WO2021052079A1 - 环境监测装置、方法和巡检系统 - Google Patents

环境监测装置、方法和巡检系统 Download PDF

Info

Publication number
WO2021052079A1
WO2021052079A1 PCT/CN2020/109505 CN2020109505W WO2021052079A1 WO 2021052079 A1 WO2021052079 A1 WO 2021052079A1 CN 2020109505 W CN2020109505 W CN 2020109505W WO 2021052079 A1 WO2021052079 A1 WO 2021052079A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental monitoring
monitoring device
sensor
analog
controller
Prior art date
Application number
PCT/CN2020/109505
Other languages
English (en)
French (fr)
Inventor
许哲涛
Original Assignee
北京海益同展信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京海益同展信息科技有限公司 filed Critical 北京海益同展信息科技有限公司
Publication of WO2021052079A1 publication Critical patent/WO2021052079A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the present disclosure relates to the technical field of data monitoring, in particular to an environmental monitoring device, method and inspection system.
  • IDC Internet Data Center
  • the state of the environment includes the cooling state, the heat dissipation state, the fire prevention state, and so on.
  • the computer room usually uses wall-mounted thermometers and fixed-point wind speed to measure the temperature and wind speed of the air conditioner in the computer room.
  • a technical problem to be solved by the embodiments of the present disclosure is: how to monitor the environment of the computer room more comprehensively.
  • an environmental monitoring device including: a sensing module configured to collect environmental monitoring data; a movable component used to drive the sensing module to move; a controller configured In order to obtain corresponding environmental monitoring data when the environmental monitoring device is in one or more positions during the movement of the movable component; and, the chassis, the chassis includes a bottom plate provided with an opening, wherein the sensor module is provided in the chassis, and Located at the position corresponding to the opening.
  • the one or more positions include the position above the ventilation panel, and the air conditioner is positioned below the ventilation panel and sends air to the direction of the ventilation panel.
  • the sensing module includes at least one of a wind speed sensor or a temperature sensor.
  • the sensing module includes: a sensor configured to convert the sensed data into an electrical signal; and a calculation component configured to determine the conversion according to a preset correspondence between the electrical signal and the environmental monitoring data Environmental monitoring data corresponding to the subsequent electrical signals.
  • the senor is a wind speed sensor configured to generate a first analog voltage according to the sensing data; the sensing module further includes: a voltage follower connected to the wind speed sensor and configured to obtain the first analog voltage; and An analog-to-digital converter is connected to the voltage follower and is configured to convert the first analog voltage into a first digital signal; the calculation component is connected to the first analog-to-digital converter and is configured to convert the first digital signal into a wind speed value .
  • the senor is a temperature sensor, including a resistor, the resistance changes in resistance with temperature changes, and is configured to output a second analog voltage, where the second analog voltage is determined according to the resistance of the resistance;
  • the sensing module is also It includes: a linear amplifier connected to the temperature sensor and configured to amplify the second analog voltage and output a third analog voltage; and a second analog-to-digital converter connected to the linear amplifier and configured to convert the third analog voltage Is a second digital signal; and the calculation component is connected to the second analog-to-digital converter and is configured to convert the second digital signal into a temperature value.
  • the environmental monitoring device further includes: a navigation and positioning system configured to send the location information of the environmental monitoring device to the controller; and the controller is further configured to respond to the current location information and the preset information of the environmental monitoring device. Set the location information of the ventilation panels to be consistent, obtain the current environmental monitoring data collected by the sensor module, and record the corresponding relationship between the current location information and the current environmental monitoring data.
  • the navigation and positioning system is further configured to store the navigation route and send navigation information to the controller, wherein the navigation route includes the position of the ventilation plate; the controller is further configured to control the navigation information and the position information. Moving parts move.
  • the controller is further configured to generate alarm information in response to the environmental monitoring data exceeding a preset range.
  • the environmental monitoring device is a patrol robot.
  • a patrol inspection system including: any one of the aforementioned environmental monitoring devices; and a display terminal configured to obtain and display the location of the environmental monitoring device and the information obtained at the location. Correspondence between environmental monitoring data.
  • an environmental monitoring method including: acquiring environmental monitoring data collected by a sensor module of the environmental monitoring device when the environmental monitoring device is at one or more locations, wherein the environmental monitoring
  • the device has a movable part for driving the sensor module to move and a chassis.
  • the chassis includes a bottom plate provided with an opening.
  • the sensor module is arranged in the chassis and is located at a position corresponding to the opening.
  • an environmental monitoring device including: a memory; and a processor coupled to the memory, and the processor is configured to execute any one of the foregoing based on instructions stored in the memory Environmental monitoring methods.
  • a computer-readable storage medium having a computer program stored thereon, wherein the program is executed by a processor to implement any one of the aforementioned environmental monitoring methods.
  • Fig. 1 is a schematic structural diagram of an environmental monitoring device according to some embodiments of the present disclosure.
  • Figure 2 exemplarily shows a schematic diagram of the deployment of refrigeration equipment in a part of the computer room.
  • Fig. 3A is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • Fig. 3B exemplarily shows a bottom view of the chassis of the environmental monitoring device.
  • Fig. 4 is a schematic structural diagram of a sensing module according to some embodiments of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a sensing module according to other embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram of an environmental monitoring device according to still other embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a control system of a patrol robot according to some embodiments of the present disclosure.
  • Fig. 8 is a schematic structural diagram of an inspection system according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic flowchart of an environmental monitoring method according to some embodiments of the present disclosure.
  • Fig. 10 is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • Fig. 11 is a schematic structural diagram of an environmental monitoring device according to still other embodiments of the present disclosure.
  • the inventor found that the area of the computer room is usually larger. When the computer room is running for a long time, there may be some areas with poor environmental conditions, which affects the operating efficiency of the computer workstation.
  • the fixed monitoring method can only measure the environmental status at a fixed location, and the measurement results cannot cover multiple locations in the computer room.
  • Fig. 1 is a schematic structural diagram of an environmental monitoring device according to some embodiments of the present disclosure.
  • the environmental monitoring device 100 of this embodiment includes a sensor module 1100, a controller 1200 and a movable component 1300.
  • the sensor module 1100 and the controller 1200 are electrically connected or communicatively connected.
  • the movable component 1300 directly or indirectly drives the sensor module 1100 and the controller 1200 to move.
  • the movable part 1300 includes, for example, wheels, tracks, wings, and so on.
  • the sensing module 1100 is configured to collect environmental monitoring data.
  • the environmental monitoring data includes at least one of wind speed or temperature, for example, the sensing module includes at least one of a wind speed sensor or a temperature sensor.
  • it can also include humidity, smoke index, particle density, and so on.
  • the controller 1200 is configured to obtain environmental monitoring data of the environmental monitoring device at one or more locations.
  • the controller 1200 is further configured to obtain environmental monitoring data of the environmental monitoring device at one or more locations during the movement of the movable component.
  • the above-mentioned “moving process” refers to the displacement of the environmental monitoring device as a whole to measure environmental monitoring data at different locations. However, at the moment when the environmental monitoring data of each location is collected, the environmental monitoring device may be moving or stationary.
  • the controller 1200 is further configured to instruct the environmental monitoring device 100 to move and obtain the location of the environmental monitoring device 100; record the correspondence between the location of the environmental monitoring device 100 and the environmental monitoring data obtained at the location relationship.
