WO2021047649A1 - 一种增强、可自修复或可回收、可循环3d打印制件及其制备方法与应用 - Google Patents

一种增强、可自修复或可回收、可循环3d打印制件及其制备方法与应用 Download PDF

Info

Publication number
WO2021047649A1
WO2021047649A1 PCT/CN2020/114834 CN2020114834W WO2021047649A1 WO 2021047649 A1 WO2021047649 A1 WO 2021047649A1 CN 2020114834 W CN2020114834 W CN 2020114834W WO 2021047649 A1 WO2021047649 A1 WO 2021047649A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed
monomer
photosensitive resin
printing
acrylate
Prior art date
Application number
PCT/CN2020/114834
Other languages
English (en)
French (fr)
Inventor
朱光达
侯仪
赵宁
徐坚
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910866554.2A external-priority patent/CN112480450B/zh
Priority claimed from CN201910866553.8A external-priority patent/CN112480293B/zh
Priority claimed from CN202010066454.4A external-priority patent/CN113150199B/zh
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to US17/597,145 priority Critical patent/US20220315673A1/en
Publication of WO2021047649A1 publication Critical patent/WO2021047649A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds

Definitions

  • the invention belongs to the technical field of 3D printing, and specifically relates to an enhanced, self-repairing or recyclable, recyclable 3D printing article, and a preparation method and application thereof.
  • 3D printing is an emerging molding technology that can process parts with complex structures and high molding accuracy requirements. It has been widely used in tissue engineering, software robots and many other fields.
  • Light-curing 3D printing is one of the important directions of 3D printing technology. It is a printing technology using photosensitive resin as a raw material. It has the characteristics of high molding accuracy and high printing efficiency, and can realize the printing of micron, sub-micron and even nano-scale structures.
  • most of the materials used for light-curing 3D printing are thermosetting photosensitive resin materials. After the printed parts are damaged by the outside, the complex structure of the parts is difficult to recover, and the performance will be reduced. It is difficult to meet the actual needs of use. At the same time, the light-cured 3D printed parts cannot Recycling is difficult to reprocess and shape, which will cause environmental pollution and waste of resources.
  • 3D printing also known as additive manufacturing, is a technology that uses computer control to superimpose materials layer by layer to manufacture physical parts. Compared with traditional processing technology, 3D printing technology does not require traditional multiple processing procedures, and can quickly manufacture parts with complex structures, greatly reducing processing procedures and shortening the processing cycle. The more complex the structure of the part, the more significant the processing efficiency. . Because of its high efficiency and high precision, 3D printing technology has been widely used in many fields such as aerospace, medical treatment, and art design. However, the inherent layer-by-layer processing method of 3D printing technology makes the layer-to-layer bonding weak and easy to produce defects. Compared with the traditional processing parts, the performance is significantly lower, and it is difficult to meet the actual use requirements.
  • the present invention provides a 3D printing article, the 3D printing raw material of the 3D printing article includes a functional monomer or at least one monofunctional thermoplastic photosensitive resin monomer;
  • the functional monomer is selected from at least one of compounds having the structural formula represented by formula (I) or compounds containing dynamic chemical bonds:
  • M is selected from metal ions, and R is selected from anions
  • n is the valence number of the metal ion
  • the present invention provides a method for preparing a 3D printed article, the method comprising:
  • 3D printed parts with enhanced interface strength can be prepared; or,
  • At least one monofunctional thermoplastic photosensitive resin monomer is used as one of the 3D printing raw materials to prepare recyclable 3D printing parts;
  • the functional monomer is selected from at least one compound having the structural formula represented by the above formula (I) or a compound containing a dynamic chemical bond.
  • the present invention provides a composition for the above-mentioned 3D printing parts, specifically a composition for preparing self-repairing or recyclable parts by light-curing 3D printing, which comprises: at least one Monomers, photoinitiators and functional monomers of photosensitive resins;
  • the monomer of the photosensitive resin is a monofunctional photosensitive compound
  • the functional monomer is selected from at least one compound having the structural formula represented by the above formula (I) or a compound containing a dynamic chemical bond.
  • the composition may contain nanoparticles.
  • the present invention also provides the application of the above-mentioned composition in the preparation of light-cured 3D printed parts.
  • the present invention also provides a light-cured 3D printed article prepared by the above composition.
  • the present invention also provides the above-mentioned 3D printed article, specifically a method for preparing a self-repairable or recyclable 3D printed article, including the following steps:
  • step 3a) The mixed dispersion obtained in step 2a) is subjected to light-curing 3D printing to obtain the light-curing 3D printed article.
  • the monomers, photoinitiators, functional monomers and nanoparticles of the photosensitive resin have the meanings as described above.
  • the present invention also provides a self-repairing method for the above-mentioned 3D printed article.
  • the broken section of the printed article is attached and repaired at a certain temperature, and the structure and performance of the article can be restored.
  • the present invention also provides a method for recovering the 3D printed parts.
  • the damaged printed parts are cut into pieces and hot-pressed to obtain recovered materials.
  • the present invention provides a composition for the above-mentioned 3D printing article, specifically a composition for preparing a light-curable 3D printing linear polymer article, which includes: at least one photosensitive resin Monomers, photoinitiators, and optional fillers; the monomers of the photosensitive resin are monofunctional thermoplastic photosensitive resin monomers.
  • the present invention also provides the application of the above composition in the preparation of light-cured 3D printed linear polymer parts.
  • the present invention also provides a light-cured 3D printed linear polymer article, which is prepared from raw materials containing the above-mentioned composition.
  • the present invention also provides a method for preparing the above-mentioned light-cured 3D printed linear polymer article, and the preparation method includes the following steps:
  • step 3b) Perform light-curing 3D printing on the resin solution obtained in step 1b) or the mixed dispersion obtained in step 2b) to obtain the light-cured 3D printed linear polymer article.
  • the present invention also provides a method for recovering the above-mentioned light-cured 3D printed linear polymer product.
  • the recovery method includes the following steps: adding the 3D printed linear polymer product to the monomer of the photosensitive resin, and stirring at a certain temperature to make the The 3D printed linear polymer parts are dissolved to form a solution containing photosensitive resin monomers;
  • the monomer of the photosensitive resin is the same as the monomer of the photosensitive resin used for preparing the light-cured 3D printed linear polymer article.
  • the present invention also provides a cyclic printing method for the above-mentioned photocurable 3D printing linear polymer article, and the cyclic printing method includes the following steps:
  • step d) The solution obtained in step b) or the mixed dispersion obtained in step c) is subjected to light-curing 3D printing to obtain a light-curing 3D printed linear polymer article again.
  • the present invention also provides a method for recovering fillers in the light-cured 3D printed linear polymer article.
  • the recovery method includes the following steps: recovering the photosensitive resin-containing material obtained by the method for recovering the light-cured 3D printed linear polymer article.
  • the resin monomer solution is centrifuged to make the filler agglomerate at the bottom, and the filler is taken out, washed, and dried.
  • the present invention provides a method for improving the interface strength of a 3D printed part, which includes the following steps:
  • the method of introducing the functional monomer into the material system is: the functional monomer is blended with other materials in the system, the other materials include polymers, and the polymers contain oxygen, nitrogen, sulfur, boron, and phosphorus elements. At least one of
  • the functional monomer is selected from at least one compound having the structural formula represented by the above formula (I) or a compound containing a dynamic chemical bond, and the functional monomer is preferably at least one of zinc chloride, ferric chloride, and zinc acrylatekind.
  • the interface refers to the interface formed between layers, between filaments and filaments, or between particles and particles in the article.
  • Fig. 9 is a schematic diagram of introducing interface interaction to enhance the bonding force between layers of the printed article.
  • the 3D printing is fused deposition (FDM), selective thermal sintering (SHS), selective laser sintering (SLS), three-dimensional lithography (SLA), layered physical printing (LOM), digital At least one of light processing (DLP) and direct writing (DIW); for example, fused deposition (FDM), digital light processing (DLP) or direct writing (DIW).
  • FDM fused deposition
  • SHS selective thermal sintering
  • SLS selective laser sintering
  • SLA three-dimensional lithography
  • LOM layered physical printing
  • DIW digital At least one of light processing
  • FDM fused deposition
  • DLP digital light processing
  • DIW direct writing
  • the laser selected in the printing process is visible light or ultraviolet light; wherein the wavelength range of the visible light is 415-780 nm, for example, the wavelength is 430-600 nm, which is exemplary
  • the ground is 445 nm; wherein, the wavelength range of the ultraviolet light is 265-420 nm, for example, 300-400 nm.
  • the curing time of each layer is 1-900 seconds, for example, the curing time of each layer is 10-400 seconds, and then 20-100 seconds.
  • the curing time of each layer is 10 seconds, 20 seconds, or 60 seconds.
  • the thickness of each layer is 5-100 ⁇ m, for example, 20-80 ⁇ m, and exemplarily 80 ⁇ m.
  • the diameter of the print head is 50-100 ⁇ m, and the printing speed is 5-20 mm/s; for example, the diameter of the print head is 60-80 ⁇ m, and the printing speed is 10-20 mm. /s; Exemplarily, the diameter of the print head is 70 ⁇ m or 100 ⁇ m, and the printing speed is 10 mm/s.
  • the temperature of the melt blending of the materials is 120-220°C, for example 150-200°C, and exemplarily, the temperature is 180°C.
  • the activation treatment is at least one of heat treatment, light treatment, and electric treatment; preferably, heat treatment.
  • the temperature of the heat treatment is 20-200°C, such as 30-160°C, and then 80-150°C.
  • the temperature is 100°C, 150°C.
  • the heat treatment time is 1 min-48h, for example, 0.5-36h, and then 3-15h, exemplarily, the time is 5h, 6h.
  • the polymer is at least one of polymer powder, polymer wire, polymer film, and liquid photosensitive resin;
  • the polymer in the polymer powder, polymer wire and polymer film may be selected from at least one of the following polymers: polylactic acid, polyether ether ketone, polyurethane, polycarbonate, polymethacrylic acid Methyl ester, polyvinyl alcohol, vinyl acetate-ethylene copolymer, acrylate copolymer, nylon, acrylonitrile-butadiene-styrene copolymer (ABS), polyterephthalic acid plastics (such as polyterephthalic acid) Ethylene glycol PET, polybutylene terephthalate PBT, etc.).
  • it is at least one of polymethyl methacrylate, polyvinyl alcohol, and vinyl acetate-ethylene copolymer.
  • the liquid photosensitive resin is selected from at least one of the following resins: polyepoxy acrylate, unsaturated polyester, urethane acrylate, polyester acrylate, polyether acrylate, polyacrylate, light-curing silicone Oligomer.
  • the photosensitive resin is obtained by polymerization of raw materials including photosensitive resin monomers.
  • the photosensitive resin monomers may be selected from acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, epoxy acrylate, Hydroxyethyl acrylate, hydroxyethyl methacrylate, urethane acrylate, polyurethane methacrylate, lauryl acrylate, lauryl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, ethoxyethyl acrylate At least one of acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, urethane acrylate, and cyclohexyl acrylate; preferably at least one of acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, urethane acrylate, and cyclohexyl acrylate; more preferably acrylic acid , At least one of hydroxyethyl acrylate and hydroxyethyl methacrylate;
  • the material system may also include a photoinitiator.
  • the photoinitiator is selected from bibenzoyl, diphenylethylenedione, dialkoxyacetophenone, camphorquinone, ⁇ -hydroxyalkyl phenones (e.g. HMPP, HHMP, HCPK), ⁇ -amine Alkyl phenones (e.g. Irgacure907, Irgacure369), acyl phosphine oxides (e.g.
  • the material system may also include a polymerization inhibitor; the polymerization inhibitor is selected from conventional polymerization inhibitors in the art, such as hydroquinone.
  • the material system may also include a crosslinking agent; the crosslinking agent is selected from conventional crosslinking agents in the art, such as hexanediol diacrylate. Further, the dosages of the photoinitiator, polymerization inhibitor and crosslinking agent are conventional dosages in the art.
  • the mass ratio of the functional monomer to the polymer is 1:(10-150), such as 1:(50-120); exemplary, the mass ratio is 1:10, 1:100 , 1:105.
  • the material system may contain nanoparticles.
  • the nanoparticles are selected from at least one of silicon dioxide, ferroferric oxide, titanium dioxide, montmorillonite, boron nitride, graphene, molybdenum disulfide, graphene oxide, and carbon nanotubes; preferably graphite At least one of olefin, silica and montmorillonite.
  • the mass ratio of the nanoparticles to the polymer is 1:(10-250), such as 1:(20-220); for example, the mass ratio is 1:20, 1:200, 1:211.
  • the material system may also contain other components contained in the material system suitable for the corresponding 3D printing method, such as at least one of liquid metal and pigment.
  • the liquid metal can be at least one of gallium indium alloy, LM105 liquid metal alloy, etc.
  • the pigment can be selected from at least one of the pigments known in the art such as carbon black and turmeric.
  • the functional monomer is selected from iron nitrate, copper nitrate, magnesium nitrate, copper chloride, manganese nitrate, zinc nitrate, calcium nitrate, calcium chloride, ferric chloride, europium nitrate, chromium nitrate, and cerium nitrate. At least one of chromium chloride, cerium chloride, zinc chloride, manganese chloride, magnesium chloride, iron methacrylate, zinc acrylate, zinc methacrylate, zinc dimethacrylate, and copper methacrylate.
  • the dynamic bond in the compound containing dynamic bond can be divided into dynamic non-covalent bond and dynamic covalent bond, and the dynamic non-covalent bond is selected from hydrogen bond, ⁇ - ⁇ stacking, electrostatic interaction, One or more combinations of metal coordination, host-guest interaction, etc.; the dynamic covalent bond is selected from imine bond, boron ester bond, acetal, Diels-Alder reaction, cycloaddition, urea bond, One or more combinations of transesterification, oxime urethane bond, etc.
  • the invention uses dynamic chemical bonds for the first time to realize the enhancement, repair, recovery and recycling of light-cured 3D printing materials, which has great application prospects.
  • the self-repairing or recyclable light-curable 3D printing article provided by the first aspect of the present invention has the following three advantages:
  • composition for preparing self-repairing or recyclable light-curable 3D printed parts is simple, and it can be prepared by adding each component and stirring at room temperature.
  • the method for preparing light-curable 3D printed parts of the present invention has universal applicability, and any monofunctional photosensitive compound monomer can be used to prepare self-repairing and recyclable light-cured 3D printed parts.
  • the light-cured 3D printed parts of the present invention have good mechanical properties, simple self-repair and recycling methods, and can maintain good mechanical properties after repair, can realize repeated use of light-cured 3D printing materials, and reduce resource waste and environment Pollution.
  • the second aspect of the present invention provides a composition for preparing recyclable light-curable 3D printing linear polymer parts, which has the following three advantages:
  • composition for preparing recyclable light-curable 3D printing linear polymer parts is simple, and it can be prepared only by adding each component and stirring at room temperature.
  • the combination of monofunctional thermoplastic photosensitive resin monomer and filler can impart at least one function such as heat, electricity and magnetism to the part, and enhance the mechanical properties of the material.
  • the light-curing 3D printing linear polymer article of the present invention can meet the requirements of light-curing printing, and the multiplexing method of the article is simple, and the original performance can be maintained. Recycling (the number of cycles is not limited, and it can be recycled as needed; research results show that after 3 cycles or higher, the structure, mechanical and mechanical properties of the part can basically remain unchanged, which is very practical Application prospects), reducing resource waste and environmental pollution.
  • the light-cured 3D printed linear polymer parts of the present invention can realize the recovery of fillers, realize high-efficiency utilization, and help reduce costs.
  • the method for improving the interface strength of a 3D printed part provided by the third aspect of the present invention has the following three advantages:
  • the raw material preparation process of the D-printed parts is simple, and it can be prepared only by blending the functional monomer with the 3D-printed material system including polymer;
  • the method has universal applicability and is suitable for a variety of 3D printing methods and a variety of polymer materials
  • the activation method is simple, which can effectively improve the mechanical properties of 3D printed parts.
  • the present invention introduces functional monomers into the 3D printed material system, activates the parts after the 3D printing is completed, improves the mechanical properties of the polymer, and then achieves the effect of enhancing the bonding force between the 3D printed parts, effectively Improve the performance of 3D printed parts.
  • Figure 1 is a photograph of the sample prepared in Example A1 before and after restoration.
  • Figure 2 is the stress-strain curve of the sample prepared in Example A1 before and after repair.
  • Figure 3 is a photograph of the sample prepared in Example A1 before and after recovery.
