WO2021052345A1 - 成像方法、成像模组和电子设备 - Google Patents

成像方法、成像模组和电子设备 Download PDF

Info

Publication number
WO2021052345A1
WO2021052345A1 PCT/CN2020/115471 CN2020115471W WO2021052345A1 WO 2021052345 A1 WO2021052345 A1 WO 2021052345A1 CN 2020115471 W CN2020115471 W CN 2020115471W WO 2021052345 A1 WO2021052345 A1 WO 2021052345A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
photosensitive element
optical axis
imaging module
Prior art date
Application number
PCT/CN2020/115471
Other languages
English (en)
French (fr)
Inventor
徐青
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20865492.1A priority Critical patent/EP3979616A4/en
Publication of WO2021052345A1 publication Critical patent/WO2021052345A1/zh
Priority to US17/563,711 priority patent/US20220121001A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143101Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged +--
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • This application relates to the field of imaging technology, and in particular to an imaging method, imaging module and electronic equipment.
  • multiple cameras can be set on the electronic device, such as a telephoto camera and a normal focal length camera (relatively long-focus, it is a short-focus camera), through multiple cameras
  • the switching between the electronic devices realizes the change of the focal length of the electronic device, so as to meet the user's needs for zooming and shooting.
  • the embodiments of the present application provide an imaging method, an imaging module, and an electronic device.
  • the imaging method of the embodiment of the present application is used in an imaging module, and the imaging module includes a zoom lens and a photosensitive element.
  • the zoom lens includes a first lens group, a second lens group, and a third lens group.
  • the imaging method includes: when the zoom lens is switched from a long focus to a short focus, controlling the positions of the first lens group and the third lens group on the optical axis of the zoom lens to be relatively fixed, and Control the second lens group and the photosensitive element to move along the optical axis toward the object side of the imaging module; when the zoom lens is switched from short focus to long focus, control the first lens group and The positions of the third lens group on the optical axis are relatively fixed, and the second lens group and the photosensitive element are controlled to move along the optical axis toward the image side of the imaging module.
  • the imaging module of the embodiment of the present application includes a zoom lens and a photosensitive element.
  • the zoom lens includes a first lens group, a second lens group, and a third lens group. In the direction from the object side to the image side of the zoom lens, the first lens group, the second lens group, the third lens group, and the photosensitive element are sequentially arranged. Both the second lens group and the photosensitive element can move in the optical axis direction of the zoom lens.
  • the zoom lens When the zoom lens is switched from a long focus to a short focus, the positions of the first lens group and the third lens group on the optical axis are relatively fixed, and the second lens group and the photosensitive element Move toward the object side of the imaging module along the optical axis; when the zoom lens is switched from short focal length to long focal length, the distance between the first lens group and the third lens group on the optical axis The positions are relatively fixed, and the second lens group and the photosensitive element move along the optical axis toward the image side of the imaging module.
  • the electronic device of the embodiment of the present application includes a casing and the above-mentioned imaging module.
  • the imaging module includes a zoom lens and a photosensitive element.
  • the zoom lens includes a first lens group, a second lens group, and a third lens group. In the direction from the object side to the image side of the zoom lens, the first lens group, the second lens group, the third lens group, and the photosensitive element are sequentially arranged. Both the second lens group and the photosensitive element can move in the optical axis direction of the zoom lens.
  • the zoom lens When the zoom lens is switched from a long focus to a short focus, the positions of the first lens group and the third lens group on the optical axis are relatively fixed, and the second lens group and the photosensitive element Move toward the object side of the imaging module along the optical axis; when the zoom lens is switched from short focal length to long focal length, the distance between the first lens group and the third lens group on the optical axis The positions are relatively fixed, and the second lens group and the photosensitive element move along the optical axis toward the image side of the imaging module.
  • the imaging module is installed on the casing.
  • FIG. 1 is a schematic structural diagram of an imaging module in some embodiments of the present application in a short focus state
  • FIG. 2 is a schematic structural diagram of the imaging module in some embodiments of the present application in a telephoto state
  • Fig. 3a is a schematic diagram of focusing of an imaging module according to some embodiments of the present application.
  • Fig. 3b is a histogram of the sharpness of the image during the focusing process of the imaging module of Fig. 3a;
  • FIG. 4 is a schematic diagram of an assembly of an imaging module according to some embodiments of the present application.
  • FIG. 5 is an exploded schematic diagram of an imaging module according to some embodiments of the present application.
  • FIG. 6 is a schematic cross-sectional view of the imaging module in FIG. 4 along the VI-VI line;
  • FIG. 7 is a schematic diagram of a lens of a zoom lens according to some embodiments of the present application.
  • Fig. 11 is a schematic diagram of an electronic device according to some embodiments of the present application.
  • the imaging method of the embodiment of the present application is used to control any of the above-mentioned imaging modules 1000.
  • the imaging module 1000 includes a zoom lens 100 and a photosensitive element 402, and the zoom lens 100 includes a first lens.
  • Group 10, second lens group 20 and third lens group 30, the imaging method includes:
  • the zoom lens 100 When the zoom lens 100 is switched from short focal length to long focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis are relatively fixed, and the second lens group 20 and the photosensitive element 402 are controlled to move along the optical axis. The axis moves toward the image side of the imaging module 1000.
  • the imaging method further includes:
  • the photosensitive element 402 is controlled to move along the optical axis of the zoom lens 100 to achieve automatic focusing.
  • step 021 includes:
  • step 031 includes:
  • the zoom lens 100 is switched from long focus to short focus, the direction of movement of the photosensitive element 402 along the optical axis and the amount of movement on the optical axis are determined according to the sharpness of the image on the photosensitive element 402 to realize automatic Focus.
  • the imaging module 1000 in the embodiment of the present application includes a zoom lens 100 and a photosensitive element 402.
  • the zoom lens 100 includes a first lens group 10, a second lens group 20, and a third lens group 30.
  • the first lens group 10, the second lens group 20, the third lens group 30 and the photosensitive element 402 are arranged in sequence. Both the second lens group 20 and the photosensitive element 402 can move in the optical axis direction of the zoom lens 100.
  • the zoom lens 100 When the zoom lens 100 is switched from a long focal length to a short focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and the photosensitive element 402 form an image along the optical axis o.
  • the object side direction of the module 1000 moves; when the zoom lens 100 is switched from short focal length to long focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and The photosensitive element 402 moves along the optical axis o toward the image side of the imaging module 1000.
  • the zoom lens 100 further includes a filter 401, the filter 401 is provided between the photosensitive element 402 and the third lens group 30, when the zoom lens 100 is in short focus During the switching process with the telephoto and during the auto-focusing process, the filter 401 moves along with the photosensitive element 402.
  • the zoom lens 100 further includes a prism assembly 50, the prism assembly 50 includes a prism 501, in the direction from the object side to the image side of the zoom lens 100, the prism 501, the first lens group 10, and the second lens group 20.
  • the third lens group 30 and the photosensitive element are arranged in sequence.
  • the imaging module 1000 further includes a housing 60, a movable barrel 21 and a movable frame 41.
  • the housing 60 includes a base plate 611 and a side plate 612 arranged on the base plate 611.
  • the side plate 612 is provided with a sliding groove 6127 extending along the optical axis o direction;
  • the movable barrel 21 is arranged in the housing 60,
  • the two lens group 20 is mounted on the movable barrel 21.
  • the movable barrel 21 includes a first body 211 and a first slider 213 arranged on both sides of the first body 211;
  • the movable frame 41 is arranged in the housing 60, and the photosensitive element 402 is arranged on the movable frame 41.
  • the movable frame 41 includes a second body 411 and second sliders 413 arranged on both sides of the second body 411; wherein: the first slider 213 and the second slider 413 are movably Installed in the sliding groove 6127, when the first body 211 and the second body 411 move, the second lens group 20 and the photosensitive element 402 are respectively driven to move along the optical axis o.
  • the movable barrel 41 includes a first ball 217, the first ball 217 is disposed on the first bottom surface 216 of the first body 211 opposite to the base plate 611; the movable frame 41 includes a second rolling ball 417, and the second rolling ball 417 is disposed on a second bottom surface 416 of the second body 411 opposite to the substrate 611.
  • the imaging module 1000 further includes a driving member 70, the driving member 70 is disposed in the housing 60, the driving member 70 is connected to the first body 211, and the driving member 70 is connected to the first body 211.
  • the two bodies 411 are connected, and the driving member 70 is used to drive the first body 211 and/or the second body 411 to move, so as to drive the second lens group 20 and/or the photosensitive element 402 to move along the optical axis o.
  • the first lens group 10 includes one or more lenses
  • the second lens group 20 includes one or more lenses
  • the third lens group 30 includes one or more lenses, at least one The shape of the lens is a part of the body of revolution.
  • the first lens group 10 includes a first lens 101 and a second lens 102
  • the second lens group 20 includes a third lens 201, a fourth lens 202, and a fifth lens 203.
  • the three-lens group 30 includes a sixth lens 301 and a seventh lens 302; each lens satisfies the following relationship: -4 ⁇ f2/f1 ⁇ 0; 2 ⁇ f3/f1 ⁇ 5; 0 ⁇ f4/f1 ⁇ 4; -5 ⁇ f5/f1 ⁇ -1; 0 ⁇ f6/f1 ⁇ 4; -2 ⁇ f7/f1 ⁇ 0 or 0 ⁇ f7/f1 ⁇ 2; where f1 is the focal length of the first lens 101 and f2 is the focal length of the second lens 102 Focal length, f3 is the focal length of the third lens 201, f4 is the focal length of the fourth lens 202, f5 is the focal length of the fifth lens 203, f6 is the focal length of the sixth lens 301, and f7 is
  • the electronic device 2000 includes an imaging module 1000 and a casing 200, and the imaging module 1000 is disposed on the casing 200.
  • the imaging module 1000 includes a zoom lens 100 and a photosensitive element 402.
  • the zoom lens 100 includes a first lens group 10, a second lens group 20, and a third lens group 30. In the direction from the object side to the image side of the zoom lens 100 (that is, the light incident direction of the zoom lens 100), the first lens group 10, the second lens group 20, the third lens group 30 and the photosensitive element 402 are arranged in sequence. Both the second lens group 20 and the photosensitive element 402 can move in the optical axis direction of the zoom lens 100.
  • the zoom lens 100 When the zoom lens 100 is switched from a long focal length to a short focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and the photosensitive element 402 form an image along the optical axis o.
  • the object side direction of the module 1000 moves; when the zoom lens 100 is switched from short focal length to long focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and The photosensitive element 402 moves along the optical axis o toward the image side of the imaging module 1000.
  • the zoom lens 100 further includes a filter 401, the filter 401 is provided between the photosensitive element 402 and the third lens group 30, when the zoom lens 100 is in short focus During the switching process with the telephoto and during the auto-focusing process, the filter 401 moves along with the photosensitive element 402.
  • the zoom lens 100 further includes a prism assembly 50, the prism assembly 50 includes a prism 501, in the direction from the object side to the image side of the zoom lens 100, the prism 501, the first lens group 10, and the second lens group 20.
  • the third lens group 30 and the photosensitive element are arranged in sequence.
  • the imaging module 1000 further includes a housing 60, a movable barrel 21 and a movable frame 41.
  • the housing 60 includes a base plate 611 and a side plate 612 arranged on the base plate 611.
  • the side plate 612 is provided with a sliding groove 6127 extending along the optical axis o direction;
  • the movable barrel 21 is arranged in the housing 60,
  • the two lens group 20 is mounted on the movable barrel 21.
  • the movable barrel 21 includes a first body 211 and a first slider 213 arranged on both sides of the first body 211;
  • the movable frame 41 is arranged in the housing 60, and the photosensitive element 402 is arranged on the movable frame 41.
  • the movable frame 41 includes a second body 411 and second sliders 413 arranged on both sides of the second body 411; wherein: the first slider 213 and the second slider 413 are movably Installed in the sliding groove 6127, when the first body 211 and the second body 411 move, the second lens group 20 and the photosensitive element 402 are respectively driven to move along the optical axis o.
  • the movable barrel 41 includes a first ball 217, the first ball 217 is disposed on the first bottom surface 216 of the first body 211 opposite to the base plate 611; the movable frame 41 includes a second rolling ball 417, and the second rolling ball 417 is disposed on a second bottom surface 416 of the second body 411 opposite to the substrate 611.
  • the imaging module 1000 further includes a driving member 70, the driving member 70 is disposed in the housing 60, the driving member 70 is connected to the first body 211, and the driving member 70 is connected to the first body 211.
  • the two bodies 411 are connected, and the driving member 70 is used to drive the first body 211 and/or the second body 411 to move, so as to drive the second lens group 20 and/or the photosensitive element 402 to move along the optical axis o.
  • the first lens group 10 includes one or more lenses
  • the second lens group 20 includes one or more lenses
  • the third lens group 30 includes one or more lenses, at least one The shape of the lens is a part of the body of revolution.
  • the first lens group 10 includes a first lens 101 and a second lens 102
  • the second lens group 20 includes a third lens 201, a fourth lens 202, and a fifth lens 203.
  • the three-lens group 30 includes a sixth lens 301 and a seventh lens 302; each lens satisfies the following relationship: -4 ⁇ f2/f1 ⁇ 0; 2 ⁇ f3/f1 ⁇ 5; 0 ⁇ f4/f1 ⁇ 4; -5 ⁇ f5/f1 ⁇ -1; 0 ⁇ f6/f1 ⁇ 4; -2 ⁇ f7/f1 ⁇ 0 or 0 ⁇ f7/f1 ⁇ 2; where f1 is the focal length of the first lens 101 and f2 is the focal length of the second lens 102 Focal length, f3 is the focal length of the third lens 201, f4 is the focal length of the fourth lens 202, f5 is the focal length of the fifth lens 203, f6 is the focal length of the sixth lens 301, and f7 is
  • the imaging module 1000 in the embodiment of the present application includes a zoom lens 100 and a photosensitive element 402.
  • the zoom lens 100 includes a first lens group 10, a second lens group 20, and a third lens group 30.
  • the first lens group 10, the second lens group 20, the third lens group 30 and the photosensitive element 402 are arranged in sequence. Both the second lens group 20 and the photosensitive element 402 can move in the optical axis direction of the zoom lens 100.
  • the zoom lens 100 When the zoom lens 100 is switched from a long focal length to a short focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and the photosensitive element 402 form an image along the optical axis o.
  • the object side direction of the module 1000 moves; when the zoom lens 100 is switched from short focal length to long focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis o are relatively fixed, and the second lens group 20 and The photosensitive element 402 moves along the optical axis o toward the image side of the imaging module 1000.
  • the imaging module 1000 makes the focal length of the imaging module 1000 variable by moving the second lens group 20 and the photosensitive element 402, without installing multiple cameras in the electronic device 2000 (shown in FIG. 11).
  • the zoom takes up the space of the electronic device and the cost is high. It improves the image quality while reducing the space occupied by the camera, and can save costs.
  • the first lens group 10 may include one or more lenses
  • the second lens group 20 may include one or more lenses
  • the third lens group 30 may include one or more lenses.
  • the first lens group 10 includes two lenses, a first lens 101 and a second lens 102
  • the second lens group 20 includes three lenses, a third lens 201, a fourth lens 202, and a fifth lens 203.
  • the third lens group 30 includes two lenses, a sixth lens 301 and a seventh lens 302, respectively. Each lens has a corresponding focal length.
  • each lens can satisfy the following relationship: -4 ⁇ f2/f1 ⁇ 0; 2 ⁇ f3/f1 ⁇ 5; 0 ⁇ f4/f1 ⁇ 4; -5 ⁇ f5/f1 ⁇ -1; 0 ⁇ f6/f1 ⁇ 4; -2 ⁇ f7/f1 ⁇ 0 or 0 ⁇ f7/f1 ⁇ 2.
  • f1 is the focal length of the first lens 101
  • f2 is the focal length of the second lens 102
  • f3 is the focal length of the third lens 201
  • f4 is the focal length of the fourth lens 202
  • f5 is the focal length of the fifth lens 203
  • f6 is the focal length of the fifth lens 203.
  • the focal length of the six lens 301, f7 is the focal length of the seventh lens 302.
  • the first lens 101, the second lens 102, the third lens 201, the fourth lens 202, the fifth lens 203, the sixth lens 301, and the seventh lens 302 can all be glass lenses or all plastic lenses, or part of them can be glass Lens, part of it is plastic lens.
  • the second lens group 20 and the photosensitive element 402 when the zoom lens 100 is switching between the short focus and the long focus, can simultaneously move toward the object side direction or the image side direction of the imaging module 1000 along the optical axis o. mobile. That is, when the zoom lens 100 is switched from long focus to short focus, the second lens group 20 and the photosensitive element 402 can simultaneously move along the optical axis o toward the object side of the imaging module 1000; when the zoom lens 100 is switched from short focus to short focus In the telephoto mode, the second lens group 20 and the photosensitive element 402 can move toward the image side of the imaging module 1000 at the same time.
  • the second lens group 20 and the photosensitive element 402 can be synchronized along the optical axis o toward the object side or the image side of the imaging module 1000. mobile. That is, when the zoom lens 100 is switched from a long focus to a short focus, the second lens group 20 and the photosensitive element 402 synchronously move toward the object side of the imaging module 1000; when the zoom lens 100 is switched from a short focus to a long focus, the second lens group 20 and the photosensitive element 402 move toward the object side of the imaging module 1000; The two lens group 20 and the photosensitive element 402 move synchronously toward the image side of the imaging module 1000.
