WO2021047111A1 - 一种难溶磷素有效化的方法 - Google Patents

一种难溶磷素有效化的方法 Download PDF

Info

Publication number
WO2021047111A1
WO2021047111A1 PCT/CN2019/128738 CN2019128738W WO2021047111A1 WO 2021047111 A1 WO2021047111 A1 WO 2021047111A1 CN 2019128738 W CN2019128738 W CN 2019128738W WO 2021047111 A1 WO2021047111 A1 WO 2021047111A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
biomass material
poorly soluble
mixture
temperature
Prior art date
Application number
PCT/CN2019/128738
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
东北农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北农业大学 filed Critical 东北农业大学
Publication of WO2021047111A1 publication Critical patent/WO2021047111A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • C05F1/005Fertilisers made from animal corpses, or parts thereof from meat-wastes or from other wastes of animal origin, e.g. skins, hair, hoofs, feathers, blood

Definitions

  • the present invention relates to a method for effective phosphorus.
  • Phosphorus is one of the essential nutrient elements indispensable for crop growth. Its content and availability in the soil determine the final agricultural productivity, and there is almost no compound in the form of gas in the nature of phosphorus, which is a non-renewable resource. It is of great significance to make full and rational use of the existing phosphorus resources, maintain the balance of the phosphorus cycle and sustainable agricultural development. Available phosphorus is the main bottleneck restricting the growth of crops in terrestrial ecosystems, and the addition of phosphorus fertilizers improves the primary productivity of grains. Globally, about 180 metric tons of minerals are mined every year, and 50% of the world’s resources are mined in only one country, namely Morocco. On the other hand, phosphate is a very common, almost ubiquitous mineral.
  • phosphorus has a wide range of sources, in addition to soil, it also exists in some typical solid wastes, such as animal bones, wastewater and sludge. Therefore, it is of great significance for the production of phosphate fertilizer and the utilization of solid waste resources to strengthen the recovery and efficiency of phosphorus in solid waste resources while activating the existing phosphorus and insoluble phosphorus in the soil.
  • the phosphorus activators that have been studied are mainly acidic organic substances, living organisms, complex organic substances, hormones, and high specific surface area and high surface active substances.
  • people have also conducted research on inorganic acids, but they have not been widely used due to their toxic effects on the soil.
  • the cultivation conditions of living organisms are harsh, and there is a certain risk of excessive application, and the follow-up effect needs to be evaluated.
  • complex organic substances, hormones, and high surface area and high surface active substances has achieved certain results in activating phosphorus, Due to cost and technology reasons, it is difficult to be widely promoted.
  • the mass ratio of glucose, poorly soluble phosphorus raw materials, alkaline additives and distilled water in step one is (3-6): (0.8-2.5): (0.3-1): (20-80);
  • step one The mass ratio of biomass material powder, poorly soluble phosphorus raw material, alkaline additives and distilled water described in step one is (3-6): (0.8-2.5): (0.3-1): (20-80);
  • the biomass material powder described in step one is prepared according to the following steps:
  • biomass material powder is cleaned to remove impurities on the surface of the biomass material, then dried, and finally the dried biomass material is crushed to obtain biomass material powder;
  • the present invention uses biomass materials and poorly soluble phosphorus as raw materials, and adopts a new method of combining hydrothermal humification and thermochemistry to realize the effective and sustainable recycling of phosphorus; this method can realize the treatment of poorly soluble phosphorus.
  • the surface of the source is effectively etched and recrystallized to form a highly active soluble phosphate solution containing humus, thereby realizing the effectiveness of phosphorus.
  • the soluble phosphorus concentration in the compound phosphate fertilizer formed by the activation of the present invention is 10.0-4000 mg/L, the effective phosphorus concentration is 5.0-3500 mg/L, and the concentration of humus contained is 0.1-1.0 mg/g;
  • the cellulose, hemicellulose and lignin in the biomass material are decomposed and re-bonded to form fulvic acid and humic acid under the action of alkaline additives and high temperature and high pressure reaction conditions; as the reaction proceeds , The formed humus etches the insoluble phosphorus source and forms a certain degree of activation. In addition, the humus contained can effectively inhibit the fixation and accumulation of the prepared phosphate fertilizer in the soil, which is helpful to overcome the phosphorus shortage problem in agricultural production ;
  • Biomass materials such as straw, rice husks, etc.), animal bones, etc., as a kind of agricultural waste, are cheap and easy to obtain. Therefore, the present invention provides a new way for sustainable recovery of phosphorus and solid waste resource utilization ;
  • the present invention combines insoluble phosphorus raw materials and biomass materials to simulate geochemical processes to activate and recover phosphorus, and can increase the content of humus at the same time, improve the phosphorus problem in agricultural production, and the low utilization rate of solid waste resources.
  • the phosphate fertilizer formed by activation of the present invention contains humus, and when applied to the soil, it can not only quickly replenish the effective phosphorus content of the soil, but also can significantly improve the soil fertility and improve the quality of typical crops;
  • the activation method of the present invention is simple, and the raw materials are cheap and easy to obtain, so it is suitable for large-scale popularization and use;
  • the compound phosphate fertilizer prepared by the invention is used to quickly replenish the effective phosphorus content of the soil and promote plant growth.
  • Figure 1 is a scanning electron micrograph of iron phosphate
  • Figure 2 is a scanning electron micrograph of the compound phosphate fertilizer prepared in Example 1;
  • Figure 3 is a scanning electron micrograph of Example 2 24 hours after adding leaf biomass to activate iron phosphate
  • Figure 4 is an infrared curve of Example 2 24 hours after adding leaf biomass to activate iron phosphate