  • Figure 4 is a stress-strain curve of the sample prepared in Example A2 before and after repair.
  • Figure 5 is a photograph of the original resin monomer solution and the recovered solution in Example B1.
  • Fig. 6 is a stress-strain curve of the original part produced in Example B1 and the light-cured 3D printed part obtained in the third recovery.
  • Fig. 7 is a photograph of the original product obtained in Example B1 and the light-cured 3D printed product obtained in the third recovery.
  • Figure 8 is a photograph of the dispersion of the filler before and after the resin solution in Example B2 is centrifuged.
  • Fig. 9 is a schematic diagram of introducing interface interaction to enhance the bonding force between layers of the printed article.
  • Fig. 10 is a stress-strain curve of the digital light processing 3D printed sample before and after processing in Example C1.
  • Fig. 11 shows the stress-strain curve of the 3D printing sample before and after the processing in Example C3.
  • FIG. 12 is the stress-strain curve of the fused deposition 3D printing sample before and after processing in Example C4.
  • Fig. 13 shows the stress-strain curves of the digital light processing 3D printed samples in Comparative Example C1 and Comparative Example C2 before and after processing.
  • the first aspect of the present invention specifically relates to the following:
  • the present invention provides a composition for preparing self-repairing or recyclable parts by light-curing 3D printing, which includes: photosensitive resin monomers, photoinitiators and functional monomers;
  • the monomer of the photosensitive resin is a monofunctional photosensitive compound
  • the functional monomer is selected from at least one compound having a structural formula represented by formula (I) or a compound containing a dynamic chemical bond:
  • M is selected from metal ions, and R is selected from anions
  • n is the valence number of the metal ion
  • the functional monomer is selected from iron nitrate, copper nitrate, magnesium nitrate, copper chloride, manganese nitrate, zinc nitrate, calcium nitrate, calcium chloride, ferric chloride, europium nitrate, chromium nitrate, cerium nitrate, chlorine At least one of chromium chloride, cerium chloride, zinc chloride, manganese chloride, magnesium chloride, iron methacrylate, zinc acrylate, zinc methacrylate, zinc dimethacrylate, and copper methacrylate.
  • it is at least one of copper chloride, iron chloride, magnesium chloride, chromium chloride, zinc chloride, magnesium nitrate, zinc acrylate, zinc methacrylate, and zinc dimethacrylate.
  • the dynamic bond in the compound containing dynamic bond can be divided into dynamic non-covalent bond and dynamic covalent bond, and the dynamic non-covalent bond is selected from hydrogen bond, ⁇ - ⁇ stacking, electrostatic interaction, metal coordination One or a combination of one or more of interactions, host-guest interactions, etc.; the dynamic covalent bond is selected from imine bond, boron ester bond, acetal, Diels-Alder reaction, cycloaddition, urea bond, transesterification, One or more combinations of oxime urethane bond and the like.
  • the compound containing a dynamic bond can be selected from 2,2-dithiodiethanol diacrylate, benzyl acrylate, 2,4,6-tribromobenzene acrylate, methacryloxyethyl trimethyl Ammonium chloride, 9-anthracene methyl acrylate, acryloxyethyl trimethyl ammonium chloride, 2-(perfluorobutyl) ethyl acrylate, 9,9-bis[4-(2-acryloyl) Oxyethoxy)phenyl)fluorene, 2-acrylic acid-(4-methyl-1,3-phenylene)bis(iminocarboxy-2,1-ethanediyl)ester, 2-acrylic acid- 2-[[(Butylamino)-carbonyl]oxo]ethyl, 2-hydroxy-3-phenoxypropyl 2-acrylic acid, tri-2-acrylic acid [2,4,6-trioxo- At least one of 1,3,5-triazine-1
  • the monomer of the photosensitive resin can be selected from acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, epoxy acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, Urethane acrylate, urethane methacrylate, lauryl acrylate, isobornyl acrylate, lauryl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, ethoxyethyl acrylate and 1,3-propanediol At least one of monoacrylate; preferably at least one of acrylic acid, hydroxyethyl acrylate, isobornyl acrylate, hydroxyethyl methacrylate, urethane acrylate, and cyclohexyl acrylate; more preferably acrylic acid, acrylic acid At least one of hydroxyethyl, isobornyl acrylate, monofunctional ure
  • the photoinitiator is selected from the group consisting of bibenzoyl, diphenylethylenedione, dialkoxyacetophenone, camphorquinone, ⁇ -hydroxyalkylphenones (such as HMPP, HHMP) , HCPK), ⁇ -aminoalkylphenones (e.g. Irgacure907, Irgacure369), acylphosphine oxides (e.g.
  • TPO, TEPO, BAPO benzophenone, 4-methylbenzophenone, 2,4, 6-Trimethylbenzophenone, triethanolamine, N-methylethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, quinone compounds, titanocene compounds, iodonium salts At least one of a compound, a sulfonium salt compound and a triazine compound; preferably, the photoinitiator is selected from camphorquinone, 2,4,6-trimethylbenzophenone, 4-methyldiphenyl At least one of ketone and N-methylethanolamine; more preferably camphorquinone and/or 2,4,6-trimethylbenzophenone.
  • the composition may contain nanoparticles.
  • the nanoparticles are selected from at least one of silicon dioxide, ferroferric oxide, titanium dioxide, montmorillonite, boron nitride, graphene, molybdenum disulfide, graphene oxide, and carbon nanotubes; preferably, the The nano particles are selected from at least one of silicon dioxide, carbon nanotubes, montmorillonite, graphene oxide, titanium dioxide, and boron nitride.
  • the mass ratio of the functional monomer to the monomer of the photosensitive resin is (0.05-5): 100, preferably the mass ratio is (0.5-3): 100, for example 0.5: 100, 1:100, 2:100.
  • the mass ratio of the photoinitiator to the monomer of the photosensitive resin is (0.01-5): 100, preferably the mass ratio is (0.1-3): 100, more preferably (0.5- 2):100, for example, the mass ratio is 1:100, 1.5:100.
  • the mass ratio of the nanoparticles to the monomer of the photosensitive resin is (0.01-20): 100, preferably the mass ratio is (0.1-10): 100, more preferably (0.5-5) ):100, for example, the mass ratio is 0.1:100, 1:100, 2:100.
  • the present invention also provides the application of the above-mentioned composition in the preparation of light-cured 3D printed parts.
  • the present invention also provides a light-cured 3D printed article prepared by the above-mentioned composition through light-cured 3D printing.
  • the article is repairable or recyclable. Specifically, the structure and performance of the article can be restored after being repaired. Furthermore, the parts prepared after the recovery have similar or identical properties to the original parts.
  • the present invention also provides a method for preparing the light-cured 3D printed article, which includes the following steps:
  • step 3a) The mixed dispersion obtained in step 2a) is subjected to light-curing 3D printing to obtain the light-curing 3D printed article.
  • the monomers, photoinitiators, functional monomers and nanoparticles of the photosensitive resin have the meanings and mass ratios as described above.
  • step (1a) and/or step (2a) the preparation of the solution in step (1a) and/or step (2a) is carried out under stirring conditions. Further, step (1a) and/or step (2a) are both performed at room temperature.
  • the normal temperature refers to a temperature of 15-40°C, such as 20-35°C.
  • the light-curing 3D printing is performed using equipment known in the art, for example, 3D printers such as Chuangxiang 3D, Zhongrui SLA500, and Xiaofang ONE can be used.
  • 3D printers such as Chuangxiang 3D, Zhongrui SLA500, and Xiaofang ONE can be used.
  • the laser selected in the photocuring 3D printing process is visible light or ultraviolet light.
  • the wavelength range of the visible light is 415-780 nm, for example, the wavelength is 430-600 nm, exemplarily 445 nm.
  • the wavelength range of the ultraviolet light is 265-420 nm, for example, 300-400 nm.
  • the curing time of each layer is 1-900 seconds, for example, the curing time of each layer is 10-400 seconds, and then such as 20-100 seconds.
  • the curing time of each layer is It is 10 seconds, 20 seconds or 60 seconds.
  • the thickness of each layer is 5-100 ⁇ m, for example, 10-60 ⁇ m, and exemplarily 50 ⁇ m.
  • the present invention also provides a self-repairing method for the light-cured 3D printed article.
  • the broken section of the printed article is bonded and repaired at a certain temperature, so that the structure and performance of the product can be restored.
  • the temperature range is 20-200°C, for example, 30-160°C, and then 50-130°C.
  • the temperature is 80°C and 120°C.
  • the time for the fitting repair is 1 min-48h, such as 0.5-36h, and then 1-24h, exemplarily, the time is 1h, 6h or 12h.
  • the present invention also provides a method for recycling the light-cured 3D printed parts.
  • the damaged printed parts are cut into pieces and hot-pressed to obtain recycled materials.
  • the pressure of the hot pressing treatment is 5-10 MPa, such as 6-8 MPa, and exemplarily, the pressure is 7 MPa or 8 MPa.
  • the temperature of the hot pressing treatment is 80-200°C, such as 100-160°C, and exemplary temperatures are 120°C and 150°C.
  • the time of the hot pressing treatment is 10 min-6h, for example, 30 min-4h, and exemplarily, the time is 2h, 3h.
  • the second aspect of the present invention specifically relates to the following:
  • the present invention provides a composition for preparing light-curable 3D printed linear polymer articles, which includes: at least one photosensitive resin monomer and photoinitiator, and optional fillers;
  • the monomer of the photosensitive resin is a monofunctional thermoplastic photosensitive resin monomer.
  • the composition consists of at least one photosensitive resin monomer, a photoinitiator, and optional fillers; the photosensitive resin monomer is a monofunctional thermoplastic photosensitive resin monomer.
  • the monofunctional thermoplastic photosensitive resin monomer is selected from at least one of the compounds represented by formula (1) or formula (2);
  • R 1 is selected from H, one of the following substituted or unsubstituted groups: an alkyl group (such as a C 1-20 alkyl group, or a C 1-12 alkyl group, for example, Methyl, ethyl, propyl, butyl, hexyl, dodecyl, etc.), cycloalkyl (e.g.
  • C 3-20 cycloalkyl further example C 3-12 cycloalkyl, further example cyclopropyl Group, cyclobutyl, cyclopentyl or cyclohexyl, etc.), heterocycles (such as tetrahydrofuran, etc.), bridged rings (such as isobornyl, etc.), polyurethane groups, and the substituted groups are selected from hydroxyl, alkoxy or Norbornenyl; or, R 1 is an alkoxy group of the above groups, for example, an ethoxylated tetrahydrofuran group;
  • R 2 and R 3 are the same or different, and are independently selected from H, alkyl, and aryl;
  • R is selected from H, methyl or ethyl
  • R' is selected from H, methyl or ethyl
  • R '2 and R' 3 are the same or different, each independently selected from H, alkyl, aryl group; e.g., R '2 and R' 3 are the same, are selected from H;
  • X is selected from O or NR"
  • R" is selected from H and alkyl.
  • the monofunctional thermoplastic photosensitive resin monomer may be selected from monofunctional thermoplastic acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, epoxy acrylate, and hydroxyethyl acrylate. , Hydroxyethyl methacrylate, polyurethane acrylate, polyurethane methacrylate, lauryl acrylate, lauryl methacrylate, acryloyl morpholine, methacryloyl morpholine, cyclohexyl acrylate, cyclohexyl methacrylate Ester, cyclotrimethylolpropane methylal acrylate, ethoxylated tetrahydrofuran acrylate, 5-norbornene-2-methanol acrylate, isobornyl acrylate, ethoxyethyl acrylate and 1,3-propanediol At least one of monoacrylates; for example, acryloyl morpholine, me
  • the photoinitiator is selected from the group consisting of bibenzoyl, diphenylethylenedione, dialkoxyacetophenone, camphorquinone, ⁇ -hydroxyalkyl phenones, ⁇ -aminoalkyl phenones Class, acylphosphine oxide, benzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, triethanolamine, N-methylethanolamine, N,N-dimethyl At least one of triethanolamine, N,N-diethylethanolamine, quinone compounds, titanocene compounds, iodonium salt compounds, sulfonium salt compounds and triazine compounds; preferably, the photoinitiator At least one selected from camphorquinone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone, and N-methylethanolamine; illustratively camphorquinone and/or 2,4 ,6-Trimethylbenzophenone.
  • the filler is selected from silica, ferroferric oxide, titanium dioxide, montmorillonite, boron nitride, graphene, molybdenum disulfide, graphene oxide, carbon nanotubes, fibers, Mxene and liquid metals
  • the functional filler is selected from dioxide Silicon nanoparticles, graphene and/or liquid metal.
  • the mass ratio of the photoinitiator to the photosensitive resin monomer is (0.01-5): 100, preferably the mass ratio is (0.1-3): 100, more preferably (0.5-2): 100, for example, the mass ratio is 0.5:100, 1:100, 1.5:100.
  • the mass ratio of the filler to the monomer of the photosensitive resin is (0.01-20): 100, preferably the mass ratio is (0.1-10): 100, more preferably (0.5-5): 100,
  • the mass ratio is 0.1:100, 1:100, 2:100, 5:100.
  • the present invention provides the application of the above composition in the preparation of light-cured 3D printed linear polymer parts.
  • the present invention provides a light-cured 3D printed linear polymer article, the 3D printed linear polymer article is prepared from a raw material containing the above-mentioned composition.
  • the 3D printed linear polymer parts can be recycled and printed cyclically.
  • the 3D printed linear polymer article may have similar or the same performance and/or the same or different structure as before the recycling after being recycled and printed.
  • the present invention provides a method for preparing the above-mentioned photocurable 3D printed linear polymer article.
  • the preparation method includes the following steps:
  • step 3b) Perform light-curing 3D printing on the resin solution obtained in step 1b) or the mixed dispersion obtained in step 2b) to obtain the light-cured 3D printed linear polymer article.
  • the monomer, photoinitiator and filler of the photosensitive resin all have the meaning and mass ratio as described above.
  • step (1b) and/or step (2b) are both performed at low temperature.
  • the low temperature refers to a temperature of 15-60°C, such as 20-60°C, exemplified as normal temperature (such as 15-40°C, preferably 20-35°C) or 60°C.
  • the light-curing 3D printing is performed by using equipment known in the art, for example, 3D printers such as Chuangxiang 3D, Zhongrui SLA500, and Xiaofang ONE can be used.
  • 3D printers such as Chuangxiang 3D, Zhongrui SLA500, and Xiaofang ONE can be used.
  • the laser selected in the photocuring 3D printing process is visible light or ultraviolet light.
  • the wavelength range of the visible light is 415-780 nm, for example, the wavelength is 430-600 nm, exemplarily 445 nm.
  • the wavelength range of the ultraviolet light is 265-420 nm, for example, 300-400 nm.
  • step (3b) during the photo-curing 3D printing process, the curing time of each printed layer is 1-900 seconds, for example, the curing time is 10-400 seconds, and then 20-100 seconds. Sexually, the curing time of each printed layer is 10 seconds, 20 seconds, 30 seconds, or 60 seconds.
  • the layer thickness of each printing layer is 5-100 ⁇ m, for example 10-100 ⁇ m, exemplarily 50 ⁇ m, 100 ⁇ m.
  • the present invention provides a method for recycling the above-mentioned light-cured 3D printed linear polymer article.
  • the recycling method includes the following steps: adding the 3D printed linear polymer article to the monomer of the photosensitive resin, and stirring at a certain temperature to make the 3D printing The linear polymer parts are dissolved to form a solution containing resin monomers;
  • the monomer of the photosensitive resin is the same as the monomer of the photosensitive resin used to prepare the 3D printed linear polymer article.
  • the resin monomer-containing solution contains both the resin monomer eluted from the printed article and the resin monomer added when the printed article is dissolved.
  • the mass ratio of the 3D printed linear polymer article to the monomer of the photosensitive resin is (0.1-50): (50-99.9), for example (1-30): (70-90), Exemplary is 3:97, 5:95 or 10:90.
  • the certain temperature is 20-200°C, such as 30-160°C, and then 50-130°C.
  • the temperature is 80°C or 120°C.
  • the stirring time is 20min-5h, such as 0.5-3h, and exemplarily 1h.
  • the entire 3D printed linear polymer article can be directly added to the monomer of the photosensitive resin, or the 3D printed linear polymer article can be broken first, and then added to the monomer of the photosensitive resin.
  • the 3D printed linear polymer article is prepared by using the aforementioned preparation method of the light-cured 3D printed linear polymer article.
  • the present invention provides the above-mentioned cyclic printing method for light-curing 3D printing linear polymer parts, and the cyclic printing method includes the following steps:
  • the monomer of the photosensitive resin is the same as the monomer of the photosensitive resin used for preparing the 3D printed linear part;
  • step d) The solution obtained in step b) or the mixed dispersion obtained in step c) is subjected to light-curing 3D printing to obtain a light-curing 3D printed linear polymer article again.
  • the monomers, fillers, and photoinitiators of the photosensitive resin have the meanings as described above.
  • the mass ratio of the monomer of the photosensitive resin to the 3D printed linear polymer article has the meaning as described above.
  • the entire 3D printed linear polymer article can be directly added to the monomer of the photosensitive resin, or the 3D printed linear polymer article can be broken first, and then added to the monomer of the photosensitive resin.
  • the mass ratio of the photoinitiator to the resin monomer-containing solution is (0.01-5): 100, preferably the mass ratio is (0.1-3): 100, more preferably (0.5-2): 100 , Exemplified as 0.3:100, 0.5:100, 1:100.
  • the stirring at a certain temperature in step a) and the light-curing 3D printing in step d) have the meanings of step 1b) and step 3b) as described in the preparation method of light-curing 3D printed linear polymer parts. .
  • the 3D printed linear polymer article in the step a) is prepared by using the above-mentioned photo-curing 3D printed linear polymer article preparation method.
  • the present invention provides a method for recovering fillers in the above-mentioned light-cured 3D printed linear polymer article, and the recovery method includes the following steps:
  • the monomer of the photosensitive resin is the same as the monomer of the photosensitive resin used in the preparation of the 3D printed linear polymer article;
  • step A2) Centrifuge the resin monomer-containing solution obtained in step A1) to agglomerate the filler at the bottom, take out the filler, wash and dry.
  • the mass ratio of the monomer of the photosensitive resin to the 3D printed linear polymer article has the meaning as described above.
  • the time of the centrifugal treatment is 3min-2h, for example 5min-1h, exemplarily 10min, 20min.
  • the rotation speed of the centrifugal treatment is 50-12000 rpm, such as 5000-10000 rpm, exemplarily 8000 rpm.