  • the environmental monitoring device 100 is provided with a positioning component, which has a positioning function.
  • the environmental monitoring device 100 obtains the location information obtained by the positioning component, and records the correspondence between the location of the environmental monitoring device 100 and the environmental monitoring data obtained at the location.
  • the environmental monitoring device 100 is provided with a device for obtaining indirect location information.
  • a device for obtaining indirect location information For example, a barcode or a two-dimensional code scanning device, a sensor and other devices are used to scan a preset object on the ground or equipment to obtain an identification of the location of the object, or to count the number of scanned objects. The obtained identification or quantity corresponds to position information or distance information.
  • the environmental monitoring device 100 records the time of collecting various environmental monitoring data through a clock module, and the location of the environmental monitoring device 100 is monitored by an external device.
  • the controller 1200 does not know the specific location information of each collection location, it sends the environmental monitoring data collected at one or more locations and the corresponding time to an external device such as a server.
  • the external device determines the environmental monitoring data corresponding to each location in combination with the location of the environmental monitoring device 100 obtained in advance at each time point.
  • the controller 1200 is further configured to obtain the environmental monitoring data collected by the sensor module 1100 in response to the environmental monitoring device 100 reaching a preset position.
  • the preset position is, for example, the position of the ventilation panel in the machine room.
  • the air conditioner is located under the ventilating plate and sends air to the direction of the ventilating plate.
  • the environmental monitoring device can collect data at a preset collection point.
  • the controller 1200 is further configured to generate alarm information in response to the environmental monitoring data exceeding a preset range. Therefore, prompts are generated in time when the current environment is not conducive to the operation of the equipment.
  • the environmental monitoring device 100 is a movable device such as a robot and a trolley. Therefore, the environmental monitoring device can collect environmental monitoring data at multiple locations during the movement, which improves the flexibility and coverage of monitoring. Moreover, compared to the manner of deploying fixed sensors in multiple locations in the computer room, the solution of the present disclosure reduces deployment cost and deployment complexity.
  • Figure 2 exemplarily shows a schematic diagram of the deployment of refrigeration equipment in a part of the computer room.
  • the refrigeration air conditioner 21 is located below the fireproof plate 22 of the machine room and above the ground 23, wherein the fireproof plate 22 is provided with a hole 220 for the cold wind to pass through.
  • the fireproof board 22 is, for example, a ventilation board. The cold air generated by the refrigeration air conditioner 21 is blown upward through the fireproof board 22, as shown by the dashed arrow in FIG. 2, so that the computer workstation will not overheat.
  • the environmental monitoring device 100 or the equipment in which the environmental monitoring device 100 is located runs above the fireproof board 22, that is, one or more collection locations of the environmental monitoring data include above the location where the ventilation board is located.
  • the sensor module 1100 in the environmental monitoring device 100 is deployed under the environmental monitoring device 100 so as to sense the cold air sent by the refrigeration air conditioner 21. The position deployment method of the sensor module 1100 of the present disclosure is described below with reference to FIG. 3.
  • Fig. 3A is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • the monitoring device 300 of this embodiment includes a sensor module 3100, a controller 3200, a movable part 3300, and a chassis 3400.
  • the chassis 3400 includes an opening 3401, and the sensor module 3100 is disposed in the chassis 3400 and located at a position corresponding to the opening 3401, that is, on the path where the air blown into the chassis 3400 by the refrigeration and air conditioner.
  • the chassis 3400 is a cavity including a top plate and a bottom plate.
  • the opening 3401 is provided on the bottom plate, and the sensor module 3100 is fixed on the inner wall of the top plate and faces the opening 3401.
  • the sensor module can detect the wind speed and temperature in the direction of cold wind transmission without obstruction.
  • airflow will be generated in the horizontal direction.
  • Fig. 3B exemplarily shows a bottom view of the chassis of the environmental monitoring device and its nearby components.
  • the outer bottom of the chassis 3400 is also provided with a power wheel 3301 and a universal wheel 3302.
  • the sensor module 3100 is arranged in the chassis 3400 and is located at a position corresponding to the opening 3401.
  • the sensor module 3100 can sense the cold wind blowing from below for more accurate measurement, and can be protected by the chassis.
  • the sensing module 3100 can also be directly arranged on the bottom of the outer side of the chassis 3400.
  • Fig. 4 is a schematic structural diagram of a sensing module according to some embodiments of the present disclosure.
  • the sensing module 4000 of this embodiment includes a sensor 4100 and a calculation component 4200.
  • the sensor 4101 is configured to convert the sensed data into an electrical signal;
  • the computing component 4102 is configured to determine the environmental monitoring data corresponding to the converted electrical signal according to a preset correspondence between the electrical signal and the environmental monitoring data.
  • the sensor 4100 can be provided with one or more as required.
  • the senor is a wind speed sensor, a temperature sensor, or the like.
  • Fig. 5 is a schematic structural diagram of a sensing module according to other embodiments of the present disclosure. As shown in FIG. 5, the sensing module 5000 of this embodiment includes a calculation component 5200, and the calculation component 5200 is, for example, a single-chip microcomputer.
  • the sensing module 5000 further includes a wind speed sensor 5101, a voltage follower 5301, a first analog-to-digital converter 5401, where the wind speed sensor 5101, a voltage follower 5301, a first analog-to-digital converter 5401, a calculation component 5200 are connected in turn.
  • the wind speed sensor 5101 is configured to generate a first analog voltage according to the sensed data; the voltage follower 5301 is connected to the wind speed sensor 5101 and is configured to obtain the first analog voltage; the first analog-to-digital converter 5401 is connected to the voltage follower 5301 and is It is configured to convert the first analog voltage into a first digital signal; the calculation component 5200 is connected to the first analog-to-digital converter 5401 and is configured to convert the first digital signal into a wind speed value.
  • the sensing module 5000 further includes a temperature sensor 5102, a linear amplifier 5302, a second analog-to-digital converter 5402, where the temperature sensor 5102, a linear amplifier 5302, a second analog-to-digital converter 5402, and a calculation component 5200 in turn connection.
  • the temperature sensor 5102 includes a resistor, and the resistance changes with temperature.
  • the temperature sensor 5102 is configured to output a second analog voltage, where the second analog voltage is determined according to the resistance of the resistor, that is, the resistance change will affect the second For analog voltage changes, the linear amplifier 5302 is connected to the temperature sensor 5102 and is configured to amplify the second analog voltage and output a third analog voltage; the second analog-to-digital converter 5402 is connected to the linear amplifier 5302 and is configured to Three analog voltages are converted into a second digital signal; the calculation component 5200 is connected to the second analog-to-digital converter 5402 and is configured to convert the second digital signal into a temperature value.
  • the temperature sensor 5102 is a PT100 temperature sensor.
  • the sensing result obtained by the sensor can be transmitted to the calculation component through the electric signal, and the calculation component can calculate the corresponding environmental monitoring data.
  • the environmental monitoring device also has a navigation function.
  • a navigation function an embodiment of the environmental monitoring device of the present disclosure will be described with reference to FIG. 6.
  • Fig. 6 is a schematic structural diagram of an environmental monitoring device according to still other embodiments of the present disclosure.
  • the environment monitoring device 600 of this embodiment includes a sensor module 6100, a controller 6200, a movable part 6300, and a navigation and positioning system 6400.
  • the navigation and positioning system 6400 is configured to send navigation information and location information of the environmental monitoring device to the controller 6200 so that the controller 6200 instructs the movable part 6300 of the environmental monitoring device 600 to move according to the navigation information and the location information.
  • the controller 6200 may also determine the correspondence between the location and the environmental monitoring data according to the location information.