  • synchronization can be understood as: the relative distance between the second lens group 20 and the photosensitive element 402 does not change during the movement process, that is, the movement direction and movement amount of the second lens group 20 and the photosensitive element 402
  • the direction and amount of movement are the same.
  • the movement direction of the second lens group 20 is the same as the movement direction of the photosensitive element 402, and the movement amount of the second lens group 20 and the movement amount of the photosensitive element 402 may be different.
  • the second lens group 20 and the photosensitive element 402 can move along the optical axis toward the object side or the image side of the imaging module 1000 one after another. That is, when the zoom lens 100 is switched from a long focus to a short focus, the second lens group 20 may first move toward the object side of the imaging module 1000, and then the photosensitive element 402 also moves toward the object side of the imaging module 1000; or The photosensitive element 402 first moves toward the object side of the imaging module 1000, and then the second lens group 20 also moves toward the object side of the imaging module 1000.
  • the second lens group 20 may first move toward the image side of the imaging module 1000, and then the photosensitive element 402 also moves toward the image side of the imaging module 1000; or the photosensitive element 402 first moves toward the image side direction of the imaging module 1000, and then the second lens group 20 also moves toward the image side direction of the imaging module 1000.
  • the photosensitive element 402 may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) photosensitive element 402, or a charge-coupled device (CCD) photosensitive element 402.
  • CMOS complementary Metal Oxide Semiconductor
  • CCD charge-coupled device
  • the photosensitive element 402 moves along the optical axis o to achieve automatic focusing.
  • the photosensitive element 402 determines the direction of movement on the optical axis o and the amount of movement on the optical axis o according to the sharpness of the obtained image.
  • the sharpness can be obtained by processing the image on the photosensitive element 402 to obtain a contrast value. That is, whether the image is clear or not can be reflected by the size of the contrast value. Specifically, the larger the contrast value, the higher the clarity of the image.
  • the contrast detection algorithm is used to implement the auto-focusing process, and the photosensitive element 402 can move along the optical axis o at a fixed step.
  • the ordinate of the histogram in Figure 3b represents the contrast value at that position.
  • the zoom lens 100 completes the switching between the short focus and the long focus, the zoom lens 100 starts to focus automatically, and the first lens group 10, the second lens group 20, and the third lens group 30 are all kept relatively fixed on the optical axis o.
  • the initial position of the photosensitive element 402 is the first position P1.
  • the first image acquired by the photosensitive element 402 has a first contrast value, and the first contrast value corresponds to the first sharpness of the first image. If the photosensitive element 402 Move one step toward the object side of the zoom lens 100 to reach the second position P2.
  • the second image acquired by the photosensitive element 402 has a second contrast value, and the second contrast value corresponds to the second sharpness of the second image. The magnitude between the first contrast value and the second contrast value is compared to obtain the magnitude relationship between the first sharpness and the second sharpness.
  • the first sharpness is smaller than the second sharpness, that is, the sharpness of the second image obtained by the photosensitive element 402 at the second position P2 is higher than that of the second image obtained at the first position P1 If the first image is clear, the photosensitive element 402 continues to move toward the object side of the zoom lens 100 and reaches the third position P3.
  • the third image acquired by the photosensitive element 402 has a third contrast value, and the third contrast value corresponds to The third sharpness of the third image, the size relationship between the third sharpness and the second sharpness is obtained by comparing the size between the second contrast value and the third contrast value, if the second contrast value is less than the third contrast value , The second sharpness is smaller than the third sharpness, that is, the sharpness of the third image acquired by the photosensitive element 402 at the third position P3 is higher than the sharpness of the second image acquired at the second position P2, then continue Move one step to the object side direction of the zoom lens 100 and reach the fourth position P4.
  • the fourth image acquired by the photosensitive element 402 has a fourth contrast value, and the fourth contrast value corresponds to the fourth sharpness of the fourth image.
  • the size between the third contrast value and the fourth contrast value obtains the size relationship between the fourth sharpness and the third sharpness, if the third contrast value is less than the fourth contrast value, the fourth sharpness is greater than the third sharpness That is, the sharpness of the fourth image acquired by the photosensitive element 402 at the fourth position P4 is higher than the sharpness of the third image acquired at the third position P3, and the zoom lens 100 continues to move one step toward the object side. And reach the fifth position P5, the fifth image acquired by the photosensitive element 402 has a fifth contrast value, and the fifth contrast value corresponds to the fifth sharpness of the fifth image, by comparing the fifth contrast value and the fourth contrast value Obtain the size relationship between the fifth sharpness and the fourth sharpness.
  • the fifth contrast value is smaller than the fourth contrast value
  • the fifth sharpness is smaller than the fourth sharpness
  • the photosensitive element 402 is The sharpness of the fifth image acquired at the fifth position P5 is lower than the sharpness of the fourth image acquired at the fourth position P4, and the photosensitive element 402 returns to the fourth position P4 and completes focusing.
  • the photosensitive element 402 can also be moved to the image side direction of the zoom lens 100 first, and the focusing method is similar, which will not be repeated here. By gradually adjusting the position of the photosensitive element 402 and correspondingly detecting the contrast of the image collected by the photosensitive element 402, until the image collected by the photosensitive element 402 has the maximum contrast, focusing is completed.
  • the photosensitive element 402 is more sensitive to decentering than the first lens group 10.
  • the second lens group 20 or the third lens group 30 is smaller, so that the focusing accuracy of the zoom lens 100 is higher.
  • the zoom lens 100 may further include a prism assembly 50.
  • the prism assembly 50 includes a prism 501.
  • the prism 501 is used to change the incident direction of the incident light of the zoom lens 100 to realize the periscope structure of the zoom lens 100, so that the imaging module 1000 can be horizontally mounted on the electronic device 2000 (shown in FIG. 11) to occupy the electronic device as much as possible
  • the size of the electronic device 2000 in the width direction is reduced, and the size in the thickness direction of the electronic device 2000 is reduced, which meets the user's demand for light and thin electronic device 2000.
  • the zoom lens 100 may further include a filter 401.
  • the filter 401 is provided between the photosensitive element 402 and the third lens group 30.
  • the filter 401 moves along with the photosensitive element 402.
  • the filter 401 can be an IR pass filter or an IR cut filter, etc., and different types of filters can be used according to actual applications.
  • the imaging module 1000 adopts an IR pass filter, only infrared light is allowed to pass through the filter 401 and reach the photosensitive element 402.
  • the imaging module 1000 obtains an infrared image, which can be used for iris recognition.
  • the imaging module 1000 can be used as structured light image for distance measurement to obtain depth information, or 3D modeling together with visible light image, or binocular distance measurement, etc.
  • the imaging module 1000 adopts an IR cut filter, infrared light is not allowed to pass through the filter 401, and visible light is allowed to pass through the filter 401 to reach the photosensitive element 402.
  • the imaging module 1000 acquires a visible light image, which can be Used as a general shooting requirement.
  • the zoom lens 100 may further include an aperture 103, and the aperture 103 may be provided on the first lens group 10.
  • the diaphragm 103 may be provided on the side of the first lens 101 facing the prism 501.
  • the diaphragm 103 can be kept fixed on the optical axis o together with the first lens group 10.
  • the prism 501, the first lens group 10 (together with the diaphragm 103), the second lens group 20, the third lens group 30, the filter 401, and the photosensitive element 402 are in sequence arrangement.
  • the imaging module 1000 of the embodiment of the present application may further include a housing 60, a prism tube 51, a fixed tube 11, a movable tube 21, a mounting tube 31, and a movable frame 41.
  • the prism tube 51, the fixed tube 11, the movable tube 21, the mounting tube 31, and the movable frame 41 are all housed in the housing 60.
  • the prism assembly 50 is installed in the prism barrel 51.
  • the first lens group 10 is mounted on the fixed cylinder 11 together with the diaphragm 103.
  • the second lens group 20 is installed in the movable barrel 21.
  • the third lens group 30 is installed in the installation barrel 31.
  • the filter 401 and the photosensitive element 402 are installed in the movable frame 41.
  • the zoom lens 100 When the zoom lens 100 is switched between the short focus and the long focus, the positions of the prism tube 51, the fixed tube 11, and the mounting tube 31 on the optical axis o of the zoom lens 100 remain fixed, so that the prism assembly 50 The positions of the first lens group 10 and the third lens group 30 on the optical axis o of the zoom lens 100 also remain fixed.
  • the zoom lens 100 When the zoom lens 100 is zoomed (that is, after switching between short focus and long focus), and the zoom lens 100 performs autofocus, the prism tube 51, the fixed tube 11, and the mounting tube 31 are in the light of the zoom lens 100.
  • the positions on the axis o remain fixed, so that the positions of the prism assembly 50, the first lens group 10, and the third lens group 30 on the optical axis o of the zoom lens 100 also remain fixed.
  • both the movable barrel 21 and the movable frame 41 can move along the optical axis o of the zoom lens 100, thereby driving the second lens group 20 and the filter
  • the 401 and the photosensitive element 402 can also move along the optical axis o of the zoom lens 100.
  • the movable barrel 21 moves along the optical axis o of the zoom lens 100 toward the object side of the imaging module 1000, thereby driving the second lens group 20 toward the imaging module. Move the object side of 1000.
  • the movable frame 41 moves along the optical axis o of the zoom lens 100 toward the object side of the imaging module 1000, thereby driving the filter 401 and the photosensitive element 402 toward the imaging module together.
  • the object side of group 1000 moves.
  • the movable barrel 21 moves along the optical axis o of the zoom lens 100 toward the image side of the imaging module 1000, thereby driving the second lens group 20 toward the image of the imaging module 1000. Move sideways.
  • the movable frame 41 moves along the optical axis o of the zoom lens 100 toward the image side of the imaging module 1000, thereby driving the filter 401 and the photosensitive element 402 toward the imaging mode together.
  • the image side of group 1000 moves.
  • the zoom lens 100 When the zoom lens 100 is zoomed (ie, after switching between short focus and long focus), and the zoom lens 100 is in the process of autofocusing, the position of the movable barrel 21 on the optical axis o of the zoom lens 100 remains fixed No change, so that the position of the second lens group 20 on the optical axis o of the zoom lens 100 also remains fixed.
  • the movable frame 41 moves along the optical axis o of the zoom lens 100, thereby driving the filter 401 and the photosensitive element 402 to move along the optical axis o of the zoom lens 100 together.
  • the movement direction and amount of movement are determined by the aforementioned contrast detection algorithm. OK, I won't repeat it here.
  • the housing 60 includes a base plate 611, a side plate 612 and a cover plate 613.
  • the base plate 611, the side plate 612 and the cover plate 613 enclose a receiving space 614.
  • the prism tube 51, the fixed tube 11, the movable tube 21, the mounting tube 31 and the movable frame 41 are all arranged in the accommodating space 614.
  • the zoom lens 1000 is installed in the housing 60. While ensuring that the zoom lens 100 can achieve zooming and/or focusing, the housing 60 can also protect the zoom lens.
  • the optical axis of the zoom lens 100 is o
  • the direction parallel to the optical axis o is defined as the x direction
  • the two directions perpendicular to the x direction are defined as the y direction and the z direction, namely, the x direction, the y direction and The z direction is perpendicular to each other.
  • the substrate 611 includes a bearing surface 6111.
  • the carrying surface 6111 is used to carry the side plate 612, the zoom lens 100, the filter 401 and the photosensitive element 402.
  • the substrate 611 may be a rectangular parallelepiped structure, a cube structure, a cylindrical structure, or a structure of other shapes, which is not limited herein. In the embodiment of the present application, the substrate 611 is a rectangular parallelepiped structure.
  • a movable barrel slide 212 and a movable frame slide 412 are provided on the bearing surface 6111.
  • the extending directions of the movable barrel slide rail 212 and the movable frame slide rail 412 are both parallel to the optical axis o direction of the zoom lens 100, that is, parallel to the x direction.
  • Both the movable barrel slide 212 and the movable frame slide 412 can be provided with one or more.
  • the number of the movable barrel slide 212 is one, two, three, four, or even more.
  • the number of moving frame slide rails 412 is one, two, three, four, or even more. In this embodiment, the number of movable barrel slide rails 212 is two, and the number of movable frame slide rails 412 is two.
  • the length of the two movable barrel slide rails 212 is the same, and the length of the two movable frame slide rails 412 is the same.
  • the lengths of the two movable barrel slide rails 212 and the two movable frame slide rails 412 may be the same or different.
  • the distance between the movable cylinder slide rail 212 and the movable frame slide rail 412 may be greater than or equal to the length of the mounting cylinder 31 in the x direction.
  • the side plate 612 is arranged around the edge of the base plate 611.
  • the side plate 612 is perpendicular to the bearing surface 6111 of the substrate 611.
  • the side plate 612 can be arranged on the base plate 611 by means of gluing, screwing, clamping and the like.
  • the side plate 612 can also be integrally formed with the base plate 611.
  • the side plate 612 includes an inner side surface 6121, an outer side surface 6122, an upper surface 6123, and a lower surface 6124.
  • the inner side surface 6121 is opposite to the outer side surface 6122, the inner side surface 6121 is located in the receiving space 614, the outer side surface 6122 is located outside the receiving space 614, the inner side surface 6121 is connected to the upper surface 6123 and the lower surface 6124, and the outer side surface 6122 is also connected to the upper surface 6123 And the lower surface 6124 are connected.
  • the upper surface 6123 is opposite to the lower surface 6124.
  • the lower surface 6124 is combined with the bearing surface 6111 of the substrate 611, and the upper surface 6123 is opposite to the bearing surface 6111 of the substrate 611.
  • the side plate 612 also includes a first side plate 6125 and a second side plate 6126 parallel to the x direction.
  • the first side plate 6125 and the second side plate 6126 are opposite to each other.
  • the inner side surface 6121 of the first side plate 6125 and/or the inner side surface 6121 of the second side plate 6126 are provided with a sliding groove 6127 and an installation groove 6128.
  • the inner side surface 6121 of the first side plate 6125 is provided with a slide groove 6127 and a mounting groove 6128
  • the inner side surface 6121 of the second side plate 6126 is provided with a slide groove 6127 and a mounting groove 6128
  • the first side plate 6125 has a slide groove 6127 and a mounting groove 6128.
  • the inner side surface 6121 and the inner side surface 6121 of the second side plate 6126 are both provided with a sliding groove 6127 and a mounting groove 6128.
  • the inner side surface 6121 of the first side plate 6125 and the inner side surface 6121 of the second side plate 6126 are both provided with a sliding groove 6127 and a mounting groove 6128, and the extending direction of the sliding groove 6127 is parallel to the bearing surface 6111.
  • the sliding groove 6127 communicates with the receiving space 614, the extending direction of the sliding groove 6127 is also parallel to the x direction, the groove depth of the sliding groove 6127 is smaller than the thickness of the side plate 612, that is, the sliding groove 6127 does not penetrate the outer surface of the side plate 612 6122. In other embodiments, the sliding groove 6127 may penetrate the outer side surface 6122 of the side plate 612, so that the receiving space 614 communicates with the outside.
  • the number of the sliding grooves 6127 provided on the inner side surface 6121 of the first side plate 6125 and the inner side surface 6121 of the second side plate 6126 may be one or more.
  • the inner side surface 6121 of the first side plate 6125 is provided with a slide groove 6127
  • the inner side surface 6121 of the second side plate 6126 is provided with a slide groove 6127
  • the inner side surface 6121 of the first side plate 6125 is provided with two slide grooves 6127.
  • Slide groove 6127, the inner side surface 6121 of the second side plate 6126 is provided with two slide grooves 6127; for another example, the inner side surface 6121 of the first side plate 6125 is provided with a slide groove 6127, and the inner side surface 6121 of the second side plate 6126 is provided There are two chutes 6127 and so on, which will not be listed here.
  • the inner side surface 6121 of the first side plate 6125 and the inner side surface 6121 of the second side plate 6126 are both provided with two sliding grooves 6127 and four mounting grooves 6128.
  • the shape of the sliding groove 6127 cut by a plane perpendicular to the x direction is a rectangle, a semicircle, or other shapes, such as other regular shapes or irregular shapes.
  • the two sliding grooves 6127 on the inner side surface 6121 of the first side plate 6125 or the inner side surface 6121 of the second side plate 6126 are the movable barrel slide groove 6127a and the movable frame slide groove 6127b, respectively.
  • the inner side surface of the first side plate 6125 The four installation grooves 6128 on the inner side surface 6121 of the 6121 or the second side plate 6126 may include two movable barrel installation grooves 6128a and two movable frame installation grooves 6128b.
  • the extending direction of the movable cylinder slide groove 6127a and the movable frame slide groove 6127b is the same as the x direction.
  • the movable cylinder installation groove 6128a and the movable frame installation groove 6128b are in communication with the accommodating space 614, one end of the movable cylinder installation groove 6128a penetrates the upper surface 6123 of the side plate 612, and the other end of the movable cylinder installation groove 6128a is connected to the movable cylinder slide Groove 6127a, the extending direction of the movable barrel mounting groove 6128a can be perpendicular or inclined to the extending direction of the movable barrel sliding groove 6127a; one end of the movable frame mounting groove 6128b penetrates the upper surface 6123 of the side plate 612, and the movable frame mounting groove 6128b The other end is connected to the movable frame sliding groove 6127b, and the extending direction of the movable frame mounting groove 6128b can be perpendicular or inclined to the extending direction of the movable frame sliding groove 6127b.