  • the entire 3D printed linear polymer article can be directly added to the monomer of the photosensitive resin, or the 3D printed linear polymer article can be broken first, and then added to the monomer of the photosensitive resin.
  • the 3D printed linear polymer part in the step A1) is prepared by the above-mentioned method for preparing the light-cured 3D printed linear polymer part.
  • the raw materials and reagents used in the following examples are all commercially available products, or can be prepared by known methods.
  • the mechanical performance test of the printed parts is based on the resin casting body performance test method: GB/T2567-2008.
  • step 2) At 600 rpm, add 0.5 g of zinc chloride and 0.1 g of silica nanoparticles to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl acrylate photosensitive resin composite dispersion ;
  • step 2) The resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed part can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 80° C. for heat preservation for 1 hour to obtain the repaired part.
  • Figure 1 is a photograph of the prepared sample before and after restoration. After heat treatment, the fractured parts of the sample were reconnected together and stretched to 3 times its original length without fracture. The specific mechanical properties curve is shown in Figure 2.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2 hours and press at a pressure of 7 MPa to obtain the recovered product. Pieces.
  • Figure 3 is a photograph of the prepared sample before and after recovery.
  • the original sample is cut into small pieces, and after hot pressing treatment, a complete recovered sample is obtained, which has the same appearance as the original sample.
  • step 2) At 600 rpm, add 0.5 g of copper chloride and 1 g of silica nanoparticles to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl acrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 60s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the repaired part was stretched to more than twice its original length without breaking.
  • the specific mechanical performance curve is shown in Figure 4.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2 hours and press at a pressure of 7 MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 0.5 g of zinc methacrylate and 1 g of carbon nanotubes to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl acrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2 hours and press at a pressure of 7 MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 0.5 g of magnesium chloride and 2 g of montmorillonite to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl acrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2 hours and press at a pressure of 7 MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 0.5 g of chromium chloride and 2 g of graphene oxide to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl methacrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 0.5 g of ferric chloride and 1 g of titanium dioxide to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl methacrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 0.5 g of magnesium nitrate and 1 g of boron nitride to the photosensitive resin solution obtained in step 1), and continue to stir for 1 hour to obtain a silica/hydroxyethyl methacrylate photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 5 g of 2,2-disulfide diethanol diacrylate to the photosensitive resin solution obtained in step 1) (introduction of disulfide bonds), and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 6 g of 2,2-disulfide diethanol diacrylate to the photosensitive resin solution (introduction of disulfide bonds) obtained in step 1), and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) At 600 rpm, add 5 g of 2,2-disulfide diethanol diacrylate to the photosensitive resin solution obtained in step 1) (introduction of disulfide bonds), and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The photosensitive resin composite dispersion obtained in step 2) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 20s. After the printing is completed, a light-cured 3D printed article can be obtained.
  • Step 3 If the obtained printed part is damaged, the sections are tightly attached and placed in an oven at 120°C for 6 hours to obtain a repaired part. After testing, the tensile strength of the repaired parts can be restored to more than 90% of the original strength.
  • Step 3 The printed part obtained is completely damaged and difficult to repair. Cut the damaged part into pieces with scissors, place it in a grinding tool, and then put it into a hot press at 120°C for 2h at a pressure of 8MPa to obtain the recovered product. Pieces.
  • step 2) The resin solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 100 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained;
  • step 3 After crushing (5g) the printed product obtained in step 2), add it to the acryloylmorpholine monomer (95g) and stir for 1 hour at 80°C to obtain the recovered solution.
  • the solution contains both the acryloyl morpholine dissolved in the crushed printed product and the acryloyl morpholine added when dissolving the printed product;
  • step 3 Add 0.4 g of camphorquinone to the solution obtained in step 3), and stir it magnetically at room temperature 30min, rotate speed 600rpm, get resin solution;
  • step 5) The resin solution obtained in step 4) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 100 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained.
  • Figure 5 is a photograph of the acryloylmorpholine resin monomer solution and the recovered solution obtained in step 3). It can be seen that the 3D printed linear polymer parts are completely dissolved in the recovered solution.
  • Figure 6 shows the stress-strain curves of the original printed part and the printed part after the third recycling. It can be seen that the mechanical properties of the 3D printed linear polymer parts obtained before and after the recycling are similar, and they can meet the requirements of light curing printing. Claim.
  • Fig. 7 is a photo of the original printed article and the printed article after the third recovery. It can be seen that the structure of the printed article obtained by the recovery and recycling printing is basically the same as the original printed article.
  • step 2) The resin composite solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 100 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained. ;
  • step 3 After crushing (5g) the printed product obtained in step 2), add it to the acryloylmorpholine monomer (95g), and stir at 80°C for 1h, the obtained solution, and the recovered solution At the same time, it contains acryloyl morpholine dissolved in the broken printed parts and acryloyl morpholine added when dissolving the printed parts;
  • step 4) Put the solution obtained in step 3) in a centrifuge, the centrifugal treatment time is 10min, the rotation speed is 8000rpm, the liquid metal sinks to the bottom of the solution, after taking it out, it is cyclically washed with ethanol, and placed in a 60°C oven for 3h to obtain The recovered liquid metal.
  • Figure 8 is a photograph of the recovered solution before and after centrifugation. It can be seen that after centrifugation, the liquid metal is almost completely recovered.
  • step 2) The resin solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained;
  • step 2) Break the printed product obtained in step 2) (3g), add it to acryloylmorpholine monomer (97g), and stir for 1 hour at 80°C to obtain the recovered solution.
  • the recovered solution It also contains the acryloyl morpholine dissolved in the broken printed product and the acryloyl morpholine added when the printed product is dissolved;
  • step 4 Add 0.4 g of camphorquinone to the solution obtained in step 3), and magnetically stir at room temperature for 30 minutes at a rotational speed of 600 rpm to obtain a resin solution;
  • step 5) The resin solution obtained in step 4) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained.
  • the mechanical properties of the 3D printed linear polymer parts obtained before and after recycling are similar, and they can meet the requirements of light curing printing.
  • step 2) The resin composite solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 100 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained. ;
  • step 2) Break the printed product obtained in step 2) (5g), add it to the acryloylmorpholine monomer (95g), and stir for 1 hour at 80°C to obtain the recovered solution.
  • the recovered solution At the same time, it contains acryloyl morpholine dissolved in the broken printed parts and acryloyl morpholine added when dissolving the printed parts;
  • step 4) Put the solution obtained in step 3) in a centrifuge, the centrifugal treatment time is 10min, the rotation speed is 8000rpm, the graphene sinks to the bottom of the solution, after taking it out, it is repeatedly washed with ethanol, and placed in an oven at 60°C for 3h. The recovered graphene.
  • step 2) The resin solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 30s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained;
  • step 3 The printed product obtained in step 2) was crushed (10g), added to ethoxylated tetrahydrofuran acrylate monomer (90g), and stirred at 80°C for 1 hour to obtain the recovered solution.
  • the solution contains both the ethoxylated tetrahydrofuran acrylate dissolved in the crushed printed article and the ethoxylated tetrahydrofuran acrylate added when the printed article is dissolved;
  • step 4 Add 0.3 g of camphorquinone to the solution obtained in step 3), and magnetically stir at room temperature for 30 minutes at a rotational speed of 600 rpm to obtain a resin solution;
  • step 5) The resin solution obtained in step 4) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 50 ⁇ m, and the curing time of each layer is controlled to 30s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained.
  • the mechanical properties of the 3D printed linear polymer parts obtained before and after recycling are similar, and they can meet the requirements of light curing printing.
  • step 2) The resin composite solution obtained in step 1) is subjected to light-curing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 100 ⁇ m, and the curing time of each layer is controlled to 30s. After the printing is completed, a light-cured 3D printed linear polymer part can be obtained ;
  • step 3 The printed product obtained in step 2) was crushed (5g), added to the ethoxylated tetrahydrofuran acrylate monomer (95g), and stirred at 80°C for 1 hour to obtain the recovered solution.
  • the solution contains both the ethoxylated tetrahydrofuran acrylate dissolved in the crushed printed article and the ethoxylated tetrahydrofuran acrylate added when the printed article is dissolved;
  • step 4) Put the solution obtained in step 3) in a centrifuge, the centrifugal treatment time is 10min, the rotation speed is 8000rpm, the silicon dioxide is deposited at the bottom of the solution, and the solution is repeatedly washed with ethanol after being taken out, and placed in an oven at 60°C for 3h. The recovered silica is obtained.
  • 3D linear polymer parts that can be recycled and printed can be prepared.
  • the mechanical properties of the 3D printed linear polymer parts obtained before and after recycling are similar, and they can meet the requirements of light curing printing.
  • the method for enhancing the performance of digital light processing 3D printed parts includes the following steps:
  • the monomer of the photosensitive resin 100g hydroxyethyl acrylate, crosslinking agent: 5g hexanediol diacrylate, photoinitiator: 0.5g camphorquinone, and polymerization inhibitor: 0.1g hydroquinone are mixed uniformly, Magnetically stir at room temperature for 20 minutes and rotate at 500 rpm to obtain a photosensitive resin solution;
  • step 2) Add functional components (1g zinc chloride) and nanoparticles (0.5g graphene) to the photosensitive resin solution obtained in step 1) at 500 rpm, and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The resin composite dispersion obtained in step 2) is subjected to digital light processing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 80 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, 3D printed parts can be obtained.
  • Step 3 The obtained printed article is placed in an oven at 100° C. for heat treatment for 6 hours to obtain an enhanced printed article.
  • FIG. 10 is a stress-strain curve of the digital light processing 3D printed part before and after processing in this embodiment. Compared with before processing, the tensile strength of the printed article is significantly improved (about 50% increase), and the elongation at break remains unchanged.
  • the method for enhancing the performance of digital light processing 3D printed parts includes the following steps:
  • the monomer of the photosensitive resin 100g hydroxyethyl acrylate, crosslinking agent: 5g hexanediol diacrylate, photoinitiator: 0.5g camphorquinone, and polymerization inhibitor: 0.1g hydroquinone are mixed uniformly, Magnetically stir at room temperature for 20 minutes and rotate at 500 rpm to obtain a photosensitive resin solution;
  • step 2) Add the functional components (1g zinc acrylate) and nanoparticles (0.5g graphene) to the photosensitive resin solution obtained in step 1) at a speed of 500 rpm, and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The resin composite dispersion obtained in step 2) is subjected to digital light processing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 80 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, 3D printed parts can be obtained.
  • Step 3 The obtained printed article is placed in an oven at 100° C. for heat treatment for 6 hours to obtain an enhanced printed article.
  • the method for enhancing the performance of direct writing 3D printed parts includes the following steps:
  • step 2) Add functional components (1g zinc chloride) and nanoparticles (0.5g nano-silica) to the solution obtained in step 1) at a speed of 500rpm, and continue to stir for 1h to obtain a composite dispersion;
  • step 2) The dispersion obtained in step 2) is subjected to direct writing 3D printing, the diameter of the print head is 70 ⁇ m, the printing speed is 10 mm/s, and the 3D printing product can be obtained after the printing is completed.
  • Step 3 The obtained printed article is placed in an oven at 50° C. for heat treatment for 2 hours to obtain an enhanced printed article.
  • Fig. 11 shows the stress-strain curve of the 3D printed part before and after the processing of the directly written 3D printed part in this embodiment. Compared with before processing, the tensile strength of the printed article is significantly improved (up by about 30%), and the elongation at break does not change much.
  • the method for enhancing the performance of fused deposition 3D printed parts includes the following steps:
  • step 2) The polymer composite material obtained in step 1) is subjected to fusion deposition 3D printing, the diameter of the print head is 100 ⁇ m, the printing speed is 10 mm/s, and the 3D printing part can be obtained after the printing is completed.
  • Step 2) The obtained printed article is placed in an oven at 80° C. for heat treatment for 5 hours to obtain an enhanced printed article.
  • FIG. 12 is a stress-strain curve of the fused deposition 3D printed part before and after processing in this embodiment. Compared with before processing, the tensile strength of printed parts is significantly improved (about 10% increase).
  • the method for enhancing the performance of fused deposition 3D printed parts includes the following steps:
  • step 2) The polymer composite material obtained in step 1) is subjected to fusion deposition 3D printing, the diameter of the print head is 100 ⁇ m, the printing speed is 10 mm/s, and the 3D printing part can be obtained after the printing is completed.
  • Step 2) The obtained printed article is placed in an oven at 150° C. for heat treatment for 5 hours to obtain an enhanced printed article.
  • the method for enhancing the performance of fused deposition 3D printed parts includes the following steps:
  • step 2) The polymer composite material obtained in step 1) is subjected to fusion deposition 3D printing, the diameter of the print head is 100 ⁇ m, the printing speed is 10 mm/s, and the 3D printing part can be obtained after the printing is completed.
  • Step 2) The obtained printed article is placed in an oven at 150° C. for heat treatment for 6 hours to obtain an enhanced printed article.
  • the method for enhancing the performance of digital light processing 3D printed parts includes the following steps:
  • the monomer of the photosensitive resin 100g hydroxyethyl acrylate, crosslinking agent: 5g hexanediol diacrylate, photoinitiator: 0.5g camphorquinone, and polymerization inhibitor: 0.1g hydroquinone are mixed uniformly, Stir magnetically at room temperature for 20 minutes and rotate at 500 rpm to obtain a resin solution;
  • step 2) Add nanoparticles (0.5g graphene) to the photosensitive resin solution obtained in step 1) at a speed of 500 rpm, and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 3 The resin composite dispersion obtained in step 2) is subjected to digital light processing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 80 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, 3D printed parts can be obtained. Step 3) The obtained printed article is placed in an oven at 100° C. for heat treatment for 6 hours to obtain the printed article after heat treatment.
  • Example C1 Compared with Example C1, the functional component zinc chloride is not added, and other conditions remain unchanged.
  • the method for enhancing the performance of digital light processing 3D printed parts includes the following steps:
  • the monomer of the photosensitive resin 100g hydroxyethyl acrylate, crosslinking agent: 5g hexanediol diacrylate, photoinitiator: 0.5g camphorquinone, and polymerization inhibitor: 0.1g hydroquinone are mixed uniformly, Stir magnetically at room temperature for 20 minutes and rotate at 500 rpm to obtain a resin solution;
  • step 2) Add nanoparticles (0.5g graphene) to the photosensitive resin solution obtained in step 1) at a speed of 500 rpm, and continue to stir for 1 hour to obtain a photosensitive resin composite dispersion;
  • step 2) The resin composite dispersion obtained in step 2) is subjected to digital light processing 3D printing, the laser wavelength is 445nm, the thickness of each layer is controlled to 80 ⁇ m, and the curing time of each layer is controlled to 10s. After the printing is completed, 3D printed parts can be obtained.
  • Step 3 The obtained printed article is placed in an oven at 100° C. for heat treatment for 12 hours to obtain the printed article after heat treatment.
  • Fig. 13 shows the stress-strain curves of the digital light processing 3D printed samples in Comparative Example C1 and Comparative Example C2 before and after processing.
  • the functional component zinc chloride is not added in Comparative Example C1 and Comparative Example C2, and the mechanical properties of the printed parts do not change much before and after heat treatment. Comparing Comparative Example C1 and Comparative Example C2, it can be found that extending the heat treatment time can slightly improve Mechanical properties.
  • the mechanical properties of the article in Example C1 are significantly improved after heat treatment for a short period of time.
  • its tensile strength is improved. After about 50%, the elongation at break remains unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种增强、可自修复或可回收、可循环3D打印制件及其制备方法与应用,通过向3D打印体系中引入功能单体,制备得到可自修复或可回收3D打印制件或者增强3D打印制件界面强度;或者以至少一种单官能度热塑性光敏树脂单体作为3D打印原料之一,制备得到可循环3D打印制件。