  • the controller 6200 when the environmental monitoring device is operating in an environment with a ventilation panel and the air conditioner is set below the ventilation panel, the controller 6200 is further configured to: respond to the current location information of the environmental monitoring device 600 and the preset ventilation The location information of the boards is consistent, the current environmental monitoring data collected by the sensing module is acquired, and the corresponding relationship between the current location information and the current environmental monitoring data is recorded.
  • the navigation and positioning system 6400 is further configured to store the navigation route and send navigation information to the controller 6200, where the navigation route includes the location of the ventilation plate; the controller 6200 is further configured to store the navigation information and the navigation information.
  • the position information controls the movement of the movable part.
  • the environment monitoring device can monitor the cooling condition of the air conditioner in the environment, so as to find the faulty air conditioner in time.
  • the environmental monitoring device is a patrol robot.
  • the following describes an embodiment of the control system of the inspection robot of the present disclosure with reference to FIG. 7.
  • Fig. 7 is a schematic structural diagram of a control system of a patrol robot according to some embodiments of the present disclosure.
  • the control system 70 of this embodiment may include a sensing component and a main control component.
  • the sensing components include a wind speed sensor 7101, a voltage follower 7301, an analog-to-digital converter 7401, a PT100 temperature sensor 7102, a linear amplifier 7302, an analog-to-digital converter 7402, and a single-chip microcomputer 7200.
  • the wind speed sensor 7101, the voltage follower 7301, the analog-to-digital converter 7401 are connected in sequence
  • the PT100 temperature sensor 7102, the linear amplifier 7302, the analog-to-digital converter 7402 are connected in sequence
  • the analog-to-digital converter 7401 and the analog-to-digital converter 7402 are respectively connected through SPI
  • the interface is connected with the microcontroller 7200.
  • the single-chip microcomputer 7200 is connected to the robot CAN bus 760 through the CAN transceiver circuit 750, and the robot CAN bus 760 is connected to the robot main controller 770.
  • the main control components include a robot main controller 770, a navigation system 780, a motor 7901, and a motor driver 7902.
  • the robot main controller 770 drives the motor 7901 through the motor driver 7902, and the navigation system 780 is connected to the robot main controller 770.
  • the robot main controller 770 may communicate with external devices to exchange data.
  • the robot main controller 770 obtains the robot's position on the map in real time from the navigation system 780, and sends instructions to the motor driver 7902 according to its own position to drive the motor 7901 to rotate, so that the robot follows the plan The path moves.
  • the robot main controller 770 issues wind speed and temperature reading instructions through the CAN bus 760.
  • the CAN transceiver circuit 750 performs level conversion and sends the converted instructions to the microcontroller 7200.
  • Single-chip microcomputer 7200 obtains wind speed and temperature reading instructions
  • the wind speed sensor 7101 converts the wind speed value into an analog voltage according to a linear conversion relationship.
  • the wind speed sensor 7101 inputs the output analog voltage to the voltage follower 7301, and the voltage follower 7301 inputs the analog voltage to the analog-to-digital converter 7401.
  • the analog-to-digital converter 7401 converts the analog voltage into a digital signal, and outputs the digital signal to the microcontroller 7200 through the SPI interface.
  • the microcontroller 7200 calculates the current wind speed value.
  • the input voltage of the wind speed sensor 7101 may be 24V
  • the output analog voltage may be 0-10V, corresponding to the wind speed value of 0-10m/s.
  • the PT100 temperature sensor 7102 will change in resistance as the temperature changes, and the changed resistance will reflect the change in the partial pressure value.
  • the change of the analog voltage at both ends of the PT100 temperature sensor 7102 is amplified by the linear amplifier 7302 and then input to the analog-to-digital converter 7402.
  • the analog-to-digital converter 7402 converts the analog voltage value into a digital signal and passes the SPI (Serial Peripheral Interface) Set up the interface) to send the digital signal to the microcontroller 7200.
  • the microcontroller 7200 calculates the current temperature value.
  • the resistance of PT100 has a corresponding curve relationship with temperature, and the temperature value can be converted by looking up a table or curve formula.
  • the single-chip microcomputer 7200 sends the calculated temperature value and wind speed value to the robot main controller 770 via the CAN bus 760, and the robot main controller 770 binds the wind speed and temperature value to the corresponding coordinates on the map.
  • the robot when the wind speed is too low or the temperature is too high at certain locations, the robot generates an alarm. In some embodiments, when the robot pre-stores the correspondence between the air conditioner and the location, the alarm includes the air conditioner identification, wind speed, temperature, and other information, so that the faulty air conditioner can be located.
  • Fig. 8 is a schematic structural diagram of an inspection system according to some embodiments of the present disclosure.
  • the inspection system 80 of this embodiment includes an environmental monitoring device 810 and a display terminal 820.
  • the display terminal 820 is configured to acquire and display the corresponding relationship between the location of the environmental monitoring device 810 and the environmental monitoring data acquired at the location.
  • the environmental monitoring device 810 measures the temperature and wind speed values of multiple locations in the entire computer room, and displays the wind speed and temperature point cloud diagram in the computer room through the terminal device 820.
  • the display terminal 820 is, for example, a mobile terminal, a server, a monitoring platform, and so on.
  • FIG. 9 is a schematic flowchart of an environmental monitoring method according to some embodiments of the present disclosure. As shown in Fig. 9, the environmental monitoring method of this embodiment includes step S902.
  • step S902 the environmental monitoring data collected by the sensor module of the environmental monitoring device when the environmental monitoring device is at one or more positions are acquired, wherein the environmental monitoring device has a movable component and a chassis for driving the sensor module to move,
  • the chassis includes a bottom plate provided with an opening, and the sensing module is arranged in the chassis and located at a position corresponding to the opening.
  • the environmental monitoring data includes at least one of wind speed and temperature.
  • the environmental monitoring data collected by the environmental monitoring device is acquired.
  • the method of this embodiment may further include step S904.
  • step S904 the corresponding relationship between the location of the environmental monitoring device and the environmental monitoring data obtained at the location is recorded.
  • alarm information in response to environmental monitoring data exceeding a preset range, is generated.
  • Fig. 10 is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • the environmental monitoring device 100 of this embodiment includes a memory 1010 and a processor 1020 coupled to the memory 1010.
  • the processor 1020 is configured to execute any one of the foregoing implementations based on instructions stored in the memory 1010.
  • the environmental monitoring method in the example is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • the environmental monitoring device 100 of this embodiment includes a memory 1010 and a processor 1020 coupled to the memory 1010.
  • the processor 1020 is configured to execute any one of the foregoing implementations based on instructions stored in the memory 1010.
  • the environmental monitoring method in the example is a schematic structural diagram of an environmental monitoring device according to other embodiments of the present disclosure.
  • the environmental monitoring device 100 of this embodiment includes a memory 1010 and a processor 1020 coupled to the memory 1010.
  • the processor 1020 is configured to execute any one of the foregoing implementations based on instructions stored in the memory
  • the memory 1010 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • Fig. 11 is a schematic structural diagram of an environmental monitoring device according to still other embodiments of the present disclosure.
  • the environment monitoring device 110 of this embodiment includes a memory 1110 and a processor 1120, and may also include an input/output interface 1130, a network interface 1140, a storage interface 1150, and the like. These interfaces 1130, 1140, 1150, and the memory 1110 and the processor 1120 may be connected via a bus 1160, for example.
  • the input and output interface 1130 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • the network interface 1140 provides a connection interface for various networked devices.
  • the storage interface 1150 provides a connection interface for external storage devices such as SD cards and U disks.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, any one of the aforementioned environmental monitoring methods is implemented.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes. .
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Manipulator (AREA)

