WO2022198544A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022198544A1
WO2022198544A1 PCT/CN2021/082894 CN2021082894W WO2022198544A1 WO 2022198544 A1 WO2022198544 A1 WO 2022198544A1 CN 2021082894 W CN2021082894 W CN 2021082894W WO 2022198544 A1 WO2022198544 A1 WO 2022198544A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
new cell
terminal device
signal quality
serving cell
Prior art date
Application number
PCT/CN2021/082894
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/082894 priority Critical patent/WO2022198544A1/zh
Priority to CN202180074757.3A priority patent/CN116391447A/zh
Publication of WO2022198544A1 publication Critical patent/WO2022198544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method, a terminal device, and a network device.
  • Non-Terrestrial Networks NTN
  • the embodiments of the present application provide a wireless communication method, terminal device, and network device, which can quickly access a new cell for NTN, thereby reducing service interruption and improving communication quality.
  • an embodiment of the present application provides a wireless communication method, including:
  • the first adjustment amount is used to represent the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell leaves or when the new cell arrives.
  • an embodiment of the present application provides a wireless communication method, including:
  • the configuration information includes a first adjustment amount, and the first adjustment amount is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the adjustment amount of the signal quality of the serving cell is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the present application provides a terminal device for executing the method in the first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • the terminal device may include a processing unit for performing functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to transmission, and the receiving unit is used to perform functions related to reception.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or an interface of the communication chip, and the sending unit may be an output circuit or an interface of the communication chip.
  • the present application provides a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • the network device may include a processing unit for performing functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to transmission, and the receiving unit is used to perform functions related to reception.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit may be an input circuit or an interface of the communication chip, and the sending unit may be an output circuit or an interface of the communication chip.
  • the present application provides a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations .
  • the present application provides a computer program product, comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the signal quality of the new cell of the terminal device can be directly determined based on the first adjustment amount, and then the cell selection and/or cell selection can be performed based on the signal quality of the new cell of the terminal device. Reselection, which avoids the need to measure the signal quality of the new cell of the terminal device based on the RRM after the arrival of the new cell, and then perform cell selection and/or cell reselection based on the signal quality of the new cell of the terminal device, that is, to avoid obtaining through RRM measurement.
  • the waiting time of the signal quality equivalently, by introducing the first adjustment amount, the waiting time for obtaining the signal quality of the new cell can be shortened, so that the terminal can obtain the signal quality of the new cell of the terminal device earlier, thereby enabling the terminal to obtain the signal quality of the new cell earlier.
  • 1 to 3 are schematic block diagrams of a system framework provided by an embodiment of the present application.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • FIG. 6 is an example of a scenario in which a connection between a satellite and a terrestrial gateway is switched according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is another example of a scenario in which a connection between a satellite and a terrestrial gateway is switched according to an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • Universal mobile communication system Universal mobile communication system
  • Mobile Telecommunication System Universal mobile communication system
  • UMTS Universal mobile communication system
  • 5G communication system also known as New Radio (New Radio, NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • Non-Terrestrial Networks In a new radio (New Radio, NR) system, a non-terrestrial communication network (Non-Terrestrial Networks, NTN) is considered to provide communication services to users.
  • NTN generally uses satellite communication to provide communication services to terrestrial users.
  • satellite communication has many unique advantages.
  • satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and increase the system capacity of the entire satellite communication system.
  • the altitude range of LEO can be 500km to 1500km
  • the corresponding orbital period can be about 1.5 hours to 2 hours
  • the signal propagation delay of single-hop communication between users can generally be less than 20ms
  • the maximum satellite visibility time can be 20 minutes
  • LEO The signal propagation distance is short and the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the orbital height of GEO can be 35786km
  • the rotation period around the earth can be 24 hours
  • the signal propagation delay of single-hop communication between users can generally be 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover dozens of diameters. to hundreds of kilometers of ground.
  • FIG. 1 to FIG. 3 only illustrate systems to which the present application applies in the form of examples, and of course, the methods shown in the embodiments of the present application may also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • the "instruction" mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • Satellites can be divided into two types: transparent payload and regenerative payload.
  • transparent transmission satellite only the functions of radio frequency filtering, frequency conversion and amplification are provided, and only the transparent transmission of the signal is provided, and the waveform signal transmitted by it will not be changed.
  • regenerative repeater satellite in addition to the functions of radio frequency filtering, frequency conversion and amplification, it can also provide the functions of demodulation/decoding, routing/conversion, coding/modulation, and it has some or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • the gateway and the satellite communicate through the feeder link, and the satellite and the terminal can communicate through the service link (service link).
  • the communication between the satellite and the satellite is through InterStar link
  • the communication between the gateway and the satellite is through the feeder link (Feeder link)
  • the communication between the satellite and the terminal can communicate through a service link.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • mMTC Massive Machine Type of Communication
  • eMBB targets users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios. For example, indoor, urban, rural, etc., have large differences in their capabilities and needs, so they cannot be generalized, and can be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • NR can be deployed independently.
  • RRC Radio Resource Control
  • RRC_INACTIVE deactivated
  • RRC_CONNECTED connected
  • RRC_IDLE state mobility is UE-based cell selection reselection, paging is initiated by the Core Network (CN), and the paging area is configured by the CN. There is no UE access stratum (Access Stratum, AS) context on the base station side, nor does an RRC connection exist.
  • CN Core Network
  • AS Access Stratum
  • RRC_CONNECTED state there is an RRC connection, and the base station and the UE have a UE AS context.
  • the location of the UE is known to the network device at the specific cell level. Mobility is the mobility of network device control. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE AS context exists on a base station, paging is triggered by Radio Access Network (RAN), RAN-based The paging area is managed by the RAN, and the network equipment knows the location of the UE based on the paging area level of the RAN.
  • RAN Radio Access Network
  • the cell needs to meet the S criterion, and the terminal equipment performs cell selection if and only when the received power and signal quality of the current cell meet the following conditions: Srxlev>0 and Squal>0; Specifically, the terminal equipment can determine Srxlev and Srxlev according to the following formula Squal:
  • Q rxlevmeas and Q qualmeas are the received power of the cell measured by the UE, that is, the reference signal receiving power (Reference Signal Receiving Power, RSRP) and the reference signal receiving quality (Reference Signal Receiving Quality, RSRQ);
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • Q rxlevmin and Q qualmin are the minimum received power required by the network side, that is, the minimum RSRP and the minimum RSRQ;
  • Q rxlevminoffset and Q qualminoffset are offsets to prevent a ping-pong effect between two public land mobile networks (Public Land Mobile Networks, PLMNs) due to fluctuations in the radio environment. It should be noted that the offset needs to be considered only when camping on a suitable cell of the visited PLMN and periodically searching for a PLMN with a higher priority.
  • PLMNs Public Land Mobile Networks
  • P compensation is power compensation. For example, when the maximum transmit power allowed by the network side is greater than the maximum uplink transmit power determined by the UE's own capability, the power compensation is caused by the low power of the UE.
  • Qoffset temp is only used in special scenarios, and is not applicable in normal situations, such as the "Chiba problem" scenario.
  • Cell reselection refers to the process in which the UE selects a best cell to provide a service signal by monitoring the signal quality of neighboring cells and the current cell in idle mode.
  • the terminal When the signal quality and level of the neighboring cell satisfy the S criterion and satisfy a certain reselection decision criterion (R criterion), the terminal will access the cell to camp. After the UE successfully camps on, it will continue to measure the cell.