Description

一种增强、可自修复或可回收、可循环3D打印制件及其制备方法与应用
本申请同时要求以下在先申请的优先权:2019年9月12日向中国国家知识产权局提交的专利申请号为201910866553.8,发明名称为“一种可自修复或可回收的光固化3D打印制件及其制备方法与应用”的在先申请;2019年9月12日向中国国家知识产权局提交的专利申请号为201910866554.2,发明名称为“一种提升3D打印制件的界面强度的方法”的在先申请;以及2020年1月20日向中国国家知识产权局提交的专利申请号为202010066454.4,发明名称为“一种可循环光固化3D打印线性聚合物制件及其制备方法与应用”。所述在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于3D打印技术领域,具体涉及一种增强、可自修复或可回收、可循环3D打印制件及其制备方法与应用。
背景技术
3D打印是一种新兴的成型技术,可以加工结构复杂、成型精度要求高的制件,目前已被广泛应用于组织工程、软体机器人等诸多领域。光固化3D打印是3D打印技术的重要方向之一,是以光敏树脂为原料的打印技术,具有成型精度高、打印效率高等特点,能够实现微米、亚微米甚至纳米尺度结构的打印。然而光固化3D打印用材料多为热固性光敏树脂材料,打印制件受到外界破坏后,制件复杂结构难以恢复,性能也会有所下降,难以满足实际使用需求,同时光固化3D打印制件无法回收,难以再次加工成型,会造成环境污染、资源浪费等问题。
因而光固化3D打印可回收、再加工材料引起了人们的关注,然而目前现有技术中光固化3D打印所用的单体通常以至少含有多官能度热固性光敏树脂单体作为打印原料,通过光固化形成共价交联的制件。然而共价交联的3D打印制件无法回收,难以再次加工成型,会造成环境污染、资源浪费等问题。
3D打印,也称为增材制造,是通过计算机控制将材料逐层叠加来制造实体制件的技术。相比于传统加工工艺,3D打印技术无需传统的多道加工工序,能够快速制造具有复杂结构的零部件,大大减少了加工工序,缩短了加工周期,制件结构越复杂,其加工效率越显著。正由于其具有高效率、高精度的特点,3D打印技术在航空航天、医疗、艺术设计等诸多领域已得到了广泛的应用。然而3D打印技术固有的逐层累加的加工方式,使得层与层之间结合力不牢固,易产生缺陷,性能相比于传统加工制件明显下降,难以满足实际使用需求。
发明内容
本发明提供一种3D打印制件,所述3D打印制件的3D打印用原料中包括功能单体或至少一种单官能度热塑性光敏树脂单体;
其中,所述功能单体选自具有式(I)所示结构式的化合物或含动态化学键的化合物的至少一种:
M xR y      式(I)
式(I)中,M选自金属离子,R选自阴离子;
n为金属离子的价态数,m为阴离子的价态数,若n/m为整数,则x=1,y=n/m;若n/m不是整数,则x=m,y=n。
进一步地,本发明提供一种3D打印制件的制备方法,所述方法包括:
通过向3D打印体系中引入功能单体,制备得到可自修复或可回收3D打印制件;或者,
通过向3D打印体系中引入功能单体,制备得到界面强度增强的3D打印制件;或者,
以至少一种单官能度热塑性光敏树脂单体作为3D打印原料之一,制备得到可循环3D打印制件;
所述功能单体选自具有上述式(I)所示结构式的化合物或含动态化学键的化合物的至少一种。
其中,所述金属离子选自Cu离子、Fe离子、Mg离子、Ca离子、Mn离子、Zn离子或稀土金属离子等;所述阴离子选自氯离子、溴离子、硫酸根离子、硝酸根离子、咪唑阴离子、R 1CH=C(R 2)-COO离子等,R 1选自H或烷基,R 2选自H或甲基。
第一方面,本发明提供一种用于上述的3D打印制件的组合物、具体是一种用于光固化3D打印制备可自修复或可回收制件的组合物,其包括:至少一种光敏树脂的单体、光引发剂与功能单体;
所述光敏树脂的单体为单官能度光敏化合物;
所述功能单体选自具有上述式(I)所示结构式的化合物或含动态化学键的化合物的至少一种。
根据本发明的技术方案,所述组合物中可含有纳米颗粒。
本发明还提供上述组合物在制备光固化3D打印制件中的应用。
本发明还提供上述组合物制备得到的光固化3D打印制件。
本发明还提供上述3D打印制件、具体是一种可自修复或可回收3D打印制件的制备方法,包括如下步骤:
1a)将至少一种光敏树脂的单体与光引发剂共混,得到溶液;
2a)将功能单体与任选加入或不加入的纳米颗粒加入到所述溶液中制得混合分散液;
3a)将步骤2a)所得混合分散液进行光固化3D打印,得到所述光固化3D打印制件。
其中,所述光敏树脂的单体、光引发剂、功能单体和纳米颗粒具有如上文所述的含义。
本发明还提供上述3D打印制件的自修复方法,将破损的打印制件断面贴合,于一定温度下贴合修复,制件即可恢复其结构和性能。
本发明还提供所述3D打印制件的回收方法,将破损的打印制件剪碎,热压处理,即可得到回收后的材料。
第二方面,本发明提供一种用于上述的3D打印制件的组合物、具体是一种用于制备光固化3D打印线性聚合物制件的组合物,其包括:至少一种光敏树脂的单体与光引发剂、以及任选的填料;所述光敏树脂的单体为单官能度热塑性光敏树脂单体。
本发明还提供上述组合物在制备光固化3D打印线性聚合物制件中的应用。
本发明还提供一种光固化3D打印线性聚合物制件,所述制件由包含上述组合物的原料制备得到。
本发明还提供上述光固化3D打印线性聚合物制件的制备方法,所述制备方法包括如下步骤:
1b)将至少一种所述光敏树脂的单体与光引发剂共混,得到树脂溶液;
2b)任选加入或不加入填料到所述树脂溶液中,制得混合分散液;
3b)对步骤1b)所得树脂溶液或步骤2b)所得混合分散液进行光固化3D打印,得到所述光固化3D打印线性聚合物制件。
本发明还提供上述光固化3D打印线性聚合物制件的回收方法,所述回收方法包括如下步骤:将所述3D打印线性聚合物制件加入光敏树脂的单体中,一定温度下搅拌使所述3D打印线性聚合物制件溶解形成含有光敏树脂单体的溶液;
其中,所述光敏树脂的单体与制备所述光固化3D打印线性聚合物制件所用的光敏树脂的单体相同。
本发明还提供上述光固化3D打印线性聚合物制件的循环打印方法,所述循环打印方法包括如下步骤:
a)将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度下搅拌使所述3D打印线性聚合物制件溶解形成含有光敏树脂单体的溶液;
b)将上述含有光敏树脂单体的溶液与光引发剂共混,得到树脂溶液;
c)任选加入或不加入填料到所述树脂溶液中,制得混合分散液;
d)将步骤b)所得溶液或步骤c)所得混合分散液进行光固化3D打印,再次得到光固化3D打印线性聚合物制件。
本发明还提供上述光固化3D打印线性聚合物制件中填料的回收方法,所述回收方法包括如下步骤:将通过上述光固化3D打印线性聚合物制件的回收方法而回收得到的上述含有光敏树脂单体的溶液进行离心处理,使填料团聚在底部,将填料取出、洗涤、干燥即可。
第三方面,本发明提供一种提升3D打印制件的界面强度的方法,包括如下步骤:
(1c)将功能单体引入到3D打印的材料体系中,经3D打印,得到打印制件;
(2c)对步骤(1c)得到的打印制件进行激活处理,提升打印制件的界面强度;
其中,所述功能单体引入材料体系的方式为:功能单体与体系中的其他材料共混,所述其他材料包括聚合物,所述聚合物中含有氧、氮、硫、硼、磷元素中的至少一种;
所述功能单体选自具有上述式(I)所示结构式的化合物或含动态化学键的化合物的至少一种,所述功能单体优选为氯化锌、氯化铁、丙烯酸锌中的至少一种。
根据本发明的技术方案,所述界面指的是制件中层与层之间、丝与丝之间、或者颗粒与颗粒之间形成的界面。图9为引入界面相互作用增强打印制件层间结合力示意图。
根据本发明的技术方案,所述3D打印为熔融沉积(FDM)、选择性热烧结(SHS)、选择性激光烧结(SLS)、立体平板印刷(SLA)、分层实体印刷(LOM)、数字光处理(DLP)、直接书写(DIW)中的至少一种;例如为熔融沉积(FDM)、数字光处理(DLP)或直接书写(DIW)。
进一步地,当所述3D打印选择数字光处理打印方式时,打印过程中选用的激光为可见光或者紫外光; 其中,所述可见光的波长范围为415-780nm,例如波长为430-600nm,示例性地为445nm;其中,所述紫外光的波长范围为265-420nm,例如300-400nm。其中,每层固化时间为1-900秒,例如,每层固化时间10-400秒,再如20-100秒,示例性地,每层固化时间为10秒、20秒或60秒。其中,每层层厚为5-100μm,例如为20-80μm,示例性地为80μm。
当所述3D打印选择直接书写打印方式或熔融沉积打印方式时,打印头直径为50-100μm,打印速度为5-20mm/s;例如,打印头直径为60-80μm,打印速度为10-20mm/s;示例性地,打印头直径为70μm或100μm,打印速度为10mm/s。
其中,熔融沉积打印方式中,物料熔融共混的温度为120-220℃,例如150-200℃,示例性地,温度为180℃。
根据本发明的技术方案,所述激活处理为热处理、光照处理、电处理中的至少一种;优选为热处理。例如,热处理的温度为20-200℃,例如30-160℃,再如80-150℃,示例性地,温度为100℃、150℃。所述热处理的时间为1min-48h,例如0.5-36h,再如3-15h,示例性地,时间为5h、6h。
根据本发明的技术方案,所述聚合物为聚合物粉体、聚合物线材、聚合物薄膜、液态光敏树脂中的至少一种;
其中,所述聚合物粉体、聚合物线材和聚合物薄膜中的聚合物可以选自以下聚合物中的至少一种:聚乳酸、聚醚醚酮、聚氨酯、聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯醇、醋酸乙烯-乙烯共聚物、丙烯酸酯共聚物、尼龙、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚对苯二甲酸类塑料(如聚对苯二甲酸乙二醇酯PET、聚对苯二甲酸丁二醇酯PBT等)等。优选为聚甲基丙烯酸甲酯、聚乙烯醇、醋酸乙烯-乙烯共聚物中的至少一种。
其中,所述液态光敏树脂选自以下树脂中的至少一种:聚环氧丙烯酸酯、不饱和聚酯、聚氨酯丙烯酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、聚丙烯酸酯、光固化有机硅低聚物。优选地,所述光敏树脂由包括光敏树脂单体的原料聚合得到,例如所述光敏树脂的单体可以选自丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环己基丙烯酸酯、环己基甲基丙烯酸酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;优选为丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、环己基丙烯酸酯中的至少一种;更优选为丙烯酸、丙烯酸羟乙酯和甲基丙烯酸羟乙酯中的至少一种。
根据本发明的技术方案,当选择液态光敏树脂时,所述材料体系中还可以包括光引发剂。所述光引发剂选自联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类(例如HMPP、HHMP、HCPK)、α-胺烷基苯酮类(例如Irgacure907、Irgacure369)、酰基膦氧化物(例如TPO、TEPO、BAPO)、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物中至少一种。进一步地,所述材料体系中还可以包括阻聚剂;所述阻聚剂选自本领域常规阻聚剂,例如对苯二酚。进一步地,所述材料体系中还可以包括交联剂;所述交联剂选自本领域常规交联剂,例如己二醇二丙烯酸酯。进一步地,所述光引发剂、阻聚剂和交联剂的用量为本领域常规用量。
根据本发明的技术方案,所述功能单体与聚合物的质量比为1:(10-150),例如1:(50-120);示例性地,质量比为1:10、1:100、1:105。
根据本发明的技术方案,所述材料体系中可含有纳米颗粒。例如,所述纳米颗粒选自二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管中的至少一种;优选为石墨烯、二氧化硅和蒙脱土中的至少一种。进一步地,所述纳米颗粒与聚合物的质量比为1:(10-250),例如1:(20-220);示例性地,质量比为1:20、1:200、1:211。
根据本发明的技术方案,所述材料体系中还可以含有其它适用于相应3D打印方法的材料体系中含有的组分,例如液态金属、颜料等中的至少一种。其中,液态金属可以为镓铟合金、LM105液态金属合金等中的至少一种;所述颜料可以选自炭黑、姜黄等本领域已知颜料中的至少一种。
在上述方案中,所述功能单体选自硝酸铁、硝酸铜、硝酸镁、氯化铜、硝酸锰、硝酸锌、硝酸钙、氯化钙、氯化铁、硝酸铕、硝酸铬、硝酸铈、氯化铬、氯化铈、氯化锌、氯化锰、氯化镁、甲基丙烯酸铁、丙烯酸锌、甲基丙烯酸锌、二甲基丙烯酸锌和甲基丙烯酸铜中的至少一种。
在上述方案中,所述含动态键的化合物中动态键可分为动态非共价键和动态共价键,所述动态非共价键选自氢键、π-π堆积、静电相互作用、金属配位作用、主客体作用等中的一种或多种的组合;所述动态共价键选自亚胺键、硼酯键、缩醛、Diels-Alder反应、环加成、脲键、酯交换、肟氨酯键等中的一种或多种的组合。
本发明的有益效果:
本发明首次利用动态化学键实现光固化3D打印材料的增强、修复、回收与循环利用,极具应用前景。
本发明的第一方面提供的可自修复或可回收光固化3D打印制件具有如下三方面优势:
1.用于制备可自修复或可回收光固化3D打印制件的组合物的制备过程简单,仅需在常温下加入各组分并搅拌便可以制得。
2.本发明的制备光固化3D打印制件的方法具有普适性,任何单官能度光敏化合物单体均可用于制备自修复、可回收的光固化3D打印制件。
3.本发明的光固化3D打印制件的力学性能好,自修复和回收方法简单,且修复后能够保持良好的力学性能,可以实现光固化3D打印材料的反复使用,减少了资源浪费和环境污染。
本发明的第二方面提供的用于制备可循环光固化3D打印线性聚合物制件的组合物具有如下三方面优势:
1.用于制备可循环光固化3D打印线性聚合物制件的组合物的制备过程简单,仅需在常温下加入各组分并搅拌便可以制得。
单官能度热塑性光敏树脂单体与填料相配合,可以赋予制件热、电、磁等至少一种功能,增强材料机械性能。
2.本发明的光固化3D打印线性聚合物制件可以满足光固化打印的要求,且制件的复用方法简单,能保持原始的性能,同时可以多次光固化3D打印,实现了材料的循环使用(循环次数不受限制,根据需要可以一直循环使用;研究结果显示,3次及更高次循环后,所述制件的结构、机械和力学性能均能够基本保持不变,极具实际应用前景),减少了资源浪费和环境污染。
3.本发明的光固化3D打印线性聚合物制件可以实现填料的回收,实现了高效利用,有助于降低成本。
本发明的第三方面提供的提升3D打印制件的界面强度方法具有如下三方面优势:
1.3D打印制件的原材料制备过程简单,仅需将功能单体与3D打印的包括聚合物的材料体系共混便可以制备得到;
2.该方法具有普适性,适用于多种3D打印方式和多种聚合物材料;
3.激活方式简单,可以有效改善3D打印制件的力学性能。本发明通过向3D打印的材料体系中引入功能单体,3D打印完成后对制件进行激活处理,通过改善聚合物的力学性能,进而达到增强3D打印制件层间结合力的效果,有效地改善3D打印制件的性能。
附图说明
图1为实施例A1中制得样品修复前后的照片。
图2为实施例A1中制得样品修复前后的应力应变曲线。
图3为实施例A1中制得样品回收前后的照片。
图4为实施例A2中制得样品修复前后的应力应变曲线。
图5为实施例B1中原始树脂单体溶液与回收后溶液的照片。
图6为实施例B1中制得原始制件与第三次回收得到的光固化3D打印制件的应力应变曲线。
图7为实施例B1中制得原始制件与第三次回收得到的光固化3D打印制件的照片。
图8为实施例B2中树脂溶液离心前后填料的分散照片。
图9为引入界面相互作用增强打印制件层间结合力示意图。
图10为实施例C1中数字光处理3D打印样品处理前后的应力应变曲线。
图11为实施例C3中直接书写3D打印样品处理前后的应力应变曲线。
图12为实施例C4中熔融沉积3D打印样品处理前后的应力应变曲线。
图13为对比例C1与对比例C2中数字光处理3D打印样品处理前后的应力应变曲线。
具体实施方式
本发明的第一方面具体涉及以下内容:
[组合物]
本发明提供一种用于光固化3D打印制备可自修复或可回收制件的组合物,其包括:光敏树脂的单体、光引发剂与功能单体;
