WO2021046972A1 - 一种激光器 - Google Patents

一种激光器 Download PDF

Info

Publication number
WO2021046972A1
WO2021046972A1 PCT/CN2019/112286 CN2019112286W WO2021046972A1 WO 2021046972 A1 WO2021046972 A1 WO 2021046972A1 CN 2019112286 W CN2019112286 W CN 2019112286W WO 2021046972 A1 WO2021046972 A1 WO 2021046972A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
collimating lens
cos
laser
shell wall
Prior art date
Application number
PCT/CN2019/112286
Other languages
English (en)
French (fr)
Inventor
周少丰
刘鹏
李日豪
Original Assignee
深圳市星汉激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星汉激光科技股份有限公司 filed Critical 深圳市星汉激光科技股份有限公司
Publication of WO2021046972A1 publication Critical patent/WO2021046972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the embodiment of the present invention relates to the field of optical technology, and in particular to a laser.
  • the semiconductor laser chip is the core component of the semiconductor laser, which plays a decisive role in the quality of the semiconductor laser.
  • the power of a single laser chip is getting higher and higher, and the energy of the original light reflected by each interface in the optical path should not be ignored.
  • the reflector used in high-power fiber-coupled semiconductor lasers usually has a reflectivity of 99%, and there will always be 1% of the light passing through the reflector and hitting the metal shell wall, because the metal shell wall has a high reflectivity and is flat. On the shell wall, most of the light beam that reaches the metal shell wall through the reflector will be reflected back to the inside of the COS chip in the original way, causing chip damage or death.
  • the purpose of the embodiments of the present invention is to provide a laser capable of avoiding the death of the chip by reflecting the emitted light back to the COS array.
  • an embodiment of the present invention provides a laser, which includes:
  • COS array used to emit monochromatic laser
  • the collimating lens array is arranged in the light emitting direction of the COS array;
  • the mirror array is arranged at a predetermined angle in the light-emitting direction of the collimating lens array
  • the housing includes a non-planar shell wall arranged on the side of the mirror array away from the collimating lens array, and at the intersection of the non-planar shell wall and the light emitted by the mirror array, The non-planar shell wall and the optical axis are arranged at a non-ninety degree.
  • the COS array includes at least one COS element and at least one heat sink, the at least one COS element is used to emit at least one monochromatic laser, and one of the COS elements is correspondingly mounted on one of the heat sinks. on.
  • the collimating lens array includes a fast-axis collimating lens array and a slow-axis collimating lens array, the fast-axis collimating lens array is arranged in the light-emitting direction of the COS array, and the slow-axis collimating lens array The collimating lens array is arranged in the light emitting direction of the fast axis collimating lens array.
  • the fast axis collimating lens array includes at least one fast axis collimating lens
  • the slow axis collimating lens array includes at least one slow axis collimating lens
  • the COS element the fast axis collimating lens
  • the number of straight lenses and the slow axis collimating lenses are the same.
  • the reflector array includes at least one reflector, and one of the reflectors is correspondingly arranged in a light exit direction of the slow axis collimating lens.
  • the housing further includes a stepped structure shell wall for placing the COS array, the collimating lens array, and the mirror array, and the stepped structure shell wall is in contact with the non-planar
  • the shell walls are integrally connected, the shell wall of the stepped surface structure includes at least one stepped surface, and each stepped surface is used to place a group of the COS element, the fast axis collimating lens, and the slow axis on the same optical axis. Axis collimating lens and the reflecting mirror.
  • the non-planar shell wall has a circular structure
  • the non-planar shell wall includes a sub-shell wall integrally connected end to end, and a sub-shell wall is correspondingly integrally connected with a step surface
  • each One of the sub-shell walls includes at least one semicircular structure protruding toward the corresponding reflector.
  • the non-planar shell wall has a zigzag structure
  • the non-planar shell wall includes a sub-shell wall integrally connected end to end, and one sub-shell wall is correspondingly integrally connected with a step surface, each The sub-shell wall includes at least one sawtooth structure protruding toward the corresponding reflector.
  • the laser further includes a focusing lens, and the focusing lens is arranged in the light exit direction of the mirror array.
  • the laser further includes an optical fiber, and the end face of the optical fiber is arranged at the focal point of the light emitting direction of the focusing lens.
  • the embodiment of the present invention provides a laser, which includes a COS array, a collimating lens array, a mirror array, and a housing
  • a laser which includes a COS array, a collimating lens array, a mirror array, and a housing
  • the monochromatic laser emitted from the COS array exits through the collimating lens array and the mirror array
  • part of the light beam is transmitted through the mirror array to the non-planar wall of the shell.
  • the non-planar shell wall and the optical axis are arranged at a non-ninety degree, and the transmitted light emitted by the mirror array will not be reflected along the original light path to avoid damage to the COS array by the retroreflective light Chip.