  • R criterion a certain reselection decision criterion
  • the terminal device calculates the S criterion (Srxlev) according to the RSRP measurement result through the RRC layer, and compares it with the same-frequency measurement activation threshold (Sintrasearch) and the inter-frequency/inter-system measurement activation threshold (Snonintrasearch), as whether to activate the neighbor cell Measured decision conditions.
  • the network device measures the timing configuration (Synchronization Signal/PBCH Block, SSB) by configuring the synchronization signal per frequency (per frequency).
  • SS/PBCH block measurement timing configuration, SMTC assists the UE to perform measurement to achieve the purpose of UE power saving.
  • the terminal device can acquire the parameter N and the threshold of each frequency (per frequency) through the system broadcast, so as to select the best beam (beam).
  • the terminal device can linearly average the signal quality of the first N beams that satisfy the threshold as the cell signal quality. If the per frequency (per frequency) parameter N and threshold are not broadcast, the signal quality of the best beam in the cell is taken as the cell signal quality.
  • the terminal device can control the candidate cell by going to the best cell range (rangeToBestCell), that is, among all candidate cells whose signal quality difference from the best cell is within the best cell range (rangeToBestCell), select a cell that satisfies the The cell with the most beams of the threshold is used as the target cell.
  • R n and R s are calculated according to the following formula. If the continuously measured R n and R s can maintain R n >R s within the detection time, cell reselection is required.
  • R s Q meas,s +Q hyst -Qoffset temp ;
  • R n Q meas,n ⁇ Qoffset ⁇ Qoffset temp .
  • R s represents the signal quality of the serving cell
  • R n represents the signal quality of the neighboring cell
  • Q meas represents the RSRP measurement quantity used in cell reselections (RSRP measurement quantity used in cell reselections);
  • Q meas,s represents the RSRP measurement value of the serving cell
  • Q meas,n represents the RSRP measurement value of the neighboring cell
  • Q hysts is the cell reselection hysteresis
  • Qoffset s,n is the difference between the received signal quality requirements of the two cells (ie, the serving cell and the neighboring cell).
  • Qoffset temp represents the temporary offset value of the cell (Offset temporarily applied to a cell).
  • the connection between the satellite and the terrestrial gateway will also be switched.
  • all user equipments User Equipment, UE
  • the feedback link feeder link switch
  • the signal transmission delay between the terminal device and the satellite is also large.
  • RRM Radio Resource Management
  • the required waiting time will be too long, which may cause service interruption and reduce communication quality.
  • the UE may not perform a handover operation.
  • FIG. 6 is an example of a scenario in which a connection between a satellite and a terrestrial gateway is switched according to an embodiment of the present application.
  • the ground gateway 1 is connected to the base station 1
  • the ground gateway 2 is connected to the base station 2 .
  • the area covered by the satellite is the cell under base station 1
  • the area covered by the satellite is the cell under base station 2.
  • a feeder link switch needs to be performed, that is, a cell switch needs to be performed.
  • the terminal equipment can switch from the original cell to the new cell.
  • the handover from the original cell to the new cell can be performed through a handover threshold (Transition threshold).
  • the handover threshold may be a cell selection or cell reselection related threshold.
  • the first adjustment amount to assist the terminal equipment to perform cell selection or cell reselection. Since the ground coverage of the satellite cell is fixed (quasi-earth-fixed) for a period of time, based on this, this An adjustment amount for a period of time can quickly obtain the signal quality of the new cell of the terminal device, and then perform cell selection and/or cell reselection based on the signal quality of the new cell of the terminal device, which can avoid cell selection and/or cell selection based on RRM measurement after arriving at the cell. Cell reselection is beneficial for terminal equipment to quickly access a new cell, thereby reducing service interruption and improving communication quality.
  • FIG. 7 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed by a terminal device.
  • a terminal device For example, it may be a terminal device as shown in FIG. 1 .
  • the method 200 may include some or all of the following:
  • the first adjustment amount is used to represent the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell leaves or when the new cell arrives.
  • the terminal device performs cell selection and/or cell reselection based on the first adjustment amount. For example, the terminal device determines the signal quality of the new cell of the terminal device based on the first adjustment amount, and then performs cell selection and/or cell reselection based on the signal quality of the new cell of the terminal device.
  • the signal quality of the new cell of the terminal device can be directly determined based on the first adjustment amount, and then the cell selection and/or cell selection can be performed based on the signal quality of the new cell of the terminal device. Reselection, which avoids the need to measure the signal quality of the new cell of the terminal device based on the RRM after the arrival of the new cell, and then perform cell selection and/or cell reselection based on the signal quality of the new cell of the terminal device, that is, to avoid obtaining through RRM measurement.
  • the waiting time of the signal quality equivalently, by introducing the first adjustment amount, the waiting time for obtaining the signal quality of the new cell can be shortened, so that the terminal can obtain the signal quality of the new cell of the terminal device earlier, thereby enabling the terminal to obtain the signal quality of the new cell earlier.
  • the signal quality of the new cell of the terminal equipment when the new cell arrives can be understood as: the signal quality of the terminal equipment in the new cell when the new cell arrives, the signal quality of the terminal equipment in the new cell when the new cell arrives, the signal quality of the terminal equipment in the new cell when the new cell arrives, the signal quality of the terminal equipment in the new cell when the new cell arrives, the signal quality of the terminal equipment in the new cell when the new cell arrives,
  • the signal quality of the serving cell of the terminal device when the new cell arrives can be understood as: the signal quality of the terminal device in the serving cell when the serving cell leaves or when the new cell arrives. It should also be noted that, in the embodiments of the present application, the specific implementation manners of the signal quality of the new cell and the signal quality of the serving cell are not limited.
  • the first adjustment amount may also be used to characterize the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell is about to leave adjustment amount.
  • the serving cell when the serving cell is about to leave, it can be understood that a new cell has arrived and the serving cell is about to leave. For example, as a typical situation, the moment when the serving cell is about to leave may be the moment when a new cell arrives.
  • the first adjustment amount is used to represent an adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared to the signal quality of the serving cell of the terminal device when the serving cell leaves ; Based on this, obtain the signal quality of the first serving cell of the terminal equipment when the serving cell leaves; determine the sum of the signal quality of the first serving cell, the first adjustment amount and the path loss difference as the The signal quality of the new cell of the terminal equipment when the new cell arrives; the path loss difference is the path loss of the serving link of the terminal equipment when the new cell arrives compared to the path loss of the terminal equipment when the serving cell leaves. Difference in path loss of the serving link; cell selection and/or cell reselection based on the new cell signal quality of the terminal device when the new cell arrives.
  • the departure time of the serving cell is time T1
  • the arrival time of the new cell is time T2.
  • the first adjustment amount is the relative signal quality of the new cell of the terminal device at time T2.
  • the time when the new cell arrives is after the time when the serving cell leaves.
  • the method 200 may further include:
  • the path loss difference is determined based on at least one of the following:
  • Location information ephemeris information of the terminal device, time information of the arrival of the new cell, and time information of the departure of the serving cell.
