WO2021051734A1 - 一种光纤激光切割头水冷结构 - Google Patents

一种光纤激光切割头水冷结构 Download PDF

Info

Publication number
WO2021051734A1
WO2021051734A1 PCT/CN2020/073267 CN2020073267W WO2021051734A1 WO 2021051734 A1 WO2021051734 A1 WO 2021051734A1 CN 2020073267 W CN2020073267 W CN 2020073267W WO 2021051734 A1 WO2021051734 A1 WO 2021051734A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water tank
metal body
groove
copper ring
Prior art date
Application number
PCT/CN2020/073267
Other languages
English (en)
French (fr)
Inventor
常勇
Original Assignee
佛山市宏石激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市宏石激光技术有限公司 filed Critical 佛山市宏石激光技术有限公司
Priority to DE112020003451.8T priority Critical patent/DE112020003451T5/de
Publication of WO2021051734A1 publication Critical patent/WO2021051734A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the invention relates to the technical field of an optical fiber laser cutting head, in particular to a water-cooling structure of an optical fiber laser cutting head.
  • a large amount of heat generated by the fiber laser cutting machine during cutting will be transferred to the nozzle.
  • the higher the laser power the more and more serious the nozzle heating. Once the temperature of the nozzle is too high, the laser cutting machine can no longer perform cutting work and may even be damaged.
  • the traditional cooling measure is to blow continuously at the nozzle of the laser cutting machine, but the effect of this cooling method is not obvious, and the temperature of the laser cutting machine nozzle is still very high during cutting.
  • the prior art CN207681759U discloses a cooling protection device for a fiber laser cutting head.
  • a water injection cavity is provided on the outer wall of the laser cutting head.
  • the axial cross-sectional area of the water injection cavity is circular, and the water injection cavity includes an upper water injection cavity.
  • the connecting block is fixedly arranged at the lower end of the upper water injection cavity, the connecting block is provided with an internal threaded hole, and the lower
  • the upper end of the water injection cavity is fixedly provided with screws that match the internal threaded holes, and the cavity walls of the upper water injection cavity and the lower water injection cavity are provided with water injection ports.
  • the cooling protection device quickly cools the optical lens provided in the body through the flowing water flow, so as to realize the rapid cooling of the fiber laser cutting head; the cooling device adopts a water cooling method that combines upper and lower cooling cavities, and heats by flowing water. Increase the heat dissipation area, but the solution of the cooling protection device of the fiber laser cutting head is too ideal, and it is difficult to manufacture and difficult to achieve.
  • the purpose of the present invention is to provide a fiber laser cutting head water cooling structure, which includes a metal body, a first insulating block, a second insulating block, a copper ring, a nozzle, a metal shell, a water pipe connector, and a waterproof plug And focusing lens protection device, the water-cooled structure of the fiber laser cutting head can take away most of the heat from the nozzle, has a good cooling effect, is easy to process, and can achieve a cooling method, greatly improves the stability of the cutting effect, and greatly reduces nozzle loss , Avoid the short circuit of the capacitive sensor, do not affect the normal use of the fiber laser cutting head, and have the advantages of simple operation.
  • a water-cooled structure of an optical fiber laser cutting head includes a metal body, a first insulating block, a second insulating block, a copper ring, a nozzle, and a metal shell; the bottom end of the metal body and the top end of the copper ring are provided with a The first insulating block, the lower part of the copper ring is provided with the second insulating block, the inner side of the lower end of the metal casing is in contact with the outer side of the second insulating block, and the upper end of the metal casing is in contact with the metal body Connected, the first insulating block and the second insulating block make the metal body and the copper ring non-conducting, and a connection is formed between the metal body, the first insulating block and the copper ring The waterway, the waterway forms a water inlet and a water outlet on the metal body;
  • the water inlet and the water outlet are respectively located on the left and right sides of the upper part of the metal body, and the water channels on the left and right sides of the metal body are the water inlet and the water outlet respectively, and the water inlet extends horizontally to the right.
  • the left side of the upper end surface of the metal body extends downward toward the core axis to form a second water tank, and the middle part of the left side of the lower end of the metal body extends upward toward the outside to form a third water tank.
  • the second water tank and the third water tank communicate with each other to form the water inlet;
  • the water outlet extends horizontally to the left to form a fourth water tank, and the right side of the upper end surface of the metal body extends downward toward the core axis to form a fifth A water tank, the middle part of the right side of the lower end of the metal body extends upwards toward the outside to form a sixth water tank, and the fourth water tank, the five water tank and the sixth water tank are formed to communicate with the water outlet;
  • the inlet The waterway and the water outlet are symmetrically arranged with the mandrel as the center line;
  • Both the inlet and outlet channels are provided with insulating pipes, and the top end of the nozzle is directly connected to the bottom end of the copper ring.
  • the angle between the first water tank and the second water tank along the water flow direction is an obtuse angle
  • the angle between the first water tank and the second water tank along the water flow direction ranges from 120° to 150° Between;
  • the angle between the second water tank and the third water tank along the water flow direction is an obtuse angle
  • the angle between the second water tank and the third water tank along the water flow direction ranges from 120°-150°
  • the angle between the first water tank and the second water tank along the water flow direction is an obtuse angle
  • the angle between the second water tank and the third water tank along the water flow direction is an obtuse angle, which can reduce the water path The flow resistance of flowing water in the middle.
  • the first insulating block is provided with two centrally symmetrical oblique through holes, and the centers of the two oblique through holes on the upper end surface of the first insulating block are respectively connected to the third water tank and the first The centers of the slots at the bottom of the six water tanks coincide with each other.
  • the upper end surface of the copper ring is provided with a "C"-shaped groove.
  • the "C"-shaped groove communicates with the two oblique through holes. Under the premise that the C"-shaped groove can ensure that the flowing water in the waterway will not flow back, try to increase the volume of the "C"-shaped groove to maximize the flow of the flowing water in the waterway, thereby improving the cooling effect of the nozzle.
  • the diameter of the oblique through hole is equal to the diameters of the third and sixth water troughs, and the width of the top end of the "C"-shaped groove is larger than the diameter of the oblique through hole. Since the diameter of the oblique through hole is equal to the diameter of the third water tank, when the flowing water from the third water tank enters the oblique through hole or the flowing water from the oblique through hole enters the third water tank.
  • the water flow area remains unchanged, and thus the flow rate does not change; because the width of the top of the "C"-shaped groove is greater than the diameter of the oblique through hole, when the water flows from the oblique through hole at the water inlet end When entering the "C"-shaped groove, the water flow area increases, thereby reducing the flow rate, and the time for the flowing water to flow in the "C"-shaped groove becomes longer, which can take away most of the heat of the nozzle, and further Improve the cooling effect of the nozzle; when the water flowing from the "C” groove enters the oblique through hole at the end of the water outlet, the water flow area is reduced, so that the flow velocity increases, and the "C" groove can be taken away as soon as possible After absorbing the heat of the nozzle, the flowing water has a higher temperature.
  • the "C"-shaped groove includes an upper groove and a lower groove, the upper groove is communicated with the lower groove, and the lower groove faces the mandrel from the inner side of the bottom end of the upper groove Extending downwards.
  • the lower groove extends downwards toward the core axis, that is, the lower groove extends toward the nozzle direction, which not only increases the volume and thus the flow of flowing water, but also makes the flowing water more Being close to the nozzle further improves the cooling effect of the nozzle.
  • the inner wall inside the upper groove includes a first inner wall with a vertical upper part and a second inner wall with an oblique lower part.
  • the first inner wall is connected to the second inner wall, and the second inner wall faces downward from the top.
  • the mandrel is inclined
  • the third inner wall inside the lower groove is connected to the second inner wall
  • the inclination angle of the third inner wall is equal to the inclination angle of the second inner wall.
  • the second inner wall is inclined from top to bottom toward the mandrel, which can further increase the volume of the "C"-shaped groove and further increase the flow rate in the flowing water, thereby further improving the cooling effect of the nozzle.
  • the temperature of the nozzle is low, which greatly improves The stability of the cutting effect, the loss of the nozzle is greatly reduced.
  • the lower end slots of the third water tank and the sixth water tank are both provided with concentric counterbore grooves, the counterbore grooves are provided with a sealing ring, and the insulating pipe is connected from the water inlet to the The water outlet extends to be flush with the lower surface of the sealing ring, and the outer wall of the insulating tube is in interference fit with the inner wall of the sealing ring;
  • the lower end surface of the metal body is located in the third water tank and the first
  • the inner side of the lower end slot of the six water tank is provided with a first circumferential groove;
