process of determining the network identity of the no-fly zone by the PCF network element in step 703, which is not described in the embodiment of this application.
  • Step 904 The UDM network element sends the network identification of the no-fly area to the AMF network element.
  • Step 905 The AMF network element determines whether the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the position information of the aircraft and the network identifier of the no-fly region.
  • step 906 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 905 is performed.
  • step 905 reference may be made to step 705, which is not described in the embodiment of the present application.
  • Step 906 The AMF network element sends reference information of the aircraft to the control device, where the reference information includes at least one of first instruction information and position information of the aircraft, and the first instruction information is used to indicate the no-fly area of the aircraft and the aircraft. The shortest distance between them is less than or equal to the first preset value.
  • step 906 reference may be made to step 706, which is not described in the embodiment of the present application.
  • Step 907 The control device sends a control instruction to the aircraft according to the reference information, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • Step 907 may refer to step 707, which is not described in the embodiment of the present application.
  • Step 908 The aircraft executes a control instruction.
  • step 908 reference may be made to step 708, which is not described in the embodiment of the present application.
  • the aircraft when it receives the control instruction, it may also enter a limited service state.
  • a limited service state For an explanation of the aircraft entering the restricted service state, reference may be made to the explanation of the aircraft entering the restricted service state in the embodiment shown in FIG. 8, which is not repeatedly described in the embodiment of the present application.
  • the control device since the control device sends the information of the no-fly area to the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than or equal to It is equal to the first preset value for monitoring.
  • the AMF network element can notify the control device to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 10 is a flowchart of a seventh control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by multiple devices in the communication system shown in FIG. 1, as described below.
  • Step 1001 The control device acquires a geographical indication of a no-fly area.
  • step 1001 reference may be made to step 701, which is not described in the embodiment of the present application.
  • Step 1002 The control device sends the geographical indication of the no-fly area to the AMF network element.
  • Step 1002 may refer to step 702. However, step 1002 is different from step 702 in that the control device sends the geographical indication of the no-fly region to the AMF network element instead of the geographical identification of the no-fly region to the PCF network element.
  • the control device may sequentially send the geographical identification of the no-fly area to the AMF network element through the NEF network element and the PCF network element.
  • the control device may also send the geographical indication of the no-fly area to the AMF network element by other methods, which is not limited.
  • the control device may further send the geographical identification of the no-fly area to the AMF network element through the NEF network element and the UDM network element in sequence.
  • the control device may also send the no-fly flight area to the AMF network element through the PCF network element. Geographical identification of the area.
  • the control device can also send the geographical identification of the no-fly area to the AMF network element through the UDM network element.
  • the control device can also send the geographical identification of the no-fly area to the AMF network element through the NEF network element. This is not limited.
  • Step 1003 The AMF network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • Step 1004 The AMF network element determines whether the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the position information of the aircraft and the network identifier of the no-fly region.
  • step 1005 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 1004 is performed.
  • step 1004 reference may be made to step 705, which is not described in the embodiment of the present application.
  • Step 1005 The AMF network element sends the reference information of the aircraft to the control device, where the reference information includes at least one of first instruction information and position information of the aircraft, and the first instruction information is used to indicate the no-fly area of the aircraft and the aircraft. The shortest distance between them is less than or equal to the first preset value.
  • step 1005 reference may be made to step 706, which is not described in the embodiment of the present application.
  • Step 1006 The control device sends a control instruction to the aircraft according to the reference information, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • step 1006 reference may be made to step 707, which is not described in the embodiment of the present application.
  • Step 1007 The aircraft executes a control instruction.
  • step 1007 reference may be made to step 708, which is not described in the embodiment of the present application.
  • the aircraft when it receives the control instruction, it may also enter a limited service state.
  • a limited service state For an explanation of the aircraft entering the restricted service state, reference may be made to the explanation of the aircraft entering the restricted service state in the embodiment shown in FIG. 8, which is not repeatedly described in the embodiment of the present application.
  • the control device since the control device sends information on the no-fly area to the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than It is equal to the first preset value for monitoring.
  • the AMF network element can notify the control device to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 11 is a flowchart of an eighth aircraft control method according to an embodiment of the present application.
  • the aircraft control method may be executed by multiple devices in the communication system shown in FIG. 1, as described below.
  • Step 1101 The control device acquires a geographical indication of a no-fly area.
  • step 1101 reference may be made to step 701, which is not described in the embodiment of the present application.
  • Step 1102 The control device sends the geographical indication of the no-fly area to the PCF network element.
  • step 1102 reference may be made to step 702, which is not described in the embodiment of the present application.
  • Step 1103 The PCF network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • step 1103 reference may be made to step 703, which is not described in the embodiment of the present application.
  • Step 1104 The PCF network element sends the network identification of the no-fly area to the AMF network element.
  • step 1104 reference may be made to step 704, which is not described in the embodiment of the present application.
  • Step 1105 The AMF network element sends the network identification of the no-fly area to the aircraft.
  • the AMF network element may directly send the network identification to the aircraft, so that the aircraft can perform subsequent determination of the aircraft and the no-fly according to the network identification of the no-fly area. Step of whether the shortest distance of the area is less than or equal to the first preset value.
  • the AMF network element may send the tracking area list including the identity of the cell in the network identity of the no-fly area to the aircraft, and send the network identity of the no-fly area to the aircraft.
  • the cells in the tracking area list are all cells in which the aircraft does not need to report the geographic position of the aircraft to the AMF network element.
  • Step 1106 The aircraft determines whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value according to the network identifier of the no-fly area. If the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, step 1107 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 1106 is performed.
  • step 1106 reference may be made to related descriptions in the embodiment shown in FIG. 5, and details are not described herein.
  • Step 1107 The aircraft deregisters, enters a restricted service state, or sends the position information of the aircraft to the AMF network element or control device.
  • step 1107 reference may be made to related descriptions in the embodiment shown in FIG. 5, and details are not described herein.
  • the control device since the control device sends the information of the no-fly area to the aircraft via the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than or It is equal to the first preset value for monitoring.
  • the aircraft can deregister, enter the first service state, and send the position information of the aircraft to the AMF network element or control device to achieve the prohibition of the aircraft in the no-fly area
  • the purpose of internal flight reduces safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 12 is a flowchart of a ninth control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by multiple devices in the communication system shown in FIG. 1, as described below.
  • Step 1201 The control device acquires a geographical identifier of a no-fly area.
  • step 1201 reference may be made to step 901, which is not described in the embodiment of the present application.
  • Step 1202 The control device sends the geographical indication of the no-fly area to the UDM network element.
  • step 1202 reference may be made to step 902, which is not described in the embodiment of the present application.
  • Step 1203 The UDM network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • step 1203 reference may be made to step 903, which is not described in the embodiment of the present application.
  • Step 1204 The UDM network element sends the network identification of the no-fly area to the AMF network element.
  • step 1204 reference may be made to step 904, which is not described in the embodiment of the present application.
  • Step 1205 The AMF network element sends the network identification of the no-fly area to the aircraft.
  • step 1205 reference may be made to step 1105, which is not described in the embodiment of the present application.
  • Step 1206 The aircraft determines whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value according to the network identifier of the no-fly area.
  • step 1207 If the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, step 1207 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 1206 is performed.
  • step 1206 reference may be made to step 1106, which is not described in the embodiment of the present application.
  • Step 1207 The aircraft deregisters, enters a restricted service state, or sends the position information of the aircraft to the AMF network element or control device.
  • step 1207 reference may be made to step 1107, which is not described in the embodiment of the present application.
  • the control device since the control device sends the information of the no-fly area to the aircraft via the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than or It is equal to the first preset value for monitoring.
  • the aircraft can deregister, enter the first service state, and send the position information of the aircraft to the AMF network element or control device to achieve the prohibition of the aircraft in the no-fly area
  • the purpose of internal flight reduces safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 13 is a flowchart of a tenth control method of an aircraft provided by an embodiment of the present application.
  • the control method of the aircraft may be executed by multiple devices in the communication system shown in FIG. 1, as described below.
  • Step 1301 The control device acquires a geographical identifier of a no-fly area.
  • step 1301 reference may be made to step 1001, which is not described in the embodiment of the present application.
  • Step 1302 The control device sends the geographical indication of the no-fly area to the AMF network element.
  • step 1302 reference may be made to step 1002, which is not described in the embodiment of the present application.
  • Step 1303 The AMF network element determines the network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • step 1303 reference may be made to step 1003, which is not described in this embodiment of the present application.
  • Step 1304 The AMF network element sends the network identification of the no-fly area to the aircraft.
  • step 1304 reference may be made to step 1105, which is not described in the embodiment of the present application.
  • Step 1305 The aircraft determines whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value according to the network identifier of the no-fly area.
  • step 1306 is performed; if the shortest distance between the aircraft and the no-fly area is greater than the first preset value, step 1305 is performed.
  • step 1305 reference may be made to step 1106, which is not described in the embodiment of the present application.
  • Step 1306 The aircraft deregisters, enters a restricted service state, or sends the position information of the aircraft to the AMF network element or control device.
  • step 1306 reference may be made to step 1107, which is not described in the embodiment of the present application.
  • the control device since the control device sends the information of the no-fly area to the aircraft via the AMF network element, and whether the shortest distance between the aircraft and the no-fly area can be less than or It is equal to the first preset value for monitoring.
  • the aircraft can deregister, enter the first service state, and send the position information of the aircraft to the AMF network element or control device to achieve the prohibition of the aircraft in the no-fly area
  • the purpose of internal flight reduces safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the geographical indications of the no-fly zones are all from the control device.
  • the geographical indication of the no-fly area in the embodiments shown in FIG. 11, FIG. 12, and FIG. 13 may not come from the control device, which is not limited.
  • steps 701 and 702 in the embodiment shown in FIG. 8 may be replaced by: PCF network elements to obtain the geographical identification of the no-fly zone
  • steps 1101 and 1102 in the embodiment shown in FIG. 11 may be replaced by: PCF
  • the network element obtains the geographical identification of the no-fly area.
  • the geographical identification in the embodiments shown in FIG. 8 and FIG. 11 may be a user of the PCF network element to perform a trigger operation on the PCF network element to make the geographical identification acquired by the PCF network element.
  • Steps 901 and 902 in the embodiment shown in FIG. 9 may be replaced by: UDM network elements to obtain the geographical identification of the no-fly zone
  • steps 1201 and 1202 in the embodiment shown in FIG. 12 may be replaced by: UDM network elements Obtain the geographic identifier of the no-fly zone.
  • the geographic identifier in the embodiments shown in FIG. 9 and FIG. 12 may be a user of the UDM network element to perform a trigger operation on the UDM network element to enable the UDM network element to obtain the geographical identifier.
  • Steps 1001 and 1002 in the embodiment shown in FIG. 10 may be replaced by: AMF network elements to obtain the geographical identification of the no-fly zone
  • steps 1301 and 1302 in the embodiment shown in FIG. 13 may be replaced by: AMF network elements Obtain the geographical identification of the no-fly area.
  • the geographical identification in the embodiments shown in FIG. 10 and FIG. 13 may be a trigger operation on the AMF network element by the user of the AMF network element to enable the AMF network element to obtain the geographical identification.
  • the information may be loaded in other information (such as information related to the registration process) and sent, or the information may be sent separately. Not limited.
  • FIG. 8 In addition, in the control method of the aircraft shown in FIG. 8, FIG. 9, and FIG. 10, it is the AMF network element that monitors whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value; and FIG. 11
  • FIGS. 12 and 13 In the control method of the aircraft shown in FIGS. 12 and 13, it is the aircraft that monitors whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the method shown in any one of Figs. 8, 9 and 10 may be combined with the method shown in any one of Figs. 11, 12 and 13 to Whether the shortest distance between them is less than or equal to the first preset value may be monitored by the AMF network element and the aircraft, which is not limited.
  • the AMF network element after obtaining the network identification of the no-fly area, the AMF network element not only needs to monitor whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value based on the network identification of the no-fly area.
  • the AMF network element also needs to issue the network identification of the no-fly area to the aircraft, so that the aircraft can determine whether the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset according to the network identification of the no-fly area. Value for monitoring.
  • the aircraft may perform de-registration.
  • the AMF network element When the shortest distance between the AMF network element and the aircraft and the no-fly zone is less than or equal to the first preset value, the AMF network element reports the reference information of the aircraft to the control device, so that the control device sends the control to the aircraft according to the reference information. instruction.
  • the aircraft may determine whether to perform deregistration according to the received control instruction and the magnitude relationship between the shortest distance and the first preset value.
  • the AMF network element in the control layer device monitors the shortest distance between the aircraft and the no-fly area, and the control layer device monitors the aircraft. It is more reliable than the aircraft's self-monitoring, so it can effectively prevent the aircraft from flying in the no-fly zone.
  • the no-fly area may be updated, so that the control method of the aircraft can always control the aircraft to prohibit flying in the latest no-fly area, and control the aircraft to prohibit The timeliness of flying in the no-fly zone is high.
  • FIG. 14 is a schematic structural diagram of a control device for an aircraft according to an embodiment of the present application.
  • the control device for the aircraft may be located in an AMF network element in FIG. 1, and is not limited.
  • the control device may be configured to perform an action of an AMF network element in the foregoing method embodiment.
  • the control device 100 of the aircraft may include:
  • An acquisition module 601 configured to acquire information on a no-fly area of the aircraft
  • the first sending module 602 is configured to send reference information to the control device when the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the reference information includes at least one of first instruction information and position information of the aircraft.
  • the first instruction information is used to indicate that a shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value.