  • the terminal device determines the path loss difference according to the location information of the terminal device, ephemeris information, time information of the arrival of the new cell, and time information of the departure of the serving cell. Specifically, the terminal device may determine that the terminal device is in the new cell based on the time information of the arrival of the new cell, and based on the location information and ephemeris information of the terminal device at the moment when the new cell arrives The path loss of the serving link of the terminal device upon arrival; similarly, the terminal device may be based on the time information of the departure time of the serving cell, and at the moment of departure of the serving cell, based on the location information of the terminal device and Ephemeris information to determine the path loss of the terminal device's serving link when the terminal device leaves the serving cell; furthermore, the terminal device can be based on the terminal device's serving link when the new cell arrives and the path loss of the serving link of the terminal device when the serving cell leaves, and determine the path loss difference. For example, the terminal device may determine the difference between the path,
  • the method 200 may further include:
  • Neighbor measurement is started when the serving cell leaves.
  • the terminal device may perform cell selection and/or cell reselection based on the first adjustment amount when the new cell arrives, and the terminal device may also initiate neighbor cell measurement when the serving cell leaves, and Selection and/or cell reselection is performed based on the measurement results.
  • the first adjustment amount is used to represent an adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared to the signal quality of the serving cell of the terminal device when the new cell arrives ; Based on this, obtain the signal quality of the second serving cell of the terminal equipment when the new cell arrives; determine the sum of the signal quality of the second serving cell and the first adjustment amount as the arrival of the new cell The signal quality of the new cell of the terminal equipment; based on the signal quality of the new cell of the terminal equipment when the new cell arrives, cell selection and/or cell reselection are performed.
  • the departure time of the serving cell is time T1
  • the arrival time of the new cell is time T2.
  • the first adjustment amount is the relative signal quality of the new cell of the terminal device at time T2.
  • the time when the new cell arrives is before the time when the serving cell leaves.
  • the terminal device establishes a connection with the new cell and then disconnects the connection with the old cell.
  • the serving cell is excluded in the sorting operation of cell selection and/or cell reselection based on the signal quality of the new cell of the terminal device when the new cell arrives.
  • the terminal device disconnects the connection with the old cell after establishing the connection with the new cell. Therefore, in the reordering process of cell selection or cell reselection, the Departed service cell.
  • the new cell by excluding the serving cell that is about to leave, it is possible to access the new cell earlier by sorting the signal quality, avoiding service interruption of the terminal equipment in the old serving cell.
  • the method 200 may further include:
  • Configuration information of the serving cell is received, where the configuration information includes the first adjustment amount.
  • the configuration information further includes time information on the departure of the serving cell and/or time information on the arrival of the new cell.
  • the time information when the serving cell leaves may be the time or time period when the serving cell leaves.
  • the time information of the arrival of the new cell may be the time or time period of the arrival of the new cell.
  • the configuration information of the serving cell is acquired through a system message or radio resource control (Radio Resource Control, RRC) dedicated signaling.
  • RRC Radio Resource Control
  • the configuration information is carried or carried in the system message or RRV dedicated signaling.
  • the configuration information is applicable to a scenario in which a feeder link switch occurs.
  • the new cell includes multiple cells, and the arrival times of some or all of the multiple cells are the same, or the arrival times of the multiple cells are different from each other.
  • the first adjustment amount may include multiple adjustment amounts, and the multiple adjustment amounts are in one-to-one correspondence with the multiple cells; or, cells at different arrival times in the multiple cells correspond to different adjustment amounts.
  • the terminal device may perform cell selection and/or cell reselection based on the cell signal quality when each cell arrives.
  • the first adjustment amount includes at least one of the following: a difference between the path loss of the feeder link when the new cell arrives and the path loss of the feeder link when the serving cell leaves, The difference between the synchronization signal and/or physical broadcast channel block SSB transmit power when the new cell arrives compared to the SSB transmit power when the serving cell leaves, or the satellite power amplification factor when the new cell arrives is compared to the The difference in satellite power magnification when the serving cell leaves.
  • the first adjustment amount includes the sum of the following differences: the difference between the path loss of the feeder link when the new cell arrives and the path loss of the feeder link when the serving cell leaves, the difference of the path loss of the feeder link when the new cell arrives The difference between the synchronization signal and/or physical broadcast channel block SSB transmission power compared to the SSB transmission power when the serving cell leaves, or the satellite power amplification when the new cell arrives compared to the satellite power when the serving cell leaves Differences in magnification.
  • P SSB,1 represents the SSB transmit power of the base station at the time of T1
  • P feeder,1 represents the path loss of the feeder link at the time of T1
  • P Satellite,1 represents the satellite power magnification at time T1
  • P service,1 represents the path loss of the service link at time T1.
  • P T2 -P T1 (P SSB,2 -P SSB,1 )-(P service,2 -P service,1 )-(P feeder,2 -P feeder,1 )+(P Satellite,2 -P Satellite ,1 );
  • the first adjustment amount may include (P SSB,2 -P SSB,1 ), (P feeder,2 -P feeder,1 ) and (P Satellite,2 -P Satellite,1 ).
  • FIG. 8 is another example of a scenario in which a connection between a satellite and a terrestrial gateway is switched according to an embodiment of the present application.
  • gateway 1 is connected to base station 1
  • gateway 2 is connected to base station 2 .
  • the time when the serving cell leaves is time T1
  • the time when the new cell arrives is time T2.
  • the area covered by the satellite is the cell under base station 1
  • the area covered by the satellite is the cell under base station 2.
  • a feeder link switch needs to be performed, that is, it is necessary to perform a feeder link switch.
  • Cell handover enables the terminal equipment to be handed over from the original cell to the new cell.
  • the network broadcasts the time information of the arrival of the new cell, and additionally broadcasts the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared with the signal quality of the serving cell of the terminal equipment when the serving cell starts.
  • cell selection and/or cell reselection T1 ⁇ T2.
  • the terminal device receives configuration information of the serving cell, where the configuration information further includes time information T1 when the serving cell leaves and/or time information T2 when the new cell arrives. It further includes the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell starts.
  • configuration information can be obtained through system messages or RRC dedicated signaling;
  • the configuration information is for the feeder link switch scenario
  • the new cell may have multiple cells, and the T2 of the multiple cells may be the same or different;
  • the adjustment amount may include the difference in the path loss of the feeder link between the old and the new cell, and/or the difference in the SSB transmit power of the new and the old cell, and/or the difference in the satellite power magnification between the old and the new cell, etc.
  • the terminal device compares the signal quality of the serving cell at time T1 (for example, RSRP/RSRQ/SINR) with the signal quality of the new cell configured by the network when the new cell arrives, compared to the serving cell of the terminal device when the serving cell starts.
  • the adjustment amount of the signal quality, plus the difference in the path loss of the service link between the T2 time and the T1 time (calculated by the terminal equipment location and ephemeris information), as the new cell signal quality of the terminal equipment at the T2 time, and at T2
  • the signal quality of the new cell of the terminal equipment is used at all times to perform the sorting operation in the process of cell selection or cell reselection.
  • the terminal equipment can also start the neighbor cell measurement on the same frequency/inter-frequency.
  • the terminal equipment at the time of T2 can obtain the signal quality of the new cell as soon as possible, avoiding the need to start measuring the new cell at the time of T2 and then obtain the signal quality of the new cell of the terminal equipment, shortening the time of the terminal equipment.
  • the acquisition time of the signal quality of the new cell of the device enables the terminal device to access the cell faster, reduces the service interruption time and improves the communication quality.