  • FIG. 1 is a schematic diagram of the overall structure of a laser provided by an embodiment of the present invention
  • Fig. 2 is a diagram of the optical path of a beam emitted by a COS element in the laser shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the overall structure of another laser provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the overall structure of a laser provided by an embodiment of the present invention.
  • the laser includes: a COS array 10, a collimator lens array 20, a mirror array 30, and a housing 40.
  • the COS array 10 emits at least A monochromatic laser beam exits after passing through the collimating lens array 20 and the reflecting mirror array 30,
  • the casing 40 reflects the upper part of the laser beams. beam.
  • the majority of the laser beams account for about 99% of all laser beams incident on the mirror array 30, and the small part of the laser beams account for about 99% of all laser beams incident on the mirror array 30 One.
  • the laser middle housing 40 provided by the embodiment of the present invention can avoid returning the small part of the laser beam in the original path.
  • the COS array 10 is used to emit monochromatic laser light.
  • the COS array 10 includes at least one COS element 11 and at least one heat sink 12, the at least one COS element 10 is used to emit at least one monochromatic laser, and a COS element 10 is correspondingly mounted on a heat sink 12 on.
  • the COS array 10 includes five COS elements 11 and corresponding five heat sinks 12, and each COS element 11 is mounted on a corresponding heat sink 12.
  • Each COS element 11 is equipped with a laser chip that can emit monochromatic laser light.
  • the five COS elements 11 can emit laser light of the same wavelength, or can emit laser light of different wavelengths, and can also emit laser light of the same wavelength.
  • the type of laser chip can be selected according to actual needs to control the wavelength of the emitted laser.
  • the collimating lens array 20 is arranged in the light emitting direction of the COS array 10 and coincides with the optical axis of the COS array 10.
  • the collimating lens array 20 includes a fast-axis collimating lens array 21 and a slow-axis collimating lens array 22.
  • the fast-axis collimating lens array 21 is arranged in the light emitting direction of the COS array 10, and the slow axis is collimated.
  • the straight lens array 22 is arranged in the light emitting direction of the fast-axis collimating lens array 21.
  • the fast axis collimating lens array 21 includes at least one fast axis collimating lens 210
  • the slow axis collimating lens array 22 includes at least one slow axis collimating lens 220, the COS element 11, the fast axis collimating lens
  • the number of the lens 210 and the slow axis collimating lens 220 are the same. Both the fast axis collimating lens and the slow axis collimating lens are cylindrical lenses.
  • the fast-axis collimating lens array 21 includes five fast-axis collimating lenses 210
  • the slow-axis collimating lens array 22 includes five slow-axis collimating lenses 220.
  • the number of the axis collimating lens 210, the slow axis collimating lens 220, and the COS element 11 is the same.
  • the light emitted by the COS element 11 is collimated in the fast axis direction through the fast axis collimating lens 210 on the same optical path.
  • the reflector array 30 is arranged at a predetermined angle in the light-emitting direction of the collimating lens array 20.
  • the reflector array 30 includes at least one reflector 31, and one of the reflectors 31 is correspondingly arranged in the light emitting direction of a slow axis collimating lens.
  • the number of the reflecting mirrors 31 is the same as the number of the COS elements 11.
  • the preset angle can be set according to the light exit direction. It is understandable that for the setting of the preset angle set by the at least one reflector 31, it is necessary to ensure the light exit direction of the light beam reflected by the at least one reflector 31 the same.
  • the mirror array 30 includes five mirrors 31. After the light beam emitted by the slow-axis collimating lens 220 passes through the mirror 31 on the same optical path, most of the light is reflected and emitted. A small part of the light is transmitted and emitted, and the transmitted light hits the housing 40.
  • the housing 40 includes a non-planar housing wall 41 disposed on the side of the mirror array 30 away from the collimating lens array 20, and the non-planar housing wall 41 and the mirror array 30 are arranged between the non-planar housing wall 41 and the mirror array 30. At the intersection of the emitted light, the non-planar shell wall 41 and the optical axis are arranged at a non-ninety degree. It should be noted that the housing 40 is usually made of metal.
  • the optical axis refers to the optical axis of the light beam emitted by the COS array.
  • the housing 40 also includes a stepped structure shell wall 42 for placing the COS array 10, the collimating lens array 20, and the mirror array 30, and the stepped structure shell wall 42 is in contact with the non-planar
  • the shell wall 41 is integrally connected, and the stepped surface structure shell wall 42 includes at least one stepped surface, and each stepped surface is used to place a set of the COS element 11 and the fast-axis collimating lens 210 placed on the same optical axis. , The slow axis collimating lens 220 and the reflecting mirror 31.