Abstract

本公开涉及一种环境监测装置、方法和巡检系统,涉及数据监测技术领域。环境监测装置包括:传感模块,被配置为采集环境监测数据;控制器,被配置为获取环境监测装置在一个或多个位置时对应的环境监测数据;可移动部件,用于带动传感模块移动。环境监测装置可以在移动的过程中采集多个位置的环境监测数据,提高了监测的灵活性和覆盖度,并且降低了部署成本和部署的复杂度。

Description

环境监测装置、方法和巡检系统
相关申请的交叉引用
本申请是以CN申请号为201910878508.4,申请日为2019年9月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及数据监测技术领域,特别涉及一种环境监测装置、方法和巡检系统。
背景技术
IDC(Internet Data Center,互联网数据中心)拥有大量的计算机工作站。保证计算机工作站的环境处于理想状态是机房建设的重要部分之一,环境的状态包括制冷状态、散热状态、防火状态等等。以制冷和散热为例,目前,机房通常采用壁挂式测温计和定点式风速测量机房内空调的温度和风速。
发明内容
本公开实施例所要解决的一个技术问题是:如何对机房的环境进行更全面的监测。
根据本公开一些实施例的第一个方面,提供一种环境监测装置,包括:传感模块,被配置为采集环境监测数据;可移动部件,用于带动传感模块移动;控制器,被配置为在可移动部件的移动过程中,获取环境监测装置在一个或多个位置时对应的环境监测数据;以及,底盘,底盘包括设置有开口的底板,其中,传感模块设置在底盘中,并且位于开口对应的位置处。
在一些实施例中,一个或多个位置包括通风板所在位置上方,空调位于通风板下方、并且向通风板所在方向送风。
在一些实施例中,传感模块包括风速传感器或温度传感器中的至少一种。
在一些实施例中,传感模块包括:传感器,被配置为将感测数据转换为电信号;以及计算部件,被配置为根据预设的电信号与环境监测数据之间的对应关系,确定转换后的电信号对应的环境监测数据。
在一些实施例中,传感器为风速传感器,被配置为根据感测数据产生第一模拟电压;传感模块还包括:电压跟随器,与风速传感器连接,被配置为获取第一模拟电压; 以及第一模数转换器,与电压跟随器连接,被配置为将第一模拟电压转换为第一数字信号;计算部件与第一模数转换器连接,被配置为将第一数字信号转换为风速值。
在一些实施例中,传感器为温度传感器,包括电阻,电阻随温度变化而产生阻值变化,被配置为输出第二模拟电压,其中,第二模拟电压根据电阻的阻值确定;传感模块还包括:线性放大器,与温度传感器连接,被配置为对第二模拟电压进行放大处理,输出第三模拟电压;以及第二模数转换器,与线性放大器连接,被配置为将第三模拟电压转换为第二数字信号;以及计算部件与第二模数转换器连接,被配置为将第二数字信号转换为温度值。
在一些实施例中,环境监测装置还包括:导航定位系统,被配置为向控制器发送环境监测装置的位置信息;并且,控制器进一步被配置为:响应于环境监测装置的当前位置信息与预设的通风板所在的位置信息一致,获取传感模块采集的当前环境监测数据,并记录当前位置信息与当前环境监测数据之间的对应关系。
在一些实施例中,导航定位系统进一步被配置为存储导航路线、并向控制器发送导航信息,其中,导航路线包括通风板所在的位置;控制器进一步被配置为根据导航信息和位置信息控制可移动部件移动。
在一些实施例中,控制器进一步被配置为响应于环境监测数据超出预设范围,产生告警信息。
在一些实施例中,环境监测装置是巡检机器人。
根据本公开一些实施例的第二个方面,提供一种巡检系统,包括:前述任意一种环境监测装置;以及显示终端,被配置为获取并显示环境监测装置所在位置与在该位置获取的环境监测数据之间的对应关系。
根据本公开一些实施例的第三个方面,提供一种环境监测方法,包括:获取环境监测装置在一个或多个位置时,环境监测装置的传感模块采集的环境监测数据,其中,环境监测装置具有用于带动传感模块移动的可移动部件和底盘,底盘包括设置有开口的底板,传感模块设置在所述底盘中,并且位于开口对应的位置处。
根据本公开一些实施例的第四个方面,提供一种环境监测装置,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述任意一种环境监测方法。
根据本公开一些实施例的第五个方面,提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现前述任意一种环境监测方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例的环境监测装置的结构示意图。
图2示例性地示出部分机房中制冷设备部署的示意图。
图3A为根据本公开另一些实施例的环境监测装置的结构示意图。
图3B示例性地示出了环境监测装置的底盘的底视图。
图4为根据本公开一些实施例的传感模块的结构示意图。
图5为根据本公开另一些实施例的传感模块的结构示意图。
图6为根据本公开又一些实施例的环境监测装置的结构示意图。
图7为根据本公开一些实施例的巡检机器人的控制系统的结构示意图。
图8为根据本公开一些实施例的巡检系统的结构示意图。
图9为根据本公开一些实施例的环境监测方法的流程示意图。
图10为根据本公开另一些实施例的环境监测装置的结构示意图。
图11为根据本公开又一些实施例的环境监测装置的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实 际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人经过分析后发现,机房的面积通常较大。在机房长时间运行的情况下,可能存在某些区域的环境状态不佳的情况,从而影响计算机工作站的运行效率。固定式的监测方式只能测量固定位置的环境状态,测量结果不能覆盖机房的多个位置。
图1为根据本公开一些实施例的环境监测装置的结构示意图。如图1所示,该实施例的环境监测装置100包括传感模块1100、控制器1200和可移动部件1300。传感模块1100和控制器1200之间电连接或通信连接。可移动部件1300直接或间接地带动传感模块1100和控制器1200移动。可移动部件1300例如包括车轮、履带、机翼等等。