  • the upper end surface of the copper ring is located inside and outside the "C"-shaped groove, respectively, with a second circumferential groove and a third groove Grooves, the first groove, the second groove, and the third groove are all provided with a waterproof ring.
  • the metal body and the workpiece to be cut are both charged bodies, which are used as the capacitive sensor Two plates with electrodes.
  • the capacitance value is inversely proportional to the distance.
  • the capacitance value can be measured by measuring the capacitance value.
  • the counterbore groove is provided with a sealing ring
  • the insulating tube extends from the water inlet to be flat with the lower surface of the sealing ring
  • the outer wall of the insulating tube and the inner wall of the sealing ring are in an interference fit to prevent the flowing water from leaking into the sink of the metal body after the water is passed, so as to prevent the flowing water in the waterway from contacting the copper ring with the If the metal body is conductive, if the copper ring and the metal body are conductive, the distance between the two electrode plates of the capacitive sensor will be reduced, and the capacitive sensor cannot work normally; the first groove and the second Both the second groove and the third groove are provided with a waterproof ring to prevent the flowing water in the water path from leaking into the inside of the cutting head, thereby preventing the leaked water from guiding the copper ring and the metal body inside the cutting head.
  • the inner wall of the copper ring is provided with insulating material.
  • the upper part of the second water tank and the fourth water tank are both provided with waterproof plugs.
  • the metal body and the workpiece to be cut are both charged bodies, which are used as the two electrode plates of the capacitance sensor respectively. There is a gap between the lower surface of the charged metal body and the upper surface of the workpiece to be cut, forming For a certain capacitance, the capacitance value is inversely proportional to the distance. By measuring the capacitance value, the vertical distance between the lower surface of the metal body and the upper surface of the workpiece to be cut is known, so as to control the distance between the fiber laser cutting head and the workpiece to be cut.
  • the first insulating block and the second insulating block make the copper ring and the metal body non-conducting, a strip is formed between the metal body, the first insulating block and the copper ring
  • An insulated pipe is provided in the water path of the metal body to prevent the copper ring and the metal plate body from being connected by the flowing water in the water path.
  • the water path The flow rate of the medium flowing water is large, and the flowing water in the copper ring is close to the nozzle and the flow rate is slow, so that the flowing water can take away most of the heat of the nozzle, and the cooling effect is good.
  • the water inlet and outlet of the metal body are formed by three sections of water tanks, which can not only reduce the flow resistance of flowing water in the water path, but also only need to drill holes in the corresponding position of the metal body to produce six tanks.
  • the section water tanks respectively form an inlet and an outlet, that is, the metal body is easy to process and can realize the cooling method of this solution.
  • the low temperature of the nozzle can greatly improve the stability of the cutting effect of the fiber laser cutting machine, and the loss of the nozzle is also greatly reduced.
  • the inner wall of the copper ring is provided with insulating material, and the above-mentioned arrangement further avoids the metal
  • the conduction between the main body and the copper ring ensures the normal operation of the capacitance sensor and does not affect the normal use of the fiber laser cutting head.
  • Fig. 1 is a schematic cross-sectional view of a fiber laser cutting head according to an embodiment of the present invention.
  • Fig. 2 is a schematic longitudinal cross-sectional view of a fiber laser cutting head according to an embodiment of the present invention.
  • Fig. 3 is a schematic horizontal cross-sectional view of a fiber laser cutting head according to an embodiment of the present invention.
  • this embodiment discloses a water-cooling structure of a fiber laser cutting head, which includes a metal body 7, a first insulating block 4, a second insulating block 2, a copper ring 3, a nozzle 1, a metal casing 5, and a water pipe connection
  • a first insulating block 4 is provided between the bottom end of the metal body 7 and the top end of the copper ring 3
  • a second insulating block 2 is provided under the copper ring 3, and a metal shell
  • the inner side of the lower end of 5 abuts the outer side of the lower part of the second insulating block 2, the upper end of the metal shell 5 is connected to the metal body 7, and the first insulating block 4 and the second insulating block 2 make the metal body 7 and the copper ring 3 not conductive
  • metal A connected water path is formed between the body 7, the first insulating block 4 and the copper ring 3, and the water path forms a water inlet and a water outlet on the
  • the water inlet and the water outlet are respectively located on the left and right sides of the upper part of the metal body 7.
  • the water passages on the left and right sides of the metal body 7 are the water inlet and the water outlet respectively; from the water inlet horizontally to the right, a first water tank 71 is formed.
  • the outer side of the upper end surface of the main body extends downward toward the core axis to form a second water tank 72, and from the lower end of the metal body to the outside, a third water tank 73 extends upwards.
  • the first water tank 71, the second water tank 72, and the third water tank 73 are in communication with each other.
  • a water inlet is formed; the water outlet extends horizontally to the left to form a fourth water tank 74, the right side of the upper end surface of the metal body extends downwards toward the core axis to form a fifth water tank 75, and the middle of the right side of the lower end of the metal body faces the outside
  • a sixth water tank 76 extends upwards, and the fourth water tank 74, the five water tanks 75 and the sixth water tank 76 communicate with each other to form a water outlet; the water inlet and the outlet are symmetrically arranged with the mandrel as the center line;
  • Insulation pipes are installed in the inlet and outlet channels.
  • the top end of the nozzle 1 is directly connected to the bottom end of the copper ring 3.
  • the bottom end of the copper ring 3 is provided with internal threads, and the top end of the nozzle 1 is provided with an inner thread that is connected to the copper ring 3 above.
  • the thread is compatible with the external thread.
  • the external thread of the nozzle 1 matches the internal thread of the copper ring 3 so that the nozzle 1 and the copper ring 3 are directly connected, so that the nozzle 1 and the copper ring 3 are directly connected. Flowing water in the waterway can take away most of the heat from the nozzle.
  • the metal body 7 and the workpiece to be cut are both charged bodies. There is a gap between the lower surface of the charged metal body 7 and the upper surface of the workpiece to be cut to form a certain capacitance.
  • the capacitance value is inversely proportional to the distance. By measuring the capacitance The value knows the vertical distance between the lower surface of the metal body 7 and the upper surface of the workpiece to be cut, so as to control the distance between the fiber laser cutting head and the workpiece to be cut.
  • the first insulating block 4 and the second insulating block 2 make the copper ring There is no conduction between 3 and the metal body 7, and a connected water path is formed between the metal body 7, the first insulating block 4, and the copper ring 3, and an insulating pipe is provided in the water path of the metal body 7 to avoid flow in the water path.
  • the water connects the copper ring 3 with the metal body 7. Under the condition of ensuring the normal operation of the capacitance sensor, the flow of flowing water in the water path is large, the flowing water in the copper ring 3 is close to the nozzle 1 and the flow rate is slow, the nozzle 1 and the copper ring 3 The direct connection enables the flowing water to take away most of the heat from the nozzle 1, and the cooling effect is good.
  • the water inlet and outlet of the metal body 7 are formed by three-stage water tanks, which can not only reduce the flow resistance of flowing water in the water channel, but also only need to drill holes in the corresponding positions of the metal body 7 to easily manufacture six-stage water tanks.
  • the water inlet and outlet are formed, the metal body 7 is convenient to process, and the cooling method of this solution can be realized.
  • the upper end surface and the lower end surface of the first insulating block 4 are respectively provided with a first positioning hole and a second positioning hole, and the depth of the first positioning hole is greater than the depth of the second positioning hole, and the lower end of the metal body 7 is provided with a first positioning hole and a second positioning hole.
  • a first protrusion corresponding to the first positioning hole the first protrusion is trapped in the first positioning hole to realize the positioning and assembly of the first insulating block 4 and the metal body 7; the upper end of the copper ring 3 is provided with a second positioning hole corresponding to the The second protrusion is inserted into the second positioning hole to realize the positioning and assembly of the first insulating block 4 and the copper ring 3; the lower outer side of the copper ring 3 is stepped, and the second insulating block 2 is also the same as the aforementioned In a stepped shape, the second insulating block 2 includes two vertical walls that are not collinear in different directions and a transverse wall connecting the two vertical walls. The inner side of the second insulating block 2 fits against the copper ring completely.
  • the inner side of the bottom end of the metal shell 5 fits against the outside of the lateral wall of the second insulating block 2, and the top end of the metal shell 5 is threadedly connected with the metal body 7, specifically, the top end of the metal shell 5
  • the inside is provided with internal threads
  • the bottom end of the metal body 7 is provided with external threads
  • the internal threads on the top end of the metal shell 5 cooperate with the external threads on the bottom end of the metal body 7 to realize threaded connection, so that the metal body 7, the first insulating block 4, and the copper
