WO2021047273A1 - 倒装led光源 - Google Patents

倒装led光源 Download PDF

Info

Publication number
WO2021047273A1
WO2021047273A1 PCT/CN2020/101339 CN2020101339W WO2021047273A1 WO 2021047273 A1 WO2021047273 A1 WO 2021047273A1 CN 2020101339 W CN2020101339 W CN 2020101339W WO 2021047273 A1 WO2021047273 A1 WO 2021047273A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
electrode
flip
light source
substrate
Prior art date
Application number
PCT/CN2020/101339
Other languages
English (en)
French (fr)
Inventor
唐文婷
蔡勇
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2021047273A1 publication Critical patent/WO2021047273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • This application relates to an LED light source, in particular to a flip-chip LED light source, which belongs to the field of semiconductor technology.
  • the existing flip-chip LED light source structure is shown in Figure 1.
  • the current processing accuracy of the metal layer spacing on the substrate is on the order of sub-micron.
  • the spacing d1 of the PN electrodes on the existing chip is ⁇ 150 ⁇ m;
  • the schematic diagram of heat transfer is shown in Figure 2.
  • the alignment error of the structure is the pitch of the PN electrode, otherwise it is easy to cause a short circuit; chip light will produce a lot of Heat, the contact area between the chip and the metal layer material is large and the coefficient of thermal expansion is different, it is easy to generate thermal expansion stress on the contact surface, which leads to the reduction of device reliability.
  • This application mainly adopts the method of combining traditional flip-chip technology and isolated self-alignment technology to provide a flip-chip LED light source, which improves chip yield, reduces junction temperature, and reduces production costs at the same time, thereby overcoming the prior art Insufficiency in.
  • the embodiment of the application provides a flip-chip LED light source, including a substrate and at least one LED chip.
  • the LED chip is combined with the front surface of the substrate by a first surface with electrodes, and the second surface of the LED chip is a light-emitting surface and is connected to the The first surface is opposite; at least one pair of P electrodes and N electrodes of at least one LED chip are thermally connected to the front surface of the substrate via a plurality of spaced heat conductors, and any of the heat conductors is parallel to the first surface
  • the maximum dimension a in the direction of is smaller than the minimum distance d between the P electrode and the N electrode.
  • the flip-chip LED light source provided in this application combines flip-chip bonding technology and self-aligned isolation technology.
  • the size of the heat conductor is no longer limited by the existing substrate processing technology, and the size of the heat conductor will be reduced to micrometers. level;
  • the heat generated in the light-emitting area of the flip-chip LED light source provided by the embodiment of the application can be directly transferred downward to the substrate through the heat conductor, reducing the heat transfer distance, thereby reducing the thermal resistance, improving the chip yield, and reducing the junction temperature problem;
  • the flip-chip LED light source provided by the embodiment of the present application reduces the thermal expansion stress of the welding interface.
  • FIG. 1 is a schematic diagram of the structure of a flip-chip LED light source in the prior art
  • Fig. 2 is a schematic diagram of heat transfer of a flip-chip LED light source in the prior art
  • FIG. 3 is a schematic diagram of the structure of a flip-chip LED light source in Embodiment 1 of the present application;
  • FIG. 4 is a schematic structural diagram of a flip-chip LED light source in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a flip-chip LED light source in Embodiment 2 of the present application.
  • Fig. 6 is a schematic diagram of heat transfer of a flip-chip LED light source in a typical implementation case of the present application.
  • an embodiment of the present application provides a flip-chip LED light source, which includes a substrate and at least one LED chip.
  • the LED chip is combined with the front surface of the substrate by a first surface with electrodes.
  • the second surface is the light-emitting surface and is opposite to the first surface; at least one pair of P electrodes and N electrodes of at least one LED chip are thermally connected to the front surface of the substrate through a plurality of spaced heat conductors, and any one of them is thermally conductive
  • the maximum dimension a of the body in a direction parallel to the first surface is smaller than the minimum distance d between the P electrode and the N electrode.