  • the dotted line is the separation line of each stepped surface, and the two sides of each dotted line are two stepped surfaces with different heights. It should be noted that, in order that all the light beams reflected by the mirror 31 can be emitted to the focusing lens 50 without being blocked, the height of the step surface should be gradually reduced from left to right in FIG. 1 to avoid blocking.
  • the non-planar shell wall 41 has a circular structure, and the non-planar shell wall 41 includes a sub-shell wall integrally connected end to end, one sub-shell wall corresponding to a The step surfaces are integrally connected, and each of the sub-shell walls includes at least one semicircular structure protruding toward the corresponding reflector 31.
  • FIG. 2 is a diagram of the light path of the beam emitted by a COS element in the laser shown in FIG. 1. It is not difficult to see that the beam S emitted after being transmitted by the reflector 31 hits the circle of the non-planar shell wall 41 After the shape structure, the reflected light beam P is reflected to different directions, and because at the intersection of the non-planar shell wall 41 and the light emitted by the reflector 31, the non-planar shell wall 41 and the COS element 11 The optical axis is set at a non-ninety degree, therefore, all light beams reflected by the non-planar shell wall 41 will not return to the COS element of the original optical path.
  • each group of the COS element 11, the fast-axis collimating lens 210, the slow-axis collimating lens 220, and the mirror 31 on the same optical path/optical axis are arranged on stepped surfaces of different heights, The light beam reflected by the flat shell wall 41 will not enter the COS element 11 of other optical paths, and damage the laser chip.
  • An embodiment of the present invention provides a laser.
  • the laser includes a COS array 10, a collimating lens array 20, a mirror array 30, and a housing 40.
  • the monochromatic laser light emitted from the COS array 10 passes through the collimating lens array 20 and reflects When the mirror array 30 exits, part of the light beam is transmitted through the mirror array 30 to the non-planar shell wall 41 of the housing 40, due to the intersection of the non-planar shell wall 41 of the housing 40 and the light emitted by the mirror array 30
  • the non-planar shell wall 41 is arranged at a non-ninety degree with the optical axis, and the transmitted light emitted by the mirror array 30 will not be reflected along the original exit optical path, so as to prevent the retroreflected light from damaging the chips in the COS array.
  • the laser further includes a focusing lens 50 and an optical fiber 60.
  • the focusing lens 50 is arranged in the light exit direction of the reflector array 30 and is used to aggregate and emit the parallel light reflected and emitted by the reflector array 30.
  • the end face of the optical fiber 60 is arranged at the focal point of the light emitting direction of the focusing lens 50.
  • FIG. 3 is a schematic diagram of the overall structure of another laser provided by an embodiment of the present invention.
  • the shell wall 41 is a zigzag structure.
  • the non-planar shell wall 41 includes sub-shell walls that are integrally connected end to end.
  • One of the sub-shell walls is correspondingly integrally connected with a step surface, and each of the sub-shell walls includes at least A sawtooth structure protruding toward the corresponding mirror 31. Because of the intersection of the non-planar shell wall 41 and the light emitted by the mirror array 30 in FIG.
  • the non-planar shell wall 41 is also arranged at a non-ninety degree with the optical axis, and because it is provided with a stepped surface, In the same way, it can be known that the transmitted light emitted by the mirror array 30 will not be reflected along the original exit light path, so as to prevent the retroreflected light from damaging the chips in the COS array.
  • the non-planar shell wall 41 uses a periodic structure as an example, that is, the non-planar shell wall 41 of the laser shown in FIG. 1 is a periodic circle.
  • the non-planar shell wall 41 of the laser shown in FIG. 2 has a periodic sawtooth structure.
  • the non-planar shell wall 41 may also be a non-periodic structure, that is, each sub-shell wall may be a shell wall structure with different shapes and sizes, for example, adjacent sub-shell walls may also be One is a circular structure, and the other is a zigzag structure. Specifically, it can be set according to actual needs, and does not need to be limited by the embodiments of the present invention and the drawings.
  • An embodiment of the present invention provides a laser.
  • the laser includes a COS array, a collimating lens array, a mirror array, and a housing.
  • the monochromatic laser emitted from the COS array passes through the collimating lens array and the mirror array, part of the laser
  • the light beam is transmitted through the mirror array to the non-planar wall of the housing. Due to the intersection of the non-planar wall of the housing and the light emitted by the mirror array, the non-planar wall and the optical axis are non-uniform. Ten degree setting, the transmitted light from the mirror array will not be reflected along the original exit light path, avoiding the retroreflected light from damaging the chips in the COS array.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate. Units can be located in one place or distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种激光器,该激光器包括COS阵列(10)、准直透镜阵列(20)、反射镜阵列(30)和壳体(40),从COS阵列(10)出射的单色激光经过准直透镜阵列(20)和反射镜阵列(30)出射时,部分光束透过反射镜阵列(30)透射到壳体(40)的非平面壳壁(41)上,由于壳体(40)的非平面壳壁(41)与反射镜阵列(30)所出射光的相交处,非平面壳壁(41)与光轴呈非九十度设置,反射镜阵列(30)出射的透射光不会沿着原出射光路反射,避免回射光损伤COS阵列中的芯片。