所述光敏树脂的单体为单官能度光敏化合物;
所述功能单体选自具有式(I)所示结构式的化合物或含动态化学键的化合物的至少一种:
M xR y      式(I)
式(I)中,M选自金属离子,R选自阴离子;
n为金属离子的价态数,m为阴离子的价态数,若n/m为整数,则x=1,y=n/m;若n/m不是整数,则x=m,y=n。
其中,所述金属离子选自Cu离子、Fe离子、Mg离子、Ca离子、Mn离子、Zn离子或稀土金属离子等;所述阴离子选自氯离子、溴离子、硫酸根离子、硝酸根离子、咪唑阴离子、R 1CH=C(R 2)-COO离子等,R 1选自H或烷基(或进一步优选C 1-6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、异己基),R 2选自H或甲基。
具体的,所述功能单体选自硝酸铁、硝酸铜、硝酸镁、氯化铜、硝酸锰、硝酸锌、硝酸钙、氯化钙、氯化铁、硝酸铕、硝酸铬、硝酸铈、氯化铬、氯化铈、氯化锌、氯化锰、氯化镁、甲基丙烯酸铁、丙烯酸锌、甲基丙烯酸锌、二甲基丙烯酸锌和甲基丙烯酸铜中的至少一种。优选为氯化铜、氯化铁、氯化镁、氯化铬、氯化锌、硝酸镁、丙烯酸锌、甲基丙烯酸锌和二甲基丙烯酸锌中的至少一种。
其中,所述含动态键的化合物中动态键可分为动态非共价键和动态共价键,所述动态非共价键选自氢键、π-π堆积、静电相互作用、金属配位作用、主客体作用等中的一种或多种的组合;所述动态共价键选自亚胺键、硼酯键、缩醛、Diels-Alder反应、环加成、脲键、酯交换、肟氨酯键等中的一种或多种的组合。例如,所述含动态键的化合物可以选自2,2-二硫二乙醇二丙烯酸酯、丙烯酸苄酯、2,4,6-三溴苯丙烯酸酯、甲基丙烯酰氧乙基三甲基氯化铵、丙烯酸-9-蒽甲酯、丙烯酰氧乙基三甲基氯化铵、2-(全氟丁基)乙基丙烯酸酯、9,9-双[4-(2-丙烯酰氧基乙氧基)苯基]芴、2-丙烯酸-(4-甲基-1,3-亚苯基)双(亚氨羧基-2,1-乙烷二基)酯、2-丙烯酸-2-[[(丁基氨基)-羰基]氧代]乙酯、2-丙烯酸-2-羟基-3-苯氧基丙酯、三-2-丙烯酸[2,4,6-三氧代-1,3,5-三嗪-1,3,5(2H,4H,6H)-次基]三-2,1-亚乙酯等中的至少一种。
根据本发明的技术方案,所述光敏树脂的单体可以选自丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、丙烯酸异冰片酯、甲基丙烯酸月桂酯、环己基丙烯酸酯、环己基甲基丙烯酸酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;优选为丙烯酸、丙烯酸羟乙酯、丙烯酸异冰片酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、环己基丙烯酸酯中的至少一种;更优选为丙烯酸、丙烯酸羟乙酯、丙烯酸异冰片酯、单官能度聚氨酯丙烯酸酯和甲基丙烯酸羟乙酯中的至少一种。
根据本发明的技术方案,所述光引发剂选自联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类(例如HMPP、HHMP、HCPK)、α-胺烷基苯酮类(例如Irgacure907、Irgacure369)、酰基膦氧化物(例如TPO、TEPO、BAPO)、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物中至少一种;优选地,所述光引发剂选自樟脑醌、2,4,6-三甲基二苯甲酮、4-甲基二苯甲酮、N-甲基乙醇胺中的至少一种;更优选为樟脑醌和/或2,4,6-三甲基二苯甲酮。
根据本发明的技术方案,所述组合物中可含有纳米颗粒。例如,所述纳米颗粒选自二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管中至少一种;优选地,所述纳米颗粒选自二氧化硅、碳纳米管、蒙脱土、氧化石墨烯、二氧化钛、氮化硼中的至少一种。
根据本发明的技术方案,所述功能单体与所述光敏树脂的单体的质量比为(0.05-5):100,优选质量比为(0.5-3):100,例如为0.5:100、1:100、2:100。
根据本发明的技术方案,所述光引发剂与所述光敏树脂的单体的质量比为(0.01-5):100,优选质量比为(0.1-3):100,更优选为(0.5-2):100,例如质量比为1:100、1.5:100。
根据本发明的技术方案,所述纳米颗粒与所述光敏树脂的单体的质量比为(0.01-20):100,优选质量比为(0.1-10):100,更优选为(0.5-5):100,例如质量比为0.1:100、1:100、2:100。
[应用]
本发明还提供上述组合物在制备光固化3D打印制件中的应用。
[可自修复或可回收的光固化3D打印制件]
本发明还提供上述组合物通过光固化3D打印制备得到的光固化3D打印制件。
所述制件具有可修复性或可回收性。具体的,所述制件修复后可恢复其结构和性能。再有,其回收后制备的制件具有原制件相似或相同的性能。
[光固化3D打印制件的制备方法]
本发明还提供所述光固化3D打印制件的制备方法,包括如下步骤:
1a)将至少一种光敏树脂的单体与光引发剂共混,得到溶液;
2a)将功能单体与任选加入或不加入的纳米颗粒加入到所述溶液中制得混合分散液;
3a)将步骤2a)所得混合分散液进行光固化3D打印,得到所述光固化3D打印制件。
其中,所述光敏树脂的单体、光引发剂、功能单体和纳米颗粒具有如上文所述的含义和质量比。
根据本发明的制备方法,步骤(1a)和/或步骤(2a)溶液的配制均在搅拌条件下进行。进一步地,步骤(1a)和/或步骤(2a)均在常温下进行。所述常温指的是温度在15-40℃,例如20-35℃。
根据本发明的制备方法,所述光固化3D打印采用本领域公知的设备进行,例如可以采用创想三维、中瑞SLA500、小方ONE等3D打印机。
根据本发明的制备方法,光固化3D打印过程中选用的激光为可见光或者紫外光。其中,所述可见光的波长范围为415-780nm,例如波长为430-600nm,示例性地为445nm。其中,所述紫外光的波长范围为265-420nm,例如300-400nm。
根据本发明的制备方法,光固化3D打印过程中,每层固化时间为1-900秒,例如,每层固化时间10-400秒,再如20-100秒,示例性地,每层固化时间为10秒、20秒或60秒。
根据本发明的制备方法,光固化3D打印过程中,每层层厚为5-100μm,例如为10-60μm,示例性地为50μm。
[光固化3D打印制件的自修复方法]
本发明还提供所述光固化3D打印制件的自修复方法,将破损的打印制件断面贴合,于一定温度下贴合修复,制件即可恢复其结构和性能。
其中,所述温度范围为20-200℃,例如30-160℃,再如50-130℃,示例性地,温度为80℃、120℃。
其中,所述贴合修复的时间为1min-48h,例如0.5-36h,再如1-24h,示例性地,时间为1h、6h或12h。
[光固化3D打印制件的回收方法]
本发明还提供所述光固化3D打印制件的回收方法,将破损的打印制件剪碎,热压处理,即可得到回收后的材料。
其中,所述热压处理的压力为5-10MPa,例如6-8MPa,示例性地,压力为7MPa或8MPa。
其中,所述热压处理的温度为80-200℃,例如100-160℃,示例性地温度为120℃、150℃。
其中,所述热压处理的时间为10min-6h,例如30min-4h,示例性地,时间为2h、3h。
本发明的第二方面具体涉及以下内容:
[用于制备光固化3D打印线性聚合物制件的组合物]
如前所述,本发明提供了一种用于制备光固化3D打印线性聚合物制件的组合物,其包括:至少一种光敏树脂的单体与光引发剂、以及任选的填料;所述光敏树脂的单体为单官能度热塑性光敏树脂单体。
在一个具体实施方式中,所述组合物由至少一种光敏树脂的单体与光引发剂、以及任选的填料组成;所述光敏树脂的单体为单官能度热塑性光敏树脂单体。
优选地,所述单官能度热塑性光敏树脂单体选自式(1)或式(2)所示化合物中的至少一种;
Figure PCTCN2020114834-appb-000001
式(1)中,R 1选自H、取代或未取代的下述基团中的一种:烷基(如C 1-20烷基,再如为C 1-12烷基,进一步例如为甲基、乙基、丙基、丁基、己基、十二烷基等)、环烷基(如C 3-20环烷基,再如为C 3-12环烷基,进一步例如为环丙基、环丁基、环戊基或环己基等)、杂环(如四氢呋喃等)、桥环(如异冰片基等)、聚氨酯基,所述取代的基团选自羟基、烷氧基或降冰片烯基;或者,R 1为上述基团的烷氧化基团,例如为乙氧化四氢呋喃基团;
R 2和R 3相同或不同,彼此独立地选自H、烷基、芳基;
R选自H、甲基或乙基;
式(2)中,R’选自H、甲基或乙基;
R’ 2和R’ 3相同或不同,彼此独立地选自H、烷基、芳基;例如,R’ 2和R’ 3相同,均选自H;
X选自O或NR”;
R”选自H、烷基。
在一个具体实施方式中,所述单官能度热塑性光敏树脂单体可以选自单官能度热塑性的丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯 酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、丙烯酰吗啉、甲基丙烯酰吗啉、环己基丙烯酸酯、环己基甲基丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯、乙氧化四氢呋喃丙烯酸酯、5-降冰片烯-2-甲醇丙烯酸酯、丙烯酸异冰片酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;例如为丙烯酰吗啉、甲基丙烯酰吗啉、环三羟甲基丙烷甲缩醛丙烯酸酯、乙氧化四氢呋喃丙烯酸酯、5-降冰片烯-2-甲醇丙烯酸酯和丙烯酸异冰片酯中的至少一种;示例性为丙烯酰吗啉、乙氧化四氢呋喃丙烯酸酯、丙烯酸异冰片酯中的至少一种。
根据本发明,所述光引发剂选自联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类、α-胺烷基苯酮类、酰基膦氧化物、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物中至少一种;优选地,所述光引发剂选自樟脑醌、2,4,6-三甲基二苯甲酮、4-甲基二苯甲酮、N-甲基乙醇胺中的至少一种;示例性为樟脑醌和/或2,4,6-三甲基二苯甲酮。
根据本发明,所述填料选自二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管、纤维、Mxene和液态金属中的至少一种;例如,选自二氧化硅、碳纳米管、蒙脱土、石墨烯、二氧化钛、氮化硼纳米颗粒中的至少一种;示例性地,所述功能性填料选自二氧化硅纳米颗粒、石墨烯和/或液态金属。
根据本发明,所述光引发剂与所述光敏树脂的单体的质量比为(0.01-5):100,优选质量比为(0.1-3):100,更优选为(0.5-2):100,例如质量比为0.5:100、1:100、1.5:100。
根据本发明,所述填料与所述光敏树脂的单体的质量比为(0.01-20):100,优选质量比为(0.1-10):100,更优选为(0.5-5):100,例如质量比为0.1:100、1:100、2:100、5:100。
[组合物的应用]
本发明提供上述组合物在制备光固化3D打印线性聚合物制件中的应用。
[光固化3D打印线性聚合物制件]
本发明提供一种光固化3D打印线性聚合物制件,所述3D打印线性聚合物制件由包含上述组合物的原料制备得到。
其中,所述3D打印线性聚合物制件可以回收并循环打印。
进一步地,所述3D打印线性聚合物制件回收并循环打印后可以具有与回收前相似或相同的性能、和/或相同或不同的结构。
[光固化3D打印线性聚合物制件的制备方法]
本发明提供上述光固化3D打印线性聚合物制件的制备方法,所述制备方法包括如下步骤:
1b)将至少一种光敏树脂的单体与光引发剂共混,得到树脂溶液;
2b)任选加入或不加入填料到所述溶液中,制得混合分散液;
3b)对步骤1b)所得树脂溶液或步骤2b)所得混合分散液进行光固化3D打印,得到所述光固化3D打印线性聚合物制件。
其中,所述光敏树脂的单体、光引发剂和填料均具有如上文所述的含义和质量比。
根据本发明的制备方法,步骤(1b)所述树脂溶液和/或步骤(2b)所述混合分散液的配制均在搅拌条件下进行。进一步地,步骤(1b)和/或步骤(2b)均在低温下进行。所述低温指的是温度在15-60℃,例如20-60℃,示例性为常温(例如15-40℃,优选20-35℃)或60℃。
根据本发明的制备方法,所述光固化3D打印采用本领域已知的设备进行,例如可以采用创想三维、中瑞SLA500、小方ONE等3D打印机。
根据本发明的制备方法,步骤(3b)中,光固化3D打印过程中选用的激光为可见光或者紫外光。其中,所述可见光的波长范围为415-780nm,例如波长为430-600nm,示例性地为445nm。其中,所述紫外光的波长范围为265-420nm,例如300-400nm。
根据本发明的制备方法,步骤(3b)中,光固化3D打印过程中,每个打印层的固化时间为1-900秒,例如固化时间为10-400秒,再如20-100秒,示例性地,每个打印层的固化时间为10秒、20秒、30秒或60秒。
根据本发明的制备方法,步骤(3b)中,光固化3D打印过程中,每个打印层的层厚为5-100μm,例如为10-100μm,示例性地为50μm、100μm。
[光固化3D打印线性聚合物制件的回收方法]
本发明提供上述光固化3D打印线性聚合物制件的回收方法,所述回收方法包括如下步骤:将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度下搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
其中,所述光敏树脂的单体与制备所述3D打印线性聚合物制件所用的光敏树脂的单体相同。
其中,所述含有树脂单体的溶液中同时含有打印制件中溶出的树脂单体、以及溶解打印制件时加入的树脂单体。
根据本发明,所述3D打印线性聚合物制件与所述光敏树脂的单体的质量比为(0.1-50):(50-99.9),例如(1-30):(70-90),示例性为3:97、5:95或10:90。
根据本发明,所述一定温度为20-200℃,例如30-160℃,再如50-130℃,示例性地,温度为80℃、120℃。其中,所述搅拌的时间为20min-5h,例如0.5-3h,示例性为1h。
根据本发明,可以将整个所述3D打印线性聚合物制件直接加入光敏树脂的单体中,或者先将3D打印线性聚合物制件破碎,而后再加入光敏树脂的单体中。
根据本发明,所述3D打印线性聚合物制件采用上述的光固化3D打印线性聚合物制件的制备方法制备得到。
[光固化3D打印线性聚合物制件的循环打印方法]
本发明提供上述光固化3D打印线性聚合物制件的循环打印方法,所述循环打印方法包括如下步骤:
a)将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
其中,所述光敏树脂的单体与制备所述3D打印线性制件所用的光敏树脂的单体相同;
b)将上述含有树脂单体的溶液与光引发剂共混,得到树脂溶液;
c)任选加入或不加入填料到所述树脂溶液中,得到混合分散液;
d)将步骤b)所得溶液或步骤c)所得混合分散液进行光固化3D打印,再次得到光固化3D打印线性聚合物制件。
根据本发明,所述光敏树脂的单体、填料、光引发剂具有如上文所述的含义。
根据本发明,所述光敏树脂的单体和3D打印线性聚合物制件的质量比具有如上文所述的含义。
根据本发明,可以将整个所述3D打印线性聚合物制件直接加入光敏树脂的单体中,或者先将3D打印线性聚合物制件破碎,而后再加入光敏树脂的单体中。
根据本发明,所述光引发剂与含有树脂单体的溶液的质量比为(0.01-5):100,优选质量比为(0.1-3):100,更优选为(0.5-2):100,示例性为0.3:100、0.5:100、1:100。
根据本发明,步骤a)中所述一定温度搅拌、步骤d)中所述光固化3D打印具有如光固化3D打印线性聚合物制件的制备方法中所述步骤1b)和步骤3b)的含义。
根据本发明,所述步骤a)中的3D打印线性聚合物制件采用上述的光固化3D打印线性聚合物制件的制备方法制备得到。
[光固化3D打印线性聚合物制件中填料的回收方法]
本发明提供上述光固化3D打印线性聚合物制件中填料的回收方法,所述回收方法包括如下步骤:
A1)将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