  • the epitaxial layer of the LED chip includes a plurality of unit cells capable of independently emitting light, and the plurality of unit cells are arranged in series and/or in parallel with each other, and each unit cell is connected to a P electrode and a unit cell.
  • the N electrodes are matched, and each pair of P electrodes and N electrodes are thermally connected to the substrate through a plurality of heat conductors.
  • the aforementioned unit cell refers to a device unit with independent and complete functions, and the conductive semiconductor layers of any two unit cells are separated to make any unit cell electrically independent; through metal interconnection, multiple unit cells are electrically connected to form Larger devices can achieve higher device performance, such as increased power.
  • the aforementioned unit cell may be a light-emitting element such as a semiconductor laser, an LED, or an electronic element such as a diode.
  • the flip-chip LED light source includes a plurality of LED chips, each LED chip is matched with a P electrode and an N electrode, and each pair of P electrodes and N electrodes pass through a plurality of LED chips.
  • the heat conductor is thermally connected to the substrate.
  • the distance c between two adjacent heat conductors is greater than or equal to 1 ⁇ m.
  • At least a pair of pads are also distributed on the front surface of the substrate, and the P electrode and the N electrode are respectively electrically connected to a pad.
  • the pad is also electrically connected to a conductive layer provided on the back of the substrate through a conductive channel penetrating the substrate.
  • the back of the substrate is also covered with a heat-dissipating metal layer.
  • the heat conductor is an island-shaped structure formed on the front surface of the substrate, and two adjacent island-shaped structures are electrically isolated from each other.
  • the island-shaped structure is welded and fixed to the P electrode or the N electrode.
  • the material of the heat conductor includes metal or ceramic, but it is not limited thereto.
  • the shape of the heat conductor includes a rectangular parallelepiped, a cube, a cylinder, a truncated cone, or a prism frustum, but is not limited thereto.
  • a flip-chip LED light source includes a substrate 30 and at least one LED chip 10.
  • the LED chip 10 is combined with the front surface of the substrate 30 on a first surface with electrodes, and the second surface of the LED chip 10 is the light source. Face and opposite to the first surface.
  • the LED chip is a high-voltage and high-power integrated flip chip with good flatness
  • the epitaxial layer of the LED chip 10 may include an N-type GaN layer 11, an active layer 12, and a P-type GaN layer formed on the substrate 20 in sequence.
  • the flip-chip LED light source includes a substrate 30 and a plurality of LED chips (the LED chips are ordinary flip-chips with good flatness) 10, and the plurality of LED chips are connected in series and/or in parallel, and each LED chip 10 is In conjunction with a P electrode 15 and an N electrode 16, each pair of P electrodes 15 and N electrodes 16 are spaced apart from each other, and the minimum distance between the two can be defined as d.
  • a plurality of heat conductors 40 spaced apart are provided on the front surface of the insulating substrate 30.
  • the heat conductor 40 is an island-shaped structure formed on the front surface of the substrate 40, and two adjacent island-shaped structures are electrically isolated from each other.
  • the LED chip 10 is The first surface with the P electrode 15 and the N electrode 16 is combined with the front surface of the substrate 30, the P electrode 15 and the N electrode 16 are welded on the heat conductor 40, and the P electrode 15 and the N electrode 16 of the LED chip are thermally conductive through the plurality of spaces.
  • the body 40 is thermally connected to the front surface of the substrate 30; in the direction parallel to the first surface of the LED chip 10, the maximum dimension of the heat conductor can be defined as a, and the distance between two adjacent heat conductors can be defined as c, where , D>a ⁇ 2 ⁇ m, c ⁇ 1 ⁇ m.
  • the distance between the N electrode and the N electrode does not cause the problem of short circuit, so the alignment accuracy of the device is low, and the alignment error is half of the area of the P electrode or the N electrode; as shown in Figure 3 or Figure 4, in the flip-chip package
  • the different positional relationship between the heat conductor and the P electrode and the N electrode will not cause the P electrode and the N electrode to short-circuit; and the contact area of a single heat conductor and the P electrode or the N electrode is small, and the thermal stress on the contact surface is greatly reduced. , Increase the reliability of the device.