  • the first sending module is capable of keeping the shortest distance between the aircraft and the no-fly area less than or equal to the first preset
  • the control device can be notified to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the information of the no-fly area includes: a network identification of the no-fly area, or a geographical identification of the no-fly area.
  • FIG. 15 is a schematic structural diagram of another control device for an aircraft according to an embodiment of the present application. As shown in FIG. 15, based on the control device shown in FIG. 14, the control device 100 for the aircraft may further include:
  • the first determining module 603 is configured to determine that the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the position information of the aircraft and the no-fly region information.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell, and the first determining module 603 is configured to:
  • a distance between the aircraft and a center point of a coverage area of any one of the at least one cell is less than or equal to a first preset value.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell.
  • FIG. 16 is a schematic structural diagram of another control device for an aircraft according to an embodiment of the present application. As shown in FIG. 16, based on the control device shown in FIG. 14, the control device 100 for the aircraft may further include:
  • the second determining module 604 is configured to determine that the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value when it is determined that the aircraft accesses any one of the at least one cell.
  • FIG. 17 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application. As shown in FIG. 17, based on FIG. 14, The control device 100 of the aircraft may further include:
  • the third determining module 605 is configured to determine a network identifier of the no-fly region according to the geographical identifier of the no-fly region.
  • the obtaining module 601 may be configured to receive a geographical identifier from a no-fly area of a control device or a unified data management UDM network element.
  • the information of the no-fly zone includes the network identifier of the no-fly zone
  • the obtaining module 601 may be configured to receive the network identifier of the no-fly zone from the policy control function PCF network element or UDM network element.
  • control device for the aircraft shown in FIG. 14, FIG. 15, FIG. 16, and FIG. 17 may further include:
  • the second sending module 606 is configured to send a network identifier or a geographical identifier of the no-fly area to the aircraft.
  • control device for the aircraft shown in FIG. 14, FIG. 15, FIG. 16, and FIG. 17 may further include:
  • a third sending module 607 configured to send identification information to the aircraft, where the identification information is used to identify a device that allows the aircraft to communicate with the aircraft;
  • a fourth sending module 608, configured to send the second instruction information and / or the third instruction information to the aircraft;
  • the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value and the aircraft is in a limited service state, the aircraft stops processing from the device corresponding to the identification information Information about devices other than
  • the third instruction information is used to instruct the aircraft: When the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value and the aircraft is in a restricted service state, the aircraft stops sending information to devices other than the device corresponding to the identification information. Other devices send messages.
  • the position information of the aircraft is the position information of the aircraft reported by the aircraft to the AMF network element, or the position information of the aircraft positioned by the AMF network element, or the position information of the aircraft reported by the AMF network element to the AMF network element and The position information determined by the position information of the aircraft positioned by the AMF network element.
  • the first sending module is capable of keeping the shortest distance between the aircraft and the no-fly area less than or equal to the first preset
  • the control device can be notified to control the aircraft to prevent the aircraft from flying in the no-fly area, reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 18 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • the control device may be located on the aircraft in FIG. 1 without limitation.
  • the control device may be used to execute the control device in the method embodiment described above. action.
  • the control device 140 of the aircraft may include:
  • a first receiving module 601, configured to receive information on a no-fly area of an aircraft from an AMF network element;
  • the processing module 602 is configured to register when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, enter a restricted service state, or send the position information of the aircraft to the control device or the AMF network element.
  • the processing module can determine whether the shortest distance between the aircraft and the no-fly area is Less than or equal to the first preset value for monitoring.
  • the processing module can perform corresponding operations to realize that the aircraft is prohibited from flying in the no-fly area, reducing potential safety hazards. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the information of the no-fly area includes a network identification of the no-fly area or a geographical identification of the no-fly area.
  • FIG. 19 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application. As shown in FIG. 19, based on the control device shown in FIG. 18, the control device 140 of the aircraft may include:
  • the first determining module 603 is configured to determine that the shortest distance between the aircraft and the no-fly region is less than or equal to a first preset value according to the information of the no-fly region.
  • the information of the no-fly zone includes a network identifier of the no-fly zone, and the network identifier of the no-fly zone includes an identifier of at least one cell, and the first determining module 603 is configured to:
  • the wireless signal strength of any one of the at least one cell is greater than or equal to the second preset value
  • control device of the aircraft further includes:
  • a second receiving module 604 configured to receive identification information from an AMF network element, where the identification information is used to identify a device that allows the aircraft to communicate with it;
  • the third receiving module 605 is configured to receive second instruction information from the AMF network element, and the second instruction information is used to instruct the aircraft: when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft When in a restricted service state, stop processing information from devices other than the device corresponding to the identification information;
  • the processing module 602 is configured to stop processing information from other devices according to the second instruction information.
  • control device of the aircraft further includes:
  • the fourth receiving module 606 is configured to receive third instruction information from the AMF network element, and the third instruction information is used to indicate when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, and the aircraft is in When the service is limited, the aircraft stops sending information to other devices;
  • the processing module 602 is configured to stop sending information to other devices according to the third instruction information.
  • control device of the aircraft may not include the above-mentioned second receiving module, third receiving module, and fourth receiving module, but may include a fifth receiving module (not shown in FIG. 19) for receiving signals from the AMF.
  • Network element identification information The identification information is used to identify the device that allows the aircraft to communicate with it.
  • the sixth receiving module (not shown in FIG. 19) is used to receive the third instruction information from the AMF network element. Instructing the aircraft to stop sending information to devices other than the device corresponding to the identification information when the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value and the aircraft is in a restricted service state; at this time
  • the processing module 602 is configured to stop sending information to other devices according to the third instruction information.
  • the control device since the control device sends the information of the no-fly area to the first receiving module via the AMF network element, since the first receiving module can receive the information from the AMF network element Information of the no-fly area of the aircraft, and the processing module can monitor whether the shortest distance between the aircraft and the no-fly area is less than or equal to a first preset value. When the shortest distance between the aircraft and the no-fly area is less than or equal to the first preset value, the processing module can perform corresponding operations to prevent the aircraft from flying in the no-fly area, reducing potential safety hazards. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 20 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application.
  • the control device of the aircraft may be located in a control device in the communication system shown in FIG. 1 without limitation.
  • the control device may be configured to perform an action of the control device in the foregoing method embodiment.
  • the control device 160 of the aircraft may include:
  • a first receiving module 1201 is configured to receive reference information of an aircraft from an AMF network element.
  • the reference information includes at least one of first instruction information and position information of the aircraft.
  • the first instruction information is used to indicate prohibition between the aircraft and the aircraft.
  • the shortest distance between flying areas is less than or equal to a first preset value;
  • the first sending module 1202 is configured to send a control instruction to the aircraft according to the reference information, and the control instruction is used to prohibit the aircraft from flying in the no-fly area.
  • the first receiving module can receive the reference information of the AMF network element Afan
  • the first sending module can send the aircraft to prohibit the aircraft from using the reference information according to the reference information.
  • Control instructions for flying in the no-fly zone to prevent the aircraft from flying in the no-fly zone reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • the reference information includes position information of the aircraft
  • the first sending module 1202 includes a sending unit configured to send a control instruction to the aircraft according to the position information of the aircraft and the geographical identification of the no-fly area in the reference information.
  • FIG. 21 is a schematic structural diagram of another aircraft control device according to an embodiment of the present application. As shown in FIG. 21, based on the control device illustrated in FIG. 20, the aircraft control device 160 may further include:
  • a second receiving module 1203, configured to receive position information from the aircraft
  • the sending unit is configured to determine whether the shortest distance between the aircraft and the no-fly region is less than or equal to the first preset value according to the position information of the aircraft and the position information from the aircraft in the reference information, and the geographical indication of the no-fly region. When the shortest distance between the aircraft and the no-fly zone is less than or equal to the first preset value, a control instruction is sent to the aircraft.
  • control device of the aircraft further includes:
  • the second sending module 1204 is configured to send a geographical indication of a no-fly area to an AMF network element, a PCF network element, or a UDM network element.
  • the first receiving module can receive the reference information of the AMF network element Afan
  • the first sending module can send the aircraft to prohibit the aircraft from using the reference information according to the reference information.
  • Control instructions for flying in the no-fly zone to prevent the aircraft from flying in the no-fly zone reducing safety risks. This eliminates the need for an electronic fence at the edge of the no-fly zone, which simplifies the advance preparation process and reduces costs.
  • FIG. 22 is a schematic structural diagram of a control device for another aircraft according to an embodiment of the present application.
  • the control device for the aircraft may be located in an AMF network element, a PCF network element, or a UDM network element in FIG. 1. Without limitation, the control device It can be used to perform the actions of the control device in the foregoing method embodiments.
  • the control device 180 of the aircraft may include:
  • An obtaining module 2201 configured to obtain a geographical identifier of a no-fly area of the aircraft
  • a determining module 2202 configured to determine a network identifier of the no-fly region according to the geographical identifier of the no-fly region;
  • a sending module 2203 is configured to send a network identifier of a no-fly area to an AMF network element or an aircraft.
  • the obtaining module 2201 may be configured to receive a geographical identifier of a no-fly area from the control device.
  • FIG. 23 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system 0 may include: an AMF network element 01 and an aircraft 02.
  • the aircraft 02 includes a control device for the aircraft shown in FIG. 18 or 19.
  • the AMF network element 01 may include the control device for the aircraft described in FIG. 14, FIG. 15, FIG. 16, or FIG. 17.
  • the AMF network element 01 may further include: a control device for the aircraft shown in FIG. 22.
  • the communication system 0 further includes: a PCF network element 03, and the PCF network element 03 includes: an aircraft control device shown in FIG. 22.
  • the communication system 0 further includes a UDM network element 04, and the UDM network element 04 includes a control device for the aircraft shown in FIG. 22.
  • FIG. 26 is a schematic structural diagram of another communication system according to an embodiment of the present application.
  • the communication system 0 may include an AMF network element 01, an aircraft 02, and a control device 05.
  • the AMF network element 01 includes a control device for the aircraft shown in FIG. 14, FIG. 15, FIG. 16, or FIG.
  • the control device 05 includes a control device for the aircraft shown in FIG. 20 or FIG. 21.
  • the aircraft 02 may include a control device of the aircraft shown in FIG. 18 or FIG. 19.
  • the AMF network element 01 may further include a control device for the aircraft shown in FIG. 22.
  • the communication system 0 further includes: a PCF network element 03, and the PCF network element 03 includes: an aircraft control device shown in FIG. 22.
  • the communication system 0 further includes a UDM network element 04, and the UDM network element 04 includes a control device for the aircraft shown in FIG. 22.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product that includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data
  • the center transmits to another website site, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state hard disk).
  • the method embodiments provided in the embodiments of the present application can cross-reference with the corresponding device embodiments, which are not limited in the embodiments of the present application.