  • the ring 3, the second insulating block and the metal shell 5 are fixed together, which facilitates the assembly of the metal body 7, the first insulating block 4, the copper ring 3, the second insulating block 2 and the metal shell 5 of the fiber laser cutting head. In the case of, it can prevent the flowing water in the waterway from penetrating into the inside of the fiber laser cutting head.
  • the angle between the first water tank 71 and the second water tank 72 along the water flow direction is an obtuse angle, and the angle of the angle between the first water tank 71 and the second water tank 72 along the water flow direction ranges from 120° to 150°;
  • the angle between the second water tank 72 and the third water tank 73 along the water flow direction is an obtuse angle, and the angle between the second water tank 72 and the third water tank 73 along the water flow direction ranges from 120° to 150°; the same, the water outlet
  • the included angle of the three-stage water tank is the same as above.
  • the angle between the first water tank 71 and the second water tank 72 along the water flow direction is 135°
  • the angle between the second water tank 72 and the third water tank 73 along the water flow direction is 135°, which can better reduce The flow resistance of the flowing water in the waterway in the small metal body 7.
  • the first insulating block 4 is provided with two symmetrically centered oblique through holes 41, and the centers of the two oblique through holes 41 on the upper end surface of the first insulating block 4 are respectively connected to the third water groove 73 and the sixth water groove on the lower end surface of the metal body 7.
  • the centers of the lower end slots of 76 coincide, and the upper end surface of the copper ring 3 is provided with a "C"-shaped groove 31.
  • the "C”-shaped groove 31 communicates with the two oblique through holes 41; the "C"-shaped groove 31 can ensure On the premise that the flowing water will not flow back, try to increase the volume of the "C"-shaped groove so as to increase the flow rate of the flowing water in the water path as much as possible, so as to improve the cooling effect of the nozzle 1.
  • the diameters of the two oblique through holes 41 are equal to the diameters of the third water groove 73 and the sixth water groove 76, and the width of the top end of the "C"-shaped groove 31 is greater than the diameter of the oblique through hole 41;
  • the diameters of the water tank 73 and the sixth water tank 76 are the same.
  • the width of the top of the "C"-shaped groove 31 is greater than the diameter of the oblique through hole 41, when the flowing water from the oblique through hole 41 at the end of the water inlet enters the "C"-shaped groove, the water flow area increases and the flow rate decreases , The flowing time of the flowing water in the "C"-shaped groove 31 becomes longer, which can take away most of the heat of the nozzle 1, and further improve the cooling effect of the nozzle 1.
  • the flowing water from the "C"-shaped groove 31 enters the water outlet end When the oblique through hole 41 is formed, the water flow area is reduced and the flow velocity is increased, which can quickly take away the higher temperature flowing water in the "C"-shaped groove 31 after absorbing the heat of the nozzle 1.
  • the "C"-shaped groove 31 includes an upper groove 311 and a lower groove 312.
  • the upper groove 311 is in communication with the lower groove 312, and the lower groove 312 extends downward from the inner side of the bottom end of the upper groove 311 toward the core axis, that is, the lower groove 312 Extending in the direction close to the nozzle 1 will not only increase the volume and increase the flow rate of the flowing water, but the flowing water will be closer to the nozzle 1 and further improve the cooling effect of the nozzle 1.
  • the inner wall of the upper groove 311 includes a first inner wall with a vertical upper part and a second inner wall with a lower oblique direction.
  • the first inner wall is connected to the second inner wall, and the second inner wall is inclined from top to bottom toward the mandrel.
  • the third inner wall is connected to the second inner wall, and the inclination angle of the third inner wall is equal to the inclination angle of the second inner wall, which can further increase the volume of the "C"-shaped groove 31, and further increase the flow rate in the flowing water, thereby further increasing
  • the cooling effect of the nozzle 1 is that the temperature of the nozzle 1 is low, which can greatly improve the stability of the cutting effect, and the loss of the nozzle 1 is reduced.
  • the slots of the third water tank 73 and the sixth water tank 76 on the lower end of the metal body 7 are both provided with concentric counterbore grooves 78.
  • the counterbore grooves 78 are provided with a sealing ring 9, and the insulating pipes of the water channels in the metal body 7 are separated from the water inlet Both the water outlet and the water outlet extend to be flush with the lower surface of the sealing ring 9, and the outer wall of the insulating tube and the inner wall of the sealing ring 9 are interference fit; this prevents the flowing water in the water path from leaking into the sink of the metal body 7, thereby avoiding the copper ring 3 is connected to the metal body 7 to avoid the short circuit of the capacitance sensor and ensure the normal operation of the capacitance sensor.
  • the lower end surface of the metal body 7 is located inside the third tank 73 and the sixth tank 76 with a first circumferential groove 77, and the upper end surface of the copper ring 3 is located inside and outside the "C"-shaped groove 31.
  • the first groove 77, the second groove 32 and the third groove 33 are all equipped with a waterproof ring 6; to prevent the flowing water in the waterway from leaking to the fiber laser cutting head Internally, it is avoided that the leaking water connects the copper ring 3 with the metal body 7 inside the cutting head, so as to ensure the normal operation of the capacitance sensor.
  • the copper ring 3 is located on the outer side of the third groove 33 and is provided with three equiangularly uniformly distributed through grooves along the circumferential direction.
  • the first insulating block 4 is provided with three equiangularly uniformly distributed through holes corresponding to the through grooves one-to-one.
  • the metal body 7 The lower end surface of the through-hole is provided with threaded holes with equal angles and uniformly distributed one-to-one.
  • Screws 12 are used to pass through the through grooves and the through holes in sequence and connect with the threaded holes to connect the copper ring 3, the first insulating block 4 and the metal
  • the body 7 is fixedly connected, and an insulating sleeve is provided between the copper ring 3 and the screw 12, so that there is no contact between the copper ring 3 and the screw 12, so that the metal shell 5 and the metal body 7 are cut for a long time due to The movement or vibration of the fiber laser cutting head makes the connection between the metal shell 5 and the metal body 7 less firm. If the screw 12 is not used, the copper ring 3, the first insulating block 4 and the metal body 7 will be caused.
  • the connection between them has also become weaker, which will cause the flowing water in the waterway to leak into the fiber laser cutting head and cause conduction between the metal body 7 and the copper ring 3.
  • the screw 12 is used to connect the copper ring 3 and the second After an insulating block 4 is fixedly connected to the metal body 7, even if the metal shell 5 and the metal body 7 are not firmly connected, it will not affect the connection of internal components. This prevents the metal body 7 from conducting with the copper ring 3, which is to avoid When the capacitance sensor is short-circuited, the normal operation of the capacitance sensor is ensured; and since an insulating sleeve is provided between the screw 12 and the copper ring 3, the metal body 7 and the copper ring 3 are still in a non-conducting state.
  • the above-mentioned capacitance sensor is usually installed on the inner wall of the copper ring 3.
  • the inner wall of the copper ring 3 is provided with insulating material.
  • the insulating material may include spraying insulating paint on the inner wall of the copper ring 3. Even in the worst case, The flowing water in the waterway leaks into the inside of the fiber laser cutting head. Since the inner wall of the copper ring 3 is sprayed with insulating paint, the connection between the metal body 7 and the copper ring 3 is avoided, thereby ensuring the capacitance sensor Normal work does not affect the normal use of the fiber laser cutting head.
  • the upper part of the second water tank 72 and the fourth water tank 74 are both provided with waterproof plugs to prevent the excessive pressure of the flowing water in the water path from leaking from the upper part of the second water tank 72 and the fourth water tank 74.
  • the above-mentioned focusing lens protection device 8 is connected to the upper end surface of the metal body 7 to protect the focusing lens of the fiber laser cutting machine.
  • the two water pipe connectors 10 of the water cooling structure of the fiber laser cutting head are respectively connected to the corresponding water inlet and outlet pipes.
  • the contact water cooling system of the fiber laser cutting head is also started, and the water inlet pipe will flow
  • the water flows into the water inlet through the water pipe connector 10, flows through the first water tank 71, the second water tank 72, and the third water tank 73 in the insulating pipe of the metal body 7, and then flows through the oblique passage at the water inlet end of the first insulating block 4
  • the hole 41 flows into the "C"-shaped groove 31 of the copper ring 3.
  • the temperature of the nozzle 1 rises, the flowing water in the water path, especially the flowing water in the "C" groove 31 of the copper ring 3, can take away most of the nozzle 1
  • the heat of the nozzle 1 has a good cooling effect; the heat of the nozzle 1 is taken away at a lower temperature, which greatly improves the stability of the cutting effect of the fiber laser cutting machine, improves the cutting quality of the workpiece to be cut, and greatly reduces the loss of the nozzle 1 ;
  • the water-cooling structure of the fiber laser cutting head is provided with a sealing structure and an insulating structure, the metal body 7 and the copper ring 3 are in a non-conducting state, and the flowing water in the waterway is prevented from penetrating into the fiber laser cutting head, ensuring The normal operation of the capacitive sensor is not affected, and the normal use of the fiber laser cutting head is not affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种光纤激光切割头水冷结构,包括金属本体(7)、铜环(3)、喷嘴(1)及金属外壳(5);金属本体(7)与铜环(3)之间设有第一绝缘块(4),铜环(3)的下部设有第二绝缘块(2),金属外壳(5)抵触在第二绝缘块(2)的底端与金属本体(7)连接;金属本体(7)、第一绝缘块(4)、第二绝缘块(2)之间形成一条连通的水路。水路中的流动水能带走喷嘴绝大部分的热量,降温效果好。

