WO2021049449A1 - 電動機及び電気機器 - Google Patents

電動機及び電気機器 Download PDF

Info

Publication number
WO2021049449A1
WO2021049449A1 PCT/JP2020/033752 JP2020033752W WO2021049449A1 WO 2021049449 A1 WO2021049449 A1 WO 2021049449A1 JP 2020033752 W JP2020033752 W JP 2020033752W WO 2021049449 A1 WO2021049449 A1 WO 2021049449A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
electric motor
energizing
commutator
auxiliary
Prior art date
Application number
PCT/JP2020/033752
Other languages
English (en)
French (fr)
Inventor
圭策 中野
貴洋 浅野
知子 従野
和雄 遠矢
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021049449A1 publication Critical patent/WO2021049449A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/66Structural association with auxiliary electric devices influencing the characteristic of, or controlling, the machine, e.g. with impedances or switches

Definitions

  • This disclosure relates to electric motors and electrical equipment.
  • Electric motors are used in various products such as electric devices and automobiles.
  • an electric motor is used in an electric blower mounted on a vacuum cleaner.
  • a commutator electric motor (commutator motor) that uses a brush and a commutator, or a brushless electric motor that does not use a brush and a commutator is known.
  • the commutator motor includes, for example, a stator, a rotor that rotates by the magnetic force of the stator, a commutator attached to the rotating shaft (shaft) of the rotor, and an energizing brush that is in sliding contact with the commutator.
  • the commutator has a plurality of commutator segments provided at equal intervals along the circumferential direction of the rotation axis of the rotor. A winding coil wound around the core of the rotor is electrically connected to each of the plurality of commutator segments.
  • the north pole and the south pole are alternately magnetized in the circumferential direction so that the center of the magnetic pole of the north pole and the center of the magnetic pole of the south pole are unequally spaced along the circumferential direction.
  • a stator made of a ring-shaped magnet is used.
  • a pair of energizing brushes are arranged so as to be offset from the magnetizing center of the magnetic poles. As a result, the amplitude of the current ripple can be increased, and the rotation speed of the electric motor can be detected from the current waveform.
  • the electric motor described in Patent Document 2 has a stator composed of a plurality of segment magnets arranged in the circumferential direction so as to cover the rotor which is an armature.
  • segment magnets magnetized on the N pole and the S pole are arranged at unequal intervals along the circumferential direction. As a result, the amplitude of the current ripple can be increased, and the rotation speed of the electric motor can be detected from the current waveform.
  • Patent Documents 1 and 2 may not be able to correctly detect the rotation speed of the electric motor.
  • the present disclosure has been made to solve such a problem, and an object of the present disclosure is to provide an electric motor capable of improving the detection accuracy of the rotation speed of the electric motor and an electric device equipped with the electric motor.
  • one aspect of the electric motor according to the present disclosure is an electric motor that detects the rotation speed of the electric motor based on the current ripple of the current waveform of the electric motor, and includes a rotor having a rotation shaft and the rotation shaft.
  • the commutator includes a commutator attached to the commutator, an energizing brush in contact with the commutator, and an auxiliary brush in contact with the commutator, and the commutator is provided with a plurality of commutator segments provided along the circumferential direction of the rotation axis.
  • the maximum value of the current ripple generated when both the energizing brush and the auxiliary brush are in sliding contact with the commutator segment is such that only the energizing brush among the energizing brush and the auxiliary brush has the commutator segment. It is larger than the maximum value of the current ripple generated by sliding contact with.
  • one aspect of the electric device according to the present disclosure is an electric device using the above-mentioned electric motor.
  • FIG. 1 is a cross-sectional view of the electric motor according to the embodiment.
  • FIG. 2 is a cross-sectional view of the electric motor according to the embodiment taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view schematically showing the energizing brush and the commutator in the electric motor of the comparative example.
  • FIG. 4 is a cross-sectional view schematically showing an energizing brush, an auxiliary brush, and a commutator in the electric motor according to the embodiment.
  • FIG. 5 is a diagram showing an example of the current waveform of the electric motor of the comparative example shown in FIG.
  • FIG. 6 is a diagram showing an example of the current waveform of the electric motor according to the embodiment shown in FIG. FIG.
  • FIG. 7 is a diagram showing another example of the current waveform of the electric motor according to the embodiment.
  • FIG. 8 is a diagram showing still another example of the current waveform of the electric motor according to the embodiment.
  • FIG. 9 is a cross-sectional view schematically showing an energizing brush, an auxiliary brush, and a commutator in the electric motor according to the modified example.
  • FIG. 10 is a diagram showing a current waveform of the electric motor according to the modified example.
  • FIG. 1 is a cross-sectional view of the electric motor 1 according to the embodiment.
  • FIG. 2 is a cross-sectional view of the electric motor 1 in the line II-II of FIG. Note that the frame 60 is not shown in FIG. Further, in FIG. 2, the black arrow indicates the flow of electric current.
  • the electric motor 1 is a commutator electric motor, and includes a stator 10, a rotor 20 that rotates by the magnetic force of the stator 10, a commutator 30 attached to the shaft 21 of the rotor 20, an energizing brush 40 that is in contact with the commutator 30, and a commutator.
  • An auxiliary brush 50 in contact with the child 30 and a frame 60 for accommodating the stator 10 and the rotor 20 are provided.
  • the electric motor 1 in the present embodiment is a DC motor (DC motor) driven by direct current, and a magnet 11 is used as the stator 10 and an armature having a winding coil 22 is used as the rotor 20. ..
  • the electric motor 1 in the present embodiment can be used, for example, in an electric blower mounted on a vacuum cleaner, an air towel, or the like. Further, the electric motor 1 can also be used for an electric device, an electric tool, or the like mounted on an automobile. Hereinafter, each component of the electric motor 1 will be described in detail.
  • the stator 10 (stator) generates a magnetic force acting on the rotor 20.
  • the stator 10 is configured such that N poles and S poles alternately exist on the air gap surface with the rotor 20 along the circumferential direction.
  • the stator 10 is composed of a plurality of magnets 11 (magnets).
  • the magnet 11 is a field magnet that creates a magnetic flux for generating torque, and is, for example, a permanent magnet having an S pole and an N pole.
  • Each of the plurality of magnets 11 has an arc shape having a substantially constant thickness when viewed from above.
  • the plurality of magnets 11 are fixed to the frame 60.
  • the plurality of magnets 11 constituting the stator 10 are arranged so that the north and south poles are alternately and evenly present along the circumferential direction. Therefore, the direction of the main magnetic flux generated by the stator 10 (magnet 11) is the direction intersecting the direction of the axis C of the shaft 21.
  • the plurality of magnets 11 are arranged at equal intervals along the circumferential direction so as to surround the rotor 20, and are located on the outer peripheral side of the rotor core 23 in the radial direction of the rotor 20.
  • a plurality of magnets 11 in which the north pole and the south pole are magnetized are arranged so that the center of the magnetic pole of the north pole and the center of the magnetic pole of the south pole are evenly spaced along the circumferential direction.
  • the rotor 20 (rotor) generates a magnetic force acting on the stator 10.
  • the direction of the main magnetic flux generated by the rotor 20 is the direction intersecting the direction of the axis C of the shaft 21.
  • the rotor 20 has a shaft 21 which is a rotation shaft.
  • the rotor 20 is an armature and has a winding coil 22 and a rotor core 23.
  • the rotor 20 is an inner rotor and is arranged inside the stator 10. Specifically, the rotor 20 is surrounded by a plurality of magnets 11 constituting the stator 10. Further, the rotor 20 is arranged with the stator 10 via an air gap. Specifically, there is a minute air gap between the outer peripheral surface of the rotor 20 (rotor core 23) and the inner surface of each magnet 11.
  • the shaft 21 is a rotating shaft having an axis C, and is a long rod-shaped member that serves as a center when the rotor 20 rotates.
  • the longitudinal direction (extension direction) of the shaft 21 is the direction of the axis C (axis direction).
  • the shaft 21 is rotatably held by a bearing such as a bearing.
  • a bearing such as a bearing.
  • the first end 21a which is one end of the shaft 21, is supported by a first bearing held by a bracket fixed to the frame 60 or directly held by the frame 60.
  • the second end 21b which is the other end of the shaft 21, is supported by a second bearing held by a bracket fixed to the frame 60 or directly held by the frame 60.
  • the bracket is fixed to the frame 60 so as to cover the opening of the frame 60, for example.
  • the shaft 21 is fixed to the center of the rotor 20.
  • the shaft 21 is, for example, a metal rod, and is fixed to the rotor core 23 in a state of penetrating the rotor core 23.
  • the shaft 21 is fixed to the rotor core 23 by press-fitting or shrink-fitting into the center hole of the rotor core 23.
  • the winding coil 22 (rotor coil) is wound so as to generate a magnetic force acting on the stator 10 when an electric current flows.
  • the winding coil 22 is wound around the rotor core 23 via the insulator 24.
  • the insulator 24 is made of an insulating resin material or the like, and electrically insulates the winding coil 22 and the rotor core 23.
  • the winding coil 22 is electrically connected to the commutator 30. Specifically, the winding coil 22 is electrically connected to the commutator segment 31 of the commutator 30.
  • the rotor core 23 is a laminated body in which a plurality of electromagnetic steel plates are laminated in the longitudinal direction of the shaft 21.
  • the rotor core 23 has, for example, a plurality of teeth portions.
  • a winding coil 22 is wound around each of the plurality of teeth portions.
  • the rotor core 23 is not limited to a laminated body of electromagnetic steel sheets, and may be a bulk body made of a magnetic material.
  • the commutator 30 is attached to the shaft 21. Therefore, the commutator 30 rotates together with the shaft 21 as the rotor 20 rotates. In this embodiment, the commutator 30 is attached to the first end 21a of the shaft 21.
  • the commutator 30 has a plurality of commutator segments 31 provided along the circumferential direction of the shaft 21.
  • Each of the plurality of commutator segments 31 is a commutator piece extending in the longitudinal direction of the shaft 21.
  • the plurality of commutator segments 31 are arranged in an annular shape so as to surround the shaft 21.
  • Each of the plurality of commutator segments 31 is a conductive terminal made of a metal material such as copper, and is electrically connected to the winding coil 22 of the rotor 20.
  • the plurality of commutator segments 31 are isolated from each other, but the two adjacent commutator segments are electrically connected by the winding coil 22 of the rotor 20.
  • the commutator 30 is a molded commutator, and a plurality of commutator segments 31 are resin-molded.
  • the plurality of commutator segments 31 are embedded in the mold resin 32 so that the surface is exposed.
  • the commutator 30 is in contact with the energizing brush 40 and the auxiliary brush 50. Specifically, the energizing brush 40 and the auxiliary brush 50 are in sliding contact with the commutator segment 31 of the commutator 30.