  • the order of the steps of the method embodiments provided in the embodiments of the present application can be appropriately adjusted, and the steps can be increased or decreased according to the situation. Any person skilled in the art can easily think of changes within the technical scope disclosed in this application. The methods should all be covered by the protection scope of this application, so they will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种飞行器的控制方法及装置,属于通信技术领域。该方法包括:AMF网元获取飞行器的禁飞区域的信息(301);当该飞行器与该禁飞区域之间的最短距离小于或等于第一预设值时,该AMF网元向控制装置发送参考信息(302);其中,参考信息包括:第一指示信息和飞行器的位置信息中的至少一种信息,该第一指示信息用于指示该飞行器与该禁飞区域之间的最短距离小于或等于第一预设值。解决了为了阻止飞行器在禁飞区域飞行的效率较低,预先的准备过程较复杂,且耗时较长的问题,避免了在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程。用于飞行器的控制。

Description

飞行器的控制方法及装置
本申请要求于2018年9月30日提交的申请号为201811160920.4、发明名称为“飞行器的控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种飞行器的控制方法及装置。
背景技术
随着科技的发展,飞行器越来越多的应用到人们的生产和生活中。但是飞行器在很多重要区域(如机场)的“黑飞”会带来较大的安全隐患,因此,如何监测并防止飞行器的“黑飞”成为了亟待解决的问题。
相关技术中,无人机是一种常见的飞行器,地面控制器通过控制链路与无人机进行通信,用户手持该地面控制器以控制无人机飞行。为了防止无人机在禁飞区域内飞行(也即“黑飞”),通常会在禁飞区域的边缘安装多个电子围栏。当无人机朝向禁飞区域飞行,且与电子围栏的间距达到预设间距值时,该电子围栏能够阻断无人机与地面控制器的通信。在这种情况下,无人机会停止继续前行,按照原路返回,从而能够防止无人机进入禁飞区域。
但是,为了阻止飞行器在禁飞区域飞行的效率较低,在禁飞区域边缘需要预先安装多个电子围栏,因此,预先的准备过程较复杂,且耗时较长。
发明内容
本申请提供了一种飞行器的控制方法及装置,所述技术方案如下:
第一方面,提供了一种飞行器的控制方法,所述方法包括:接入管理功能AMF网元获取飞行器的禁飞区域的信息;当所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,所述AMF网元向控制装置发送参考信息;其中,所述参考信息包括:第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
由于控制装置将禁飞区域的信息经由AMF网元下发至飞行器,且AMF网元能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,AMF网元能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,所述禁飞区域的信息包括:所述禁飞区域的网络标识,或所述禁飞区域的地理标识。
可选地,所述方法还包括:所述AMF网元根据所述飞行器的位置信息和所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述AMF网元根据所述飞行器的位置信息和所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,包括: 所述AMF网元根据所述飞行器的位置信息,确定所述飞行器与所述至少一个小区中任意一个的覆盖区域的中心点之间的距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述方法还包括:当所述AMF网元确定所述飞行器接入所述至少一个小区中任意一个小区时,所述AMF网元确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。当飞行器接入任意一个小区时,AMF网元确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。当飞行器并未接入任意一个小区时,AMF网元确定飞行器与禁飞区域之间的最短距离大于第一预设值。需要说明的是,基站的覆盖范围形成小区,飞行器接入小区也即是:飞行器与形成该小区的基站连接。
可选地,所述禁飞区域的信息包括所述禁飞区域的地理标识,所述方法还包括:所述AMF网元根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识。
可选地,所述AMF网元获取所述禁飞区域的信息,包括:所述AMF网元接收来自控制装置或统一数据管理UDM网元的所述禁飞区域的地理标识。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,所述AMF网元获取飞行器的禁飞区域的信息,包括:所述AMF网元接收来自策略控制功能PCF网元或UDM网元的所述禁飞区域的网络标识。
可选地,所述方法还包括:所述AMF网元向所述飞行器发送所述禁飞区域的网络标识或地理标识。
可选地,所述方法还包括:所述AMF网元向所述飞行器发送标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;所述AMF网元向所述飞行器发送第二指示信息和/或第三指示信息;其中,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止处理来自除所述标识信息对应的装置之外的其他装置的信息;所述第三指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息。其中,飞行器停止处理来自除标识信息对应的装置之外的其他装置的信息,可以防止飞行器受到除该标识信息对应的装置之外的装置的控制,从而使得飞行器在进入受限服务状态时,仅能够受到该标识信息对应的装置的控制。飞行器停止向除标识信息对应的装置之外的其他装置发送信息,可以防止飞行器在禁飞区域或靠近禁飞区域时,向其他装置发送需要对其他装置保密的信息,从而能够防止信息的泄漏。
可选地,所述飞行器的位置信息为所述飞行器上报给所述AMF网元的所述飞行器的位置信息,或者,所述AMF网元定位的所述飞行器的位置信息,或所述AMF网元根据所述飞行器上报给所述AMF网元的所述飞行器的位置信息和所述AMF网元定位的所述飞行器的位置信息确定的位置信息。也即是,AMF网元可以通过多种方式确定飞行器的位置信息,且根据多个装置得到的位置信息确定出的飞行器的位置信息较准确。
第二方面,提供了一种飞行器的控制方法,所述方法包括:飞行器接收来自AMF网元的所述飞行器的禁飞区域的信息;当所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,所述飞行器去注册,进入受限服务状态,或向控制装置或所述AMF网元发送所述飞行器的位置信息。飞行器在去注册后,通常会原地降落或按照原路线返回,从而防止飞行器在禁飞区域内飞行。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识或所述禁飞区域的地理标识。
可选地,所述方法还包括:所述飞行器根据所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述方法还包括:当所述飞行器确定所述飞行器接入所述至少一个小区中任意一个小区时,所述飞行器确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值;或者,当所述飞行器确定所述至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,所述飞行器确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。需要说明的是,飞行器测量得到的小区的无线信号强度,与飞行器与该小区的距离负相关。也即,当飞行器与小区距离较近时,飞行器测得的该小区的无线信号强度较强;当飞行器与小区距离校园时,飞行器测得的该小区的无线信号强度较弱。因此,飞行器可以基于测量得到的每个小区的无线信号强度,判断飞行器与每个小区的距离。当飞行器确定至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,飞行器确定飞行器与该禁飞区域之间的最短距离小于或等于第一预设值。当飞行器确定每个小区的无线信号强度均小于第二预设值时,飞行器确定飞行器与该禁飞区域之间的最短距离大于第一预设值。
可选地,所述方法还包括:所述飞行器接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;所述飞行器接收来自所述AMF网元的第二指示信息,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,停止处理来自除所述标识信息对应的装置之外的其他装置的信息;所述飞行器进入受限服务状态,包括:所述飞行器根据所述第二指示信息,停止处理来自所述其他装置的信息。
可选地,所述方法还包括:所述飞行器接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向所述其他装置发送信息;所述飞行器进入受限服务状态,包括:所述飞行器根据所述第三指示信息,停止向所述其他装置发送信息。
可选地,所述方法还包括:所述飞行器接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;所述飞行器接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息;所述飞行器进入受限服务状态,包括:所述飞行器根据所述第三指示信息,停止向所述其他装置发送信息。
第三方面,提供了一种飞行器的控制方法,所述方法还包括:控制装置接收来自AMF网元的飞行器的参考信息,所述参考信息包括第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述飞行器的禁飞区域之间的最短距离小于或等于第一预设值;所述控制装置根据所述参考信息向所述飞行器发送控制指令,所述控制指令用于禁止所述飞行器在所述禁飞区域内飞行。
可选地,所述参考信息包括所述飞行器的位置信息,所述控制装置根据所述参考信息向所述飞行器发送控制指令,包括:所述控制装置根据所述参考信息中所述飞行器的位置信息 和所述禁飞区域的地理标识,向所述飞行器发送所述控制指令。
可选地,所述方法还包括:所述控制装置接收来自所述飞行器的位置信息;所述控制装置根据所述参考信息中所述飞行器的位置信息和所述禁飞区域的地理标识,向所述飞行器发送所述控制指令,包括:所述控制装置根据所述参考信息中所述飞行器的位置信息和所述来自所述飞行器的位置信息,以及所述禁飞区域的地理标识,确定所述飞行器与所述禁飞区域之间的最短距离是否小于或等于第一预设值;当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值时,所述控制装置向所述飞行器发送所述控制指令。也即,控制装置在接收到AMF网元上报的参考信息后,若接收到飞行器的位置信息,则根据接收到的飞行器的位置信息,重新确定飞行器的位置信息。之后,控制装置根据位置信息和禁飞区域的地理标识,重新对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值进行判断,以确定是否需要对飞行器进行控制,从而能够防止AMF网元对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值的误判。
可选地,所述方法还包括:所述控制装置向所述AMF网元、PCF网元或UDM网元发送所述禁飞区域的地理标识。
第四方面,提供了一种飞行器的控制方法,所述方法包括:获取飞行器的禁飞区域的地理标识;根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识;向AMF网元或所述飞行器发送所述禁飞区域的网络标识。
可选地,所述获取飞行器的禁飞区域的地理信息,包括:接收来自控制装置的所述禁飞区域的地理标识。
第五方面,提供了一种飞行器的控制装置,可以位于AMF网元,所述飞行器的控制装置包括:获取模块,用于获取飞行器的禁飞区域的信息;第一发送模块,用于在所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,向控制装置发送参考信息;其中,所述参考信息包括:第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括:所述禁飞区域的网络标识,或所述禁飞区域的地理标识。
可选地,所述飞行器的控制装置还包括:第一确定模块,用于根据所述飞行器的位置信息和所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述第一确定模块用于:根据所述飞行器的位置信息,确定所述飞行器与所述至少一个小区中任意一个的覆盖区域的中心点之间的距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述飞行器的控制装置还包括:第二确定模块,用于在确定所述飞行器接入所述至少一个小区中任意一个小区时,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的地理标识,所述飞行器的控制装置还包括:第三确定模块,用于根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识。
可选地,所述获取模块用于:接收来自控制装置或UDM网元的所述禁飞区域的地理标 识。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,所述获取模块用于:接收来自PCF网元或UDM网元的所述禁飞区域的网络标识。
可选地,所述飞行器的控制装置还包括:第二发送模块,用于向所述飞行器发送所述禁飞区域的网络标识或地理标识。
可选地,所述飞行器的控制装置还包括:第三发送模块,用于向所述飞行器发送标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;第四发送模块,用于向所述飞行器发送第二指示信息和/或第三指示信息;其中,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止处理来自除所述标识信息对应的装置之外的其他装置的信息;所述第三指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息。
可选地,所述飞行器的位置信息为所述飞行器上报给所述AMF网元的所述飞行器的位置信息,或者,所述AMF网元定位的所述飞行器的位置信息,或所述AMF网元根据所述飞行器上报给所述AMF网元的所述飞行器的位置信息和所述AMF网元定位的所述飞行器的位置信息确定的位置信息。
第六方面,提供了一种飞行器的控制装置,可以位于飞行器,所述飞行器的控制装置包括:第一接收模块,用于接收来自AMF网元的所述飞行器的禁飞区域的信息;处理模块,用于在所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,去注册,进入受限服务状态,或向控制装置或所述AMF网元发送所述飞行器的位置信息。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识或所述禁飞区域的地理标识。
可选地,所述飞行器的控制装置还包括:第一确定模块,用于根据所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述第一确定模块用于:在确定所述飞行器接入所述至少一个小区中任意一个小区时,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值;或者,在确定所述至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
可选地,所述飞行器的控制装置还包括:第二接收模块,用于接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;第三接收模块,用于接收来自所述AMF网元的第二指示信息,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,停止处理来自除所述标识信息对应的装置之外的其他装置的信息;所述处理模块用于:根据所述第二指示信息,停止处理来自所述其他装置的信息。
可选地,所述飞行器的控制装置还包括:第四接收模块,用于接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向所述其他装置发送信息;所述处理模块用于:根据所述第三指示信息,停止向所述其他装置发送信息。
可选地,所述飞行器的控制装置还包括:第五接收模块,用于接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;第六接收模块,用于接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息;所述处理模块用于:根据所述第三指示信息,停止向所述其他装置发送信息。
第七方面,提供了一种飞行器的控制装置,可以位于控制装置,所述飞行器的控制装置还包括:第一接收模块,用于接收来自AMF网元的飞行器的参考信息,所述参考信息包括第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述飞行器的禁飞区域之间的最短距离小于或等于第一预设值;第一发送模块,用于根据所述参考信息,向所述飞行器发送控制指令,所述控制指令用于禁止所述飞行器在所述禁飞区域内飞行。
