WO2021046821A1 - 小区选择的方法与通信装置 - Google Patents

小区选择的方法与通信装置 Download PDF

Info

Publication number
WO2021046821A1
WO2021046821A1 PCT/CN2019/105780 CN2019105780W WO2021046821A1 WO 2021046821 A1 WO2021046821 A1 WO 2021046821A1 CN 2019105780 W CN2019105780 W CN 2019105780W WO 2021046821 A1 WO2021046821 A1 WO 2021046821A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
satellite
ground
terminal device
cells
Prior art date
Application number
PCT/CN2019/105780
Other languages
English (en)
French (fr)
Inventor
郑黎丽
耿婷婷
吴烨丹
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/105780 priority Critical patent/WO2021046821A1/zh
Priority to CN201980100105.5A priority patent/CN114342469B/zh
Publication of WO2021046821A1 publication Critical patent/WO2021046821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the ground communication system cannot achieve true "seamless coverage". For example, in rural areas with low population density, there are usually not enough cellular networks. For example, it is impossible to achieve communication through terrestrial networks in the maritime or aviation fields.
  • a terrestrial cell that is, a terrestrial network (TN) cell
  • TN terrestrial network
  • Satellite cells that is, non-terrestrial network (NTN) cells, are used to indicate cells deployed on satellites.
  • the terminal device determining to camp on the target cell in the ground cell may be replaced by the terminal device determining or selecting the target cell in the ground cell as the serving cell.
  • the target cell in the ground cell may be the current serving cell or a neighboring cell.
  • the target cell may indicate a suitable cell selected in cell selection or cell reselection, or a cell that can be camped on determined in cell selection or cell reselection, or in other words, determined in cell selection or cell reselection.
  • the priority of the ground cell is higher than the priority of the satellite cell.
  • the method further includes: the terminal device measures M1 first cells, the first cells are the terrestrial cells, and M1 is greater than 1 or equal to An integer of 1; in the case where the target cell is included in the ground cell, the terminal device determining to camp on the target cell in the ground cell includes: including the M1 first cells In the case of the target cell, the terminal device determines to camp on the target cell among the M1 first cells.
  • the terminal device can only measure the ground cell, and as long as the ground cell has a suitable cell (that is, the target cell), the terminal device selects the ground cell as the serving cell. That is, there is no need to measure satellite cells, which can help terminal equipment to save power.
  • the method further includes: in the case that the target cell is not included in the M1 first cells, the terminal device measures the N1 second Cell, the second cell is the satellite cell, and N1 is an integer greater than or equal to 1.
  • the terminal device measures the ground cell first.
  • the ground cell does not include a suitable cell (ie, the target cell)
  • the terminal device can then measure the satellite cell to find a cell where it can reside and ensure communication.
  • the target cell is a cell that meets a cell selection criterion, or the target cell is a cell that meets a cell reselection criterion.
  • the cell selection criteria and cell reselection criteria are introduced below.
  • the cell can also be the target cell when it meets any of the following: the cell belongs to a selected public land mobile network (public land mobile network, PLMN) (selected PLMN); the cell belongs to a registered PLMN (registered PLMN) The cell is not barred from (bar) access; the cell belongs to at least one TA that is not in the Forbidden Tracking Area (Forbidden Tracking Area), and the TA belongs to the selected PLMN or registered PLMN or equivalent PLMN (equivalent PLMN).
  • PLMN public land mobile network
  • PLMN public land mobile network
  • registered PLMN registered PLMN
  • the cell is not barred from (bar) access
  • the cell belongs to at least one TA that is not in the Forbidden Tracking Area (Forbidden Tracking Area)
  • the TA belongs to the selected PLMN or registered PLMN or equivalent PLMN (equivalent PLMN).
  • the terminal device can calculate the R value of the ground cell and the satellite cell based on different formulas.
  • a method for cell selection is provided.
  • the method may be implemented by a terminal device, or may be implemented by a component (such as a chip or a circuit) that can be used for the terminal device, which is not limited in this application.
  • the method may include: a terminal device enters a cell reselection, wherein the cells that can be used for the terminal device to perform the cell reselection include a ground cell and a satellite cell; in the cell reselection, any one of the following is satisfied:
  • the cell reselection of the satellite cell does not consider the number of beams; or, the satellite cell and the ground cell are not on the same frequency or the same frequency priority; or, the satellite cell and the ground cell are on the same frequency or the same frequency In the case of frequency priority, the satellite cell and the ground cell are sorted separately; or, the satellite cell and the ground cell are on the same frequency or the same frequency priority, and the satellite cell and the ground cell When the cells are sorted together, the number of good beams of the ground cell is 1.
  • the cell reselection of the satellite cell does not consider the number of good beams, which can be considered to be the reselection of the satellite cell; or, it can be used to: in the cell reselection, the ground cell and the satellite cell do not need to be sorted together Scene.
  • the satellite cell and the ground cell cannot be on the same frequency (or frequency priority), which may be stipulated by the agreement. That is, it can be specified in advance that the satellite cell and the ground cell cannot be on the same frequency, or cannot be in the same frequency priority, so as to avoid the satellite cell and the ground cell from being sorted together.
  • a method for cell selection is provided.
  • the method can be implemented by a network device, or can be implemented by a component (such as a chip or a circuit) that can be used for the network device, which is not limited in this application.
  • the method may include: sending a notification message to a terminal device, the notification message being used to notify the terminal device that if the target cell is included in the ground cell, the terminal device selects the target cell in the ground cell to camp on.
  • the target cell is a cell that meets a cell selection criterion, or the target cell is a cell that meets a cell reselection criterion.
  • a communication device configured to execute the communication method provided in the first aspect or the second aspect.
  • the communication device may include a module for executing the communication method provided in the first aspect or the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the communication method in any one of the foregoing first aspect or second aspect, and any one of the first aspect or second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the third aspect and the communication method in any one of the possible implementation manners of the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect or the second aspect, and the first or second aspect.
  • the communication method in any possible implementation of the two aspects.
  • a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a communication device, the communication device realizes the third aspect and any possible implementation manner of the third aspect Communication method in.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the first aspect or the second aspect.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the third aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIGS 1 to 4 are schematic diagrams of satellite communications applicable to embodiments of the present application.
  • FIGS 5 and 6 are schematic diagrams of an IAB system applicable to embodiments of the present application.
  • Fig. 7 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a method for cell selection according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a method for cell selection according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a method for cell selection according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • LTE long term evolution
  • 5G fifth generation mobile communication
  • machine to machine machine to machine
  • M2M machine to machine
  • NTN non-terrestrial network
  • 5G wireless air interface technology is called a new radio (NR)
  • NR new radio
  • NTN satellite communication system
  • Terrestrial communication systems sometimes fail to achieve true "seamless coverage". For example, in rural areas with low population densities, there are usually not enough cellular networks. For another example, in the maritime and aviation fields, it is even more impossible to achieve communication through terrestrial networks. Due to the "ubiquitous" and "direct-to-user" characteristics of satellite communications, satellite communications technology has developed rapidly in areas such as satellite TV live broadcast services, mobile satellite services, Internet access, private networks, and military communications.
  • the satellite system can be divided into low earth orbit (LEO), medium earth orbit (MEO), and high orbit satellite (geostationary earth orbit, GEO) (or called For geostationary orbit satellites).
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • the satellite height of LEO is approximately: 300 kilometers (km)-1500km.
  • the satellite altitude of MEO is between LEO and GEO.
  • the speed of the satellite is the same as the rotation speed of the earth, and it remains stationary relative to the ground; the height of the satellite is about 35768km.
  • FIGS 1 to 4 show several schematic architecture diagrams of satellite communications applicable to embodiments of the present application.
  • Figure 1 shows a radio access network (RAN) architecture (RAN architecture with transparent satellite) with transparent satellites.
  • RAN radio access network
  • UE user equipment
  • satellite NTN gateway
  • base station such as NR base station (next generation node B, gNB)
  • 5G core network core network, CN
  • data network data network
  • a wireless terminal can also be called a system, a subscriber unit (SU), a subscriber station (SS), a mobile station (MB), a mobile station (Mobile), a remote station (remote station, RS), Access point (access point, AP), remote terminal (remote terminal, RT), access terminal (access terminal, AT), user terminal (user terminal, UT), user agent (user agent, UA), terminal equipment ( user device, UD).
  • Terminal equipment represented by satellite phones and vehicle-mounted satellite systems can communicate directly with satellites.
  • the fixed terminal represented by the ground communication station needs to be relayed by the ground station before it can communicate with the satellite.
  • the terminal equipment realizes the setting and acquisition of the communication state by installing a wireless transceiver antenna, and completes the communication.
  • the satellite is mainly used as a relay (L1 relay) of layer 1 (layer 1, L1), and the physical layer signal can be regenerated, and the upper layer is not visible.
  • the role of satellites may include, but is not limited to: radio frequency filtering, frequency conversion and amplification.
  • satellites can transmit downlink data to terminal equipment.
  • Regenerative satellite does not have inter-satellite link (ISL) (Regenerative satellite without ISL).
  • it may include: UE, satellite, NTN gateway, 5G core network, and data network.
  • it may include: UE, satellite, NTN gateway, 5G core network, and data network.
  • satellites can be used as gNB. The difference is that there is no ISL in the scene shown in FIG. 2 and there is ISL in the scene shown in FIG. 3.
  • the satellite and the satellite can communicate through the Xn interface on the ISL.
  • the satellite and the gateway can communicate through the NG interface on the SRI.
  • the satellite and the core network can communicate through the NG interface.
  • the core network and data can communicate through the N6 interface.
  • Fig. 4 is another schematic diagram of satellite communication applicable to the embodiment of the present application.
  • Figure 4 shows a NG-RAN architecture (NG-RAN with a regenerative satellite based on gNB-DU) based on the gNB-DU regenerative satellite.
  • FIGS. 1 to 4 are only exemplary illustrations, and the embodiments of the present application are not limited thereto.
  • Figures 1 to 4 may include a larger number of terminal devices.
  • more NTN gateways may be included in FIGS. 1 to 4.
  • satellites can also be used as integrated access and backhaul (IAB) nodes.
  • IAB integrated access and backhaul
  • the IAB node can provide wireless access services for the terminal, and is connected to a donor base station (donor gNB) through a wireless backhaul link to transmit user service data.
  • donor gNB donor base station
  • the second is regenerative, that is, satellites can do gNB, DU, and relay.
  • satellites can do gNB, DU, and relay.
  • this type of architecture when a satellite is used as a relay, it is not only a relay, but also has signal processing functions, similar to IAB.
  • FIGS 5 and 6 show schematic diagrams of an IAB system applicable to embodiments of the present application.
  • IAB technology refers to the use of wireless transmission solutions for both the access link and the backhaul link to avoid optical fiber deployment.
  • a relay node (RN) or IAB node (IAB node) can provide wireless access services for terminal equipment, and the service data of the terminal equipment can be transmitted back wirelessly by one or more IAB nodes
  • the link is connected to a donor node (IAB donor) or a donor base station (donor gNodeB, DgNB) for transmission.
  • an IAB system includes at least one base station 500, and one or more terminal devices 501 served by the base station 500, one or more relay nodes (that is, IAB nodes) 510, and the IAB node 510.
  • the IAB node 510 is connected to the base station 500 through a wireless backhaul link 513.
  • the base station 500 is called a donor base station.
  • the donor base station is also referred to as a donor node or an IAB donor (IAB donor) in this application.
  • the IAB system may also include one or more intermediate IAB nodes. For example, IAB node 520 and IAB node 530.
  • a base station may refer to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station equipment can also coordinate the attribute management of the air interface.
  • the base station equipment may be an evolved base station in LTE or a base station or access point in NR, which is not limited in this application. It should be understood that the base station described in the embodiments of the present application may be not only a base station device, but also a relay device, or other network element devices with base station functions.
  • the donor base station can be an access network element with complete base station functions, or a form in which the CU and DU are separated, that is, the donor node is composed of a centralized unit of the donor base station and a distributed unit of the donor base station.
  • the centralized unit of the host node is also called IAB donor CU (also called donor CU, or directly called CU).
  • the distributed unit of the host node is also called IAB donor DU (or donor DU).
  • the donor CU may also be a form where the control plane (CP) (referred to as CU-CP in this article) and the user plane (UP) (referred to in this article as CU-UP) are separated.
  • CP control plane
  • UP user plane
  • a CU may be composed of one CU-CP and one or more CU-UPs.
  • the IAB node can be made to support dual connectivity (DC) or multi-connectivity to deal with possible abnormal situations in the backhaul link. For example, abnormalities such as link interruption or blockage and load fluctuations can improve the reliability of transmission. Therefore, the IAB network supports multi-hop networking and can also support multi-connection networking.
  • DC dual connectivity
  • multi-connectivity to deal with possible abnormal situations in the backhaul link. For example, abnormalities such as link interruption or blockage and load fluctuations can improve the reliability of transmission. Therefore, the IAB network supports multi-hop networking and can also support multi-connection networking.
  • Link It can represent the path between two adjacent nodes in a path.
  • Access link It can indicate the link between the terminal device and the base station, or between the terminal device and the IAB node, or between the terminal device and the host node, or between the terminal device and the host DU.
  • the access link includes a wireless link used when a certain IAB node acts as a common terminal device to communicate with its parent node. When the IAB node acts as an ordinary terminal device, it does not provide backhaul services for any child nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the access link of the terminal device is a wireless link, so the access link may also be called a wireless access link.
  • Backhaul link It can represent the link between the IAB node and the parent node when it is used as a wireless backhaul node.
  • the backhaul link includes the uplink backhaul link and the downlink backhaul link.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link can also be called a wireless backhaul link.
  • Each IAB node regards the neighboring node that provides wireless access service and/or wireless backhaul service for it as a parent node.
  • each IAB node can be regarded as a child node of its parent node.
  • the child node may also be referred to as a lower-level node, and the parent node may also be referred to as an upper-level node.
  • the parent node of IAB node 1 is IAB donor
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • IAB node 2 and IAB node 3 are both the parent nodes of IAB node 4
  • IAB node 5 The parent node of is IAB node 3.
  • the uplink data packet of the UE may be transmitted to the host site IAB donor via one or more IAB nodes, and then sent by the IAB donor to the mobile gateway device (for example, the user plane function unit UPF in the 5G core network).
  • the UE's downlink data packet will be received by the IAB donor from the mobile gateway device, and then sent to the UE through the IAB node.
  • Path 1 Terminal 1 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node, and terminal 1 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node.
  • There are three available paths for data packet transmission between terminal 2 and host node namely: terminal 2 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node, terminal 2 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB Node 1 ⁇ host node, and terminal 2 ⁇ IAB node 5 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node.
  • IAB networking scenario shown in Figure 6 is only exemplary.
  • IAB scenario where multi-hop and multi-connection are combined there are more other possibilities, for example, the IAB donor in Figure 6 and another The IAB node under the IAB donor forms a dual connection to serve terminal equipment, etc., which are not listed here.
  • the network equipment involved in the embodiments of this application includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station Controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home node B, HNB), baseband unit (baseband Unit, BBU), evolved (evolved LTE) , eLTE) base station, base station in RAN (such as NR base station (next generation node B, gNB)), etc.
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station Controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home node B, HNB
  • baseband Unit baseband Unit
  • evolved LTE evolved LTE
  • eLTE base
  • multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • CU is used to implement the radio resource control (radio resource control, RRC) layer, the service data adaptation protocol (service data adaptation protocol, SDAP) layer, and the packet data convergence layer protocol (packet data convergence) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • Packet data convergence packet data convergence layer protocol