  • the extending direction of the movable barrel mounting groove 6128a is perpendicular to the optical axis direction of the zoom lens 100, or the extending direction of the movable barrel mounting groove 6128a is constant with the optical axis direction of the zoom lens 100 The angle of inclination (not 0 degrees, but 30 degrees, 60 degrees, 75 degrees, etc.).
  • the extending direction of the movable barrel installation groove 6128a is perpendicular to the x direction
  • the extending direction of the movable frame installation groove 6128b is also perpendicular to the x direction.
  • the cover plate 613 is disposed on the side plate 612. Specifically, the cover plate 613 can be installed on the upper surface 6123 of the side plate 612 by means of snapping, screwing, gluing, or the like.
  • the cover 613 includes a cover body 6131 and a resisting portion 6132.
  • the surface of the cover body 6131 opposite to the side plate 612 is provided with a light entrance 6133.
  • the depth direction of the light entrance 6133 may be perpendicular to the x direction, so that the imaging module 1000 has a periscope structure as a whole.
  • the resisting portions 6132 are provided on both sides of the cover body 6131. Specifically, the resisting portions 6132 are located on the two sides of the cover body 6131 corresponding to the first side plate 6125 and the second side plate 6126 respectively. When the cover plate 613 is installed on the side plate 612, the resisting portion 6132 is located in the mounting groove 6128, and the length of the resisting portion 6132 in the z direction is equal to the depth of the mounting groove 6128 in the z direction.
  • the resisting portion 6132 located in the mounting groove 6128 may be: the resisting portion 6132 is located in the mounting groove 6128 and occupies a part of the space of the mounting groove 6128; the resisting portion 6132 is located in the mounting groove 6128 or it may be: the resisting portion 6132 is located in the mounting groove
  • the installation groove 6128 is completely filled in the 6128. At this time, the coupling of the resisting portion 6132 and the installation groove 6128 is firmer, so that the connection between the cover plate 613 and the side plate 612 is firmer.
  • the light entrance 6133 is not limited to an open structure, and may also be a light-transmitting solid structure from which light can enter the receiving space 614 and enter the prism assembly 50.
  • the movable barrel 21 includes a first body 211 and a first slider 213 provided on both sides of the first body 211.
  • the first body 211 is provided with a first light inlet 2111 and a first light outlet 2113 corresponding to the second lens group 20.
  • the first body 211 is formed with a first accommodating space 214 for accommodating the second lens group 20.
  • the setting space 214 communicates with the receiving space 614 through the first light inlet 2111 and the first light outlet 2113.
  • the first body 211 includes a first top surface 215 and a first bottom surface 216 opposite to each other.
  • the first top surface 215 is opposite to the cover plate 613.
  • the first bottom surface 216 is opposite to the carrying surface 6111 of the substrate 611.
  • the movable barrel 21 may further include a first rolling ball 217, and the first rolling ball 217 is disposed on the first bottom surface 216.
  • the first bottom surface 216 is provided with a first groove 218, the first ball 217 is disposed in the first groove 218, and the first ball 217 and the movable cylinder slide in the first groove 218 of the first bottom surface 216.
  • the bottom of the rail 212 conflicts.
  • the first groove 218 matches the shape of the first rolling ball 217.
  • the first rolling ball 217 has a spherical shape with low movement resistance.
  • the first groove 218 is a semicircular groove.
  • the diameter of the first rolling ball 217 is It is equal to the diameter of the first groove 218, that is, half of the first ball 217 is located in the first groove 218, the first ball 217 and the first groove 218 are tightly combined, and the first ball 217 moves At this time, the first body 211 can be driven to move.
  • the movable cylinder slide 212 may be a groove formed on the bearing surface 6111 with an extension direction parallel to the x direction, and the movable cylinder slide 212 may also be a protrusion provided on the bearing surface 6111 with an extension direction parallel to the x direction.
  • the surface of the block opposite to the first bottom surface 216 of the first body 211 is formed with a groove for mating with the first ball 217.
  • the movable barrel slide rail 212 is a groove formed on the bearing surface 6111 whose extending direction is parallel to the x direction.
  • the first ball 217 is located in the movable barrel slide rail 212 and abuts against the bottom of the movable barrel slide rail 212.
  • the first ball 217 may also be provided on the first top surface 215, and the corresponding first top surface 215 is also provided with a first groove 218.
  • the inner surface of the cover plate 613 may also form a first track, located at The first ball 217 in the first groove 218 of the first top surface 215 is in contact with the bottom of the first track, wherein the structure of the first track is similar to the structure of the movable cylinder slide 212, which will not be repeated here.
  • a first groove 218 is provided on the first top surface 215, and a first ball 217 is correspondingly provided, so that the movement resistance between the first body 211 and the first top surface 215 during the movement is smaller.
  • the number of the first grooves 218 may be one or more.
  • the number of the first grooves 218 is one, two, three, four, or even more. In this embodiment, the number of the first grooves 218 is three.
  • the number of the first rolling balls 217 may be one or more. In this embodiment, the number of the first balls 217 is the same as the number of the first grooves 218, which is also three.
  • the three first grooves 218 are arranged on the first bottom surface 216 or the first top surface 215 at intervals.
  • first groove 218, the first ball 217, and the movable cylinder slide 212 on the first bottom surface 216 are taken as an example for description.
  • the first groove 218, the first ball 217, and the movable cylinder slide rail 212 on the first top surface 215 The relationship between and the first track is used for reference, and will not be described in detail.
  • the number of movable barrel slide rails 212 can be determined according to the positions of the three first grooves 218, for example, the connection line of the three first grooves 218 is parallel to the light of the zoom lens 100.
  • the three first grooves 218 are divided into two groups (hereinafter referred to as the first group and the second group), and the first group includes one first groove 218.
  • the second group includes two first grooves 218, and the first groove 218 of the first group is not on the line connecting the two first grooves 218 of the second group (ie, the three first grooves 218 It can be enclosed in a triangle), two movable barrel slide rails 212 are required to correspond to the first group and the second group respectively.
  • the three first grooves 218 are divided into a first group and a second group.
  • the first group includes one first groove 218, and the second group includes two first grooves 218.
  • a groove 218 corresponds to the first movable barrel slide 2121
  • the first groove 218 of the second group corresponds to the second movable barrel slide 2122.
  • the first ball 217 corresponding to the first groove 218 of the first group moves (including sliding, rolling, or rolling while sliding) in the first movable cylinder slide rail 2121
  • the first groove 218 of the second group corresponds to
  • the first ball 217 moves in the second movable cylinder slide rail 2122
  • the first ball 217 corresponding to the first group and the first ball 217 corresponding to the second group are restricted to the first movable cylinder slide rail 2121 and the second group, respectively.
  • the three first balls 217 enclose a triangle (the center of the first ball 217 located in the first movable cylinder slide rail 2121 is the apex of the triangle), under the premise of ensuring the stability of motion To minimize the number of first balls 217, the movement resistance can be reduced. Moreover, since in the y direction, the opposite sides of the outer wall of the first ball 217 corresponding to the first group are interfered by the opposite sides of the inner wall of the first movable cylinder slide rail 2121, the first ball corresponding to the second group is The opposite sides of the outer wall of the 217 are interfered by the opposite sides of the inner wall of the second movable cylinder slide rail 2122.
  • the three first balls 217 form a triangle, which can prevent the first body 211 from shaking or tilting in the y direction. , So as to ensure that the imaging quality of the imaging module 1000 is not affected.
  • the first slider 213 is located on the surface of the first body 211 opposite to the inner side surface 6121 of the first side plate 6125 and/or the second side plate 6126.
  • the first slider 213 is located on the surface of the first body 211 opposite to the inner surface 6121 of the first side plate 6125; or, the first slider 213 is located on the inner surface 6121 of the first body 211 and the second side plate 6126. Opposite surface; or, the first slider 213 is located on the surface of the first body 211 opposite to the inner surface 6121 of the first side plate 6125, and is located on the surface of the first body 211 opposite to the inner surface 6121 of the second side plate 6126 surface.
  • the first slider 213 is located on the surface of the first body 211 opposite to the inner surface 6121 of the first side plate 6125, and on the surface of the first body 211 opposite to the inner surface 6121 of the second side plate 6126. .
  • the first sliding block 213 penetrates the movable cylinder installation groove 6128a and then slides into the movable cylinder sliding groove 6127a, so that the first sliding block 213 is slidably disposed in the movable cylinder sliding groove 6127a.
  • the number of the first slider 213 matches the number of the corresponding movable barrel mounting groove 6128a. Specifically, the number of first sliders 213 located on the surface of the first body 211 opposite to the inner side surface 6121 of the first side plate 6125 and the number of movable barrel mounting grooves 6128a provided on the inner side surface 6121 of the first side plate 6125 The same, both are two, the two first sliders 213 correspond to the two movable barrel mounting grooves 6128a one-to-one; the first slider located on the surface of the first body 211 opposite to the inner surface 6121 of the second side plate 6126
  • the number of blocks 213 is the same as the number of movable barrel mounting grooves 6128a opened on the inner side surface 6121 of the second side plate 6126, both are two, and the two first sliding blocks 213 correspond to the two movable barrel mounting grooves 6128a one-to-one.
  • the number of the first sliding block 213 may also be less than the number of the movable barrel mounting groove 6128a, for example, the first sliding block located on the surface of the first body 211 opposite to the inner surface 6121 of the first side plate 6125.
  • the number of blocks 213 is less than the number of movable barrel mounting grooves 6128a provided on the inner side surface 6121 of the first side plate 6125, and the first slider is located on the surface of the first body 211 opposite to the inner side surface 6121 of the second side plate 6126
  • the number of 213 is less than the number of movable barrel mounting grooves 6128a opened on the inner side surface 6121 of the second side plate 6126.
  • the length of the first slider 213 in the x direction is less than or equal to the length of the movable cylinder mounting groove 6128a in the x direction, so that it is convenient for the first slider 213 to slide into the movable cylinder sliding groove after passing through the movable cylinder mounting groove 6128a.
  • the second lens group 20 is disposed in the first accommodating space 214. Specifically, the second lens group 20 can be installed in the first accommodating space 214 by gluing, screwing, snapping, or the like.
  • the movable frame 41 includes a second body 411 and second sliders 413 provided on both sides of the second body 411.
  • the second body 411 is provided with a light-passing hole 4111 corresponding to the filter 401 and the photosensitive element 402, and the second body 411 is formed with a second accommodating space 414 for accommodating the filter 401 and the photosensitive element 402.
  • the second accommodating space 414 communicates with the accommodating space 614 through the light-passing hole 4111.
  • the second body 411 includes a second top surface 415 and a second bottom surface 416 opposite to each other, and the second top surface 415 is opposite to the cover plate 613.
  • the second bottom surface 416 is opposite to the carrying surface 6111 of the substrate 611.
  • the movable frame 41 may further include a second ball 417, and the second ball 417 is disposed on the second bottom surface 416.
  • the second bottom surface 416 is provided with a second groove 418 and a second accommodating space 414, and the second ball 417 can be disposed in the second groove 418, which is located in the second groove 418 of the second bottom surface 416.
  • the ball 417 conflicts with the bottom of the movable frame slide rail 412.
  • the second groove 418 matches the shape of the second rolling ball 417.
  • the second rolling ball 417 has a spherical shape with low movement resistance.
  • the second groove 418 is a semicircular groove.
  • the diameter of the second rolling ball 417 is It is equal to the diameter of the second groove 418, that is, half of the second ball 417 is located in the second groove 418.
  • the second ball 417 and the second groove 418 are relatively tightly combined, and when the second ball 417 moves, the second body 411 can be driven to move.
  • the movable frame slide rail 412 may be a groove formed on the bearing surface 6111 with an extension direction parallel to the x direction, and the movable frame slide rail 412 may also be a protrusion provided on the bearing surface 6111 with an extension direction parallel to the x direction.
  • the surface of the block opposite to the second bottom surface 416 of the second body 411 is formed with a groove for mating with the second ball 417.
  • the movable frame slide rail 412 is a groove formed on the bearing surface 6111 whose extending direction is parallel to the x direction.
  • the second top surface 415 can also be provided with a second ball 417.
  • the second top surface 415 is also provided with a second groove 418.
  • the inner surface of the cover plate 613 can also form a second track.
  • the second ball 417 located in the second groove 418 of the second top surface 415 abuts against the bottom of the second track on the inner surface of the cover plate 613, wherein the structure of the second track is the same as that of the movable frame slide rail 412 Similar, I won't repeat them here.
  • the number of the second grooves 418 is one or more.
  • the number of the second grooves 418 is one, two, three, four, or even more. In this embodiment, the number of the second grooves 418 is three.
  • the number of the second balls 417 may also be one or more. In this embodiment, the number of second balls 417 is the same as the number of second grooves 418, which is also three.
  • the three second grooves 418 are arranged on the second bottom surface 416 or the second top surface 415 at intervals.
  • the second groove 418, the second ball 417, and the movable frame slide 412 on the second bottom surface 416 are taken as an example for description.
  • the second groove 418, the second ball 417, and the movable frame slide rail 412 on the second top surface 415 The relationship between and the second track is used for reference, and will not be described in detail.
  • the three second grooves 418 are divided into a third group and a fourth group.
  • the third group includes one second groove 418
  • the fourth group includes two second grooves 418.
  • the second groove 418 of the third group corresponds to the first movable frame slide 4121
  • the second groove 418 of the fourth group corresponds to the second movable frame slide 4122.
  • the second ball 417 corresponding to the second groove 418 of the third group moves (including sliding, rolling, or rolling while sliding) in the slide rail 4121 of the first movable frame
  • the second groove 418 of the fourth group corresponds to
  • the second ball 417 moves in the second movable frame slide rail 4122, and the second ball 417 corresponding to the third group and the second ball 417 corresponding to the fourth group are restricted to the first movable frame slide rail 4121 and the second ball 417, respectively.
  • the three second balls 417 form a triangle.
  • the number of the second balls 417 is minimized to reduce the movement resistance.
  • the second ball corresponding to the fourth group is The opposite sides of the outer wall of the 417 are interfered by the opposite sides of the inner wall of the second movable frame slide rail 4122.
  • the three second balls 417 form a triangle, which can prevent the second body 411 from shaking or tilting in the y direction. , So as to ensure that the imaging quality of the imaging module 1000 is not affected.
  • the second sliding block 413 is located on the surface of the second body 411 opposite to the inner side surface 6121 of the first side plate 6125 and/or the second side plate 6126.
  • the second slider 413 is located on the surface of the second body 411 opposite to the inner surface 6121 of the first side plate 6125; or, the second slider 413 is located on the inner surface 6121 of the second body 411 and the second side plate 6126. Opposite surface; or, the second slider 413 is located on the surface of the second body 411 opposite to the inner surface 6121 of the first side plate 6125, and is located on the second body 411 opposite to the inner surface 6121 of the second side plate 6126 surface.
  • the second slider 413 is located on the surface of the second body 411 opposite to the inner surface 6121 of the first side plate 6125, and on the surface of the second body 411 opposite to the inner surface 6121 of the second side plate 6126 .
  • the second sliding block 413 passes through the movable frame installation groove 6128b and then slides into the movable frame sliding groove 6127b, so that the second sliding block 413 is slidably disposed in the movable frame sliding groove 6127b.
  • the number of the second sliders 413 matches the number of the corresponding movable frame mounting grooves 6128b.
  • the matching of the number of second sliders 413 with the number of corresponding movable frame mounting grooves 6128b refers to: the number of second sliders 413 on the surface of the second body 411 opposite to the inner surface 6121 of the first side plate 6125
  • the number is the same as the number of the movable frame mounting grooves 6128b opened on the inner side surface 6121 of the first side plate 6125, both of which are two.
  • the two second sliding blocks 413 correspond to the two movable frame mounting grooves 6128b one-to-one;
  • the number of the second sliders 413 on the surface opposite to the inner surface 6121 of the second side plate 6126 of the second body 411 is the same as the number of the movable frame mounting grooves 6128b opened on the inner surface 6121 of the second side plate 6126, both are two One, the two second sliding blocks 413 correspond to the two movable frame installation grooves 6128b one-to-one.
  • the number of the second sliders 413 may be less than the number of the movable frame mounting grooves 6128b, for example, the second slider 413 is located on the surface of the second body 411 opposite to the inner surface 6121 of the first side plate 6125.
  • the number of sliders 413 is less than the number of movable frame mounting grooves 6128b opened on the inner side surface 6121 of the first side plate 6125, and is located on the second sliding plate on the surface of the second body 411 opposite to the inner side surface 6121 of the second side plate 6126
  • the number of the blocks 413 is less than the number of the movable frame installation grooves 6128b opened on the inner side surface 6121 of the second side plate 6126.