  • the network When the network broadcasts the time information of the arrival of the new cell, it additionally broadcasts the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared with the signal quality of the serving cell of the terminal equipment when the new cell arrives.
  • the adjustment amount is used for cell selection and/or cell reselection, and the serving cell that is about to leave is excluded in the ranking (T1>T2).
  • the terminal device receives configuration information of the serving cell, where the configuration information further includes time information T1 when the serving cell leaves and/or time information T2 when the new cell arrives. It further includes the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell starts.
  • configuration information can be obtained through system messages or RRC dedicated signaling;
  • the configuration information is for the feeder link switch scenario
  • the new cell may have multiple cells, and the T2 of the multiple cells may be the same or different;
  • the adjustment amount may include the difference in the path loss of the feeder link between the old and the new cell, and/or the difference in the SSB transmit power of the new and the old cell, and/or the difference in the satellite power magnification between the old and the new cell, etc.
  • the terminal device compares the signal quality of the serving cell at time T2 (for example, RSRP/RSRQ/SINR) with the signal quality of the new cell configured by the network when the new cell arrives, compared to the service of the terminal when the new cell arrives.
  • the adjustment amount of the cell signal quality is used as the new cell signal quality of the terminal device at the time T2, and the new cell signal quality of the terminal device is used to perform the sorting operation in the cell selection or cell reselection process at the time T2.
  • the terminal device excludes the serving cell that is about to leave.
  • the signal quality of the new cell at time T2 can be obtained through the introduced adjustment amount, which can speed up the reselection to the new cell; in addition, by excluding the serving cell that is about to leave, it is possible to access the new cell earlier by sorting the signal quality , to avoid service interruption of the terminal equipment on the old serving cell.
  • the present application provides a method for cell selection and/or cell reselection in an NTN scenario, mainly for a feeder link switching scenario.
  • the network broadcasts the time information of the arrival of the new cell, and additionally broadcasts an adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared to the signal quality of the serving cell of the terminal device when the serving cell starts.
  • cell selection and/or cell reselection T1 ⁇ T2).
  • the network broadcasts the time information of the arrival of the new cell, and additionally broadcasts the adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared with the signal quality of the serving cell of the terminal device when the new cell arrives.
  • the device performs cell selection and/or cell reselection through the adjustment amount when a new cell arrives, and excludes the serving cell that is about to leave when sorting (T1>T2).
  • the terminal equipment at the time of T2 can obtain the signal quality of the new cell as soon as possible, avoiding the need to start measuring the new cell at the time of T2 and then obtain the signal quality of the new cell of the terminal equipment, shortening the time of the terminal equipment.
  • the acquisition time of the signal quality of the new cell of the device enables the terminal device to access the cell faster, reduces the service interruption time and improves the communication quality.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • the wireless communication method according to the embodiment of the present application is described in detail from the perspective of the terminal device, and the wireless communication method according to the embodiment of the present application will be described from the perspective of the network device in conjunction with Fig. 9 below.
  • FIG. 9 is a schematic flowchart of a wireless communication method 300 provided by an embodiment of the present application.
  • the method 300 may be performed by a network device, such as the network device shown in FIG. 1 .
  • the method 300 may include:
  • the configuration information includes a first adjustment amount, and the first adjustment amount is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the adjustment amount of the signal quality of the serving cell is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the configuration information further includes time information on the departure of the serving cell and/or time information on the arrival of the new cell.
  • the configuration information of the serving cell is acquired through system message broadcast or RRC dedicated signaling.
  • the configuration information is applicable to a scenario where a feeder link is switched.
  • the new cell includes multiple cells, and some or all of the multiple cells have the same arrival time, or the multiple cells have different arrival times.
  • the first adjustment amount includes at least one of the following: a difference between the path loss of the feeder link when the new cell arrives and the path loss of the feeder link when the serving cell leaves, the The difference between the synchronization signal and/or physical broadcast channel block SSB transmission power when the new cell arrives compared to the SSB transmission power when the serving cell leaves, or the satellite power amplification when the new cell arrives compared to the serving cell Difference in satellite power magnification when the cell leaves.
  • steps in the method 300 may refer to the corresponding steps in the method 200, which are not repeated here for brevity.
  • FIG. 10 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • a processing unit 410 configured to perform cell selection and/or cell reselection based on the first adjustment amount
  • the first adjustment amount is used to represent the adjustment amount of the signal quality of the new cell of the terminal equipment when the new cell arrives compared to the signal quality of the serving cell of the terminal equipment when the serving cell leaves or when the new cell arrives.
  • the first adjustment amount is used to represent an adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared to the signal quality of the serving cell of the terminal device when the serving cell leaves ;
  • the processing unit 410 is specifically used for:
  • the path loss difference is the new cell signal quality. difference between the path loss of the serving link of the terminal equipment when the cell arrives and the path loss of the serving link of the terminal equipment when the serving cell leaves;
  • Cell selection and/or cell reselection is performed based on the new cell signal quality of the terminal device when the new cell arrives.
  • the time of arrival of the new cell is after the time of departure of the serving cell.
  • processing unit 410 is further configured to:
  • the path loss difference is determined based on at least one of the following:
  • Location information ephemeris information of the terminal device, time information of the arrival of the new cell, and time information of the departure of the serving cell.
  • processing unit 410 is further configured to:
  • Neighbor measurement is started when the serving cell leaves.
  • the first adjustment amount is used to represent an adjustment amount of the signal quality of the new cell of the terminal device when the new cell arrives compared to the signal quality of the serving cell of the terminal device when the new cell arrives ;
  • the processing unit 410 is specifically used for:
  • Cell selection and/or cell reselection is performed based on the new cell signal quality of the terminal device when the new cell arrives.
  • the time at which the new cell arrives is before the time at which the serving cell leaves.
  • the processing unit 410 is specifically configured to:
  • the serving cell is excluded from the sorting operation of cell selection and/or cell reselection.
  • the terminal device further includes:
  • a communication unit configured to receive configuration information of the serving cell, where the configuration information includes the first adjustment amount.
  • the configuration information further includes time information on the departure of the serving cell and/or time information on the arrival of the new cell.
  • the communication unit is specifically used for:
  • the configuration information of the serving cell is acquired through system messages or RRC dedicated signaling.
  • the configuration information is applicable to a scenario where a feeder link is switched.
  • the new cell includes multiple cells, and some or all of the multiple cells have the same arrival time, or the multiple cells have different arrival times.
  • the first adjustment amount includes at least one of the following:
  • the difference between the path loss of the feeder link when the new cell arrives and the path loss of the feeder link when the serving cell leaves, and the comparison of the transmission power of the synchronization signal and/or the physical broadcast channel block SSB when the new cell arrives The difference in SSB transmit power when the serving cell leaves, or the difference in satellite power amplification when the new cell arrives compared to the satellite power amplification when the serving cell leaves.
  • FIG. 11 is a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 may include:
  • a communication unit 510 configured to send configuration information of the serving cell
  • the configuration information includes a first adjustment amount, and the first adjustment amount is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the adjustment amount of the signal quality of the serving cell is used to represent that the signal quality of the new cell of the terminal device when the new cell arrives is compared with the signal quality of the terminal device when the serving cell leaves or when the new cell arrives.
  • the configuration information further includes time information on the departure of the serving cell and/or time information on the arrival of the new cell.
  • the communication unit 510 is specifically used for:
  • the configuration information of the serving cell is acquired through system message broadcast or RRC dedicated signaling.