Description

一种光纤激光切割头水冷结构 技术领域
本发明涉及光纤激光切割头的技术领域,具体涉及一种光纤激光切割头水冷结构。
背景技术
光纤激光切割机在切割时产生大量的热量会传递到喷嘴上,激光器功率越高,喷嘴受热就会越来越严重,一旦喷嘴的温度过高,激光切割机就不能再进行切割工作甚至会损坏喷嘴的正常使用,传统的降温措施是在激光切割机的喷嘴处不断地吹风,但是这种降温方式效果不太明显,激光切割机喷嘴的温度在切割时仍很高。
现有技术CN207681759U公开了一种光纤激光切割头的冷却保护装置,在激光切割头外壁设置注水腔,所述的注水腔的轴横截面积为圆环形,所述的注水腔包括上注水腔与下注水腔,所述的上注水腔与下注水腔通过连接块连接,所述的连接块固连设置在上注水腔的下端,所述的连接块设置有内螺纹孔,所述的下注水腔的上端固连设置有与内螺纹孔相配石的螺钉,所述上注水腔与下注水腔的腔壁上设置有注水口。虽然该冷却保护装置通过流动的水流使本体内设有的光学镜片快速冷却,从而实现对光纤激光切割头的快速冷却;降温装置采用上、下冷却腔结合的水冷方式,通过流动的水流散热,增加散热面积,但是该光纤激光切割头的冷却保护装置的方案太过于理想化,制造难度大,难以实现。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种光纤激光切割头水冷结构,其包括金属本体、第一绝缘块、第二绝缘块、铜环、喷嘴、金属外壳、水管连接头、防水塞及聚焦镜保护装置,该光纤激光切割头水冷结构具有能够带走喷嘴绝大部分的热量、降温效果好、结构便于加工,能够实现的降温方式、大大提升切割效果的稳定性、喷嘴损耗大大减少、避免电容传感器的短路、不影响光纤激光切割头的正常使用、操作简单的优点。
为实现上述发明目的,本发明采取的技术方案如下:
一种光纤激光切割头水冷结构,包括金属本体、第一绝缘块、第二绝缘块、铜环、喷嘴及金属外壳;所述金属本体的底端与所述铜环的顶端之间设有所述第一绝缘块,所述铜 环的下部设有所述第二绝缘块,所述金属外壳的下端内侧抵触在所述第二绝缘块的外侧,所述金属外壳的上端与所述金属本体连接,所述第一绝缘块与所述第二绝缘块使得所述金属本体与所述铜环不导通,所述金属本体、所述第一绝缘块与所述铜环之间形成一条连通的水路,所述水路在所述金属本体上形成一个进水口和一个出水口;
所述进水口及所述出水口分别位于所述金属本体上部的左侧及右侧,所述金属本体内左右两侧的水路分别为进水路及出水路,所述进水口水平向右延伸形成第一水槽,所述金属本体的上端面左侧朝向芯轴向下延伸形成第二水槽,所述金属本体的下端左侧的中部朝向外侧向上延伸形成第三水槽,所述第一水槽、所述第二水槽与所述第三水槽之间相互连通形成所述进水路;所述出水口水平向左延伸形成第四水槽,所述金属本体上端面右侧朝向芯轴向下延伸形成第五水槽,所述金属本体的下端右侧的中部朝向外侧向上延伸形成第六水槽,所述第四水槽、所述五水槽及所述第六水槽形成之间相互连通所述出水路;所述进水路与所述出水路以所述芯轴为中心线对称设置;
所述进水路及所述出水路内均设有绝缘管,所述喷嘴的顶端与所述铜环的底端直接连接。
作为优选,所述第一水槽与所述第二水槽沿水流方向的夹角为钝角,且所述第一水槽与所述第二水槽沿水流方向的夹角的角度范围在120°-150°之间;所述第二水槽与所述第三水槽沿水流方向的夹角为钝角,且所述第二水槽与所述第三水槽沿水流方向的夹角的角度范围在120°-150°之间,通过这样设置,所述第一水槽与所述第二水槽沿水流方向的夹角为钝角及所述第二水槽与所述第三水槽沿水流方向的夹角为钝角能够减小水路中流动水的流动阻力。
作为优选,所述第一绝缘块设有两个中心对称的斜通孔,且所述第一绝缘块上端面的两个所述斜通孔的中心分别与所述第三水槽及所述第六水槽的底端槽孔的中心重合,所述铜环的上端面设有“C”形槽,所述“C”形槽与两个所述斜通孔连通,通过这样设置,所述“C”形槽能保证水路中的流动水不会回流的前提下,尽量增大“C”形槽的容积从而尽量增大水路中流动水的流量,从而提高喷嘴的降温效果。
作为优选,所述斜通孔的直径与所述第三水槽及所述第六水槽的直径均相等,所述“C”形槽顶端的宽度大于所述斜通孔的直径,通过这样设置,由于所述斜通孔的直径与所述第三水槽的直径相等,当从第三水槽中的流动水进入所述斜通孔或从所述斜通孔中的流动水 进入与所述第三水槽对称设置的水槽时,水流面积不变,从而流速不变;由于“C”形槽顶端的宽度大于所述斜通孔的直径,当从进水一端的所述斜通孔中的流动水进入所述“C”形槽时,水流面积增大,从而流速减小,流动水在所述“C”形槽流动的时间变长,能带走所述喷嘴的绝大部分的热量,进一步提高喷嘴的降温效果;从所述“C”形槽中流动水进入出水一端的所述斜通孔中时,水流面积减小,从而流速增大,能尽快带走所述“C”形槽中吸收完所述喷嘴的热量后温度较高的流动水。
作为优选,所述“C”形槽包括上槽及下槽,所述上槽与所述下槽之间相连通,且所述下槽从所述上槽的底端内侧朝向所述芯轴向下延伸,通过这样设置,所述下槽朝向所述芯轴向下延伸,即下槽朝靠近所述喷嘴方向延伸,这样不仅能增大容积从而增大流动水的流量,而且流动水更加靠近所述喷嘴,进一步提高喷嘴的降温效果。
作为优选,所述上槽内侧的内壁包括上部竖直的第一内壁及下部斜向的第二内壁,所述第一内壁与所述第二内壁相连,所述第二内壁从上往下朝向所述芯轴倾斜,所述下槽内侧的第三内壁与所述第二内壁相连,且所述第三内壁的倾斜角度与所述第二内壁的倾斜角度相等,通过这样设置,由于所述第二内壁从上至下朝向所述芯轴倾斜,能够进一步增大“C”形槽的容积,进一步增大流动水中的流量,从而进一步提高喷嘴的降温效果,喷嘴温度低,大大地提升了切割效果的稳定性,喷嘴的损耗大大减少。
作为优选,所述第三水槽及所述第六水槽的下端槽孔均设有同心的沉孔槽,所述沉孔槽设有密封圈,所述绝缘管分别从所述进水口与所述出水口延伸至与所述密封圈的下表面平齐,且所述绝缘管的外壁与所述密封圈的内壁过盈配合;所述金属本体的下端面位于所述第三水槽及所述第六水槽的下端槽孔的内侧设有周向的第一凹槽;所述铜环的上端面位于所述“C”形槽的内侧和外侧分别设有周向第二凹槽和第三凹槽,所述第一凹槽、所述第二凹槽及所述第三凹槽均设有防水圈,通过这样设置,所述金属本体与被切割工件均为带电体,分别作为电容传感器的两个带电极板,带电的所述金属本体的下表面与带电的被切割工件的上表面之间存在间隙,形成一定的电容,电容值与距离成反比,通过测量电容值能够得知所述金属本体与被切割工件之间的距离,从而控制光纤激光切割头与被切割工件的距离;所述沉孔槽设有密封圈,绝缘管从进水口伸至与所述密封圈的下表面平齐,且所述绝缘管的外壁与所述密封圈的内壁过盈配合,避免通水后流动水漏出至所述金属本体的水槽内,从而避免水路中的流动水将所述铜环与所述金属本体导通,若所述铜环与所述金属本体导通会减小电容传感器的两个带电极板的距离,则电容传感器就不能正常工作;所 述第一凹槽、所述第二凹槽、所述第三凹槽均设有防水圈,避免水路中的流动水漏出到切割头的内部,从而避免了漏出的水在切割头内部将所述铜环与所述金属本体导通,保证电容传感器的正常工作。