  • the length of the second sliding block 413 in the x direction is less than or equal to the length of the movable frame mounting groove 6128b in the x direction, so that the second sliding block 413 can slide into the movable frame sliding groove after passing through the movable frame mounting groove 6128b.
  • the photosensitive element 402 and the filter 401 are arranged in the second accommodating space 414. Specifically, the photosensitive element 402 and the filter 401 are installed in the second accommodating space 414 by means of gluing, screwing, clamping, etc., and the filter 401 is closer to the light-passing hole 4111 than the photosensitive element 402.
  • the prism tube 51 can be installed on the carrying surface 6111 by means of gluing, screwing, snapping, etc., and the prism tube 51 can also be integrally formed with the substrate 611.
  • the prism barrel 51 includes a light inlet through hole 512, a light outlet through hole 511 and a third accommodating space 513.
  • the light entrance through hole 512 and the light exit through hole 511 connect the third accommodating space 513 and the accommodating space 614.
  • the prism assembly 50 includes a prism 501, and the prism 501 is disposed in the third accommodating space 513.
  • the prism 501 may be installed in the prism barrel 51 by means of gluing, snapping, or the like.
  • the prism 501 includes an incident surface 5011, a reflecting surface 5012, and an emitting surface 5013.
  • the reflecting surface 5012 obliquely connects the incident surface 5011 and the emitting surface 5013.
  • the angle between the reflecting surface 5012 and the bearing surface 6111 can be 15 degrees, 30 degrees, 45 degrees, and 60 degrees. In this embodiment, the angle between the reflective surface 5012 and the bearing surface 6111 is 45 degrees.
  • the incident surface 5011 is opposite to the light through hole 512, and the exit surface 5013 is opposite to the light through hole 511.
  • the prism 501 is used to change the exit direction of the light entering the light through hole 512.
  • the prism 501 may be a triangular prism. Specifically, the cross section of the prism 501 is a right-angled triangle. The two right-angled sides of the right-angled triangle are respectively formed by the incident surface 5011 and the output surface 5013, and the hypotenuse of the right-angled triangle is formed by the reflective surface 5012.
  • the fixed cylinder 11 can be installed on the carrying surface 6111 by means of gluing, screwing, snapping, etc., and the fixed cylinder 11 can also be integrally formed with the base plate 611.
  • the fixed barrel 11 includes a light inlet hole 111, a light outlet hole 112 and a fourth accommodating cavity 113.
  • the light inlet 111 is opposite to the light outlet through hole 511, and the light outlet 112 is opposite to the first light inlet 2111 of the movable barrel 21.
  • the light inlet hole 111 and the light outlet hole 112 connect the fourth accommodating cavity 113 and the accommodating space 614.
  • the first lens group 10 is located in the fourth accommodating cavity 113.
  • the first lens group 10 can be installed in the fixed barrel 11 by means of gluing, screwing, snapping, or the like.
  • the first lens group 10 is opposite to the exit surface 5013 of the prism 501.
  • the mounting cylinder 31 can be mounted on the carrying surface 6111 by means of gluing, screwing, snapping, etc., and the mounting cylinder 31 can also be integrally formed with the base plate 611.
  • the installation barrel 31 includes a second light inlet 311, a second light outlet 312 and a fifth accommodating cavity 313.
  • the second light inlet 311 is opposite to the first light outlet 2113, and the second light outlet 312 is opposite to the photosensitive element 402.
  • the second light inlet 311 and the second light outlet 312 connect the fifth accommodating cavity 313 with the accommodating space 614.
  • the third lens group 30 is located in the fifth accommodating cavity 614. Specifically, the third lens group 30 is installed in the mounting barrel 31 by means of gluing, screwing, snapping, or the like.
  • the third lens group 30 is opposite to the second lens group 20 and the photosensitive element 402, respectively.
  • the imaging module 1000 of the embodiment of the present application further includes a driving member 70, the driving member 70 is disposed in the housing 60, the driving member 70 includes a first driving member 71 and a second driving member 72, the first driving member 71 and the movable barrel
  • the first body 211 of the 21 is connected, and the second driving member 72 is connected to the second body 411 of the movable frame 41.
  • the first driving member 71 is used to drive the first body 211 to move to drive the second lens group 20 provided in the first body 211 to move;
  • the second driving member 72 is used to drive the second body 411 to move to drive the second body 411 to move.
  • the photosensitive element 402 and the filter 401 in the body 411 move.
  • the first driving member 71 includes a first coil 711 and a first magnet 712.
  • the number of the first coil 711 is one or more, for example, the number of the first coil 711 is one, two, three, four, or even more. In this embodiment, the number of the first coil 711 is one.
  • the first coil 711 is disposed on the first side plate 6125 or the second side plate 6126. In this embodiment, the first coil 711 is disposed on the first side plate 6125.
  • the first coil 711 can be glued, screwed, or snapped. It is installed on the first side plate 6125 in a similar manner. In other embodiments, there are two first coils 711, and the two first coils 711 are respectively disposed on the first side plate 6125 and the second side plate 6126 opposite to each other.
  • the first coil 711 may be arranged at any position of the first side plate 6125.
  • the first coil 711 may be arranged on the inner side surface 6121 of the first side plate 6125 and located between the second lens group 20 and the third lens group 30
  • the first coil 711 may be disposed on the inner side surface 6121 of the first side plate 6125, and located between the first lens group 10 and the second lens group 20, etc., which will not be repeated here.
  • the first coil 711 is disposed on the inner surface 6121 of the first side plate 6125 and is located between the second lens group 20 and the third lens group 30.
  • the first coil 711 may be disposed on the fixed cylinder 11 and opposite to the first magnet 712.
  • the first magnet 712 is connected to the first body 211, and the first magnet 712 can be arranged at any position of the first body 211.
  • the first magnet 712 is arranged on the surface of the first body 211 opposite to the mounting cylinder 31, or, The first magnet 712 is provided on the surface of the first body 211 opposite to the fixed cylinder 11 or the like. In this embodiment, the first magnet 712 is provided on the surface of the first body 211 opposite to the mounting cylinder 31.
  • the first magnet 712 can be installed on the first body 211 by screwing, gluing, snapping, or the like.
  • the first magnet 712 may be a metal with magnetism.
  • the first magnet 712 may be any one of iron, cobalt, and nickel, or the first magnet 712 may be an alloy composed of at least two of iron, cobalt, and nickel. .
  • the first magnet 712 is disposed on the first side plate 6125 or the second side plate 6126, and the first coil 711 is disposed on the first body 211.
  • the first coil 711 can also be arranged at any position on the fixed cylinder 11.
  • the first coil 711 is arranged on the surface of the fixed cylinder 11 opposite to the first body 211.
  • the first magnet 712 can be arranged on the first body. Any position on the 211, for example, the first magnet 712 is provided on the surface of the first body 211 opposite to the fixed cylinder 11.
  • the installation positions of the first coil 711 and the first magnet 712 can be interchanged.
  • the first magnet 712 is arranged on the surface of the fixed cylinder 11 opposite to the first body 211; The opposite surface of the barrel 11.
  • the second driving member 72 includes a second coil 721 and a second magnet 722.
  • the number of second coils 721 is one, two, three, four, or even more. In this embodiment, the number of second coils 721 is one.
  • the second coil 721 is disposed on the first side plate 6125 or the second side plate 6126. In this embodiment, the second coil 721 is disposed on the first side plate 6125.
  • the second coil 721 can be glued, screwed, or snapped. It is installed on the first side plate 6125 in a similar manner.
  • there are two second coils 721 and the two second coils 721 are respectively disposed on the first side plate 6125 and the second side plate 6126 opposite to each other.
  • the second coil 721 can be arranged at any position of the first side plate 6125.
  • the second coil 721 is arranged on the inner surface 6121 of the first side plate 6125, and is located at the end of the movable frame 41 and the housing 60 between. In other embodiments, the second coil 721 may be disposed on the mounting cylinder 31 and opposite to the second magnet 722.
  • the second magnet 722 is connected to the second body 411, and the second magnet 722 can be arranged at any position of the second body 411.
  • the second magnet 722 is arranged on the surface of the second body 411 opposite to the mounting cylinder 31, or The two magnets 722 are arranged on the surface of the second body 411 opposite to the mounting cylinder 31 and the like.
  • the second magnet 722 is disposed on the surface of the second body 411 opposite to the mounting cylinder 31.
  • the second magnet 722 can be installed on the second body 411 by screwing, gluing, snapping, or the like.
  • the second magnet 722 may be a metal with magnetism.
  • the second magnet 722 may be any one of iron, cobalt, and nickel, or the second magnet 722 may be an alloy composed of at least two of iron, cobalt, and nickel. .
  • the second magnet 722 is disposed on the first side plate 6125 or the second side plate 6126, and the second coil 721 is disposed on the second body 411.
  • the second coil 721 may also be arranged at any position of the mounting cylinder 31.
  • the second coil 721 may be arranged on the surface of the mounting cylinder 31 opposite to the second body 411.
  • the second magnet 722 may be arranged on the second body 411.
  • the second magnet 722 is arranged on the surface of the second body 411 opposite to the mounting cylinder 31.
  • the installation positions of the second magnet 722 and the second coil 721 can be interchanged.
  • the second magnet 722 is disposed on the surface of the mounting cylinder 31 opposite to the second body 411, and the second coil 721 is disposed on the opposite surface of the second body 411.
  • the first coil 711 When the first coil 711 is energized, a Lorentz force is generated between the first coil 711 and the first magnet 712. Since the first coil 711 is fixed on the first side plate 6125 or the second side plate 6126, the first magnet 712 is pushed by the Lorentz force to make the first body 211 of the movable barrel 21 move along the first movable barrel slide rail 2121 and the second movable barrel slide rail 2122.
  • the second coil 721 is energized, a Lorentz force is generated between the second coil 721 and the second magnet 722, and the second magnet 722 is pushed by the Lorentz force so that the second body 411 of the movable frame 41 moves along the first The movable frame slide rail 4121 and the second movable frame slide rail 4122 move.
  • the zoom lens 100 energizes the first coil 711 to control the second lens group 20 to move in the x direction, and energizes the second coil 721 to control the photosensitive element 402 to move in the x direction.
  • the first coil 711 and the second coil 721 can be energized at the same time, that is, the second lens group 20 and the photosensitive element 402 move at the same time, so as to save the moving zoom time of the zoom lens 100.
  • the directions of the current flowing through the first coil 711 and the second coil 721 are the same, so that the second lens group 20 and the photosensitive element 402 move on the optical axis o at the same time, and the moving directions are the same.
  • the magnitude of the current of the first coil 711 and the second coil 721 may be the same or different.
  • the first coil 711 and the second coil 721 may not be energized at the same time, so as to prevent the magnetic fields generated after the first coil 711 and the second coil 721 from being energized from interacting with each other, and the movement accuracy can be improved.
  • the first coil 711 and the second coil 721 are simultaneously controlled to be energized.
  • the first coil 711 and the second coil 721 are controlled to pass current in the first direction, so that the The two lens group 20 moves toward the image side of the zoom lens 100, and the photosensitive element 402 and the filter 401 move toward the image side of the zoom lens 100, so that the zoom lens 100 is switched from a short focus to a long focus.
  • the first coil 711 and the second coil 721 are simultaneously controlled to be energized.
  • the first coil 711 and the second coil 721 are controlled to pass a current opposite to the first direction, so that the first The two lenses move toward the object side of the zoom lens 100, and the photosensitive element 402 and the filter 401 move toward the object side of the zoom lens 100, so that the zoom lens 100 is switched from a long focus to a short focus.
  • the first coil 711 is controlled to stop energizing, so that the position of the second lens group 20 on the optical axis o remains unchanged.
  • the movement direction and amount of movement of the photosensitive element 402 are determined by obtaining the sharpness of the image on the photosensitive element 402, and the current direction of the energization of the second coil 721 is controlled according to the movement direction, so that the photosensitive element 402 is directed to the object side of the zoom lens 100 or
  • the second coil 721 is controlled to stop energizing, so as to realize the automatic focusing of the zoom lens 100.
  • the first lens group 10 of the embodiment of the present application may include one or more lenses
  • the second lens group 20 may include one or more lenses
  • the third lens group 30 may include one or more lenses.
  • the first lens group 10 includes one lens
  • the second lens group 20 includes one lens
  • the third lens group 30 includes one lens
  • the first lens group 10 includes one lens
  • the second lens group 20 includes two lenses.
  • the three lens group 30 includes three lenses.
  • the first lens group 10 includes two lenses, a first lens 101 and a second lens 102
  • the second lens group 20 includes three lenses, a third lens 201, a fourth lens 202, and a third lens.
  • the fifth lens 203; the third lens group 30 includes two lenses, a sixth lens 301 and a seventh lens 302, respectively.
  • the one or more lenses may all be part of the revolving body, or part of the revolving body, and part of the revolving body. In this embodiment, each lens is a part of the revolving body.
  • the first lens 101 is first formed into a revolving lens s1 through a mold, and the revolving lens s1 is cut by a plane perpendicular to the optical axis o of the zoom lens 100 as a circle. , The diameter of the circle is R, and then the edge of the revolving lens s1 is cut to form the first lens 101.
  • the shape of the first lens 101 cut by the surface perpendicular to the optical axis o is a rectangle, and the two sides of the rectangle are T1 and T2, respectively, T1/R ⁇ [0.5,1), T2/R ⁇ [0.5,1) .
  • T1/R can be 0.5, 0.6, 0.7, 0.75, 0.8, 0.95, etc.
  • T2/R can be 0.55, 0.65, 0.7, 0.75, 0.85, 0.9, and so on.
  • the specific ratio of T1/R and T2/R is determined according to factors such as the size of the internal space of the electronic device 2000 (shown in FIG. 11), the optical parameters of the zoom lens 100 (such as the effective optical area size of the first lens 101).
  • the first lens 101 is directly manufactured using a special mold, and the cavity of the mold is a part of the rotating body whose specific ratios of T1/R and T2/R have been determined, so that the first lens 101 is directly manufactured.
  • the first lens 101 is a part of the revolving lens s1.
  • the volume is smaller, so that the overall volume of the zoom lens 100 is reduced, which is beneficial to the miniaturization of the electronic device 2000.
  • other lenses including at least one of the second lens 102, the third lens 201, the fourth lens 202, the fifth lens 203, the sixth lens 301, and the seventh lens 302 can also be processed in the same manner.
  • FIG. 7 is only used to illustrate the first lens 101, and is not used to represent the size of the first lens 101, and it should not be understood that the size of each lens is the same.
  • the imaging method of the embodiment of the present application is used to control any of the above-mentioned imaging modules 1000.
  • the imaging module 1000 includes a zoom lens 100 and a photosensitive element 402, and the zoom lens 100 includes a first lens. Group 10, second lens group 20, and third lens group 30. In the direction from the object side to the image side of the zoom lens 100, the first lens group 10, the second lens group 20, the third lens group 30, and the photosensitive element 402 are sequentially Arranged, the second lens group 20 and the photosensitive element 402 can both move in the direction of the optical axis of the zoom lens 100; the imaging method includes:
  • the zoom lens 100 When the zoom lens 100 is switched from a long focus to a short focus, the positions of the first lens group 10 and the third lens group 30 on the optical axis are relatively fixed, and the second lens group 20 and the photosensitive element 402 are controlled along the optical axis.
  • the axis moves toward the object side of the imaging module 1000;
  • the zoom lens 100 When the zoom lens 100 is switched from short focal length to long focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis are relatively fixed, and the second lens group 20 and the photosensitive element 402 are controlled to move along the optical axis. The axis moves toward the image side of the imaging module 1000.
  • the imaging method further includes:
  • the photosensitive element 402 is controlled to move along the optical axis direction of the zoom lens 100 to achieve auto focus.
  • the photosensitive element 402 acquires an image
  • step 021 includes:
  • Step 031 includes:
  • the zoom lens 100 is switched from long focus to short focus, the direction of movement of the photosensitive element 402 along the optical axis and the amount of movement on the optical axis are determined according to the sharpness of the image on the photosensitive element 402 to realize automatic Focus.
  • the electronic device 2000 in the embodiment of the present application includes the imaging module 1000 and the housing 200 in any of the above embodiments, and the imaging module 1000 includes a zoom lens 100 and a photosensitive element 402.
  • the zoom lens 100 includes a first lens group 10, a second lens group 20, and a third lens group 30. In the direction from the object side to the image side of the zoom lens 100, the first lens group 10, the second lens group 20, the third lens group 30, and the photosensitive element 402 are sequentially arranged. Both the second lens group 20 and the photosensitive element 402 can move in the direction of the optical axis o of the zoom lens 100.
  • the zoom lens 100 When the zoom lens 100 is switched from a long focal length to a short focal length, the positions of the first lens group 10 and the third lens group 30 on the optical axis are controlled to be relatively fixed, and the second lens group 20 and the photosensitive element 402 are controlled to face along the optical axis.
  • the object side of the imaging module 1000 moves; when the zoom lens 100 is switched from short focus to long focus, the positions of the first lens group 10 and the third lens group 30 on the optical axis are controlled to be relatively fixed, and the second lens group is controlled 20 and the photosensitive element 402 move toward the image side of the imaging module 1000 along the optical axis.
  • the imaging module 1000 is disposed on the casing 200, and the casing 200 can effectively protect the imaging module 1000.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一种成像模组(1000)、成像方法和电子装置(2000)。成像模组(1000)包括变焦镜头(100)和感光元件(402)。变焦镜头(100)包括第一透镜组(10)、第二透镜组(20)和第三透镜组(30)。成像方法包括:从长焦切换短焦,控制第二透镜组(20)和感光元件(402)朝物侧方向移动;从短焦切换为长焦,控制第二透镜组(20)和感光元件(402)朝像侧方向移动。