  • the pads 51 and the pads 52 are respectively provided on both sides of the plurality of heat conductors 40, the P electrode 15 and the N electrode 16 are respectively connected to the welding
  • the pad 51 and the pad 52 are electrically connected, and an external lead 60 is also electrically connected to the pad 51 and the pad 52.
  • the material of the heat conductor 40 may be a metal material or a ceramic material, and the shape of the heat conductor 40 may be a rectangular parallelepiped, a cube, a cylinder, a truncated cone, or a prism.
  • the minimum distance d between the aforementioned P electrode 15 and the N electrode 16 is greater than the maximum dimension a of the heat conductor. It can be understood in conjunction with FIG. 3 or FIG. 4 that the minimum distance between the P electrode 15 and the N electrode 16
  • the maximum dimension with the heat conductor is the distance in the same reference direction. For example, the direction parallel to the first surface of the LED chip 10 may be used as the reference direction, or the width direction of the heat conductor may be used as the reference direction.
  • the heat generated in the light-emitting area of the flip-chip LED light source provided in the embodiment of the present application can be directly transferred downward through the heat conductor to the insulating substrate, which reduces the heat transfer distance and reduces the thermal resistance.
  • the structure of a flip-chip LED light source in this embodiment is basically the same as the structure of the flip-chip LED light source in Embodiment 1, except that it is not on the front side of the insulating substrate 30 in this embodiment.
  • An external lead 60 is arranged on the upper side, and a conductive layer 53 and a conductive layer 54 are arranged on the back of the insulating substrate 30 at intervals.
  • the pads 51 and the pads 52 respectively pass through the conductive channel 31 and the conductive channel 32 through the substrate 30 and are respectively arranged on the back of the substrate.
  • the conductive layer 53 and the conductive layer 54 are electrically connected, so that electrical leads can be drawn from the back of the insulating substrate.
  • the conductive channel and the conductive layer can be made of metal material, which is more conducive to timely transfer of the heat generated by the operation of the LED chip.
  • a heat dissipation metal layer 70 is also covered on the back of the substrate 30.
  • the heat dissipation metal layer 70 and the above conductive layers 53, 54 are electrically isolated from each other, and the heat dissipation metal layer 70 can be connected to the heat sink. Connect contacts.
  • the material of the heat conductor in the embodiment of the present application is metal
  • a metal material with good thermal conductivity can be selected
  • the material of the conductive metal layer may be a metal material with good electrical conductivity, which will not be listed here.
  • Self-aligned isolation technology Since the substrate is provided with metal islands (ie, island-shaped heat conductors) that are electrically isolated and smaller than the chip electrode spacing, when the flip chip is soldered to the substrate, the chip electrodes and the metal islands do not need to be accurately aligned. Realize chip self-aligned welding and no short circuit between electrodes.
  • metal islands ie, island-shaped heat conductors
  • the flip-chip LED light source provided in this application combines flip-chip bonding technology and self-aligned isolation technology.
  • the size of the heat conductor is no longer limited by the existing substrate processing technology, and the size of the heat conductor will be reduced to the order of micrometers;
  • the heat generated in the light-emitting area of the flip-chip LED light source provided in the embodiments of the present application can be directly transferred downward to the substrate through the heat conductor, reducing the heat transfer distance, thereby reducing the thermal resistance, improving the chip yield, and reducing the junction temperature ;
  • due to the electrical isolation between the heat conductors, and the width of the heat conductor is smaller than the distance between the P and N electrodes, there will be no short circuit problem, thereby reducing the requirements for the accuracy of the equipment alignment, and the alignment error is P, N
  • the electrode area is half the size, which reduces the cost; among them, the contact area between a single heat conductor and the P electrode or the N electrode is small, the thermal stress of the contact surface is greatly reduced