  • Figure 5 is a histogram of the comparison of the content of soluble phosphorus and available phosphorus after 24 hours of activation of iron phosphate by adding sawdust biomass in Example 3.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Fig. 6 is a bar graph comparing the soluble phosphorus and available phosphorus content of hydroxyapatite 24 hours after adding leaf biomass to activate hydroxyapatite in Example 4.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Figure 7 is a histogram of the comparison of soluble phosphorus and available phosphorus content of chicken bones 24 hours after adding leaf biomass to activate chicken bones in Example 5.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Fig. 8 is a histogram of comparison of growth of corn seedlings before and after the application of phosphate fertilizer by adding leaf biomass to activate chicken bones.
  • 1 is a corn seedling
  • 2 is a root
  • 3 is a stem.
  • This embodiment is a method for activating insoluble phosphorus, which is completed according to the following steps:
  • the mass ratio of glucose, poorly soluble phosphorus raw materials, alkaline additives and distilled water in step one is (3-6): (0.8-2.5): (0.3-1): (20-80);
  • step one The mass ratio of biomass material powder, poorly soluble phosphorus raw material, alkaline additives and distilled water described in step one is (3-6): (0.8-2.5): (0.3-1): (20-80);
  • biomass material powder is cleaned to remove impurities on the surface of the biomass material, then dried, and finally the dried biomass material is crushed to obtain biomass material powder;
  • This embodiment uses biomass materials and poorly soluble phosphorus as raw materials, and adopts a new method of combining hydrothermal humification and thermochemistry to achieve the effective and sustainable recycling of phosphorus; this method can achieve poorly soluble phosphorus
  • the surface of the phosphorus source is effectively etched and recrystallized to form a highly active soluble phosphate solution containing humic substances, thereby realizing the effectiveness of phosphorus.
  • the soluble phosphorus concentration in the compound phosphate fertilizer formed by activation in this embodiment is 10.0-4000 mg/L, and the effective phosphorus concentration is 5.0-3500 mg/L;
  • the cellulose, hemicellulose and lignin in the biomass material are decomposed and re-bonded to form fulvic acid and humic acid under the action of alkaline additives and high temperature and high pressure reaction conditions; as the reaction proceeds , The formed humus etches the insoluble phosphorus source and forms a certain degree of activation. In addition, the humus contained can effectively inhibit the fixation and accumulation of the prepared phosphate fertilizer in the soil, which is helpful to overcome the phosphorus shortage problem in agricultural production ;
  • Biomass materials such as straw, rice husks, etc.), animal bones, etc., as a kind of agricultural waste, are cheap and easy to obtain. Therefore, this embodiment provides a new method for sustainable recovery of phosphorus and solid waste resource utilization. way;
  • This embodiment combines insoluble phosphorus raw materials and biomass materials to simulate geochemical processes to activate and recover phosphorus, and can increase the content of humus at the same time, improve the phosphorus problem in agricultural production, and the low utilization rate of solid waste resources, etc. problem.
  • the phosphate fertilizer formed by activation in this embodiment contains humus, and when applied to the soil, it can not only quickly replenish the effective phosphorus content of the soil, but also can significantly improve soil fertility and improve the quality of typical crops;
  • the activation method of this embodiment is simple, and the raw materials are cheap and easy to obtain, so it is suitable for large-scale popularization and use;
  • the compound phosphate fertilizer prepared in this embodiment is used to quickly replenish the effective phosphorus content of the soil and promote plant growth.
  • this embodiment is different from specific embodiment one in that: in step one, the biomass material is cleaned 3 to 8 times with distilled water to remove impurities on the surface of the biomass material, and then the temperature is 60°C to 80°C. Drying at °C for 10h-24h.
  • step one the biomass material is cleaned 3 to 8 times with distilled water to remove impurities on the surface of the biomass material, and then the temperature is 60°C to 80°C. Drying at °C for 10h-24h.
  • step one the biomass material is cleaned 3 to 8 times with distilled water to remove impurities on the surface of the biomass material, and then the temperature is 60°C to 80°C. Drying at °C for 10h-24h.
  • the other steps are the same as the first embodiment.
  • Specific embodiment three This embodiment is different from specific embodiment one or two in that the particle size of the biomass material powder described in step one is 100 mesh to 200 mesh. The other steps are the same as the first or second embodiment.
  • Embodiment 4 The difference between this embodiment and Embodiments 1 to 3 is that the biomass material in step 1 is one or a mixture of straw, rice husk, sawdust and leaves. The other steps are the same as in the first to third specific embodiments.
  • Specific embodiment five This embodiment is different from one of specific embodiments 1 to 4 in that the stirring speed described in step 1 is 1000 r/min to 1500 r/min, and the stirring time is 0.5 h to 2 h.
  • the other steps are the same as those in the first to fourth specific embodiments.
  • Specific embodiment six This embodiment is different from one of specific embodiments 1 to 5 in that the poorly soluble phosphorus raw material described in step 1 is one or several of iron phosphate, apatite, aluminum phosphate and animal bone meal. kind of mixture. The other steps are the same as those in the first to fifth specific embodiments.
  • Specific embodiment seven This embodiment is different from one of specific embodiments one to six in that the alkaline auxiliary agent described in step one is one of KOH, NaOH, and a mixture of Ca(OH) 2 and Na 2 CO 3 Species or a mixture of several of them; the mass ratio of Ca(OH) 2 to NaCO 3 in the mixture of Ca(OH) 2 and Na 2 CO 3 is 1:1.
  • the other steps are the same as in the first to sixth specific embodiments.
  • Embodiment 8 This embodiment is different from one of Embodiments 1 to 7 in that the centrifugal speed described in step 2 is 4000 r/min to 10000 r/min, and the centrifugation time is 5 min to 20 min.
  • the other steps are the same as those in the first to seventh specific embodiments.