  • Protocol, PDCP packet data convergence layer protocol
  • the DU is used to perform functions such as the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer.
  • the division of CU and DU processing functions according to this protocol layer is only an example, and the division may also be performed in other ways, and the embodiment of the present application does not limit it.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions of the protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to service types or other system requirements.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the functions of the CU can be further divided, for example, the control panel (CP) and the user panel (UP) are separated, that is, the control plane (CU-CP) of the CU and the user plane (CU) are separated.
  • CP control panel
  • UP user panel
  • CU-CP control plane
  • CU-UP user plane
  • the CU-CP and CU-UP may be implemented by different functional entities, and the CU-CP and CU-UP may be coupled with the DU to jointly complete the function of the base station.
  • satellites will be used as a new access method.
  • cell selection/reselection is based on the cell selection/reselection mechanism of the terrestrial network (TN).
  • TN terrestrial network
  • the terminal device When a terminal device is turned on or a radio link failure occurs, the terminal device will perform a cell search process and select a suitable cell to camp on as soon as possible. This process is called "cell selection”.
  • the terminal equipment will read the system information of the cell and obtain parameters such as Qrxlevmeas, Qrxlevmin and Qrxlevminoffset.
  • the terminal equipment evaluates whether the cell is a suitable cell according to the S criterion. Once a suitable cell is found, that is, it satisfies S Standard cell, the cell selection process is completed. If the cell is not a suitable cell, the terminal device continues to search until it finds a suitable cell and camps on it.
  • the calculation formula of S rxlev is:
  • Q rxlevmeas the received signal strength value measured by the terminal device, and the value is the measured reference signal receiving power (RSRP);
  • Q rxlevmin the minimum received signal strength value required by the cell
  • P compensation (PEMAX-PUMAX) or the larger value of 0, where PEMAX is the maximum allowable transmission power set by the system when the terminal device accesses the cell; PUMAX refers to the maximum output power specified by the terminal device level.
  • Q rxlevminoffset This parameter can only be used when the terminal device normally resides in a virtual private mobile network (VPMN) and periodically searches for a high-priority public land mobile network (PLMN) for cell selection It is only valid during evaluation. This parameter biases Q rxlevmin to a certain extent.
  • VPMN virtual private mobile network
  • PLMN public land mobile network
  • the terminal device After the terminal device camps in a cell, as the terminal device moves, the terminal device may need to be changed to another cell with a higher priority or better signal to camp on. This is the cell reselection process.
  • Cell selection is a process of finding a suitable cell as soon as possible, and cell reselection is a process of selecting a more suitable cell.
  • the agreement stipulates measurement criteria:
  • the terminal equipment For the frequency layer or system that has a higher priority than the cell where it resides, the terminal equipment always measures it;
  • the terminal device starts the measurement of the same priority frequency or low priority frequency and system;
  • the terminal equipment After the measurement, the terminal equipment will determine whether to perform cell reselection to a new cell.
  • the reselection criteria are as follows:
  • High priority frequency or system reselection standard S rxlev > Threshx-high of the target frequency cell, and lasts for a certain period of time, where Threshx-high refers to the reselection from the current service carrier frequency to the higher priority frequency Time threshold;
  • Low-priority frequency or system reselection standard S rxlev ⁇ Threshserving-low of the resident cell for a certain period of time, where Threshx-low refers to the reselection from the current service carrier frequency to the frequency with lower priority Time threshold;
  • Same priority frequency or system reselection standard the reselection of a cell to a cell in the same priority frequency is based on the ranking standard of the same frequency cell reselection.
  • the reselection ranking criteria for co-frequency cells are defined as follows, R s is the ranking value of the current camping cell, and R n is the ranking value of the neighboring cell:
  • R s Q meas_s + Q hyst -Q offset_temp
  • R n Q meas_s -Q offset -Q offset_temp
  • Q hyst Hysteresis value, used to prevent ping-pong reselection
  • Q meas_s the received signal strength value of the camping cell measured by the terminal equipment
  • Q offset For the same frequency, when Q offsets_n is valid, the value is Q offsets_n , otherwise the value is 0; for different frequencies, when Q offsets_n is valid, the value is Q offsets_n +Q offsetfrequency , otherwise the value is Q offsetfrequency ;
  • Q offset_temp can indicate the amount of offset.
  • the deviation amount may be, for example, a deviation amount added to a cell after a terminal device fails to establish an RRC connection on a cell, broadcast by the network.
  • the terminal equipment will sort all the cells that meet the cell selection S criterion by the ranking value. When reselecting, it is not simply reselecting to the best ranked cell, but finding the highest ranking value during the ranking, which is within a certain range ( For example, x dB, where x is configurable), the cells are considered to be similar cells. In these similar cells, the terminal device reselects to the cell with the largest number of good beams.
  • the system message of the currently camped cell will broadcast the required configuration parameters of the current camped cell and neighboring cells, so that the terminal device can calculate parameters such as R s and R n.
  • Q meas is the received signal strength value of the cell measured by the terminal device.
  • N beams where the signal strength of each cell is higher than the threshold can be used to generate cell quality, which is filtered by layer 3 as Q meas .
  • the threshold and N are notified to the terminal equipment in the broadcast message, and N is an integer greater than or equal to 1. Among them, beams above the threshold are considered good beams.
  • the cells to be measured may include satellite cells and ground cells.
  • this application proposes a method to optimize the existing cell reselection mechanism.
  • FIG. 8 is a schematic interaction diagram of a method 800 for cell selection according to an embodiment of the present application.
  • the method 800 may include the following steps.
  • the terminal device enters cell selection or cell reselection, where the cells that can be used for the terminal device to perform cell selection or cell reselection include ground cells and satellite cells.
  • the terminal equipment will perform cell selection or cell reselection.
  • the terminal device when a terminal device is turned on or a wireless link failure occurs, the terminal device will perform a cell search process, that is, the terminal device will enter a cell selection.
  • the terminal device may need to change to another cell with a higher priority or better signal to camp on, that is, the terminal device cell reselection process.
  • a terrestrial cell that is, a terrestrial network (TN) cell
  • TN terrestrial network
  • Satellite cells that is, non-terrestrial network (NTN) cells
  • NTN non-terrestrial network
  • the cells that can be used for the terminal device to perform cell selection or cell reselection include ground cells and satellite cells. It can include the following two scenarios.
  • the cells to be measured by the terminal equipment include ground cells and satellite cells.
  • the cells that can be measured include ground cells and satellite cells.
  • the cell that the terminal device determines that it can serve as the serving cell includes a ground cell and a satellite cell.
  • both the ground cell and the satellite cell include the target cell.
  • the terminal device in the cell selection or cell reselection process, can select the ground cell and the satellite cell as the serving cell.
  • the terminal device may determine whether a cell is a ground cell or a satellite cell based on any of the following methods.
  • Method 1 The cell type is carried in system information (SI).
  • SI system information
  • the cell type carried in the SI is: satellite cell or ground cell.
  • the cell type carried in the SI is LEO or GEO, or the cell type carried in the SI is LEO or MEO or GEO.
  • the cell type carried is LEO, MEO or GEO, it means that it is a satellite cell.
  • Method 2 judge according to whether some parameters exist or the value of some parameters.
  • a parameter can be added (for example, a parameter is added in a broadcast message), and the parameter is used to indicate that the cell is a satellite cell or a ground cell.
  • the cell can be determined whether the cell is a ground cell or a satellite cell according to whether the parameter exists. If this parameter exists, it means the cell is a satellite cell; when this parameter does not exist, it means the cell is a ground cell.
  • the cell is a ground cell or a satellite cell according to the value of the parameter. For example, when the parameter value is "1", it means the cell is a satellite cell; when the parameter value is "0", it means the cell is a ground cell.
  • existing parameters can also be reused, which is not limited.
  • the terminal equipment determines whether the cell is a ground cell or a satellite cell, which will not be introduced.
  • the terminal device determines to camp on the target cell in the ground cell.
  • the priority of the ground cell is higher than that of the satellite cell.
  • the terminal device preferentially camps on the ground cell, that is, the terminal device preferentially selects or reselects to the ground cell.
  • the appropriate cell that is, the target cell
  • the appropriate cell may indicate the appropriate cell selected in the cell selection or cell reselection process, or in other words, the cell that can be camped on during the cell selection or cell reselection process, or in other words, In the cell selection or cell reselection process, the cell that can provide service for the terminal device is determined.
  • suitable cells are collectively referred to as a target cell, that is, a cell where a terminal device can camp on is referred to as a target cell.
  • a target cell that is, a cell where a terminal device can camp on
  • the appropriate cell in the ground cell that is, the target cell in the ground cell
  • the appropriate cell in the satellite cell that is, the target cell in the satellite cell
  • the target cell is described in detail below.
  • the following two situations may be included.
  • Case 1 The terminal device preferentially measures the ground cell.
  • the terminal device first measures the ground cell.
  • Case 2 The terminal equipment measures the ground cell and the satellite cell at the same time.
  • the method 900 may include step 901.
  • the current serving cell that is, the cell currently serving the terminal device, may be a ground cell or a satellite cell, which is not limited in the embodiment of the present application.
  • the notification message may be used to notify the terminal device to increase the priority of the ground cell selection or reselection, or the notification message may be used to notify the terminal device that the priority of the ground cell selection is higher than the priority of the satellite cell. In other words, as long as the ground cell has a suitable cell, the terminal device will choose to camp on the ground cell.
  • the terminal device will receive the broadcast message during the cell selection or cell reselection process.
  • the broadcast message may also include parameters for the second cell, such as parameters used in the cell selection or cell reselection process, to determine whether to choose to camp on the second cell or whether to reselect to the second cell.
  • the second cell is a cell deployed on a satellite, and the second cell may be a serving cell of the terminal device or a neighboring cell of the terminal device.
  • the first cell is used to represent a cell deployed on the ground
  • the second cell is used to represent a cell deployed on a satellite. It should be understood that the first cell and the second cell are only named for distinction, and do not limit the protection scope of the embodiments of the present application.
  • the terminal device measures the ground cell.
  • the terminal device measures M1 first cells, where M1 is an integer greater than or equal to 1.
  • the terminal device can measure one or more first cells.
  • FIG. 9 exemplarily enumerates a first cell. It should be understood that the embodiments of the present application are not limited thereto.
  • the terminal equipment measures the ground cell first, as long as the ground cell has a suitable cell, the ground cell is considered, otherwise the satellite cell is considered. This criterion is higher than the priority of cell selection or cell reselection.
  • the manner in which the terminal device measures the ground cell is not limited in the embodiment of the present application.
  • the cell selection criteria described above can be used; or, the cell reselection criteria described above can also be used.
  • the method 900 includes step 920.
  • the terminal device reselects to the target ground cell.
  • the terminal device chooses to camp on the target ground cell. This criterion is higher than the priority of cell reselection.
  • the target ground cell may be the serving cell of the terminal device.
  • the terminal device reselects to the target ground cell. It can be understood that the terminal device continues to camp on the serving cell (ie, the target ground cell).
  • the target ground cell may also be a neighboring cell of the terminal device.
  • the terminal device reselects to the target ground cell, which can be understood as the terminal device reselects from the serving cell to the neighboring cell (ie, the target ground cell).
  • the method 900 may include step 930.
  • the terminal equipment measures the satellite cell.
  • the terminal device chooses to camp on the target satellite cell.
  • the target satellite cell may be the serving cell of the terminal device or the neighboring cell of the terminal device.
  • the target cell may satisfy any of the following conditions.
  • the terminal device measures the first cell, and determines that the first cell satisfies the S criterion according to the S criterion formula, and the terminal device determines that the first cell is the target ground cell.
  • none of the one or more first cells measured by the terminal device meets the S criterion, that is, the terminal device determines that there is no cell that meets the S criterion among the ground cells, and the terminal device can measure satellite cells again.
  • cell selection criteria such as the cell selection criteria of terrestrial cells or the cell selection criteria of satellite cells
  • the target cell may change. No matter how it is changed, as long as it meets the cell selection criteria, it can be regarded as the target cell.
  • Condition 2 can include the following situations.
  • the cell can be used as a target cell when it meets the following conditions: the S value of the cell continues to be higher than a certain threshold for a period of time, and the terminal equipment stays in the original cell for more than 1 second(s).
  • both the time parameter and the threshold can be sent by a broadcast message. The following is similar, so I won't repeat it later.
  • the best cell on the highest priority frequency (ranked by the R criterion) is selected as the target terrestrial cell (ie, the target cell).
  • the cell can be used as a target cell when it meets the following conditions: no high-priority or same-priority cell meets the reselection conditions, and the quality of the serving cell is below a certain threshold, and The cell quality is higher than a certain threshold for a period of time, and the terminal equipment stays in the original cell for more than 1s.
  • cell reselection criteria such as the cell reselection criteria for terrestrial cells or the cell reselection criteria for satellite cells, may change. No matter how it is changed, as long as it meets the cell reselection criteria, it can be regarded as the target cell.
  • the cell belongs to the selected PLMN (selected PLMN); the cell belongs to the registered PLMN (registered PLMN); the cell is not barred (bar) access; the cell belongs to at least one TA that is not in the Forbidden Tracking Area, and The TA belongs to selected PLMN or registered PLMN or equivalent PLMN (equivalent PLMN).
  • the method 1000 may include step 1001.
  • the current serving cell sends a notification message to the terminal device.
  • step 901 is similar to step 901 in method 900, and for details, reference may be made to the description in step 901.
  • the terminal equipment measures the ground cell and the satellite cell.
  • the ground cell may include the serving cell and the neighboring cell (same frequency measurement) or only the neighboring cell (inter-frequency measurement).
  • the terminal device measures M2 first cells and N2 second cells, and both M2 and N2 are integers greater than or equal to 1.
  • the terminal device can measure one or more first cells and measure one or more second cells.
  • the way the terminal equipment measures the ground cell and the satellite cell can be the same or different.
  • Example 1 the terminal equipment can measure the ground cell and the satellite cell in the same way.
  • the terminal equipment determines whether the cell is a suitable cell based on the above-mentioned terrestrial cell selection criterion (ie, S criterion) or cell reselection criterion.
  • Example 2 The way the terminal equipment measures the ground cell and the satellite cell may also be different.
  • the terminal equipment can use different standards to calculate the R value of the ground cell and the satellite cell.
  • the terminal equipment measures the received signal strength value of the ground cell and the received signal strength value of the satellite cell.
  • the received signal strength value of the ground cell is equal to the received signal strength value of the satellite cell
  • the R value of the ground cell is greater than The R value of the satellite cell.
  • the terminal device reselects to the target ground cell.
  • the terminal equipment when the terminal equipment measures the ground cell and the satellite cell in the same manner, it can be pre-defined or instructed in advance, and the terminal equipment preferentially selects the ground cell.
  • the terminal equipment when the terminal equipment measures the ground cell and the satellite cell in different ways, it can be pre-defined or instructed in advance, and the terminal equipment preferentially selects the ground cell; or, R can be calculated based on a different formula. Value in order to give priority to terrestrial cells.
  • the terminal device can calculate the R value of the ground cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp
  • R n Q meas_s -Q offset -Q offset_temp.
  • the reselection criteria of the same priority frequency or system the reselection of the cell to the same priority frequency is based on the sorting criteria of the same frequency cell reselection.
  • R s is the ranking value of the cell currently camped on
  • R n is the ranking value of the neighboring cell.
  • the terminal device can calculate the R value of the satellite cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp -offset1 NTN
  • R n Q meas_s -Q offset -Q offset_temp -offset1 NTN.
  • the R value of the ground cell is greater than the R value of the satellite cell, so that the ground cell can also be given priority.