Abstract

本申请公开了一种倒装LED光源,其包括基板以及至少一LED芯片,所述LED芯片以具有电极的第一表面与基板正面结合,所述LED芯片的第二表面为出光面且与第一表面相背对;至少一LED芯片的至少一对P电极及N电极经多个间隔设置的导热体与所述基板正面导热连接,并且其中任一导热体在平行于所述第一表面的方向上的最大尺寸a小于所述P电极与N电极的最小间距d。本申请提供的倒装LED光源,将倒装焊技术与自对准隔离技术相结合,提高了芯片良率,降低了焊接界面热膨胀应力;同时降低了大于设备对准精度的要求,进而降低了生产成本,提高了产率。

Description

倒装LED光源
本申请是基于并要求于2019年9月9日提交的申请号为2019108649554、名称为倒装LED光源的中国专利申请的优先权。
技术领域
本申请涉及一种LED光源,特别涉及一种倒装LED光源,属于半导体技术领域。
背景技术
在倒装LED中,为了保证芯片良率贴合时芯片PN电极之间不产生短路,需要PN电极之间具有一定间距,另一方面为了降低结温,需要芯片与基板的接触面积尽可能大,PN电极的间距尽可能小,传统倒装技术通常需要设备具有很高的对准精度,而这样会增加生产成本。
例如,现有的倒装LED光源结构如图1所示,然,由于生产技术的限制,目前基板上的金属层间距加工精度在亚微米量级上,现有芯片上PN电极的间距d1≥150μm;其热量传输示意图如图2所示,热量运输时需要先在芯片内横向传输到电极区,再纵向传输到基板,这样会增加热量运输距离,从而增加热阻;为了提高芯片散热能力和导电性能,基板金属层需要具有与芯片电极匹配的大小尺寸,因此封装时需要设备具有很高的对准精度,该结构对准误差为PN电极的间距,否则容易造成短路;芯片发光会产生大量热量,芯片与金属层材料的接触面积大且热膨胀系数不同容易在其接触面产生热膨胀应力,导致器件可靠性降低。
申请内容
本申请主要采用传统倒装技术与隔离自对准技术相结合的方法,提供了一种倒装LED光源,提高了芯片良率,降低结温,同时降低了生产成本,进而克服了现有技术中的不足。
为实现前述申请目的,本申请采用的技术方案包括:
本申请实施例提供了一种倒装LED光源,包括基板以及至少一LED芯片,所述LED芯片以具有电极的第一表面与基板正面结合,所述LED芯片的第二表面为出光面且与第一表面相背对;至少一LED芯片的至少一对P电极及N电极经多个间隔设置的导热体与所述基板正面导热连接,并且其中任一导热体在平行于所述第一表面的方向上的最大尺寸a小于所述P电极与N电极的最小间距d。
与现有技术相比,本申请至少具有以下优点:
1)本申请提供的倒装LED光源,将倒装焊技术与自对准隔离技术相结合,导热体的尺寸不再受到现有基板加工技术的限制,导热体的尺寸将减小到微米量级;
2)本申请实施例提供的倒装LED光源的发光区产生的热量可直接向下通过导热体传输到基板,减少了热量传输距离,进而降低了热阻,提高了芯片良率,降低了结温问题;
3)由于导热体之间电学隔离,且导热体的宽度小于P、N电极的间距,因此不会产生短路问题,进而降低了对设备对准精度的要求,其对准误差为P、N电极面积大小的一半,降低了成本;
4)单个导热体与P电极或N电极接触面积小,接触面的热应力大大减小,增加了器件的可靠性;
5)本申请实施例提供的倒装LED光源降低了焊接界面热膨胀应力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的 附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中一种倒装LED光源的结构示意图;
图2是现有技术中一种倒装LED光源的热量传输示意图;
图3是现本申请实施例1中一种倒装LED光源的结构示意图;
图4是现本申请实施例1中一种倒装LED光源的结构示意图;
图5是现本申请实施例2中一种倒装LED光源的结构示意图;
图6是本申请一典型实施案例中一种倒装LED光源的热量传输示意图。
具体实施方式
鉴于现有技术中的不足,本案申请人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
为了克服现有技术中的问题,本申请实施例提供了一种倒装LED光源,包括基板以及至少一LED芯片,所述LED芯片以具有电极的第一表面与基板正面结合,所述LED芯片的第二表面为出光面且与第一表面相背对;至少一LED芯片的至少一对P电极及N电极经多个间隔设置的导热体与所述基板正面导热连接,并且其中任一导热体在平行于所述第一表面的方向上的最大尺寸a小于所述P电极与N电极的最小间距d。
在一些较为具体的实施方案中,所述LED芯片的外延层包括复数个能独立发光的单胞,所述复数个单胞相互串联和/或并联设置,每一单胞与一P电极及一N电极配合,且每一对P电极及N电极均经过多个导热体与基板导热连接。
前述单胞是指具有独立完整功能的器件单元,并且任意两个单胞的导电半导体层隔离开,使任一单胞电学上独立;通过金属互连,使多个单胞实现电学连接,形成更大的器件,实现更高的器件性能,如:功率增加等。前述单胞可以为半导体激光器、LED等发光元件、二极管等电子元件。
在另一些较为具体的实施方案中,所述倒装LED光源包括多个LED芯片,每一LED芯片均与一P电极和一N电极配合,且每一对P电极及N电极均经过多个导热体与基板导热连接。
进一步的,d>a≥2μm。
进一步的,相邻两个导热体之间的距离c≥1μm。