  • Embodiment 9 The difference between this embodiment and Embodiments 1 to 8 is: in step 2, the mixture reaction liquid is transferred to a high temperature and high pressure hydrothermal reactor, and then the high temperature and high pressure hydrothermal reactor is heated to 190°C ⁇ 200°C, and then hydrothermally react for 24h-28h under the conditions of pressure 3.2MPa ⁇ 3.5MPa and temperature 190°C ⁇ 200°C to obtain the reaction product; centrifuge the reaction product, remove the centrifugal liquid, and obtain the compound phosphate fertilizer. This is a method for effectively optimizing poorly soluble phosphorus.
  • the other steps are the same as those in the first to eighth specific embodiments.
  • This embodiment is different from one of specific embodiments 1 to 9 in that: in step 2, the mixture reaction liquid is transferred to a high temperature and high pressure hydrothermal reactor, and then the high temperature and high pressure hydrothermal reactor is heated to 190°C ⁇ 200°C, and then hydrothermally react for 24h-28h under the conditions of pressure of 3.5MPa ⁇ 3.8MPa and temperature of 190°C ⁇ 200°C to obtain the reaction product; centrifuge the reaction product, remove the centrifugal liquid, and obtain the compound phosphate fertilizer.
  • This is a method for effectively optimizing poorly soluble phosphorus.
  • the other steps are the same as those in the first to ninth specific embodiments.
  • Example 1 A method for effectively optimizing poorly soluble phosphorus (addition of glucose activated iron phosphate to prepare compound phosphate fertilizer) is completed according to the following steps:
  • the poorly soluble phosphorus raw material described in step one is iron phosphate
  • the alkaline auxiliary agent mentioned in step one is KOH;
  • Example 1 In the compound phosphate fertilizer prepared by adding glucose biomass to activate iron phosphate, the soluble phosphate concentration was 2846 mg/L, the available phosphate was 2778 mg/L, and the humus concentration contained was 0.18 mg/g.
  • Example 2 A method for effectively optimizing poorly soluble phosphorus (adding leaf biomass to activate ferric phosphate to prepare compound phosphate fertilizer) is completed according to the following steps:
  • the poorly soluble phosphorus raw material described in step one is iron phosphate
  • the alkaline auxiliary agent mentioned in step one is KOH;
  • the biomass material powder described in step one is prepared according to the following steps:
  • Example 2 In the compound phosphate fertilizer prepared by adding leaf biomass activated iron phosphate, the soluble phosphate concentration was 2191 mg/L, the available phosphate was 2180 mg/L, and the humus concentration contained was 0.25 mg/g.
  • Example 3 A method for effectively optimizing poorly soluble phosphorus (addition of sawdust biomass to activate ferric phosphate to prepare composite phosphate fertilizer) is completed according to the following steps:
  • the poorly soluble phosphorus raw material described in step one is iron phosphate
  • the alkaline auxiliary agent mentioned in step one is KOH;
  • the biomass material powder described in step one is prepared according to the following steps:
  • Example 4 A method for efficiencies of poorly soluble phosphorus (adding leaf biomass to activate hydroxyapatite to prepare compound phosphate fertilizer) is completed according to the following steps:
  • the poorly soluble phosphorus raw material described in step one is hydroxyapatite
  • the alkaline auxiliary agent mentioned in step one is KOH;
  • the biomass material powder described in step one is prepared according to the following steps:
  • Example 5 A method for the effective use of poorly soluble phosphorus (adding leaf biomass to activate chicken bones to prepare compound phosphate fertilizer) is completed according to the following steps:
  • the poorly soluble phosphorus raw material described in step one is chicken bone
  • a basic step in the adjuvant is a mixture of Ca (OH) 2 with Na 2 CO 3; a mixture of (OH) 2 with Na 2 CO 3 and Ca is the Ca (OH) 2 and the mass of NaCO 3 The ratio is 1:1;
  • the biomass material powder described in step one is prepared according to the following steps:
  • Figure 1 is a scanning electron micrograph of iron phosphate
  • Figure 2 is a scanning electron micrograph of the compound phosphate fertilizer prepared in Example 1;
  • Figure 3 is a scanning electron micrograph of Example 2 24 hours after adding leaf biomass to activate iron phosphate
  • leaf biomass will have a strong etching effect on iron phosphate, forming a shearing effect on the surface and inside of the iron phosphate ore, forming a flake-like structure.
  • Figure 4 is an infrared curve of Example 2 24 hours after adding leaf biomass to activate iron phosphate
  • Figure 5 is a histogram of the comparison of the content of soluble phosphorus and available phosphorus after 24 hours of activation of iron phosphate by adding sawdust biomass in Example 3.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Example 3 the insoluble phosphorus activation method in Example 3 can be used to effectively activate the insoluble phosphorus.
  • the soluble phosphorus content in the composite phosphate fertilizer obtained by adding sawdust biomass to activate iron phosphate is 3179mg/L, which can be The use of phosphorus content is 3145mg/L;
  • the concentration of humus contained in the composite phosphate fertilizer obtained by adding sawdust biomass to activate iron phosphate in Example 3 was 0.25 mg/g.
  • Fig. 6 is a bar graph comparing the soluble phosphorus and available phosphorus content of hydroxyapatite 24 hours after adding leaf biomass to activate hydroxyapatite in Example 4.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Example 4 The concentration of humus contained in the compound phosphate fertilizer prepared by adding leaf biomass to activate hydroxyapatite was 0.30 mg/g.
  • Figure 7 is a histogram of the comparison of soluble phosphorus and available phosphorus content of chicken bones 24 hours after adding leaf biomass to activate chicken bones in Example 5.
  • 1 is soluble phosphorus and 2 is available phosphorus;
  • Example 5 The concentration of humus contained in the compound phosphate fertilizer prepared by adding leaf biomass to activate chicken bones was 0.28 mg/g.
  • Fig. 8 is a histogram of comparison of growth of corn seedlings before and after the application of phosphate fertilizer by adding leaf biomass to activate chicken bones.
  • 1 is a corn seedling
  • 2 is a root
  • 3 is a stem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fertilizers (AREA)