传感模块1100被配置为采集环境监测数据。在一些实施例中,环境监测数据包括风速或温度中的至少一种,例如,传感模块包括风速传感器或温度传感器中的至少一种。此外,还可以包括湿度、烟雾指数、颗粒物密度等等。
控制器1200被配置为获取环境监测装置在一个或多个位置的环境监测数据。
在一些实施例中,控制器1200进一步被配置为在所述可移动部件的移动过程中,获取环境监测装置在一个或多个位置的环境监测数据。上述“移动过程”是指环境监测装置整体上产生了位移、以测量不同位置的环境监测数据。但是,在采集每个位置的环境监测数据的时刻,环境监测装置可以是移动中的、也可以是静止的。
在一些实施例中,控制器1200进一步被配置为指示环境监测装置100移动,并获取环境监测装置100的所在位置;记录环境监测装置100所在位置与在该位置获取的环境监测数据之间的对应关系。
在一些实施例中,环境监测装置100中设置定位部件,具有定位功能。环境监测装置100通过获取定位部件获得的位置信息,记录环境监测装置100所在位置与在该位置获取的环境监测数据之间的对应关系。
在一些实施例中,环境监测装置100中设置用于获取间接表示位置信息的装置。例如通过采用条码或二维码扫描装置、感应器等装置扫描地面、设备上的预设对象, 以获得该对象所在位置的标识、或者对扫描的对象的数量进行统计。获得的标识或数量对应了位置信息或者距离信息。
在一些实施例中,环境监测装置100通过时钟模块记录采集各个环境监测数据的时间,并由外部设备监控环境监测装置100所在位置。在控制器1200不知道各个采集处的具体位置信息的情况下,将在一个或多个位置采集的环境监测数据和相应的时间发送给服务器等外部设备。外部设备结合预先获取的环境监测装置100在各个时间点的所在位置,确定每个位置对应的环境监测数据。
在一些实施例中,控制器1200进一步被配置为响应于环境监测装置100到达预设位置,获取传感模块1100采集的环境监测数据。预设位置例如为机房中的通风板所在的位置。空调位于通风板下方、并且向通风板所在方向送风。从而,环境监测装置能够在预设的采集点采集数据。
在一些实施例中,控制器1200进一步被配置为响应于环境监测数据超出预设范围,产生告警信息。从而,在当前环境不利于设备运行时及时产生提醒。
环境监测装置100是机器人、小车等可移动的设备。从而,环境监测装置能够在移动的过程中采集多个位置的环境监测数据,提高了监测的灵活性和覆盖度。并且,相较于在机房中的多个位置中部署固定的传感器的方式,本公开的方案降低了部署成本和部署的复杂度。
图2示例性地示出部分机房中制冷设备部署的示意图。在一些实施例中,为了更好地制冷和散热,制冷空调21位于机房的防火板22的下方、地面23的上方,其中防火板22上设置有孔洞220、以便冷风吹过。防火板22例如为通风板。制冷空调21产生的冷风通过防火板22吹向上方,如图2中虚线箭头所示,使计算机工作站不至于过热。在一些实施例中,环境监测装置100、或者环境监测装置100所在的设备运行在防火板22上方,即环境监测数据的一个或多个采集位置包括通风板所在位置的上方。此时,环境监测装置100中的传感模块1100部署在环境监测装置100的下方,以便感测到制冷空调21送出的冷风。下面参考图3描述本公开传感模块1100的位置部署方式。
图3A为根据本公开另一些实施例的环境监测装置的结构示意图。如图3A所示,该实施例的监测装置300包括传感模块3100、控制器3200、可移动部件3300和底盘3400。底盘3400包括开口3401,传感模块3100设置在底盘3400中、并且位于开口3401对应的位置处,即,位于制冷空调吹进底盘3400的风所在的路径上。
在一些实施例中,底盘3400是一个腔体、包括顶板和底板。开口3401设置在底板上,传感模块3100固定在顶板的内壁上、并且正对开口3401。
在IDC机房中,当空调位于通风板下方时,冷风从通风板下向上送风,以对机房中的设备进行降温。通过在环境监测装置的底盘的底板设置开口,使得传感模块能够在冷风传送的方向上不受遮挡地检测风速和温度。并且,当监测装置在机房内移动时,在水平方向上会产生气流。通过将传感模块设置在底盘内部,能够避免移动过程中的水平气流对温度和风速的影响。因此,提高了环境监测数据的准确性。
图3B示例性地示出了环境监测装置的底盘及其附近部件的底视图。底盘3400的外侧底部还设置有动力轮3301和万向轮3302。传感模块3100设置在底盘3400中、并且位于开口3401对应的位置处。
从而,在监测装置300的移动过程中,传感模块3100能够感测到从下方吹来的冷风,以便进行更准确的测量,并且能够受到底盘的保护。
根据需要,也可以直接将感模块3100设置在底盘3400外侧底部。
下面参考图4描述本公开传感模块的实施例。
图4为根据本公开一些实施例的传感模块的结构示意图。如图4所示,该实施例的传感模块4000包括传感器4100和计算部件4200。传感器4101被配置为将感测数据转换为电信号;计算部件4102被配置为根据预设的电信号与环境监测数据之间的对应关系,确定转换的电信号对应的环境监测数据。传感器4100可以根据需要设置一个或多个。
在一些实施例中,传感器为风速传感器、或温度传感器等等。图5为根据本公开另一些实施例的传感模块的结构示意图。如图5所示,该实施例的传感模块5000包括计算部件5200,计算部件5200例如为单片机。
在一些实施例中,传感模块5000还包括风速传感器5101、电压跟随器5301、第一模数转换器5401,其中,风速传感器5101、电压跟随器5301、第一模数转换器5401、计算部件5200依次连接。风速传感器5101被配置为根据感测数据产生第一模拟电压;电压跟随器5301与风速传感器5101连接,被配置为获取第一模拟电压;第一模数转换器5401与电压跟随器5301连接,被配置为将第一模拟电压转换为第一数字信号;计算部件5200与第一模数转换器5401连接,被配置为将第一数字信号转换为风速值。
在一些实施例中,风速传感器5101感测的风速信息与第一模拟电压之间存在线性转换关系。