  • Option 2 add a negative offset to the satellite cell.
  • offset2 NTN add a negative offset to a satellite cell as offset2 NTN , and offset2 NTN is a number less than zero.
  • the terminal device can calculate the R value of the ground cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp
  • R n Q meas_s -Q offset -Q offset_temp.
  • the terminal device can calculate the R value of the satellite cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp + offset2 NTN
  • R n Q meas_s -Q offset -Q offset_temp + offset2 NTN.
  • the R value of the ground cell is greater than the R value of the satellite cell, so that the ground cell can also be given priority.
  • the offset2 NTN may be preset or stipulated by the agreement, which is not limited.
  • offset1 TN add a positive offset to a ground cell as offset1 TN , and offset1 TN is a number greater than zero.
  • the reselection criteria of the same priority frequency or system the reselection of the cell to the same priority frequency is based on the sorting criteria of the same frequency cell reselection.
  • R s is the ranking value of the cell currently camped on
  • R n is the ranking value of the neighboring cell.
  • the terminal device can calculate the R value of the ground cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp + offset1 TN
  • R n Q meas_s -Q offset -Q offset_temp + offset1 TN.
  • the offset1 TN may be preset or stipulated by agreement, which is not limited.
  • the reselection criteria of the same priority frequency or system the reselection of the cell to the same priority frequency is based on the sorting criteria of the same frequency cell reselection.
  • R s is the ranking value of the cell currently camped on
  • R n is the ranking value of the neighboring cell.
  • the terminal device can calculate the R value of the satellite cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp
  • R n Q meas_s -Q offset -Q offset_temp.
  • the R value of the ground cell is greater than the R value of the satellite cell, so that the ground cell can also be given priority.
  • offset2 TN the negative offset subtracted from the ground cell is recorded as offset2 TN , and offset2 TN is a number greater than zero.
  • the reselection criteria of the same priority frequency or system the reselection of the cell to the same priority frequency is based on the sorting criteria of the same frequency cell reselection.
  • R s is the ranking value of the cell currently camped on
  • R n is the ranking value of the neighboring cell.
  • the terminal device can calculate the R value of the ground cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp -offset2 TN
  • R n Q meas_s -Q offset -Q offset_temp -offset2 TN.
  • the offset2 TN may be preset or stipulated by agreement, which is not limited.
  • the reselection criteria of the same priority frequency or system the reselection of the cell to the same priority frequency is based on the sorting criteria of the same frequency cell reselection.
  • R s is the ranking value of the cell currently camped on
  • R n is the ranking value of the neighboring cell.
  • the terminal device can calculate the R value of the satellite cell based on the following formula.
  • R s Q meas_s + Q hyst -Q offset_temp
  • R n Q meas_s -Q offset -Q offset_temp.
  • the R value of the ground cell is greater than the R value of the satellite cell, so that the ground cell can also be given priority.
  • the terminal device can measure the ground cell and the satellite cell at the same time. As long as the ground cell has a suitable cell (ie, the target cell), the terminal device selects or reselects to the ground cell. Or, the R value can be calculated based on a different formula, so that terrestrial cells are given priority.
  • the cells with the same priority are sorted by the R criterion, they are not directly selected to the highest R value, but within a certain range from the highest R value (for example, marked as rangeToBestCell Select the cell with the highest number of good beams among the cells in) and reselect the cell.
  • this application proposes another embodiment:
  • the terminal device enters the cell reselection, where the cells that can be used for the terminal device cell reselection include ground cell and satellite cell; in the cell reselection, at least one of the following is met: the cell reselection of the satellite cell does not consider the number of good beams; Or, the satellite cell and the ground cell are not on the same frequency or the same frequency priority; or, when the satellite cell and the ground cell are on the same frequency or the same frequency priority, the satellite cell and the ground cell are sorted separately; or, in the satellite cell If the ground cell and the ground cell are on the same frequency or the same frequency priority, and the satellite cell and the ground cell are sorted together, the good beam number of the ground cell is 1.
  • the cell reselection of the satellite cell does not consider the number of good beams.
  • This solution can be considered as a reselection for satellite cells.
  • this solution can be used in a scenario where the ground cell and the satellite cell do not need to be sorted together in the cell reselection.
  • rangeToBestCell may not be configured. Or even if rangeToBestCell is configured, the terminal device ignores rangeToBestCell.
  • satellite cells and ground cells may need to be sorted together. For example, cells on the same frequency (including satellite cells and ground cells) need to be sorted together, or cells on different frequencies with the same priority (including satellite cells and ground cells). Cells) need to be sorted together. Therefore, it can be specified in advance that the satellite cell and the ground cell cannot be on the same frequency, or cannot be in the same frequency priority, so that the satellite cell and the ground cell can be sorted together.
  • the terminal device can choose to reselect the best-ranked terrestrial cell (best ranked TN cell) or the best-ranked satellite cell (best ranked NTN cell).
  • the camping cell can indicate to the terminal device to reselect to the best ranked TN cell or preferentially choose to camp on the ground cell; or, the camping cell can indicate to the terminal device to reselect to the best ranked NTN cell or preferentially choose to camp on the satellite cell.
  • the terminal device when the camping cell instructs the terminal device to preferentially camp on the ground cell, the terminal device may only sort the ground cell; when the camping cell instructs the terminal device to preferentially camp on the satellite cell, the terminal device may only order the satellite cell.
  • the cells are sorted.
  • the above scheme 1 can be considered as a scheme for the reselection of satellite cells, in other words, in the cell reselection process, the ground cell and the satellite cell do not need to be sorted together; the schemes 2 to 4 are considered Satellite cells and ground cells may need to sequence the proposed solutions together.
  • the problem that the satellite cell has only one beam can not be used to determine the reselection of the target cell by comparing the number of good beams.
  • this application proposes to give priority to the ground cell, that is, the terminal device preferentially chooses to camp on the ground cell.
  • the terminal device can measure the ground cell first, and as long as the ground cell has a suitable cell, it chooses to camp on the ground cell.
  • the terminal equipment can also measure the ground cell and the satellite cell at the same time. As long as the ground cell has a suitable cell, it will choose to camp on the ground cell; or, based on different formulas, calculate the R value of the ground cell and the satellite cell so as to The ground cell is preferred.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device
  • the methods and operations implemented by the network device can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function as an example.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the application.
  • the communication device 1100 includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit 1110 can communicate with the outside, and the processing unit 1110 is used for data processing.
  • the transceiving unit 1110 may also be referred to as a communication interface or a communication unit.
  • the communication device 1100 may further include a storage unit, and the storage unit may be used to store instructions or data, and the processing unit 1120 may read the instructions or data in the storage unit.
  • the communication device 1100 can be used to perform the actions performed by the terminal device in the above method embodiment, the transceiving unit 1110 is used to perform the transceiving-related operations performed by the terminal device in the above method embodiment, and the processing unit 1120 is used to perform the above In the method embodiment, the terminal device performs processing-related operations.
  • the communication apparatus 1100 may be a terminal device or may be a component or component configurable in the terminal device.
  • the communication device 1100 can be used to perform the actions performed by the network device in the above method embodiment, the transceiving unit 1110 is used to perform the transceiving-related operations performed by the network device in the above method embodiment, and the processing unit 1120 is used to perform The processing-related operations performed by the network device in the foregoing method embodiments.
  • the communication apparatus 1100 may be a network device, or may be a component or component that can be configured in the network device.
  • the communication device 1100 is used to perform the actions performed by the terminal device in the above method embodiments.
  • the processing unit 1120 is used to enter cell selection or cell reselection, where the cells that can be used for the communication device 1100 to perform cell selection or cell reselection include terrestrial cells and satellite cells; if the target cell is included in the terrestrial cell, determine Camp on the target cell in the ground cell.
  • the transceiver unit 1110 is configured to receive notification messages.
  • the processing unit 1120 is configured to measure M1 first cells, where the first cell is a ground cell, and M1 is an integer greater than or equal to 1; if the target cell is included in the M1 first cell, it is determined that The target cell in the M1 first cell camps on.
  • the processing unit 1120 is configured to measure N1 second cells when the target cell is not included in the M1 first cells, the second cells are satellite cells, and N1 is an integer greater than or equal to 1.
  • the processing unit 1120 is configured to measure M2 first cells and N2 second cells, the first cell is a ground cell, the second cell is a satellite cell, and M2 and N2 are both integers greater than or equal to 1. In the case where the target cell is included in both the M2 first cells and the N2 second cells, it is determined to camp on the target cell in the M2 first cells.
  • the target cell is a cell that meets the cell selection criterion, or the target cell is a cell that meets the cell reselection criterion.
  • the processing unit 1120 is configured to measure the received signal strength value of the ground cell and the received signal strength value of the satellite cell; when the received signal strength value of the ground cell is equal to the received signal strength value of the satellite cell, the ground cell The R value of is greater than the R value of the satellite cell.
  • the communication device 1100 is used to perform the actions performed by the terminal device in the above method embodiments.
  • the processing unit 1120 is used to enter cell selection or cell reselection, where the cells that can be used for the communication device 1100 to perform cell selection or cell reselection include ground cells and satellite cells; in cell reselection, any one of the following is satisfied: satellite The cell reselection of the cell does not consider the number of beams; or, the satellite cell and the ground cell are not on the same frequency or the same frequency priority; or, when the satellite cell and the ground cell are on the same frequency or the same frequency priority, the satellite cell and the ground cell are at the same frequency or the same frequency priority.
  • the ground cells are sorted separately; or, when the satellite cell and the ground cell are on the same frequency or the same frequency priority, and the satellite cell and the ground cell are sorted together, the number of good beams of the ground cell is 1.
  • the communication device 1100 is used to perform the actions performed by the network device in the above method embodiment.
  • the transceiver unit 1110 is configured to send a notification message to the terminal device, and the notification message is used to notify the terminal device: in the case where the target cell is included in the ground cell, the terminal device selects the target cell in the ground cell to camp on; where the target cell is A cell that can be served by terminal equipment.
  • the processing unit 1120 in the above embodiment may be implemented by a processor or a processor-related circuit.
  • the transceiver unit 1110 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 1110 may also be referred to as a communication unit or a communication interface.
  • the storage unit can be realized by a memory.
  • an embodiment of the present application also provides a communication device 1200.
  • the communication device 1200 includes a processor 1210, the processor 1210 is coupled with a memory 1220, the memory 1220 is used to store computer programs or instructions or data, and the processor 1210 is used to execute the computer programs or instructions or data stored in the memory 1220, so that the above method The method in the embodiment is executed.
  • the communication device 1200 includes one or more processors 1210.
  • the communication device 1200 may further include a memory 1220.
  • the memory 1220 included in the communication device 1200 may be one or more.
  • the memory 1220 may be integrated with the processor 1210 or provided separately.
  • the communication device 1200 may further include a transceiver 1230, and the transceiver 1230 is used for signal reception and/or transmission.
  • the processor 1210 is configured to control the transceiver 1230 to receive and/or send signals.
  • the communication apparatus 1200 is used to implement the operations performed by the terminal device in the above method embodiments, or may be performed by a component (for example, a chip or a circuit) that can be used for the terminal device.
  • a component for example, a chip or a circuit
  • the processor 1210 is used to implement processing-related operations performed by the terminal device in the above method embodiment, or can be performed by a component (such as a chip or circuit) that can be used in the terminal device, and the transceiver 1230 is used to implement the above method.
  • operations related to receiving and sending are executed by a terminal device, or may be executed by a component (for example, a chip or a circuit) that can be used for the terminal device.
  • the communication apparatus 1200 is used to implement operations performed by a network device in the foregoing method embodiments, or may be performed by a component (for example, a chip or a circuit) that can be used for a network device.
  • a component for example, a chip or a circuit
  • the processor 1210 is used to implement processing-related operations performed by a network device in the above method embodiment, or can be performed by a component (such as a chip or circuit) that can be used in a network device, and the transceiver 1230 is used to implement the above method.
  • the operations related to receiving and sending are executed by a network device, or may be executed by a component (for example, a chip or a circuit) that can be used for the network device.
  • the embodiment of the present application further provides a communication device 1300, and the communication device 1300 may be a terminal device or a chip.
  • the communication apparatus 1300 may be used to perform operations performed by a terminal device in the foregoing method embodiments, or may be performed by a component (for example, a chip or a circuit) that can be used for a terminal device.
  • FIG. 13 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 13 only one memory and processor are shown in FIG. 13. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiving unit 1310 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1320 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1310 can be regarded as the sending unit, that is, the transceiving unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, transmitter, or transmitting circuit.
  • the processing unit 1320 is configured to perform steps 810 and 820 in FIG. 8, steps 910 to 940 in FIG. 9, and steps 1010 to 1020 in FIG. 10, and/or the processing unit 1320 is also configured to Perform other processing-related steps performed by the terminal device in the embodiment of this application; the transceiver unit 1310 is used to perform step 901 in FIG. 9 and step 1001 in FIG. 10, and/or the transceiver unit 1310 is also used to perform Perform other sending and receiving-related steps.
  • FIG. 13 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 13.
  • the chip When the communication device 1300 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1400, and the communication device 1400 may be a network device or a chip.
  • the communication apparatus 1400 may be used to perform operations performed by a network device in the foregoing method embodiments, or may be performed by a component (for example, a chip or a circuit) that can be used for a network device.
  • FIG. 14 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 1410 and part 1420.
  • the 1410 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1420 part is mainly used for baseband processing and controlling the base station.
  • the 1410 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1420 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to execute the processing operations performed by the network device in the foregoing method embodiment.
  • the transceiver unit of part 1410 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1410 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1410 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1420 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 1410 is used to perform the sending operation of step 901 in FIG. 9 and step 1001 in FIG. 10, and/or the transceiving unit of part 1410 is also used to perform the embodiment of the present application.
  • Other steps related to sending and receiving are executed by the network device in, part 1420 is used to execute the steps related to the processing executed by the network device in the embodiment of the present application.
  • FIG. 14 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 14.
  • the chip When the communication device 1400 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including AAU, CU node and/or DU node, or BBU and adaptive radio unit (ARU), or BBU; It may also be a customer premises equipment (CPE), or it may be in other forms, which is not limited in this application.
  • AAU CU node and/or DU node
  • BBU and adaptive radio unit
  • ARU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the above-mentioned CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes the steps shown in FIGS. 8 to 10. The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 8 to 10 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the foregoing device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal with one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal with one or more data packets such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • Communicate through local and/or remote processes Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种小区选择的方法与通信装置。该方法可以包括:终端设备进入小区选择或小区重选,其中,用于终端设备进行小区选择或小区重选的小区包括地面小区和卫星小区;在地面小区中包括合适的小区的情况下,终端设备优先选择在地面小区中驻留;其中,合适的小区表示终端设备经过小区选择或者小区重选选择的小区。通过该方法,考虑到卫星通信的引入,可以优化现有的小区选择或小区重选机制,即终端设备进入小区选择或小区重选过程后,只要地面小区有合适的小区(即目标小区),则终端设备选择驻留在地面小区。