Abstract

一种难溶磷素有效化的方法,它涉及一种磷素有效化的方法。本发明的目的是要解决现有土壤中磷素的利用率低,磷素的回收成本高,难以广泛推广的问题。方法:一、将葡萄糖或生物质材料粉与难溶性磷原料混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到混合物反应液;二、将混合物反应液转移至高温高压水热反应釜中进行水热反应,得到复合磷肥,即完成一种难溶磷素有效化的方法。本发明活化形成的复合磷肥中可溶性磷素浓度为10.0~4000mg/L,有效磷素浓度为5.0~3500mg/L,含有的腐殖质浓度为0.1~1.0mg/g。本发明制备的复合磷肥应用于快速补给土壤有效磷素含量、促进植物生长。

Description

一种难溶磷素有效化的方法 技术领域
本发明涉及一种磷素有效化的方法。
背景技术
磷是作物生长不可缺少的必需营养元素之一,其在土壤中含量和有效性决定最终的农业生产力,并且磷在自然界中几乎不存在气体形式的化合物,属于不可再生资源。充分合理利用现有的磷素资源、保持磷素循环平衡和农业可持续发展具有重要意义。有效磷素是制约陆地生态系统作物生长的主要瓶颈,磷肥的添加提高了粮食初级生产力。在全球范围内,每年大约有180公吨的矿产被开采,而世界上50%的资源只开采于一个国家,即摩洛哥。另一方面,磷酸盐是非常常见的,几乎无所不在的矿物质,在几乎所有的土壤中都有大约50到1500毫克/每千克的磷,但这些磷酸盐中的大多数都不是植物性的,因为它们的溶解度过低,从而使“可溶性磷酸盐”成为一种迅速萎缩的资源。因此,持续提高磷肥在土壤中的溶解度和有效性是解决全球持久的磷肥危机的关键。
特别地,磷素的来源广泛,除了土壤中之外,还存在于一些典型固体废弃物中,如动物骨骼、废水污泥等。因此,在活化土壤赋存态磷素和难溶性磷素的同时加强对固废资源中磷素的回收并有效化,对于磷肥生产和固废资源化利用意义重大。
目前,已进行研究的磷素活化剂主要是酸性有机物质、活体生物类、复杂有机物质、激素类和高比表面积与高表面活性物质等。此外,人们也曾对无机酸进行过研究,但由于其对土壤的毒害作用而没有大量应用。活体生物类的培养条件苛刻,且过量施用存在一定风险,并且后续效用有待评估,而复杂有机物质、激素类和高表面积与高表面活性物质等添加虽然对活化磷素取得了一定的成效,但由于成本及技术等原因,难以广泛推广。
发明内容
本发明的目的是要解决现有土壤中磷素的利用率低,磷素的回收成本高,难以广泛推广的问题,而提供一种难溶磷素有效化的方法。
一种难溶磷素有效化的方法,是按以下步骤完成的:
一、制备混合物反应液:
将葡萄糖或生物质材料粉与难溶性磷原料混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到混合物反应液;
步骤一中所述的葡萄糖、难溶性磷原料、碱性助剂和蒸馏水的质量比为 (3~6):(0.8~2.5):(0.3~1):(20~80);
步骤一中所述的生物质材料粉、难溶性磷原料、碱性助剂和蒸馏水的质量比为(3~6):(0.8~2.5):(0.3~1):(20~80);
步骤一中所述的生物质材料粉是按以下步骤制备的:
首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
二、将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至180℃~200℃,再在压力为0.5MPa~5.5MPa和温度为180℃~200℃的条件下水热反应18h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
本发明的原理及优点:
一、本发明以生物质材料和难溶性磷素为原料,采用新型的水热腐殖化与热化学相结合的方法实现磷素有效化和可持续回收利用;此方法可实现对难溶性磷源表面的有效蚀刻,并重新结晶,形成高活性的可溶性磷酸盐溶液并含有腐殖质,进而实现了磷素的有效化。本发明活化形成的复合磷肥中可溶性磷素浓度为10.0~4000mg/L,有效磷素浓度为5.0~3500mg/L,含有的腐殖质浓度为0.1~1.0mg/g;
二、将生物质材料中的纤维素、半纤维素和木质素在碱性助剂作用和高温高压的反应条件下,进行分解和重新键合形成富里酸和腐殖酸;随着反应的进行,形成的腐殖质对难溶性磷源进行蚀刻,形成一定程度的活化作用,此外含有的腐殖质可以有效抑制所制备的磷肥在土壤固定和赋存作用,有利于客服农业生产中存在的磷素短缺问题;
三、生物质材料(如秸秆、稻壳等)、动物骨骼等作为一种农业废弃物,由于其廉价易得,因此本发明提供了一个可持续回收磷素和固废资源化利用的新途径;
四、本发明将难溶性磷素原料和生物质材料组合模拟地球化学过程活化和回收磷素的,并可以同时增加腐殖质的含量、改善农业生产中磷素问题、固废资源利用率低等问题。本发明活化形成的磷肥含有腐殖质,施加到土壤中不仅可以快速补给土壤有效磷素含量,还可以明显提高土壤肥力,改善典型作物品质;
五、本发明活化方法简便,原料廉价易得,因此适合大面积推广使用;
本发明制备的复合磷肥应用于快速补给土壤有效磷素含量、促进植物生长。
附图说明
图1为磷酸铁的扫描电镜照片;
图2为实施例一制备的复合磷肥的扫描电镜照片;
图3为实施例二添加树叶生物质活化磷酸铁24小时后的扫描电镜照片;
图4为实施例二添加树叶生物质活化磷酸铁24小时后的红外曲线;
图5为实施例三添加木屑生物质活化磷酸铁24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
图6为实施例四添加树叶生物质活化羟基磷灰石24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
图7为实施例五添加树叶生物质活化鸡骨24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
图8为实施例五添加树叶生物质活化鸡骨制备磷肥施加前后的玉米幼苗生长情况对比柱状图,图中1为玉米幼苗,2为根,3为茎。
具体实施方式
具体实施方式一:本实施方式是一种难溶磷素有效化的方法,是按以下步骤完成的:
一、制备混合物反应液:
将葡萄糖或生物质材料粉与难溶性磷原料混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到混合物反应液;
步骤一中所述的葡萄糖、难溶性磷原料、碱性助剂和蒸馏水的质量比为(3~6):(0.8~2.5):(0.3~1):(20~80);