在一些实施例中,传感模块5000还包括温度传感器5102、线性放大器5302、第二模数转换器5402,其中,温度传感器5102、线性放大器5302、第二模数转换器5402、计算部件5200依次连接。温度传感器5102包括电阻,电阻随温度变化而产生阻值变化,温度传感器5102被配置为输出第二模拟电压,其中,第二模拟电压根据电阻的阻值确定,即,阻值变化会影响第二模拟电压的变化,线性放大器5302与温度传感器5102连接,被配置为对第二模拟电压进行放大处理,输出第三模拟电压;第二模数转换器5402与线性放大器5302连接,被配置为将第三模拟电压转换为第二数字信号;计算部件5200与第二模数转换器5402连接,被配置为将第二数字信号转换为温度值。
在一些实施例中,温度传感器5102为PT100温度传感器。
通过上述实施例,可以将通过传感器获得的感测结果通过电信号传送给计算部件,并由计算部件解算出相应的环境监测数据。
在一些实施例中,环境监测装置还具备导航功能。下面参考图6描述本公开环境监测装置的实施例。
图6为根据本公开又一些实施例的环境监测装置的结构示意图。如图6所示,该实施例的环境监测装置600包括传感模块6100、控制器6200、可移动部件6300和导航定位系统6400。导航定位系统6400被配置为向控制器6200发送环境监测装置的导航信息和位置信息,以便控制器6200根据导航信息和位置信息指示环境监测装置600的可移动部件6300移动。在一些实施例中,控制器6200还可以根据位置信息确定位置和环境监测数据之间的对应关系。
在一些实施例中,当环境监测装置运行在具有通风板、并且空调设置在通风板下方的环境时,控制器6200进一步被配置为:响应于环境监测装置600的当前位置信息与预设的通风板所在的位置信息一致,获取所述传感模块采集的当前环境监测数据,并记录所述当前位置信息与所述当前环境监测数据之间的对应关系。
在一些实施例中,导航定位系统6400进一步被配置为存储导航路线、并向控制器6200发送导航信息,其中,导航路线包括通风板所在的位置;控制器6200进一步被配置为根据导航信息和所述位置信息控制所述可移动部件移动。
从而,环境监测装置能够监测环境中空调的制冷情况,以便及时发现有故障的空调。
在一些实施例中,环境监测装置是一种巡检机器人。下面参考图7描述本公开巡 检机器人的控制系统的实施例。
图7为根据本公开一些实施例的巡检机器人的控制系统的结构示意图。如图7所示,该实施例的控制系统70可以包括传感组件和主控组件。
传感组件包括风速传感器7101、电压跟随器7301、模数转换器7401、PT100温度传感器7102、线性放大器7302、模数转换器7402和单片机7200。风速传感器7101、电压跟随器7301、模数转换器7401依次电路连接,PT100温度传感器7102、线性放大器7302、模数转换器7402依次电路连接,模数转换器7401和模数转换器7402分别通过SPI接口与单片机7200连接。单片机7200通过CAN收发电路750连接到机器人CAN总线760,机器人CAN总线760与机器人主控制器770连接。
主控组件包括机器人主控制器770、导航系统780、电机7901和电机驱动器7902。机器人主控制器770通过电机驱动器7902驱动电机7901,导航系统780与机器人主控制器770连接。机器人主控制器770可以与外部设备进行通信以交换数据。
当包括控制系统70的机器人开始巡检时,机器人主控制器770从导航系统780实时获取机器人在地图上的位置,并根据自身位置向电机驱动器7902发送指令以驱动电机7901转动,使得机器人按照规划的路径移动。
当机器人到达通风板上方时,机器人主控制器770通过CAN总线760下发风速和温度读取指令。CAN收发电路750进行电平转换,并将转换后的指令发送给单片机7200。单片机7200获取风速和温度读取指令
风速传感器7101将风速值按照线性转换关系,转换为模拟电压。风速传感器7101将输出的模拟电压输入到电压跟随器7301,电压跟随器7301将模拟电压输入到模数转换器7401。模数转换器7401将模拟电压转换为数字信号,并通过SPI接口将数字信号输出到单片机7200。单片机7200解算出当前的风速值。例如,风速传感器7101的输入电压可以是24V,输出模拟电压可以是0~10V,对应风速值0~10m/s。
PT100温度传感器7102随着温度变化会产生电阻的变化,变化的电阻会反应出分压值的变化。PT100温度传感器7102两端的模拟电压的变化经过线性放大器7302放大处理后输入到模数转换器7402,模数转换器7402将模拟电压值转换为数字信号,并通过SPI(Serial Peripheral Interface,串行外设接口)将数字信号发送给单片机7200。单片机7200解算出当前的温度值。例如,PT100的阻值与温度有对应的曲线关系,通过查表或者曲线公式,能够转换出温度值。
单片机7200将解算出的温度值和风速值通过CAN总线760发送给机器人主控制 器770,机器人主控制器770将风速和温度值与地图上的相应坐标绑定。
在一些实施例中,当某些位置点风速过低或者温度过高时,机器人产生报警。在一些实施例中,当机器人预先存储了空调与位置之间的对应关系时,报警中包括空调标识以及风速、温度等信息,以便能够定位故障的空调。
下面参考图8描述本公开巡检系统的实施例。
图8为根据本公开一些实施例的巡检系统的结构示意图。如图8所示,该实施例的巡检系统80包括环境监测装置810以及显示终端820。显示终端820被配置为获取并显示环境监测装置810所在位置与在该位置获取的环境监测数据之间的对应关系。
例如,环境监测装置810测量出整个机房内多个位置的温度和风速值,并通过终端设备820显示出机房内风速和温度点云图。
显示终端820例如为移动终端、服务器、监控平台等等。
下面参考图9描述本公开环境监测方法的实施例。
图9为根据本公开一些实施例的环境监测方法的流程示意图。如图9所示,该实施例的环境监测方法包括步骤S902。
在步骤S902中,获取环境监测装置在一个或多个位置时,环境监测装置的传感模块采集的环境监测数据,其中,环境监测装置具有用于带动传感模块移动的可移动部件和底盘,底盘包括设置有开口的底板,传感模块设置在底盘中,并且位于开口对应的位置处。环境监测装置的具体实施方式参考前述各个实施例,这里不再赘述。
在一些实施例中,环境监测数据包括风速和温度中的至少一种。
在一些实施例中,响应于环境监测装置到达预设位置,获取环境监测装置采集的环境监测数据。
根据需要,该实施例的方法还可以包括步骤S904。
在步骤S904中,记录环境监测装置所在位置与在该位置获取的环境监测数据之间的对应关系。