Description

一种激光器 技术领域
本发明实施例涉及光学技术领域,特别涉及一种激光器。
背景技术
半导体激光芯片是半导体激光器的核心元件,对半导体激光器的好坏起着决定性的作用。随着半导体激光芯片的发展,单激光芯片的功率越来越高,光路中各界面原路反射光的能量已不宜被忽视。
目前高功率光纤耦合半导体激光器中采用的反射镜通常其反射率在99%,总会存在1%的光透过反射镜打到金属壳壁上,由于金属壳壁的反射率较高且为平面壳壁,透过反射镜达到金属壳壁的光束大部分会按照原路反射回到COS芯片内部,造成芯片损伤或死亡。
发明内容
针对现有技术的上述缺陷,本发明实施例的目的是提供一种能够避免将出射光反射回COS阵列造成芯片死亡的激光器。
本发明实施例的目的是通过如下技术方案实现的:
为解决上述技术问题,本发明实施例中提供了一种激光器,包括:
COS阵列,用于出射单色激光;
准直透镜阵列,设置在所述COS阵列的出光方向上;
反射镜阵列,呈预设角度设置在所述准直透镜阵列的出光方向上;
壳体,其包括一设于所述反射镜阵列远离所述准直透镜阵列的一侧的非平面壳壁,且在所述非平面壳壁与所述反射镜阵列所出射光的相交处,所述非平面壳壁与光轴呈非九十度设置。
在一些实施例中,所述COS阵列包括至少一个COS元件和至少一个热沉,所述至少一个COS元件用于出射至少一种单色激光,一所述COS元件相应安装于一所述热沉上。
在一些实施例中,所述准直透镜阵列包括快轴准直透镜阵列和慢轴 准直透镜阵列,所述快轴准直透镜阵列设置在所述COS阵列的出光方向上,所述慢轴准直透镜阵列设置在所述快轴准直透镜阵列的出光方向上。
在一些实施例中,所述快轴准直透镜阵列包括至少一个快轴准直透镜,所述慢轴准直透镜阵列包括至少一个慢轴准直透镜,所述COS元件、所述快轴准直透镜和所述慢轴准直透镜的数量相同。
在一些实施例中,所述反射镜阵列包含至少一个反射镜,一所述反射镜相应设于一所述慢轴准直透镜的出光方向上。
在一些实施例中,所述壳体还包括一用于放置所述COS阵列、所述准直透镜阵列和所述反射镜阵列的阶梯结构壳壁,所述阶梯结构壳壁与所述非平面壳壁一体连接,所述阶梯面结构壳壁包括至少一个台阶面,每一台阶面用于放置一组置于同一光轴上的所述COS元件、所述快轴准直透镜、所述慢轴准直透镜和所述反射镜。
在一些实施例中,所述非平面壳壁为圆形结构,所述非平面壳壁包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜凸起的半圆结构。
在一些实施例中,所述非平面壳壁为锯齿结构,所述非平面壳壁包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜凸起的锯齿结构。
在一些实施例中,所述激光器还包括聚焦透镜,所述聚焦透镜设置在所述反射镜阵列的出光方向上。
在一些实施例中,所述激光器还包括光纤,所述光纤的端面设置在所述聚焦透镜的出光方向的焦点上。
与现有技术相比,本发明的有益效果是:区别于现有技术的情况,本发明实施例中提供了一种激光器,该激光器包括COS阵列、准直透镜阵列、反射镜阵列和壳体,从COS阵列出射的单色激光经过准直透镜阵列和反射镜阵列出射时,部分光束透过反射镜阵列透射到壳体的非平面 壳壁上,由于壳体的非平面壳壁与所述反射镜阵列所出射光的相交处,所述非平面壳壁与光轴呈非九十度设置,反射镜阵列出射的透射光不会沿着原出射光路反射,避免回射光损伤COS阵列中的芯片。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种激光器的整体结构示意图;
图2是图1所示激光器中一COS元件出射光束的光路图;