Description

成像方法、成像模组和电子设备
优先权信息
本申请请求2019年9月18日向中国国家知识产权局提交的、专利申请号为201910883205.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及成像技术领域,特别涉及一种成像方法、成像模组和电子设备。
背景技术
用户存在拍摄近距离场景和拍摄远距离场景的需求,因此可以在电子设备上设置多个摄像头,例如长焦摄像头及普通焦距摄像头(相对长焦而言即为短焦摄像头),通过多个摄像头之间的切换实现电子设备焦距的变化,从而满足用户变焦拍摄的需求。
发明内容
本申请的实施例提供了一种成像方法、成像模组和电子设备。
本申请实施方式的成像方法用于成像模组,所述成像模组包括变焦镜头和感光元件。所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组。所述成像方法包括:当所述变焦镜头从长焦切换为短焦时,控制所述第一透镜组与所述第三透镜组在所述变焦镜头的光轴上的位置均相对固定,且控制所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;当所述变焦镜头从短焦切换为长焦时,控制所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,且控制所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。
本申请实施方式的成像模组包括变焦镜头和感光元件。所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组。在所述变焦镜头的物侧到像侧方向上,所述第一透镜组、所述第二透镜组、所述第三透镜组、和所述感光元件依次排列。所述第二透镜组和所述感光元件均能够在所述变焦镜头的光轴方向上移动。当所述变焦镜头从长焦切换为短焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;当所述变焦镜头从短焦切换为长焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。
本申请实施方式的电子设备包括机壳和上述成像模组。所述成像模组包括变焦镜头和感光元件。所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组。在所述变焦镜头的物侧到像侧方向上,所述第一透镜组、所述第二透镜组、所述第三透镜组、和所述感光元件依次排列。所述第二透镜组和所述感光元件均能够在所述变焦镜头的光轴方向上移动。当所述变焦镜头从长焦切换为短焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;当所述变焦镜头从短焦切换为长焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。所述成像模组安装在所述机壳上。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的成像模组处于短焦状态的结构示意图;
图2是本申请某些实施方式的成像模组处于长焦状态的结构示意图;
图3a是本申请某些实施方式的成像模组的对焦示意图;
图3b是图3a成像模组对焦过程中图像的清晰度的直方图;
图4是本申请某些实施方式的成像模组的装配示意图;
图5是本申请某些实施方式的成像模组的分解示意图;
图6是图4中成像模组沿VI-VI线的截面示意图;
图7是本申请某些实施方式的变焦镜头的透镜的示意图;
图8至图10是本申请某些实施方式的成像方法的流程示意图;
图11是本申请某些实施方式的电子设备的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
请参阅图1、图2和图8,本申请实施方式成像方法用于控制上述的任意一种成像模组1000,成像模组1000包括变焦镜头100和感光元件402,变焦镜头100包括第一透镜组10、第二透镜组20和第三透镜组30,成像方法包括:
02,当变焦镜头100从长焦切换为短焦时,控制第一透镜组10与第三透镜组30在变焦镜头100的光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的物侧移动;
03,当变焦镜头100从短焦切换为长焦时,控制第一透镜组10与第三透镜组30在光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的像侧移动。
请结合图9,在某些实施方式中,成像方法还包括:
021,当变焦镜头100完成从短焦切换为长焦之后,控制感光元件402沿变焦镜头100的光轴移动以实现自动对焦;
031,当变焦镜头100完成从长焦切换为短焦之后,控制感光元件402沿变焦镜头100的光轴移动以实现自动对焦。
请结合图10,在某些实施方式中,步骤021包括:
0211,当变焦镜头100完成从短焦切换为长焦之后,根据感光元件402上的图像的清晰度,确定感光元件402沿光轴的移动的方向及在光轴上的移动量,以实现自动对焦;
请结合图10,在某些实施方式中,步骤031包括:
0311,当变焦镜头100完成从长焦切换为短焦之后,根据感光元件402上的图像的清晰度,确定感光元件402沿光轴的移动的方向及在光轴上的移动量,以实现自动对焦。
请参阅图1和图2,本申请实施方式成像模组1000包括变焦镜头100和感光元件402。变焦镜头 100包括第一透镜组10、第二透镜组20和第三透镜组30。在变焦镜头100的物侧到像侧方向上(也即变焦镜头100的入光方向),第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列。第二透镜组20和感光元件402均能够在变焦镜头100的光轴方向上移动。当变焦镜头100从长焦切换为短焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴o朝成像模组1000的物侧方向移动;当变焦镜头100从短焦切换为长焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴o朝成像模组1000的像侧方向移动。
请参阅图1和图2,在某些实施方式中,变焦镜头100还包括滤光片401,滤光片401设于感光元件402与第三透镜组30之间,当变焦镜头100在短焦与长焦的切换过程中及在自动对焦的过程中,滤光片401跟随感光元件402一起移动。
请参阅图1和图2,变焦镜头100还包括棱镜组件50,棱镜组件50包括棱镜501,在变焦镜头100的物侧到像侧方向上,棱镜501、第一透镜组10、第二透镜组20、第三透镜组30和感光元件依次排列。
请结合图4至图6,在某些实施方式中,成像模组1000还包括壳体60、可动筒21和可动框41。壳体60包括基板611和设置在基板611上的侧板612,侧板612上开设有滑槽6127,滑槽6127沿着光轴o方向延伸;可动筒21设置在壳体60内,第二透镜组20安装在可动筒21上,可动筒21包括第一本体211和设置在第一本体211两侧的第一滑块213;可动框41设置在壳体60内,感光元件402设置在可动框41上,可动框41包括第二本体411和设置在第二本体411两侧的第二滑块413;其中:第一滑块213和第二滑块413可移动地安装在滑槽6127内,第一本体211和第二本体411移动时分别带动第二透镜组20和感光元件402沿光轴o移动。
请结合图4至图6,在某些实施方式中,可动筒41包括第一滚珠217,第一滚珠217设置在第一本体211的与基板611相对的第一底面216上;可动框41包括第二滚珠417,第二滚珠417设置在第二本体411与基板611相对的第二底面416上。
请结合图4至图6,在某些实施方式中,成像模组1000还包括驱动件70,驱动件70设置在壳体60内,驱动件70与第一本体211连接,驱动件70与第二本体411连接,驱动件70用于驱动第一本体211和/或第二本体411移动,以带动第二透镜组20和/或感光元件402沿光轴o移动。
请参阅图1,在某些实施方式中,第一透镜组10包括一个或多个透镜,第二透镜组20包括一个或多个透镜,第三透镜组30包括一个或多个透镜,至少一个透镜的形状为回转体的一部分。
请参阅图1,在某些实施方式中,第一透镜组10包括第一透镜101和第二透镜102,第二透镜组20包括第三透镜201、第四透镜202和第五透镜203,第三透镜组30包括第六透镜301和第七透镜302;各个透镜满足以下关系式:-4<f2/f1<0;2<f3/f1<5;0<f4/f1<4;-5<f5/f1<-1;0<f6/f1<4;-2<f7/f1<0或0<f7/f1<2;其中,f1为第一透镜101的焦距,f2为第二透镜102的焦距,f3为第三透镜201的焦距,f4为第四透镜202的焦距,f5为第五透镜203的焦距,f6为第六透镜301的焦距,f7为第七透镜302的焦距。
请参阅图1、2和图11,本申请实施方式的电子设备2000包括成像模组1000和机壳200,成像模组1000设于机壳200上。成像模组1000包括变焦镜头100和感光元件402。变焦镜头100包括第一透镜组10、第二透镜组20和第三透镜组30。在变焦镜头100的物侧到像侧方向上(也即变焦镜头100的入光方向),第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列。第二透镜组20和感光元件402均能够在变焦镜头100的光轴方向上移动。当变焦镜头100从长焦切换为短焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴 o朝成像模组1000的物侧方向移动;当变焦镜头100从短焦切换为长焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴o朝成像模组1000的像侧方向移动。
请参阅图1和图2,在某些实施方式中,变焦镜头100还包括滤光片401,滤光片401设于感光元件402与第三透镜组30之间,当变焦镜头100在短焦与长焦的切换过程中及在自动对焦的过程中,滤光片401跟随感光元件402一起移动。
请参阅图1和图2,变焦镜头100还包括棱镜组件50,棱镜组件50包括棱镜501,在变焦镜头100的物侧到像侧方向上,棱镜501、第一透镜组10、第二透镜组20、第三透镜组30和感光元件依次排列。
请结合图4至图6,在某些实施方式中,成像模组1000还包括壳体60、可动筒21和可动框41。壳体60包括基板611和设置在基板611上的侧板612,侧板612上开设有滑槽6127,滑槽6127沿着光轴o方向延伸;可动筒21设置在壳体60内,第二透镜组20安装在可动筒21上,可动筒21包括第一本体211和设置在第一本体211两侧的第一滑块213;可动框41设置在壳体60内,感光元件402设置在可动框41上,可动框41包括第二本体411和设置在第二本体411两侧的第二滑块413;其中:第一滑块213和第二滑块413可移动地安装在滑槽6127内,第一本体211和第二本体411移动时分别带动第二透镜组20和感光元件402沿光轴o移动。
请结合图4至图6,在某些实施方式中,可动筒41包括第一滚珠217,第一滚珠217设置在第一本体211的与基板611相对的第一底面216上;可动框41包括第二滚珠417,第二滚珠417设置在第二本体411与基板611相对的第二底面416上。
请结合图4至图6,在某些实施方式中,成像模组1000还包括驱动件70,驱动件70设置在壳体60内,驱动件70与第一本体211连接,驱动件70与第二本体411连接,驱动件70用于驱动第一本体211和/或第二本体411移动,以带动第二透镜组20和/或感光元件402沿光轴o移动。
请参阅图1,在某些实施方式中,第一透镜组10包括一个或多个透镜,第二透镜组20包括一个或多个透镜,第三透镜组30包括一个或多个透镜,至少一个透镜的形状为回转体的一部分。
请参阅图1,在某些实施方式中,第一透镜组10包括第一透镜101和第二透镜102,第二透镜组20包括第三透镜201、第四透镜202和第五透镜203,第三透镜组30包括第六透镜301和第七透镜302;各个透镜满足以下关系式:-4<f2/f1<0;2<f3/f1<5;0<f4/f1<4;-5<f5/f1<-1;0<f6/f1<4;-2<f7/f1<0或0<f7/f1<2;其中,f1为第一透镜101的焦距,f2为第二透镜102的焦距,f3为第三透镜201的焦距,f4为第四透镜202的焦距,f5为第五透镜203的焦距,f6为第六透镜301的焦距,f7为第七透镜302的焦距。
请参阅图1和图2,本申请实施方式成像模组1000包括变焦镜头100和感光元件402。变焦镜头100包括第一透镜组10、第二透镜组20和第三透镜组30。在变焦镜头100的物侧到像侧方向上(也即变焦镜头100的入光方向),第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列。第二透镜组20和感光元件402均能够在变焦镜头100的光轴方向上移动。当变焦镜头100从长焦切换为短焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴o朝成像模组1000的物侧方向移动;当变焦镜头100从短焦切换为长焦时,第一透镜组10与第三透镜组30在光轴o上的位置均相对固定,第二透镜组20和感光元件402沿光轴o朝成像模组1000的像侧方向移动。
本申请实施方式的成像模组1000通过移动第二透镜组20和感光元件402使得成像模组1000的焦距可变,无需在电子设备2000(图11所示)中安装多个摄像头即可实现光学变焦,相较于设置多摄像 头的电子设备,占用电子设备的空间,成本也高而言,提高了成像质量的同时减少了摄像头的占用空间,且能节省成本。
在某些实施方式中,第一透镜组10可包括一个或多个透镜,第二透镜组20可包括一个或多个透镜,第三透镜组30可包括一个或多个透镜。例如,第一透镜组10包括两个透镜,分别为第一透镜101和第二透镜102;第二透镜组20包括三个透镜,分别为第三透镜201、第四透镜202和第五透镜203;第三透镜组30包括两个透镜,分别为第六透镜301和第七透镜302。每个透镜均具有相应的焦距,为保证成像模组1000的小型化,各个透镜可满足以下关系式:-4<f2/f1<0;2<f3/f1<5;0<f4/f1<4;-5<f5/f1<-1;0<f6/f1<4;-2<f7/f1<0或0<f7/f1<2。其中,f1为第一透镜101的焦距,f2为第二透镜102的焦距,f3为第三透镜201的焦距,f4为第四透镜202的焦距,f5为第五透镜203的焦距,f6为第六透镜301的焦距,f7为第七透镜302的焦距。当各个透镜满足上述关系式时,有利于成像模组1000实现小型化。第一透镜101、第二透镜102、第三透镜201、第四透镜202、第五透镜203、第六透镜301和第七透镜302可以全部是玻璃透镜或全部是塑料透镜,也可是部分为玻璃透镜,部分为塑料透镜。
在某些实施方式中,当变焦镜头100在短焦与长焦的切换过程中,第二透镜组20和感光元件402可同时沿光轴o朝成像模组1000的物侧方向或像侧方向移动。即,在变焦镜头100由长焦切换为短焦时,第二透镜组20和感光元件402可同时沿光轴o朝成像模组1000的物侧方向移动;在变焦镜头100由短焦切换为长焦时,第二透镜组20和感光元件402可同时朝成像模组1000的像侧方向移动。
在某些实施方式中,当变焦镜头100在短焦与长焦的切换过程中,第二透镜组20和感光元件402可同步沿光轴o朝成像模组1000的物侧方向或像侧方向移动。即,在变焦镜头100由长焦切换为短焦时,第二透镜组20和感光元件402同步朝成像模组1000的物侧方向移动;在变焦镜头100由短焦切换为长焦时,第二透镜组20和感光元件402同步朝成像模组1000的像侧方向移动。需要说明的是,同步可理解为:第二透镜组20和感光元件402在移动过程中二者之间的相对间距不变,即,第二透镜组20的移动方向和移动量与感光元件402的移动方向和移动量均相同。在其他实施方式中,在移动过程中,第二透镜组20的移动方向与感光元件402的移动方向相同,而第二透镜组20的移动量与感光元件402的移动量可不同。
在某些实施方式中,当变焦镜头100在短焦与长焦的切换过程中,第二透镜组20和感光元件402可先后沿光轴朝成像模组1000的物侧方向或像侧方向移动。即,在变焦镜头100由长焦切换为短焦时,可第二透镜组20先朝成像模组1000的物侧方向移动,然后感光元件402也朝成像模组1000的物侧方向移动;或者感光元件402先朝成像模组1000的物侧方向移动,然后第二透镜组20也朝成像模组1000的物侧方向移动。在变焦镜头100由短焦切换为长焦时,可第二透镜组20先朝成像模组1000的像侧方向移动,然后感光元件402也朝成像模组1000的像侧方向移动;或者感光元件402先朝成像模组1000的像侧方向移动,然后第二透镜组20也朝成像模组1000的像侧方向移动。
需要说明的是,感光元件402可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)感光元件402,或者电荷耦合元件(Charge-coupled Device,CCD)感光元件402。感光元件402能将变焦镜头100的光信号转换为电信号,以获取对应的图像。
本申请实施方式的成像模组1000,在变焦镜头100完成短焦与长焦的切换之后,感光元件402沿光轴o移动以实现自动对焦。在自动对焦过程中,感光元件402根据得到的图像的清晰度确定在光轴o上的移动方向和在光轴o上的移动量。需要说明是,清晰度可通过对感光元件402上的图像进行处理后得到一个对比度值。即图像清晰与否可通过对比度值的大小来体现,具体地,对比度值越大,图像 的清晰度越高。
具体地,自动对焦的过程中,采用对比度检测算法实现自动对焦过程,感光元件402可沿着光轴o以固定步距移动。例如,如图3a和图3b所示,图3b中的直方图的纵坐标表示在该位置的对比度值的大小,感光元件402每到达一个位置获取一个图像,该图像就会产生一个对应的对比度值。在变焦镜头100完成短焦与长焦之间的切换后,变焦镜头100开始自动对焦,第一透镜组10、第二透镜组20及第三透镜组30在光轴o上均保持相对固定,感光元件402的初始位置为第一位置P1,对应地,感光元件402获取的第一图像具有第一对比度值,且该第一对比度值对应该第一图像的第一清晰度,若感光元件402向变焦镜头100的物侧方向移动一步距,到达第二位置P2,感光元件402获取的第二图像具有第二对比度值,且该第二对比度值对应该第二图像的第二清晰度,通过比较第一对比度值与第二对比度值之间的大小获取第一清晰度和第二清晰度之间的大小关系。若第一对比度值小于第二对比度值,则第一清晰度小于第二清晰度,即,感光元件402在第二位置P2时获取的第二图像的清晰度高于在第一位置P1时获取的第一图像的清晰度,则感光元件402继续向变焦镜头100的物侧方向移动并到达第三位置P3,感光元件402获取的第三图像具有第三对比度值,且该第三对比度值对应第三图像的第三清晰度,通过比较第二对比度值与第三对比度值之间的大小获取第三清晰度和第二清晰度之间的大小关系,若第二对比度值小于第三对比度值,则第二清晰度小于第三清晰度,即,感光元件402在第三位置P3时获取的第三图像的清晰度高于在第二位置P2时获取的第二图像的清晰度,则继续向变焦镜头100的物侧方向移动一步距并到达第四位置P4,感光元件402获取的第四图像具有第四对比度值,且该第四对比度值对应第四图像的第四清晰度,通过比较第三对比度值与第四对比度值之间的大小获取第四清晰度和第三清晰度之间的大小关系,若第三对比度值小于第四对比度值,则第四清晰度大于第三清晰度,即,感光元件402在第四位置P4时获取的第四图像的清晰度高于在第三位置P3时获取的第三图像的清晰度,则继续向变焦镜头100的物侧方向移动一步距并达到第五位置P5,感光元件402获取的第五图像具有第五对比度值,且该第五对比度值对应第五图像的第五清晰度,通过比较第五对比度值与第四对比度值之间的大小获取第五清晰度和第四清晰之间的大小关系,由直方图可看出第五对比度值小于第四对比度值,则第五清晰度小于第四清晰度,即,感光元件402在第五位置P5时获取的第五图像的清晰度低于在第四位置P4时获取的第四图像的清晰度,则感光元件402返回第四位置P4,并完成对焦。当然,感光元件402也可以先向变焦镜头100的像侧方向移动,对焦方式类似,在此不一一赘述。通过逐步调节感光元件402的位置并对应检测感光元件402采集的图像的对比度,直至感光元件402采集的图像为最大对比度时,完成对焦。在成像过程中,相较于移动第一透镜组10、第二透镜组20、或第三透镜组30中的至少一个来实现对焦而言,感光元件402对偏心的敏感度较第一透镜组10、第二透镜组20、或第三透镜组30更小,使得变焦镜头100的对焦精度更高。
在某些实施方式中,变焦镜头100还可包括棱镜组件50,棱镜组件50包括棱镜501,沿变焦镜头100的物侧到像侧方向上,棱镜501、第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列。棱镜501用于改变变焦镜头100的入射光的入射方向,以实现变焦镜头100的潜望式结构,使得成像模组1000能够横向安装在电子设备2000(图11所示)上,尽量占用电子设备2000宽度方向的尺寸,而减少占用电子设备2000厚度方向的尺寸,满足用户对电子设备2000的轻薄需求。
在某些实施方式中,变焦镜头100还可包括滤光片401,滤光片401设于感光元件402与第三透镜组30之间,当变焦镜头100在短焦与长焦的切换过程中及自动对焦的过程中,滤光片401跟随感光元件402一起移动。滤光片401可采用IR通过滤光片或IR截止滤光片等,可根据实际用途使用不同类型的滤光片。例如,当成像模组1000采用IR通过滤光片,则仅允许红外光线穿过滤光片401达到感 光元件402上,成像模组1000获取的是红外图像,红外图像可以用来进行虹膜识别,或者作为结构光测距用的结构光图像来获取深度信息,或者与可见光图像一起进行3D建模,或双目测距等。当成像模组1000采用IR截止滤光片,则不允许红外光线穿过滤光片401,而允许可见光穿过滤光片401达到感光元件402上,成像模组1000获取的是可见光图像,可以作为一般的拍摄需求使用。
在某些实施方式中,变焦镜头100还可包括光阑103,光阑103可设于第一透镜组10上。具体地,光阑103可设于第一透镜101朝向棱镜501的一侧。在变焦镜头100在短焦与长焦的切换过程中及自动对焦的过程中,光阑103可与第一透镜组10一起在光轴o上保持固定。在变焦镜头100的物侧到像侧方向上,棱镜501、第一透镜组10(与光阑103一起)、第二透镜组20、第三透镜组30、滤光片401和感光元件402依次排列。
请一并参阅图1及图4至图6,本申请实施方式的成像模组1000还可包括壳体60、棱镜筒51、固定筒11、可动筒21、安装筒31、以及可动框41。棱镜筒51、固定筒11、可动筒21、安装筒31、以及可动框41均收容在壳体60内。棱镜组件50安装在棱镜筒51内。第一透镜组10与光阑103一起安装在固定筒11上。第二透镜组20安装在可动筒21内。第三透镜组30安装在安装筒31内。滤光片401和感光元件402安装在可动框41内。