  • the electric motor 1 is provided with a brush spring such as a coil spring or a torsion spring for pressing the energizing brush 40 and the auxiliary brush 50 against the commutator 30.
  • the brush spring applies pressure to the energizing brush 40 and the auxiliary brush 50 by utilizing the elasticity of the spring.
  • Each of the energizing brush 40 and the auxiliary brush 50 is in a state where the surface of the tip portion is always in contact with the commutator segment 31 of the commutator 30 under the pressing force from the brush spring.
  • the surface on which each of the energizing brush 40 and the auxiliary brush 50 and the commutator segment 31 slide is a sliding surface.
  • the brush spring is provided for each energizing brush 40 and for each auxiliary brush 50, but the present invention is not limited to this.
  • the energizing brush 40 is a power feeding brush that supplies electric power to the rotor 20 by coming into contact with the commutator segment 31.
  • the energizing brush 40 supplies electric power to the rotor 20 by coming into contact with the commutator 30. Therefore, an electric wire through which a current supplied from a power source flows is connected to the energizing brush 40.
  • the energizing brush 40 is electrically connected to an electrode terminal that receives electric power from a power source via an electric wire such as a pigtail wire.
  • the other end of the pigtail wire whose one end is connected to the electrode terminal is connected to the rear end of the energizing brush 40, and the energizing brush 40 comes into contact with the commutator segment 31.
  • the armature current supplied to the energizing brush 40 via the pigtail wire flows to the winding coil 22 of the rotor 20 via the commutator segment 31.
  • the auxiliary brush 50 is not connected to the electric wire through which the current supplied from the power supply flows. That is, the current supplied from the power supply does not directly flow through the auxiliary brush 50, but a part of the current supplied from the power supply flows through the energizing brush 40 and the commutator segment 31.
  • the auxiliary brush 50 is not electrically connected to the power source except via the commutator segment 31, and is an electronic component for the purpose of suppressing sparks such as the energizing brush 40 and the spark absorbing element. It is not connected to (diodes, varistor, capacitors, etc.).
  • the auxiliary brush 50 is in contact with only the commutator segment 31, and if no current flows through the energizing brush 40, the auxiliary brush 50 is in an electrically floating state (floating state). ..
  • the energizing brush 40 and the auxiliary brush 50 are conductive conductors.
  • the energizing brush 40 and the auxiliary brush 50 are long, substantially rectangular parallelepiped carbon brushes made of carbon.
  • the energizing brush 40 and the auxiliary brush 50 are carbon brushes containing a metal such as copper.
  • the energizing brush 40 and the auxiliary brush 50 can be produced by crushing a kneaded product obtained by kneading graphite powder, copper powder, a binder resin, and a curing agent, compression molding into a rectangular parallelepiped, and firing.
  • the contact resistance of the auxiliary brush 50 is equal to or less than the contact resistance of the energizing brush 40.
  • the contact resistance of the auxiliary brush 50 is 1/2 of the contact resistance of the energizing brush 40.
  • the metal content of the auxiliary brush 50 is higher than the metal content of the energizing brush 40, and the specific resistance of the auxiliary brush 50 is lower than the specific resistance of the energizing brush 40.
  • the specific resistance of the auxiliary brush 50 is set to the ratio of the energizing brush 40. It can be lower than the resistance.
  • the width of the auxiliary brush 50 in the rotation direction of the rotor 20 is less than or equal to the width of the energizing brush 40 in the rotation direction of the rotor 20, but is not limited to this.
  • the width of the auxiliary brush 50 is 1/2 of the width of the energizing brush 40.
  • the length of the auxiliary brush 50 in the longitudinal direction (length in the radial direction) and the length of the energizing brush 40 in the longitudinal direction are the same, but are not limited to this.
  • a pair of energizing brushes 40 are provided.
  • the pair of energizing brushes 40 are arranged to face each other so as to sandwich the commutator 30. That is, the pair of energizing brushes 40 are arranged line-symmetrically about the axis C of the shaft 21.
  • Each of the pair of energizing brushes 40 is in contact with the commutator segment 31 of the commutator 30 in a direction (radial direction) orthogonal to the axis C of the shaft 21. That is, armature current is supplied to the commutator segment 31 from each of the pair of energizing brushes 40 via the sliding surfaces of the energizing brush 40 and the commutator segment 31.
  • Each energizing brush 40 is configured so that there is a state in which it is in contact with each other across two adjacent commutator segments 31. That is, the width of the energizing brush 40 in the rotation direction of the rotor 20 is larger than the length of the distance between the two adjacent commutator segments 31. As a result, each energizing brush 40 can short-circuit the winding coil 22 between two adjacent commutator segments 31.
  • auxiliary brushes 50 are also provided.
  • the pair of auxiliary brushes 50 are arranged to face each other so as to sandwich the commutator 30. That is, the pair of auxiliary brushes 50 are also arranged line-symmetrically about the axis of the shaft 21.
  • Each of the pair of auxiliary brushes 50 is in contact with the commutator segment 31 of the commutator 30 in a direction orthogonal to the axis C of the shaft 21.
  • Each auxiliary brush 50 is also configured so that there is a state in which it is in contact with each other across two adjacent commutator segments 31. That is, the width of the auxiliary brush 50 in the rotation direction of the rotor 20 is larger than the distance between the two adjacent commutator segments 31. As a result, the winding coil 22 between two adjacent commutator segments 31 can be short-circuited.
  • the auxiliary brush 50 is arranged at a position in contact with the same commutator segment 31 as the commutator segment 31 with which the energizing brush 40 is in contact. That is, the auxiliary brush 50 is arranged adjacent to the energizing brush 40, and among the plurality of commutator segments 31, there is a commutator segment 31 in which the auxiliary brush 50 and the energizing brush 40 are in common and in contact with each other at the same time. To do. Further, the auxiliary brush 50 is arranged on the side of the energizing brush 40 on the front side in the rotation direction.
  • the energizing brush 40 and the auxiliary brush 50 are held by the brush holder.
  • the energizing brush 40 and the auxiliary brush 50 are housed in the brush holder.
  • the energizing brush 40 and the auxiliary brush 50 slide inside the brush holder.
  • the frame 60 is a housing (case) for accommodating parts constituting the electric motor 1 such as the stator 10 and the rotor 20.
  • the frame 60 has, for example, a cylindrical portion having a cylindrical shape.
  • the frame 60 is made of, for example, a metal material such as aluminum.
  • the stator 10 (magnet 11) is attached to the frame 60 along the inner peripheral surface of the frame 60.
  • the frame 60 may have a bottomed cylindrical shape having a bottom portion.
  • the current supplied to the energizing brush 40 flows as an armature current (drive current) to the winding coil 22 of the rotor 20 via the commutator 30, so that the rotor 20 has a magnetic flux. Occurs. Then, the magnetic force generated by the interaction between the magnetic flux generated in the rotor 20 and the magnetic flux generated in the stator 10 becomes the torque for rotating the rotor 20. At this time, the direction in which the current flows is switched depending on the positional relationship when the commutator segment 31 and the energizing brush 40 are in contact with each other. That is, commutation occurs.
  • the electric motor 1 can detect the rotation speed of the electric motor 1 based on this current ripple. By detecting the rotation speed of the electric motor 1, the rotation speed of the electric motor 1 can be controlled. That is, by accurately detecting the rotation speed of the electric motor 1, the rotation speed of the electric motor 1 can be accurately controlled.
  • Patent Documents 1 and 2 described above are based on a current ripple having a frequency different from the current ripple frequency generated by a short circuit of the winding coil when the energizing brush straddles the commutator segment and having a large amplitude. This is a method of overwriting the current waveform. Therefore, it is difficult to apply it to an electric motor having a large current ripple amplitude due to a short circuit of the winding coil (for example, an electric motor having a large number of turns of the winding coil or a large resistance change due to a short circuit of the winding coil). There are also challenges.
  • the auxiliary brush 50 is used in addition to the energizing brush 40, the basic performance of the electric motor is deteriorated even when the amplitude of the current ripple is large. It is possible to correctly detect the rotation speed of the electric motor 1.
  • FIG. 3 is a cross-sectional view schematically showing the energizing brush 40 and the commutator 30 in the electric motor 1X of the comparative example.
  • FIG. 4 is a cross-sectional view schematically showing the energizing brush 40, the auxiliary brush 50, and the commutator 30 in the electric motor 1 according to the embodiment.
  • the electric motor 1X of the comparative example shown in FIG. 3 has the same configuration as the electric motor 1 shown in FIG. 4 except that the auxiliary brush 50 is not arranged. Further, in FIGS. 3 and 4, the black arrow indicates the flow of electric current.
  • the two commutator segments 31 are electrically connected via the winding coil 22 of the rotor 20. There is. Then, when the energizing brush 40 comes into contact with the commutator segment 31, the current supplied from the power source sequentially flows through the energizing brush 40 to the commutator segment 31 and the winding coil 22.
  • the electric motor 1 in the present embodiment has an auxiliary brush 50.
  • the electric motor 1 in the present embodiment has the auxiliary brush 50.
  • the auxiliary brush 50 comes into contact with the two adjacent commutator segments 31 across the two adjacent commutator segments 31, as shown by the arrow A in FIG. 4, the two commutator segments 31 in which the auxiliary brush 50 comes into contact with each other via the auxiliary brush 50.
  • An energization path is constructed that flows from one to the other.
  • the current flowing through the winding coil 22 connected to the two commutator segments 31 straddled by the auxiliary brush 50 is reduced.
  • the armature resistance is temporarily lowered by the energizing brush 40, and the armature resistance is further lowered by the auxiliary brush 50. Therefore, by providing the auxiliary brush 50, the current ripple can be amplified as compared with the case where the auxiliary brush 50 is not provided. That is, the current waveform of the electric motor 1 has a shape in which the current ripple by the auxiliary brush 50 is turned on by the current ripple by the energizing brush 40.
  • FIG. 5 is a diagram showing an example of the current waveform of the electric motor 1X of the comparative example shown in FIG.
  • FIG. 6 is a diagram showing an example of the current waveform of the electric motor 1 according to the embodiment shown in FIG.
  • the maximum value of the current ripple by the energizing brush 40 alone is represented by the broken line X
  • the maximum value of the current ripple by the energizing brush 40 and the auxiliary brush 50 is represented by the broken line Y.
  • the contact resistance of the auxiliary brush 50 was set to 1/2 of the contact resistance of the energizing brush 40, and the width of the auxiliary brush 50 was set to 1/2 of the width of the energizing brush 40.
  • the total number S of the commutator segments 31 was 24.
  • n 1, the angle K is 15 °.
  • the current ripple by the energizing brush 40 is added with a steep pulse-shaped current ripple by the auxiliary brush 50, and the energizing brush 40 and the auxiliary brush