图3是本发明实施例提供的另一种激光器的整体结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。为了便于连接结构限定,本发明以激光器的出光方向为参考进行部件的位置限定,例如,准直透镜阵列20在COS阵列10的出光方向上/“前”方。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
具体地,下面结合附图,对本发明实施例作进一步阐述。
请参见图1,为本发明实施例提供的一种激光器的整体结构示意图,该激光器包括:COS阵列10、准直透镜阵列20、反射镜阵列30和壳体40,所述COS阵列10发出至少一道单色激光经所述准直透镜阵列20和所述反射镜阵列30后出射,
其中,大部分激光光束通过所述反射镜阵列30反射出射,少部分激光光束通过所述反射镜阵列30透射出射并打到所述壳体40上,所述壳体40反射所述上部分激光光束。所述大部分激光光束占所有入射到所述反射镜阵列30的激光光束约百分之九十九,所述少部分激光光束占所有入射到所述反射镜阵列30的激光光束约百分之一。本发明实施例提供的激光器中壳体40能够避免将所述少部分激光光束按原路返回。
所述COS阵列10用于出射单色激光。所述COS阵列10包括至少一个COS元件11和至少一个热沉12,所述至少一个COS元件10用于出射至少一种单色激光,一所述COS元件10相应安装于一所述热沉12上。
在图1所示实施例中,所述COS阵列10包括5个COS元件11和相应的5个热沉12,每一COS元件11安装在相应的热沉12上。每一COS元件11内都设有激光芯片,能够出射单色激光,5个COS元件11可以出射相同波长的激光,也可以出射不同波长的激光,还可以部分出射相同波长的激光,具体地,可根据实际需要选择激光芯片的型号以控制出射激光的波长。
所述准直透镜阵列20设置在所述COS阵列10的出光方向上且与所 述COS阵列10光轴重合。所述准直透镜阵列20包括快轴准直透镜阵列21和慢轴准直透镜阵列22,所述快轴准直透镜阵列21设置在所述COS阵列10的出光方向上,所述慢轴准直透镜阵列22设置在所述快轴准直透镜阵列21的出光方向上。所述快轴准直透镜阵列21包括至少一个快轴准直透镜210,所述慢轴准直透镜阵列22包括至少一个慢轴准直透镜220,所述COS元件11、所述快轴准直透镜210和所述慢轴准直透镜220的数量相同。所述快轴准直透镜和所述慢轴准直透镜皆为柱透镜。
在图1所示实施例中,所述快轴准直透镜阵列21包括5个快轴准直透镜210,所述慢轴准直透镜阵列22包括5个慢轴准直透镜220,所述快轴准直透镜210、所述慢轴准直透镜220和所述COS元件11的数量相同,一所述COS元件11出射的光经过同一光路上的快轴准直透镜210在快轴方向上准直,并经过同一光路上的慢轴准直透镜220在慢轴方向上准直后出射为平行光束。
所述反射镜阵列30呈预设角度设置在所述准直透镜阵列20的出光方向上。所述反射镜阵列30包含至少一个反射镜31,一所述反射镜31相应设于一所述慢轴准直透镜的出光方向上。所述反射镜31的数量与所述COS元件11的数量相同。所述预设角度可根据出光方向进行设定,可以理解的是,对于所述至少一个反射镜31设置的预设角度的设置,需要保证使得所述至少一个反射镜31反射出来的光束出光方向相同。
在图1所示实施例中,所述反射镜阵列30包括5个反射镜31,一所述慢轴准直透镜220出射的光束经同一光路上的反射镜31后,大部分光反射出射,少部分光透射出射,透射出射的光打到壳体40上。