Description

小区选择的方法与通信装置 技术领域
本申请涉及通信领域,并具体涉及一种小区选择的方法与通信装置。
背景技术
地面通信系统无法实现真正的“无缝覆盖”。例如,在人口密度较低的农村地区通常没有足够的蜂窝网,又如,在海上或航空领域更是无法通过地面网络来实现通信。
由于卫星通信的“无所不在”和“直接面向用户”的特点,使得卫星通信技术在卫星电视直播业务、移动卫星业务、因特网接入、专用网络、军事通信等领域得到了快速发展。因此,在第三代合作伙伴计划(3rd generation partnership project,3GPP)协议关于第五代(5th generation,5G)系统的讨论中,卫星将作为新的接入方式。
那么,在引入卫星通信后,如何进行小区选择或重选,成为亟待解决的问题。
发明内容
本申请提供一种小区选择的方法与通信装置,可以优化现有的小区选择机制或小区重选机制。
第一方面,提供了一种小区选择的方法。该方法可以由终端设备实现,或者可以由可用于终端设备的部件(例如芯片或者电路)实现,本申请对此不作限定。
该方法可以包括:终端设备进入小区选择或小区重选,其中,能够用于所述终端设备进行所述小区选择或小区重选的小区包括地面小区和卫星小区;在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留。
可选地,终端设备进入小区选择或小区重选,即可以表示,终端设备进入了小区选择或小区重选的过程。
可选地,地面小区,即地面网络(terrestrial network,TN)小区,用于表示部署在地面上的小区。卫星小区,即非地面通信(non-terrestrial network,NTN)小区,用于表示部署在卫星上的小区。
可选地,能够用于所述终端设备进行所述小区选择或小区重选的小区包括地面小区和卫星小区,可以表示,终端设备待测量的小区包括地面小区和卫星小区。也就是说,终端设备在小区选择或小区重选中,能够测量的小区包括地面小区和卫星小区。
可选地,能够用于所述终端设备进行所述小区选择或小区重选的小区包括地面小区和卫星小区,可以表示,终端设备确定能够作为服务小区的小区包括地面小区和卫星小区。或者说,地面小区和卫星小区中均包括目标小区。也就是说,终端设备在小区选择或小区重选中,可以选择地面小区和卫星小区作为服务小区。
可选地,所述终端设备确定在所述地面小区中的所述目标小区驻留,可以替换为,所述终端设备确定或选择所述地面小区中的所述目标小区为服务小区。所述地面小区中的所 述目标小区,可以为当前的服务小区也可以为邻小区。
可选地,目标小区可以表示,在小区选择或小区重选中选择的合适的小区,或者说,在小区选择或小区重选中确定可以驻留的小区,或者说,在小区选择或小区重选中确定能够为终端设备提供服务的小区。
基于上述技术方案,地面小区的优先级高于卫星小区的优先级。终端设备进入小区选择或小区重选后,只要地面小区有合适的小区(即目标小区),则终端设备选择驻留在地面小区。也就是说,终端设备在小区选择或小区重选中,只要地面小区有合适的小区,终端设备就选择地面小区作为服务小区。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备测量M1个第一小区,所述第一小区为所述地面小区,M1为大于1或等于1的整数;所述在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留,包括:在所述M1个第一小区中包括所述目标小区的情况下,所述终端设备确定在所述M1个第一小区中的所述目标小区驻留。
基于上述技术方案,终端设备可以仅测量地面小区,只要地面小区有合适的小区(即目标小区),终端设备就选择地面小区作为服务小区。即不需要再测量卫星小区,从而可以帮助终端设备省电。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:在所述M1个第一小区中不包括所述目标小区的情况下,所述终端设备测量N1个第二小区,所述第二小区为所述卫星小区,N1为大于1或等于1的整数。
基于上述技术方案,终端设备先测量地面小区,在地面小区不包括合适的小区(即目标小区)的情况下,终端设备可以再去测量卫星小区,以便找到可以驻留的小区,保证通信。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备测量M2个第一小区和N2个第二小区,所述第一小区为所述地面小区,所述第二小区为所述卫星小区,M2、N2均为大于1或等于1的整数;所述在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留,包括:在所述M2个第一小区和所述N2个第二小区中均包括所述目标小区的情况下,所述终端设备确定在所述M2个第一小区中的所述目标小区驻留。
基于上述技术方案,地面小区的优先级高于卫星小区的优先级。
结合第一方面,在第一方面的某些实现方式中,所述目标小区为满足小区选择准则的小区,或,所述目标小区为满足小区重选准则的小区。
关于小区选择准则和小区重选准则下文介绍。
可选地,小区满足以下任意一项时,也可以为目标小区:小区属于被选择的公共陆地移动网络(public land mobile network,PLMN)(selected PLMN);小区属于已注册的PLMN(registered PLMN);小区没有被禁止(bar)接入;小区至少属于一个不在禁止跟踪区域(Forbidden Tracking Areas)里的TA,且该TA属于selected PLMN或registered PLMN或等效PLMN(equivalent PLMN)。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备测量所述地面小区的接收信号强度值和所述卫星小区的接收信号强度值;在所述地面小区的接 收信号强度值与所述卫星小区的接收信号强度值相等的情况下,所述地面小区的R值大于所述卫星小区的R值。
可选地,终端设备可以基于不同的公式计算地面小区和卫星小区的R值。
可选地,可以给卫星小区减去正的偏移量(offset);或者,可以给卫星小区添加负的offset;或者,可以给地面小区添加正的offset;或者,可以给地面小区减去负的offset。具体的下文介绍。
基于上述技术方案,终端设备在对同一优先级上的小区计算R值进行排序时,可以通过添加或减去offset,来优先考虑地面小区。
第二方面,提供了一种小区选择的方法。该方法可以由终端设备实现,或者可以由可用于终端设备的部件(例如芯片或者电路)实现,本申请对此不作限定。
该方法可以包括:终端设备进入小区重选,其中,能够用于所述终端设备进行所述小区重选的小区包括地面小区和卫星小区;在所述小区重选中,满足以下任意一项:所述卫星小区的小区重选不考虑好波束数;或,所述卫星小区和所述地面小区不在同一频率或同一频率优先级;或,在所述卫星小区和所述地面小区在同一频率或同一频率优先级的情况下,所述卫星小区和所述地面小区分开进行排序;或,在所述卫星小区和所述地面小区在同一频率或同一频率优先级、且所述卫星小区和所述地面小区一起排序的情况下,所述地面小区的好波束数为1。
可选地,卫星小区的小区重选不考虑好波束(good beam)数,可以认为是针对卫星小区的重选;或者,可以用于:在小区重选中,地面小区和卫星小区不需要一起排序的场景。
可选地,卫星小区和地面小区不能在同一频率(或频率优先级),可以是协议规定的。即,可以预先规定卫星小区和地面小区不能在同一频率,或不能在同一频率优先级,从而可以避免卫星小区和地面小区在一起排序。
可选地,卫星小区和地面小区可以分开进行排序,如只进行卫星小区的排序或者只进行地面小区的排序或者分别进行排序。
基于上述方案,能够解决卫星小区因为只有一个波束而无法采用通过比较好波束(good beam)数来决定重选目标小区的问题。
第三方面,提供了一种提供了一种小区选择的方法。该方法可以由网络设备实现,或者可以由可用于网络设备的部件(例如芯片或者电路)实现,本申请对此不作限定。
该方法可以包括:向终端设备发送通知消息,该通知消息用于通知终端设备:在地面小区中包括目标小区的情况下,所述终端设备选择所述地面小区中的所述目标小区驻留。
结合第三方面,在第三方面的某些实现方式中,所述目标小区为满足小区选择准则的小区,或,所述目标小区为满足小区重选准则的小区。
第四方面,提供一种通信装置,所述通信装置用于执行上述第一方面或第二方面提供的通信方法。具体地,所述通信装置可以包括用于执行第一方面或第二方面提供的通信方法的模块。
第五方面,提供一种通信装置,所述通信装置用于执行上述第三方面提供的通信方法。具体地,所述通信装置可以包括用于执行第三方面提供的通信方法的模块。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存 储器中的指令,以实现上述第一方面或第二方面、以及第一方面或第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面以及第三方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第二方面、以及第一方面或第二方面的任一可能的实现方式中的通信方法。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第三方面以及第三方面的任一可能的实现方式中的通信方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第二方面提供的通信方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第三方面提供的通信方法。
第十二方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1至图4是适用于本申请实施例的卫星通信的示意图。
图5和图6是适用于本申请实施例的IAB系统的示意图。
图7是适用于本申请实施例的网络架构的示意图。
图8是根据本申请实施例提供的小区选择的方法的示意图。
图9是根据本申请一实施例提供的小区选择的方法的示意图。
图10是根据本申请又一实施例提供的小区选择的方法的示意图。
图11为本申请实施例提供的通信装置的示意性框图。
图12为本申请实施例提供的通信装置的另一示意性框图。
图13为本申请实施例提供的终端设备的示意性结构图。
图14为本申请实施例提供的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了更好地理解本申请实施例,下面先介绍本申请实施例可适用的通信系统,以及涉及到的概念。
本申请实施例的技术方案可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)系统、第五代移动通信(the 5th Generation,5G)系统、机器与机器通信(machine to machine,M2M)系统、非地面通信(non-terrestrial network,NTN)系统、或者未来演进的其它通信系统。其中,5G的无线空口技术称为新空口(new radio,NR),5G系统也可称为NR系统。NTN系统也可以称为卫星通信系统。
地面通信系统有时无法实现真正的“无缝覆盖”。例如,在人口密度较低的农村地区通常没有足够的蜂窝网。又如,在海上和航空领域,更是无法通过地面网络来实现通信。由于卫星通信的“无所不在”和“直接面向用户”的特点,使得卫星通信技术在卫星电视直播业务、移动卫星业务、因特网接入、专用网络、军事通信等领域得到了快速发展。
按照卫星高度,即卫星轨道高度,可以将卫星系统分为低轨卫星(low earth orbit,LEO)、中轨卫星(medium earth orbit,MEO)、高轨卫星(geostationary earth orbit,GEO)(或者称为静止轨道卫星)。
其中,LEO的卫星高度约为:300千米(km)-1500km。MEO的卫星高度介于LEO和GEO之间。GEO,卫星运动速度与地球自转速度相同,相对地面保持静止状态;卫星高度约35768km。
图1至图4示出了适用于本申请实施例的卫星通信的几种示意性架构图。
图1示出了一种带有透明(transparent)卫星的无线接入网(radio access network,RAN)架构(RAN architecture with transparent satellite)。
如图1所示,在该场景中,可以包括:用户设备(user equipment,UE)、卫星、NTN网关(gateway)、基站(如NR基站(next generation node B,gNB))、5G核心网(core network,CN)、数据网(data network)。
其中,UE可以是各种移动终端,例如,移动卫星电话,也可以是各种固定终端,例如,通信地面站等。
终端可以是无线终端也可以是有线终端。无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经RAN与一个或多个核心网进行通信。无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,MB)、移动台(Mobile)、远程站(remote station,RS)、接入点(access point,AP)、远程终端(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、终端设备(user device,UD)。以卫星电话、车载卫星系统为代表的终端设备可以与卫星直接通信。以地面通信站为代表的固定终端需要经地面站中继后才能与卫星通信。终端设备通过安装有无线收发天线实现对通信状态的设置、获取,完成通信。
其中,卫星可以由静止轨道卫星(GEO)或者非静止轨道(none-geostationary earth orbit,NGEO)卫星(如LEO或MEO)构成,或者,也可以由两者构成的多颗卫星网络构成。
在图1所示的transparent场景中,卫星主要是作为层1(layer 1,L1)的中继(relay)(L1 relay),可以将物理层信号重新生成,高层不可见。卫星的作用可以包括但不限于:射频滤波(radio frequency filtering)、变频放大(frequency conversion and amplification)。在图1中,卫星可以向终端设备传输下行数据。
卫星和NTN网关可以作为射频拉远单元(remote radio unit,RRU)。卫星和NTN网关之间可以通过Uu接口(如NR Uu接口)通信。gNB和核心网之间可以通过NG接口通信。核心网和数据之间可以通过N6接口通信。
图2是适用于本申请实施例的卫星通信的又一示意图。
在图2中,再生卫星(Regenerative satellite)没有卫星间链路(inter-satellite link,ISL)(Regenerative satellite without ISL)。
如图2所示,在该场景中,可以包括:UE、卫星、NTN网关、5G核心网、数据网。
关于各网元的介绍,可以参考图1中的描述,此处不再赘述。
在卫星通信系统中,卫星也可以称为卫星基站。在图2所示的场景下,卫星可以作为gNB。卫星作为gNB时,卫星的功能就类似于普通的gNB。例如,卫星作为gNB,可以处理有效载荷(payload)。
卫星和网关之间可以通过卫星无线电线接口(Satellite Radio Interface,SRI)上的NG接口通信。卫星和核心网之间可以通过NG接口通信。核心网和数据之间可以通过N6接口通信。
图2中,虚线是指卫星与终端之间的通信信号。在图2中,卫星基站可以向终端设备传输下行数据。其中,下行数据可以经过信道编码、调制映射后传输给终端设备。终端设 备也可以向卫星基站传输上行数据。其中,上行数据也可以经过信道编码、调制映射后传输给卫星基站。
图2中,实线指卫星与地面段的设备之间的通信信号,以及地面段的网元之间的通信信号。
图3是适用于本申请实施例的卫星通信的另一示意图。
在图3中,再生卫星有ISL。
如图3所示,在该场景中,可以包括:UE、卫星、NTN网关、5G核心网、数据网。
关于各网元的介绍,可以参考图1中的描述,此处不再赘述。
在图3所示的场景下,卫星可以作为gNB。卫星作为gNB时,卫星的功能就类似于普通的gNB。例如,卫星作为gNB,可以处理有效载荷(payload)。
图2和图3所示的场景中,卫星都可以作为gNB。区别在于,在图2所示的场景中不存在ISL,在图3所示的场景中存在ISL。
卫星和卫星之间可以通过ISL上的Xn接口通信。卫星和网关之间可以通过SRI上的NG接口通信。卫星和核心网之间可以通过NG接口通信。核心网和数据之间可以通过N6接口通信。
图3中,虚线是指卫星与终端之间的通信信号。在图3中,卫星基站可以向终端设备传输下行数据。其中,下行数据可以经过信道编码、调制映射后传输给终端设备。终端设备也可以向卫星基站传输上行数据。其中,上行数据也可以经过信道编码、调制映射后传输给卫星基站。
图3中,实线指卫星与地面段的设备之间的通信信号,以及地面段的网元之间的通信信号,以及卫星与卫星之间的通信信号。
图4是适用于本申请实施例的卫星通信的再一示意图。
图4示出了一种基于gNB-DU再生卫星的NG-RAN架构(NG-RAN with a regenerative satellite based on gNB-DU)。
如图4所示,在该场景中,可以包括:UE、卫星、NTN网关、集中式单元(centralized unit,CU)(如gNB-CU)、5G核心网、数据网。
关于各网元的介绍,可以参考图1中的描述,此处不再赘述。
在图4所示的场景下,卫星可以作为分布式单元(distributed unit,DU)(如gNB-DU)。卫星作为gNB-DU时,卫星的功能就类似于普通的分布式单元(distributed unit,DU)。