当变焦镜头100在短焦与长焦之间的切换过程中,棱镜筒51、固定筒11、及安装筒31在变焦镜头100的光轴o上的位置均保持固定不变,使得棱镜组件50、第一透镜组10、及第三透镜组30在变焦镜头100的光轴o上的位置也均保持固定不变。当变焦镜头100变焦完成后(即,完成短焦与长焦的切换之后),且变焦镜头100进行自动对焦的过程中,棱镜筒51、固定筒11、及安装筒31在变焦镜头100的光轴o上的位置仍均保持固定不变,使得棱镜组件50、第一透镜组10、及第三透镜组30在变焦镜头100的光轴o上的位置也仍均保持固定不变。
当变焦镜头100在短焦与长焦之间的切换过程中,可动筒21及可动框41均能沿着变焦镜头100的光轴o移动,从而带动第二透镜组20、滤光片401和感光元件402也能沿着变焦镜头100的光轴o移动。具体地,当变焦镜头100从长焦切换为短焦时,可动筒21沿着变焦镜头100的光轴o朝成像模组1000的物侧移动,从而带动第二透镜组20朝成像模组1000的物侧移动。当变焦镜头100从长焦切换为短焦时,可动框41沿着变焦镜头100的光轴o朝成像模组1000的物侧移动,从而带动滤光片401和感光元件402一起朝成像模组1000的物侧移动。当变焦镜头100从短焦切换为长焦时,可动筒21沿着变焦镜头100的光轴o朝成像模组1000的像侧移动,从而带动第二透镜组20朝成像模组1000的像侧移动。当变焦镜头100从短焦切换为长焦时,可动框41沿着变焦镜头100的光轴o朝成像模组1000的像侧移动,从而带动滤光片401和感光元件402一起朝成像模组1000的像侧移动。
当变焦镜头100变焦完成后(即,完成短焦与长焦的切换之后),且变焦镜头100在进行自动对焦的过程中,可动筒21在变焦镜头100的光轴o上的位置保持固定不变,使得第二透镜组20在变焦镜头100的光轴o上的位置也保持固定不变。而可动框41沿着变焦镜头100的光轴o移动,从而带动滤光片401和感光元件402一起沿着变焦镜头100的光轴o移动,移动方向与移动量采用前述的对比度检测算法来确定,在此不再赘述。
壳体60包括基板611、侧板612和盖板613。基板611、侧板612和盖板613围成收容空间614。棱镜筒51、固定筒11、可动筒21、安装筒31和可动框41均设置在收容空间614内。
本申请实施方式的成像模组1000将变焦镜头1000安装在壳体60内,在保证变焦镜头100可实现变焦和/或对焦的同时,壳体60也能对变焦镜头起到保护作用。
为方便后续描述,变焦镜头100的光轴为o,平行于光轴o的方向被定义为x方向,垂直x方向的 两个方向分别定义为y方向和z方向,即x方向、y方向和z方向两两互相垂直。
基板611包括承载面6111。承载面6111用于承载侧板612、变焦镜头100、滤光片401和感光元件402。基板611可以是长方体结构、正方体结构、圆柱体结构、或其他形状的结构等,在此不作限制,本申请实施方式中,基板611为长方体结构。
承载面6111上开设有可动筒滑轨212和可动框滑轨412。可动筒滑轨212和可动框滑轨412的延伸方向均与变焦镜头100的光轴o方向平行,也即是与x方向平行。可动筒滑轨212和可动框滑轨412均可设有一个或多个,例如,可动筒滑轨212的数量为一个、两个、三个、四个、甚至更多个,可动框滑轨412的数量为一个、两个、三个、四个、甚至更多个。本实施方式中,可动筒滑轨212的数量为两个,可动框滑轨412的数量为两个。两个可动筒滑轨212的长度相同,两个可动框滑轨412的长度相同。两个可动筒滑轨212和两个可动框滑轨412的长度可相同,也可不相同。可动筒滑轨212和可动框滑轨412之间的距离可大于或等于安装筒31的在x方向上的长度。
侧板612自基板611的边缘环绕设置。侧板612垂直于基板611的承载面6111。侧板612可以通过胶合、螺合、卡和等方式设置在基板611上。侧板612还可以与基板611一体成型。
侧板612包括内侧面6121、外侧面6122、上表面6123和下表面6124。内侧面6121与外侧面6122相背,内侧面6121位于收容空间614内,外侧面6122位于收容空间614外,内侧面6121与上表面6123和下表面6124均连接,外侧面6122也与上表面6123和下表面6124均连接。上表面6123与下表面6124相背。下表面6124与基板611的承载面6111结合,上表面6123与基板611的承载面6111相背。
侧板612还包括平行于x方向的第一侧板6125和第二侧板6126。第一侧板6125和第二侧板6126相对。第一侧板6125的内侧面6121和/或第二侧板6126的内侧面6121上开设有滑槽6127和安装槽6128。例如,第一侧板6125的内侧面6121开设有滑槽6127和安装槽6128,或者,第二侧板6126的内侧面6121开设有滑槽6127和安装槽6128,或者,第一侧板6125的内侧面6121和第二侧板6126的内侧面6121上均开设有滑槽6127和安装槽6128。本实施方式中,第一侧板6125的内侧面6121和第二侧板6126的内侧面6121上均开设有滑槽6127和安装槽6128,滑槽6127的延伸方向与承载面6111平行。
滑槽6127与收容空间614连通,滑槽6127的延伸方向还与x方向平行,滑槽6127的槽深小于侧板612的厚度,也即是说,滑槽6127未贯穿侧板612的外侧面6122。在其他实施方式中,滑槽6127可贯穿侧板612的外侧面6122,以使得收容空间614与外界连通。第一侧板6125的内侧面6121和第二侧板6126的内侧面6121开设的滑槽6127的数量均可以是一个或多个。例如,第一侧板6125的内侧面6121开设有一个滑槽6127,第二侧板6126的内侧面6121开设有一个滑槽6127;再例如,第一侧板6125的内侧面6121开设有两个滑槽6127,第二侧板6126的内侧面6121开设有两个滑槽6127;又例如,第一侧板6125的内侧面6121开设有一个滑槽6127,第二侧板6126的内侧面6121开设有两个滑槽6127等等,在此不再一一列举。本实施方式中,第一侧板6125的内侧面6121和第二侧板6126的内侧面6121均开设有两个滑槽6127及四个安装槽6128。滑槽6127被垂直于x方向的面截得的形状为矩形、半圆形、或其他形状,例如其他规则形状或非规则的异形形状。
第一侧板6125的内侧面6121或第二侧板6126的内侧面6121上的两个滑槽6127分别为可动筒滑槽6127a和可动框滑槽6127b,第一侧板6125的内侧面6121或第二侧板6126的内侧面6121上的四个安装槽6128可包括两个可动筒安装槽6128a和两个可动框安装槽6128b。可动筒滑槽6127a和可动框滑槽6127b的延伸方向与x方向相同。可动筒安装槽6128a和可动框安装槽6128b与收容空间614连通,可动筒安装槽6128a的一端贯穿侧板612的上表面6123,可动筒安装槽6128a的另一端连接可动 筒滑槽6127a,可动筒安装槽6128a的延伸方向可与可动筒滑槽6127a的延伸方向垂直或倾斜;可动框安装槽6128b的一端贯穿侧板612的上表面6123,可动框安装槽6128b的另一端连接可动框滑槽6127b,可动框安装槽6128b的延伸方向可与可动框滑槽6127b的延伸方向垂直或倾斜。以可动筒安装槽6128a为例,可动筒安装槽6128a的延伸方向与变焦镜头100的光轴方向垂直,或者可动筒安装槽6128a的延伸方向与变焦镜头100的光轴方向呈一定的倾斜角度(不为0度,可为30度、60度、75度等等)。本申请实施方式中,可动筒安装槽6128a的延伸方向与x方向垂直,可动框安装槽6128b的延伸方向也与x方向垂直。
盖板613设置在侧板612上,具体地,盖板613可通过卡合、螺合、胶合等方式安装在侧板612的上表面6123。盖板613包括盖板本体6131和抵持部6132。盖板本体6131与侧板612相背的表面开设有入光口6133,入光口6133的深度方向可以与x方向垂直,以使成像模组1000整体呈潜望式的结构。
抵持部6132设置在盖板本体6131的两侧,具体地,抵持部6132位于盖板本体6131的与第一侧板6125和第二侧板6126分别对应的两侧。当盖板613安装在侧板612上时,抵持部6132位于安装槽6128内,且抵持部6132沿z方向的长度等于安装槽6128沿z方向的深度。抵持部6132位于安装槽6128内可以是:抵持部6132位于安装槽6128内并占据安装槽6128的部分空间;抵持部6132位于安装槽6128内还可以是:抵持部6132位于安装槽6128内并完全填充安装槽6128,此时,抵持部6132与安装槽6128的结合更为牢固,以使得盖板613和侧板612的连接更为牢固。在其他实施方式中,入光口6133并不局限于为开口结构,还可为透光实体结构,光线可从该透光实体结构入射进收容空间614内并进入棱镜组件50。
可动筒21包括第一本体211和设置在第一本体211两侧的第一滑块213。第一本体211开设有与第二透镜组20对应的第一进光口2111和第一出光口2113,第一本体211形成有第一容置空间214以收容第二透镜组20,第一容置空间214通过第一进光口2111和第一出光口2113与收容空间614连通。
第一本体211包括相背的第一顶面215和第一底面216。第一顶面215与盖板613相对。第一底面216与基板611的承载面6111相对。可动筒21还可包括第一滚珠217,第一滚珠217设置在第一底面216上。具体地,第一底面216开设有第一凹槽218,第一滚珠217设于第一凹槽218内,位于第一底面216的第一凹槽218内的第一滚珠217与可动筒滑轨212的底部抵触。
具体地,第一凹槽218与第一滚珠217的形状相匹配,例如,第一滚珠217为球形,运动阻力较小,第一凹槽218为半圆形凹槽,第一滚珠217的直径和第一凹槽218的直径相等,也即是说,第一滚珠217的一半位于第一凹槽218内,第一滚珠217和第一凹槽218的结合较为紧密,在第一滚珠217运动时,可带动第一本体211移动。可动筒滑轨212可以是承载面6111上形成的延伸方向与x方向平行的凹槽,可动筒滑轨212也可以是设置在承载面6111上延伸方向与x方向平行的凸块,凸块的与第一本体211的第一底面216相对的表面形成有与第一滚珠217配合的凹槽。在本实施方式中,可动筒滑轨212为承载面6111上形成的延伸方向与x方向平行的凹槽。在可动筒21安装在收容空间614后,第一滚珠217的一部分位于可动筒滑轨212内,并与可动筒滑轨212的底部抵触。当然,第一顶面215上也可设置第一滚珠217,相应的第一顶面215上也开设有第一凹槽218,此时,盖板613的内表面也可形成第一轨道,位于第一顶面215的第一凹槽218内的第一滚珠217与第一轨道的底部抵触,其中,第一轨道的结构与可动筒滑轨212的结构类似,在此不再赘述。在第一顶面215上开设第一凹槽218,并对应设置第一滚珠217,使得第一本体211在移动过程中与第一顶面215之间的移动阻力更小。
在第一底面216或第一顶面215上,第一凹槽218的数量可为一个或多个。例如,第一凹槽218 的数量为一个、两个、三个、四个、甚至更多个等,本实施方式中,第一凹槽218的数量为三个。在第一底面216或第一顶面215上,第一滚珠217的数量可以是一个或多个。本实施方式中,第一滚珠217的数量与第一凹槽218的数量相同,也为三个。三个第一凹槽218间隔设置在第一底面216上或第一顶面215上。
下面仅以第一底面216上的第一凹槽218、第一滚珠217、及可动筒滑轨212为例进行说明,第一顶面215上的第一凹槽218、第一滚珠217、及第一轨道之间的关系以此参考,不做详细说明。具体地,在第一底面216上,可动筒滑轨212的数量可根据三个第一凹槽218的位置确定,例如,三个第一凹槽218的连线平行于变焦镜头100的光轴,则只需要设置一个可动筒滑轨212即可;再例如,三个第一凹槽218分两组(下称第一组和第二组),第一组包括一个第一凹槽218,第二组包括两个第一凹槽218,且第一组的第一凹槽218不在第二组的两个第一凹槽218的连线上(即,三个第一凹槽218可围成三角形),则需要两个可动筒滑轨212与第一组和第二组分别对应。本实施方式中,三个第一凹槽218分为第一组和第二组,第一组包括一个第一凹槽218,第二组包括两个第一凹槽218,第一组的第一凹槽218和第一可动筒滑轨2121对应,第二组的第一凹槽218和第二可动筒滑轨2122对应。如此,第一组的第一凹槽218对应的第一滚珠217在第一可动筒滑轨2121内运动(包括滑动、滚动、或边滚边滑),第二组的第一凹槽218对应的第一滚珠217在第二可动筒滑轨2122内运动,第一组对应的第一滚珠217和第二组对应的第一滚珠217分别被限制在第一可动筒滑轨2121和第二可动筒滑轨2122内,三个第一滚珠217围成三角形(位于第一可动筒滑轨2121内的第一滚珠217的中心为三角形的顶点),在保证运动稳定性的前提下,尽量减少第一滚珠217的数量,可减小运动阻力。而且,由于在y方向上,第一组对应的第一滚珠217的外壁的相背两侧被第一可动筒滑轨2121的内壁的相背两侧抵触,第二组对应的第一滚珠217的外壁的相背两侧被第二可动筒滑轨2122的内壁的相背两侧抵触,三个第一滚珠217围成三角形,可防止第一本体211在y方向上发生晃动或倾斜,从而保证成像模组1000的成像质量不受影响。
第一滑块213位于第一本体211的与第一侧板6125和/或第二侧板6126的内侧面6121相对的表面。例如,第一滑块213位于第一本体211的与第一侧板6125的内侧面6121相对的表面;或,第一滑块213位于第一本体211的与第二侧板6126的内侧面6121相对的表面;或,第一滑块213位于第一本体211的与第一侧板6125的内侧面6121相对的表面,且位于第一本体211的与第二侧板6126的内侧面6121相对的表面。本实施方式中,第一滑块213位于第一本体211的与第一侧板6125的内侧面6121相对的表面,且位于第一本体211的与第二侧板6126的内侧面6121相对的表面。第一滑块213穿设可动筒安装槽6128a后滑入可动筒滑槽6127a内,以使得第一滑块213可滑动地设置在可动筒滑槽6127a内。
第一滑块213的数量与对应的可动筒安装槽6128a的数量相匹配。具体地,位于第一本体211的与第一侧板6125的内侧面6121相对的表面的第一滑块213的数量与第一侧板6125的内侧面6121开设的可动筒安装槽6128a的数量相同,均为两个,两个第一滑块213与两个可动筒安装槽6128a一一对应;位于第一本体211的与第二侧板6126的内侧面6121相对的表面的第一滑块213的数量与第二侧板6126的内侧面6121开设的可动筒安装槽6128a的数量相同,均为两个,两个第一滑块213与两个可动筒安装槽6128a一一对应。在其他实施方式中,第一滑块213的数量也可少于可动筒安装槽6128a的数量,例如位于第一本体211的与第一侧板6125的内侧面6121相对的表面的第一滑块213的数量少于第一侧板6125的内侧面6121开设的可动筒安装槽6128a的数量,位于第一本体211的与第二侧板6126的内侧面6121相对的表面的第一滑块213的数量少于第二侧板6126的内侧面6121开设的可 动筒安装槽6128a的数量。而且,第一滑块213沿x方向的长度小于或等于可动筒安装槽6128a沿x方向的长度,从而方便第一滑块213穿设可动筒安装槽6128a后滑入可动筒滑槽6127a内。
第二透镜组20设置在第一容置空间214内。具体地,第二透镜组20可通过胶合、螺合、卡合等方式安装在第一容置空间214内。
可动框41包括第二本体411和设置在第二本体411两侧的第二滑块413。第二本体411开设有与滤光片401及感光元件402对应的通光孔4111,第二本体411形成有第二容置空间414以收容滤光片401及感光元件402,第二容置空间414通过通光孔4111与收容空间614连通。
第二本体411包括相背的第二顶面415和第二底面416,第二顶面415与盖板613相对。第二底面416与基板611的承载面6111相对。可动框41还可包括第二滚珠417,第二滚珠417设置在第二底面416上。具体地,第二底面416开设有第二凹槽418第二容置空间414,第二滚珠417可设置在第二凹槽418内,位于第二底面416的第二凹槽418内的第二滚珠417与可动框滑轨412的底部抵触。
具体地,第二凹槽418与第二滚珠417的形状相匹配,例如,第二滚珠417为球形,运动阻力较小,第二凹槽418为半圆形凹槽,第二滚珠417的直径与第二凹槽418的直径相等,也即是说,第二滚珠417的一半位于第二凹槽418内。第二滚珠417和第二凹槽418的结合较为紧密,在第二滚珠417移动时,可带动第二本体411移动。可动框滑轨412可以是承载面6111上形成的延伸方向与x方向平行的凹槽,可动框滑轨412也可以是设置在承载面6111上延伸方向与x方向平行的凸块,凸块的与第二本体411的第二底面416相对的表面形成有与第二滚珠417配合的凹槽。在本实施方式中,可动框滑轨412为承载面6111上形成的延伸方向与x方向平行的凹槽。在可动框41安装在收容空间614后,第二滚珠417的一部分位于可动框滑轨412内,并与可动框滑轨412的底部抵触。当然,第二顶面415上也可设置第二滚珠417,相应的,第二顶面415上也开设有第二凹槽418,此时,盖板613的内表面也可形成第二轨道,位于第二顶面415的第二凹槽418内的第二滚珠417与盖板613的内表面上的第二轨道的底部抵触,其中,第二轨道的结构与可动框滑轨412的结构类似,在此不再赘述。
在第二底面416或第二顶面415上,第二凹槽418的数量为一个或多个。例如,第二凹槽418的数量为一个、两个、三个、四个、甚至更多个等,在本实施方式中,第二凹槽418的数量为三个。在第二底面416或第二顶面415上,第二滚珠417的数量也可以是一个或多个。在本实施方式中,第二滚珠417的数量与第二凹槽418的数量相同,也为三个。三个第二凹槽418间隔设置在第二底面416或第二顶面415上。
下面仅以第二底面416上的第二凹槽418、第二滚珠417、及可动框滑轨412为例进行说明,第二顶面415上的第二凹槽418、第二滚珠417、及第二轨道之间的关系以此参考,不做详细说明。具体的,在第二底面416上,三个第二凹槽418分为第三组和第四组,第三组包括一个第二凹槽418,第四组包括两个第二凹槽418,第三组的第二凹槽418和第一可动框滑轨4121对应,第四组的第二凹槽418和第二可动框滑轨4122对应。如此,第三组的第二凹槽418对应的第二滚珠417在第一可动框滑轨4121内运动(包括滑动、滚动、或边滚边滑),第四组的第二凹槽418对应的第二滚珠417在第二可动框滑轨4122内运动,第三组对应的第二滚珠417和第四组对应的第二滚珠417分别被限制在第一可动框滑轨4121和第二可动框滑轨4122内,三个第二滚珠417围成三角形,在保证运动稳定性的前提下,尽量减少第二滚珠417的数量,可减小运动阻力。而且,由于在y方向上,第三组对应的第二滚珠417的外壁的相背两侧被第一可动框滑轨4121的内壁的相背两侧抵触,第四组对应的第二滚珠417的外壁的相背两侧被第二可动框滑轨4122的内壁的相背两侧抵触,三个第二滚珠417围成三角形,可防止第二本体411在y方向上发生晃动或倾斜,从而保证成像模组1000的成像质量不受影响。
第二滑块413位于第二本体411的与第一侧板6125和/或第二侧板6126的内侧面6121相对的表面。例如,第二滑块413位于第二本体411的与第一侧板6125的内侧面6121相对的表面;或,第二滑块413位于第二本体411的与第二侧板6126的内侧面6121相对的表面;或,第二滑块413位于第二本体411的与第一侧板6125的内侧面6121相对的表面,且位于第二本体411的与第二侧板6126的内侧面6121相对的表面。本实施方式中,第二滑块413位于第二本体411的与第一侧板6125的内侧面6121相对的表面,且位于第二本体411的与第二侧板6126的内侧面6121相对的表面。第二滑块413穿设可动框安装槽6128b后滑入可动框滑槽6127b内,以使得第二滑块413可滑动地设置在可动框滑槽6127b内。
第二滑块413的数量和对应的可动框安装槽6128b的数量相匹配。第二滑块413的数量和对应的可动框安装槽6128b的数量相匹配指的是:位于第二本体411的与第一侧板6125的内侧面6121相对的表面的第二滑块413的数量与第一侧板6125的内侧面6121开设的可动框安装槽6128b的数量相同,均为两个,两个第二滑块413与两个可动框安装槽6128b一一对应;位于第二本体411的与第二侧板6126的内侧面6121相对的表面的第二滑块413的数量与第二侧板6126的内侧面6121开设的可动框安装槽6128b的数量相同,均为两个,两个第二滑块413与两个可动框安装槽6128b一一对应。当然,在其他实施方式中,第二滑块413的数量可少于可动框安装槽6128b的数量,例如位于第二本体411的与第一侧板6125的内侧面6121相对的表面的第二滑块413的数量少于第一侧板6125的内侧面6121开设的可动框安装槽6128b的数量,位于第二本体411的与第二侧板6126的内侧面6121相对的表面的第二滑块413的数量少于第二侧板6126的内侧面6121开设的可动框安装槽6128b的数量。而且,第二滑块413沿x方向的长度小于或等于可动框安装槽6128b沿x方向的长度,从而方便第二滑块413穿设可动框安装槽6128b后滑入可动框滑槽6127b内。
感光元件402和滤光片401设置在第二容置空间414内。具体地,感光元件402和滤光片401通过胶合、螺合、卡合等方式安装在第二容置空间414内,且滤光片401相较感光元件402更靠近通光孔4111。
棱镜筒51可通过胶合、螺合、卡合等方式安装在承载面6111上,棱镜筒51还可与基板611一体成型。棱镜筒51包括进光通孔512、出光通孔511和第三容置空间513。进光通孔512和出光通孔511将第三容置空间513与收容空间614连通。棱镜组件50包括棱镜501,棱镜501设置在第三容置空间513内。具体地,棱镜501可通过胶合、卡合等方式安装在棱镜筒51内。棱镜501包括入射面5011、反射面5012和出射面5013,反射面5012倾斜连接入射面5011和出射面5013,反射面5012与承载面6111的夹角可以是15度、30度、45度、60度、75度等等,本实施方式中,反射面5012与承载面6111的夹角为45度。入射面5011与进光通孔512相对,出射面5013与出光通孔511相对。棱镜501用于改变从进光通孔512进入的光线的出射方向。棱镜501可以是三棱镜,具体地,棱镜501的截面为直角三角形,直角三角形的两条直角边分别由入射面5011和出射面5013形成,直角三角形的斜边由反射面5012形成。
在某些实施方式中,固定筒11可通过胶合、螺合、卡合等方式安装在承载面6111上,固定筒11还可与基板611一体成型。固定筒11包括进光孔111、出光孔112和第四容置腔113。进光孔111与出光通孔511相对,出光孔112与可动筒21的第一进光口2111相对。进光孔111和出光孔112将第四容置腔113与收容空间614连通。第一透镜组10位于第四容置腔113内,具体地,第一透镜组10可通过胶合、螺合、卡合等方式安装在固定筒11内。第一透镜组10和棱镜501的出射面5013相对。