其中,所述光敏树脂的单体与制备所述3D打印线性聚合物制件所用的光敏树脂的单体相同;
A2)将步骤A1)得到的含有树脂单体的溶液进行离心处理,使填料团聚在底部,将填料取出,洗涤、干燥即可。
根据本发明,所述光敏树脂的单体和3D打印线性聚合物制件的质量比具有如上文所述的含义。
根据本发明,所述离心处理的时间为3min-2h,例如5min-1h,示例性为10min、20min。进一步地,所述离心处理的转速为50-12000rpm,例如5000-10000rpm,示例性地为8000rpm。
根据本发明,可以将整个所述3D打印线性聚合物制件直接加入光敏树脂的单体中,或者先将3D打印线性聚合物制件破碎,而后再加入光敏树脂的单体中。
根据本发明,所述步骤A1)中的3D打印线性聚合物制件采用上述的光固化3D打印线性聚合物制件的制备方法制备得到。
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
以下实施例和对比例中,打印制件的力学性能测试依据为树脂浇铸体性能试验方法:GB/T2567-2008。
实施例A1
1)将100g丙烯酸羟乙酯与0.5g樟脑醌共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酸羟乙酯树脂溶液;
2)在600rpm转速下,将0.5g氯化锌、0.1g二氧化硅纳米颗粒加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于80℃烘箱中保温1h,即可得到修复的制件。
图1为制得样品修复前后的照片。经热处理后,样品断裂处重新连接在一起,拉伸至其初始长度的3倍,不发生断裂,具体的力学性能曲线如图2所示。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为7MPa,即可得到回收的制件。
图3为制得样品回收前后的照片。将原始样品剪碎成小块,经热压处理后,得到完整的回收样品,具有与初始样品相同的外观。
实施例A2
1)将100g丙烯酸羟乙酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g氯化铜、1g二氧化硅纳米颗粒加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为60s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸至其初始长度的2倍多,不发生断裂,具体的力学性能曲线如图4所示。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为7MPa,即可得到回收的制件。
实施例A3
1)将100g丙烯酸羟乙酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g甲基丙烯酸锌、1g碳纳米管加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为7MPa,即可得到回收的制件。
实施例A4
1)将100g丙烯酸羟乙酯与1g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g氯化镁、2g蒙脱土加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为7MPa,即可得到回收的制件。
实施例A5
1)将100g甲基丙烯酸羟乙酯与1g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到甲基丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g氯化铬、2g氧化石墨烯加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/甲基丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例A6
1)将100g甲基丙烯酸羟乙酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到甲基丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g氯化铁、1g二氧化钛加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/甲基丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例A7
1)将100g甲基丙烯酸羟乙酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到甲基丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将0.5g硝酸镁、1g氮化硼加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到二氧化硅/甲基丙烯酸羟乙酯光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例A8
1)将100g甲基丙烯酸羟乙酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到甲基丙烯酸羟乙酯光敏树脂溶液;
2)在600rpm转速下,将5g 2,2-二硫二乙醇二丙烯酸酯加入到步骤1)所得光敏树脂溶液中(引入双硫键),继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例A9
1)将100g单官能度聚氨酯丙烯酸酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到单官能度聚氨酯丙烯酸酯光敏树脂溶液;
2)在600rpm转速下,将6g 2,2-二硫二乙醇二丙烯酸酯加入到步骤1)所得光敏树脂溶液中(引入双硫键),继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例A10
1)将100g丙烯酸异冰片酯与0.5g 2,4,6-三甲基二苯甲酮共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酸异冰片酯光敏树脂溶液;
2)在600rpm转速下,将5g 2,2-二硫二乙醇二丙烯酸酯加入到步骤1)所得光敏树脂溶液中(引入双硫键),继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得光敏树脂复合分散液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为20s,打印完成后可得到光固化3D打印制件。
步骤3)得到的打印制件发生破损,将其断面紧密贴合,置于120℃烘箱中保温6h,即可得到修复的制件。经测试,修复的制件拉伸强度可恢复原始强度的90%以上。
步骤3)得到的打印制件完全破损难以修复,用剪刀将破损制件剪碎,置于磨具中,随后放入120℃热压机热压2h,压力为8MPa,即可得到回收的制件。
实施例B1
1)将100g丙烯酰吗啉与0.5g樟脑醌共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酰吗啉树脂溶液;
2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(5g)后,将其添加入丙烯酰吗啉单体(95g)中,置于80℃下搅拌1h,可得到回收后的溶液,回收后的溶液中同时含有破碎打印制件中溶出的丙烯酰吗啉、以及溶解打印制件时加入的丙烯酰吗啉;4)向步骤3)得到的溶液中添加0.4g樟脑醌,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;
5)将步骤4)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件。
图5为丙烯酰吗啉树脂单体溶液与步骤3)得到的回收溶液的照片,可以看出:回收溶液中3D打印线性聚合物制件完全溶解。
图6为原始打印制件与第三次回收后的打印制件的应力应变曲线,可以看出:回收前后得到的3D打印线性聚合物制件的力学性能相似,且均能够满足光固化打印的要求。
图7为原始打印制件与第三次回收后的打印制件的照片,可以看出:回收并循环打印得到的打印制件的结构基本与原始打印制件保持相同。
实施例B2
1)将100g丙烯酰吗啉、0.5g樟脑醌与5g液态金属共混,在60℃下磁力搅拌30min,转速600rpm,得到丙烯酰吗啉树脂复合溶液;
2)将步骤1)所得树脂复合溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(5g)后,将其添加入丙烯酰吗啉单体(95g)中,置于80℃下搅拌1h,可得到的溶液,回收后的溶液中同时含有破碎打印制件中溶出的丙烯酰吗啉、以及溶解打印制件时加入的丙烯酰吗啉;
4)将步骤3)得到的溶液置于离心机中,离心处理时间为10min,转速为8000rpm,液态金属沉于溶液底部,取出后循环用乙醇洗涤,并置于60℃烘箱中3h,可得到回收后的液态金属。
图8为回收溶液离心前后的照片,可以看出经过离心,液态金属几乎被完全回收。
实施例B3
1)将100g丙烯酰吗啉与0.5g樟脑醌共混,在常温下磁力搅拌30min,转速600rpm,得到丙烯酰吗啉树脂溶液;
2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(3g),将其添加入丙烯酰吗啉单体(97g)中,置于80℃下搅拌1h,可得到回收后的溶液,回收后的溶液中同时含有破碎打印制件中溶出的丙烯酰吗啉、以及溶解打印制件时加入的丙烯酰吗啉;
4)向步骤3)得到的溶液中添加0.4g樟脑醌,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;
5)将步骤4)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件。
回收前后得到的3D打印线性聚合物制件的力学性能相似,且均能够满足光固化打印的要求。
实施例B4
1)将100g丙烯酰吗啉、0.5g樟脑醌与1g石墨烯共混,在60℃下磁力搅拌30min,转速600rpm,得到丙烯酰吗啉树脂复合溶液;
2)将步骤1)所得树脂复合溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为10s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(5g),将其加入丙烯酰吗啉单体(95g)中,置于80℃下搅拌1h,可得到回收后的溶液,回收后的溶液中同时含有破碎打印制件中溶出的丙烯酰吗啉、以及溶解打印制件时加入的丙烯酰吗啉;
4)将步骤3)得到的溶液置于离心机中,离心处理时间为10min,转速为8000rpm,石墨烯沉于溶液底部,取出后反复用乙醇洗涤,并置于60℃烘箱中3h,可得到回收后的石墨烯。
实施例B5
1)将100g乙氧化四氢呋喃丙烯酸酯与0.5g樟脑醌共混,在常温下磁力搅拌30min,转速600rpm,得到乙氧化四氢呋喃丙烯酸酯树脂溶液;
2)将步骤1)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为30s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(10g),将其添加入乙氧化四氢呋喃丙烯酸酯单体(90g)中,置于80℃下搅拌1h,可得到回收后的溶液,回收后的溶液中同时含有破碎打印制件中溶出的乙氧化四氢呋喃丙烯酸酯、以及溶解打印制件时加入的乙氧化四氢呋喃丙烯酸酯;
4)向步骤3)得到的溶液中添加0.3g樟脑醌,在常温下磁力搅拌30min,转速600rpm,得到树脂溶液;
5)将步骤4)所得树脂溶液进行光固化3D打印,激光波长445nm,每层层厚控制为50μm,每层固化时间控制为30s,打印完成后可得到光固化3D打印线性聚合物制件。
回收前后得到的3D打印线性聚合物制件的力学性能相似,且均能够满足光固化打印的要求。
实施例B6
1)将100g乙氧化四氢呋喃丙烯酸酯、0.5g樟脑醌与1g二氧化硅共混,在60℃下磁力搅拌30min,转速600rpm,得到乙氧化四氢呋喃丙烯酸酯树脂复合溶液;
2)将步骤1)所得树脂复合溶液进行光固化3D打印,激光波长445nm,每层层厚控制为100μm,每层固化时间控制为30s,打印完成后可得到光固化3D打印线性聚合物制件;
3)将步骤2)得到的打印制件破碎(5g),将其添加入乙氧化四氢呋喃丙烯酸酯单体(95g)中,置于80℃下搅拌1h,可得到回收后的溶液,回收后的溶液中同时含有破碎打印制件中溶出的乙氧化四氢呋喃丙烯酸酯、以及溶解打印制件时加入的乙氧化四氢呋喃丙烯酸酯;
4)将步骤3)得到的溶液置于离心机中,离心处理时间为10min,转速为8000rpm,二氧化硅沉于溶液底部,取出后反复用乙醇洗涤,并置于60℃烘箱中3h,可得到回收后的二氧化硅。
当实施例中的光敏树脂单体替换为说明书中列举的其他物质,光引发剂替换为说明书中列举的其他物质时,均可以制备得到能够回收并可循环打印的3D线性聚合物制件。回收前后得到的3D打印线性聚合物制件的力学性能相似,且均能够满足光固化打印的要求。
实施例C1
增强数字光处理3D打印制件性能的方法,包括如下步骤:
1)将光敏树脂的单体:100g丙烯酸羟乙酯、交联剂:5g己二醇二丙烯酸酯、光引发剂:0.5g樟脑醌、和阻聚剂:0.1g对苯二酚混合均匀,在常温下磁力搅拌20min,转速500rpm,得到光敏树脂溶液;
2)在500rpm转速下,将功能组分(1g氯化锌)、纳米颗粒(0.5g石墨烯)加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得树脂复合分散液进行数字光处理3D打印,激光波长445nm,每层层厚控制为80μm,每层固化时间控制为10s,打印完成后可得到3D打印制件。
步骤3)得到的打印制件置于100℃烘箱中热处理6h,即可得到增强后的打印制件。
图10为本实施例的数字光处理3D打印制件处理前后的应力应变曲线。打印制件处理后与处理前相比,拉伸强度明显提升(提升约50%),断裂伸长率保持不变。
实施例C2
增强数字光处理3D打印制件性能的方法,包括如下步骤:
1)将光敏树脂的单体:100g丙烯酸羟乙酯、交联剂:5g己二醇二丙烯酸酯、光引发剂:0.5g樟脑醌、和阻聚剂:0.1g对苯二酚混合均匀,在常温下磁力搅拌20min,转速500rpm,得到光敏树脂溶液;
2)在500rpm转速下,将功能组分(1g丙烯酸锌)、纳米颗粒(0.5g石墨烯)加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得树脂复合分散液进行数字光处理3D打印,激光波长445nm,每层层厚控制为80μm,每层固化时间控制为10s,打印完成后可得到3D打印制件。
步骤3)得到的打印制件置于100℃烘箱中热处理6h,即可得到增强后的打印制件。
实施例C3
增强直接书写3D打印制件性能的方法,包括如下步骤:
1)将聚合物粉末材料(10g聚乙烯醇)溶于溶剂(100ml去离子水),搅拌速度为500rpm,溶解温度控制为60℃;
2)在500rpm转速下,将功能组分(1g氯化锌)、纳米颗粒(0.5g纳米二氧化硅)加入到步骤1)所得溶液中,继续搅拌1h,得到复合分散液;
3)将步骤2)所得分散液进行直接书写3D打印,打印头直径70μm,打印速度为10mm/s,打印完成后可得到3D打印制件。
步骤3)得到的打印制件置于50℃烘箱中热处理2h,即可得到增强后的打印制件。
图11为本实施例的直接书写3D打印制件处理前后的应力应变曲线。打印制件处理后与处理前相比,拉伸强度明显提升(提升约30%),断裂伸长率变化不大。
实施例C4
增强熔融沉积3D打印制件性能的方法,包括如下步骤:
1)将聚合物粉末材料(100g聚乳酸)与功能组分(1g氯化锌)、纳米颗粒(0.5g纳米二氧化硅)熔融共混,共混温度为180℃;
2)将步骤1)所得聚合物复合材料进行熔融沉积3D打印,打印头直径100μm,打印速度为10mm/s,打印完成后可得到3D打印制件。
步骤2)得到的打印制件置于80℃烘箱中热处理5h,即可得到增强后的打印制件。
图12为本实施例的熔融沉积3D打印制件处理前后的应力应变曲线。打印制件处理后与处理前相比,拉伸强度明显提升(提升了约10%)。