可选地,所述参考信息包括所述飞行器的位置信息,所述第一发送模块包括:发送单元,用于根据所述参考信息中所述飞行器的位置信息和所述禁飞区域的地理标识,向所述飞行器发送所述控制指令。
可选地,所述飞行器的控制装置还包括:第二接收模块,用于接收来自所述飞行器的位置信息;所述发送单元用于:根据所述参考信息中所述飞行器的位置信息和所述来自所述飞行器的位置信息,以及所述禁飞区域的地理标识,确定所述飞行器与所述禁飞区域之间的最短距离是否小于或等于第一预设值;当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值时,向所述飞行器发送所述控制指令。
可选地,所述飞行器的控制装置还包括:第二发送模块,用于向所述AMF网元、PCF网元或UDM网元发送所述禁飞区域的地理标识。
第八方面,提供了一种飞行器的控制装置,所述飞行器的控制装置包括:获取模块,用于获取飞行器的禁飞区域的地理标识;确定模块,用于根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识;发送模块,用于向AMF网元或所述飞行器发送所述禁飞区域的网络标识。
可选地,所述获取模块用于:接收来自控制装置的所述禁飞区域的地理标识。
第九方面,提供了一种通信系统,所述通信系统包括:AMF网元、飞行器和控制装置,
所述AMF网元包括用于执行第一方面所述的方法的装置;
所述飞行器包括用于执行第二方面所述的方法的装置;
所述控制装置包括用于执行第三方面所述的方法的装置。
可选地,所述通信系统还包括:PCF网元或UDM网元,所述PCF网元和所述UDM网元均包括:用于执行第四方面所述的方法的装置。或者,所述AMF网元还包括:用于执行第四方面所述的方法的装置。
第十方面,提供了一种计算机可读存储介质,所述存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的方法;或者,所述计算机程序被处理器执行时实现第二方面所述的方法;或者,所述计算机程序被处理器执行时实现第三方面所述的方法;或者,所述计算机程序被处理器执行时实现第四方面所述的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行第一方面所述的方法;或者,当所述计算机程序产品在计算机上 运行时,使得计算机执行第二方面所述的方法;或者,当所述计算机程序产品在计算机上运行时,使得计算机执行第三方面所述的方法;或者,当所述计算机程序产品在计算机上运行时,使得计算机执行第四方面所述的方法。
第十二方面,提供了一种通信装置,所述通信装置包括:至少一个处理器、至少一个接口、存储器和至少一个通信总线,所述处理器用于执行所述存储器中存储的程序,以实现第一方面所述的方法;或者,所述处理器用于执行所述存储器中存储的程序,以实现第二方面所述的方法;或者,所述处理器用于执行所述存储器中存储的程序,以实现第三方面所述的方法;或者,所述处理器用于执行所述存储器中存储的程序,以实现第四方面所述的方法。
附图说明
图1提供了一种通信系统的结构示意图;
图2为本申请实施例提供的一种通信装置的结构示意图;
图3为本申请实施例提供的第一种飞行器的控制方法的流程图;
图4为本申请实施例提供的一种飞行器与小区的位置示意图;
图5为本申请实施例提供的第二种飞行器的控制方法的流程图;
图6为本申请实施例提供的第三种飞行器的控制方法的流程图;
图7为本申请实施例提供的第四种飞行器的控制方法的流程图;
图8为本申请实施例提供的第五种飞行器的控制方法的流程图;
图9为本申请实施例提供的第六种飞行器的控制方法的流程图;
图10为本申请实施例提供的第七种飞行器的控制方法的流程图;
图11为本申请实施例提供的第八种飞行器的控制方法的流程图;
图12为本申请实施例提供的第九种飞行器的控制方法的流程图;
图13为本申请实施例提供的第十种飞行器的控制方法的流程图;
图14为本申请实施例提供的一种飞行器的控制装置的结构示意图;
图15为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图16为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图17为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图18为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图19为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图20为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图21为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图22为本申请实施例提供的另一种飞行器的控制装置的结构示意图;
图23为本申请实施例提供的一种通信系统的结构示意图;
图24为本申请实施例提供的另一种通信系统的结构示意图;
图25为本申请实施例提供的另一种通信系统的结构示意图;
图26为本申请实施例提供的另一种通信系统的结构示意图;
图27为本申请实施例提供的另一种通信系统的结构示意图;
图28为本申请实施例提供的另一种通信系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了一种通信系统,该通信系统可以为第五代移动通信(5th-Generation,5G)系统或未来演进的通信系统。该通信系统可以包括:飞行器(如无人机)、接入管理功能(Access Management Function,AMF)网元、策略控制功能(Policy Control Function,PCF)网元、统一数据管理(Unified Data Management,UDM)网元、(无线)接入网((Radio)access network,(R)AN)网元、用户面功能(User Plane Function,UPF)网元、认证服务功能(Authentication Server Function,AUSF)网元、会话管理功能(Session Management Function,SMF)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元、网络扩展功能(Network Exposure Function,NEF)网元、网络功能贮存功能(Network Function Repository Function,NRF)网元和应用功能(Application function,AF)网元等。
其中,飞行器可以为该通信系统中的一种用户设备(user equipment,UE)。飞行器与RAN网元之间采用某种空口技术相互通信。UE可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他可以接入网络的设备。飞行器具有飞行功能。
RAN网元负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。RAN网元包括各种类型的基站,例如:宏基站、微基站(也称为小站)、中继站以及接入点等。
AMF网元属于核心网网元,主要负责信令处理部分,例如:接入控制、移动性管理、附着与去附着以及网关选择等功能。AMF网元为终端设备中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。
SMF网元负责UPF网元选择,UPF网元重定向,因特网协议(internet protocol,IP)地址分配,承载的建立、修改和释放以及QoS控制。
UPF网元负责UE中用户数据的转发和接收。UPF网元可以从数据网络(Data Network,DN)接收用户数据,通过RAN网元传输给UE;UPF网元还可以通过RAN网元从UE接收用户数据,转发到数据网络。UPF网元中为UE提供服务的传输资源和调度功能由SMF网元管理控制。
PCF网元支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网元,同时负责获取与策略决策相关的用户签约信息。
AUSF网元支持提供认证和鉴权功能。
NEF网元支持第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络和第三方应用安全的交互,NEF网元能够安全的向第三方暴露网络能力和事件,用于加强或者改善应用服务质量,3GPP网络同样可以安全的从第三方获取相关数据,用以增强网络的智能决策;同时该NEF网元支持从UDR网元恢复结构化数据或者向UDR网元中存储结构化数据。
UDR网元负责存储结构化数据,存储的内容包括签约数据和策略数据、对外暴露的结构化数据和应用相关的数据。
AF网元支持与3GPP网络交互来提供服务,例如影响数据路由决策,策略控制功能或者 向网络侧提供第三方的一些服务。
UDM网元支持以下功能:生成3GPP认证和密钥协商(Authentication and key agreement,AKA)认证凭证,用户身份标识处理(如存储于管理)、基于签约数据的接入授权、用户的服务网元的注册管理(如存储服务UE的AMF,存储为UE提供协议数据单元(Protocol Data Unit,PDU)会话的SMF)、支持业务/会话连续性、合法监听功能、签约管理、短消息(Short Message Service,SMS)管理等。
该通信系统中的部分装置可以划分为控制层装置和用户层装置,且控制层装置可以与用户层装置连接。示例地,控制层装置可以包括:AMF网元、PCF网元、UDM网元、AUSF网元、SMF网元、NSSF网元、NEF网元和NRF网元。用户层装置可以包括:飞行器和UPF网元。AF网元和RAN网元均可以同时为控制层装置和用户层装置。
需要说明的是,该通信系统中的所有控制层装置可以集成在一个服务器或多个服务器上,或者每个控制层装置均为单独的服务器,对此不作限定。图1所示的通信系统还可以包括除飞行器、RAN网元和UPF网元之外的其他用户层装置(如无人机的控制器,该控制器可以为遥控器、手机或平板电脑等)。多个用户层装置可以通过运营商网络接入数据网络(Data Network,DN),并通过该数据网络连接。
本申请提供的飞行器的控制方法涉及上述通信系统中的飞行器和网元,本申请提供的飞行器的控制方法还涉及控制装置。该控制装置可以包括位于数据网络中的用户层装置,此时该控制装置可以称为无人机系统交通管理(Unmanned Aerial Vehicle Traffic Management,UTM)网元。UTM网元主要具有第三方无人机云服务器可以提供的功能,也可以称为“无人机交通服务平台”,可以和通信系统中的网元交互为无人机提供通信服务,该UTM网元可以集成在AF网元中。或者,上述控制装置可以包括控制层装置,此时该控制装置可以称为无人机管理功能(Unmanned Aerial Vehicle Management Function,UMF)网元,该UMF网元可以集成在AMF网元、PCF网元或NEF网元中。又或者,上述控制装置可以同时包括建立有通信连接的控制层装置和用户层装置,可选地,该用户层装置可以通过该控制层装置与其他控制层装置(如AMF网元、PCF网元、UDM网元等)通信。图1中以控制装置包括控制层装置为例。
图2为本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为图1中的任意一个装置。该通信装置200可以包括处理器201、存储器202、通信接口203和总线204。该处理器201、存储器202、通信接口203通过总线204通信连接。其中,通信接口203可以为一个或多个,用于在处理器201的控制下与其他装置通信,存储器202用于存放计算机指令;处理器201能够通过总线204调用存储器202中存储的计算机指令。
例如,图2所示的通信装置可以为AMF网元或位于AMF网元上的芯片或片上系统,处理器201能够通过总线204调用存储器202中存储的计算机指令,以执行下述方法实施例中AMF网元的动作。图2所示的通信装置也可以为下述方法实施例中涉及的任一其他装置(与AMF网元不同)或位于该其他装置上的芯片或片上系统,处理器201能够通过总线204调用存储器202中存储的计算机指令,以执行下述方法实施例中该任一其他装置的动作。
图3为本申请实施例提供的第一种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的AMF网元执行,也可以由其它相似功能的网元执行,不予限制。具体如下所述。
步骤301、AMF网元获取飞行器的禁飞区域的信息。
其中,禁飞区域的信息可以为禁飞区域的网络标识,其中,该网络标识可以包括至少一个小区的标识,该小区标识对应的小区属于禁飞区域。禁飞区域的信息也可以为禁飞区域的地理标识,如地名、经纬度信息等。
在一个示例性中,AMF网元通过多种方式获取到飞行器的禁飞区域的信息。例如,AMF网元可以通过接收其他装置发送的飞行器的禁飞区域的信息,以获取该飞行器的禁飞区域的信息。其中,该其他装置可以包括:控制装置、NEF网元、PCF网元或UDM网元等。例如,AMF网元接收来自控制装置或UDM网元的禁飞区域的地理标识,AMF网元接收来自PCF网元或UDM网元的禁飞区域的网络标识。
在另一个示例中,AMF网元根据AMF网元的用户在AMF网元上的触发操作,得到该飞行器的禁飞区域的信息,对此不作限定。
步骤302、当飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,AMF网元向控制装置发送参考信息。
其中,参考信息可以包括:第一指示信息和飞行器的位置信息中的至少一种信息。该参考信息可以用于控制装置确定飞行器是否接近或者位于禁飞区域,进而使得控制装置能够及时向飞行器发送控制指令。
示例地,该控制指令可以为:悬停指令、返航指令、原地降落指令或者按照远离禁飞区域的方向的指定路线飞行的指令。这些控制指令均能够控制飞行器的飞行,实现禁止飞行器在禁飞区域内飞行的效果。
其中,第一指示信息用于指示飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
通过上述实施例提供的方法,AMF网元获取飞行器的禁飞区域的信息,当飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,AMF网元向控制装置发送参考信息,以便于控制装置能够根据该参考信息,及时对飞行器进行控制。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,在上述实施例的一种实施场景下,上述方法还包括:在步骤302之前,AMF网元根据飞行器的位置信息和禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
需要说明的是,AMF网元可以通过多种方式得到上述飞行器的位置信息。
在第一个示例中,该飞行器的位置信息可以为飞行器上报给AMF网元的飞行器的位置信息。此时在AMF网元根据飞行器的位置信息和禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值之前,AMF网元还需要接收飞行器发送的飞行器的位置信息。其中,飞行器可以周期性地向AMF网元发送飞行器的位置信息;或者,在AMF网元接收到禁飞区域的信息后,AMF网元向飞行器发送禁飞区域的信息,以使得飞行器可以根据禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,向AMF网元上报飞行器的位置信息。
在第二个示例中,该飞行器的位置信息可以为AMF网元定位的飞行器的位置信息。需要说明的是,AMF网元可以与多个测量装置进行连接,每个测量装置均可以测量飞行器发出的信号的强度,且在测量装置测量到的信号的强度与该测量装置与飞行器的间距负相关,也即测量装置测量到的信号的强度能够反映测量装置与飞行器的间距。因此,AMF可以结合多个测量装置测量到的飞行器发出的信号的强度,以及信号的强度与距离的关系,确定每个测 量装置与飞行器的间距,并结合每个测量装置的位置,对飞行器的位置进行定位。
在第三个示例中,该飞行器的位置信息为AMF网元根据飞行器上报给AMF网元的飞行器的位置信息,以及AMF网元定位的飞行器的位置信息确定的位置信息。例如,AMF网元可以判断AMF网元定位的飞行器的位置信息所指示的位置与飞行器上报的位置信息所指示的位置的距离是否小于或等于预设距离阈值。若AMF网元定位的飞行器的位置信息所指示的位置与飞行器上报的位置信息所指示的位置的距离大于预设距离阈值,则AMF网元将其定位的飞行器的位置信息,确定为飞行器的位置信息。若AMF网元定位的飞行器的位置信息所指示的位置与飞行器上报的位置信息所指示的位置的距离小于或等于预设距离阈值,则AMF将飞行器定位的飞行器的位置信息,确定为飞行器的位置信息。或者,AMF网元确定飞行器发送的飞行器的位置信息所指示的位置与AMF网元定位的飞行器的位置信息所指示的位置的中间位置,并确定用于指示该中间位置的信息为飞行器的位置信息。
AMF网元确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值的过程可以具有多种可实现方式,以下将对其中的几种示例进行说明。
在第一个示例中,步骤301中AMF网元获取到的禁飞区域的信息可以为禁飞区域的网络标识,禁飞区域的网络标识包括至少一个小区的标识,该至少一个小区可以称为禁飞区域对应的至少一个小区。AMF网元根据禁飞区域对应的至少一个小区的标识,确定禁飞区域对应的每个小区的覆盖区域的中心点。然后,AMF网元可以根据飞行器的位置信息,以及禁飞区域对应的每个小区的覆盖区域的中心点,确定飞行器与禁飞区域对应的每个小区的覆盖区域的中心点之间的距离,并将该距离与第一预设值进行比较。当飞行器与禁飞区域对应的任一小区的覆盖区域的中心点之间的距离小于或等于该第一预设值时,AMF网元确定该飞行器与禁飞区域之间的最短距离小于或等于第一预设值。当飞行器与禁飞区域对应的每个小区的覆盖区域的中心点之间的距离均大于该第一预设值时,AMF网元确定飞行器与禁飞区域之间的最短距离大于第一预设值。例如,如图4所示,假设飞行器位于点A,禁飞区域的网络标识包括:小区1的标识,以及小区2的标识,且小区1的覆盖范围的中心点为点B,小区2的覆盖范围的中心点为点C。若点A与点B的距离为20米,点A与点C的距离为25米,第一预设值为20米,则AMF网元可以确定飞行器与小区1的覆盖范围的中心点的距离小于或等于第一预设值。