  • the maximum value of the current ripple generated when both of 50 are in sliding contact with the commutator segment 31 is the current ripple generated when only the current-carrying brush 40 of the energizing brush 40 and the auxiliary brush 50 is in sliding contact with the commutator segment 31. It is larger than the maximum value.
  • the maximum value of the current ripple generated by the auxiliary brush 50 itself sliding in contact with the commutator segment 31 is larger than the maximum value of the current ripple generated by the current-carrying brush 40 itself sliding in contact with the commutator segment 31 (broken line X).
  • the value (broken line Y) is larger, and the motor 1 having the auxiliary brush 50 has a total current ripple amplitude (maximum value and minimum value of the current value in the current ripple) as compared with the motor 1X having no auxiliary brush 50. The difference in value) is amplified.
  • the electric motor 1 in the present embodiment when detecting the rotation speed of the electric motor 1 based on the current ripple of the current waveform of the electric motor 1, it is sufficient to detect the rotation speed of the electric motor 1. Since a large current ripple can be generated, the detection accuracy of the rotation speed of the electric motor 1 can be improved.
  • the amplitude of the total current ripple is increased by the pulse-shaped steep current ripple by the auxiliary brush 50.
  • a large spark does not occur only in the commutator segment 31 of the above.
  • the magnetizing center of the N pole and the magnetizing center of the S pole of the stator 10 are unequally spaced along the circumferential direction. Therefore, the efficiency of the electric motor 1 does not decrease or vibration does not occur and the basic performance of the electric motor 1 does not decrease.
  • the frequency of the current ripple generated by the short circuit of the winding coil 22 when the energizing brush 40 straddles the rectifier segment 31 Is not a method of overwriting the current waveform with a current ripple having a different frequency and a large amplitude, so that it can be applied to an electric motor having a large current ripple due to a short circuit of the winding coil 22.
  • the rotation speed of the electric motor 1 can be correctly detected without deteriorating the basic performance of the electric motor 1.
  • the electric motor 1 configured in this way for the electric device, it is possible to realize an electric device capable of easily detecting the rotation speed of the electric motor 1 and performing reliable control of the rotation speed.
  • the electric angle at which the maximum current ripple generated by the energizing brush 40 (maximum amplitude) and the maximum current ripple generated by the auxiliary brush 50 (maximum amplitude) are the same.
  • the total amplitude of the current ripple of the motor 1 can be maximized. As a result, the detection accuracy of the electric motor 1 can be further improved.
  • the angle K should satisfy the relational expression of (360 / S) ⁇ (n-1 / 3) ⁇ K ⁇ (360 / S) ⁇ (n + 1/2).
  • the auxiliary brush 50 is arranged on the front side in the rotation direction of the energizing brush 40, but the angle K between the auxiliary brush 50 and the energizing brush 40 is (360 ° / S) ⁇ n. If the formula is satisfied, the same effect can be obtained even if the auxiliary brush 50 is arranged on the rear side in the rotation direction.
  • the energizing brush 40 is connected to an electric wire through which a current supplied from a power source flows
  • the auxiliary brush 50 is connected to an electric wire through which a current supplied from a power source flows. It has not been.
  • the auxiliary brush 50 is not electrically connected to the power source except via the commutator segment 31, and is not directly connected to the energizing brush 40 and the spark absorbing element.
  • the current ripple can be reliably generated by the auxiliary brush 50. If the spark absorbing element is connected to the auxiliary brush 50 and the energizing brush 40 and the spark absorbing element are electrically connected, the spark generated between the energizing brush 40 and the commutator segment 31 is effectively suppressed. However, since the current is regenerated to the energizing brush 40 through the auxiliary brush 50, the effect of obtaining the current ripple generated when the auxiliary brush 50 straddles the two commutator segments 31 is reduced. ..
  • the width of the auxiliary brush 50 in the rotation direction of the rotor 20 is equal to or less than the width of the energizing brush 40 in the rotation direction of the rotor 20 and is adjacent to the motor 1. It is larger than the length of the interval between the two commutator segments 31.
  • the length of the width of the auxiliary brush 50 in the rotation direction of the rotor 20 affects the pulse width of the current ripple by the auxiliary brush 50. Therefore, even if the width of the auxiliary brush 50 is longer than the width of the energizing brush 40, the current ripple can be amplified by the auxiliary brush 50, but the width of the auxiliary brush 50 is long. If is longer than the width of the energizing brush 40, as shown in FIG. 6, the current waveform does not become such that a steep pulse-shaped current ripple is turned on to the current ripple by the energizing brush 40, and the entire waveform of the current ripple is not formed. Becomes large, the average current value becomes large, and the characteristics of the electric motor 1 change. Further, the current lost due to the contact resistance of the auxiliary brush 50 is invalid for the performance of the electric motor 1. Therefore, if the width of the auxiliary brush 50 is longer than the width of the energizing brush 40, the electric motor 1 Efficiency is reduced.
  • the current ripple by the energizing brush 40 is such that a steep pulse-shaped current ripple is turned on.
  • a waveform can be obtained, and the maximum value of current ripple can be increased without changing the average current value so much.
  • the rotation speed can be detected with high accuracy from the current waveform of the electric motor 1 while the changes in the characteristics and efficiency of the electric motor 1 remain small.
  • the motor 1 and the electric device using the electric motor 1 detect the rotation speed from the current ripple, the amplitude, which is the difference between the maximum value and the minimum value of the current ripple, is important, so that the current ripple is a steep pulse. There is no particular problem even if there is.
  • the width of the auxiliary brush 50 should be shorter than the width of the energizing brush 40.
  • the shorter the width of the auxiliary brush 50 the better, and it is preferable that the width of the auxiliary brush 50 is half or less of the width of the energizing brush 40.
  • the width of the auxiliary brush 50 becomes smaller than the distance between the two adjacent commutator segments 31, the auxiliary brush 50 cannot contact the two commutator segments 31, and the auxiliary brush 50 cannot contact the two commutator segments 31. The effect of amplifying the current ripple by the brush 50 cannot be obtained.
  • the contact resistance of the auxiliary brush 50 is equal to or less than the contact resistance of the energizing brush 40.
  • the energizing brush 40 and the auxiliary brush 50 are carbon brushes containing metal, and the metal content of the auxiliary brush 50 may be higher than the metal content of the energizing brush 40.
  • the amplitude of the current ripple generated when the auxiliary brush 50 straddles and contacts the two adjacent commutator segments 31 is increased, and the current ripple by the energizing brush 40 and the steep current ripple peak by the auxiliary brush 50 are increased. Becomes easier to stand. As a result, the current ripple can be further amplified by the auxiliary brush 50.
  • the contact resistance of the auxiliary brush 50 becomes larger than the contact resistance of the energizing brush 40. This can be said to be desirable when the auxiliary brush 50 suppresses the spark, but it is not desirable when the current ripple is amplified by the auxiliary brush 50 as in the present embodiment.
  • the contact resistance of the auxiliary brush 50 is larger than the contact resistance of the energizing brush 40, the amplitude of the current ripple by the auxiliary brush 50 becomes small. That is, the amount of current ripple amplification by the auxiliary brush 50 is reduced. Therefore, the contact resistance of the auxiliary brush 50 is preferably equal to or less than the contact resistance of the energizing brush 40.
  • the contact resistance of the auxiliary brush 50 is set to be equal to or less than the contact resistance of the energizing brush 40, so that the loss of the current energizing the auxiliary brush 50 is reduced, so that the efficiency of the electric motor 1 can be suppressed from being lowered.
  • the auxiliary brush 50 is arranged immediately next to the energizing brush 40, but the present invention is not limited to this.
  • FIG. 9 is a cross-sectional view schematically showing the energizing brush 40, the auxiliary brush 50, and the commutator 30 in the electric motor 1A according to the modified example.
  • the electric motor 1A shown in FIG. 9 and the electric motor 1 in the above embodiment have the same configuration except for the angle K.
  • the angle K is 30 °.
  • the auxiliary brush 50 generates a steep pulse-shaped current to amplify the current ripple, as in the electric motor 1 of the above embodiment.
  • the maximum value (amplitude) of the pulse-shaped steep current generated by the auxiliary brush 50 is larger than that in the electric motor 1 in the above embodiment.
  • the electric motor 1A in the present modification has a larger current ripple amplification amount than the electric motor 1 in the above embodiment, so that the rotation speed of the electric motor 1A can be detected more easily based on the current waveform of the electric motor 1A. At the same time, the detection accuracy of the rotation speed of the electric motor 1A can be further improved.
  • the angle K becomes large. That is, in the electric motor 1A in this modification, the distance between the energizing brush 40 and the auxiliary brush 50 in the rotation direction is larger than that of the electric motor 1 in the above embodiment, and the auxiliary brush 50 is located far away from the energizing brush 40. become. As a result, the auxiliary brush 50 is less likely to be affected by the spark generated between the energizing brush 40 and the commutator segment 31, so that the auxiliary brush 50 can be prevented from being worn by the spark.
  • the brush abrasion powder generated between the energizing brush 40 and the auxiliary brush 50 may cause clogging.
  • one auxiliary brush 50 is in contact with the two commutator segments 31, but the present invention is not limited to this.
  • the width of one auxiliary brush 50 in the rotation direction may be increased so that one auxiliary brush 50 may be in contact with the commutator segment 31 over three or more.
  • the number of energizing brushes 40 is two, but the number is not limited to this.
  • the number of energizing brushes 40 may be one or three or more.
  • the number of auxiliary brushes 50 is not limited to two, and may be one or three or more.
  • the maximum value of the steep current ripple by the auxiliary brush 50 is about half that of the case where there are two auxiliary brushes 50. Therefore, there are two auxiliary brushes 50.
  • the number of energizing brushes 40 and the number of auxiliary brushes 50 may be the same or different, but it is better to make them the same.
  • the stator 10 is composed of a magnet 11, but the present invention is not limited to this.
  • the stator 10 may be composed of a stator core and a winding coil wound around the stator core.
  • the rotor 20 has a core, but the rotor 20 is not limited to this. That is, the electric motor 1 in the above embodiment can also be applied to a coreless motor having no core.
  • the electric motor 1 in the above embodiment can be applied to a coreless motor which is a flat flat motor in which the magnetic fluxes of the stator 10 and the rotor 20 are generated in the direction of the axis C of the shaft 21.
  • the present disclosure can accurately and easily detect the rotation speed of an electric motor, it can be used for various products including an electric motor for detecting the rotation speed, such as an electric device such as a vacuum cleaner or an automobile. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