在一些实施例中,响应于环境监测数据超出预设范围,产生告警信息。
图10为根据本公开另一些实施例的环境监测装置的结构示意图。如图10所示,该实施例的环境监测装置100包括:存储器1010以及耦接至该存储器1010的处理器1020,处理器1020被配置为基于存储在存储器1010中的指令,执行前述任意一个实施例中的环境监测方法。
其中,存储器1010例如可以包括系统存储器、固定非易失性存储介质等。系统 存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
图11为根据本公开又一些实施例的环境监测装置的结构示意图。如图11所示,该实施例的环境监测装置110包括:存储器1110以及处理器1120,还可以包括输入输出接口1130、网络接口1140、存储接口1150等。这些接口1130,1140,1150以及存储器1110和处理器1120之间例如可以通过总线1160连接。其中,输入输出接口1130为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口1140为各种联网设备提供连接接口。存储接口1150为SD卡、U盘等外置存储设备提供连接接口。
本公开的实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现前述任意一种环境监测方法。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解为可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/ 或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种环境监测装置,包括:
    传感模块,被配置为采集环境监测数据;
    可移动部件,用于带动所述传感模块移动;
    控制器,被配置为在所述可移动部件的移动过程中,获取环境监测装置在一个或多个位置时对应的环境监测数据;以及
    底盘,所述底盘包括设置有开口的底板,其中,所述传感模块设置在所述底盘中,并且位于所述开口对应的位置处。
  2. 根据权利要求1所述的环境监测装置,其中,所述一个或多个位置包括通风板所在位置的上方,空调位于所述通风板下方、并且向所述通风板所在方向送风。
  3. 根据权利要求1所述的环境监测装置,其中,所述传感模块包括风速传感器或温度传感器中的至少一种。
  4. 根据权利要求1~3中任一项所述的环境监测装置,其中,所述传感模块包括:
    传感器,被配置为将感测数据转换为电信号;以及
    计算部件,被配置为根据预设的电信号与环境监测数据之间的对应关系,确定转换后的所述电信号对应的环境监测数据。
  5. 根据权利要求4所述的环境监测装置,其中:
    所述传感器为风速传感器,被配置为根据感测数据产生第一模拟电压;
    所述传感模块还包括:
    电压跟随器,与所述风速传感器连接,被配置为获取所述第一模拟电压;以及
    第一模数转换器,与所述电压跟随器连接,被配置为将所述第一模拟电压转换为第一数字信号;
    所述计算部件与所述第一模数转换器连接,被配置为将所述第一数字信号转换为风速值。
  6. 根据权利要求4所述的环境监测装置,其中:
    所述传感器为温度传感器,包括电阻,所述电阻随温度变化而产生阻值变化,所述温度传感器被配置为输出第二模拟电压,其中,所述第二模拟电压根据所述电阻的阻值确定;
    所述传感模块还包括:
    线性放大器,与所述温度传感器连接,被配置为对所述第二模拟电压进行放大处理,输出第三模拟电压;以及
    第二模数转换器,与所述线性放大器连接,被配置为将所述第三模拟电压转换为第二数字信号;以及
    所述计算部件与所述第二模数转换器连接,被配置为将所述第二数字信号转换为温度值。
  7. 根据权利要求2所述的环境监测装置,其中:
    所述环境监测装置还包括:导航定位系统,被配置为向所述控制器发送所述环境监测装置的位置信息;并且,
    所述控制器进一步被配置为:响应于所述环境监测装置的当前位置信息与预设的通风板所在的位置信息一致,获取所述传感模块采集的当前环境监测数据,并记录所述当前位置信息与所述当前环境监测数据之间的对应关系。
  8. 根据权利要求7所述的环境监测装置,其中:
    所述导航定位系统进一步被配置为存储导航路线、并向所述控制器发送导航信息,其中,所述导航路线包括所述通风板所在的位置;
    所述控制器进一步被配置为根据所述导航信息和所述位置信息控制所述可移动部件移动。
  9. 根据权利要求1~3中任一项所述的环境监测装置,其中,所述控制器进一步被配置为响应于环境监测数据超出预设范围,产生告警信息。
  10. 根据权利要求1~3中任一项所述的环境监测装置,其中,所述环境监测装置是巡检机器人。
  11. 一种巡检系统,包括:
    权利要求1~10中任一项所述的环境监测装置;以及
    显示终端,被配置为获取并显示环境监测装置所在位置与在该位置获取的环境监测数据之间的对应关系。
  12. 一种环境监测方法,包括:
    获取环境监测装置在一个或多个位置时,环境监测装置的传感模块采集的环境监测数据,其中,所述环境监测装置具有用于带动所述传感模块移动的可移动部件和底盘,所述底盘包括设置有开口的底板,所述传感模块设置在所述底盘中,并且位于所 述开口对应的位置处。
  13. 一种环境监测装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求12所述的环境监测方法。
  14. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求12所述的环境监测方法。
PCT/CN2020/109505 2019-09-18 2020-08-17 环境监测装置、方法和巡检系统 WO2021052079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910878508.4 2019-09-18
CN201910878508.4A CN110549312B (zh) 2019-09-18 2019-09-18 环境监测装置、方法和巡检系统