作为优选,所述铜环的内壁设有绝缘材料,通过这样设置,在最坏情况下,即使水路中的流动水漏出到光纤激光切割头内部,由于所述铜环的内壁设有绝缘材料,避免了设置在所述金属本体与所述铜环导通,从而保证了电容传感器的正常工作,不影响光纤激光切割头的正常使用。
作为优选,所述第二水槽及所述第四水槽的上部均设有防水塞,通过这样设置,避免了水路中的流动水的压力过大从所述第二水槽及所述第四水槽的上部溢漏出去。
相对于现有技术,本发明取得了有益的技术效果:
1、所述金属本体与被切割工件均为带电体,分别作为电容传感器的两个带电极板,带电的所述金属本体的下表面与带电的被切割工件的上表面之间存在间隙,形成一定的电容,电容值与距离成反比关系,通过测量电容值得知所述金属本体的下表面与被切割工件的上表面之间的垂直距离,从而控制光纤激光切割头与被切割工件之间的距离;由于所述第一绝缘块与第二绝缘块使得所述铜环与所述金属本体之间不导通,所述金属本体、所述第一绝缘块与所述铜环之间形成一条连通的水路,且位于所述金属本体的水路中设有绝缘管,避免水路中的流动水将所述铜环与所述金属板本体导通,在保证电容传感器能正常工作的情况下,水路中流动水的流量大,铜环中的流动水靠近所述喷嘴且流速缓慢,使得流动水能带走喷嘴绝大部分的热量,降温效果好。
2、所述金属本体的进水路及出水路均由三段水槽形成,不仅能够降低水路中流动水的流动阻力,而且只需在所述金属本体对应的位置进行钻孔加工就能制造出六段水槽分别形成进水路及出水路,即所述金属本体的加工方便,能够实现本方案的降温方式。
3、由于喷嘴的热量能被绝大部分地带走,喷嘴的温度低能大大提升光纤激光切割机切割效果的稳定性,且喷嘴的损耗也大大地减少。
4、由于在光纤激光切割头的水路中设有密封圈、防水圈,避免水路中的流动水发生漏水的情况,所述铜环的内壁设有绝缘材料,上述设置均进一步避免了所述金属本体与所述铜环之间导通的情况,保证了电容传感器的正常工作,不影响光纤激光切割头的正常使用。
5、在进行切割时,只需在进水口及出水口分别连接进水管及出水管后,通入流动水即可进行切割时的降温处理,操作简单。
附图说明
图1是本发明实施例的光纤激光切割头的横向剖面示意图。
图2是本发明实施例的光纤激光切割头的纵向剖面示意图。
图3是本发明实施例的光纤激光切割头的水平剖面示意图。
其中,各附图标记所指代的技术特征如下:
1、喷嘴;2、第二绝缘块;3、铜环;4、第一绝缘块;5、金属外壳;6、防水圈;7、金属本体;8、聚焦镜保护装置;9、密封圈;10、水管连接头;11、防水塞;12、螺钉;31、“C”形槽;32、第二凹槽;33、第三凹槽;41、斜通孔;71、第一水槽;72、第二水槽;73、第三水槽;74、第四水槽;75、第五水槽;76、第六水槽;77、第一凹槽;78、沉孔槽;311、上槽;312、下槽。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,但本发明要求保护的范围并不局限于下述具体实施例。
参考图1-3,本实施例公开了一种光纤激光切割头水冷结构,包括金属本体7、第一绝缘块4、第二绝缘块2、铜环3、喷嘴1、金属外壳5、水管连接头10、防水塞11以及聚焦镜保护装置8;金属本体7的底端与铜环3的顶端之间设有第一绝缘块4,铜环3的下部设有第二绝缘块2,金属外壳5的下端内侧抵触在第二绝缘块2的下部外侧,金属外壳5的上端与金属本体7连接,第一绝缘块4与第二绝缘块2使得金属本体7与铜环3不导通;金属本体7、第一绝缘块4与铜环3之间形成一条连通的水路,水路在金属本体7上形成一个进水口和一个出水口;
进水口与出水口分别位于金属本体7上部的左侧及右侧,金属本体7内左右两侧的水路分别为进水路及出水路;从进水口水平向右延伸形成第一水槽71,从金属本体的上端面外侧朝向芯轴向下延伸形成第二水槽72,从金属本体的下端朝向外侧向上延伸形成第三水槽73,第一水槽71、第二水槽72、第三水槽73之间相互连通形成进水路;所述出水口水平向左延伸形成第四水槽74,所述金属本体上端面右侧朝向芯轴向下延伸形成第五水槽75,所述金属本体的下端右侧的中部朝向外侧向上延伸形成第六水槽76,第四水槽74、所述五 水槽75及第六水槽76之间相互连通形成出水路;进水路与出水路以芯轴为中心线对称设置;
进水路及出水路内均设有绝缘管,喷嘴1的顶端与铜环3的底端直接连接,铜环3的底端设有内螺纹,喷嘴1的顶端设有与上述铜环3的内螺纹相适应的外螺纹,喷嘴1的外螺纹配合铜环3的内螺纹使得喷嘴1与铜环3直接连接,这样喷嘴1与铜环3直接相连。水路中得了流动水能带走喷嘴绝大部分的热量。
金属本体7与被切割工件均为带电体,带电的金属本体7的下表面与带电的被切割工件的上表面之间存在间隙,形成一定的电容,电容值与距离成反比关系,通过测量电容值得知金属本体7下表面与被切割工件的上表面之间的垂直距离,从而控制光纤激光切割头与被切割工件之间的距离,由于第一绝缘块4与第二绝缘块2使得铜环3与金属本体7之间不导通,金属本体7、第一绝缘块4、铜环3之间形成一条连通的水路,且位于金属本体7的水路中设有绝缘管,避免水路中的流动水将铜环3与金属本体7导通,在保证电容传感器正常工作的情况下,水路中流动水的流量大,铜环3中的流动水靠近喷嘴1且流速缓慢,喷嘴1与铜环3直接连接,使得流动水能带走喷嘴1绝大部分的热量,降温效果好。
金属本体7的进水路及出水路均由三段水槽形成,不仅能降低水路中流动水的流动阻力,而且只需在金属本体7对应的位置进行钻孔加工便能轻易制造出六段水槽分别形成进水路及出水路,金属本体7的加工方便,能够实现本方案的降温方式。
进一步具体说明,第一绝缘块4的上端面和下端面分别设有第一定位孔和第二定位孔,且第一定位孔的深度大于第二定位孔的深度,金属本体7的下端设有与第一定位孔相对应的第一凸起,第一凸起陷入第一定位孔实现第一绝缘块4与金属本体7的定位装配;铜环3的上端设有与第二定位孔相对应的第二凸起,第二凸起陷入第二定位孔实现第一绝缘块4与铜环3的定位装配;铜环3的下部外侧为阶梯形,第二绝缘块2亦是与前述相同的阶梯形,第二绝缘块2从剖面上看包括两个不同方向不共线的竖向壁及连接两个竖向壁的横向壁,第二绝缘块2的内侧完全贴合地抵触在铜环3的下部外侧,金属外壳5的底端内侧贴合地抵触在第二绝缘块2的横向壁的外侧,且金属外壳5的顶端与金属本体7螺纹连接,具体而言,金属外壳5的顶端内部设有内螺纹,金属本体7的底端设有外螺纹,金属外壳5顶端的内螺纹与金属本体7底端的外螺纹配合实现螺纹连接,从而使得金属本体7、第一绝缘块4、铜环3、第二绝缘快及金属外壳5相固定,这样便于光纤激光切割头金属本体7、 第一绝缘块4、铜环3、第二绝缘块2及金属外壳5的装配,在高度精加工的情况下,可以避免水路中的流动水渗透到光纤激光切割头的内部。