在某些实施方式中,安装筒31可通过胶合、螺合、卡合等方式安装在承载面6111上,安装筒31 还可与基板611一体成型。安装筒31包括第二进光口311、第二出光口312和第五容置腔313。第二进光口311与第一出光口2113相对,第二出光口312与感光元件402相对。第二进光口311和第二出光口312将第五容置腔313与收容空间614连通。第三透镜组30位于第五容置腔614内,具体地,第三透镜组30通过胶合、螺合、卡合等方式安装在安装筒31内。第三透镜组30分别与第二透镜组20和感光元件402相对。
本申请实施方式的成像模组1000还包括驱动件70,驱动件70设置在壳体60内,驱动件70包括第一驱动件71和第二驱动件72,第一驱动件71与可动筒21的第一本体211连接,第二驱动件72与可动框41的第二本体411连接。第一驱动件71用于驱动第一本体211移动,以带动设于第一本体211内的第二透镜组20移动;第二驱动件72用于驱动第二本体411移动,以带动设于第二本体411内的感光元件402及滤光片401移动。
第一驱动件71包括第一线圈711和第一磁铁712。
第一线圈711为一个或多个,例如,第一线圈711的数量为一个、两个、三个、四个、甚至更多个等,本实施方式中,第一线圈711的数量为一个。第一线圈711设置在第一侧板6125或第二侧板6126上,本实施方式中,第一线圈711设置在第一侧板6125上,第一线圈711可通过胶合、螺合、卡合等方式安装在第一侧板6125上。在其他实施方式中,第一线圈711为两个,两个第一线圈711分别相对设置在第一侧板6125和第二侧板6126上。第一线圈711可以设置在第一侧板6125的任意位置,例如,第一线圈711可以设置在第一侧板6125的内侧面6121,并位于第二透镜组20和第三透镜组30之间;或者,第一线圈711可以设置在第一侧板6125的内侧面6121,并位于第一透镜组10和第二透镜组20之间等等,在此不再赘述。本实施方式中,第一线圈711设置在第一侧板6125的内侧面6121,并位于第二透镜组20和第三透镜组30之间。在其他实施方式中,第一线圈711可以设置在固定筒11上并与第一磁铁712相对。
第一磁铁712与第一本体211连接,第一磁铁712可设置在第一本体211的任意位置上,例如,第一磁铁712设置在第一本体211的与安装筒31相对的表面,或者,第一磁铁712设置在第一本体211的与固定筒11相对的表面等。本实施方式中,第一磁铁712设置在第一本体211的与安装筒31相对的表面。第一磁铁712可通过螺合、胶合、卡合等方式安装在第一本体211上。第一磁铁712可以是具有磁性的金属,例如,第一磁铁712可以是铁、钴和镍中任意一种,或者,第一磁铁712可以是由铁、钴和镍中至少两种组成的合金。
在其他实施方式中,第一磁铁712设置在第一侧板6125或第二侧板6126上,第一线圈711设置在第一本体211上。第一线圈711还可设置在固定筒11上的任意位置,例如,第一线圈711设置在固定筒11的与第一本体211相对的表面,此时,第一磁铁712可设置在第一本体211上的任意位置,例如,第一磁铁712设置在第一本体211的与固定筒11相对的表面。第一线圈711和第一磁铁712的安装位置可以互换,例如,第一磁铁712设置在固定筒11的与第一本体211相对的表面;第一线圈711设置在第一本体211的与固定筒11相对的表面。
第二驱动件72包括第二线圈721和第二磁铁722。
第二线圈721为一个或多个,例如,第二线圈721的数量为一个、两个、三个、四个、甚至更多个等,本实施方式中,第二线圈721的数量为一个。第二线圈721设置在第一侧板6125或第二侧板6126上,本实施方式中,第二线圈721设置在第一侧板6125上,第二线圈721可通过胶合、螺合、卡合等方式安装在第一侧板6125上。在其他实施方式中,第二线圈721为两个,两个第二线圈721分别相对设置在第一侧板6125和第二侧板6126上。第二线圈721可以设置在第一侧板6125的任意位置,本实 施方式中,第二线圈721设置在第一侧板6125的内侧面6121,并位于可动框41与壳体60的尾端之间。在其他实施方式中,第二线圈721可以设置安装筒31上并与第二磁铁722相对。
第二磁铁722与第二本体411连接,第二磁铁722可设置在第二本体411的任意位置上,例如,第二磁铁722设置在第二本体411与安装筒31相对的表面,或者,第二磁铁722设置在第二本体411与安装筒31相背的表面等。本实施方式中,第二磁铁722设置在第二本体411与安装筒31相背的表面。第二磁铁722可通过螺合、胶合、卡合等方式安装在第二本体411上。第二磁铁722可以是具有磁性的金属,例如,第二磁铁722可以是铁、钴和镍中任意一种,或者,第二磁铁722可以是由铁、钴和镍中至少两种组成的合金。
在其他实施方式中,第二磁铁722设置在第一侧板6125或第二侧板6126上,第二线圈721设置在第二本体411上。第二线圈721还可设置在安装筒31的任意位置,例如,第二线圈721设置在安装筒31与第二本体411相对的表面,此时,第二磁铁722可设置在第二本体411上的任意位置,例如,第二磁铁722设置在第二本体411与安装筒31相对的表面。第二磁铁722和第二线圈721的安装位置可以互换,例如,第二磁铁722设置在安装筒31的与第二本体411相对的表面,而第二线圈721设置在第二本体411的与固定筒11相对的表面。
在第一线圈711通电时,第一线圈711和第一磁铁712之间产生洛伦兹力,由于第一线圈711是固定在第一侧板6125或第二侧板6126上,所以第一磁铁712被洛伦兹力推动以使得可动筒21的第一本体211沿着第一可动筒滑轨2121和第二可动筒滑轨2122移动。在第二线圈721通电时,第二线圈721和第二磁铁722之间产生洛伦兹力,第二磁铁722被洛伦兹力推动以使得可动框41的第二本体411沿第一可动框滑轨4121和第二可动框滑轨4122移动。变焦镜头100对第一线圈711通电以控制第二透镜组20在x方向上移动,通过对第二线圈721通电以控制感光元件402在x方向上移动。另外,第一线圈711和第二线圈721可同时通电,即第二透镜组20和感光元件402同时进行移动,以节省变焦镜头100的移动变焦时间。需要说明的是,第一线圈711和第二线圈721通入的电流方向相同,以使得第二透镜组20和感光元件402同时在光轴o上移动,且移动方向相同。第一线圈711和第二线圈721的电流大小可以相同也可以不同。当然,第一线圈711和第二线圈721可不同时通电,从而防止第一线圈711和第二线圈721通电后产生的磁场相互影响,可提高移动精度。
在变焦镜头100由短焦切换长焦的过程中,同时控制第一线圈711和第二线圈721通电,例如,控制第一线圈711和第二线圈721通入第一方向的电流,以使得第二透镜组20向变焦镜头100的像侧方向移动,及感光元件402和滤光片401向变焦镜头100的像侧方向移动,从而实现变焦镜头100由短焦切换为长焦。在变焦镜头100由长焦切换短焦时,同时控制第一线圈711和第二线圈721通电,例如,控制第一线圈711和第二线圈721通入与第一方向相反的电流,以使得第二透镜向变焦镜头100的物侧方向移动,及感光元件402和滤光片401向变焦镜头100的物侧方向移动,从而实现变焦镜头100由长焦切换为短焦。
在变焦镜头100的自动对焦过程中,控制第一线圈711停止通电,以使得第二透镜组20在光轴o的位置保持不变。通过获取感光元件402上的图像的清晰度确定感光元件402的移动方向和移动量,根据移动方向控制第二线圈721的通电的电流方向,从而实现感光元件402向变焦镜头100的物侧方向或像侧方向移动,直到感光元件402上的图像的清晰度最大时,控制第二线圈721停止通电,从而实现变焦镜头100的自动对焦。
本申请实施方式的第一透镜组10可包括一个或多个透镜,第二透镜组20可包括一个或多个透镜,第三透镜组30可包括一个或多个透镜。例如,第一透镜组10包括一个透镜,第二透镜组20包括一个 透镜,第三透镜组30包括一个透镜;或者第一透镜组10包括一个透镜,第二透镜组20包括两个透镜,第三透镜组30包括三个透镜。在本实施方式中,第一透镜组10包括两个透镜,分别为第一透镜101和第二透镜102;第二透镜组20包括三个透镜,分别为第三透镜201、第四透镜202和第五透镜203;第三透镜组30包括两个透镜,分别为第六透镜301和第七透镜302。
一个或多个透镜可以均为回转体的一部分,或者部分为回转体,部分为回转体的一部分。本实施方式中,每个透镜均为回转体的一部分。以第一透镜101为例,如图7所示,第一透镜101首先通过模具形成回转体透镜s1,回转体透镜s1被垂直于变焦镜头100的光轴o的面截得的形状为圆形,该圆形的直径为R,然后对回转体透镜s1的边缘进行切割,以形成第一透镜101。第一透镜101被垂直于光轴o的面截得的形状为矩形,矩形的两条边长分别为T1和T2,T1/R∈[0.5,1),T2/R∈[0.5,1)。例如,T1/R可以是0.5、0.6、0.7、0.75、0.8、0.95等等,T2/R可以是0.55、0.65、0.7、0.75、0.85、0.9等等。可以理解,T1/R和T2/R的具体比例根据电子设备2000(图11所示)的内部空间的大小、变焦镜头100的光学参数(如第一透镜101有效光学区域大小)等因素确定。或者,第一透镜101使用特制的模具直接制作,模具的模腔即为已经确定好T1/R和T2/R的具体比例的回转体的一部分,从而直接制成第一透镜101。如此,第一透镜101为回转体透镜s1的一部分,相较于完整的回转体透镜s1而言,体积较小,从而使得变焦镜头100的整体体积减小,有利于电子设备2000的小型化。当然,其他透镜(包括第二透镜102、第三透镜201、第四透镜202、第五透镜203、第六透镜301和第七透镜302中的至少一个)也可以采用同样的方式进行处理。需要注意的是,图7仅用于示意第一透镜101,并不用于表示第一透镜101的尺寸,更不应理解为每个透镜的尺寸都相同。
请参阅图1、图2和图8,本申请实施方式成像方法用于控制上述的任意一种成像模组1000,成像模组1000包括变焦镜头100和感光元件402,变焦镜头100包括第一透镜组10、第二透镜组20和第三透镜组30,在变焦镜头100的物侧到像侧方向上,第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列,第二透镜组20和感光元件402均能够在变焦镜头100的光轴方向上移动;成像方法包括:
01,获取变焦镜头100的切换方式;
02,当变焦镜头100从长焦切换为短焦时,控制第一透镜组10与第三透镜组30在光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的物侧移动;
03,当变焦镜头100从短焦切换为长焦时,控制第一透镜组10与第三透镜组30在光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的像侧移动。
请结合图9,在某些实施方式中,成像方法还包括:
021,当变焦镜头100完成从短焦切换为长焦之后,控制感光元件402沿变焦镜头100的光轴方向移动以实现自动对焦;
031,当变焦镜头100完成从长焦切换为短焦之后,控制感光元件402沿变焦镜头100的光轴方向移动以实现自动对焦。
请结合图10,在某些实施方式中,感光元件402获取图像,步骤021包括:
0211,当变焦镜头100完成从短焦切换为长焦之后,根据感光元件402上的图像的清晰度,确定感光元件402沿光轴的移动的方向及在光轴上的移动量,以实现自动对焦;
步骤031包括:
0311,当变焦镜头100完成从长焦切换为短焦之后,根据感光元件402上的图像的清晰度,确定感光元件402沿光轴的移动的方向及在光轴上的移动量,以实现自动对焦。
请参阅图1、图2和11,在本申请实施方式的电子设备2000包括上述任意实施方式中的成像模组1000和机壳200,成像模组1000包括变焦镜头100和感光元件402,变焦镜头100包括第一透镜组10、第二透镜组20和第三透镜组30。在变焦镜头100的物侧到像侧方向上,第一透镜组10、第二透镜组20、第三透镜组30和感光元件402依次排列。第二透镜组20和感光元件402均能够在变焦镜头100的光轴o方向上移动。当变焦镜头100从长焦切换为短焦时,控制第一透镜组10与第三透镜组30在光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的物侧移动;当变焦镜头100从短焦切换为长焦时,控制第一透镜组10与第三透镜组30在光轴上的位置均相对固定,且控制第二透镜组20和感光元件402沿光轴朝成像模组1000的像侧移动。成像模组1000设于机壳200上,机壳200能有效地对成像模组1000进行保护。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种成像方法,其特征在于,所述成像方法用于控制成像模组,所述成像模组包括变焦镜头和感光元件,所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组;所述成像方法包括:
    当所述变焦镜头从长焦切换为短焦时,控制所述第一透镜组与所述第三透镜组在所述变焦镜头的光轴上的位置均相对固定,且控制所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;
    当所述变焦镜头从短焦切换为长焦时,控制所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,且控制所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。
  2. 根据权利要求1所述的成像方法,其特征在于,还包括:
    当所述变焦镜头完成从短焦切换为长焦之后,控制所述感光元件沿所述光轴移动以实现自动对焦;
    当所述变焦镜头完成从长焦切换为短焦之后,控制所述感光元件沿所述光轴移动以实现自动对焦。
  3. 根据权利要求2所述的成像方法,其特征在于,所述当所述变焦镜头完成从短焦切换为长焦之后,控制所述感光元件沿所述光轴移动以实现自动对焦,包括:
    当所述变焦镜头完成从短焦切换为长焦之后,根据所述感光元件上的图像的清晰度,确定所述感光元件沿所述光轴的移动的方向及在所述光轴上的移动量,以实现自动对焦。
  4. 根据权利要求2所述的成像方法,其特征在于,所述当所述变焦镜头完成从长焦切换为短焦之后,控制所述感光元件沿所述光轴移动以实现自动对焦,包括:
    当所述变焦镜头完成从长焦切换为短焦之后,根据所述感光元件上的图像的清晰度,确定所述感光元件沿所述光轴的移动的方向及在所述光轴上的移动量,以实现自动对焦。
  5. 一种成像模组,其特征在于,所述成像模组包括变焦镜头和感光元件,所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组,在所述变焦镜头的物侧到像侧方向上,所述第一透镜组、所述第二透镜组、所述第三透镜组和所述感光元件依次排列,所述第二透镜组和所述感光元件均能够在所述变焦镜头的光轴方向上移动;
    当所述变焦镜头从长焦切换为短焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;
    当所述变焦镜头从短焦切换为长焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。
  6. 根据权利要求5所述的成像模组,其特征在于,所述变焦镜头还包括滤光片,所述滤光片设于所述感光元件与所述第三透镜组之间,当所述变焦镜头在短焦与长焦的切换过程中及在自动对焦的过程中,所述滤光片跟随所述感光元件一起移动。
  7. 根据权利要求5所述的成像模组,其特征在于,所述变焦镜头还包括棱镜组件,所述棱镜组件包括棱镜,在所述变焦镜头的物侧到像侧方向上,所述棱镜、所述第一透镜组、所述第二透镜组、所述第三透镜组和所述感光元件依次排列。
  8. 根据权利要求5所述的成像模组,其特征在于,所述成像模组还包括:
    壳体,所述壳体包括基板和设置在所述基板上的侧板,所述侧板上开设有滑槽,所述滑槽沿着所述光轴方向延伸;
    设置在所述壳体内的可动筒,所述第二透镜组安装在所述可动筒上,所述可动筒包括第一本体和设置在所述第一本体两侧的第一滑块;及
    设置在所述壳体内的可动框,所述感光元件设置在所述可动框上,所述可动框包括第二本体和设置在所述第二本体两侧的第二滑块;其中:
    所述第一滑块和所述第二滑块可移动地安装在所述滑槽内,所述第一本体和所述第二本体移动时分别带动所述第二透镜组和所述感光元件沿所述光轴移动。
  9. 根据权利要求8所述的成像模组,其特征在于,所述可动筒包括第一滚珠,所述第一滚珠设置在所述第一本体的与所述基板相对的第一底面上;
    所述可动框包括第二滚珠,所述第二滚珠设置在所述第二本体与所述基板相对的第二底面上。
  10. 根据权利要求8所述的成像模组,其特征在于,所述成像模组还包括:
    驱动件,所述驱动件设置在所述壳体内,所述驱动件与所述第一本体连接,所述驱动件与所述第二本体连接,所述驱动件用于驱动所述第一本体和/或所述第二本体移动,以带动所述第二透镜组和/或所述感光元件沿所述光轴移动。
  11. 根据权利要求5所述的成像模组,其特征在于,所述第一透镜组包括一个或多个透镜,第二透镜组包括一个或多个透镜,所述第三透镜组包括一个或多个透镜,至少一个所述透镜的形状为回转体的一部分。
  12. 根据权利要求11所述的成像模组,其特征在于,所述第一透镜组包括第一透镜和第二透镜,所述第二透镜组包括第三透镜、第四透镜和第五透镜,所述第三透镜组包括第六透镜和第七透镜;各个所述透镜满足以下关系式:-4<f2/f1<0;2<f3/f1<5;0<f4/f1<4;-5<f5/f1<-1;0<f6/f1<4;-2<f7/f1<0或0<f7/f1<2;其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,f5为所述第五透镜的焦距,f6为所述第六透镜的焦距,f7为所述第七透镜的焦距。
  13. 一种电子设备,其特征在于,所述电子设备包括成像模组和机壳,所述成像模组安装在所述机壳上,所述成像模组包括变焦镜头和感光元件,所述变焦镜头包括第一透镜组、第二透镜组和第三透镜组,在所述变焦镜头的物侧到像侧方向上,所述第一透镜组、所述第二透镜组、所述第三透镜组和所述感光元件依次排列,所述第二透镜组和所述感光元件均能够在所述变焦镜头的光轴方向上移动;
    当所述变焦镜头从长焦切换为短焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的物侧移动;
    当所述变焦镜头从短焦切换为长焦时,所述第一透镜组与所述第三透镜组在所述光轴上的位置均相对固定,所述第二透镜组和所述感光元件沿所述光轴朝所述成像模组的像侧移动。
  14. 根据权利要求13所述的电子设备,其特征在于,所述变焦镜头还包括滤光片,所述滤光片设于所述感光元件与所述第三透镜组之间,当所述变焦镜头在短焦与长焦的切换过程中及在自动对焦的过程中,所述滤光片跟随所述感光元件一起移动。
  15. 根据权利要求13所述的电子设备,其特征在于,所述变焦镜头还包括棱镜组件,所述棱镜组件包括棱镜,在所述变焦镜头的物侧到像侧方向上,所述棱镜、所述第一透镜组、所述第二透镜组、所述第三透镜组和所述感光元件依次排列。
  16. 根据权利要求13所述的电子设备,其特征在于,所述成像模组还包括:
    壳体,所述壳体包括基板和设置在所述基板上的侧板,所述侧板上开设有滑槽,所述滑槽沿着所述光轴方向延伸;
    设置在所述壳体内的可动筒,所述第二透镜组安装在所述可动筒上,所述可动筒包括第一本体和设置在所述第一本体两侧的第一滑块;及
    设置在所述壳体内的可动框,所述感光元件设置在所述可动框上,所述可动框包括第二本体和设置在所述第二本体两侧的第二滑块;其中:
    所述第一滑块和所述第二滑块可移动地安装在所述滑槽内,所述第一本体和所述第二本体移动时分别带动所述第二透镜组和所述感光元件沿所述光轴移动。
  17. 根据权利要求16所述的电子设备,其特征在于,所述可动筒包括第一滚珠,所述第一滚珠设置在所述第一本体的与所述基板相对的第一底面上;
    所述可动框包括第二滚珠,所述第二滚珠设置在所述第二本体与所述基板相对的第二底面上。
  18. 根据权利要求16所述的电子设备,其特征在于,所述成像模组还包括:
    驱动件,所述驱动件设置在所述壳体内,所述驱动件与所述第一本体连接,所述驱动件与所述第二本体连接,所述驱动件用于驱动所述第一本体和/或所述第二本体移动,以带动所述第二透镜组和/或所述感光元件沿所述光轴移动。
  19. 根据权利要求13所述的电子设备,其特征在于,所述第一透镜组包括一个或多个透镜,第二透镜组包括一个或多个透镜,所述第三透镜组包括一个或多个透镜,至少一个所述透镜的形状为回转体的一部分。
  20. 根据权利要求19所述的电子设备,其特征在于,所述第一透镜组包括第一透镜和第二透镜,所述第二透镜组包括第三透镜、第四透镜和第五透镜,所述第三透镜组包括第六透镜和第七透镜;各个所述透镜满足以下关系式:-4<f2/f1<0;2<f3/f1<5;0<f4/f1<4;-5<f5/f1<-1;0<f6/f1<4;-2<f7/f1<0或0<f7/f1<2;其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,f5为所述第五透镜的焦距,f6为所述第六透镜的焦距,f7为所述第七透镜的焦距。
PCT/CN2020/115471 2019-09-18 2020-09-16 成像方法、成像模组和电子设备 WO2021052345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865492.1A EP3979616A4 (en) 2019-09-18 2020-09-16 IMAGING METHOD, IMAGING MODULE AND ELECTRONIC DEVICE
US17/563,711 US20220121001A1 (en) 2019-09-18 2021-12-28 Imaging method, imaging module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910883205.1A CN112532818A (zh) 2019-09-18 2019-09-18 成像模组、成像方法和电子设备
CN201910883205.1 2019-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,711 Continuation US20220121001A1 (en) 2019-09-18 2021-12-28 Imaging method, imaging module, and electronic device