卫星和NTN网关之间可以通过SRI上的F1接口通信。卫星和gNB-CU之间(即gNB-DU与gNB-CU之间)可以通过F1接口通信。核心网和数据之间可以通过N6接口通信。
图4中,虚线是指卫星与终端之间的通信信号。在图4中,卫星基站可以向终端设备传输下行数据。其中,下行数据可以经过信道编码、调制映射后传输给终端设备。终端设备也可以向卫星基站传输上行数据。其中,上行数据也可以经过信道编码、调制映射后传输给卫星基站。
图4中,实线指卫星与地面段的设备之间的通信信号,以及地面段的网元之间的通信信号。
应理解,图1至图4仅是示例性说明,本申请实施例并未限于此。例如,图1至图4 中可以包括更多数量的终端设备。又如,图1至图4中还可以包括更多的NTN网关。
还应理解,上述结合图1至图4示例性地介绍了四种场景,本申请实施例并未限定于此。例如,卫星也可以作为接入回传一体化(integrated access and backhaul,IAB)节点。
IAB节点用于为无线接入无线回传节点的节点(例如,终端)提供无线回传(backhaul)服务。其中,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。IAB节点是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。在包含IAB节点的网络(如可以简称IAB网络)中,IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主基站(donor gNB)传输用户的业务数据。
示例性的,IAB节点还可以是用户驻地设备(customer premises equipment,CPE)、家庭网关(residential gateway,RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
由上可知,卫星通信的架构一般可以分为以下两大类。
一是transparent,即卫星做中继(relay),可以做射频过滤、放大等,将信号重新生成)。
二是regenerative,即卫星可以做gNB、DU、relay。在该类架构中,卫星做relay时,不是单纯relay,还带信号处理功能的,类似IAB。
应理解,上述示出的卫星通信的架构仅是示意性说明,并不对本申请实施例的保护范围造成限定。
图5和图6示出了适用于本申请实施例的IAB系统的示意图。
IAB技术,是指接入链路(access Link)和回传链路(backhaul Link)皆采用无线传输方案,避免光纤部署。
在IAB网络中,中继节点(relay node,RN)或者称IAB节点(IAB node),可以为终端设备提供无线接入服务,终端设备的业务数据可以由一个或多个IAB节点通过无线回传链路连接到宿主节点(IAB donor)或者说宿主基站(donor gNodeB,DgNB)传输。
如图5所示,一个IAB系统至少包括一个基站500,以及基站500所服务的一个或多个终端设备501,一个或多个中继节点(也即,IAB节点)510,以及IAB节点510所服务的一个或多个终端设备511。IAB节点510通过无线回传链路513连接到基站500。通常,基站500被称为宿主基站。可替换地,宿主基站在本申请中也称为宿主(donor)节点或IAB宿主(IAB donor)。除此之外,IAB系统还可以包括一个或多个中间IAB节点。例如,IAB节点520和IAB节点530。
基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站设备还可协调对空中接口的属性管理。例如,基站设备可以是LTE中的演进型基站或NR中的基站或接入点,本申请并不限定。应理解,本申请实施例中所述的基站不仅可以是基站设备,还可以是中继设备,或者具备基站功能的其他网元设备。
宿主基站可以是一个具有完整基站功能的接入网网元,还可以是CU和DU分离的形态,即宿主节点由宿主基站的集中式单元和宿主基站的分布式单元组成。本文中,宿主节点的集中式单元也称为IAB donor CU(也可称作donor CU,或直接称为CU)。宿主节点的分布式单元也称为IAB donor DU(或称作donor DU)。其中donor CU还有可能是控制 面(control plane,CP)(本文中简称为CU-CP)和用户面(user plane,UP)(本文中简称为CU-UP)分离的形态。例如CU可由一个CU-CP和一个或多个CU-UP组成。
在5G中,考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,在IAB网络中可能采用多跳组网。考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况。例如,链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。因此,IAB网络支持多跳组网,还可以支持多连接组网。
链路:可以表示一条路径中的两个相邻节点之间的路径。
接入链路:可以表示终端设备与基站之间,或者终端设备与IAB节点之间,或者终端设备与宿主节点之间,或者终端设备与宿主DU之间的链路。或者,接入链路包括某个IAB节点作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB节点作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入链路。本申请中,终端设备的接入链路为无线链路,故接入链路也可被称为无线接入链路。
回传链路:可以表示IAB节点作为无线回传节点时与父节点之间的链路。IAB节点作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
父节点与子节点:每个IAB节点将为其提供无线接入服务和/或无线回传服务的相邻节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。
可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。
如图6所示,IAB node 1的父节点为IAB donor,IAB node 1又为IAB node 2和IAB node 3的父节点,IAB node 2和IAB node 3均为IAB node4的父节点,IAB node 5的父节点为IAB node 3。UE的上行数据包可以经一个或多个IAB节点传输至宿主站点IAB donor后,再由IAB donor发送至移动网关设备(例如,5G核心网中的用户平面功能单元UPF)。UE的下行数据包将由IAB donor从移动网关设备处接收后,再通过IAB节点发送至UE。其中,UE1和宿主基站之间的数据传输有两条可用的路径。路径1:终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点,以及终端1→IAB节点4→IAB节点2→IAB节点1→宿主节点。终端2和宿主节点之间数据包的传输有三条可用的路径,分别为:终端2→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端2→IAB节点4→IAB节点2→IAB节点1→宿主节点,以及终端2→IAB节点5→IAB节点2→IAB节点1→宿主节点。
应理解,图6所示的IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如,图6中的IAB donor和另一IAB donor下的IAB node组成双连接为终端设备服务等,这里不一一列举。
本申请实施例中所涉及到的网络设备包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit, BBU)、演进的(evolved LTE,eLTE)基站、RAN中的基站(如NR基站(next generation node B,gNB))等。
基站可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离架构。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的,也可以部署在一起。
如图7所示,多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。
CU和DU可以根据无线网络的协议层划分。
例如,一种可能的划分方式是:CU用于执行无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU用于执行无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层,物理(physical)层等的功能。
可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,本申请实施例并不做限定。例如,可以将CU或者DU划分为具有更多协议层的功能。又如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以由不同的实体实现。例如,可以对CU的功能进行进一步切分,例如,将控制面(control panel,CP)和用户面(user panel,UP)分离,即CU的控制面(CU-CP)和CU用户面(CU-UP)。例如,CU-CP和CU-UP可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
上文结合图1至图7示例性地示出了适用于本申请实施例的几种可能的场景,应理解,本申请并未限定于此。
如前所述,在第三代合作伙伴计划(3rd generation partnership project,3GPP)协议关于5G系统的讨论中,卫星将作为新的接入方式。在卫星通信中,小区选择/重选是以地面网络(terrestrial network,TN)的小区选择/重选机制为基线的。
为便于理解,首先简单地介绍一下地面网络的小区选择/重选。
1、小区选择
当终端设备开机或发生无线链路失败等情况时,终端设备将执行小区搜索过程,并尽快选择合适的小区驻留,这个过程称为“小区选择”。
终端设备在小区搜索过程中会读取该小区的系统信息,获取到Qrxlevmeas、Qrxlevmin和Qrxlevminoffset等参数,终端设备根据S准则评估该小区是否是合适的小区,一旦找到 合适的小区,即,满足S准则的小区,则小区选择过程就完成了。如果该小区不是合适的小区,则终端设备继续进行搜索,直到找到合适的小区并驻留。
S准则公式:S rxlev>0,即小区的S值如果大于0,则说明该小区是合适的小区,即,适合驻留的小区,S rxlev的计算公式是:
S rxlev=Q rxlevmeas-(Q rxlevmin-Q rxlevminoffset)-P compensation
其中:
S rxlev:计算得到的小区选择接收电平值;
Q rxlevmeas:终端设备测量得到的接收信号强度值,该值为测量到的参考信号接收功率(reference signal receiving power,RSRP);
Q rxlevmin:该小区要求的最小接收信号强度值;
P compensation:(PEMAX–PUMAX)或0中的较大值,其中PEMAX为终端设备在接入该小区时,系统设定的最大允许发送功率;PUMAX是指根据终端设备等级规定的最大输出功率。
Q rxlevminoffset:该参数只有在终端设备正常驻留在一个虚拟专用移动网(virtual private mobile network,VPMN),周期性搜索一个高优先级的公共陆地移动网络(public land mobile network,PLMN)进行小区选择评估时才有效,该参数对Q rxlevmin进行一定的偏置。
需要说明的是,由于通信协议版本的演进,S准则公式和S rxlev的计算公式可能会由于某些原因发生改变,这里给出的公式只是例子,并不对公式本身做任何限定。
2、小区重选
当终端设备驻留在一个小区后,随着终端设备的移动,终端设备可能需要更换到另一个更高优先级或更好信号的小区驻留,这就是小区重选过程。小区选择是尽快找到一个合适小区的过程,小区重选是选择更适合小区的过程。为了终端设备的省电,协议规定了测量准则:
对于优先级高于本驻留小区的频率层或系统,终端设备始终对其进行测量;
如果驻留小区的S rxlev<=S intrasearch,终端设备启动对同频小区的测量,其中,S intrasearch是同频测量门限值;
如果驻留小区的S rxlev<=S nonintrasearch或S nonintrasearch未配置,终端设备启动对同优先级频率或低优先级频率及系统的测量;
在测量后,终端设备会判断是否执行小区重选到新的小区,重选标准如下:
高优先级频率或系统的重选标准:目标频率小区的S rxlev>T hreshx-high,且持续一定的时间,其中,T hreshx-high是指从当前服务载频重选到优先级高的频率时的门限值;
低优先级频率或系统的重选标准:驻留小区的S rxlev<T hreshserving-low,且持续一定的时间,其中,T hreshx-low是指从当前服务载频重选到优先级低的频率时的门限值;
同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序(ranking)标准。同频小区重选ranking标准定义如下,R s为当前驻留小区的ranking值,R n为邻小区的ranking值:
R s=Q meas_s+Q hyst–Q offset_temp,R n=Q meas_s–Q offset–Q offset_temp
其中:
Q hyst:迟滞值,用于防止乒乓重选;
Q meas_s:终端设备测量得到的驻留小区的接收信号强度值;
Q offset:对于同频,当Q offsets_n有效,取值为取值为Q offsets_n,否则取值为0;对于异频,当Q offsets_n有效,取值为Q offsets_n+Q offsetfrequency,否则取值为Q offsetfrequency
Q offset_temp:可以表示偏差量。偏差量例如可以是网络广播的、当终端设备在一个小区上发生RRC连接建立失败后,为该小区添加的偏差量。
终端设备会对所有满足小区选择S准则的小区进行ranking值的排序,重选时不是简单重选到排序最好的小区,而是找出排序时的最高ranking值,与它相差一定范围内(如x dB,其中x是可配的)的小区都认为是相近(similar)小区,在这些相近小区中,终端设备重选到拥有的好波束(good beam)数量最多的小区。
一般地,在当前驻留的小区的系统消息中会广播当前驻留小区和邻区的上面需要的配置参数,从而终端设备能计算得出R s和R n等参数。Q meas是终端设备测量得到的小区的接收信号强度值。每个小区的信号强度高于门限的至多N个波束(beam)可以被用来生成小区量(cell quality),小区量经过层3过滤后作为Q meas。其中,门限和N在广播消息中通知终端设备,N为大于1或等于1的整数。其中,高于门限的beam被认为是good beam。
需要说明的是,由于通信协议版本的演进,R s和R n的计算公式可能会由于某些原因发生改变,这里给出的公式只是例子,并不对公式本身做任何限定。
那么,在引入卫星通信后,考虑到终端设备在进行小区选择/重选时,待测量的小区可能包括卫星小区和地面小区。
有鉴于此,本申请提出一种方法,对现有的小区重选机制进行优化。
下面将结合附图详细说明本申请提供的各个实施例。
图8是本申请一实施例提供的一种小区选择的方法800的示意性交互图。方法800可以包括如下步骤。
810,终端设备进入小区选择或小区重选,其中,能够用于终端设备进行小区选择或小区重选的小区包括地面小区和卫星小区。
换句话说,终端设备将要进行小区选择或小区重选。
示例性地,当终端设备开机或发生无线链路失败等情况时,终端设备将执行小区搜索过程,即终端设备进入小区选择。
示例性地,当终端设备驻留在一个小区后,随着终端设备的移动,终端设备可能需要更换到另一个更高优先级或更好信号的小区驻留,即终端设备小区重选过程。
应理解,上述仅是示例性地介绍了终端设备进入小区选择或小区重选的场景,本申请实施例对终端设备何时进入小区选择或小区重选,或者,终端设备如何进入小区选择或小区重选,不作限定。
其中,地面小区,即地面网络(terrestrial network,TN)小区,用于表示部署在地面上的小区。卫星小区,即非地面通信(non-terrestrial network,NTN)小区,用于表示部署在卫星上的小区,如部署在GEO或MEO或LEO上的小区。
应理解,其只是为区分做的命名,并不对本申请实施例的保护范围造成限定。
可选地,能够用于终端设备进行小区选择或小区重选的小区包括地面小区和卫星小区。可以包括以下两种场景。
场景1,终端设备待测量的小区包括地面小区和卫星小区。也就是说,终端设备在小 区选择或小区重选过程中,能够测量的小区包括地面小区和卫星小区。
场景2,终端设备确定能够作为服务小区的小区包括地面小区和卫星小区。或者说,地面小区和卫星小区中均包括目标小区。也就是说,终端设备在小区选择或小区重选过程中,可以选择地面小区和卫星小区作为服务小区。
可选地,终端设备可以基于以下任一方法,判断一个小区为地面小区还是卫星小区。
方法1,系统信息(system information,SI)中携带小区类型。
例如,SI中携带的小区类型为:卫星小区或地面小区。又如,SI中携带的小区类型为:LEO或GEO,或者,SI中携带的小区类型为:LEO或MEO或GEO,当携带的小区类型为LEO或MEO或GEO,说明是卫星小区。
方法2,根据某些参数是否存在或者某些参数的取值来判断。
示例性地,可以新增一参数(如在广播消息中新增一参数),该参数用于表示小区为卫星小区或地面小区。