在第二个示例中,步骤301中AMF网元获取到的禁飞区域的信息可以为禁飞区域的网络标识,AMF网元可以检测飞行器是否接入该禁飞区域对应的任一小区。当飞行器接入禁飞区域对应的任一小区时,AMF网元确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。当飞行器并未接入禁飞区域对应的小区时,AMF网元可以确定飞行器与禁飞区域之间的最短距离大于第一预设值。需要说明的是,基站的覆盖范围形成小区,飞行器接入小区也即是:飞行器通过该小区接入到移动通信网络,也可以理解飞行器与形成该小区的基站连接。
在第三个示例中,步骤301中AMF网元获取到的禁飞区域的信息为禁飞区域的地理标识,AMF网元可以将该禁飞区域的地理标识转换为禁飞区域的网络标识。然后,AMF网元可以根据禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。且AMF网元可以根据禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值的过程可以参考上述第二个示例和第三个示例。
在第四个示例中,步骤301中AMF网元获取到的禁飞区域的信息为禁飞区域的地理标识,AMF网元可以直接根据该禁飞区域的地理标识确定禁飞区域中最靠近飞行器的边缘位 置,然后AMF网元可以判断飞行器的位置与该边缘位置的距离是否小于或等于第一预设值。在该边缘位置与飞行器的位置的距离小于或等于第一预设值时,AMF网元可以确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。在该边缘位置与飞行器的位置的距离大于第一预设值时,AMF网元可以确定飞行器与禁飞区域之间的最短距离大于第一预设值。
还需要说明的是,AMF网元可以实时的确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,AMF网元也可以周期性地确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,或者,AMF网元可以在飞行器每次接入到一个小区时确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,或者,AMF网元可以在飞行器每次接入到对一个禁飞区域对应的小区时确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,对此不作限定。
可选地,在上述实施例的一种实施场景下,上述方法还包括:AMF网元向飞行器发送禁飞区域的网络标识或地理标识。该禁飞区域的网络标识或地理标识可以用于飞行器确定飞行器是否接近或者位于禁飞区域,进而使得飞行器在确定飞行器与禁飞区域之间的最小距离小于或等于第一预设值时,去注册,进入受限服务状态,或向控制装置或AMF网元发送飞行器的位置信息。
需要说明的是,飞行器在接收到控制装置发送的控制指令后,若飞行器去注册(也即飞行器未注册到网络中,AMF中没有飞行器的有效位置信息或者路由信息,因此飞行器对于AMF不可达),则飞行器会原地降落或返航(也即按照原路线返回),从而能够防止飞行器在禁飞区域内飞行。飞行器向AMF网元发送飞行器的位置信息,可以供AMF网元根据飞行器发送的位置信息向控制装置上报AMF网元确定的飞行器的位置信息,以供控制装置基于AMF网元发送的位置信息向飞行器发送控制指令。可选地,飞行器向AMF网元发送飞行器的位置信息,也可以供AMF网元对飞行器执行去注册流程。飞行器向控制装置发送飞行器的位置信息,可以用于控制装置确定飞行器是否接近或者位于禁飞区域,进而使得控制装置能够及时向飞行器发送控制指令,实现禁止飞行器在禁飞区域内飞行的效果。
飞行器在进入受限服务状态时,飞行器停止处理来自除标识信息对应的装置之外的其他装置的信息,可以防止飞行器受到除该标识信息对应的装置之外的装置的控制,从而使得飞行器在进入受限服务状态时,仅能够受到该标识信息对应的装置的控制。和/或,飞行器在进入受限服务状态时,飞行器停止向任何装置发送信息或飞行器停止向除标识信息对应的装置之外的其他装置发送信息,可以防止飞行器在禁飞区域或靠近禁飞区域时,向控制装置之外的其他装置发送需要对其他装置保密的信息,从而能够防止信息的泄漏。
可选地,在上述实施例的一种实施场景下,上述方法还包括:AMF网元向飞行器发送标识信息,标识信息用于标识允许飞行器与其进行通信的装置;AMF网元向飞行器发送第二指示信息和/或第三指示信息。其中,第二指示信息用于指示飞行器:当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止处理来自除标识信息对应的装置之外的其他装置的信息;第三指示信息用于指示飞行器:当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止向除标识信息对应的装置之外的其他装置发送信息。
可选地,本申请实施例提供的飞行器的控制方法中,禁飞区域可以存在更新的情况。示例地,当AMF网元获取到的禁飞区域的信息更新时,AMF网元可以根据飞行器的位置信息以及更新后的禁飞区域的信息,重新确定飞行器与禁飞区域之间的最短距离是否小于或等于 第一预设值。在重新确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,AMF网元可以重新向控制装置发送参考信息。
图5为本申请实施例提供的第二种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的飞行器执行,也可以由其它相似功能的装置执行,不予限制。具体如下所述。
步骤401、飞行器接收来自AMF网元的飞行器的禁飞区域的信息。
其中,禁飞区域的信息可以参见图3所示实施例中的相关描述,不再赘述。
步骤402、当飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,飞行器去注册,或进入受限服务状态,或向控制装置或AMF网元发送飞行器的位置信息。
飞行器去注册,进入受限服务状态,向控制装置或AMF网元发送飞行器的位置信息可以参见图3所示实施例中的相关描述,不再赘述。
通过上述实施例提供的方法,通过AMF网元将禁飞区域的信息下发至飞行器,在飞行器与禁飞区域的最短距离小于或等于第一预设值时,飞行器能够去注册,进入首先服务状态,向AMF网元或控制装置发送飞行器的位置信息,以实现或触发禁止飞行器在禁飞区域内飞行的效果,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,在步骤402之前,该飞行器的控制方法还可以包括:飞行器接收来自AMF网元的标识信息,标识信息用于标识允许飞行器与其进行通信的装置。飞行器接收来自AMF网元的第二指示信息,第二指示信息可以参考图3所示实施例中的相关描述,不再赘述。飞行器进入受限服务状态,包括:飞行器根据第二指示信息,停止处理来自其他装置的信息。可选地,该飞行器的控制方法还可以包括:飞行器接收来自AMF网元的第三指示信息。第三指示信息可以参考图3所示实施例中的相关描述,不再赘述。飞行器进入受限服务状态,包括:飞行器根据第三指示信息,停止向其他装置发送信息。
可选地,在步骤402之前,该飞行器的控制方法还可以包括:飞行器接收来自AMF网元的标识信息,标识信息用于标识允许飞行器与其进行通信的装置;飞行器接收来自AMF网元的第三指示信息。第三指示信息可以参考图3所示实施例中的相关描述,不再赘述。飞行器进入受限服务状态,包括:飞行器根据第三指示信息,停止向其他装置发送信息。
可选地,在步骤402之前,该飞行器的控制方法还可以包括:飞行器根据禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
在第一种示例中,步骤401中飞行器接收到的禁飞区域的信息为禁飞区域的网络标识,该网络标识包括至少一个小区的标识。飞行器可以检测飞行器是否接入该至少一个小区中的任意一个小区。当飞行器接入该至少一个小区中的任意一个小区时,飞行器可以确定此时飞行器与禁飞区域之间的最短距离小于或等于第一预设值。当飞行器并未接入该至少一个小区时,飞行器可以确定飞行器与禁飞区域之间的最短距离大于第一预设值。
在第二种示例中,步骤401中飞行器接收到的禁飞区域的信息为禁飞区域的网络标识。飞行器可以测量该至少一个小区中每个小区的无线信号强度。需要说明的是,飞行器测量得到的小区的无线信号强度,与飞行器与该小区的距离负相关。也即,当飞行器与小区距离较近时,飞行器测得的该小区的无线信号强度较强;当飞行器与小区距离校园时,飞行器测得的该小区的无线信号强度较弱。因此,飞行器可以基于测量得到的每个小区的无线信号强度, 判断飞行器与每个小区的距离。当飞行器确定该至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,飞行器可以确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。当飞行器确定至少一个小区中每个小区的无线信号强度均小于第二预设值时,飞行器可以确定飞行器与该禁飞区域之间的最短距离大于第一预设值。
在第三种示例中,步骤401中飞行器接收到的禁飞区域的信息可以为禁飞区域的地理标识,此时飞行器可以直接根据该禁飞区域的地理标识确定禁飞区域中最靠近飞行器的边缘位置,然后飞行器可以判断飞行器的位置与该边缘位置的距离是否小于或等于第一预设值。在该边缘位置与飞行器的位置的距离小于或等于第一预设值时,飞行器可以确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
需要说明的是,飞行器可以实时的确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,飞行器也可以周期性地确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,或者,飞行器可以在每次对一个小区进行注册时确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,或者,飞行器可以在每次对该至少一个小区中的每个小区进行注册时,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,对此不作限定。
可选地,本申请实施例提供的飞行器的控制方法中,禁飞区域可以存在更新的情况。示例地,当飞行器接收到来自AMF网元的禁飞区域的信息更新时,飞行器可以根据飞行器的位置信息以及更新后的禁飞区域的信息,重新确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。在重新确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,飞行器可以去注册,或进入受限服务状态,或向控制装置或AMF网元发送飞行器的位置信息。
可选地,该飞行器的控制方法还可以包括:飞行器接收来自控制装置的控制指令,然后飞行器执行该控制指令。示例地,当控制指令为悬停指令时,飞行器可以根据该控制指令悬停。此时,飞行器并未进入禁飞区域,且并未向靠近禁飞区域的方向飞行,因此能够避免飞行器在禁飞区域内飞行;当控制指令为返航指令时,飞行器可以根据该控制指令返航。此时,飞行器向远离禁飞区域的方向飞行,因此能够避免飞行器在禁飞区与内飞行;当控制指令为原地降落指令时,飞行器可以根据该控制指令原地降落。此时,飞行器并未处于飞行状态,因此也能够避免飞行器在禁飞区与内飞行;当控制指令为按照远离禁飞区域的方向的指定路线飞行的指令时,飞行器可以根据该控制指令按照该指定路线飞行。此时,飞行器向远离禁飞区域的方向飞行,因此能够避免飞行器在禁飞区与内飞行。
图6为本申请实施例提供的第三种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的控制装置执行,也可以由其它相似功能的装置执行,不予限制。具体如下所述。
步骤501、控制装置接收来自AMF网元的飞行器的参考信息。
其中,参考信息可以参见图3所示实施例中的相关描述。
步骤502、控制装置根据参考信息向飞行器发送控制指令。
其中,控制指令用于禁止飞行器在禁飞区域内飞行。
控制装置若接收到AMF网元发送的飞行器的参考信息,则控制装置可以确定当前飞行器已经进入该飞行器的禁飞区域或者即将进入该飞行器的禁飞区域,此时控制装置可以直接 向飞行器发送控制指令。控制指令可以参见图3所示实施例中的相关描述。
采用上述实施例提供的方法,通过AMF网元向控制装置发送参考信息,以触发控制装置向飞行器发送用于禁止飞行器在禁飞区域内飞行的控制指令,从而实现禁止飞行器在禁飞区域内飞行的目的,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,参考信息包括飞行器的位置信息,在步骤502中,控制装置可以根据参考信息中飞行器的位置信息和禁飞区域的地理标识,向飞行器发送控制指令。示例地,控制装置可以根据参考信息中飞行器的位置信息和禁飞区域的地理标识,重新确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,在重新确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值时,控制装置才向飞行器发送上述控制指令,从而防止AMF网元对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值的误判,对此不作限定。
示例地,在飞行器未进入禁飞区域时,控制装置可以向飞行器发送悬停指令、返航指令、原地降落指令或者按照远离禁飞区域的方向的指定路线飞行的指令;在飞行器进入禁飞区域时,控制装置可以向飞行器发送返航指令、原地降落指令或者按照远离禁飞区域的方向的指定路线飞行的指令。
可选地,该飞行器的控制方法还可以包括:控制装置接收来自飞行器的位置信息。示例地,飞行器可以周期性地向控制装置发送飞行器的位置信息;或者,在AMF网元接收到禁飞区域的标识后,AMF网元可以向飞行器发送禁飞区域的标识,以使得飞行器可以根据禁飞区域的标识,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,向控制装置上报飞行器的位置信息。此时,控制装置根据参考信息中飞行器的位置信息和禁飞区域的地理标识,向飞行器发送控制指令,包括:控制装置根据参考信息中飞行器的位置信息和来自飞行器的位置信息,以及禁飞区域的地理标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值;当飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,控制装置向飞行器发送控制指令。
其中,控制装置根据参考信息中飞行器的位置信息和来自飞行器的位置信息,以及禁飞区域的地理标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值,可以包括:控制装置根据参考信息中飞行器的位置信息和来自飞行器的位置信息,确定飞行器的位置信息,且该过程可以参考图3所示实施例中AMF网元根据AMF网元定位的位置信息和飞行器发送的位置信息,确定飞行器的位置信息的过程,在此不再赘述。然后,控制装置可以根据确定出的飞行器的位置信息和禁飞区域的地理标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
可选地,该飞行器的控制方法还可以包括:控制装置向AMF网元、PCF网元或UDM网元发送禁飞区域的地理标识。可选地,该禁飞区域的地理标识可以为控制装置的用户在控制装置上进行触发操作,以使控制装置获取到的地理标识。例如,用户在控制装置上输入的地理标识,或者用户在控制装置中预设的多个地理标识中选择的地理标识。可选地,该禁飞区域的地理标识也可以为控制装置从其他装置上接收到的地理标识,对此不作限定。控制装置在获取到禁飞区域的地理标识后,可以将该地理标识发送至AMF网元、PCF网元或UDM网元,以便于AMF网元、PCF网元或UDM网元可以根据该地理标识确定禁飞区域的网络标识,以及将该网络标识下发至飞行器或AMF网元(如AMF网元将网络标识下发至飞行器,PCF网元和UDM网元将网络标识下发至AMF网元),进而使得AMF网元和飞行器均能够根据 该网络标识,对飞行器与禁飞区域之间的最短距离是否小于第一预设值进行监控,以及在飞行器与禁飞区域之间的最短距离小于第一预设值时,进行相应的操作以实现禁飞飞行器在禁飞区域内飞行的效果。
可选地,本申请实施例提供的飞行器的控制方法中,禁飞区域可以存在更新的情况。示例地,当该禁飞区域更新时,控制装置可以向AMF网元、PCF网元或UDM网元发送更新后的禁飞区域的地理标识。
图7为本申请实施例提供的第四种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的PCF网元、UDM网元或AMF网元执行,也可以由其它相似功能的网元执行,不予限制。具体如下所述。
步骤601、获取飞行器的禁飞区域的地理标识。
用于执行图7所示的方法的网元可以获取飞行器的禁飞区域的地理标识。可选地,该禁飞区域的地理标识可以为控制装置提供的地理标识。PCF网元、UDM网元或AMF网元中的每个网元均可以直接从控制装置处接收该地理标识,也可以接收AMF网元、NEF网元、PCF网元和UDM网元中与用于执行图7所示的方法的网元不同的其他网元发送的地理标识,对此不作限定。
步骤602、根据禁飞区域的地理标识,确定禁飞区域的网络标识。
用于执行图7所示的方法的网元上均可以预设有多个区域的地理标识与网络标识的对应关系,每个区域的网络标识可以包括至少一个小区(通信小区)标识,且该区域位于至少一个小区标识的覆盖范围内。示例地,该对应关系可以表1所示,区域Q1的地理标识D1对应的网络标识包括:小区标识X11和X12,区域Q2的地理标识D2对应的网络标识包括:小区标识X21,区域Q3的地理标识D3对应的网络标识包括:小区标识X31、X32和X33。需要说明的是,各个区域的网络标识汇总的小区标识可以存在重叠,也可以不重叠,对此不作限定。
表1
地理标识 网络标识
D1 X11、X12