步骤一中所述的生物质材料粉、难溶性磷原料、碱性助剂和蒸馏水的质量比为(3~6):(0.8~2.5):(0.3~1):(20~80);
步骤一中所述的生物质材料粉是按以下步骤制备的:
首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
二、将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至180℃~200℃,再在压力为0.5MPa~5.5MPa和温度为180℃~200℃的条件下水热反应18h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
本实施方式的原理及优点:
一、本实施方式以生物质材料和难溶性磷素为原料,采用新型的水热腐殖化与热化学相结合的方法实现磷素有效化和可持续回收利用;此方法可实现对难溶性磷源表面的有效 蚀刻,并重新结晶,形成高活性的可溶性磷酸盐溶液并含有腐殖质,进而实现了磷素的有效化。本实施方式活化形成的复合磷肥中可溶性磷素浓度为10.0~4000mg/L,有效磷素浓度为5.0~3500mg/L;
二、将生物质材料中的纤维素、半纤维素和木质素在碱性助剂作用和高温高压的反应条件下,进行分解和重新键合形成富里酸和腐殖酸;随着反应的进行,形成的腐殖质对难溶性磷源进行蚀刻,形成一定程度的活化作用,此外含有的腐殖质可以有效抑制所制备的磷肥在土壤固定和赋存作用,有利于客服农业生产中存在的磷素短缺问题;
三、生物质材料(如秸秆、稻壳等)、动物骨骼等作为一种农业废弃物,由于其廉价易得,因此本实施方式提供了一个可持续回收磷素和固废资源化利用的新途径;
四、本实施方式将难溶性磷素原料和生物质材料组合模拟地球化学过程活化和回收磷素的,并可以同时增加腐殖质的含量、改善农业生产中磷素问题、固废资源利用率低等问题。本实施方式活化形成的磷肥含有腐殖质,施加到土壤中不仅可以快速补给土壤有效磷素含量,还可以明显提高土壤肥力,改善典型作物品质;
五、本实施方式活化方法简便,原料廉价易得,因此适合大面积推广使用;
本实施方式制备的复合磷肥应用于快速补给土壤有效磷素含量、促进植物生长。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中使用蒸馏水对生物质材料进行清洗3次~8次,去除生物质材料表面的杂质,然后在温度为60℃~80℃下进行干燥10h~24h。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的生物质材料粉的粒径为100目~200目。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的生物质材料为秸秆、稻壳、锯末和树叶中的一种或其中几种的混合物。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的搅拌速度为1000r/min~1500r/min,搅拌时间为0.5h~2h。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤一中所述的难溶性磷原料为磷酸铁、磷灰石、磷酸铝和动物骨粉中的一种或其中几种的混合物。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤一中所述的 碱性助剂为KOH、NaOH和Ca(OH) 2与Na 2CO 3的混合物中的一种或其中几种的混合物;所述的Ca(OH) 2与Na 2CO 3的混合物中Ca(OH) 2与NaCO 3的质量比为1:1。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中所述的离心速度为4000r/min~10000r/min,离心时间为5min~20min。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤二中将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至190℃~200℃,再在压力为3.2MPa~3.5MPa和温度为190℃~200℃的条件下水热反应24h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤二中将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至190℃~200℃,再在压力为3.5MPa~3.8MPa和温度为190℃~200℃的条件下水热反应24h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。其它步骤与具体实施方式一至九相同。
实施例一:一种难溶磷素有效化的方法(添加葡萄糖活化磷酸铁制备复合磷肥)是按以下步骤完成的:
一、制备混合物反应液:
将1.2g葡萄糖与0.5g难溶性磷原料混合,再加入0.37g碱性助剂和10.8mL蒸馏水,再在搅拌速度为1000r/min下搅拌1h,得到混合物反应液;
步骤一中所述的难溶性磷原料为磷酸铁;
步骤一中所述的碱性助剂为KOH;
二、将混合物反应液转移至50mL高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在压力为3.5MPa和温度为200℃的条件下水热反应24h,得到反应产物;将反应产物在离心速度为6000r/min下离心15min,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
实施例一添加葡萄糖生物质活化磷酸铁制备得到的复合磷肥中,可溶性磷酸盐浓度为2846mg/L,可利用性磷酸盐为2778mg/L,含有的腐殖质浓度为0.18mg/g。
实施例二:一种难溶磷素有效化的方法(添加树叶生物质活化磷酸铁制备复合磷肥) 是按以下步骤完成的:
一、制备混合物反应液:
将1.2g生物质材料粉与0.5g难溶性磷原料混合,再加入0.37g碱性助剂和11.0mL蒸馏水,再在搅拌速度为1000r/min下搅拌2h,得到混合物反应液;
步骤一中所述的难溶性磷原料为磷酸铁;
步骤一中所述的碱性助剂为KOH;
步骤一中所述的生物质材料粉是按以下步骤制备的:
使用蒸馏水对生物质材料进行清洗5次,去除生物质材料表面的杂质,然后在温度为80℃下进行干燥10h;最后把干燥的生物质材料进行粉碎,得到生物质材料粉;所述的生物质材料粉为树叶;