電動機の電流波形の電流リプルに基づいて電動機の回転数を検知する電動機(1)であって、回転軸であるシャフト(21)を有するロータ(20)と、シャフト(21)に取り付けられた整流子(30)と、整流子(30)に接する通電ブラシ(40)と、整流子(30)に接する補助ブラシ(50)とを備え、整流子(30)は、シャフト(21)の周方向に沿って設けられた複数の整流子セグメント(31)を有し、通電ブラシ(40)及び補助ブラシ(50)の両方が整流子セグメント(31)に摺接することにより発生する電流リプルの最大値は、通電ブラシ(40)及び補助ブラシ(50)のうち通電ブラシ(40)のみが整流子セグメント(31)に摺接することにより発生する電流リプルの最大値よりも大きい。

Description

電動機及び電気機器
 本開示は、電動機及び電気機器に関する。
 電気機器又は自動車等をはじめとして種々の製品に電動機が用いられている。例えば、電動機は、電気掃除機に搭載される電動送風機に用いられている。電動機としては、ブラシと整流子とを用いた整流子電動機(整流子モータ)、又は、ブラシと整流子とを用いないブラシレス電動機が知られている。
 整流子電動機は、例えば、ステータと、ステータの磁力によって回転するロータと、ロータの回転軸(シャフト)に取り付けられた整流子と、整流子に摺接する通電ブラシとを備える。整流子は、ロータの回転軸の周方向に沿って等間隔に設けられた複数の整流子セグメントを有する。複数の整流子セグメントの各々には、ロータのコアに巻回された巻線コイルが電気的に接続されている。
 整流子電動機では、隣接する2つの整流子セグメントに跨って通電ブラシが接触することにより、隣接する2つの整流子セグメント間の巻線コイルが短絡し、電機子であるロータの電機子抵抗が一時的に低下する。これにより、整流子電動機では、ロータが回転することで整流子セグメントの数に起因した周波数をもつ電流リプルを有する電流波形を得ることができる。従来、この電流波形から電動機の回転数を検知する技術が提案されている(例えば、特許文献1、2)。電動機の回転数を検知することで、電動機の回転速度を制御することができる。
 特許文献1に記載された電動機は、N極の磁極中心とS極の磁極中心とが周方向に沿って不等間隔となるようにN極とS極とが周方向に交互に着磁されたリング状のマグネットからなるステータを用いている。また、特許文献1に記載された電動機では、一対の通電ブラシを磁極の着磁中心からずらして配置している。これにより、電流リプルの振幅を増加させて、電流波形から電動機の回転数を検出することができる。
 特許文献2に記載された電動機は、電機子であるロータを覆うように周方向に配置された複数のセグメントマグネットからなるステータを有する。特許文献2に記載された電動機では、N極とS極に着磁されたセグメントマグネットが周方向に沿って不等間隔に配置されている。これにより、電流リプルの振幅を増加させて、電流波形から電動機の回転数を検知することができる。
特許第5026949号公報 特許第6485046号公報
 しかしながら、特許文献1、2に記載された技術では、電動機の回転数を正しく検知することができない場合がある。
 本開示は、このような課題を解決するためになされたものであり、電動機の回転数の検知精度を向上させることができる電動機及びこれを備えた電気機器を提供することを目的とする。
 上記目的を達成するために、本開示に係る電動機の一態様は、電動機の電流波形の電流リプルに基づいて電動機の回転数を検知する電動機であって、回転軸を有するロータと、前記回転軸に取り付けられた整流子と、前記整流子に接する通電ブラシと、前記整流子に接する補助ブラシとを備え、前記整流子は、前記回転軸の周方向に沿って設けられた複数の整流子セグメントを有し、前記通電ブラシ及び前記補助ブラシの両方が前記整流子セグメントに摺接することにより発生する電流リプルの最大値は、前記通電ブラシ及び前記補助ブラシのうち前記通電ブラシのみが前記整流子セグメントに摺接することにより発生する電流リプルの最大値よりも大きい。
 また、本開示に係る電気機器の一態様は、上記電動機を用いた電気機器である。
 本開示によれば、電動機の回転数の検知精度を向上させることができる。
図1は、実施の形態に係る電動機の断面図である。 図2は、図1のII-II線における実施の形態に係る電動機の断面図である。 図3は、比較例の電動機における通電ブラシと整流子とを模式的に示す断面図である。 図4は、実施の形態に係る電動機における通電ブラシと補助ブラシと整流子とを模式的に示す断面図である。 図5は、図3に示される比較例の電動機の電流波形の一例を示す図である。 図6は、図4に示される実施の形態に係る電動機の電流波形の一例を示す図である。 図7は、実施の形態に係る電動機の電流波形の他の一例を示す図である。 図8は、実施の形態に係る電動機の電流波形のさらに別の一例を示す図である。 図9は、変形例に係る電動機における通電ブラシと補助ブラシと整流子とを模式的に示す断面図である。 図10は、変形例に係る電動機の電流波形を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 まず、実施の形態に係る電動機1の全体の構成について、図1及び図2を用いて説明する。図1は、実施の形態に係る電動機1の断面図である。図2は、図1のII-II線における電動機1の断面図である。なお、図2では、フレーム60は、図示されていない。また、図2において、黒矢印は、電流の流れを示している。
 電動機1は、整流子電動機であり、ステータ10と、ステータ10の磁力により回転するロータ20と、ロータ20のシャフト21に取り付けられた整流子30と、整流子30に接する通電ブラシ40と、整流子30に接する補助ブラシ50と、ステータ10及びロータ20を収納するフレーム60とを備える。
 本実施の形態における電動機1は、直流により駆動する直流電動機(DCモータ)であり、ステータ10として磁石11が用いられているとともに、ロータ20として巻線コイル22を有する電機子が用いられている。
 なお、本実施の形態における電動機1は、例えば、電気掃除機又はエアタオル等に搭載される電動送風機に用いることができる。また、電動機1は、自動車に搭載される電装機器又は電動工具等に用いることもできる。以下、電動機1の各構成部材について詳細に説明する。
 ステータ10(固定子)は、ロータ20に作用する磁力を発生させる。ステータ10は、周方向に沿ってロータ20とのエアギャップ面にN極とS極とが交互に存在するように構成されている。本実施の形態において、ステータ10は、複数の磁石11(マグネット)によって構成されている。磁石11は、トルクを発生するための磁束を作る界磁石であり、例えばS極及びN極を有する永久磁石である。複数の磁石11の各々は、上面視において、厚さが略一定の円弧形状である。複数の磁石11は、フレーム60に固定されている。
 ステータ10を構成する複数の磁石11は、周方向に沿ってN極とS極とが交互に均等に存在するように配置されている。したがって、ステータ10(磁石11)が発生する主磁束の向きは、シャフト21の軸心Cの方向と交差する方向である。本実施の形態において、複数の磁石11は、ロータ20を囲むようにして周方向に沿って等間隔で配置されており、ロータ20におけるロータコア23の径方向の外周側に位置している。具体的には、N極及びS極が着磁された複数の磁石11が、N極の磁極中心とS極の磁極中心とが周方向に沿って等間隔となるように配置されている。
 ロータ20(回転子)は、ステータ10に作用する磁力を発生させる。本実施の形態において、ロータ20が発生する主磁束の向きは、シャフト21の軸心Cの方向と交差する方向である。ロータ20は、回転軸であるシャフト21を有する。また、ロータ20は、電機子であり、巻線コイル22及びロータコア23を有する。本実施の形態において、ロータ20は、インナーロータであり、ステータ10の内側に配置されている。具体的には、ロータ20は、ステータ10を構成する複数の磁石11に囲まれている。また、ロータ20は、ステータ10とエアギャップを介して配置されている。具体的には、ロータ20(ロータコア23)の外周面と各磁石11の内面との間には微小なエアギャップが存在する。
 シャフト21は、軸心Cを有する回転軸であり、ロータ20が回転する際の中心となる長尺状の棒状部材である。シャフト21の長手方向(延伸方向)は、軸心Cの方向(軸心方向)である。シャフト21は、ベアリング等の軸受けによって回転自在に保持されている。詳細は図示されていないが、例えば、シャフト21の一方の端部である第1端部21aは、フレーム60に固定されたブラケットに保持又はフレーム60に直接保持された第1軸受けに支持され、シャフト21の他方の端部である第2端部21bは、フレーム60に固定されたブラケットに保持又はフレーム60に直接保持された第2軸受けに支持されている。ブラケットは、例えば、フレーム60の開口部を覆うようにしてフレーム60に固定される。
 シャフト21は、ロータ20の中心に固定されている。シャフト21は、例えば金属棒であり、ロータコア23を貫通する状態でロータコア23に固定されている。例えば、シャフト21は、ロータコア23の中心孔に圧入したり焼き嵌めしたりすることでロータコア23に固定されている。
 巻線コイル22(ロータコイル)は、電流が流れることでステータ10に作用する磁力を発生するように巻回されている。巻線コイル22は、インシュレータ24を介してロータコア23に巻回されている。インシュレータ24は、絶縁樹脂材料等によって構成されており、巻線コイル22とロータコア23とを電気的に絶縁する。巻線コイル22は、整流子30と電気的に接続されている。具体的には、巻線コイル22は、整流子30の整流子セグメント31と電気的に接続される。
 ロータコア23は、複数の電磁鋼板がシャフト21の長手方向に積層された積層体である。ロータコア23は、例えば、複数のティース部を有する。複数のティース部の各々に巻線コイル22が巻き回されている。なお、ロータコア23は、電磁鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。
 整流子30は、シャフト21に取り付けられている。したがって、整流子30は、ロータ20が回転することでシャフト21とともに回転する。本実施の形態において、整流子30は、シャフト21の第1端部21aに取り付けられている。