  • the configuration information is applicable to a scenario where a feeder link is switched.
  • the new cell includes multiple cells, and some or all of the multiple cells have the same arrival time, or the multiple cells have different arrival times.
  • the first adjustment amount includes at least one of the following:
  • the difference between the path loss of the feeder link when the new cell arrives and the path loss of the feeder link when the serving cell leaves, and the comparison of the transmission power of the synchronization signal and/or the physical broadcast channel block SSB when the new cell arrives The difference in SSB transmit power when the serving cell leaves, or the difference in satellite power amplification when the new cell arrives compared to the satellite power amplification when the serving cell leaves.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 400 shown in FIG. 10 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 400 are respectively in order to realize the functions shown in FIG. 7 .
  • the corresponding processes in each of the methods are not repeated here.
  • the network device 500 shown in FIG. 11 may correspond to the corresponding subject in executing the method 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the network device 500 are for the purpose of implementing the method shown in FIG. 9 , respectively.
  • the corresponding processes in each of the methods are not repeated here.
  • the communication device of the embodiments of the present application is described above from the perspective of functional modules with reference to the accompanying drawings.
  • the functional modules can be implemented in the form of hardware, can also be implemented by instructions in the form of software, and can also be implemented by a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit 410 and the communication unit 510 referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 12 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may include a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 600 may also include a memory 620 .
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may also include a transceiver 630 .
  • the processor 610 can control the transceiver 630 to communicate with other devices, and specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 600 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 600 may be a terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 600 may correspond to the terminal device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be the network device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 500 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 300 according to the embodiment of the present application, which is not omitted here for brevity. Repeat.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 710 .
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 700 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiments of the present application, and can also implement the various methods of the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs including instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform method 200 or method 300 The method of the illustrated embodiment.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer can execute the method of the embodiment shown in the method 200 or the method 300 .
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • An embodiment of the present application further provides a communication system
  • the communication system may include the above-mentioned terminal equipment and network equipment to form the communication system 100 shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, which may be electrical, mechanical or other forms .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种本申请实施例提供了一种无线通信方法、终端设备和网络设备。所述方法包括:基于第一调整量进行小区选择和/或小区重选;其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。本申请实施例中,通过引入调整量的配置后,新小区到达时,终端设备可以尽快获得新小区信号质量,避免了T2时刻开始测量新小区然后才能获得终端设备的新小区信号质量,缩短了终端设备的新小区信号质量的获取时间,使得终端设备更快接入小区,减少了业务中断时间并提升了通信质量。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,考虑采用非地面通信网络(Non-Terrestrial Networks,NTN)向用户提供通信服务。
在引入NTN之后,当卫星高速移动时,卫星和地面网关的连接也要发生切换。具体而言,如果两个地面网关连接到两个地面基站或者一个地面基站下的两个小区,则针对该卫星覆盖的区域内所有用户设备(User Equipment,UE),都需要在反馈链路切换(feeder link switch)后从原来的小区切换到新的小区内。但是,由于NNT中卫星与地面的距离较大,终端设备与卫星之间的信号传输时延也较大,此时如果通过无线资源管理(Radio Resource Management,RRM)测量的方式来获取信号质量,需要的等待时间会过长,进而有可能导致业务中断并降低了通信质量。
因此,针对NTN亟需一种能够快速接入新小区的方法。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,针对NTN能够快速接入新小区,进而能够减小业务中断并提升通信质量。
第一方面,本申请实施例提供了一种无线通信方法,包括:
基于第一调整量进行小区选择和/或小区重选;
其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
第二方面,本申请实施例提供了一种无线通信方法,包括:
发送服务小区的配置信息;