在一些较为具体的实施方案中,所述基板正面还分布有至少一对焊盘,所述P电极、N电极分别与一焊盘电连接。
在一些较为具体的实施方案中,所述焊盘还经贯穿基板的导电通道与设置在基板背面的导电层电连接。
在一些较为具体的实施方案中,所述基板背面还覆设有散热金属层。
在一些较为具体的实施方案中,所述导热体为形成在基板正面的岛状结构,并且相邻两个岛状结构之间彼此电学隔离。
在一些较为具体的实施方案中,所述岛状结构与所述P电极或N电极焊接固定。
在一些较为具体的实施方案中,所述导热体的材质包括金属或陶瓷,但不限于此。
在一些较为具体的实施方案中,所述导热体的形状包括长方体、正方体、圆柱、圆台或棱台形,但不限于此。
实施例1
请参阅图3和图4,一种倒装LED光源,包括基板30以及至少一LED芯片10,LED芯片10以具有电极的第一表面与基板30正面结合,LED芯片10的第二表面为出光面且与第一表面相背对。
其中,该LED芯片为具有良好的平整度的高压大功率集成倒装芯片,LED芯片10的外延层可以包括依次在衬底20上形成的N型GaN层11、有源层12、P型GaN层13;进一步的,在该外延层上还可设置绝缘层14;该外延层被加工形成呈阵列形式排布的多个单胞,多个单胞之间串联和/或并联连接,每个单胞 均与一P电极15和一N电极16配合,该P电极15与N电极16彼此间隔设置,两者的最小距离可以定义为d。
或者,倒装LED光源包括基板30以及多个LED芯片(该LED芯片为具有良好的平整度的普通倒装芯片)10,多个LED芯片之间串联和/或并联,每一LED芯片10均与一P电极15和一N电极16配合,每一对P电极15与N电极16彼此间隔设置,两者的最小距离可以定义为d。
在绝缘基板30的正面上设置有多个间隔设置的导热体40,导热体40为形成在基板40正面的岛状结构,并且相邻两个岛状结构之间彼此电学隔离,LED芯片10以具有P电极15与N电极16的第一表面与基板30正面结合,P电极15及N电极16焊接在导热体40上,LED芯片的P电极15及N电极16经该多个间隔设置的导热体40与基板30的正面导热连接;在平行于LED芯片10第一表面的方向上,该导热体的最大尺寸可以定义为a,相邻两个导热体之间的距离可以定义为c,其中,d>a≥2μm,c≥1μm。
由图4中可以看出,在区域A和区域B可以看出P电极15、N电极16与导热体40的相对位置关系,由于导热体之间电学隔离,且导热体的最大尺寸小于P电极与N电极的间距,因此不会产生短路的问题,所以设备的对准精度要求低,对准误差为P电极或N电极面积大小的一半;如图3或图4所示,在倒装封装时,导热体与P电极、N电极之间产生不同的位置关系也不会导致P电极、N电极短路;并且单个导热体与P电极或N电极接触面积小,接触面的热应力大大减小,增加了器件的可靠性。
以及,在绝缘基板30的正面上还设置有焊盘51和焊盘52,焊盘51和焊盘52分别设置在该多个导热体40的两侧,P电极15、N电极16分别与焊盘51和焊盘52电连接,在焊盘51和焊盘52还电连接有外接引线60。
其中的导热体40的材质可以是金属材质或者是陶瓷材质,导热体40的形状可以是长方体、正方体、圆柱、圆台或棱台形等。
需要说明的是,前述P电极15、N电极16之间的最小间距d大于所述导热体的最大尺寸a,结合图3或图4可以理解,P电极15和N电极16之间的最 小间距与导热体的最大尺寸为在同一基准方向上的间距,例如,可以以平行于LED芯片10第一表面的方向作为基准方向,或者,以导热体的宽度方向作为基准方向。
请参阅图6所示,本申请实施例提供倒装LED光源的发光区产生的热量可直接向下通过导热体传输到绝缘基板,减少了热量传输距离,降低了热阻。
实施例2
请参阅图5,本实施例中的一种倒装LED光源的结构与实施例1中的倒装LED光源的结构基本一致,不同之处在于,本实施例中的未在绝缘基板30的正面上设置外接引线60,而在绝缘基板30的背面上间隔设置导电层53、导电层54,焊盘51和焊盘52分别经贯穿基板30的导电通道31、导电通道32分别与设置在基板背面的导电层53、导电层54电连接,如此,可以实现由绝缘基板的背面引出电引线。其中的导电通道、导电层均可以是金属材质的,这样更利于将LED芯片工作产生的热量及时转移出去。
在一些较为具体的实施方案中,在基板30的背面还覆设有散热金属层70,散热金属层70与以上的导电层53、54彼此是电性隔离的,散热金属层70可以与散热器连接接触。
需要说明的是,本申请实施例中的导热体的材质为金属时可选择导热性良好的金属材质,导电金属层的材质可以是具有良好导电性的金属材质,在此不再一一列举。
自对准隔离技术:由于基板上设置有电学隔离且尺寸小于芯片电极间距的金属岛(即岛状的导热体),倒装芯片与基板焊接时,芯片电极与金属岛无需精确对准就能实现芯片自对准焊接且电极间无短路。
本申请提供的倒装LED光源,将倒装焊技术与自对准隔离技术相结合,导热体的尺寸不再受到现有基板加工技术的限制,导热体的尺寸将减小到微米量级;并且,本申请实施例提供的倒装LED光源的发光区产生的热量可直接向下通过导热体传输到基板,减少了热量传输距离,进而降低了热阻,提高了芯片良率,降低了结温;以及,由于导热体之间电学隔离,且导热体的宽度小于P、N电极 的间距,因此不会产生短路问题,进而降低了对设备对准精度的要求,其对准误差为P、N电极面积大小的一半,降低了成本;其中,单个导热体与P电极或N电极接触面积小,接触面的热应力大大减小,增加了器件的可靠性。