 図2に示すように、整流子30は、シャフト21の周方向に沿って設けられた複数の整流子セグメント31を有する。複数の整流子セグメント31の各々は、シャフト21の長手方向に延在する整流子片である。複数の整流子セグメント31は、シャフト21を囲むように円環状に配列されている。
 複数の整流子セグメント31の各々は、銅等の金属材料によって構成された導電端子であり、ロータ20の巻線コイル22と電気的に接続されている。複数の整流子セグメント31は、互いに絶縁分離されているが、隣接する2つの整流子セグメントは、ロータ20の巻線コイル22によって電気的に接続されている。
 一例として、整流子30は、モールド整流子であり、複数の整流子セグメント31が樹脂モールドされた構成になっている。この場合、複数の整流子セグメント31は、表面が露出するようにモールド樹脂32に埋め込まれている。
 整流子30には、通電ブラシ40及び補助ブラシ50が接している。具体的には、通電ブラシ40及び補助ブラシ50は、整流子30の整流子セグメント31と摺接する。なお、図示されていないが、電動機1には、通電ブラシ40及び補助ブラシ50を整流子30に押し当てるためにコイルバネ又はトーションバネ等のブラシバネが設けられている。ブラシバネは、バネ弾性を利用して通電ブラシ40及び補助ブラシ50に押圧を付与する。通電ブラシ40及び補助ブラシ50の各々は、ブラシバネからの押圧力を受けて常に先端部の表面が整流子30の整流子セグメント31に接触する状態になっている。通電ブラシ40及び補助ブラシ50の各々と整流子セグメント31とが摺れ合う面は摺動面となる。なお、ブラシバネは、1つの通電ブラシ40ごと及び1つの補助ブラシ50ごとに設けられているが、これに限らない。
 通電ブラシ40は、整流子セグメント31に接することでロータ20に電力を供給する給電ブラシである。通電ブラシ40は、整流子30に接触することでロータ20に電力を供給する。したがって、通電ブラシ40には、電源から供給される電流が流れる電線が接続されている。例えば、通電ブラシ40は、ピグテール線等の電線を介して、電源からの電力を受電する電極端子と電気的に接続されている。具体的には、一方の端部が電極端子に接続されたピグテール線の他方の端部が通電ブラシ40の後端部に接続されており、通電ブラシ40が整流子セグメント31に接触することで、ピグテール線を介して通電ブラシ40に供給される電機子電流が整流子セグメント31を介してロータ20の巻線コイル22に流れる。
 一方、補助ブラシ50には、電源から供給される電流が流れる電線が接続されていない。つまり、補助ブラシ50には、電源から供給される電流が直接流れることはなく、通電ブラシ40及び整流子セグメント31を介して電源から供給される電流の一部が流れる。具体的には、補助ブラシ50は、整流子セグメント31を介して以外に電源とは電気的に接続されておらず、また、通電ブラシ40及びスパーク吸収素子等のスパーク抑制を目的とした電子部品(ダイオード、バリスタ、コンデンサ等)にも接続されていない。本実施の形態において、補助ブラシ50は、整流子セグメント31のみに接触しており、通電ブラシ40に電流が流れなければ、補助ブラシ50は、電気的に浮いている状態(フローティング状態)となる。
 通電ブラシ40及び補助ブラシ50は、導電性を有する導電体である。一例として、通電ブラシ40及び補助ブラシ50は、カーボンによって構成された長尺状の略直方体のカーボンブラシである。具体的には、通電ブラシ40及び補助ブラシ50は、銅等の金属を含むカーボンブラシである。例えば、通電ブラシ40及び補助ブラシ50は、黒鉛粉と銅紛とバインダー樹脂と硬化剤とを混錬した混錬物を粉砕して直方体に圧縮成形して焼成することで作製することができる。
 本実施の形態において、補助ブラシ50の接触抵抗は、通電ブラシ40の接触抵抗以下である。一例として、補助ブラシ50の接触抵抗は、通電ブラシ40の接触抵抗の1/2である。具体的には、補助ブラシ50の金属含有率は、通電ブラシ40の金属含有率よりも高くなっており、補助ブラシ50の比抵抗は、通電ブラシ40の比抵抗よりも低くなっている。例えば、補助ブラシ50の銅含有率を通電ブラシ40の銅含有率よりも高くして補助ブラシ50を通電ブラシ40よりも銅リッチにすることで、補助ブラシ50の比抵抗を通電ブラシ40の比抵抗よりも低くすることができる。
 また、ロータ20の回転方向における補助ブラシ50の幅の長さは、ロータ20の回転方向における通電ブラシ40の幅の長さ以下であるが、これに限らない。一例として、補助ブラシ50の幅は、通電ブラシ40の幅の1/2である。なお、補助ブラシ50の長手方向の長さ(ラジアル方向の長さ)と通電ブラシ40の長手方向の長さとは同じであるが、これに限らない。
 本実施の形態において、通電ブラシ40は、一対設けられている。一対の通電ブラシ40は、整流子30を挟持するように対向して配置される。つまり、一対の通電ブラシ40は、シャフト21の軸心Cを中心に線対称に配置されている。一対の通電ブラシ40の各々は、シャフト21の軸心Cと直交する方向(ラジアル方向)で整流子30の整流子セグメント31に接している。つまり、整流子セグメント31には、通電ブラシ40と整流子セグメント31との摺動面を介して、一対の通電ブラシ40の各々から電機子電流が供給される。
 各通電ブラシ40は、隣接する2つの整流子セグメント31を跨って接触する状態が存在するように構成されている。つまり、ロータ20の回転方向における通電ブラシ40の幅の長さは、隣接する2つの整流子セグメント31の間隔の長さよりも大きくなっている。これにより、各通電ブラシ40は、隣接する2つの整流子セグメント31の間の巻線コイル22を短絡させることができる。
 同様に、補助ブラシ50も、一対設けられている。一対の補助ブラシ50は、整流子30を挟持するように対向して配置される。つまり、一対の補助ブラシ50も、シャフト21の軸心を中心に線対称に配置されている。一対の補助ブラシ50の各々は、シャフト21の軸心Cと直交する方向で整流子30の整流子セグメント31に接している。
 各補助ブラシ50も、隣接する2つの整流子セグメント31を跨って接触する状態が存在するように構成されている。つまり、ロータ20の回転方向における補助ブラシ50の幅の長さは、隣接する2つの整流子セグメント31の間隔の長さよりも大きくなっている。これにより、隣接する2つの整流子セグメント31の間の巻線コイル22を短絡させることができる。
 本実施の形態において、補助ブラシ50は、通電ブラシ40が接する整流子セグメント31と同じ整流子セグメント31に接する位置に配置されている。つまり、補助ブラシ50は、通電ブラシ40と隣接して配置されており、複数の整流子セグメント31の中には、補助ブラシ50と通電ブラシ40とが共通して同時に接する整流子セグメント31が存在する。また、補助ブラシ50は、通電ブラシ40の回転方向の前方側の横に配置されている。
 なお、図示されていないが、通電ブラシ40及び補助ブラシ50は、ブラシホルダによって保持されている。例えば、通電ブラシ40及び補助ブラシ50は、ブラシホルダに収納されている。この場合、通電ブラシ40及び補助ブラシ50は、ブラシホルダの内部を摺動する。
 フレーム60は、ステータ10及びロータ20等の電動機1を構成する部品を収納する筐体(ケース)である。フレーム60は、例えば、円筒形状の円筒部を有する。フレーム60は、例えば、アルミニウム等の金属材料によって構成されている。ステータ10(磁石11)は、フレーム60の内周面に沿ってフレーム60に取り付けられている。なお、フレーム60は、底部を有する有底円筒形状であってもよい。
 以上のように構成される電動機1では、通電ブラシ40に供給される電流が電機子電流(駆動電流)として整流子30を介してロータ20の巻線コイル22に流れることで、ロータ20に磁束が発生する。そして、このロータ20に生じた磁束とステータ10から生じる磁束との相互作用によって生成された磁気力がロータ20を回転させるトルクとなる。このとき、整流子セグメント31と通電ブラシ40とが接する際の位置関係によって電流が流れる方向が切り替えられる。つまり、転流が生じる。このように、電流が流れる方向が切り替えられることで、ステータ10とロータ20との間に発生する磁力の反発力と吸引力とで一定方向の回転力が生成される。これにより、ロータ20は、シャフト21を回転中心として回転する。
 ロータ20が回転すると、電動機1の電流波形に整流子セグメント31の数に起因した周波数で電流リプルが発生する。電動機1は、この電流リプルに基づいて電動機1の回転数を検知することができる。電動機1の回転数を検知することで、電動機1の回転速度を制御することができる。つまり、電動機1の回転数を正確に検知することで、電動機1の回転速度を正確に制御することができる。
 以下、本実施の形態に係る電動機1における回転数の検知手法の特徴について、本開示の技術に至った経緯も含めて説明する。
 従来より、電動機の電流波形の電流リプルに基づいて電動機の回転数を検知する技術が提案されている(例えば、上記の特許文献1、2)。
 しかしながら、上記の特許文献1、2に記載された技術では、特定の整流子セグメントだけに大きなスパークが発生するので、複数の整流子セグメントに不均一にダメージを与えてしまう。この結果、隣接する2つの整流子セグメント間に段差が発生して、通電ブラシと整流子セグメントとの間にさらに大きなスパークが発生することになる。これにより、電動機の寿命が短くなるとともに、特定の整流子セグメントと通電ブラシとが接触せずに通電不良が発生して電流リプルが乱れ、電動機の回転数を正しく検知することができない場合がある。つまり、電動機の回転数の検知精度が低下するという課題がある。
 また、特許文献1、2に記載された技術は、ステータにおけるN極の着磁中心とS極の着磁中心とを周方向に沿って不等間隔にしているので、電動機の効率が低下したり振動が発生したりして電動機の基本性能が低下するという課題もある。
 しかも、上記の特許文献1、2に記載された技術は、通電ブラシが整流子セグメントを跨ぐ際の巻線コイルの短絡よって発生する電流リプルの周波数とは異なる周波数で且つ振幅の大きな電流リプルによって電流波形を上書きする方法である。このため、巻線コイルの短絡による電流リプルの振幅が大きい電動機(例えば、巻線コイルのターン数が多かったり巻線コイルの短絡による抵抗変化が大きかったりする電動機)には適用することが難しいという課題もある。
 これに対して、本実施の形態に係る電動機1では、通電ブラシ40に加えて補助ブラシ50を用いているので、電流リプルの振幅が大きい場合であっても、電動機の基本性能を低下させることなく電動機1の回転数を正しく検知することができる。