二、将混合物反应液转移至50mL高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在压力为3.2MPa和温度为200℃的条件下水热反应24h,得到反应产物;将反应产物在离心速度为8000r/min下离心10min,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
实施例二添加树叶生物质活化磷酸铁制备得到的复合磷肥中,可溶性磷酸盐浓度为2191mg/L,可利用性磷酸盐为2180mg/L,含有的腐殖质浓度为0.25mg/g。
实施例三:一种难溶磷素有效化的方法(添加木屑生物质活化磷酸铁制备复合磷肥)是按以下步骤完成的:
一、制备混合物反应液:
将1.2g生物质材料粉与0.5g难溶性磷原料混合,再加入0.26g碱性助剂和11.2mL蒸馏水,再在搅拌速度为1000r/min下搅拌1h,得到混合物反应液;
步骤一中所述的难溶性磷原料为磷酸铁;
步骤一中所述的碱性助剂为KOH;
步骤一中所述的生物质材料粉是按以下步骤制备的:
使用蒸馏水对生物质材料进行清洗5次,去除生物质材料表面的杂质,然后在温度为80℃下进行干燥10h;最后把干燥的生物质材料进行粉碎,得到生物质材料粉;所述的生物质材料粉为木屑;
二、将混合物反应液转移至50mL高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在压力为3.8MPa和温度为200℃的条件下水热反应24h,得到反应产物;将反应产物在离心速度为10000r/min下离心8min,去除离心液,得到复合磷肥,即 完成一种难溶磷素有效化的方法。
实施例四:一种难溶磷素有效化的方法(添加树叶生物质活化羟基磷灰石制备复合磷肥)是按以下步骤完成的:
一、制备混合物反应液:
将1.2g生物质材料粉与0.5g难溶性磷原料混合,再加入0.3g碱性助剂和11.0mL蒸馏水,再在搅拌速度为1000r/min下搅拌2h,得到混合物反应液;
步骤一中所述的难溶性磷原料为羟基磷灰石;
步骤一中所述的碱性助剂为KOH;
步骤一中所述的生物质材料粉是按以下步骤制备的:
使用蒸馏水对生物质材料进行清洗5次,去除生物质材料表面的杂质,然后在温度为80℃下进行干燥10h;最后把干燥的生物质材料进行粉碎,得到生物质材料粉;所述的生物质材料粉为树叶;
二、将混合物反应液转移至50mL高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在压力为3.2MPa和温度为200℃的条件下水热反应24h,得到反应产物;将反应产物在离心速度为8000r/min下离心10min,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
实施例五:一种难溶磷素有效化的方法(添加树叶生物质活化鸡骨制备复合磷肥)是按以下步骤完成的:
一、制备混合物反应液:
将1.2g生物质材料粉与0.5g难溶性磷原料混合,再加入0.3g碱性助剂和12.0mL蒸馏水,再在搅拌速度为1000r/min下搅拌1.5h,得到混合物反应液;
步骤一中所述的难溶性磷原料为鸡骨;
步骤一中所述的碱性助剂为Ca(OH) 2与Na 2CO 3的混合物;所述的Ca(OH) 2与Na 2CO 3的混合物中Ca(OH) 2与NaCO 3的质量比为1:1;
步骤一中所述的生物质材料粉是按以下步骤制备的:
使用蒸馏水对生物质材料进行清洗5次,去除生物质材料表面的杂质,然后在温度为80℃下进行干燥10h;最后把干燥的生物质材料进行粉碎,得到生物质材料粉;所述的生物质材料粉为树叶;
二、将混合物反应液转移至50mL高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在压力为3.3MPa和温度为200℃的条件下水热反应28h,得到反应产物; 将反应产物在离心速度为8000r/min下离心10min,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
图1为磷酸铁的扫描电镜照片;
图2为实施例一制备的复合磷肥的扫描电镜照片;
从图1和图2可知,实施例一中添加葡萄糖对磷酸铁产生一定的蚀刻作用,但是由于葡萄糖在碱性高温高压下,重组形成的分子是具有简单结构的小分子物质所以蚀刻作用较小,在磷酸铁矿石表面形成明显的沟壑和褶皱结构。
图3为实施例二添加树叶生物质活化磷酸铁24小时后的扫描电镜照片;
从图3可知,添加树叶生物质会对磷酸铁产生强烈的蚀刻作用,在磷酸铁矿石表面和内部形成了剪切作用,形成薄片状结构。
图4为实施例二添加树叶生物质活化磷酸铁24小时后的红外曲线;
从图4可知,添加树叶生物质活化磷酸铁后的固体产物表面具有丰富的CH2-/CH3-,C=O,C-O,P-O,Fe-P和Fe-O官能团。
图5为实施例三添加木屑生物质活化磷酸铁24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
从图5可知,利用实施例三中的难溶性磷活化方法可实现对难溶性了磷素的有效活化,添加木屑生物质活化磷酸铁后得到的复合磷肥中可溶性磷含量为3179mg/L,可利用磷含量为3145mg/L;
实施例三中添加木屑生物质活化磷酸铁后得到的复合磷肥中含有的腐殖质浓度为0.25mg/g。
图6为实施例四添加树叶生物质活化羟基磷灰石24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
从图6可知,实施例四添加树叶生物质活化羟基磷灰石制备得到的复合磷肥中,可溶性磷酸盐浓度为64mg/L,可利用性磷酸盐为19mg/L;
实施例四添加树叶生物质活化羟基磷灰石制备得到的复合磷肥中含有的腐殖质浓度为0.30mg/g。
图7为实施例五添加树叶生物质活化鸡骨24小时后的可溶性磷和可利用磷含量对比柱状图,图中1为可溶性磷,2为可利用磷;
从图7可知,可溶性磷酸盐浓度为11.2mg/L,可利用性磷酸盐为9.3mg/L;
实施例五添加树叶生物质活化鸡骨制备得到的复合磷肥中含有的腐殖质浓度为0.28 mg/g。
图8为实施例五添加树叶生物质活化鸡骨制备磷肥施加前后的玉米幼苗生长情况对比柱状图,图中1为玉米幼苗,2为根,3为茎。
从图8可知,在添加鸡骨基磷肥的土壤上种植的玉米幼苗生长25天后的幼苗、根和茎的干重得到了显著地提高,分别是为添加复合磷肥对照组的2.5,2.78和2.25倍。