Publications (1)

Publication Number Publication Date
WO2021052079A1 true WO2021052079A1 (zh) 2021-03-25

Family

ID=68740588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109505 WO2021052079A1 (zh) 2019-09-18 2020-08-17 环境监测装置、方法和巡检系统

Country Status (2)

Country Link
CN (1) CN110549312B (zh)
WO (1) WO2021052079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116227752A (zh) * 2023-05-09 2023-06-06 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110549312B (zh) * 2019-09-18 2021-10-01 北京海益同展信息科技有限公司 环境监测装置、方法和巡检系统
CN114216496A (zh) * 2021-11-03 2022-03-22 中科合肥技术创新工程院 一种智能座便器功能指标的智能检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075918A (ja) * 1993-06-15 1995-01-10 Hirose Denshi Syst Kk パチンコ台島巡回用ロボット走行制御方法ならびにロボット装置
CN205726056U (zh) * 2016-07-04 2016-11-23 国家电网公司 机房监控装置
CN207139822U (zh) * 2017-09-12 2018-03-27 北京中油瑞飞信息技术有限责任公司 数据中心巡检机器人
CN108206849A (zh) * 2016-12-20 2018-06-26 北京小米移动软件有限公司 环境监测方法、装置、终端及系统
CN108890614A (zh) * 2018-09-04 2018-11-27 郑州云海信息技术有限公司 一种数据中心智能机器人装置及实现方法
CN110161278A (zh) * 2019-05-24 2019-08-23 北京海益同展信息科技有限公司 移动设备与机房巡检机器人
CN110154051A (zh) * 2019-05-30 2019-08-23 北京海益同展信息科技有限公司 机房巡检控制方法、装置、设备及存储介质
CN209394698U (zh) * 2018-12-18 2019-09-17 华南理工大学广州学院 一种智能巡检机器人控制装置
CN110549312A (zh) * 2019-09-18 2019-12-10 北京海益同展信息科技有限公司 环境监测装置、方法和巡检系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512261B2 (ja) * 2009-12-25 2014-06-04 新菱冷熱工業株式会社 天井内モニタリングロボットシステム
CN203285487U (zh) * 2013-05-24 2013-11-13 黎城县综合科学技术研究中心 一种带有定位功能的井下环境监测装置
CN206086962U (zh) * 2016-08-30 2017-04-12 江苏安奇正消防设备有限公司 一种具有行走底盘的远程控制型环境监察设备
CN108714886A (zh) * 2018-08-13 2018-10-30 四川桑瑞思环境技术工程有限公司 一种数据中心巡检机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075918A (ja) * 1993-06-15 1995-01-10 Hirose Denshi Syst Kk パチンコ台島巡回用ロボット走行制御方法ならびにロボット装置
CN205726056U (zh) * 2016-07-04 2016-11-23 国家电网公司 机房监控装置
CN108206849A (zh) * 2016-12-20 2018-06-26 北京小米移动软件有限公司 环境监测方法、装置、终端及系统
CN207139822U (zh) * 2017-09-12 2018-03-27 北京中油瑞飞信息技术有限责任公司 数据中心巡检机器人
CN108890614A (zh) * 2018-09-04 2018-11-27 郑州云海信息技术有限公司 一种数据中心智能机器人装置及实现方法
CN209394698U (zh) * 2018-12-18 2019-09-17 华南理工大学广州学院 一种智能巡检机器人控制装置
CN110161278A (zh) * 2019-05-24 2019-08-23 北京海益同展信息科技有限公司 移动设备与机房巡检机器人
CN110154051A (zh) * 2019-05-30 2019-08-23 北京海益同展信息科技有限公司 机房巡检控制方法、装置、设备及存储介质
CN110549312A (zh) * 2019-09-18 2019-12-10 北京海益同展信息科技有限公司 环境监测装置、方法和巡检系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116227752A (zh) * 2023-05-09 2023-06-06 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统
CN116227752B (zh) * 2023-05-09 2023-10-20 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统

Also Published As

Publication number Publication date
CN110549312B (zh) 2021-10-01
CN110549312A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021052079A1 (zh) 环境监测装置、方法和巡检系统
CN111108457B (zh) 用于运行机器人控制系统的方法、设备和计算机程序
EP1716733B1 (en) Airflow detection system having an airflow indicating device
US8396591B2 (en) System and method for data collection and analysis using robotic devices
US8463436B2 (en) Apparatus, method and medium for simultaneously performing cleaning and creation of map for mobile robot
CN105835059B (zh) 一种机器人控制系统
US8812275B2 (en) Modeling movement of air under a floor of a data center
TW201312513A (zh) 感測器群環境事件偵測
JP5038234B2 (ja) サーバーコンピュータの温度監視方法、及びその装置
CN207611295U (zh) 智能温控配电柜及其监控系统
US10941028B2 (en) Safety system
JP2021092381A (ja) 環境監視装置および環境監視システムおよび環境監視プログラムおよび環境監視記録媒体
CN112446104A (zh) 真实设备与其数字孪生之间的偏差的识别
KR20170070643A (ko) 관리 장치 및 설비의 관리 방법
CN111720955A (zh) 定位系统和用于通风机定位的方法
JP6494811B1 (ja) 温度気流計測装置、温度気流計測システム及び温度気流画像生成方法
CN106370343B (zh) 风机特性多点压力同步测量测试系统
CN111999756A (zh) 全自动氚表面污染巡测系统及应用方法
CN111800992A (zh) 制冷设备控制方法、装置、设备及计算机可读存储介质
KR100703882B1 (ko) 단일 카메라 기반 포즈인식이 가능한 이동로봇 및 그 방법
JP5910322B2 (ja) 空調制御装置及びプログラム
CN108007635B (zh) 一种机车机械间微正压的测试方法
CN104198833B (zh) 特殊图样自动化辨识之检测系统及其方法
CN104457826A (zh) 自主移动高精度无线热环境测量系统及方法
KR20240031113A (ko) 데이터센터 랙 조립체 내의 잠재적인 열 이상의 로봇 지원 모니터링

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865852

Country of ref document: EP

Kind code of ref document: A1