 ここで、図3及び図4を用いて、補助ブラシ50を用いた本実施の形態に係る電動機1における回転数の検知方法について、補助ブラシ50を用いない比較例の電動機1Xにおける回転数の検知方法と比較して説明する。図3は、比較例の電動機1Xにおける通電ブラシ40と整流子30とを模式的に示す断面図である。図4は、実施の形態に係る電動機1における通電ブラシ40と補助ブラシ50と整流子30とを模式的に示す断面図である。なお、図3に示される比較例の電動機1Xは、補助ブラシ50が配置されていないこと以外は、図4に示される電動機1と同じ構成である。また、図3及び図4において、黒矢印は、電流の流れを示している。
 図3及び図4に示すように、整流子30では、隣接する2つの整流子セグメント31ごとに、2つの整流子セグメント31は、ロータ20の巻線コイル22を介して電気的に接続されている。そして、整流子セグメント31に通電ブラシ40が接すると、電源から供給される電流が通電ブラシ40を通って整流子セグメント31及び巻線コイル22へと順次流れる。
 このとき、図3及び図4に示すように、ロータ20が回転して通電ブラシ40が隣接する2つの整流子セグメント31に跨って接する状態になると、隣接する2つの整流子セグメント31間の巻線コイル22が短絡して巻線コイル22への通電が阻害され、ロータ20の電機子抵抗が一時的に低下することになる。これにより、図3に示される電動機1X及び図4に示される電動機1のいずれにおいても、電流波形に整流子セグメント31の数に起因した周波数をもつ電流リプルが発生することになる。
 この場合、図4に示すように、本実施の形態における電動機1は、補助ブラシ50を有している。ここで、シャフト21(回転軸)の軸心Cとロータ20の回転方向における通電ブラシ40の幅の中心とを結ぶ線L1と、シャフト21の軸心Cとロータ20の回転方向における補助ブラシ50の幅の中心とを結ぶ線L2とのなす角をK[°]とし、複数の整流子セグメント31の総数をSとすると、角度Kは、K=(360°/S)×n(ただし、nは自然数)の関係式を満たす。なお、図4は、n=1の場合を示している。
 このように、本実施の形態における電動機1は、補助ブラシ50を有している。これにより、補助ブラシ50が、隣接する2つの整流子セグメント31を跨って接触すると、図4の矢印Aに示すように、補助ブラシ50を介して補助ブラシ50が接する2つの整流子セグメント31の一方から他方へと流れる通電経路が構築される。この結果、破線の矢印Bで示すように、補助ブラシ50が跨ぐ2つの整流子セグメント31に接続された巻線コイル22に流れる電流が減少することになる。これにより、通電ブラシ40によって電機子抵抗が一時的に低下することに加えて、補助ブラシ50によって電機子抵抗が一時的にさらに低下することになる。したがって、補助ブラシ50を設けたことで、補助ブラシ50が無い場合と比べて電流リプルを増幅させることができる。つまり、電動機1の電流波形は、通電ブラシ40による電流リプルに補助ブラシ50による電流リプルがオンした形状となる。
 ここで、図3に示す比較例の電動機1Xと図4に示す本実施の形態に係る電動機1とにおける電流波形を実測する実験を行ったので、その実験結果を図5及び図6を用いて説明する。図5は、図3に示される比較例の電動機1Xの電流波形の一例を示す図である。図6は、図4に示される実施の形態に係る電動機1の電流波形の一例を示す図である。図5及び図6において、通電ブラシ40のみによる電流リプルの最大値を破線Xで表し、通電ブラシ40及び補助ブラシ50による電流リプルの最大値を破線Yで表している。
 なお、この実験では、補助ブラシ50の接触抵抗を通電ブラシ40の接触抵抗の1/2とし、補助ブラシ50の幅を通電ブラシ40の幅の1/2とした。また、整流子セグメント31の総数Sは24とした。なお、図4では、n=1であるので、角度Kは、15°である。
 図5及び図6に示すように、図3に示される電動機1X及び図4に示される電動機1のいずれについても、通電ブラシ40と整流子セグメント31との摺接によって電流波形に電流リプルが発生しているが、図6に示すように、補助ブラシ50を有する電動機1では、補助ブラシ50と整流子セグメント31との摺接によって電流リプルが増幅されている。
 具体的には、図6に示すように、本実施の形態における電動機1では、通電ブラシ40による電流リプルに補助ブラシ50によるパルス状の急峻な電流リプルが加わっており、通電ブラシ40及び補助ブラシ50の両方が整流子セグメント31に摺接することにより発生する電流リプルの最大値が、通電ブラシ40及び補助ブラシ50のうち通電ブラシ40のみが整流子セグメント31に摺接することにより発生する電流リプルの最大値よりも大きくなっている。つまり、通電ブラシ40自体が整流子セグメント31に摺接することにより発生する電流リプルの最大値(破線X)よりも、補助ブラシ50自体が整流子セグメント31に摺接することにより発生する電流リプルの最大値(破線Y)が大きくなっており、補助ブラシ50を有する電動機1は、補助ブラシ50を有さない電動機1Xと比べて、トータルの電流リプルの振幅(電流リプルにおける電流値の最大値と最小値の落差)が増幅されている。
 このように、補助ブラシ50によるパルス状の急峻な電流リプルによってトータルの電流リプルの振幅を増加させることにより、電流リプルを用いた回転数の検知精度を高めることができる。また、電流波形から電動機1の回転数を検知する際は、最大の電流次数成分を検知することが一般的である。このため、本実施の形態のように、通電ブラシ40の電流リプルの最大値となる電流箇所に補助ブラシ50の電流リプルの最大値をプラスすることで、電流リプルのメイン周波数の次数が変化しないので、電動機1の電流波形から電動機1の回転数を容易に検知することができる。
 このように、本実施の形態における電動機1によれば、電動機1の電流波形がもつ電流リプルに基づいて電動機1の回転数を検知する際に、電動機1の回転数を検出するのに十分に大きな電流リプルを生成することができるので、電動機1の回転数の検知精度を向上させることができる。
 特に、本実施の形態における電動機1では、上記の特許文献1、2の技術とは異なり、補助ブラシ50によるパルス状の急峻な電流リプルによってトータルの電流リプルの振幅を増加させているので、特定の整流子セグメント31だけに大きなスパークが発生することがない。これにより、電動機1の寿命が短くなることを抑制できるとともに、特定の整流子セグメント31のダメージによる段差によって電流リプルが乱れることを抑制することができ、長期にわたって電動機1の回転数を正しく検知することができる。
 また、本実施の形態における電動機1では、上記の特許文献1、2の技術とは異なり、ステータ10におけるN極の着磁中心とS極の着磁中心とを周方向に沿って不等間隔にする必要がないので、電動機1の効率が低下したり振動が発生したりして電動機1の基本性能が低下することもない。
 さらに、本実施の形態における電動機1では、上記の特許文献1、2の技術とは異なり、通電ブラシ40が整流子セグメント31を跨ぐ際の巻線コイル22の短絡よって発生する電流リプルの周波数とは異なる周波数で且つ振幅の大きな電流リプルによって電流波形を上書きするという方法ではないので、巻線コイル22の短絡による電流リプルの振幅が大きい電動機にも適用することができる。
 このように、本実施の形態における電動機1によれば、電流リプルの振幅が大きくても、電動機1の基本性能を低下させることなく、電動機1の回転数を正しく検知することができる。
 そして、このように構成される電動機1を電気機器に用いることで、電動機1の回転数が検知しやすく、信頼性のある回転数の制御を行うことができる電気機器を実現することができる。
 また、本実施の形態に係る電動機1では、シャフト21の軸心とロータ20の回転方向における通電ブラシ40の幅の中心とを結ぶ線L1と、シャフト21の軸心とロータ20の回転方向における補助ブラシ50の幅の中心とを結ぶ線L2とのなす角をK[°]とし、複数の整流子セグメント31の総数をSとすると、K=(360°/S)×n(ただし、nは自然数)の関係式を満たしている。
 この構成により、通電ブラシ40によって生じる電流リプルの電流最大時(振幅最大時)と、補助ブラシ50によって生じる電流リプルの電流最大値(振幅最大時)となる電気角が一致する。電動機1のトータルの電流リプルの振幅量を最大化することができる。これにより、電動機1の検知精度を一層高めることができる。
 この場合、角度KがK=(360°/S)×nを満たす角度から大きくずれると、通電ブラシ40による電流リプルと補助ブラシ50による電流リプルとの電気角が大きくずれることになるので、互いの最大振幅となる点がずれてしまって別の周波数成分が発生し、電流波形によって電動機1の回転数を検知することが容易ではなくなってしまう。
 例えば、角度Kが、K=(360°/S)×(n-1/3)の関係式を満たす場合、電動機1の電流波形は図7に示される波形となる。この場合、n=1、S=24とすると、角度Kは10°となる。図7に示すように、K=(360°/S)×(n-1/3)の関係式を満たす場合、通電ブラシ40のみによる電流リプルの最大値(破線X)と、通電ブラシ40及び補助ブラシ50による電流リプルの最大値(破線Y)とが同等レベルになっており、補助ブラシ50による電流リプルを増幅させる効果の限界になっていることが分かる。
 一方、角度Kが、K=(360°/S)×(n+1/2)の関係式を満たす場合、電動機1の電流波形は図8に示される波形となる。この場合、n=1、S=24とすると、角度Kは22.5°となる。図8に示すように、K=(360°/S)×(n+1/2)の関係式を満たす場合も、通電ブラシ40のみによる電流リプルの最大値(破線X)と、通電ブラシ40及び補助ブラシ50による電流リプルの最大値(破線Y)とが同等レベルになっており、補助ブラシ50による電流リプルを増幅させる効果の限界になっていることが分かる。
 したがって、角度Kは、(360/S)×(n-1/3)≦K≦(360/S)×(n+1/2)の関係式を満たすとよい。
 角度Kがこの範囲以外になると、通電ブラシ40及び補助ブラシ50による電流リプルの最大値(破線Y)が、通電ブラシ40のみによる電流リプルの最大値(破線X)を超えることができなくなる。この結果、補助ブラシ50を設けても通電ブラシ40による電流リプルを補助ブラシ50によって増幅することができなくなる上に、通電ブラシ40による電流リプルの振幅と補助ブラシ50による電流リプルの振幅との電気角がずれて別の周波数成分が発生するので電流リプルの周波数の次数が変化する。このため、かえって電動機1の電流波形から回転数を検知することが難しくなるおそれがある。