其中,所述配置信息包括第一调整量,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本申请实施例中,通过引入第一调整量,能够直接基于所述第一调整量确定出终端设备的新小区信号质量,进而基于所述终端设备的新小区信号质量进行小区选择和/或小区重选,避免了新小区到达后先基于RRM测量终端设备的新小区信号质量,然后基于所述终端设备的新小区信号质量进行小区选择和/或小区重选,即避免了通过RRM测量来获取信号质量的等待时间;相当于,通过引入所述第一调整量,能够缩短获取新小区信号质量的等待时间,可以使得终端更早的获得终端设备的新小区信号质量,进而使得终端能够更早接入新小区,减少业务中断并提升通信质量。
附图说明
图1至图3是本申请实施例提供的系统框架的示意框图。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
图6是本申请实施例提供的卫星和地面网关的连接发生切换的场景的一个示例。
图7是本申请实施例提供的无线通信方法的示意性流程图。
图8是本申请实施例提供的卫星和地面网关的连接发生切换的场景的另一个示例。
图9是本申请实施例提供的无线通信方法的另一示意性流程图。
图10是本申请实施例提供的终端设备的示意性框图。
图11是本申请实施例提供的网络设备的示意性框图。
图12是本申请实施例提供的通信设备的示意性框图。
图13是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或 用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在新无线(New Radio,NR)系统中,考虑采用非地面通信网络(Non-Terrestrial Networks,NTN)向用户提供通信服务。NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
图2为本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3为本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:
低地球轨道(Low-Earth Orbit,)LEO卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫 星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO的高度范围可以为500km~1500km,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20ms,最大卫星可视时间可以为20分钟,LEO的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO的轨道高度可以35786km,围绕地球旋转周期可以24小时,用户间单跳通信的信号传播延迟一般可为250ms。
通常情况下,为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,3GPP国际标准组织开始研发5G。5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
NR可以独立部署,5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC_INACTIVE(去激活)状态。这种状态有别于RRC_IDLE(空闲)和RRC_CONNECTED(连接)状态。
在RRC_IDLE状态下:移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE接入层(Access Stratum,AS)上下文,也不存在RRC连接。
在RRC_CONNECTED状态下:存在RRC连接,基站和UE存在UE AS上下文。网络设备知道UE的位置是具体小区级别的。移动性是网络设备控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE AS上下文存在某个基站上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络设备知道UE的位置是基于RAN的寻呼区域级别的。
为了便于对本申请方案的理解,下面对NR系统中的终端设备的小区选择和小区重选的方案进行说明。
1.小区选择过程。
小区需要满足S准则,当且仅当当前小区的接收功率和信号质量同时满足如下条件时,终端设备进行小区选择:Srxlev>0且Squal>0;具体地,终端设备可按照以下公式确定Srxlev和Squal:
Srxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation-Qoffset temp
Squal=Q qualmeas–(Q qualmin+Q qualminoffset)-Qoffset temp
其中,Q rxlevmeas和Q qualmeas为UE测量的小区接收功率,即参考信号接收功率(Reference Signal Receiving Power,RSRP)和参考信号接收质量(Reference Signal Receiving Quality,RSRQ);
Q rxlevmin和Q qualmin为网络侧要求的最小接收功率,即最小RSRP和最小RSRQ;
Q rxlevminoffset和Q qualminoffset为防止两个公共陆地移动网络(Public Land Mobile Network,PLMN)之间由于无线电环境波动产生的乒乓效应的偏移量。需要说明的是,仅当驻留在拜访PLMN合适的小区而周期性搜索更高优先级的PLMN时需要考虑的偏移量。
P compensation为功率补偿,例如当网络侧允许的最大发射功率大于UE自身能力决定的最大上行发射功率时,由于UE功率低导致的功率补偿。
Qoffset temp为仅用于特殊场景,正常情况不适用,例如“千叶问题”场景。
2.小区重选过程。
小区重选(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则(R准则)时,终端将接入该小区驻留。UE成功驻留后,将持续进行本小区测量。具体地,终端设备通过RRC层根据RSRP测量结果计算S准则(Srxlev),并将其与同频测量启动门限(Sintrasearch)和异频/异系统测量启动门限(Snonintrasearch)比较,作为是否启动邻区测量的判决条件。针对同频(Intra-frequency)和异频(inter-frequency),网络设备通过配置每频率(per frequency)的同步信号和/或物理广播信道块(Synchronization Signal/PBCH Block,SSB)测量定时配置(SS/PBCH block measurement timing configuration,SMTC)辅助UE进行测量,达到UE省电目的。
针对小区信号质量的获取过程,终端设备可以通过系统广播获取每频率(per frequency)的参数N和门限,用于选择最好波束(beam)。由此,终端设备可将满足门限的最好的前N个波束的信号质量线性平均作为小区信号质量。如果没有广播每频率(per frequency)的参数N和门限,则将小区中最好波束的信号质量作为小区信号质量。
针对目标小区选择的过程,终端设备可通过到最好小区范围(rangeToBestCell)控制候选的小区,即与最好小区信号质量的差在最好小区范围(rangeToBestCell)内的所有候选小区中,选择满足门限的波束最多的小区作为目标小区。具体地,按照以下公式计算R n和R s,如果连续测得的R n和R s能够在检测时间内都保持R n>R s,则需要进行小区重选。
R s=Q meas,s+Q hyst-Qoffset temp
R n=Q meas,n-Qoffset–Qoffset temp
其中,R s表示服务小区的信号质量;
R n表示邻小区的信号质量;
Q meas表示在小区重选中使用的RSRP测量值(RSRP measurement quantity used in cell reselections);
Q meas,s表示服务小区RSRP测量值;
Q meas,n表示邻小区RSRP测量值;
Q hysts为小区重选迟滞;
针对同频:如果Qoffset s,n是有效的,则Qoffset等于Qoffset s,n,否则等于0(For intra-frequency:Equals to Qoffset s,n,if Qoffset s,n is valid,otherwise this equals to zero);
针对异频:如果Qoffset s,n是有效的,等于Qoffset s,n加上Qoffset frequency,否则等于Qoffset frequency(For inter-frequency:Equals to Qoffset s,n plus Qoffset frequency,if Qoffset s,n is valid,otherwise this equals to Qoffset frequency.)。
Qoffset s,n为两个小区(即服务小区和邻小区)接收信号质量要求的差值。
Qoffset temp表示小区的临时偏移值(Offset temporarily applied to a cell)。
在引入NTN之后,当卫星高速移动时,卫星和地面网关的连接也要发生切换。具体而言,如果两个地面网关连接到两个地面基站或者一个地面基站下的两个小区,则针对该卫星覆盖的区域内所有用户设备(User Equipment,UE),都需要在反馈链路切换(feeder link switch)后从原来的小区切换到新的小区内。但是,由于NNT中卫星与地面的距离较大,终端设备与卫星之间的信号传输时延也较大,此时如果通过无线资源管理(Radio Resource Management,RRM)测量的方式来获取信号质量,需要的等待时间会过长,进而有可能导致业务中断并降低了通信质量。当然,如果两个地面网关连接到同一个基站下的同一个小区,UE可以不进行切换操作。
图6是本申请实施例提供的卫星和地面网关的连接发生切换的场景的一个示例。
如图6所示,地面网关1连接至基站1,地面网关2连接至基站2。在T1时刻,卫星覆盖的区域 为基站1下的小区,在T2时刻,卫星覆盖的区域为基站2下面的小区,此时,需要进行馈线链路切换(feeder link switch),即需要进行小区切换,使得终端设备可以从原来的小区切换到新的小区内。例如,可通过切换阈值(Transition threshold)从原来的小区切换到新的小区内。该切换阈值可以是小区选择或小区重选中相关的阈值。