例如,可以根据该参数是否存在,确定小区为地面小区还是卫星小区。如当该参数存在时,则表示小区为卫星小区;当该参数未存在时,则表示小区为地面小区。
又如,可以根据该参数的取值,确定小区为地面小区还是卫星小区。如当该参数取值为“1”时,则表示小区为卫星小区;当该参数取值为“0”时,则表示小区为地面小区。或者,也可以复用现有的参数,对此不作限定。
上述示例性地列举了两种方法,本申请实施例并未限定于此,任何可以确定小区为地面小区还是卫星小区的方法都落入本申请实施例的保护范围。下文关于终端设备确定小区为地面小区还是卫星小区,不再介绍。
820,在地面小区中包括目标小区的情况下,终端设备确定在地面小区中的目标小区驻留。
可以理解,地面小区优先级高于卫星小区。
根据本申请实施例,只要地面小区存在合适的(suitable)小区,终端设备就优先驻留到地面小区,即终端设备优先选择或重选到地面小区。
其中,合适的小区,即目标小区,可以表示,在小区选择或小区重选过程中选择的合适的小区,或者说,在小区选择或小区重选过程中确定可以驻留的小区,或者说,在小区选择或小区重选过程中确定能够为终端设备提供服务的小区。
应理解,目标小区仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
下文,为便于描述,将合适的小区统称为目标小区,即终端设备可以驻留的小区称为目标小区。为区分,将地面小区中合适的小区,即地面小区中的目标小区称为目标地面小区,将卫星小区中合适的小区,即卫星小区中的目标小区称为目标卫星小区。
关于目标小区下文详细描述。
可选地,关于测量地面小区和卫星小区,可以包括以下两种情况。
情况1:终端设备优先测量地面小区。
示例性地,在上述场景1下,即终端设备待测量的小区包括地面小区和卫星小区的场景下,终端设备先测量地面小区。
进一步地,只要地面小区存在合适的小区,终端设备就去地面小区,即终端设备就选择地面小区作为服务小区或者终端设备选择在地面小区驻留。在地面小区不存在合适的小 区的情况下,终端设备再去考虑卫星小区。
情况2:终端设备同时测量地面小区和卫星小区。
应理解,此处同时测量,本领域技术人员应理解其含义,其并不限定时间上一定是同时进行的。此处,同时测量地面小区和卫星小区,是用于表示终端设备既测量地面小区又测量卫星小区。
示例性地,在上述场景2下,即终端设备可以选择地面小区和卫星小区作为服务小区的情况下,终端设备选择地面小区作为服务小区。可以理解,只要地面小区存在合适的小区,终端设备就去地面小区,即终端设备就选择地面小区作为服务小区或者终端设备选择在地面小区驻留。
下文结合图9和图10分别说明上述两种情况。
首先,结合图9说明上述情况1。
图9是根据本申请一实施例提供的小区选择的方法900的示意图。
可选地,方法900可以包括步骤901。
901,当前的服务小区向终端设备发送通知消息。
其中,当前的服务小区,即当前为终端设备提供服务的小区,其可以是地面小区,也可以是卫星小区,本申请实施例不作限定。
可选地,该通知消息可以是RRC释放消息,如终端设备从连接态(connected态)进入空闲态(idle态)或去激活态(inactive态)。或者,该通知消息可以包含在广播消息中,如系统信息块(system information block,SIB)。
该通知消息可以用于通知终端设备提高地面小区的选择或重选优先级,或者,该通知消息可以用于通知终端设备地面小区的选优先级高于卫星小区的优先级。也就是说,只要地面小区有合适的小区,终端设备就选择在地面小区驻留。
以广播消息为例,终端设备在小区选择或小区重选过程中,会接收广播消息。
例如,该广播消息可以包括针对第一小区的参数,如小区选择或小区重选过程中用的参数,用于判断是否选择在第一小区驻留,或是否重选到第一小区。其中,第一小区为部署在地面上的小区,第一小区可以是终端设备的服务小区,也可以是终端设备的邻小区。
可选地,该广播消息还可以包括针对第二小区的参数,如小区选择或小区重选过程中用的参数,用于判断是否选择在第二小区驻留,或是否重选到第二小区。其中,第二小区为部署在卫星上的小区,第二小区可以是终端设备的服务小区,也可以是终端设备的邻小区。
在下文中,为不失一般性,用第一小区表示部署在地面上的小区,第二小区表示部署在卫星上的小区。应理解,第一小区和第二小区仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
910,终端设备测量地面小区。
也就是说,在终端设备待测量的小区包括地面小区和卫星小区的场景下,终端设备先测量地面小区。
可选地,终端设备测量M1个第一小区,M1为大于1或等于1的整数。
也就是说,终端设备可以测量一个或多个第一小区。图9中为便于说明,示例性地列举了一个第一小区。应理解,本申请实施例并未限定于此。
终端设备先测量地面小区,只要地面小区有合适的小区,就考虑地面小区,否则才考虑卫星小区。这个准则高于小区选择或小区重选优先级。
可选地,关于终端设备测量地面小区的方式,本申请实施例不作限定。如可以采用上文所述的小区选择准则;或者,也可以采用上文所述的小区重选准则。
在地面小区包括目标小区(即目标地面小区)的情况下,方法900包括步骤920。
920,终端设备重选到目标地面小区。
可以理解,只要地面小区存在目标地面小区,终端设备就选择在目标地面小区驻留。该准则高于小区重选优先级。
例如,该目标地面小区可以为终端设备的服务小区,此时,终端设备重选到目标地面小区,可以理解为,终端设备继续驻留在该服务小区(即目标地面小区)。
又如,该目标地面小区也可以为终端设备的邻小区,此时,终端设备重选到目标地面小区,可以理解为,终端设备从服务小区重选到邻小区(即目标地面小区)。
可选地,在地面小区不包括目标小区(即目标地面小区)的情况下,方法900可以包括步骤930。
930,终端设备测量卫星小区。
可选地,在地面小区不包括目标地面小区的情况下,终端设备测量N1个第二小区,N1为大于1或等于1的整数。
也就是说,在地面小区不包括目标小区的情况下,终端设备才考虑卫星小区,即终端设备可以测量一个或多个第二小区。
940,终端设备重选到目标卫星小区。
可以理解,在地面小区不存在目标地面小区,且卫星小区存在目标卫星小区的情况下,终端设备选择在目标卫星小区驻留。
该目标卫星小区可以为终端设备的服务小区,也可以为终端设备的邻小区。
下文详细描述目标小区(如目标地面小区或目标卫星小区)。
可选地,目标小区可以满足以下任一条件。
条件1,目标小区为满足小区选择准则的小区。
也就是说,满足小区选择准则的小区认为是目标小区。
如,满足S准则的小区可以认为是目标小区。关于S准则可以参考上文描述。
条件1,可以理解为,通过小区选择确定的能够驻留的小区可以为目标小区。不管通过何种方式进行小区选择,只要通过小区选择确定能够驻留的小区均可以被认为是目标小区。
例如,终端设备测量第一小区,根据S准则公式,确定第一小区满足S准则,则终端设备确定该第一小区为目标地面小区。
又如,终端设备测量的一个或多个第一小区均不满足S准则,即终端设备确定地面小区中没有满足S准则的小区,则终端设备可以再去测量卫星小区。
应理解,由于通信协议版本的演进,小区选择准则,如地面小区的小区选择准则或卫星小区的小区选择准则,可能会发生改变。不管如何改变,只要是满足小区选择准则的都可以被认为是目标小区。
条件2,目标小区为满足小区重选准则的小区。
也就是说,满足小区重选准则的小区认为是目标小区。条件2可以包括以下几种情况。
(1)对于高优先级频点上的小区,该小区满足下面条件时,可以作为目标小区:小区的S值持续在一段时间内高于某个门限,并且终端设备驻留原小区的时间超过1秒(s)。
关于该时间参数和门限,本申请实施例不作限定。例如,该时间参数和门限均可以由广播消息发送。下文类似,后面不再赘述。
还应理解,上述终端设备驻留原小区的时间超过1s仅是一个示例,本申请不限于此。
例如,如果第一小区是高优先级频点的小区。终端设备测量第一小区,如果该第一小区的S值持续在一段时间内高于某个门限,并且终端设备驻留原小区的时间超过1s,则终端设备确定该第一小区为目标地面小区(即目标小区)。
可选地,如果最高优先级上多个小区符合条件,则选择最高优先级频率上的最优小区(通过R准则来排序)为目标地面小区(即目标小区)。
关于R准则可以参考上文描述。
(2)对于同频或同优先级频率上的小区,该小区满足下面条件时,可以作为目标小区:没有高优先级小区满足重选条件,并且小区的S值满足S准则(即,小区选择准则),并且该小区在持续在一段时间内优于服务小区(即根据R准则,优于服务小区),并且终端设备驻留原小区的时间超过1s。
应理解,上述终端设备驻留原小区的时间超过1s仅是一个示例,本申请不限于此。
例如,如果第一小区是同频或同优先级频率上的小区。没有高优先级小区满足重选条件,并且第一小区的S值满足S准则(即,小区选择准则),并且第一小区在持续在一段时间内优于服务小区(即根据R准则,优于服务小区),并且终端设备驻留原小区时间超过1s,则终端设备可以确定该第一小区为目标地面小区(即目标小区)。
可选地,如果有多个小区符合条件,则选择最高优先级频率上的最优小区(通过R准则来排序)为目标地面小区(即目标小区)。
(3)对于低优先级频率上的小区,该小区满足下面条件时,可以作为目标小区:没有高优先级或同优先级小区满足重选条件,并且服务小区质量低于某个门限,并且该小区质量持续一段时间内高于某个门限,并且终端设备驻留原小区的时间超过1s。
应理解,上述终端设备驻留原小区的时间超过1s仅是一个示例,本申请不限于此。
例如,如果第一小区是低优先级频率上的小区。没有高优先级或同优先级小区满足重选条件,并且服务小区质量低于某个门限,并且该第一小区质量持续一段时间内高于某个门限,并且终端设备驻留原小区的时间超过1s,则终端设备可以确定该第一小区为目标地面小区(即目标小区)。
可选地,如果有多个小区符合条件,则选择最高优先级频率上的最优小区(通过R准则来排序)为目标地面小区(即目标小区)。
应理解,上述仅是示例性地列举了条件2可能包括的情况,本申请实施例并未限定于此。
还应理解,由于通信协议版本的演进,小区重选准则,如地面小区的小区重选准则或卫星小区的小区重选准则,可能会发生改变。不管如何改变,只要是满足小区重选准则的都可以被认为是目标小区。
条件3,小区满足以下任意一项时,为目标小区:
小区属于被选择的PLMN(selected PLMN);小区属于已注册的PLMN(registered PLMN);小区没有被禁止(bar)接入;小区至少属于一个不在禁止跟踪区域(Forbidden Tracking Areas)里的TA,且该TA属于selected PLMN或registered PLMN或等效PLMN(equivalent PLMN)。
应理解,上述示例性地列举了目标小区可以满足的条件。例如,第一小区满足以上任一条件时,该第一小区可以作为目标小区。
基于上述方案,终端设备可以优先测量地面小区,只要地面小区有合适的小区(即目标小区),终端设备就选择或重选到地面小区。
下面结合图10说明上述的情况2。
图10是根据本申请又一实施例提供的小区选择的方法1000的示意图。
可选地,方法1000可以包括步骤1001。
1001,当前的服务小区向终端设备发送通知消息。
该步骤同方法900中的步骤901相似,具体地可以参考步骤901中的描述。
1010,终端设备测量地面小区和卫星小区。
其中,地面小区可以包含服务小区和邻小区(同频测量)或只包含邻小区(异频测量)。
可选地,终端设备测量M2个第一小区和N2个第二小区,M2、N2均为大于1或等于1的整数。也就是说,终端设备可以测量一个或多个第一小区,测量一个或多个第二小区。
关于第一小区和第二小区,可以参考方法900中的描述。
终端设备测量地面小区和卫星小区的方式可以一样,也可以不一样。
示例1,终端设备测量地面小区和卫星小区的方式可以一样。
例如,不管是地面小区,还是卫星小区,终端设备均基于上文所述的地面的小区选择准则(即S准则)或小区重选准则,确定该小区是否是合适的小区。
示例2,终端设备测量地面小区和卫星小区的方式也可以不一样。
例如,终端设备可以采用不同的标准计算地面小区和卫星小区的R值。
可选地,在计算同一频率优先级上的小区的R值时,通过添加偏移量(offset),来优先考虑地面小区。
可选地,终端设备测量地面小区的接收信号强度值和卫星小区的接收信号强度值,在地面小区的接收信号强度值与卫星小区的接收信号强度值相等的情况下,地面小区的R值大于卫星小区的R值。
下文详细说明上述示例2。
在M2个第一小区中包括目标小区(即目标地面小区)的情况下,方法1000还可以包括步骤1020。
1020,终端设备重选到目标地面小区。
也就是说,地面小区包括目标地面小区时,终端设备重选到目标地面小区。
关于目标小区、目标地面小区,可以参考方法900中的描述。
例如,在上述示例1中,即终端设备测量地面小区和卫星小区的方式一样的情况下,可以预先规定或者预先指示,终端设备优先选择地面小区。
又如,在上述示例2中,即终端设备测量地面小区和卫星小区的方式不一样的情况下, 可以预先规定或者预先指示,终端设备优先选择地面小区;或者,也可以基于不同的公式计算R值,以便优先考虑地面小区。
下面详细说明上述示例2,终端设备测量地面小区和卫星小区的方式也可以不一样。
例如,终端设备在对同一优先级上的小区计算R值进行排序时,通过添加offset,来优先考虑地面小区。
至少可以包括以下几种方案。
方案1,给卫星小区减去正的offset。
例如,将给卫星小区减去正的offset记作offset1 NTN,offset1 NTN为大于0的数。
对于地面小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算地面小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp,R n=Q meas_s–Q offset–Q offset_temp
对于卫星小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算卫星小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp–offset1 NTN,R n=Q meas_s–Q offset–Q offset_temp–offset1 NTN
关于各参数,可以参考上文的描述。可以看出,当其它参数都相同时,地面小区的R值大于卫星小区的R值,从而也可以实现优先考虑地面小区。
其中,该offset1 NTN可以是预先设置的或者协议规定的,对此不作限定。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此。
方案2,给卫星小区添加负的offset。
例如,将给卫星小区添加负的offset记作offset2 NTN,offset2 NTN为小于0的数。
对于地面小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算地面小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp,R n=Q meas_s–Q offset–Q offset_temp
对于卫星小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算卫星小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp+offset2 NTN,R n=Q meas_s–Q offset–Q offset_temp+offset2 NTN
关于各参数,可以参考上文的描述。可以看出,当其它参数都相同时,地面小区的R值大于卫星小区的R值,从而也可以实现优先考虑地面小区。
其中,该offset2 NTN可以是预先设置的或者协议规定的,对此不作限定。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此。
方案3,给地面小区添加正的offset。
例如,将给地面小区添加正的offset记作offset1 TN,offset1 TN为大于0的数。
对于地面小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算地面小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp+offset1 TN,R n=Q meas_s–Q offset–Q offset_temp+offset1 TN
其中,该offset1 TN可以是预先设置的或者协议规定的,对此不作限定。
对于卫星小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算卫星小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp,R n=Q meas_s–Q offset–Q offset_temp
关于各参数,可以参考上文的描述。可以看出,当其它参数都相同时,地面小区的R值大于卫星小区的R值,从而也可以实现优先考虑地面小区。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此。
方案4,给地面小区减去负的offset。
例如,将给地面小区减去负的offset记作offset2 TN,offset2 TN为大于0的数。
对于地面小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算地面小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp–offset2 TN,R n=Q meas_s–Q offset–Q offset_temp–offset2 TN
其中,该offset2 TN可以是预先设置的或者协议规定的,对此不作限定。
对于卫星小区:同优先级频率或系统的重选标准:小区重选到同优先级频率中小区基于同频小区重选的排序标准。R s为当前驻留小区的ranking值,R n为邻小区的ranking值。