D2 X21
D3 X31、X32和X33
用于执行图7所示的方法的网元可以根据该禁飞区域的地理标识,在该预设的多个区域的地理标识与网络标识的对应关系进行查询,以确定该对应关系中该禁飞区域的地理标识所对应的网络标识。该禁飞区域的网络标识中的小区标识可以称为小区的标识。
步骤603、向AMF网元或飞行器发送禁飞区域的网络标识。
若用于执行图7所示的方法的网元为PCF网元或UDM网元,则PCF网元或UDM网元在得到禁飞区域的网络标识后,可以向AMF网元发送禁飞区域的网络标识。AMF网元在得到禁飞区域的网络标识后,可以根据禁飞区域的网络标识对飞行器与禁飞区域之间的最短距离是否小于第一预设值进行监控,在飞行器与禁飞区域的最短距离小于或等于第一预设值时,AMF网元能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行。且无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
若用于执行图7所示的方法的网元为AMF网元,则AMF网元在得到禁飞区域的网络标 识后,可以向飞行器发送禁飞区域的网络标识。飞行器在获取到禁飞区域的信息后,能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,飞行器能够自行去注册以原地降落或返航;或者飞行器也可以向控制装置或AMF网元发送飞行器的位置信息,以触发控制装置向飞行器发送控制指令,以禁止飞行器在禁飞区域内飞行;或者进入受限服务状态。且无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
采用上述实施例提供的方法,AMF网元、PCF网元或UDM网元接收来自控制装置的禁飞区域的地理标识,并将该地理标识转换为禁飞区域的网络标识,以及将该网络标识下发至飞行器或AMF网元。以便于飞行器或AMF网元在接收到该网络标识后,可以根据该网络标识对飞行器与禁飞区域之间的最短距离是否小于第一预设值进行监控,并在飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,向控制装置发送信息,以触发控制装置及时对飞行器进行控制。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,本申请实施例提供的飞行器的控制方法中,禁飞区域可以存在更新的情况。示例地,当AMF网元、PCF网元或UDM网元获取到更新后的禁飞区域的地理标识时,AMF网元、PCF网元或UDM网元可以根据更新后的禁飞区域的地理标识,确定更新后的禁飞区域的网络标识,并将该更新后的禁飞区域的网络标识发送至AMF网元或飞行器。
图8为本申请实施例提供的第五种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行。具体如下所述。
步骤701、控制装置获取禁飞区域的地理标识。
可选地,该禁飞区域的地理标识可以参考图3所示实施例中的相关描述,在此不做赘述。
步骤702、控制装置向PCF网元发送禁飞区域的地理标识。
可选地,控制装置可以通过NEF网元向PCF网元发送禁飞区域的地理标识。示例地,控制装置可以首先向NEF网元发送禁飞区域的地理标识,NEF网元在接收到该禁飞区域的地理标识后,可以将该地理标识转发至PCF网元。另外,NEF网元在接收到禁飞区域的地理标识后,还可以向控制装置发送已接收到该地理标识的反馈信息。需要说明的是,控制装置还可以通过其他方式向PCF网元发送禁飞区域的地理标识,对此不作限定。
步骤703、PCF网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。
步骤703可以参考图7所示实施例中的相关描述,在此不做赘述。
步骤704、PCF网元向AMF网元发送禁飞区域的网络标识。
PCF网元在确定禁飞区域的网络标识后,可以向AMF网元发送该禁飞区域的网络标识。
步骤705、AMF网元根据飞行器的位置信息和禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤706;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤705,也即重复确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。步骤705可以参考图3所示实施例中的相关描述,在此不做赘述。
步骤706、AMF网元向控制装置发送飞行器的参考信息,该参考信息包括:第一指示信息和飞行器的位置信息中的至少一种信息,第一指示信息用于指示飞行器与飞行器的禁飞区 域之间的最短距离小于或等于第一预设值。
步骤706可以参考图3所示实施例中的相关描述,在此不做赘述。
步骤707、控制装置根据参考信息向飞行器发送控制指令,控制指令用于禁止飞行器在禁飞区域内飞行。
步骤707可以参考图6所示实施例中的相关描述,在此不做赘述。
步骤708、飞行器执行控制指令。
步骤708可以参考图5所示实施例中的相关描述,在此不做赘述。
可选地,飞行器在接收到控制指令时,还可以进入受限服务状态。受限服务状态可以参考图5所示实施例中的相关描述,在此不做赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息下发至AMF网元,且AMF网元能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,AMF网元能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图9为本申请实施例提供的第六种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行,具体如下所述。
步骤901、控制装置获取禁飞区域的地理标识。
步骤901可以参考步骤701,本申请实施例在此不做赘述。
步骤902、控制装置向UDM网元发送禁飞区域的地理标识。
可选地,控制装置可以通过NEF网元向该UDM网元发送禁飞区域的地理标识。示例地,控制装置可以首先向NEF网元发送禁飞区域的地理标识,NEF网元在接收到该禁飞区域的地理标识后,可以将该地理标识转发至UDM网元。另外,NEF网元在接收到禁飞区域的地理标识后,还可以向控制装置发送已接收到该地理标识的反馈信息。需要说明的是,控制装置还可以通过其他方式向UDM网元发送禁飞区域的地理标识,对此不作限定。
步骤903、UDM网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。步骤903中UDM网元确定禁飞区域的网络标识的过程,可以参考步骤703中PCF网元确定禁飞区域的网络标识的过程,本申请实施例在此不做赘述。
步骤904、UDM网元向AMF网元发送禁飞区域的网络标识。
步骤905、AMF网元根据飞行器的位置信息和禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤906;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤905。
步骤905可以参考步骤705,本申请实施例在此不做赘述。
步骤906、AMF网元向控制装置发送飞行器的参考信息,该参考信息包括:第一指示信息和飞行器的位置信息中的至少一种信息,第一指示信息用于指示飞行器与飞行器的禁飞区域之间的最短距离小于或等于第一预设值。
步骤906可以参考步骤706,本申请实施例在此不做赘述。
步骤907、控制装置根据参考信息向飞行器发送控制指令,控制指令用于禁止飞行器在禁飞区域内飞行。
步骤907可以参考步骤707,本申请实施例在此不做赘述。
步骤908、飞行器执行控制指令。
步骤908可以参考步骤708,本申请实施例在此不做赘述。
可选地,飞行器在接收到控制指令时,还可以进入受限服务状态。对飞行器进入受限服务状态的解释可以参考图8所示的实施例中对飞行器进入受限服务状态的解释,本申请实施例在此不作赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息下发至AMF网元,且AMF网元能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,AMF网元能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图10为本申请实施例提供的第七种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行,具体如下所述。
步骤1001、控制装置获取禁飞区域的地理标识。
步骤1001可以参考步骤701,本申请实施例在此不做赘述。
步骤1002、控制装置向AMF网元发送禁飞区域的地理标识。
步骤1002可以参考步骤702,但步骤1002与步骤702不同的是,步骤1002中控制装置是向AMF网元发送禁飞区域的地理标识,而并不是向PCF网元发送禁飞区域的地理标识。
可选地,步骤1002中控制装置可以依次通过NEF网元和PCF网元向AMF网元发送禁飞区域的地理标识。另外,NEF网元和PCF网元中的每个装置在接收到禁飞区域的地理标识后,除了向其他装置转发该地理标识,还可以向控制装置发送已接收到该地理标识的反馈信息。需要说明的是,控制装置还可以通过其他方式向AMF网元发送禁飞区域的地理标识,对此不作限定。
可选地,步骤1002中控制装置还可以依次通过NEF网元和UDM网元向AMF网元发送禁飞区域的地理标识,步骤1002中控制装置还可以通过PCF网元向AMF网元发送禁飞区域的地理标识,步骤1002中控制装置还可以通过UDM网元向AMF网元发送禁飞区域的地理标识,步骤1002中控制装置还可以通过NEF网元向AMF网元发送禁飞区域的地理标识,对此不作限定。
步骤1003、AMF网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。
步骤1003中AMF网元确定禁飞区域的网络标识的过程,可以参考步骤703中PCF网元确定禁飞区域的网络标识的过程,本申请实施例在此不做赘述。
步骤1004、AMF网元根据飞行器的位置信息和禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤1005;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤1004。
步骤1004可以参考步骤705,本申请实施例在此不做赘述。
步骤1005、AMF网元向控制装置发送飞行器的参考信息,该参考信息包括:第一指示信息和飞行器的位置信息中的至少一种信息,第一指示信息用于指示飞行器与飞行器的禁飞区域之间的最短距离小于或等于第一预设值。
步骤1005可以参考步骤706,本申请实施例在此不做赘述。
步骤1006、控制装置根据参考信息向飞行器发送控制指令,控制指令用于禁止飞行器在禁飞区域内飞行。
步骤1006可以参考步骤707,本申请实施例在此不做赘述。
步骤1007、飞行器执行控制指令。
步骤1007可以参考步骤708,本申请实施例在此不做赘述。
可选地,飞行器在接收到控制指令时,还可以进入受限服务状态。对飞行器进入受限服务状态的解释可以参考图8所示的实施例中对飞行器进入受限服务状态的解释,本申请实施例在此不作赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息下发至AMF网元,且AMF网元能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,AMF网元能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图11为本申请实施例提供的第八种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行,具体如下所述。
步骤1101、控制装置获取禁飞区域的地理标识。
步骤1101可以参考步骤701,本申请实施例在此不做赘述。
步骤1102、控制装置向PCF网元发送禁飞区域的地理标识。
步骤1102可以参考步骤702,本申请实施例在此不做赘述。
步骤1103、PCF网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。
步骤1103可以参考步骤703,本申请实施例在此不做赘述。
步骤1104、PCF网元向AMF网元发送禁飞区域的网络标识。
步骤1104可以参考步骤704,本申请实施例在此不做赘述。
步骤1105、AMF网元向飞行器发送禁飞区域的网络标识。
本申请实施例中,当AMF网元在接收到禁飞区域的网络标识后,可以直接将该网络标识发送至飞行器,以便于飞行器根据该禁飞区域的网络标识,执行后续判断飞行器与禁飞区域的最短距离是否小于或等于第一预设值的步骤。
可选地,AMF网元可以向飞行器发送包括禁飞区域的网络标识中小区的标识的追踪区列表,向飞行器发送禁飞区域的网络标识。需要说明的是,该追踪区列表中的小区均为飞行器无需向AMF网元上报飞行器的地理位置的小区。
步骤1106、飞行器根据禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤1107;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤1106。
步骤1106可以参考图5所示实施例中的相关描述,在此不做赘述。
步骤1107、飞行器去注册,进入受限服务状态,或向AMF网元或控制装置发送飞行器的位置信息。
步骤1107可以参考图5所示实施例中的相关描述,在此不做赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息 经由AMF网元下发至飞行器,且飞行器能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,飞行器能够去注册,进入首先服务状态,向AMF网元或控制装置发送飞行器的位置信息,以实现禁止飞行器在禁飞区域内飞行的目的,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图12为本申请实施例提供的第九种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行,具体如下所述。
步骤1201、控制装置获取禁飞区域的地理标识。
步骤1201可以参考步骤901,本申请实施例在此不做赘述。
步骤1202、控制装置向UDM网元发送禁飞区域的地理标识。
步骤1202可以参考步骤902,本申请实施例在此不做赘述。
步骤1203、UDM网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。
步骤1203可以参考步骤903,本申请实施例在此不做赘述。
步骤1204、UDM网元向AMF网元发送禁飞区域的网络标识。
步骤1204可以参考步骤904,本申请实施例在此不做赘述。
步骤1205、AMF网元向飞行器发送禁飞区域的网络标识。
步骤1205可以参考步骤1105,本申请实施例在此不做赘述。
步骤1206、飞行器根据禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤1207;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤1206。
步骤1206可以参考步骤1106,本申请实施例在此不做赘述。
步骤1207、飞行器去注册,进入受限服务状态,或向AMF网元或控制装置发送飞行器的位置信息。
步骤1207可以参考步骤1107,本申请实施例在此不做赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息经由AMF网元下发至飞行器,且飞行器能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,飞行器能够去注册,进入首先服务状态,向AMF网元或控制装置发送飞行器的位置信息,以实现禁止飞行器在禁飞区域内飞行的目的,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图13为本申请实施例提供的第十种飞行器的控制方法的流程图,该飞行器的控制方法可以由图1所示的通信系统中的多个装置执行,具体如下所述。
步骤1301、控制装置获取禁飞区域的地理标识。
步骤1301可以参考步骤1001,本申请实施例在此不做赘述。
步骤1302、控制装置向AMF网元发送禁飞区域的地理标识。
步骤1302可以参考步骤1002,本申请实施例对此不做赘述。
步骤1303、AMF网元根据禁飞区域的地理标识,确定禁飞区域的网络标识。
步骤1303可以参考步骤1003,本申请实施例对此不做赘述。
步骤1304、AMF网元向飞行器发送禁飞区域的网络标识。
步骤1304可以参考步骤1105,本申请实施例在此不做赘述。
步骤1305、飞行器根据禁飞区域的网络标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值。
若飞行器与禁飞区域之间的最短距离小于或等于第一预设值,则执行步骤1306;若飞行器与禁飞区域之间的最短距离大于第一预设值,则执行步骤1305。
步骤1305可以参考步骤1106,本申请实施例对此不做赘述。
步骤1306、飞行器去注册,进入受限服务状态,或向AMF网元或控制装置发送飞行器的位置信息。
步骤1306可以参考步骤1107,本申请实施例在此不做赘述。
综上所述,本申请实施例提供的飞行器的控制方法中,由于控制装置将禁飞区域的信息经由AMF网元下发至飞行器,且飞行器能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,飞行器能够去注册,进入首先服务状态,向AMF网元或控制装置发送飞行器的位置信息,以实现禁止飞行器在禁飞区域内飞行的目的,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
需要说明的是,图8、图9、图10、图11、图12和图13所示的实施例中禁飞区域的地理标识均来自控制装置,可选地,图8、图9、图10、图11、图12和图13所示的实施例中禁飞区域的地理标识也可以不来自控制装置,对此不作限定。