本申请实施例中,提供引入第一调整量辅助终端设备进行小区选择或小区重选,由于在一段时间内卫星小区的地面覆盖是固定的(quasi-earth-fixed),基于此,可通过这段时间的一个调整量快速获取终端设备的新小区信号质量,进而基于终端设备的新小区信号质量进行小区选择和/或小区重选,能够避免在到达小区后基于RRM测量进行小区选择和/或小区重选,有利于终端设备快速接入新小区,进而能够减小业务中断并提升通信质量。
图7示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备执行。例如可以是如图1所示的终端设备。
如图7所示,所述方法200可包括以下部分或全部内容:
S210,基于第一调整量进行小区选择和/或小区重选;
其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
针对NTN,终端设备基于第一调整量进行小区选择和/或小区重选。例如,终端设备基于所述第一调整量确定出终端设备的新小区信号质量,进而基于所述终端设备的新小区信号质量进行小区选择和/或小区重选。
本申请实施例中,通过引入第一调整量,能够直接基于所述第一调整量确定出终端设备的新小区信号质量,进而基于所述终端设备的新小区信号质量进行小区选择和/或小区重选,避免了新小区到达后先基于RRM测量终端设备的新小区信号质量,然后基于所述终端设备的新小区信号质量进行小区选择和/或小区重选,即避免了通过RRM测量来获取信号质量的等待时间;相当于,通过引入所述第一调整量,能够缩短获取新小区信号质量的等待时间,可以使得终端更早的获得终端设备的新小区信号质量,进而使得终端能够更早接入新小区,减少业务中断并提升通信质量。
需要说明的是,本申请实施例中,新小区到达时终端设备的新小区信号质量可以理解为:新小区到达时所述终端设备在所述新小区中的信号质量,服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量可以理解为:所述服务小区离开时或所述新小区到达时所述终端设备在服务小区中的信号质量。还需要说明的是,本申请实施例中,对新小区信号质量和服务小区信号质量的具体实现方式不作限定。例如,可以是RSRP,也可以是RSRQ,还可以是SINR。当然,在本申请的其他可替代实施例中,所述第一调整量还可用于表征新小区到达时终端设备的新小区信号质量相比服务小区即将离开时所述终端设备的服务小区信号质量的调整量。可选的,服务小区即将离开可以理解为新小区已到达且服务小区即将离开。例如,作为一种典型的情况,所述服务小区即将离开的时刻可以是新小区达到的时刻。
在一些实施例中,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述服务小区离开时所述终端设备的服务小区信号质量的调整量;基于此,获取所述服务小区离开时所述终端设备的第一服务小区信号质量;将所述第一服务小区信号质量、所述第一调整量以及路损差异之和,确定为所述新小区到达时所述终端设备的新小区信号质量;所述路损差异为所述新小区到达时所述终端设备的服务链路的路损相比所述服务小区离开时所述终端设备的服务链路的路损的差异;基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
换言之,假设服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻,本申请实施例中,所述第一调整量为所述终端设备在T2时刻的新小区信号质量相对所述终端设备在T1时刻的服务小区信号质量。
在一种实现方式中,所述新小区到达的时刻位于所述服务小区离开的时刻之后。
换言之,假设服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻,则T1<T2。或者说,所述终端设备断开与旧小区的连接后再与所述新小区建立连接。
在一种实现方式中,所述方法200还可包括:
基于以下中的至少一项确定所述路损差异:
所述终端设备的位置信息、星历信息、所述新小区到达的时间信息以及所述服务小区离开的时间信息。
例如,所述终端设备根据所述终端设备的位置信息、星历信息、所述新小区到达的时间信息以及所述服务小区离开的时间信息,确定所述路损差异。具体地,所述终端设备可基于所述新小区到达的时间信息,在所述新小区到达的时刻,基于所述终端设备的位置信息和星历信息,确定所述终端设备 在所述新小区到达时所述终端设备的服务链路的路损;类似的,所述终端设备可基于所述服务小区离开的时间信息,在所述服务小区离开的时刻,基于所述终端设备的位置信息和星历信息,确定所述终端设备在所述服务小区离开时所述终端设备的服务链路的路损;进而,所述终端设备可基于所述新小区到达时所述终端设备的服务链路的路损和所述服务小区离开时所述终端设备的服务链路的路损,确定所述路损差异。例如,所述终端设备可将所述新小区到达时所述终端设备的服务链路的路损和所述服务小区离开时所述终端设备的服务链路的路损的差值,确定所述路损差异。
在一种实现方式中,所述方法200还可包括:
所述服务小区离开时启动邻区测量。
换言之,所述终端设备在所述新小区到达时可基于所述第一调整量进行小区选择和/或小区重选,所述终端设备在所述服务小区离开时也可启动邻区测量,并基于测量结果进行选择和/或小区重选。这两种方案可结合使用,也可单独使用,本申请对此不作具体限定。
在一些实施例中,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述新小区到达时所述终端设备的服务小区信号质量的调整量;基于此,获取所述新小区到达时所述终端设备的第二服务小区信号质量;将所述第二服务小区信号质量和所述第一调整量之和,确定为所述新小区到达时所述终端设备的新小区信号质量;基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
换言之,假设服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻,本申请实施例中,所述第一调整量为所述终端设备在T2时刻的新小区信号质量相对所述终端设备在T2时刻的服务小区信号质量。
在一种实现方式中,所述新小区到达的时刻位于所述服务小区离开的时刻之前。
换言之,假设服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻,则T1>T2。或者说,所述终端设备与所述新小区建立连接后再断开与旧小区的连接。
在一种实现方式中,基于所述新小区到达时所述终端设备的新小区信号质量,在小区选择和/或小区重选的排序操作中,排除所述服务小区。
由于T1>T2,相当于,所述终端设备在与所述新小区建立连接后再断开与旧小区的连接,因此,在小区选择或小区重选的重排序过程中,通常也会考虑即将离开的服务小区。本申请实施例中,在小区选择或小区重选中,通过排除即将离开的服务小区,可以更早的通过信号质量排序接入到新小区,避免终端设备在旧的服务小区上产生业务中断。
在一些实施例中,所述方法200还可包括:
接收所述服务小区的配置信息,所述配置信息包括所述第一调整量。
在一种实现方式中,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。例如,所述服务小区离开的时间信息可以是所述服务小区离开的时刻或时间段。所述新小区到达的时间信息可以是所述新小区到达的时刻或时间段。
在一种实现方式中,通过系统消息或无线资源控制(Radio Resource Control,RRC)专用信令,获取所述服务小区的配置信息。例如,所述配置信息携带或乘坐在所述系统消息或RRV专用信令中。
在一种实现方式中,所述配置信息适用于馈线链路发生切换(feeder link switch)的场景。
换言之,在馈线链路发生切换的情况下,基于所述第一调整量进行小区选择和/或小区重选。
在一种实现方式中,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
换言之,所述第一调整量可包括多个调整量,所述多个调整量和所述多个小区一一对应;或者,所述多个小区中不同到达时刻的小区对应不同的调整量。基于此,所述终端设备可基于每一个小区达到时的小区信号质量,进行小区选择和/或小区重选。
在一种实现方式中,所述第一调整量包括以下中的至少一项:所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。例如,所述第一调整量包括以下差异之和:所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
换言之,假设服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻,本申请实施例中,针对T1时刻,终端设备的信号质量可通过以下公式计算得到:P T1=P SSB,1-P service,1-P feeder,1+P Satellite,1; 其中,P SSB,1表示T1时刻下基站的SSB发送功率,P feeder,1表示T1时刻下馈线链路的路损,P Satellite,1表示T1时刻下卫星功率放大倍数;P service,1表示T1时刻下服务链路的路损。针对T2时刻,终端设备的信号质量可通过以下公式计算得到:P T2=P SSB,2-P service,2-P feeder,2+P Satellite,2;其中,P SSB,2表示T2时刻下基站的SSB发送功率,P feeder,2表示T2时刻下馈线链路的路损,P Satellite,2表示T2时刻下卫星功率放大倍数;P service,2表示T2时刻下服务链路的路损。基于此,可以得到:
P T2-P T1=(P SSB,2-P SSB,1)-(P service,2-P service,1)-(P feeder,2-P feeder,1)+(P Satellite,2-P Satellite,1);
本申请实施例中,所述第一调整量可包括(P SSB,2-P SSB,1)、(P feeder,2-P feeder,1)以及(P Satellite,2-P Satellite,1)。
图8是本申请实施例提供的卫星和地面网关的连接发生切换的场景的另一个示例。
如图8所示,网关1连接至基站1,网关2连接至基站2。假设卫星按照如图所示的卫星移动方向(Satellite moving direction)进行移动,服务小区离开的时刻为T1时刻,所述新小区的到达时刻为T2时刻。换言之,在T1时刻,卫星覆盖的区域为基站1下的小区,在T2时刻,卫星覆盖的区域为基站2下面的小区,此时,需要进行馈线链路切换(feeder link switch),即需要进行小区切换,使得终端设备可以从原来的小区切换到新的小区内。
下面以图8所示的场景为例,结合具体实施例对本申请的方案进行示例性说明。
实施例1:
本申请实施例中,网络广播新小区到达的时间信息的同时,附加广播到新小区到达时终端设备的新小区信号质量相比服务小区开始时终端设备的服务小区信号质量的调整量,通过调整量进行小区选择和/或小区重选(T1<T2)。