 なお、本実施の形態では、補助ブラシ50を通電ブラシ40の回転方向の前方側に配置したが、補助ブラシ50と通電ブラシ40との間の角度Kが(360°/S)×nの関係式を満たしていれば、補助ブラシ50を回転方向の後方側に配置しても同様の効果を得ることができる。
 また、本実施の形態に係る電動機1において、通電ブラシ40には、電源から供給される電流が流れる電線が接続されており、補助ブラシ50には、電源から供給される電流が流れる電線が接続されていない。具体的には、補助ブラシ50には、整流子セグメント31を介して以外に、電気的に電源に接続されておらず、また、通電ブラシ40及びスパーク吸収素子にも直接接続されていない。
 これにより、補助ブラシ50によって電流リプルを確実に発生させることができる。なお、仮に補助ブラシ50にスパーク吸収素子を接続して通電ブラシ40とスパーク吸収素子とを電気的に接続した場合、通電ブラシ40と整流子セグメント31との間に発生するスパークを効果的に抑制することは可能ではあるが、補助ブラシ50を通して電流が通電ブラシ40へ回生されるため、補助ブラシ50が2つの整流子セグメント31を跨いだ際に発生する電流リプルを得る効果が低下してしまう。
 また、本実施の形態に係る電動機1において、ロータ20の回転方向における補助ブラシ50の幅の長さは、ロータ20の回転方向における通電ブラシ40の幅の長さ以下であり、かつ、隣接する2つの整流子セグメント31の間隔の長さよりも大きい。
 ロータ20の回転方向における補助ブラシ50の幅の長さは、補助ブラシ50による電流リプルのパルス幅に影響する。したがって、補助ブラシ50の幅の長さが通電ブラシ40の幅の長さよりも長い場合であっても補助ブラシ50によって電流リプルを増幅させることは可能ではあるものの、補助ブラシ50の幅の長さが通電ブラシ40の幅の長さよりも長いと、図6に示すように通電ブラシ40による電流リプルに急峻なパルス状の電流リプルがオンしたような電流波形にはならず、電流リプルの波形全体が大きくなってしまって平均電流値が大きくなり電動機1の特性が変化してしまう。また、補助ブラシ50の接触抵抗によって損失する電流は電動機1の性能としては無効になってしまうので、補助ブラシ50の幅の長さが通電ブラシ40の幅の長さよりも長いと、電動機1の効率が低下する。
 一方、補助ブラシ50の幅の長さが通電ブラシ40の幅の長さよりも短いと、図6に示すように、通電ブラシ40による電流リプルに急峻なパルス状の電流リプルがオンしたような電流波形を得ることができ、平均電流値をあまり変化せずに電流リプルの最大値を大きくすることができる。これにより、電動機1の特性及び効率の変化が小さいままで、電動機1の電流波形から回転数を高精度に検知することができる。なお、電動機1及びこれを用いた電気機器が電流リプルから回転数を検知する場合、電流リプルの最大値と最小値との落差である振幅が重要であるため、電流リプルが急峻なパルス状であっても特に問題はない。
 このように、補助ブラシ50の幅の長さは通電ブラシ40の幅の長さよりも短くなっているとよい。この場合、補助ブラシ50の幅の長さは、短ければ短いほどよく、好ましくは通電ブラシ40の幅の長さの半分以下であるとよい。ただし、補助ブラシ50の幅の長さが、隣接する2つの整流子セグメント31の間隔の長さよりも小さくなってしまうと、補助ブラシ50が2つの整流子セグメント31に接することができなくなり、補助ブラシ50による電流リプルの増幅効果が得られなくなってしまう。
 また、本実施の形態に係る電動機1において、補助ブラシ50の接触抵抗は、通電ブラシ40の接触抵抗以下である。この場合、通電ブラシ40及び補助ブラシ50は、金属含むカーボンブラシであり、補助ブラシ50の金属含有率は、通電ブラシ40の金属含有率よりも高くなっているとよい。
 この構成により、隣接する2つの整流子セグメント31に補助ブラシ50が跨いで接触した時に発生する電流リプルの振幅が大きくなるとともに、通電ブラシ40による電流リプルに補助ブラシ50による急峻な電流リプルのピークが立ちやすくなる。これにより、補助ブラシ50によって電流リプルを一層増幅させることができる。
 仮にスパークを抑制するために補助ブラシ50にダイオード等の電子部品を接続した場合、補助ブラシ50の接触抵抗は、通電ブラシ40の接触抵抗よりも大きくなる。このことは、補助ブラシ50によってスパークを抑制する場合は望ましいことといえるが、本実施の形態のように、補助ブラシ50によって電流リプルを増幅させる場合は望ましくない。補助ブラシ50の接触抵抗が通電ブラシ40の接触抵抗よりも大きいと、補助ブラシ50による電流リプルの振幅が小さくなる。つまり、補助ブラシ50による電流リプルの増幅量が小さくなる。したがって、補助ブラシ50の接触抵抗は、通電ブラシ40の接触抵抗以下であるとよい。さらに、補助ブラシ50の接触抵抗を通電ブラシ40の接触抵抗以下にすることで、補助ブラシ50を通電する電流のロスが減少するので、電動機1の効率が低下することも抑制できる。
 (変形例)
 以上、本開示に係る電動機1について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、K=(360°/S)×nの関係式でn=1とし、補助ブラシ50と通電ブラシ40とで1つの整流子セグメント31を共通に接触するように、補助ブラシ50を通電ブラシ40の直ぐ横に配置したが、これに限らない。具体的には、K=(360°/S)×nの関係式において、nは2以上の自然数であってもよい。この場合、n=2とすると、通電ブラシ40と補助ブラシ50との位置関係は、図9に示される変形例の電動機1Aのようになる。
 図9は、変形例に係る電動機1Aにおける通電ブラシ40と補助ブラシ50と整流子30とを模式的に示す断面図である。図9に示される電動機1Aと上記実施の形態における電動機1とは、角度K以外は同じ構成である。例えば、図9において、整流子セグメント31の総数Sを24とすると、角度Kは30°になる。
 図9に示される構成の電動機1Aにおいて、電動機1Aの電流波形を測定すると、図10に示される結果となった。図10は、変形例に係る電動機1A(n=2)の電流波形を示す図である。
 図10に示すように、本変形例における電動機1Aでは、上記実施の形態の電動機1と同様に、補助ブラシ50によってパルス状の急峻な電流が発生して電流リプルが増幅される。しかも、本変形例における電動機1Aでは、上記実施の形態における電動機1と比べて、補助ブラシ50によって発生するパルス状の急峻な電流の最大値(振幅)が大きくなることも分かった。このように、本変形例における電動機1Aは、上記実施の形態における電動機1よりも電流リプルの増幅量が大きくなるので、電動機1Aの電流波形に基づいて電動機1Aの回転数を一層容易に検知することができるとともに、電動機1Aの回転数の検知精度を一層高めることができる。
 また、図9に示される電動機1Aのように、K=(360°/S)×nの関係式で、nを2以上の自然数にすることで、上記実施の形態における電動機1と比べて、角度Kが大きくなる。つまり、本変形例における電動機1Aでは、通電ブラシ40と補助ブラシ50との回転方向の間隔は、上記実施の形態における電動機1よりも大きくなり、補助ブラシ50は、通電ブラシ40から遠く離れた位置になる。これにより、補助ブラシ50は、通電ブラシ40と整流子セグメント31との間で発生するスパークの影響を受けにくくなるので、スパークによって補助ブラシ50が摩耗すること等を抑制できる。また、通電ブラシ40と補助ブラシ50との回転方向の間隔が短いと(例えばn=1の場合)、通電ブラシ40と補助ブラシ50との間で発生するブラシ摩耗粉によって目詰まりが生じるおそれがあるが、K=(360°/S)×nの関係式でnを2以上の自然数にして通電ブラシ40と補助ブラシ50とを遠ざけることで、通電ブラシ40と補助ブラシ50との間で発生するブラシ摩耗粉によって目詰まりすることを抑制できる。
 また、上記実施の形態及び変形例において、1つの補助ブラシ50は、2つの整流子セグメント31に跨って接していたが、これに限らない。例えば、1つの補助ブラシ50の回転方向の幅を大きくして、1つの補助ブラシ50が、3つ以上の整流子セグメント31に跨って接していてもよい。
 また、上記実施の形態及び変形例において、通電ブラシ40は、2つとしたが、これに限らない。例えば、通電ブラシ40は、1つであってもよいし、3つ以上であってもよい。同様に、補助ブラシ50も2つに限るものではなく、1つであってもよいし、3つ以上であってもよい。ただし、補助ブラシ50が1つであると、補助ブラシ50が2つである場合と比べて、補助ブラシ50による急峻な電流リプルの最大値が半分程度になるので、補助ブラシ50は、2つ以上の方がよい。また、通電ブラシ40の数と補助ブラシ50の数とは、同じであってもよいし、異なっていてもよいが、同じにする方がよい。
 また、上記実施の形態及び変形例において、ステータ10は、磁石11によって構成されていたが、これに限らない。例えば、ステータ10は、ステータコアとステータコアに巻回された巻線コイルとによって構成されていてもよい。
 また、上記実施の形態及び変形例において、ロータ20は、コアを有していたが、これに限らない。つまり、上記実施の形態における電動機1は、コアを有さないコアレスモータに適用することもできる。例えば、上記実施の形態における電動機1は、ステータ10及びロータ20の磁束がシャフト21の軸心Cの方向に発生する扁平型のフラットモータであるコアレスモータに適用することができる。
 その他、上記実施の形態及び変形例に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示は、電動機の回転数を精度よく容易に検知することができるので、電気掃除機等の電気機器又は自動車等をはじめとして、回転数を検知する電動機を備える種々の製品に利用することができる。
 1、1A 電動機
 10 ステータ
 11 磁石
 20 ロータ
 21 シャフト
 21a 第1端部
 21b 第2端部
 22 巻線コイル
 23 ロータコア
 24 インシュレータ
 30 整流子
 31 整流子セグメント
 32 モールド樹脂
 40 通電ブラシ
 50 補助ブラシ
 60 フレーム