实施例C5
增强熔融沉积3D打印制件性能的方法,包括如下步骤:
1)将聚合物粉末材料(100g聚甲基丙烯酸甲酯)与功能组分(1g氯化锌)、纳米颗粒(0.5g石墨烯)熔融共混,共混温度为180℃;
2)将步骤1)所得聚合物复合材料进行熔融沉积3D打印,打印头直径100μm,打印速度为10mm/s,打印完成后可得到3D打印制件。
步骤2)得到的打印制件置于150℃烘箱中热处理5h,即可得到增强后的打印制件。
实施例C6
增强熔融沉积3D打印制件性能的方法,包括如下步骤:
1)将聚合物粉末材料(100g聚甲基丙烯酸甲酯)与功能组分(2g氯化铜)、纳米颗粒(0.5g蒙脱土)熔融共混,共混温度为180℃;
2)将步骤1)所得聚合物复合材料进行熔融沉积3D打印,打印头直径100μm,打印速度为10mm/s,打印完成后可得到3D打印制件。
步骤2)得到的打印制件置于150℃烘箱中热处理6h,即可得到增强后的打印制件。
对比例C1
增强数字光处理3D打印制件性能的方法,包括如下步骤:
1)将光敏树脂的单体:100g丙烯酸羟乙酯、交联剂:5g己二醇二丙烯酸酯、光引发剂:0.5g樟脑醌、和阻聚剂:0.1g对苯二酚混合均匀,在常温下磁力搅拌20min,转速500rpm,得到树脂溶液;
2)在500rpm转速下,将纳米颗粒(0.5g石墨烯)加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得树脂复合分散液进行数字光处理3D打印,激光波长445nm,每层层厚控制为80μm,每层固化时间控制为10s,打印完成后可得到3D打印制件。步骤3)得到的打印制件置于100℃烘箱中热处理6h,得到热处理后的打印制件。
与实施例C1相比,未添加功能组分氯化锌,其他条件不变。
对比例C2
增强数字光处理3D打印制件性能的方法,包括如下步骤:
1)将光敏树脂的单体:100g丙烯酸羟乙酯、交联剂:5g己二醇二丙烯酸酯、光引发剂:0.5g樟脑醌、和阻聚剂:0.1g对苯二酚混合均匀,在常温下磁力搅拌20min,转速500rpm,得到树脂溶液;
2)在500rpm转速下,将纳米颗粒(0.5g石墨烯)加入到步骤1)所得光敏树脂溶液中,继续搅拌1h,得到光敏树脂复合分散液;
3)将步骤2)所得树脂复合分散液进行数字光处理3D打印,激光波长445nm,每层层厚控制为80μm,每层固化时间控制为10s,打印完成后可得到3D打印制件。
步骤3)得到的打印制件置于100℃烘箱中热处理12h,得到热处理后的打印制件。
与对比例C1相比,热处理时间从6h延长至12h,其他条件不变。
图13为对比例C1与对比例C2中数字光处理3D打印样品处理前后的应力应变曲线。图5中,对比例C1与对比例C2中均未添加功能组分氯化锌,打印制件热处理前后力学性能变化不大,比较对比例C1与对比例C2可以发现,延长热处理时间可以轻微提升力学性能。而与添加功能组分的实施例C1中的打印制件对比(图2),实施例C1中制件热处理较短时间后其力学性能便明显提升,与热处理前样品对比,其拉伸强度提升了约50%,断裂伸长率保持不变。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种3D打印制件,其特征在于,所述3D打印制件的3D打印用原料中包括功能单体或至少一种单官能度热塑性光敏树脂单体;
    其中,所述功能单体选自具有式(I)所示结构式的化合物或含动态化学键的化合物的至少一种:
    M xR y式(I)
    式(I)中,M选自金属离子,R选自阴离子;
    n为金属离子的价态数,m为阴离子的价态数,若n/m为整数,则x=1,y=n/m;若n/m不是整数,则x=m,y=n。
  2. 一种权利要求1所述的3D打印制件的制备方法,其特征在于,所述方法包括:
    通过向3D打印体系中引入功能单体,制备得到可自修复或可回收3D打印制件;或者,
    通过向3D打印体系中引入功能单体,制备得到界面强度增强的3D打印制件;或者,
    以至少一种单官能度热塑性光敏树脂单体作为3D打印原料之一,制备得到可循环3D打印制件;
    所述功能单体选自具有权利要求1中所述的式(I)所示结构式的化合物的至少一种。
  3. 一种用于权利要求1所述3D打印制件的组合物、具体是一种用于光固化3D打印制备可自修复或可回收制件的组合物,其特征在于,所述组合物包括:光敏树脂的单体、光引发剂与功能单体;
    所述光敏树脂的单体为单官能度光敏化合物;
    所述功能单体选自具有如权利要求1所述式(I)所示结构式的化合物或含动态化学键的化合物的至少一种。
    优选地,所述光敏树脂的单体选自丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、丙烯酸异冰片酯、甲基丙烯酸月桂酯、环己基丙烯酸酯、环己基甲基丙烯酸酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;
    优选地,所述光引发剂选自联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类、α-胺烷基苯酮类、酰基膦氧化物、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物中至少一种。
    优选地,所述组合物中含有纳米颗粒;所述纳米颗粒优选为二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管中至少一种。
    优选地,所述功能单体与所述光敏树脂的单体的质量比为(0.05-5):100;
    优选地,所述光引发剂与所述光敏树脂的单体的质量比为(0.01-5):100;
    优选地,所述纳米颗粒与所述光敏树脂的单体的质量比为(0.01-20):100。
    优选地,所述组合物在制备光固化3D打印制件中的应用。
  4. 权利要求1所述的3D打印制件,其是一种光固化3D打印制件,其由权利要求3所述组合物通过光固化3D打印制备得到。
  5. 权利要求4所述3D打印制件的制备方法、自修复方法或回收方法,其特征在于,所述制备方法包括如下步骤:
    1a)将至少一种光敏树脂的单体与光引发剂共混,得到溶液;
    2a)将功能单体与任选加入或不加入的纳米颗粒加入到所述溶液中制得混合分散液;
    3a)将步骤2a)所得混合分散液进行光固化3D打印,得到所述光固化3D打印制件;
    所述自修复方法包括:将破损的打印制件断面贴合,于一定温度下贴合修复,制件即可恢复其结构和性能;
    所述回收方法包括:将破损的打印制件剪碎,热压处理,即可得到回收后的材料。
  6. 一种用于权利要求1所述3D打印制件的组合物、具体是用于制备光固化3D打印线性聚合物制件的组合物,其特征在于,所述组合物包括:至少一种光敏树脂的单体与光引发剂、以及任选的填料;所述光敏树脂的单体为单官能度热塑性光敏树脂单体。
    优选地,所述组合物由至少一种光敏树脂的单体与光引发剂、以及任选的填料组成;所述光敏树脂的单体为单官能度热塑性光敏树脂单体;
    优选地,所述单官能度热塑性光敏树脂单体选自式(1)或式(2)所示化合物中的至少一种;
    Figure PCTCN2020114834-appb-100001
    式(1)中,R 1选自H、取代或未取代的下述基团中的一种:烷基、环烷基、杂环、桥环、聚氨酯基,所述取代的基团选自羟基、烷氧基或降冰片烯基;或者,R 1为上述基团的烷氧化基团;
    R 2和R 3相同或不同,彼此独立地选自H、烷基、芳基;
    R选自H、甲基或乙基;
    式(2)中,R’选自H、甲基或乙基;
    R’ 2和R’ 3相同或不同,彼此独立地选自H、烷基、芳基;
    X选自O或NR”;
    R”选自H、烷基。
    优选地,所述单官能度热塑性光敏树脂单体选自单官能度热塑性的丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、丙烯酰吗啉、甲基丙烯酰吗啉、环己基丙烯酸酯、环己基甲基丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯、乙氧化四氢呋喃丙烯酸酯、5-降冰片烯-2-甲醇丙烯酸酯、丙烯酸异冰片酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;
    优选地,所述光引发剂选自联苯甲酰、二苯基乙二酮、二烷氧基苯乙酮、樟脑醌、α-羟烷基苯酮类、α-胺烷基苯酮类、酰基膦氧化物、二苯甲酮、4-甲基二苯甲酮、2,4,6-三甲基二苯甲酮、三乙醇胺、N-甲基乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、醌类化合物、茂钛类化合物、碘鎓盐类化合物、硫鎓盐类化合物和三嗪类化合物中至少一种;
    优选地,所述填料选自二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管、纤维、Mxene和液态金属中的至少一种。
    优选地,所述光引发剂与所述光敏树脂的单体的质量比为(0.01-5):100;
    优选地,所述填料与所述光敏树脂的单体的质量比为(0.01-20):100。
    优选地,所述组合物在制备光固化3D打印线性聚合物制件中的应用。
  7. 根据权利要求1所述的3D打印制件,其是一种光固化3D打印线性聚合物制件,其特征在于,所述3D打印线性聚合物制件由包含权利要求6所述组合物的原料制备得到;
    优选地,所述3D打印线性聚合物制件能够回收并循环打印。
  8. 权利要求7所述的3D打印制件、具体是光固化3D打印线性聚合物制件的制备方法、回收方法或循环打印方法,其特征在于,所述制备方法包括如下步骤:
    1b)将至少一种光敏树脂的单体与光引发剂共混,得到树脂溶液;
    2b)任选加入或不加入填料到所述溶液中,制得混合分散液;
    3b)对步骤1b)所述树脂溶液或步骤2b)所得混合分散液进行光固化3D打印,得到所述光固化3D打印线性聚合物制件。
    所述回收方法包括如下步骤:将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度下搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
    其中,所述光敏树脂的单体与制备所述3D打印线性聚合物制件所用的光敏树脂的单体相同。
    优选地,所述3D打印线性聚合物制件采用如上所述方法制备得到。
    所述循环打印方法包括如下步骤:
    a)将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
    其中,所述光敏树脂的单体与制备所述3D打印线性制件所用的光敏树脂的单体相同;
    b)将上述含有树脂单体的溶液与光引发剂共混,得到树脂溶液;
    c)任选加入或不加入填料到所述树脂溶液中,得到混合分散液;
    d)将步骤b)所得溶液或步骤c)所得混合分散液进行光固化3D打印,再次得到光固化3D打印线性聚合物制件。
    优选地,所述步骤a)中的3D打印线性聚合物制件采用如上所述方法制备得到。
  9. 权利要求7所述3D打印制件、具体是光固化3D打印线性聚合物制件中填料的回收方法,其特征在于,所述回收方法包括如下步骤:
    A1)将3D打印线性聚合物制件加入光敏树脂的单体中,一定温度搅拌使所述3D打印线性聚合物制件溶解形成含有树脂单体的溶液;
    所述光敏树脂的单体与制备所述3D打印线性聚合物制件所用的光敏树脂的单体相同;
    A2)将上述含有树脂单体的溶液进行离心处理,使填料团聚在底部,将填料取出,洗涤、干燥即可。
    优选地,所述步骤A1)中的3D打印线性聚合物制件采用权利要求7所述方法制备得到。
  10. 一种提升3D打印制件的界面强度的方法,其特征在于,所述方法包括如下步骤:
    (1c)将功能单体引入到3D打印的材料体系中,经3D打印,得到打印制件;
    (2c)对步骤(1c)得到的打印制件进行激活处理,提升打印制件的界面强度;
    其中,所述功能单体引入材料体系的方式为:功能单体与体系中的其他材料共混,所述其他材料包括聚合物,所述聚合物材料中含有氧、氮、硫、硼、磷元素中的至少一种;
    所述功能单体选自具有如权利要求1所述式(I)所示结构式的化合物或含动态化学键的化合物的至少一种。
    优选地,所述3D打印为熔融沉积(FDM)、选择性热烧结(SHS)、选择性激光烧结(SLS)、立体平板印刷(SLA)、分层实体印刷(LOM)、数字光处理(DLP)、直接书写(DIW)中的至少一种。
    优选地,所述激活处理为热处理、光照处理、电处理中的至少一种。
    优选地,所述聚合物为聚合物粉体、聚合物线材、聚合物薄膜、液态光敏树脂中的至少一种;
    优选地,所述聚合物粉体、聚合物线材和聚合物薄膜中的聚合物选自以下聚合物中的至少一种:聚乳酸、聚醚醚酮、聚氨酯、聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯醇、醋酸乙烯-乙烯共聚物、丙烯酸酯共聚物、尼龙、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚对苯二甲酸类塑料。
    优选地,所述液态光敏树脂选自以下树脂中的至少一种:聚环氧丙烯酸酯、不饱和聚酯、聚氨酯丙烯酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、聚丙烯酸酯、光固化有机硅低聚物。
    优选地,所述光敏树脂由包括光敏树脂单体的原料聚合得到,所述光敏树脂的单体选自丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、环氧丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环己基丙烯酸酯、环己基甲基丙烯酸酯、乙氧基乙基丙烯酸酯和1,3-丙二醇单丙烯酸酯中的至少一种;
    优选地,当选择液态光敏树脂时,所述原料中还包括光引发剂;
    优选地,所述原料中还包括阻聚剂。
    优选地,所述功能单体与聚合物的质量比为1:(10-150)。
    优选地,步骤(1)所述聚合物材料中含有纳米颗粒;
    优选地,所述纳米颗粒选自二氧化硅、四氧化三铁、二氧化钛、蒙脱土、氮化硼、石墨烯、二硫化钼、氧化石墨烯、碳纳米管中的至少一种;
    优选地,所述纳米颗粒与聚合物的质量比为1:(10-250);
    优选地,所述材料体系中还含有其它适用于相应3D打印方法的材料体系中含有的组分,优选为液态金属、颜料中的至少一种。
PCT/CN2020/114834 2019-09-12 2020-09-11 一种增强、可自修复或可回收、可循环3d打印制件及其制备方法与应用 WO2021047649A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/597,145 US20220315673A1 (en) 2019-09-12 2020-09-11 Enhanced, self-healable or recoverable and recyclable 3d printed article and preparation method and use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910866554.2 2019-09-12
CN201910866553.8 2019-09-12
CN201910866554.2A CN112480450B (zh) 2019-09-12 2019-09-12 一种提升3d打印制件的界面强度的方法
CN201910866553.8A CN112480293B (zh) 2019-09-12 2019-09-12 一种可自修复或可回收的光固化3d打印制件及其制备方法与应用
CN202010066454.4 2020-01-20
CN202010066454.4A CN113150199B (zh) 2020-01-20 2020-01-20 一种可循环光固化3d打印线性聚合物制件及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021047649A1 true WO2021047649A1 (zh) 2021-03-18