Claims (10)

  1. 一种倒装LED光源,其特征在于包括基板以及至少一LED芯片,所述LED芯片以具有电极的第一表面与基板正面结合,所述LED芯片的第二表面为出光面且与第一表面相背对;至少一LED芯片的至少一对P电极及N电极经多个间隔设置的导热体与所述基板正面导热连接,并且其中任一导热体在平行于所述第一表面的方向上的最大尺寸a小于所述P电极与N电极的最小间距d。
  2. 根据权利要求1所述的倒装LED光源,其特征在于:所述LED芯片的外延层包括复数个能独立发光的单胞,所述复数个单胞相互串联和/或并联设置,每一单胞与一P电极及一N电极配合,且每一对P电极及N电极均经过多个导热体与基板导热连接。
  3. 根据权利要求1或2所述的倒装LED光源,其特征在于:所述倒装LED光源包括多个LED芯片,每一LED芯片均与一P电极和一N电极配合,且每一对P电极及N电极均经过多个导热体与基板导热连接。
  4. 根据权利要求1所述的倒装LED光源,其特征在于:d>a≥2μm。
  5. 根据权利要求1所述的倒装LED光源,其特征在于:相邻两个导热体之间的距离c≥1μm。
  6. 根据权利要求1所述的倒装LED光源,其特征在于:所述基板正面还分布有至少一对焊盘,所述P电极、N电极分别与一焊盘电连接。
  7. 根据权利要求6所述的倒装LED光源,其特征在于:所述焊盘还经贯穿基板的导电通道与设置在基板背面的导电层电连接。
  8. 根据权利要求1所述的倒装LED光源,其特征在于:所述基板背面还覆设有散热金属层。
  9. 根据权利要求1所述的倒装LED光源,其特征在于:所述导热体为形成在基板正面的岛状结构,并且相邻两个岛状结构之间彼此电学隔离;和/或,所述岛状结构与所述P电极或N电极焊接固定。
  10. 根据权利要求1所述的倒装LED光源,其特征在于:所述导热体的材质包括金属或陶瓷;和/或,所述导热体的形状包括长方体、正方体、圆柱、圆台或棱台形。
PCT/CN2020/101339 2019-09-09 2020-07-10 倒装led光源 WO2021047273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910864955.4 2019-09-09
CN201910864955.4A CN112467020A (zh) 2019-09-09 2019-09-09 倒装led光源