Claims (9)

  1.  電動機の電流波形の電流リプルに基づいて電動機の回転数を検知する電動機であって、
     回転軸を有するロータと、
     前記回転軸に取り付けられた整流子と、
     前記整流子に接する通電ブラシと、
     前記整流子に接する補助ブラシとを備え、
     前記整流子は、前記回転軸の周方向に沿って設けられた複数の整流子セグメントを有し、
     前記通電ブラシ及び前記補助ブラシの両方が前記整流子セグメントに摺接することにより発生する電流リプルの最大値は、前記通電ブラシ及び前記補助ブラシのうち前記通電ブラシのみが前記整流子セグメントに摺接することにより発生する電流リプルの最大値よりも大きい、
     電動機。
  2.  前記回転軸の中心と前記ロータの回転方向における前記通電ブラシの幅の中心とを結ぶ線と、前記回転軸の中心と前記ロータの回転方向における前記補助ブラシの幅の中心とを結ぶ線とのなす角をKとし、
     前記複数の整流子セグメントの総数をSとすると、
     K=(360°/S)×n(ただし、nは自然数)の関係式を満たす、
     請求項1に記載の電動機。
  3.  前記回転軸の軸心と前記ロータの回転方向における前記通電ブラシの幅の中心とを結ぶ線と、前記回転軸の軸心と前記ロータの回転方向における前記補助ブラシの幅の中心とを結ぶ線とのなす角をKとし、
     前記複数の整流子セグメントの総数をSとすると、
     (360°/S)×(n-1/3)≦K≦(360°/S)×(n+1/2)の関係式を満たす、
     請求項1に記載の電動機。
  4.  nは2以上の自然数である、
     請求項2又は3に記載の電動機。
  5.  前記通電ブラシには、電源から供給される電流が流れる電線が接続されており、
     前記補助ブラシには、前記電源から供給される電流が流れる電線が接続されていない、
     請求項1~4のいずれか1項に記載の電動機。
  6.  前記ロータの回転方向における前記補助ブラシの幅の長さは、前記ロータの回転方向における前記通電ブラシの幅の長さ以下であり、かつ、隣接する2つの前記整流子セグメントの間隔の長さよりも大きい、
     請求項1~5のいずれか1項に記載の電動機。
  7.  前記補助ブラシの接触抵抗は、前記通電ブラシの接触抵抗以下である、
     請求項1~6のいずれか1項に記載の電動機。
  8.  前記通電ブラシ及び前記補助ブラシは、金属含むカーボンブラシであり、
     前記補助ブラシの金属含有率は、前記通電ブラシの金属含有率よりも高い、
     請求項7に記載の電動機。
  9.  請求項1~8のいずれか1項に記載の電動機を用いた電気機器。
PCT/JP2020/033752 2019-09-10 2020-09-07 電動機及び電気機器 WO2021049449A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019164795 2019-09-10
JP2019-164795 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021049449A1 true WO2021049449A1 (ja) 2021-03-18

Family

ID=74867026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033752 WO2021049449A1 (ja) 2019-09-10 2020-09-07 電動機及び電気機器

Country Status (1)

Country Link
WO (1) WO2021049449A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233672A (zh) * 2021-12-22 2022-03-25 华能酒泉发电有限公司 一种基于转速参数在线监测的空冷风机控制系统及其方法
WO2023135955A1 (ja) * 2022-01-17 2023-07-20 パナソニックIpマネジメント株式会社 電動機、および電気機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359855A1 (de) * 1988-09-21 1990-03-28 Siemens Aktiengesellschaft Drehzahlmessvorrichtung für einen Kommutatormotor
FR2791486A1 (fr) * 1999-03-24 2000-09-29 Valeo Systemes Dessuyage Moteur electrique a courant continu equipe de moyens perfectionnes de detection de rotation
US20090304368A1 (en) * 2004-10-25 2009-12-10 Nicolas Boissonnade Commutator motor comprising a device for controlling the angular position and rotational speed of the armature thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359855A1 (de) * 1988-09-21 1990-03-28 Siemens Aktiengesellschaft Drehzahlmessvorrichtung für einen Kommutatormotor
FR2791486A1 (fr) * 1999-03-24 2000-09-29 Valeo Systemes Dessuyage Moteur electrique a courant continu equipe de moyens perfectionnes de detection de rotation
US20090304368A1 (en) * 2004-10-25 2009-12-10 Nicolas Boissonnade Commutator motor comprising a device for controlling the angular position and rotational speed of the armature thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233672A (zh) * 2021-12-22 2022-03-25 华能酒泉发电有限公司 一种基于转速参数在线监测的空冷风机控制系统及其方法
CN114233672B (zh) * 2021-12-22 2023-10-20 华能酒泉发电有限公司 一种基于转速参数在线监测的空冷风机控制系统及其方法
WO2023135955A1 (ja) * 2022-01-17 2023-07-20 パナソニックIpマネジメント株式会社 電動機、および電気機器

Similar Documents

Publication Publication Date Title
US8436505B2 (en) Electric motor and reduction motor
JP5026949B2 (ja) モータ
WO2021049449A1 (ja) 電動機及び電気機器
JP6009140B2 (ja) Dcモータ
GB2236189A (en) Noise suppression in electric motor with frequency generator
US6703731B2 (en) Electric motor
JP2017192233A (ja) ブラシ付き回転電機
EP2592733A2 (en) Ripple counter for multi-pole motors
WO2021049452A1 (ja) 電動機及び電気機器
JP2014155315A (ja) 交流整流子電動機、および、それを用いた電動送風機
JP4659585B2 (ja) 直流モータ
US9142930B2 (en) Electric motor with spark suppression circuit
WO2021070458A1 (ja) 電動機及び電気機器
WO2022050179A1 (ja) 電動機
WO2021049453A1 (ja) 電動機及び電気機器
JP2010093890A (ja) 電動モータ
JPWO2021070458A5 (ja)
WO2023135955A1 (ja) 電動機、および電気機器
WO2021090550A1 (ja) 電動機および電気機器
KR102510163B1 (ko) 모터
JP2021040468A (ja) 電動機及び電気機器
JP6797385B2 (ja) 直流モータ
JP2010166747A (ja) 回転電機のブラシ装置および回転電機
JP2023015875A (ja) 電動機
KR20210027885A (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864164

Country of ref document: EP

Kind code of ref document: A1