Family

ID=74866131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114834 WO2021047649A1 (zh) 2019-09-12 2020-09-11 一种增强、可自修复或可回收、可循环3d打印制件及其制备方法与应用

Country Status (2)

Country Link
US (1) US20220315673A1 (zh)
WO (1) WO2021047649A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292482A (zh) * 2022-02-09 2022-04-08 中国计量科学研究院 一种无机元素掺入的光固化树脂及其制备方法
CN114539481A (zh) * 2022-02-22 2022-05-27 广东云兔科技有限公司 一种光固化聚氨酯丙烯酸酯预聚物及其在3d打印上的应用
CN114539488A (zh) * 2022-02-22 2022-05-27 广东云兔科技有限公司 一种用于光固化3d打印的自修复有机硅光敏树脂
CN115260056A (zh) * 2022-08-09 2022-11-01 中国科学院兰州化学物理研究所 一种交联剂及其制备方法、聚酰亚胺3d打印墨水、可回收热固性聚酰亚胺制品的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746482B (zh) * 2022-11-02 2024-03-22 浙江大学杭州国际科创中心 一种3d打印制备多孔材料的方法
CN116813843A (zh) * 2023-06-29 2023-09-29 深圳永昌和科技有限公司 一种工程高韧性3d打印用光敏树脂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980410A (zh) * 2014-04-30 2014-08-13 中国科学院化学研究所 一种用于3d打印的组合物及其制备方法和制品
CN105294936A (zh) * 2015-10-19 2016-02-03 杭州龙勤新材料科技有限公司 二官能度丙烯酸酯类交联剂及其在3d打印中的应用
CN105936674A (zh) * 2016-06-29 2016-09-14 武汉纺织大学 一种紫外光3d打印用海藻酸水凝胶基质的制备方法
WO2017009184A1 (en) * 2015-07-10 2017-01-19 Arkema France Curable compositions comprising mono-functional acrylates
CN107312133A (zh) * 2016-04-26 2017-11-03 中国科学院化学研究所 一种用于3d打印的可见光固化材料及3d打印装置和制件
CN109782537A (zh) * 2019-03-07 2019-05-21 中山职业技术学院 一种高精度半导体用3d打印式负性光刻胶的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3867040A4 (en) * 2018-10-19 2022-07-20 National Research Council of Canada RESTRUCTURED PRODUCT MANUFACTURED FROM A RESIN COMPRISING A FUNCTIONAL COMPONENT AND A POLYMER RESIN, AND METHOD FOR MAKING IT
CA3151652A1 (en) * 2019-09-03 2021-03-11 National Research Council Of Canada 3d printed antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980410A (zh) * 2014-04-30 2014-08-13 中国科学院化学研究所 一种用于3d打印的组合物及其制备方法和制品
WO2017009184A1 (en) * 2015-07-10 2017-01-19 Arkema France Curable compositions comprising mono-functional acrylates
CN105294936A (zh) * 2015-10-19 2016-02-03 杭州龙勤新材料科技有限公司 二官能度丙烯酸酯类交联剂及其在3d打印中的应用
CN107312133A (zh) * 2016-04-26 2017-11-03 中国科学院化学研究所 一种用于3d打印的可见光固化材料及3d打印装置和制件
CN105936674A (zh) * 2016-06-29 2016-09-14 武汉纺织大学 一种紫外光3d打印用海藻酸水凝胶基质的制备方法
CN109782537A (zh) * 2019-03-07 2019-05-21 中山职业技术学院 一种高精度半导体用3d打印式负性光刻胶的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292482A (zh) * 2022-02-09 2022-04-08 中国计量科学研究院 一种无机元素掺入的光固化树脂及其制备方法
CN114539481A (zh) * 2022-02-22 2022-05-27 广东云兔科技有限公司 一种光固化聚氨酯丙烯酸酯预聚物及其在3d打印上的应用
CN114539488A (zh) * 2022-02-22 2022-05-27 广东云兔科技有限公司 一种用于光固化3d打印的自修复有机硅光敏树脂
CN114539481B (zh) * 2022-02-22 2023-11-14 广东云兔科技有限公司 一种光固化聚氨酯丙烯酸酯预聚物及其在3d打印上的应用
CN114539488B (zh) * 2022-02-22 2023-11-14 广东云兔科技有限公司 一种用于光固化3d打印的自修复有机硅光敏树脂
CN115260056A (zh) * 2022-08-09 2022-11-01 中国科学院兰州化学物理研究所 一种交联剂及其制备方法、聚酰亚胺3d打印墨水、可回收热固性聚酰亚胺制品的制备方法

Also Published As

Publication number Publication date
US20220315673A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021047649A1 (zh) 一种增强、可自修复或可回收、可循环3d打印制件及其制备方法与应用
US11905387B2 (en) Functionalized graphene oxide curable formulations
US10280299B2 (en) Compositions for three-dimensional (3D) printing
KR102505144B1 (ko) 다단계 중합체를 포함하는 조성물, 이의 제조 방법 및 용도
TWI443175B (zh) An anisotropic conductive material, a connecting structure, and a connecting structure
Czvikovszky Expected and unexpected achievements and trends in radiation processing of polymers
TW200932814A (en) Liquid resin composition and cured product using the liquid resin composition
TWI597318B (zh) 含有半導體奈米粒子之硬化性組成物、硬化物、光學材料及電子材料
JPS6230150A (ja) 反応性プラスチゾル分散体
WO1996021699A1 (fr) Composition d'enduit conducteur
CN109517340B (zh) 一种耐温透明3d打印用光敏树脂
TW200804550A (en) Method of adhesively bonding materials with nanoscale, superparamagnetic poly(meth)acrylate polymers
JP2010509476A5 (zh)
CN112480293B (zh) 一种可自修复或可回收的光固化3d打印制件及其制备方法与应用
JP5845044B2 (ja) 硬化剤及び/又は硬化促進剤内包カプセル、及び、熱硬化性樹脂組成物
CN112480450B (zh) 一种提升3d打印制件的界面强度的方法
CN113150199B (zh) 一种可循环光固化3d打印线性聚合物制件及其制备方法与应用
JP2019206735A (ja) 銀ナノ粒子積層体及びその製造方法
EP4237455A1 (en) Multifunctional hybrid nanofillers as sensitizers/co-initiators for photopolymerization
CN105294929A (zh) 一种核壳粒子与丙烯酸酯复合的光固化材料及其制备方法
JP2010095679A (ja) 金属酸化物微粒子分散液の製造方法、及び金属酸化物微粒子分散液
JP5338202B2 (ja) 無溶剤型活性エネルギー線硬化性塗料組成物及びその製造方法並びに機能性薄膜付基体
Bambo et al. Fabrication Methods of Quantum Dots–Polymer Composites
Nguyen et al. High performances of core-shell (dendrimer) nanoparticles in carbon fiber/epoxy composites
Gao et al. Dual-Curing Polymer Systems for Photo-Curing 3D Printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862872

Country of ref document: EP

Kind code of ref document: A1