所述壳体40包括一设于所述反射镜阵列30远离所述准直透镜阵列20的一侧的非平面壳壁41,且在所述非平面壳壁41与所述反射镜阵列30所出射光的相交处,所述非平面壳壁41与光轴呈非九十度设置。需要说明的是,所述壳体40通常为金属材质。所述光轴指的是所述COS阵列所出射光束的光轴。
所述壳体40还包括一用于放置所述COS阵列10、所述准直透镜阵列20和所述反射镜阵列30的阶梯结构壳壁42,所述阶梯结构壳壁42 与所述非平面壳壁41一体连接,所述阶梯面结构壳壁42包括至少一个台阶面,每一台阶面用于放置一组置于同一光轴上的所述COS元件11、所述快轴准直透镜210、所述慢轴准直透镜220和所述反射镜31。
如图1所示实施例中,虚线即为每一所述台阶面的分隔线,每一虚线两侧为两个高度不同的台阶面。需要说明的是,为使所有反射镜31反射的光束皆能够不被遮挡出射到聚焦透镜50上,所述台阶面从图1中从左到右高度应逐渐降低,避免遮挡。
进一步地,如图1所示实施例中,所述非平面壳壁41为圆形结构,所述非平面壳壁41包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜31凸起的半圆结构。
请一并参见图2,为图1所示激光器中一COS元件出射光束的光路图,不难看出,经所述反射镜31透射后出射的光束S打到所述非平面壳壁41的圆形结构上后,反射光束P反射至不同方向,且由于在所述非平面壳壁41与所述反射镜31所出射光的相交处,所述非平面壳壁41与所述COS元件11的光轴呈非九十度设置,因此,所有经所述非平面壳壁41反射的光束皆不会返回到原来光路的COS元件中。且由于每一组同一光路/光轴上的COS元件11、快轴准直透镜210、慢轴准直透镜220和反射镜31设置在不同高度的台阶面上,因此,所述经所述非平面壳壁41反射的光束也不会进入其他光路的COS元件11中,损坏激光芯片。
本发明实施例中提供了一种激光器,该激光器包括COS阵列10、准直透镜阵列20、反射镜阵列30和壳体40,从COS阵列10出射的单色激光经过准直透镜阵列20和反射镜阵列30出射时,部分光束透过反射镜阵列30透射到壳体40的非平面壳壁41上,由于壳体40的非平面壳壁41与所述反射镜阵列30所出射光的相交处,所述非平面壳壁41与光轴呈非九十度设置,反射镜阵列30出射的透射光不会沿着原出射光路反射,避免回射光损伤COS阵列中的芯片。
在一些实施例中,请继续参见图1,所述激光器还包括聚焦透镜50 和光纤60。所述聚焦透镜50设置在所述反射镜阵列30的出光方向上,用于将所述反射镜阵列30反射出射的平行光聚合出射。所述光纤60的端面设置在所述聚焦透镜50的出光方向的焦点上。
本发明实施例还提供了一种替换方案,请参见图3,为本发明实施例提供的另一种激光器的整体结构示意图,该激光器与图1所示激光器的不同点在于,所述非平面壳壁41为锯齿结构,所述非平面壳壁41包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜31凸起的锯齿结构。由于图3中的非平面壳壁41与所述反射镜阵列30所出射光的相交处,所述非平面壳壁41同样与光轴呈非九十度设置,且由于设置有台阶面,因此,同理可知,反射镜阵列30出射的透射光同样不会沿着原出射光路反射,避免回射光损伤COS阵列中的芯片。
在本发明实施例中,如图1和图2所示的激光器中,所述非平面壳壁41以周期结构为例,也即是,图1所示激光器的非平面壳壁41为周期圆形结构,图2所示激光器的非平面壳壁41为周期锯齿结构。需要说明的是,所述非平面壳壁41也可以是非周期结构,也即是每一所述子壳壁可以为形状、大小不同的壳壁结构,例如,相邻所述子壳壁还可以是一个为圆形结构,一个为锯齿结构,具体地,可根据实际需要进行设置,不需要拘泥于本发明实施例及附图的限定。