进一步描述,第一水槽71与第二水槽72沿水流方向的夹角为钝角,且第一水槽71与第二水槽72沿水流方向的夹角的角度范围在120°-150°之间;第二水槽72与第三水槽73沿水流方向的夹角为钝角,且第二水槽72与第三水槽73沿水流方向的夹角的角度范围在120°-150°之间;同样的,出水路中的三段水槽的夹角与上述相同。作为优选的实施例,第一水槽71与第二水槽72沿水流方向的夹角为135°,第二水槽72与第三水槽73沿水流方向的夹角为135°,这样能更好地减小金属本体7内水路中流动水的流动阻力。
第一绝缘块4设有两个中心对称的斜通孔41,且第一绝缘块4上端面的两个斜通孔41的中心分别与金属本体7下端面的第三水槽73及第六水槽76的下端槽孔的中心重合,铜环3的上端面设有“C”形槽31,“C”形槽31与两个斜通孔41连通;“C”形槽31能保证水路中的流动水不会回流的前提下,尽量增大“C”形槽的容积从而尽量增大水路中流动水的流量,从而提高喷嘴1的降温效果。
两个斜通孔41的直径与第三水槽73及第六水槽76的直径均相等,“C”形槽31顶端的宽度大于斜通孔41的直径;由于斜通孔41的直径与第三水槽73及第六水槽76的直径相等,当从第三水槽73中的流动水进入斜通孔41或从斜通孔41中的流动水进入第六水槽76时,水流面积不变,流速不变;由于“C”形槽31顶端的宽度大于斜通孔41的直径,当从进水一端的斜通孔41中的流动水进入“C”形槽时,水流面积增大,流速减小,流动水在“C”形槽31中流动的时间变长,能带走喷嘴1的绝大部分的热量,进一步提高喷嘴1的降温效果;从“C”形槽31中流动水进入出水一端的斜通孔41时,水流面积减小,流速增大,能尽快带走“C”形槽31中吸收完喷嘴1的热量后温度较高的流动水。
“C”形槽31包括上槽311及下槽312,上槽311与下槽312之间相连通,且下槽312从上槽311的底端内侧朝向芯轴向下延伸,即下槽312朝靠近喷嘴1方向延伸,这样不仅能增大容积从而增大流动水的流量,流动水更加靠近喷嘴1,再进一步提高喷嘴1的降温效果。
上槽311内侧的内壁包括上部竖直的第一内壁及下部斜向的第二内壁,第一内壁与第二内壁相连,且第二内壁从上往下朝向芯轴倾斜,下槽312内侧的第三内壁与第二内壁相连,且第三内壁的倾斜角度与第二内壁的倾斜角度相等,这样能够进一步增大“C”形槽31 的容积,进一步增大流动水中的流量,从而进一步提高喷嘴1的降温效果,喷嘴1的温度低,能大大地提升了切割效果的稳定性,喷嘴1的损耗减少。
金属本体7下端面第三水槽73和第六水槽76的槽孔均设有同心的沉孔槽78,沉孔槽78内设有密封圈9,金属本体7内水路的绝缘管分别从进水口和出水口均伸至与密封圈9的下表面平齐,且绝缘管的外壁与密封圈9的内壁过盈配合;这样避免水路中流动水漏出到金属本体7的水槽内,从而避免铜环3与金属本体7导通,避免了电容传感器的短路,保证电容传感器的正常工作。金属本体7的下端面位于第三水槽73及第六水槽76槽孔的内侧设有周向的第一凹槽77,铜环3的上端面位于“C”形槽31的内侧和外侧分别设有第二凹槽32及第三凹槽33,第一凹槽77、第二凹槽32及第三凹槽33均设有防水圈6;避免水路中的流动水漏出到光纤激光切割头的内部,从而避免了漏出的水在切割头内部将铜环3与金属本体7导通,保证电容传感器的正常工作。
铜环3位于第三凹槽33的外侧沿周向设有三个等角度均布的通槽,第一绝缘块4设有与通槽一一对应的三个等角度均布的直通孔,金属本体7的下端面设有与通孔一一对应的等角度均布的螺纹孔,使用螺钉12依次穿过通槽及直通孔后与螺纹孔配合连接,将铜环3、第一绝缘块4及金属本体7固定连接,且铜环3与螺钉12之间设有绝缘套,这样使得铜环3与螺钉12之间无触碰,这样金属外壳5与金属本体7在长时间的切割情况下,由于光纤激光切割头的移动或震动使得金属外壳5与金属本体7之间的连接变得没那么牢固,若没有使用螺钉12的情况下,会导致铜环3、第一绝缘块4与金属本体7之间的连接也变得不那么牢固,这样就会使得水路中的流动水漏出到光纤激光切割头的内部导致金属本体7与铜环3之间导通;采用螺钉12将铜环3、第一绝缘块4与金属本体7固连后,就算金属外壳5与金属本体7连接没那么牢固也不会影响到内部组件连接的情况,这样避免金属本体7与铜环3导通,即避免了电容传感器发生短路的情况,保证电容传感器的正常工作;并且由于螺钉12与铜环3之间设有绝缘套,使得金属本体7与铜环3之间仍处于不导通的状态。
一般地,上述电容传感器通常是装在铜环3的内壁部分,铜环3的内壁设有绝缘材料,绝缘材料可以包括在铜环3的内壁上喷涂有绝缘漆,即使在最坏情况下,水路中的流动水漏出到光纤激光切割头内部,由于所述铜环3的内壁喷涂有绝缘漆,避免了设置在所述金属本体7与所述铜环3导通,从而保证了电容传感器的正常工作,不影响光纤激光切割头的正常使用。
第二水槽72及第四水槽74的上部均设有防水塞,避免了水路中的流动水的压力过大从第二水槽72及第四水槽74的上部溢漏出去。
上述的聚焦镜保护装置8连接在金属本体7的上端面,为光纤激光切割机的聚焦镜片起到保护作用。
本发明实施例的使用过程:
首先在光纤激光切割头水冷结构的两个水管连接头10分别连接相应的进水管及出水管,启动光纤激光切割机进行切割的同时也启动光纤激光切割头接触式水冷系统,由进水管将流动水经过水管连接头10流进进水口,依次在金属本体7的绝缘管内流经第一水槽71、第二水槽72、第三水槽73,再流经第一绝缘块4进水一端的斜通孔41流进入铜环3的“C”形槽31,当水路中的流动水从第一绝缘块4进水一端的斜通孔41流进铜环3的“C”形槽时,水流面积增大,流动水的流速减小,在“C”形槽31中流动的时间边长,在“C”形槽31中的流动水按图3的方向看按逆时针缓慢地流动,最后在进水口的压力下流动水涌上第一绝缘块4出水端的斜通孔41,此时由于水流面积减小,流动水的流速增大,能快速带走“C”形槽31中吸收完喷嘴1热量后温度较高的流动水,再在金属本体7的绝缘管内依次流经第六水槽76、第五水槽75及第四水槽74,最后从出水口流入水管连接头10后经出水管排出。由于光纤激光切割机在切割时产生大量的热量使得喷嘴1的温度上升,水路中的流动水特别是在铜环3的“C”形槽31内的流动水能带走喷嘴1上绝大部分的热量,降温效果好;喷嘴1的热量被带走温度较低,大大地提高了光纤激光切割机切割效果的稳定性,提高被切割工件的切割质量,并且大大地较少了喷嘴1的损耗;由于光纤激光切割头水冷结构设有密封结构和绝缘结构,使得金属本体7与铜环3之间处于不导通的状态,并且避免了水路中的流动水渗透到光纤激光切割头内部,保证了电容传感器的正常工作,不影响光纤激光切割头的正常使用。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对发明构成任何限制。