Claims (10)

  1. 一种难溶磷素有效化的方法,其特征在于一种难溶磷素有效化的方法是按以下步骤完成的:
    一、制备混合物反应液:
    将葡萄糖或生物质材料粉与难溶性磷原料混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到混合物反应液;
    步骤一中所述的葡萄糖、难溶性磷原料、碱性助剂和蒸馏水的质量比为(3~6):(0.8~2.5):(0.3~1):(20~80);
    步骤一中所述的生物质材料粉、难溶性磷原料、碱性助剂和蒸馏水的质量比为(3~6):(0.8~2.5):(0.3~1):(20~80);
    步骤一中所述的生物质材料粉是按以下步骤制备的:
    首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
    二、将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至180℃~200℃,再在压力为0.5MPa~5.5MPa和温度为180℃~200℃的条件下水热反应18h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
  2. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中使用蒸馏水对生物质材料进行清洗3次~8次,去除生物质材料表面的杂质,然后在温度为60℃~80℃下进行干燥10h~24h。
  3. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中所述的生物质材料粉的粒径为100目~200目。
  4. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中所述的生物质材料为秸秆、稻壳、锯末和树叶中的一种或其中几种的混合物。
  5. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中所述的搅拌速度为1000r/min~1500r/min,搅拌时间为0.5h~2h。
  6. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中所述的难溶性磷原料为磷酸铁、磷灰石、磷酸铝和动物骨粉中的一种或其中几种的混合物。
  7. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤一中所述的碱性助剂为KOH、NaOH和Ca(OH) 2与Na 2CO 3的混合物中的一种或其中几种的混合物;所述的Ca(OH) 2与Na 2CO 3的混合物中Ca(OH) 2与NaCO 3的质量比为1:1。
  8. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤二中所述的离心速度为4000r/min~10000r/min,离心时间为5min~20min。
  9. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤二中将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至190℃~200℃,再在压力为3.2MPa~3.5MPa和温度为190℃~200℃的条件下水热反应24h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
  10. 根据权利要求1所述的一种难溶磷素有效化的方法,其特征在于步骤二中将混合物反应液转移至高温高压水热反应釜中,再将高温高压水热反应釜升温至190℃~200℃,再在压力为3.5MPa~3.8MPa和温度为190℃~200℃的条件下水热反应24h~28h,得到反应产物;将反应产物进行离心,去除离心液,得到复合磷肥,即完成一种难溶磷素有效化的方法。
PCT/CN2019/128738 2019-09-11 2019-12-26 一种难溶磷素有效化的方法 WO2021047111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910862192.XA CN110511073B (zh) 2019-09-11 2019-09-11 一种难溶磷素有效化的方法
CN201910862192.X 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021047111A1 true WO2021047111A1 (zh) 2021-03-18

Family

ID=68632112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128738 WO2021047111A1 (zh) 2019-09-11 2019-12-26 一种难溶磷素有效化的方法

Country Status (2)