本发明实施例中提供了一种激光器,该激光器包括COS阵列、准直透镜阵列、反射镜阵列和壳体,从COS阵列出射的单色激光经过准直透镜阵列和反射镜阵列出射时,部分光束透过反射镜阵列透射到壳体的非平面壳壁上,由于壳体的非平面壳壁与所述反射镜阵列所出射光的相交处,所述非平面壳壁与光轴呈非九十度设置,反射镜阵列出射的透射光不会沿着原出射光路反射,避免回射光损伤COS阵列中的芯片。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种激光器,其特征在于,包括:
    COS阵列,用于出射单色激光;
    准直透镜阵列,设置在所述COS阵列的出光方向上;
    反射镜阵列,呈预设角度设置在所述准直透镜阵列的出光方向上;
    壳体,其包括一设于所述反射镜阵列远离所述准直透镜阵列的一侧的非平面壳壁,且在所述非平面壳壁与所述反射镜阵列所出射光的相交处,所述非平面壳壁与光轴呈非九十度设置。
  2. 根据权利要求1所述的激光器,其特征在于,
    所述COS阵列包括至少一个COS元件和至少一个热沉,所述至少一个COS元件用于出射至少一种单色激光,一所述COS元件相应安装于一所述热沉上。
  3. 根据权利要求2所述的激光器,其特征在于,
    所述准直透镜阵列包括快轴准直透镜阵列和慢轴准直透镜阵列,所述快轴准直透镜阵列设置在所述COS阵列的出光方向上,所述慢轴准直透镜阵列设置在所述快轴准直透镜阵列的出光方向上。
  4. 根据权利要求3所述的激光器,其特征在于,
    所述快轴准直透镜阵列包括至少一个快轴准直透镜,所述慢轴准直透镜阵列包括至少一个慢轴准直透镜,所述COS元件、所述快轴准直透镜和所述慢轴准直透镜的数量相同。
  5. 根据权利要求3所述的激光器,其特征在于,
    所述反射镜阵列包含至少一个反射镜,一所述反射镜相应设于一所述慢轴准直透镜的出光方向上。
  6. 根据权利要求5所述的激光器,其特征在于,
    所述壳体还包括一用于放置所述COS阵列、所述准直透镜阵列和所述反射镜阵列的阶梯结构壳壁,所述阶梯结构壳壁与所述非平面壳壁一体连接,所述阶梯面结构壳壁包括至少一个台阶面,每一台阶面用于放置一组置于同一光轴上的所述COS元件、所述快轴准直透镜、所述慢轴 准直透镜和所述反射镜。
  7. 根据权利要求6所述的激光器,其特征在于,
    所述非平面壳壁为圆形结构,所述非平面壳壁包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜凸起的半圆结构。
  8. 根据权利要求6所述的激光器,其特征在于,
    所述非平面壳壁为锯齿结构,所述非平面壳壁包含首尾一体相接的子壳壁,一所述子壳壁相应与一所述台阶面一体连接,每一所述子壳壁为包含至少一朝向相应的所述反射镜凸起的锯齿结构。
  9. 根据权利要求1-8任一项所述的激光器,其特征在于,
    所述激光器还包括聚焦透镜,所述聚焦透镜设置在所述反射镜阵列的出光方向上。
  10. 根据权利要求9所述的激光器,其特征在于,
    所述激光器还包括光纤,所述光纤的端面设置在所述聚焦透镜的出光方向的焦点上。
PCT/CN2019/112286 2019-09-12 2019-10-21 一种激光器 WO2021046972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910866928.0 2019-09-12
CN201910866928.0A CN110556709A (zh) 2019-09-12 2019-09-12 一种激光器