Claims (9)

  1. 一种光纤激光切割头水冷结构,其特征在于,包括金属本体、第一绝缘块、第二绝缘块、铜环、喷嘴及金属外壳;所述金属本体的底端与所述铜环的顶端之间设有所述第一绝缘块,所述铜环的下部设有所述第二绝缘块,所述金属外壳的下端内侧抵触在所述第二绝缘块的外侧,所述金属外壳的上端与所述金属本体连接,所述第一绝缘块与所述第二绝缘块使得所述金属本体与所述铜环不导通,所述金属本体、所述第一绝缘块与所述铜环之间形成一条连通的水路,所述水路在所述金属本体上形成一个进水口和一个出水口;
    所述进水口及所述出水口分别位于所述金属本体上部的左侧及右侧,所述金属本体内左右两侧的水路分别为进水路及出水路,所述进水口水平向右延伸形成第一水槽,所述金属本体的上端面左侧朝向芯轴向下延伸形成第二水槽,所述金属本体的下端左侧的中部朝向外侧向上延伸形成第三水槽,所述第一水槽、所述第二水槽与所述第三水槽之间相互连通形成所述进水路;所述出水口水平向左延伸形成第四水槽,所述金属本体上端面右侧朝向芯轴向下延伸形成第五水槽,所述金属本体的下端右侧的中部朝向外侧向上延伸形成第六水槽,所述第四水槽、所述五水槽及所述第六水槽形成之间相互连通所述出水路;所述进水路与所述出水路以所述芯轴为中心线对称设置;
    所述进水路及所述出水路内均设有绝缘管,所述喷嘴的顶端与所述铜环的底端直接连接。
  2. 根据权利要求1所述的一种光纤激光切割头水冷结构,其特征在于,所述第一水槽与所述第二水槽沿水流方向的夹角为钝角,且所述第一水槽与所述第二水槽沿水流方向的夹角的角度范围在120°-150°之间;所述第二水槽与所述第三水槽沿水流方向的夹角为钝角,且所述第二水槽与所述第三水槽沿水流方向的夹角的角度范围在120°-150°之间。
  3. 根据权利要求1或2所述的一种光纤激光切割头水冷结构,其特征在于,所述第一绝缘块设有两个中心对称的斜通孔,且所述第一绝缘块上端面的两个所述斜通孔的中心分别与所述第三水槽及所述第六水槽的底端槽孔的中心重合,所述铜环的上端面设有“C”形槽,所述“C”形槽与两个所述斜通孔连通。
  4. 根据权利要求3所述的一种光纤激光切割头水冷结构,其特征在于,所述斜通孔的直径与所述第三水槽及所述第六水槽的直径均相等,所述“C”形槽顶端的宽度大于所述斜通孔的直径。
  5. 根据权利要求3所述的一种光纤激光切割头水冷结构,其特征在于,所述“C”形槽 包括上槽及下槽,所述上槽与所述下槽之间相连通,且所述下槽从所述上槽的底端内侧朝向所述芯轴向下延伸。
  6. 根据权利要求5所述的一种光纤激光切割头水冷结构,其特征在于,所述上槽内侧的内壁包括上部竖直的第一内壁及下部斜向的第二内壁,所述第一内壁与所述第二内壁相连,所述第二内壁从上往下朝向所述芯轴倾斜,所述下槽内侧的第三内壁与所述第二内壁相连,且所述第三内壁的倾斜角度与所述第二内壁的倾斜角度相等。
  7. 根据权利要求3所述的一种光纤激光切割头水冷结构,其特征在于,所述第三水槽及所述第六水槽的下端槽孔均设有同心的沉孔槽,所述沉孔槽设有密封圈,所述绝缘管分别从所述进水口与所述出水口延伸至与所述密封圈的下表面平齐,且所述绝缘管的外壁与所述密封圈的内壁过盈配合;所述金属本体的下端面位于所述第三水槽及所述第六水槽的下端槽孔的内侧设有周向的第一凹槽;所述铜环的上端面位于所述“C”形槽的内侧和外侧分别设有周向第二凹槽和第三凹槽,所述第一凹槽、所述第二凹槽及所述第三凹槽均设有防水圈。
  8. 根据权利要求1-2或4-7任一项所述的一种光纤激光切割头水冷结构,其特征在于,所述铜环的内壁设有绝缘材料。
  9. 根据权利要求1或2所述的一种光纤激光切割头水冷结构,其特征在于,所述第二水槽及所述第四水槽的上部均设有防水塞。
PCT/CN2020/073267 2019-09-17 2020-01-20 一种光纤激光切割头水冷结构 WO2021051734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020003451.8T DE112020003451T5 (de) 2019-09-17 2020-01-20 Eine Wasserkühlungsstruktur für einen Faserlaserschneidkopf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910873478.8 2019-09-17
CN201910873478.8A CN110385540B (zh) 2019-09-17 2019-09-17 一种光纤激光切割头水冷结构