例如,图8所示的实施例中的步骤701和步骤702可以替换为:PCF网元获取禁飞区域的地理标识,图11所示的实施例中的步骤1101和步骤1102可以替换为:PCF网元获取禁飞区域的地理标识,图8和图11所示的实施例中的地理标识可以为PCF网元的用户在PCF网元上进行触发操作以使PCF网元获取到的地理标识。
图9所示的实施例中的步骤901和步骤902可以替换为:UDM网元获取禁飞区域的地理标识,图12所示的实施例中的步骤1201和步骤1202可以替换为:UDM网元获取禁飞区域的地理标识,图9和图12所示的实施例中的地理标识可以为UDM网元的用户在UDM网元上进行触发操作以使UDM网元获取到的地理标识。
图10所示的实施例中的步骤1001和步骤1002可以替换为:AMF网元获取禁飞区域的地理标识,图13所示的实施例中的步骤1301和步骤1302可以替换为:AMF网元获取禁飞区域的地理标识,图10和图13所示的实施例中的地理标识可以为AMF网元的用户在AMF网元上进行触发操作以使AMF网元获取到的地理标识。
还需要说明的是,本申请实施例中一个装置向另一个装置发送信息时,可以将该信息加载在其他信息(如与注册流程相关的信息)中发送,也可以单独发送该信息,对此不作限定。
另外,图8、图9和图10所示的飞行器的控制方法中,对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值进行监控的是AMF网元;而图11、图12和图13所示的飞行器的控制方法中,对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值进行监控的是飞行器。可选的,图8、图9和图10中任一幅图所示的方法可以与图11、图12和图13中任一幅图所示的方法进行结合,对飞行器与禁飞区域之间的最短距离是否小于或等于第 一预设值进行监控的也可以是AMF网元和飞行器,对此不作限定。
也即,AMF网元在获取到禁飞区域的网络标识后,不仅需要根据该禁飞区域的网络标识,对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值进行监控,AMF网元还需要将该禁飞区域的网络标识下发至飞行器,以便于飞行器根据该禁飞区域的网络标识,对飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值进行监控。当飞行器监控到飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,飞行器可以执行去注册。当AMF网元监控到飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,AMF网元向控制装置上报飞行器的参考信息,以便于控制装置根据参考信息向飞行器下发控制指令。飞行器可以根据接收到的控制指令以及飞行器对上述最短距离与第一预设值的大小关系,确定是否需要进行去注册。
在图8、图9和图10所示的飞行器的控制方法中,由控制层装置中的AMF网元对飞行器与禁飞区域之间的最短距离进行监控,且控制层装置对飞行器的监控效果比飞行器自行监控的可靠性高,因此能够有效的防止飞行器在禁飞区域内飞行。
并且,由于本申请实施例提供的飞行器的控制方法中,禁飞区域可以存在更新的情况,从而使得该飞行器的控制方法总是能够控制飞行器禁止在最新的禁飞区域内飞行,控制飞行器禁止在禁飞区域内飞行的时效性较高。
图14为本申请实施例提供的一种飞行器的控制装置的结构示意图,该飞行器的控制装置可以位于图1中的AMF网元,不予限制。此外,该控制装置可以用于执行上述方法实施例中AMF网元的动作。如图14所示,该飞行器的控制装置100可以包括:
获取模块601,用于获取飞行器的禁飞区域的信息;
第一发送模块602,用于在飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,向控制装置发送参考信息。
其中,参考信息包括:第一指示信息和飞行器的位置信息中的至少一种信息,第一指示信息用于指示飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
综上所述,本申请实施例提供的飞行器的控制装置中,由于在获取模块获取到禁飞区域的信息后,第一发送模块能够在飞行器与禁飞区域的最短距离小于或等于第一预设值时,能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,禁飞区域的信息包括:禁飞区域的网络标识,或禁飞区域的地理标识。
图15为本申请实施例提供的另一种飞行器的控制装置的结构示意图,如图15所示,在图14所示控制装置的基础上,该飞行器的控制装置100还可以包括:
第一确定模块603,用于根据飞行器的位置信息和禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
可选地,禁飞区域的信息包括禁飞区域的网络标识,且禁飞区域的网络标识包括至少一个小区的标识,第一确定模块603用于:
根据飞行器的位置信息,确定飞行器与至少一个小区中任意一个的覆盖区域的中心点之间的距离小于或等于第一预设值。
可选地,禁飞区域的信息包括禁飞区域的网络标识,且禁飞区域的网络标识包括至少一 个小区的标识。
图16为本申请实施例提供的另一种飞行器的控制装置的结构示意图,如图16所示,在图14所示控制装置的基础上,该飞行器的控制装置100还可以包括:
第二确定模块604,用于在确定飞行器接入至少一个小区中任意一个小区时,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
可选地,禁飞区域的信息包括禁飞区域的地理标识,图17为本申请实施例提供的再一种飞行器的控制装置的结构示意图,如图17所示,在图14的基础上,该飞行器的控制装置100还可以包括:
第三确定模块605,用于根据禁飞区域的地理标识,确定禁飞区域的网络标识。
可选地,获取模块601可以用于:接收来自控制装置或统一数据管理UDM网元的禁飞区域的地理标识。
可选地,禁飞区域的信息包括禁飞区域的网络标识,获取模块601可以用于:接收来自策略控制功能PCF网元或UDM网元的禁飞区域的网络标识。
可选地,图14、图15、图16和图17所示的飞行器的控制装置均还可以包括:
第二发送模块606,用于向飞行器发送禁飞区域的网络标识或地理标识。
可选地,图14、图15、图16和图17所示的飞行器的控制装置均还可以包括:
第三发送模块607,用于向飞行器发送标识信息,标识信息用于标识允许飞行器与其进行通信的装置;
第四发送模块608,用于向飞行器发送第二指示信息和/或第三指示信息;
其中,第二指示信息用于指示飞行器:当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止处理来自除标识信息对应的装置之外的其他装置的信息;
第三指示信息用于指示飞行器:当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止向除标识信息对应的装置之外的其他装置发送信息。
可选地,飞行器的位置信息为飞行器上报给AMF网元的飞行器的位置信息,或者,AMF网元定位的飞行器的位置信息,或AMF网元根据飞行器上报给AMF网元的飞行器的位置信息和AMF网元定位的飞行器的位置信息确定的位置信息。
综上所述,本申请实施例提供的飞行器的控制装置中,由于在获取模块获取到禁飞区域的信息后,第一发送模块能够在飞行器与禁飞区域的最短距离小于或等于第一预设值时,能够通知控制装置对飞行器进行控制,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图18为本申请实施例提供的另一种飞行器的控制装置的结构示意图,该控制装置可以位于图1中的飞行器,不予限制,该控制装置可以用于执行上述方法实施例中控制装置的动作。如图18所示,该飞行器的控制装置140可以包括:
第一接收模块601,用于接收来自AMF网元的飞行器的禁飞区域的信息;
处理模块602,用于在飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,去注册,进入受限服务状态,或向控制装置或AMF网元发送飞行器的位置信息。
综上所述,本申请实施例提供的飞行器的控制装置中,由于第一接收模块能够接收来自AMF网元的飞行器禁飞区域的信息,且处理模块能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,处理模块能够进行相应的操作,以实现飞行器禁止在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,禁飞区域的信息包括禁飞区域的网络标识或禁飞区域的地理标识。
图19为本申请实施例提供的另一种飞行器的控制装置的结构示意图。如图19所示,在图18所示控制装置的基础上,该飞行器的控制装置140可以包括:
第一确定模块603,用于根据禁飞区域的信息,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
可选地,禁飞区域的信息包括禁飞区域的网络标识,且禁飞区域的网络标识包括至少一个小区的标识,第一确定模块603用于:
在确定飞行器接入至少一个小区中任意一个小区时,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值;
或者,在确定至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,确定飞行器与禁飞区域之间的最短距离小于或等于第一预设值。
可选地,飞行器的控制装置还包括:
第二接收模块604,用于接收来自AMF网元的标识信息,标识信息用于标识允许飞行器与其进行通信的装置;
第三接收模块605,用于接收来自AMF网元的第二指示信息,第二指示信息用于指示飞行器:当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,停止处理来自除标识信息对应的装置之外的其他装置的信息;
处理模块602用于:根据第二指示信息,停止处理来自其他装置的信息。
可选地,飞行器的控制装置还包括:
第四接收模块606,用于接收来自AMF网元的第三指示信息,第三指示信息用于指示当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止向其他装置发送信息;
处理模块602用于:根据第三指示信息,停止向其他装置发送信息。
可选地,飞行器的控制装置还可以不包括上述第二接收模块、第三接收模块和第四接收模块,而是包括:第五接收模块(图19中未示出),用于接收来自AMF网元的标识信息,标识信息用于标识允许飞行器与其进行通信的装置;第六接收模块(图19中未示出),用于接收来自AMF网元的第三指示信息,第三指示信息用于指示当飞行器与禁飞区域之间的最短距离小于或等于第一预设值,且飞行器处于受限服务状态时,飞行器停止向除标识信息对应的装置之外的其他装置发送信息;此时,处理模块602用于:根据第三指示信息,停止向其他装置发送信息。
综上所述,本申请实施例提供的飞行器的控制装置中,由于控制装置将禁飞区域的信息经由AMF网元下发至第一接收模块,由于第一接收模块能够接收来自AMF网元的飞行器禁飞区域的信息,且处理模块能够对飞行器与禁飞区域的最短距离是否小于或等于第一预设值进行监控。在飞行器与禁飞区域的最短距离小于或等于第一预设值时,处理模块能够进行相 应的操作,以实现飞行器禁止在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图20为本申请实施例提供的另一种飞行器的控制装置的结构示意图,该飞行器的控制装置可以位于图1所示的通信系统中的控制装置,不予限制。该控制装置可以用于执行上述方法实施例中控制装置的动作。如图20所示,该飞行器的控制装置160可以包括:
第一接收模块1201,用于接收来自AMF网元的飞行器的参考信息,参考信息包括第一指示信息和飞行器的位置信息中的至少一种信息,第一指示信息用于指示飞行器与飞行器的禁飞区域之间的最短距离小于或等于第一预设值;
第一发送模块1202,用于根据参考信息,向飞行器发送控制指令,控制指令用于禁止飞行器在禁飞区域内飞行。
综上所述,本申请实施例提供的飞行器的控制装置中,由于第一接收模块能够接收AMF网元阿帆的参考信息,第一发送模块可以根据参考信息,向飞行器发送用于禁止飞行器在禁飞区域内飞行的控制指令,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
可选地,参考信息包括飞行器的位置信息,第一发送模块1202包括:发送单元,用于根据参考信息中飞行器的位置信息和禁飞区域的地理标识,向飞行器发送控制指令。
图21为本申请实施例提供的另一种飞行器的控制装置的结构示意图,如图21所示,在图20所示控制装置的基础上,该飞行器的控制装置160还可以包括:
第二接收模块1203,用于接收来自飞行器的位置信息;
发送单元用于:根据参考信息中飞行器的位置信息和来自飞行器的位置信息,以及禁飞区域的地理标识,确定飞行器与禁飞区域之间的最短距离是否小于或等于第一预设值;当飞行器与禁飞区域之间的最短距离小于或等于第一预设值时,向飞行器发送控制指令。
可选地,飞行器的控制装置还包括:
第二发送模块1204,用于向AMF网元、PCF网元或UDM网元发送禁飞区域的地理标识。
综上所述,本申请实施例提供的飞行器的控制装置中,由于第一接收模块能够接收AMF网元阿帆的参考信息,第一发送模块可以根据参考信息,向飞行器发送用于禁止飞行器在禁飞区域内飞行的控制指令,以禁止飞行器在禁飞区域内飞行,减少了安全隐患。这样一来,就无需在禁飞区域的边缘安装电子围栏,从而简化了预先的准备过程,并且降低了成本。
图22为本申请实施例提供的另一种飞行器的控制装置的结构示意图,该飞行器的控制装置可以位于图1中的AMF网元、PCF网元或UDM网元,不予限制,该控制装置可以用于执行上述方法实施例中控制装置的动作。如图22所示,该飞行器的控制装置180可以包括:
获取模块2201,用于获取飞行器的禁飞区域的地理标识;
确定模块2202,用于根据禁飞区域的地理标识,确定禁飞区域的网络标识;
发送模块2203,用于向AMF网元或飞行器发送禁飞区域的网络标识。
可选地,获取模块2201可以用于:接收来自控制装置的禁飞区域的地理标识。
图23为本申请实施例提供的一种通信系统的结构示意图,如图23所示,该通信系统0 可以包括:AMF网元01和飞行器02。其中,飞行器02包括图18或图19所示的飞行器的控制装置。
可选地,AMF网元01可以包括图14、图15、图16或图17所述的飞行器的控制装置。
可选地,AMF网元01还可以包括:图22所示的飞行器的控制装置。或者,如图24所示,通信系统0还包括:PCF网元03,PCF网元03包括:图22所示的飞行器的控制装置。或者,如图25所示,该通信系统0还包括:UDM网元04,UDM网元04包括:图22所示的飞行器的控制装置。
图26为本申请实施例提供的另一种通信系统的结构示意图,如图26所示,该通信系统0可以包括:AMF网元01、飞行器02和控制装置05。
其中,AMF网元01包括图14、图15、图16或图17所示的飞行器的控制装置。控制装置05包括图20或图21所示的飞行器的控制装置。
可选地,飞行器02可以包括图18或图19所示的飞行器的控制装置。
可选地,AMF网元01还可以包括图22所示的飞行器的控制装置。或者,如图27所示,通信系统0还包括:PCF网元03,PCF网元03包括:图22所示的飞行器的控制装置。或者,如图28所示,该通信系统0还包括:UDM网元04,UDM网元04包括:图22所示的飞行器的控制装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质,或者半导体介质(例如固态硬盘)等。
需要说明的是,本申请实施例提供的方法实施例能够与相应的装置实施例相互参考,本申请实施例对此不做限定。本申请实施例提供的方法实施例步骤的先后顺序能够进行适当调整,步骤也能够根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种飞行器的控制方法,其特征在于,所述方法包括:
    接入管理功能AMF网元获取飞行器的禁飞区域的信息;
    当所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,所述AMF网元向控制装置发送参考信息;
    其中,所述参考信息包括:第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述禁飞区域的信息包括:所述禁飞区域的网络标识,或所述禁飞区域的地理标识。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述AMF网元根据所述飞行器的位置信息和所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
  4. 根据权利要求3所述的方法,其特征在于,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述AMF网元根据所述飞行器的位置信息和所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,包括:
    所述AMF网元根据所述飞行器的位置信息,确定所述飞行器与所述至少一个小区中任意一个的覆盖区域的中心点之间的距离小于或等于所述第一预设值。
  5. 根据权利要求1或2所述的方法,其特征在于,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述方法还包括:
    当所述AMF网元确定所述飞行器接入所述至少一个小区中任意一个小区时,所述AMF网元确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
  6. 根据权利要求1或2所述的方法,其特征在于,所述禁飞区域的信息包括所述禁飞区域的地理标识,所述方法还包括:
    所述AMF网元根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识。
  7. 根据权利要求6所述的方法,其特征在于,所述AMF网元获取所述禁飞区域的信息,包括:
    所述AMF网元接收来自控制装置或统一数据管理UDM网元的所述禁飞区域的地理标识。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,所述禁飞区域的信息包括所述 禁飞区域的网络标识,所述AMF网元获取飞行器的禁飞区域的信息,包括:
    所述AMF网元接收来自策略控制功能PCF网元或UDM网元的所述禁飞区域的网络标识。
  9. 根据权利要求2至8任一项所述的方法,其特征在于,所述方法还包括:
    所述AMF网元向所述飞行器发送所述禁飞区域的网络标识或地理标识。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述AMF网元向所述飞行器发送标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;
    所述AMF网元向所述飞行器发送第二指示信息和/或第三指示信息;
    其中,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止处理来自除所述标识信息对应的装置之外的其他装置的信息;
    所述第三指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述飞行器的位置信息为所述飞行器上报给所述AMF网元的所述飞行器的位置信息,或者,所述AMF网元定位的所述飞行器的位置信息,或所述AMF网元根据所述飞行器上报给所述AMF网元的所述飞行器的位置信息和所述AMF网元定位的所述飞行器的位置信息确定的位置信息。
  12. 一种飞行器的控制方法,其特征在于,所述方法包括:
    飞行器接收来自AMF网元的所述飞行器的禁飞区域的信息;
    当所述飞行器与所述禁飞区域之间的最短距离小于或等于第一预设值时,所述飞行器去注册,进入受限服务状态,或向控制装置或所述AMF网元发送所述飞行器的位置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述禁飞区域的信息包括所述禁飞区域的网络标识或所述禁飞区域的地理标识。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述飞行器根据所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
  15. 根据权利要求14所述的方法,其特征在于,所述禁飞区域的信息包括所述禁飞区域的网络标识,且所述禁飞区域的网络标识包括至少一个小区的标识,所述飞行器根据所述禁飞区域的信息,确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,包括:
    当所述飞行器确定所述飞行器接入所述至少一个小区中任意一个小区时,所述飞行器确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值;
    或者,当所述飞行器确定所述至少一个小区中任意一个小区的无线信号强度大于或等于第二预设值时,所述飞行器确定所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    所述飞行器接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;
    所述飞行器接收来自所述AMF网元的第二指示信息,所述第二指示信息用于指示所述飞行器:当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,停止处理来自除所述标识信息对应的装置之外的其他装置的信息;
    所述飞行器进入受限服务状态,包括:
    所述飞行器根据所述第二指示信息,停止处理来自所述其他装置的信息。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述飞行器接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向所述其他装置发送信息;
    所述飞行器进入受限服务状态,包括:
    所述飞行器根据所述第三指示信息,停止向所述其他装置发送信息。
  18. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    所述飞行器接收来自所述AMF网元的标识信息,所述标识信息用于标识允许所述飞行器与其进行通信的装置;
    所述飞行器接收来自所述AMF网元的第三指示信息,所述第三指示信息用于指示当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值,且所述飞行器处于所述受限服务状态时,所述飞行器停止向除所述标识信息对应的装置之外的其他装置发送信息;
    所述飞行器进入受限服务状态,包括:
    所述飞行器根据所述第三指示信息,停止向所述其他装置发送信息。
  19. 一种飞行器的控制方法,其特征在于,所述方法还包括:
    控制装置接收来自AMF网元的飞行器的参考信息,所述参考信息包括第一指示信息和所述飞行器的位置信息中的至少一种信息,所述第一指示信息用于指示所述飞行器与所述飞行器的禁飞区域之间的最短距离小于或等于第一预设值;
    所述控制装置根据所述参考信息向所述飞行器发送控制指令,所述控制指令用于禁止所述飞行器在所述禁飞区域内飞行。
  20. 根据权利要求19所述的方法,其特征在于,所述参考信息包括所述飞行器的位置信息,所述控制装置根据所述参考信息向所述飞行器发送控制指令,包括:
    所述控制装置根据所述参考信息中所述飞行器的位置信息和所述禁飞区域的地理标识,向所述飞行器发送所述控制指令。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述控制装置接收来自所述飞行器的位置信息;
    所述控制装置根据所述参考信息中所述飞行器的位置信息和所述禁飞区域的地理标识,向所述飞行器发送所述控制指令,包括:
    所述控制装置根据所述参考信息中所述飞行器的位置信息和所述来自所述飞行器的位置信息,以及所述禁飞区域的地理标识,确定所述飞行器与所述禁飞区域之间的最短距离是否小于或等于第一预设值;
    当所述飞行器与所述禁飞区域之间的最短距离小于或等于所述第一预设值时,所述控制装置向所述飞行器发送所述控制指令。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,所述方法还包括:
    所述控制装置向所述AMF网元、PCF网元或UDM网元发送所述禁飞区域的地理标识。
  23. 一种飞行器的控制方法,其特征在于,所述方法包括:
    获取飞行器的禁飞区域的地理标识;
    根据所述禁飞区域的地理标识,确定所述禁飞区域的网络标识;
    向AMF网元或所述飞行器发送所述禁飞区域的网络标识。
  24. 根据权利要求23所述的方法,其特征在于,所述获取飞行器的禁飞区域的地理信息,包括:
    接收来自控制装置的所述禁飞区域的地理标识。
  25. 一种通信装置,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于与所述存储器耦合,调用所述存储器中的程序,执行所述程序以实现如权利要求1至24任意一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质内存储有计算机程序;
    所述计算机程序被处理器执行时实现权利要求1至11任一所述的方法;
    或者,所述计算机程序被处理器执行时实现权利要求12至18任一所述的方法;
    或者,所述计算机程序被处理器执行时实现权利要求19至22任一所述的方法;
    或者,所述计算机程序被处理器执行时实现权利要求23至24任一所述的方法。
PCT/CN2019/107777 2018-09-30 2019-09-25 飞行器的控制方法及装置 WO2020063655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19867201.6A EP3848771B1 (en) 2018-09-30 2019-09-25 Aircraft control method and apparatus
US17/215,780 US20210216083A1 (en) 2018-09-30 2021-03-29 Aircraft control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811160920.4 2018-09-30
CN201811160920.4A CN110968106A (zh) 2018-09-30 2018-09-30 飞行器的控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/215,780 Continuation US20210216083A1 (en) 2018-09-30 2021-03-29 Aircraft control method and apparatus

Publications (1)

Publication Number Publication Date
WO2020063655A1 true WO2020063655A1 (zh) 2020-04-02

Family

ID=69952460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107777 WO2020063655A1 (zh) 2018-09-30 2019-09-25 飞行器的控制方法及装置

Country Status (4)

Country Link
US (1) US20210216083A1 (zh)
EP (1) EP3848771B1 (zh)
CN (1) CN110968106A (zh)
WO (1) WO2020063655A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406783A (zh) * 2023-12-01 2024-01-16 成都时代星光科技有限公司 一种无人机禁飞区分析方法和系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257045A (zh) * 2021-07-14 2021-08-13 四川腾盾科技有限公司 一种基于大型固定翼无人机电子围栏的无人机控制方法
CN113900444B (zh) * 2021-10-09 2024-02-23 广东汇天航空航天科技有限公司 一种飞行器的控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
CN104950907A (zh) * 2015-06-26 2015-09-30 广州快飞计算机科技有限公司 无人机的监控方法、装置及系统
WO2016041110A1 (zh) * 2014-09-15 2016-03-24 深圳市大疆创新科技有限公司 一种飞行器的飞行控制方法及相关装置
CN105472558A (zh) * 2015-12-18 2016-04-06 苏州贝多环保技术有限公司 一种无人机及其控制方法
CN105717945A (zh) * 2016-03-30 2016-06-29 冯基洲 一种自动避让的无人机
CN107703965A (zh) * 2017-10-13 2018-02-16 翔升(上海)电子技术有限公司 控制无人机数据传输的方法和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133506B2 (ja) * 2014-04-17 2017-05-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行制限区域に対する飛行制御
US9905134B2 (en) * 2015-02-12 2018-02-27 Aerobotic Innovations, LLC System and method of preventing and remedying restricted area intrusions by unmanned aerial vehicles
CN106128169B (zh) * 2016-08-02 2018-11-13 丁峙 一种用于禁飞区无人机管控的系统和方法
CN106296873A (zh) * 2016-08-08 2017-01-04 桂林信通科技有限公司 一种无人机避险飞行数据记录装置及方法
JP2018103936A (ja) * 2016-12-28 2018-07-05 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、その制御方法、及びプログラム
CN106898161A (zh) * 2017-02-28 2017-06-27 农芯科技(北京)有限责任公司 一种飞行器辅助驾驶系统和方法
WO2018187889A1 (zh) * 2017-04-09 2018-10-18 深圳市大疆创新科技有限公司 一种飞行处理方法及控制设备
CN107357305A (zh) * 2017-06-19 2017-11-17 深圳市易成自动驾驶技术有限公司 飞行控制方法、无人机及计算机存储介质
CN107168377A (zh) * 2017-07-19 2017-09-15 过成康 一种具有禁飞区域警示作用的无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041110A1 (zh) * 2014-09-15 2016-03-24 深圳市大疆创新科技有限公司 一种飞行器的飞行控制方法及相关装置
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
CN104950907A (zh) * 2015-06-26 2015-09-30 广州快飞计算机科技有限公司 无人机的监控方法、装置及系统
CN105472558A (zh) * 2015-12-18 2016-04-06 苏州贝多环保技术有限公司 一种无人机及其控制方法
CN105717945A (zh) * 2016-03-30 2016-06-29 冯基洲 一种自动避让的无人机
CN107703965A (zh) * 2017-10-13 2018-02-16 翔升(上海)电子技术有限公司 控制无人机数据传输的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848771A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406783A (zh) * 2023-12-01 2024-01-16 成都时代星光科技有限公司 一种无人机禁飞区分析方法和系统
CN117406783B (zh) * 2023-12-01 2024-04-05 成都时代星光科技有限公司 一种无人机禁飞区分析方法和系统

Also Published As

Publication number Publication date
EP3848771B1 (en) 2023-04-26
CN110968106A (zh) 2020-04-07
EP3848771A4 (en) 2022-01-05
EP3848771A1 (en) 2021-07-14
US20210216083A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US20210216083A1 (en) Aircraft control method and apparatus
US20230397145A1 (en) Mobility in Non-Public Networks
US20230328520A1 (en) Aerial Service
US20230354463A1 (en) State Transition of Wireless Device
US11570739B2 (en) Uplink data indication
JP2023545686A (ja) 航空システムのセッション管理
US20230328821A1 (en) Modifying PDU Sessions In Underlay Networks
EP4009700A1 (en) Switching method and apparatus
US20240073848A1 (en) Network Slice in a Wireless Network
WO2020119795A1 (zh) 一种通信方法及装置
US20230397155A1 (en) Height-Based Management of Wireless Device
US20230413225A1 (en) Change of Height of Wireless Device
US20230337089A1 (en) Aerial Service
US20230422293A1 (en) Network Slice Based Priority Access
CN117478431B (zh) 一种基于可信网络的工业物联网控制方法
US20240114441A1 (en) Network Access Management
US20240031929A1 (en) Connection Establishment
US20240064626A1 (en) Support For Network Service
US20220167114A1 (en) System and method for geo-fencing of fixed wireless access
WO2023215499A1 (en) Emergency service
WO2023147051A1 (en) Personal internet-of-things networks
WO2023081344A1 (en) Data notification in wireless systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867201

Country of ref document: EP

Effective date: 20210409