Publications (1)

Publication Number Publication Date
WO2021046972A1 true WO2021046972A1 (zh) 2021-03-18

Family

ID=68740126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112286 WO2021046972A1 (zh) 2019-09-12 2019-10-21 一种激光器

Country Status (2)

Country Link
CN (1) CN110556709A (zh)
WO (1) WO2021046972A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111786254B (zh) * 2020-07-15 2021-08-31 中南大学 基于光斑检测的阵列半导体激光器反射镜耦合装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098028A1 (en) * 2005-09-28 2007-05-03 Point Source Limited Laser systems
CN101165542A (zh) * 2006-10-19 2008-04-23 三星电子株式会社 回射式光管、照明器件及投影显示器
CN104020569A (zh) * 2013-02-28 2014-09-03 住友电气工业株式会社 光学组件及其组装方法以及配备有光学组件的光学模块
CN105119138A (zh) * 2015-09-21 2015-12-02 无锡亮源激光技术有限公司 一种大功率光纤耦合激光器
CN106099636A (zh) * 2014-12-17 2016-11-09 恩耐公司 高功率二极管激光器封装中的光学损耗管理
CN208752316U (zh) * 2018-10-11 2019-04-16 上海高意激光技术有限公司 半导体激光器空间合束装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098028A1 (en) * 2005-09-28 2007-05-03 Point Source Limited Laser systems
CN101165542A (zh) * 2006-10-19 2008-04-23 三星电子株式会社 回射式光管、照明器件及投影显示器
CN104020569A (zh) * 2013-02-28 2014-09-03 住友电气工业株式会社 光学组件及其组装方法以及配备有光学组件的光学模块
CN106099636A (zh) * 2014-12-17 2016-11-09 恩耐公司 高功率二极管激光器封装中的光学损耗管理
CN105119138A (zh) * 2015-09-21 2015-12-02 无锡亮源激光技术有限公司 一种大功率光纤耦合激光器
CN208752316U (zh) * 2018-10-11 2019-04-16 上海高意激光技术有限公司 半导体激光器空间合束装置

Also Published As

Publication number Publication date
CN110556709A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US7668214B2 (en) Light source
US10838217B2 (en) Laser diode collimator and a pattern projecting device using same
WO2021051467A1 (zh) 半导体激光器
JP6178991B2 (ja) 光源ユニットおよびそれを用いた光源モジュール
US9455552B1 (en) Laser diode apparatus utilizing out of plane combination
US7773653B2 (en) Diode laser arrangement and associated beam shaping unit
US10310280B2 (en) Offset laser array with beam combining optical element
JP6646644B2 (ja) レーザシステム
WO2021051469A1 (zh) 半导体激光器
JP2015515150A (ja) 自己整列ポンプ光学部品を備えた光学的にポンピングされたソリッドステートレーザーデバイス
US20180145480A1 (en) Reflector and a laser diode assembly using same
JP2015515150A5 (zh)
CN102904161B (zh) 一种高功率集成激光光源
WO2021046972A1 (zh) 一种激光器
CN214542912U (zh) 一种小体积半导体激光器
CN213520690U (zh) 一种外腔半导体激光器
CN210490083U (zh) 一种激光器
JP2019079896A (ja) レーザ装置
CN112310800A (zh) 一种紧凑式光纤耦合输出半导体激光器
JP3234403U (ja) 低開口数ファイバー出力ダイオードレーザーモジュール
JP2022187270A5 (zh)
CN213520699U (zh) 一种激光器系统
TWI682604B (zh) 邊射型雷射之封裝結構
CN214044337U (zh) 一种半导体激光器
JP5389057B2 (ja) プロジェクタ光源モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944660

Country of ref document: EP

Kind code of ref document: A1