Publications (1)

Publication Number Publication Date
WO2021047273A1 true WO2021047273A1 (zh) 2021-03-18

Family

ID=74807631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101339 WO2021047273A1 (zh) 2019-09-09 2020-07-10 倒装led光源

Country Status (2)

Country Link
CN (1) CN112467020A (zh)
WO (1) WO2021047273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113779922B (zh) * 2021-09-15 2023-08-18 中国科学院苏州纳米技术与纳米仿生研究所 Mini-LED显示模组的焊点布局设计方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278885A1 (en) * 2005-06-14 2006-12-14 Industrial Technology Research Institute LED wafer-level chip scale packaging
CN104979461A (zh) * 2014-04-08 2015-10-14 林锦源 发光结构
US9263655B2 (en) * 2010-06-28 2016-02-16 Osram Opto Semiconductors Gmbh Optoelectronic component and method for the production thereof
CN106783816A (zh) * 2015-11-24 2017-05-31 林锦源 发光二极管阵列结构
CN107146840A (zh) * 2017-06-30 2017-09-08 苏州瑞而美光电科技有限公司 一种倒装led芯片阵列结构及其制备方法
CN210200761U (zh) * 2019-09-09 2020-03-27 中国科学院苏州纳米技术与纳米仿生研究所 倒装led光源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278885A1 (en) * 2005-06-14 2006-12-14 Industrial Technology Research Institute LED wafer-level chip scale packaging
US9263655B2 (en) * 2010-06-28 2016-02-16 Osram Opto Semiconductors Gmbh Optoelectronic component and method for the production thereof
CN104979461A (zh) * 2014-04-08 2015-10-14 林锦源 发光结构
CN106783816A (zh) * 2015-11-24 2017-05-31 林锦源 发光二极管阵列结构
CN107146840A (zh) * 2017-06-30 2017-09-08 苏州瑞而美光电科技有限公司 一种倒装led芯片阵列结构及其制备方法
CN210200761U (zh) * 2019-09-09 2020-03-27 中国科学院苏州纳米技术与纳米仿生研究所 倒装led光源

Also Published As

Publication number Publication date
CN112467020A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022127061A1 (zh) 一种功率芯片堆叠封装结构
CN101471337B (zh) 具良好散热性能的光源模组
WO2012172991A1 (ja) 半導体ユニットおよびそれを用いた半導体装置
CN101150156B (zh) 发光元件及其制造方法
CN108091753B (zh) 一种光源元件
TW201106509A (en) Light emitting diode
CN106981550B (zh) 一种易封装易散热倒装高压led芯片
JP2014207446A (ja) エピタキシャル構造とパッケージ基板を一体化したled部品およびその製造方法
CN102231378A (zh) 一种led封装结构及其制备方法
CN100414704C (zh) 平面倒装led集成芯片及制造方法
WO2021047273A1 (zh) 倒装led光源
TW201330337A (zh) 發光二極體晶片之結構、發光二極體封裝基板之結構、發光二極體封裝結構及其製法
WO2022127060A1 (zh) 一种功率器件封装结构及电力电子设备
CN210200726U (zh) 大面积led光源封装结构
CN210200761U (zh) 倒装led光源
TW201236227A (en) Packaged substrate and fabrication method thereof
TW201608678A (zh) 晶片封裝模組與封裝基板
CN207442182U (zh) 一种高功率激光器
CN101916755B (zh) 一种平面整流器
CN201022077Y (zh) 硅衬底平面led集成芯片
CN114649288A (zh) 一种宽禁带半导体模块的封装结构以及封装方法
CN210200756U (zh) 高压倒装led光源
TW201244056A (en) Light emitting diode module package structure
CN102226995B (zh) 一种led封装结构及其制备方法
WO2021008457A1 (zh) 高压倒装led光源、大面积led光源封装结构及封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864187

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20864187

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20864187

Country of ref document: EP

Kind code of ref document: A1