Country Link
CN (1) CN110511073B (zh)
WO (1) WO2021047111A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521537B (zh) * 2019-09-10 2022-03-01 东北农业大学 一种富含腐殖质人工模拟土壤的制备方法
CN110511073B (zh) * 2019-09-11 2021-11-30 东北农业大学 一种难溶磷素有效化的方法
CN112225600A (zh) * 2020-10-15 2021-01-15 中国农业大学 一种新型含糖含磷肥料
CN114431106A (zh) * 2022-02-15 2022-05-06 东北农业大学 一种富含人工腐殖质的酸性水稻育秧土壤的构建方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308322A (ja) * 2006-05-17 2007-11-29 Kawasaki Plant Systems Ltd 廃棄物を用いた肥料の製造方法及び肥料
CN102408281A (zh) * 2011-08-11 2012-04-11 中国农业科学院农业资源与农业区划研究所 一种磷素活化剂及其制备方法和应用
CN104844302A (zh) * 2015-06-02 2015-08-19 中国科学院地质与地球物理研究所 一种生产磷钾硅钙多元素微孔矿物肥(土壤调理剂)的方法
CN105523783A (zh) * 2016-01-22 2016-04-27 南京林业大学 一种秸秆生产高附加值化学品联产缓释肥的方法
CN105692611A (zh) * 2016-03-21 2016-06-22 中国科学院理化技术研究所 一种富含氮和氧的生物质活性炭的制备方法
EP3061726A1 (de) * 2015-02-26 2016-08-31 TerraNova Energy GmbH Verfahren zur abtrennung von phosohor aus biomasse und vorrichtung
CN107021483A (zh) * 2017-05-31 2017-08-08 宁夏大学 一种基于生物质水热合成片状多孔碳的方法
CN107916108A (zh) * 2017-10-20 2018-04-17 福建省农业科学院农业生态研究所 一种土壤改良剂、其制备方法及应用
CN110511073A (zh) * 2019-09-11 2019-11-29 东北农业大学 一种难溶磷素有效化的方法
WO2020005760A1 (en) * 2018-06-24 2020-01-02 James Lee Ozonized biochar phosphorus sustainability and sand soilization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431382A (ja) * 1990-05-24 1992-02-03 Koei Kagaku Kogyo Kk 土壌に固定化されたリン酸化合物の活用剤
JP5160765B2 (ja) * 2006-10-25 2013-03-13 村樫石灰工業株式会社 新規りん酸加里複合肥料の製造方法
CN101205520A (zh) * 2006-12-18 2008-06-25 中国科学院东北地理与农业生态研究所 一种固定态磷素活化剂
CN101891530B (zh) * 2010-05-07 2014-09-24 华南农业大学 一种活化钙镁磷肥及其制备方法
CN104692347A (zh) * 2015-01-30 2015-06-10 福建永宸生物科技开发有限公司 一种具有还原性功能的碳羟基磷灰石的合成方法
CN104690068B (zh) * 2015-02-11 2017-01-04 中原工学院 一种利用生物质制备水热焦的方法
CN110143837A (zh) * 2019-07-02 2019-08-20 舒艳婷 一种基于生物质的有机肥制备工艺及施用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308322A (ja) * 2006-05-17 2007-11-29 Kawasaki Plant Systems Ltd 廃棄物を用いた肥料の製造方法及び肥料
CN102408281A (zh) * 2011-08-11 2012-04-11 中国农业科学院农业资源与农业区划研究所 一种磷素活化剂及其制备方法和应用
EP3061726A1 (de) * 2015-02-26 2016-08-31 TerraNova Energy GmbH Verfahren zur abtrennung von phosohor aus biomasse und vorrichtung
CN104844302A (zh) * 2015-06-02 2015-08-19 中国科学院地质与地球物理研究所 一种生产磷钾硅钙多元素微孔矿物肥(土壤调理剂)的方法
CN105523783A (zh) * 2016-01-22 2016-04-27 南京林业大学 一种秸秆生产高附加值化学品联产缓释肥的方法
CN105692611A (zh) * 2016-03-21 2016-06-22 中国科学院理化技术研究所 一种富含氮和氧的生物质活性炭的制备方法
CN107021483A (zh) * 2017-05-31 2017-08-08 宁夏大学 一种基于生物质水热合成片状多孔碳的方法
CN107916108A (zh) * 2017-10-20 2018-04-17 福建省农业科学院农业生态研究所 一种土壤改良剂、其制备方法及应用
WO2020005760A1 (en) * 2018-06-24 2020-01-02 James Lee Ozonized biochar phosphorus sustainability and sand soilization
CN110511073A (zh) * 2019-09-11 2019-11-29 东北农业大学 一种难溶磷素有效化的方法

Also Published As

Publication number Publication date
CN110511073B (zh) 2021-11-30
CN110511073A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021047111A1 (zh) 一种难溶磷素有效化的方法
Zhang et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique
WO2021051704A1 (zh) 一种污泥资源化处置方法
CN103467166B (zh) 中药渣发酵复合肥料及其制备方法
CN101074179B (zh) 人参专用复混肥料
CN102391878B (zh) 一种利用钾长石与有机废弃物生产长效土壤调理剂的方法
CN104261981A (zh) 海藻有机肥料的制备方法及用该方法制成的有机肥料
CN102851032B (zh) 一种利用味精生产的废弃液制备碱土改良剂及其制备方法
CN105399493A (zh) 一种桃树专用的生物酶肥料及其制备方法
CN103641578A (zh) 一种新型农用肥料及其制备方法
CN104341177A (zh) 一种利用甘蔗糖厂滤泥制成肥料的方法
CN104341217A (zh) 一类新型缓控释肥及其生产方法
CN102701828B (zh) 一种螯合微量元素有机肥及其生产方法
WO2021047112A1 (zh) 一种难溶磷素有效化的方法
CN103755497A (zh) 一种添加土壤活化剂的复合肥及其制备方法
CN104803750A (zh) 一种废弃物利用的炭基缓释肥及其制备方法
CN105819963A (zh) 以高硅铁尾矿为原料生产的盐碱土修复新肥
CN102731174B (zh) 黄腐植酸肥料及其制备方法
CN104355806A (zh) 剑麻废渣生产甘蔗复合肥的方法
CN108558540A (zh) 一种果树专用缓释肥及其制备方法
CN105130692A (zh) 一种生化黄腐酸肥料及其制备工艺
CN103896660B (zh) 一种利用糖厂、酒精厂、味精厂、酵母厂废弃物的腐植酸型流体复混肥组合物
CN102391022B (zh) 一种用糠醛渣与生物灰生产黄腐酸钾和含钾及腐植酸的肥料的方法
CN112094653A (zh) 一种苏达盐碱地的改良及生化黄腐酸原料的生成方法
CN115611683B (zh) 一种利用农林生物质固废制备含超矿源腐植酸水溶肥料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945378

Country of ref document: EP

Kind code of ref document: A1