例如,终端设备可以基于下面公式计算卫星小区的R值。
R s=Q meas_s+Q hyst–Q offset_temp,R n=Q meas_s–Q offset–Q offset_temp
关于各参数,可以参考上文的描述。可以看出,当其它参数都相同时,地面小区的R值大于卫星小区的R值,从而也可以实现优先考虑地面小区。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此
还应理解,上述示例性地列举了几种方案,本申请实施例并未限定于此,任何通过对上述公式进行改进,以使得优先考虑地面小区的方案都落入本申请实施例的保护范围。
还应理解,当图8或图9所示的实施例中需要用到R准则时,上述任意一种方案也可以用于图8或图9所示的实施例中。
基于上述方案,终端设备可以同时测量地面小区和卫星小区,只要地面小区有合适的小区(即目标小区),终端设备就选择或重选到地面小区。或者,可以基于不同的公式计算R值,以便优先考虑地面小区。
上述结合图8至图10主要介绍了在小区选择或小区重选时,优先考虑地面小区的情况。
下文本申请提出又一实施例。应理解,下文所述的实施例可以单独使用。
如上文所述,在地面网络中,同一优先级上的各个小区通过R准则排序的时候,并不是直接选到R值最高的,而是在与最高R值相差一定范围内(如记为rangeToBestCell)的小区中选择好波束(good beam)数最高的小区重选过去。
考虑到卫星小区一般只有1个波束(beam),故没法通过选good beam数最多的小区来进行小区重选,有鉴于此,本申请提出又一实施例:
终端设备进入小区重选,其中,能够用于终端设备进行小区重选的小区包括地面小区 和卫星小区;在小区重选中,满足以下至少一项:卫星小区的小区重选不考虑good beam数;或,卫星小区和地面小区不在同一频率或同一频率优先级;或,在卫星小区和地面小区在同一频率或同一频率优先级的情况下,卫星小区和地面小区分开进行排序;或,在卫星小区和地面小区在同一频率或同一频率优先级、且卫星小区和地面小区一起排序的情况下,地面小区的good beam数为1。
下面分别说明上述几种方案。
方案1,卫星小区的小区重选不考虑good beam数。
该方案可以认为是针对卫星小区的重选。或者,该方案可以用于:在小区重选中,地面小区和卫星小区不需要一起排序的场景。
例如,对于卫星小区,可以不配置rangeToBestCell。或者即使配置了rangeToBestCell,终端设备也忽略rangeToBestCell。
方案2,协议规定卫星小区和地面小区不能在同一频率(或频率优先级)。
考虑到卫星小区和地面小区可能需要在一起排序,如同一频率上的小区(包括卫星小区和地面小区)需要在一起排序,或者,同一优先级上的不同频率上的小区(包括卫星小区和地面小区)需要在一起排序。故可以预先规定卫星小区和地面小区不能在同一频率,或不能在同一频率优先级,从而可以避免卫星小区和地面小区在一起排序。
方案3,如果卫星小区和地面小区在同一频率(或频率优先级),则分开进行排序。
例如,终端设备可以选择重选到排序最好的地面小区(best ranked TN cell)或排序最好的卫星小区(best ranked NTN cell)。
又如,也可以由驻留小区指示。如驻留小区可以向终端设备指示重选到best ranked TN cell或优先选择驻留地面小区;或者,驻留小区可以向终端设备指示重选到best ranked NTN cell或优先选择驻留卫星小区。
可选地,当驻留小区向终端设备指示优先驻留地面小区时,终端设备可以只对地面小区进行排序;当驻留小区向终端设备指示优先驻留卫星小区时,终端设备可以只对卫星小区进行排序。
方案4,如果卫星小区和地面小区在同一频率(或同一频率优先级),一起排序,但不考虑多beam,即认为地面小区的good beam数也为1。
可以看出,上述方案1可以认为是针对卫星小区的重选提出的方案,或者说,在小区重选过程中,地面小区和卫星小区不需要一起排序的场景;方案2至方案4是考虑到卫星小区和地面小区可能需要在一起排序提出的方案。
应理解,上述几种方案仅是示例性说明,本申请实施例不限于此。
基于上述方案,能够解决卫星小区因为只有一个beam而无法采用通过比较good beam数来决定重选目标小区的问题。
基于上述技术方案,考虑到卫星通信的引入,本申请提出优先考虑地面小区,即终端设备优先选择驻留在地面小区。例如,终端设备可以先测量地面小区,只要地面小区有合适的小区,则选择驻留在该地面小区上。又如,终端设备也可以同时测量地面小区和卫星小区,只要地面小区有合适的小区,则选择驻留在该地面小区上;或者,基于不同的公式计算地面小区和卫星小区的R值,以便优先选择地面小区。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方 案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图8至图10详细说明了本申请实施例提供的方法。以下,结合图11至图14详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图11为本申请实施例提供的通信装置1100的示意性框图。该通信装置1100包括收发单元1110和处理单元1120。收发单元1110可以与外部进行通信,处理单元1110用于进行数据处理。收发单元1110还可以称为通信接口或通信单元。
可选地,该通信装置1100还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元1120可以读取存储单元中的指令或者数据。
该通信装置1100可以用于执行上文方法实施例中终端设备所执行的动作,收发单元1110用于执行上文方法实施例中终端设备执行的收发相关的操作,处理单元1120用于执行上文方法实施例中终端设备执行的处理相关的操作,这时,该通信装置1100可以为终端设备或者可以为可配置于终端设备的部件或者组件。
或者,该通信装置1100可以用于执行上文方法实施例中网络设备所执行的动作,收发单元1110用于执行上文方法实施例中网络设备执行的收发相关的操作,处理单元1120用于执行上文方法实施例中网络设备执行的处理相关的操作,这时,该通信装置1100可以为网络设备,或者可以为可配置于网络设备的部件或者组件。
作为一种设计,该通信装置1100用于执行上文方法实施例中终端设备所执行的动作。处理单元1120,用于进入小区选择或小区重选,其中,能够用于通信装置1100进行小区选择或小区重选的小区包括地面小区和卫星小区;在地面小区中包括目标小区的情况下,确定在地面小区中的目标小区驻留。
可选地,收发单元1110用于,接收通知消息。
可选地,处理单元1120用于,测量M1个第一小区,第一小区为地面小区,M1为大于1或等于1的整数;在M1个第一小区中包括目标小区的情况下,确定在M1个第一小区中的目标小区驻留。
可选地,处理单元1120用于,在M1个第一小区中不包括目标小区的情况下,测量N1个第二小区,第二小区为卫星小区,N1为大于1或等于1的整数。
可选地,处理单元1120用于,测量M2个第一小区和N2个第二小区,第一小区为地面小区,第二小区为卫星小区,M2、N2均为大于1或等于1的整数;在M2个第一小区和N2个第二小区中均包括目标小区的情况下,确定在M2个第一小区中的目标小区驻留。
可选地,目标小区为满足小区选择准则的小区,或,目标小区为满足小区重选准则的小区。
可选地,处理单元1120用于,测量地面小区的接收信号强度值和卫星小区的接收信号强度值;在地面小区的接收信号强度值与卫星小区的接收信号强度值相等的情况下,地面小区的R值大于卫星小区的R值。
作为又一种设计,该通信装置1100用于执行上文方法实施例中终端设备所执行的动作。处理单元1120,用于进入小区选择或小区重选,其中,能够用于通信装置1100进行小区选择或小区重选的小区包括地面小区和卫星小区;在小区重选中,满足以下任意一项:卫星小区的小区重选不考虑好波束数;或,卫星小区和地面小区不在同一频率或同一频率优先级;或,在卫星小区和地面小区在同一频率或同一频率优先级的情况下,卫星小区和地面小区分开进行排序;或,在卫星小区和地面小区在同一频率或同一频率优先级、且卫星小区和地面小区一起排序的情况下,地面小区的好波束数为1。
作为另一种设计,通信装置1100用于执行上文方法实施例中网络设备所执行的动作。收发单元1110,用于向终端设备发送通知消息,该通知消息用于通知终端设备:在地面小区中包括目标小区的情况下,终端设备选择地面小区中的目标小区驻留;其中,目标小区为能够终端设备提供服务的小区。
上文实施例中的处理单元1120可以由处理器或处理器相关电路实现。收发单元1110可以由收发器或收发器相关电路实现。收发单元1110还可称为通信单元或通信接口。存储单元可以通过存储器实现。
如图12所示,本申请实施例还提供一种通信装置1200。该通信装置1200包括处理器1210,处理器1210与存储器1220耦合,存储器1220用于存储计算机程序或指令或者数据,处理器1210用于执行存储器1220存储的计算机程序或指令或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1200包括的处理器1210为一个或多个。
可选地,如图12所示,该通信装置1200还可以包括存储器1220。
可选地,该通信装置1200包括的存储器1220可以为一个或多个。
可选地,该存储器1220可以与该处理器1210集成在一起,或者分离设置。
可选地,如图12所示,该通信装置1200还可以包括收发器1230,收发器1230用于信号的接收和/或发送。例如,处理器1210用于控制收发器1230进行信号的接收和/或发送。
作为一种方案,该通信装置1200用于实现上文方法实施例中由终端设备执行,或者 可以由可用于终端设备的部件(例如芯片或者电路)执行的操作。
例如,处理器1210用于实现上文方法实施例中由终端设备执行,或者可以由可用于终端设备的部件(例如芯片或者电路)执行的处理相关的操作,收发器1230用于实现上文方法实施例中由终端设备执行,或者可以由可用于终端设备的部件(例如芯片或者电路)执行的收发相关的操作。
作为另一种方案,该通信装置1200用于实现上文方法实施例中由网络设备执行,或者可以由可用于网络设备的部件(例如芯片或者电路)执行的操作。
例如,处理器1210用于实现上文方法实施例中由网络设备执行,或者可以由可用于网络设备的部件(例如芯片或者电路)执行的处理相关的操作,收发器1230用于实现上文方法实施例中由网络设备执行,或者可以由可用于网络设备的部件(例如芯片或者电路)执行的收发相关的操作。
本申请实施例还提供一种通信装置1300,该通信装置1300可以是终端设备也可以是芯片。该通信装置1300可以用于执行上述方法实施例中由终端设备执行,或者可以由可用于终端设备的部件(例如芯片或者电路)所执行的操作。
当该通信装置1300为终端设备时,图13示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元1310也可以称为收发器、收发机、收发装置等。处理单元1320也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电 路等。
例如,在一种实现方式中,处理单元1320用于执行图8中的步骤810和820、图9中步骤910至940、图10中的步骤1010至1020,和/或处理单元1320还用于执行本申请实施例中由终端设备执行的其他处理相关的步骤;收发单元1310用于执行图9中的步骤901、图10中的步骤1001,和/或收发单元1310还用于执行由终端设备执行的其他收发相关的步骤。
应理解,图13仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图13所示的结构。
当该通信装置1300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1400,该通信装置1400可以是网络设备也可以是芯片。该通信装置1400可以用于执行上述方法实施例中由网络设备执行,或者可以由可用于网络设备的部件(例如芯片或者电路)所执行的操作。
当该通信装置1400为网络设备时,例如为基站。图14示出了一种简化的基站结构示意图。基站包括1410部分以及1420部分。1410部分主要用于射频信号的收发以及射频信号与基带信号的转换;1420部分主要用于基带处理,对基站进行控制等。1410部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1420部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备执行的处理操作。
1410部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1410部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1410部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1420部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1410部分的收发单元用于执行图9中的步骤901、图10中的步骤1001的发送操作,和/或1410部分的收发单元还用于执行本申请实施例中由网络设备执行的其他收发相关的步骤;1420部分用于执行本申请实施例中由网络设备执行的处理相关的步骤。
应理解,图14仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图14所示的结构。
当该通信装置1400为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括AAU,还可以包括CU节点和/或DU节点,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、 同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图8至图10所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图8至图10所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种小区选择的方法,其特征在于,包括:
    终端设备进入小区选择或小区重选,其中,能够用于所述终端设备进行所述小区选择或小区重选的小区包括地面小区和卫星小区;
    在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备测量M1个第一小区,所述第一小区为所述地面小区,M1为大于1或等于1的整数;
    所述在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留,包括:
    在所述M1个第一小区中包括所述目标小区的情况下,所述终端设备确定在所述M1个第一小区中的所述目标小区驻留。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述M1个第一小区中不包括所述目标小区的情况下,所述终端设备测量N1个第二小区,所述第二小区为所述卫星小区,N1为大于1或等于1的整数。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备测量M2个第一小区和N2个第二小区,所述第一小区为所述地面小区,所述第二小区为所述卫星小区,M2、N2均为大于1或等于1的整数;
    所述在所述地面小区中包括目标小区的情况下,所述终端设备确定在所述地面小区中的所述目标小区驻留,包括:
    在所述M2个第一小区和所述N2个第二小区中均包括所述目标小区的情况下,所述终端设备确定在所述M2个第一小区中的所述目标小区驻留。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述目标小区为满足小区选择准则的小区,或,所述目标小区为满足小区重选准则的小区。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备测量所述地面小区的接收信号强度值和所述卫星小区的接收信号强度值;
    在所述地面小区的接收信号强度值与所述卫星小区的接收信号强度值相等的情况下,所述地面小区的R值大于所述卫星小区的R值。
  7. 一种通信装置,其特征在于,包括用于实现如权利要求1至6中任一项所述的方法的单元。
  8. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至6中任一项所述的方法被执行。
  9. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求1至6中任一项所述的方法的计算机程序或者指令。
PCT/CN2019/105780 2019-09-12 2019-09-12 小区选择的方法与通信装置 WO2021046821A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/105780 WO2021046821A1 (zh) 2019-09-12 2019-09-12 小区选择的方法与通信装置
CN201980100105.5A CN114342469B (zh) 2019-09-12 2019-09-12 小区选择的方法与通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105780 WO2021046821A1 (zh) 2019-09-12 2019-09-12 小区选择的方法与通信装置