Publications (1)

Publication Number Publication Date
WO2021052345A1 true WO2021052345A1 (zh) 2021-03-25

Family

ID=74883175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115471 WO2021052345A1 (zh) 2019-09-18 2020-09-16 成像方法、成像模组和电子设备

Country Status (4)

Country Link
US (1) US20220121001A1 (zh)
EP (1) EP3979616A4 (zh)
CN (1) CN112532818A (zh)
WO (1) WO2021052345A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433650A (zh) * 2021-06-28 2021-09-24 新思考电机有限公司 透镜驱动结构、潜望透镜驱动装置、照相装置、电子产品
EP4152068A1 (en) * 2021-09-17 2023-03-22 Largan Digital Co., Ltd. Imaging lens driving module and electronic device
CN117539035A (zh) * 2024-01-09 2024-02-09 长春理工大学 细胞工厂生物反应器侧面观察方法及镜头

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241064A (zh) * 2020-08-31 2021-01-19 浙江舜宇光学有限公司 一种光学成像透镜组
KR20220094462A (ko) * 2020-12-29 2022-07-06 삼성전기주식회사 카메라 모듈 및 이를 포함하는 휴대용 전자기기
CN113296336B (zh) * 2021-05-20 2022-12-13 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN118259427A (zh) * 2022-12-28 2024-06-28 华为技术有限公司 镜头组件、摄像头模组及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161620A1 (en) * 2002-01-08 2003-08-28 Minolta Co., Ltd. Imaging device and digital camera using the imaging device
CN101288026A (zh) * 2005-10-31 2008-10-15 松下电器产业株式会社 照相机
CN102798964A (zh) * 2011-05-27 2012-11-28 广州长步道光电科技有限公司 大变倍比变焦镜头
CN102866484A (zh) * 2011-07-07 2013-01-09 佳能企业股份有限公司 变焦镜头
CN103235399A (zh) * 2013-05-17 2013-08-07 中山联合光电科技有限公司 一种高像素微距对焦大倍率变焦光学系统
CN104570301A (zh) * 2015-01-05 2015-04-29 舜宇光学(中山)有限公司 一种恒定光圈的广角变焦物镜
CN108303788A (zh) * 2018-04-04 2018-07-20 中山联合光电科技股份有限公司 一种折射式超短焦投影光学系统
CN109683296A (zh) * 2019-01-31 2019-04-26 嘉兴中润光学科技有限公司 变焦镜头及其工作方法、摄像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798480B2 (ja) * 1990-05-14 1998-09-17 キヤノン株式会社 レンズ駆動装置
JPH06339054A (ja) * 1993-05-31 1994-12-06 Nikon Corp 変倍撮像装置
JP2008257022A (ja) * 2007-04-06 2008-10-23 Konica Minolta Opto Inc ズームレンズ
JP2009217167A (ja) * 2008-03-12 2009-09-24 Sony Corp ズーム光学系及び撮像装置
JP4706940B2 (ja) * 2009-02-10 2011-06-22 ソニー株式会社 ズームレンズ及び撮像装置
JP5570301B2 (ja) * 2010-05-27 2014-08-13 キヤノン株式会社 像振れ補正装置および光学機器
US20140002912A1 (en) * 2011-01-31 2014-01-02 Takuma Ishikawa Lens drive device and imaging device
JP5965519B2 (ja) * 2015-07-08 2016-08-03 オリンパス株式会社 ズームレンズ及びそれを用いた撮像装置
KR20180015966A (ko) * 2016-08-04 2018-02-14 자화전자(주) 줌렌즈용 액추에이터
TW201816430A (zh) * 2016-10-18 2018-05-01 美商康寧公司 具有整合光濾鏡的可變焦透鏡及含該透鏡之影像擷取裝置
KR101942743B1 (ko) * 2017-10-31 2019-01-28 삼성전기 주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161620A1 (en) * 2002-01-08 2003-08-28 Minolta Co., Ltd. Imaging device and digital camera using the imaging device
CN101288026A (zh) * 2005-10-31 2008-10-15 松下电器产业株式会社 照相机
CN102798964A (zh) * 2011-05-27 2012-11-28 广州长步道光电科技有限公司 大变倍比变焦镜头
CN102866484A (zh) * 2011-07-07 2013-01-09 佳能企业股份有限公司 变焦镜头
CN103235399A (zh) * 2013-05-17 2013-08-07 中山联合光电科技有限公司 一种高像素微距对焦大倍率变焦光学系统
CN104570301A (zh) * 2015-01-05 2015-04-29 舜宇光学(中山)有限公司 一种恒定光圈的广角变焦物镜
CN108303788A (zh) * 2018-04-04 2018-07-20 中山联合光电科技股份有限公司 一种折射式超短焦投影光学系统
CN109683296A (zh) * 2019-01-31 2019-04-26 嘉兴中润光学科技有限公司 变焦镜头及其工作方法、摄像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979616A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433650A (zh) * 2021-06-28 2021-09-24 新思考电机有限公司 透镜驱动结构、潜望透镜驱动装置、照相装置、电子产品
EP4152068A1 (en) * 2021-09-17 2023-03-22 Largan Digital Co., Ltd. Imaging lens driving module and electronic device
CN117539035A (zh) * 2024-01-09 2024-02-09 长春理工大学 细胞工厂生物反应器侧面观察方法及镜头
CN117539035B (zh) * 2024-01-09 2024-04-05 长春理工大学 细胞工厂生物反应器侧面观察方法及镜头

Also Published As

Publication number Publication date
CN112532818A (zh) 2021-03-19
EP3979616A4 (en) 2022-08-10
EP3979616A1 (en) 2022-04-06
US20220121001A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2021052345A1 (zh) 成像方法、成像模组和电子设备
CN110764232A (zh) 光学镜头和电子装置
CN111123490B (zh) 变焦镜头、成像模组和电子设备
CN112204940B (zh) 潜望式摄像模组及其阵列摄像模组及其制造方法和电子设备
WO2021136351A1 (zh) 变焦镜头、相机模组和电子装置
WO2021136280A1 (zh) 变焦镜头、相机模组和电子装置
WO2017031948A1 (zh) 成像装置和成像方法
CN111580237A (zh) 电子设备及其控制方法
CN111045183B (zh) 变焦镜头、成像模组和电子设备
CN110798600B (zh) 镜头模组、控制方法和电子设备
CN115428429B (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
WO2021023066A1 (zh) 变焦镜头、相机模组及电子装置
CN112612127B (zh) 变焦镜头、成像模组和电子设备
WO2020010886A1 (zh) 摄像头模组、组件、电子设备、移动终端及拍摄方法
CN112394496A (zh) 变焦镜头、相机模组和电子装置
CN115542510A (zh) 透镜驱动装置和包括该透镜驱动装置的相机模块
US20220155565A1 (en) Optical lens, camera module and image capturing device
CN115428428B (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的驱动方法
US20100086291A1 (en) Camera module and driving method thereof
CN110320974B (zh) 电子装置
WO2020007085A1 (zh) 摄像头组件、电子装置、移动终端以及电子设备
CN112612126B (zh) 变焦镜头、成像模组、成像方法和电子设备
TWI411861B (zh) 鏡頭模組
US20220155553A1 (en) Imaging device and electronic device
CN114079710A (zh) 潜望式连续光变摄像模组及相应的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020865492

Country of ref document: EP

Effective date: 20211229

NENP Non-entry into the national phase

Ref country code: DE