Publications (1)

Publication Number Publication Date
WO2021051734A1 true WO2021051734A1 (zh) 2021-03-25

Family

ID=68289660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073267 WO2021051734A1 (zh) 2019-09-17 2020-01-20 一种光纤激光切割头水冷结构

Country Status (3)

Country Link
CN (1) CN110385540B (zh)
DE (1) DE112020003451T5 (zh)
WO (1) WO2021051734A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664395A (zh) * 2021-08-26 2021-11-19 奔腾激光(温州)有限公司 一种用于高功率激光切割头的冷却装置
DE102022128310A1 (de) 2022-10-26 2024-05-02 Precitec Gmbh & Co. Kg Abstandssensoreinheit für einen Laserbearbeitungskopf mit Kühlkanalsystem

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385540B (zh) * 2019-09-17 2020-01-24 佛山市宏石激光技术有限公司 一种光纤激光切割头水冷结构
CN111014989B (zh) * 2019-12-13 2022-02-15 济南邦德激光股份有限公司 一种冷却系统、激光切割系统及冷却方法
CN113523607B (zh) * 2021-08-04 2023-07-14 广东宏石激光技术股份有限公司 一种光学温控装置、激光切割头及激光加工方法
CN218341285U (zh) * 2022-10-12 2023-01-20 上海嘉强自动化技术有限公司 冷却组件及激光加工头
CN116117352B (zh) * 2023-03-23 2023-07-18 深圳欧斯普瑞智能科技有限公司 一种智能切割头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155669A (ja) * 1994-12-02 1996-06-18 Nippon Light Metal Co Ltd レーザ加工ヘッドおよびレーザ加工装置
CN1570190A (zh) * 2004-04-28 2005-01-26 华中科技大学 一种内置式激光熔覆喷嘴
CN202344128U (zh) * 2011-11-09 2012-07-25 昆山科德优激光设备有限公司 激光切割机用的绝缘式激光喷嘴
CN203459811U (zh) * 2013-09-16 2014-03-05 武汉奥森迪科智能电控科技有限公司 采用油性密封材料的丝扣式调焦激光切割头
CN204295131U (zh) * 2014-11-28 2015-04-29 江苏海德威激光科技发展有限公司 消除喷嘴侧壁干扰的激光切割头
DE202019102106U1 (de) * 2019-04-12 2019-04-25 Precitec Gmbh & Co. Kg Keramikteil für einen Laserbearbeitungskopf zur Kühlung des Werkstücks
CN110385540A (zh) * 2019-09-17 2019-10-29 佛山市宏石激光技术有限公司 一种光纤激光切割头水冷结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532223B2 (ja) * 1993-01-27 2004-05-31 株式会社アマダ レーザ加工機の加工ヘッド
CN207681759U (zh) 2017-11-13 2018-08-03 安徽奥锐智能科技有限公司 一种光纤激光切割头的冷却保护装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155669A (ja) * 1994-12-02 1996-06-18 Nippon Light Metal Co Ltd レーザ加工ヘッドおよびレーザ加工装置
CN1570190A (zh) * 2004-04-28 2005-01-26 华中科技大学 一种内置式激光熔覆喷嘴
CN202344128U (zh) * 2011-11-09 2012-07-25 昆山科德优激光设备有限公司 激光切割机用的绝缘式激光喷嘴
CN203459811U (zh) * 2013-09-16 2014-03-05 武汉奥森迪科智能电控科技有限公司 采用油性密封材料的丝扣式调焦激光切割头
CN204295131U (zh) * 2014-11-28 2015-04-29 江苏海德威激光科技发展有限公司 消除喷嘴侧壁干扰的激光切割头
DE202019102106U1 (de) * 2019-04-12 2019-04-25 Precitec Gmbh & Co. Kg Keramikteil für einen Laserbearbeitungskopf zur Kühlung des Werkstücks
CN110385540A (zh) * 2019-09-17 2019-10-29 佛山市宏石激光技术有限公司 一种光纤激光切割头水冷结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664395A (zh) * 2021-08-26 2021-11-19 奔腾激光(温州)有限公司 一种用于高功率激光切割头的冷却装置
DE102022128310A1 (de) 2022-10-26 2024-05-02 Precitec Gmbh & Co. Kg Abstandssensoreinheit für einen Laserbearbeitungskopf mit Kühlkanalsystem

Also Published As

Publication number Publication date
DE112020003451T5 (de) 2022-04-14
CN110385540A (zh) 2019-10-29
CN110385540B (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2021051734A1 (zh) 一种光纤激光切割头水冷结构
JP7194248B2 (ja) ピン端子付き電源心線の液体冷却装置
CN106659069B (zh) 一种充电枪热交换结构及充电枪
WO2019201357A1 (zh) 一种换流阀冷却水路
CN103252570B (zh) 一种带冷却装置的凸焊下电极
CN207572574U (zh) 电连接器插针
WO2017152300A1 (zh) 一种伺服电机的水冷机壳及其制造工艺
TWI816530B (zh) 一種充電槍冷卻系統及充電槍
CN109768405B (zh) 一种大功率充电桩用液冷电缆电极的冷却液双通道结构
US20200376584A1 (en) Integrated weld position detection device based on binaural effect
CN210711740U (zh) 一种丝材激光熔覆热丝装置
CN210908593U (zh) 一种激光切割头传感器的冷却装置
WO2018098605A1 (zh) 工程塑料类重复使用型热流道系统
CN208485956U (zh) 一种多路水通道激光熔覆头
CN106239854B (zh) 注塑模立体循环水道结构
CN220856991U (zh) 液冷式电缆连接装置
CN217307914U (zh) 一种还原炉电极冷却结构
CN220457792U (zh) 一种液冷新能源汽车充电枪
CN218414433U (zh) 一种带有新型串联定位锁紧机构的断路器
CN218677636U (zh) 一种大功率充电枪端子
CN220764103U (zh) 一种水冷充电枪头
CN209759561U (zh) 一种用于等离子喷涂机的水电接头
CN212130963U (zh) 一种制管机组内焊道整平机台油温冷却装置
CN213303859U (zh) 淬火感应器电极及变压器电极结构
CN110439705B (zh) 一种缸盖冷却结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20866398

Country of ref document: EP

Kind code of ref document: A1