Publications (1)

Publication Number Publication Date
WO2021046821A1 true WO2021046821A1 (zh) 2021-03-18

Family

ID=74866972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105780 WO2021046821A1 (zh) 2019-09-12 2019-09-12 小区选择的方法与通信装置

Country Status (2)

Country Link
CN (1) CN114342469B (zh)
WO (1) WO2021046821A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082191A1 (zh) * 2021-11-12 2023-05-19 Oppo广东移动通信有限公司 一种无线通信方法、装置、通信设备及存储介质
WO2023207666A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 卫星通信方法及装置
WO2023209546A1 (en) * 2022-04-25 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection in non-terrestrial networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280178A1 (en) * 2010-05-12 2011-11-17 ODN, Inc. Method and System for Providing Emergency Communications via Satellite
CN104185233A (zh) * 2014-09-17 2014-12-03 陕西浩瀚新宇科技发展有限公司 一种双模移动终端切换方法
CN104184515A (zh) * 2014-09-17 2014-12-03 陕西浩瀚新宇科技发展有限公司 一种双模移动终端发送测量控制方法
CN106788678A (zh) * 2016-12-16 2017-05-31 中国电子科技集团公司第五十四研究所 一种基于时间抢占预留信道的星地网络切换方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20080493A1 (it) * 2008-06-23 2009-12-24 Tek Global Srl Kit per la riparazione e il gonfiaggio di articoli gonfiabili provvisto di un manometro perfezionato e relativo metodo
CN104469872B (zh) * 2013-09-13 2018-05-11 中国电信股份有限公司 跨系统的数据业务双向切换方法、系统与双模终端
CN106304227A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种卫星通讯链路的接入方法及接入终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280178A1 (en) * 2010-05-12 2011-11-17 ODN, Inc. Method and System for Providing Emergency Communications via Satellite
CN104185233A (zh) * 2014-09-17 2014-12-03 陕西浩瀚新宇科技发展有限公司 一种双模移动终端切换方法
CN104184515A (zh) * 2014-09-17 2014-12-03 陕西浩瀚新宇科技发展有限公司 一种双模移动终端发送测量控制方法
CN106788678A (zh) * 2016-12-16 2017-05-31 中国电子科技集团公司第五十四研究所 一种基于时间抢占预留信道的星地网络切换方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082191A1 (zh) * 2021-11-12 2023-05-19 Oppo广东移动通信有限公司 一种无线通信方法、装置、通信设备及存储介质
WO2023207666A1 (zh) * 2022-04-24 2023-11-02 华为技术有限公司 卫星通信方法及装置
WO2023209546A1 (en) * 2022-04-25 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection in non-terrestrial networks

Also Published As

Publication number Publication date
CN114342469A (zh) 2022-04-12
CN114342469B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11039366B2 (en) Method and apparatus for reselecting path for IAB relaying in wireless communication system
WO2020259241A1 (zh) 一种ntn中小区选择的方法及装置
US10182383B2 (en) Method of handling cell reselection
WO2022143564A1 (zh) 一种小区选择方法及装置
WO2021062599A1 (zh) 通信方法、小区测量的方法与通信装置
RU2523688C2 (ru) Способ и устройство в беспроводной сети для определения целевого значения принимаемой мощности восходящей линии связи
US20220225150A1 (en) Cell Measurement Method and Communications Apparatus
WO2021046821A1 (zh) 小区选择的方法与通信装置
US11012871B2 (en) Apparatus and method
WO2022067643A1 (zh) 一种小区选择方法、寻呼方法及装置
US20220217602A1 (en) Cell reselection method and apparatus
US20230022283A1 (en) Apparatus, method and computer program for ue cell selection control in non-terrestrial networks
US20230125129A1 (en) Method and apparatus for cell selection, terminal, network device and storage medium
EP4250817A1 (en) Cell selection method and apparatus
US11490321B2 (en) Method and apparatus for backhaul link selection
WO2022027187A1 (zh) 一种公共陆地移动网络选择方法及装置
WO2022001764A1 (zh) 一种小区选择方法及装置
WO2023082191A1 (zh) 一种无线通信方法、装置、通信设备及存储介质
US20230139924A1 (en) Cell Selection Method and Apparatus
WO2023275997A1 (ja) ネットワークノード及び通信方法
WO2022198544A1 (zh) 无线通信方法、终端设备和网络设备
US20240064629A1 (en) Cell determination method and electronic device
WO2024016238A1 (zh) 无线通信的方法及装置
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2022206557A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944980

Country of ref document: EP

Kind code of ref document: A1