终端设备接收服务小区的配置信息,所述配置信息还包括所述服务小区离开的时间信息T1和/或所述新小区到达的时间信息T2。进一步的包含,新小区到达时终端设备的新小区信号质量相比服务小区开始时终端设备的服务小区信号质量的调整量。具体的:
a)、配置信息可以通过系统消息或RRC专用信令获取;
b)、配置信息针对馈线链路切换(feeder link switch)场景;
c)、新小区可能有多个小区,所述多个小区的T2可以相同,也可以不同;
d)、调整量可能包括新旧小区馈线链路路损差异,和/或新旧小区SSB发送功率差异,和/或新旧小区卫星功率放大倍数的差异等。
T1时刻服务小区离开,终端设备将T1时刻服务小区信号质量(例如RSRP/RSRQ/SINR)加上网络配置的新小区到达时终端设备的新小区信号质量相比服务小区开始时终端设备的服务小区信号质量的调整量,再叠加上T2时刻与T1时刻相比服务链路的路损差异(通过终端设备位置和星历信息计算),作为T2时刻下终端设备的新小区信号质量,并在T2时刻使用所述终端设备的新小区信号质量进行小区选择或小区重选过程中的排序操作。此外,在T1时刻,即服务小区离开时,终端设备还可以启动同频/异频上的邻区测量。
本申请实施例中,通过引入调整量的配置后,T2时刻下的终端设备可以尽快获得新小区信号质量,避免了T2时刻开始测量新小区然后才能获得终端设备的新小区信号质量,缩短了终端设备的新小区信号质量的获取时间,使得终端设备更快接入小区,减少了业务中断时间并提升了通信质量。
实施例2:
网络广播新小区到达的时间信息的同时,附加广播到新小区到达时终端设备的新小区信号质量相比新小区达到时终端设备的服务小区信号质量的调整量,终端设备在新小区到达时通过所述调整量进行小区选择和/或小区重选,并在排序时排除即将离开的服务小区(T1>T2)。
终端设备接收服务小区的配置信息,所述配置信息还包括所述服务小区离开的时间信息T1和/或所述新小区到达的时间信息T2。进一步的包含,新小区到达时终端设备的新小区信号质量相比服务小区开始时终端设备的服务小区信号质量的调整量。具体的:
a)、配置信息可以通过系统消息或RRC专用信令获取;
b)、配置信息针对馈线链路切换(feeder link switch)场景;
c)、新小区可能有多个小区,所述多个小区的T2可以相同,也可以不同;
d)、调整量可能包括新旧小区馈线链路路损差异,和/或新旧小区SSB发送功率差异,和/或新旧小区卫星功率放大倍数的差异等。
T2时刻新小区到达时,终端设备将T2时刻服务小区信号质量(例如RSRP/RSRQ/SINR)加上网络配置的新小区到达时终端设备的新小区信号质量相比新小区达到时终端设备的服务小区信号质量的调整量,作为T2时刻终端设备的新小区信号质量,并在T2时刻使用所述终端设备的新小区信号质量进行小区选择或小区重选过程中的排序操作。在小区重选排序中,终端设备将即将离开的服务小区排除掉。
本申请实施例中,通过引入的调整量获取T2时刻新小区信号质量,可以加快重选到新小区;此 外,通过排除即将离开的服务小区,可以更早的通过信号质量排序接入到新小区,避免终端设备在旧的服务小区上产生业务中断。
综上所述,本申请提供了一种NTN场景下小区选择和/或小区重选的方法,主要针对馈线链路切换场景。在一些实施例中,网络广播新小区到达的时间信息的同时,附加广播到新小区到达时终端设备的新小区信号质量相比服务小区开始时终端设备的服务小区信号质量的调整量,通过调整量进行小区选择和/或小区重选(T1<T2)。在另一些实施例中,网络广播新小区到达的时间信息的同时,附加广播到新小区到达时终端设备的新小区信号质量相比新小区达到时终端设备的服务小区信号质量的调整量,终端设备在新小区到达时通过所述调整量进行小区选择和/或小区重选,并在排序时排除即将离开的服务小区(T1>T2)。本申请实施例中,通过引入调整量的配置后,T2时刻下的终端设备可以尽快获得新小区信号质量,避免了T2时刻开始测量新小区然后才能获得终端设备的新小区信号质量,缩短了终端设备的新小区信号质量的获取时间,使得终端设备更快接入小区,减少了业务中断时间并提升了通信质量。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图7和图8,从终端设备的角度详细描述了根据本申请实施例的无线通信方法,下面将结合图9从网络设备的角度描述根据本申请实施例的无线通信方法。
图9是本申请实施例提供的无线通信方法300的示意性流程图。所述方法300可以由网络设备执行,例如图1所示的网络设备。
如图9所示,所述方法300可包括:
S310,发送服务小区的配置信息;
其中,所述配置信息包括第一调整量,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
在一些实施例中,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
在一些实施例中,通过系统消息广播或RRC专用信令,获取所述服务小区的配置信息。
在一些实施例中,所述配置信息适用于馈线链路发生切换的场景。
在一些实施例中,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
在一些实施例中,所述第一调整量包括以下中的至少一项:所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
应理解,方法300中的步骤可以参考方法200中的相应步骤,为了简洁,在此不再赘述。
上文详细描述了本申请的方法实施例,下文结合图10至图13,详细描述本申请的装置实施例。
图10是本申请实施例的终端设备400的示意性框图。
如图10所示,所述终端设备400可包括:
处理单元410,用于基于第一调整量进行小区选择和/或小区重选;
其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
在一些实施例中,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述服务小区离开时所述终端设备的服务小区信号质量的调整量;其中,所述处理单元410具体用于:
获取所述服务小区离开时所述终端设备的第一服务小区信号质量;
将所述第一服务小区信号质量、所述第一调整量以及路损差异之和,确定为所述新小区到达时所述终端设备的新小区信号质量;所述路损差异为所述新小区到达时所述终端设备的服务链路的路损相比所述服务小区离开时所述终端设备的服务链路的路损的差异;
基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
在一些实施例中,所述新小区到达的时刻位于所述服务小区离开的时刻之后。
在一些实施例中,所述处理单元410还用于:
基于以下中的至少一项确定所述路损差异:
所述终端设备的位置信息、星历信息、所述新小区到达的时间信息以及所述服务小区离开的时间信息。
在一些实施例中,所述处理单元410还用于:
所述服务小区离开时启动邻区测量。
在一些实施例中,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述新小区到达时所述终端设备的服务小区信号质量的调整量;其中,所述处理单元410具体用于:
获取所述新小区到达时所述终端设备的第二服务小区信号质量;
将所述第二服务小区信号质量和所述第一调整量之和,确定为所述新小区到达时所述终端设备的新小区信号质量;
基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
在一些实施例中,所述新小区到达的时刻位于所述服务小区离开的时刻之前。
在一些实施例中,所述处理单元410具体用于:
基于所述新小区到达时所述终端设备的新小区信号质量,在小区选择和/或小区重选的排序操作中,排除所述服务小区。
在一些实施例中,所述终端设备还包括:
通信单元,用于接收所述服务小区的配置信息,所述配置信息包括所述第一调整量。
在一些实施例中,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
在一些实施例中,所述通信单元具体用于:
通过系统消息或无线资源控制RRC专用信令,获取所述服务小区的配置信息。
在一些实施例中,所述配置信息适用于馈线链路发生切换的场景。
在一些实施例中,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
在一些实施例中,所述第一调整量包括以下中的至少一项:
所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
图11是本申请实施例的网络设备500的示意性框图。
如图11所示,所述网络设备500可包括:
通信单元510,用于发送服务小区的配置信息;
其中,所述配置信息包括第一调整量,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
在一些实施例中,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
在一些实施例中,所述通信单元510具体用于:
通过系统消息广播或RRC专用信令,获取所述服务小区的配置信息。
在一些实施例中,所述配置信息适用于馈线链路发生切换的场景。
在一些实施例中,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
在一些实施例中,所述第一调整量包括以下中的至少一项:
所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图10所示的终端设备400可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备400 中的各个单元的前述和其它操作和/或功能分别为了实现图7中的各个方法中的相应流程,为了简洁,在此不再赘述。类似的,图11所示的网络设备500可以对应于执行本申请实施例的方法300中的相应主体,并且网络设备500中的各个单元的前述和其它操作和/或功能分别为了实现图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元410和通信单元510可分别由处理器和收发器实现。
图12是本申请实施例的通信设备600示意性结构图。
如图12所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图12所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图12所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的终端设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的网络设备500,并可以对应于执行根据本申请实施例的方法300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图13是根据本申请实施例的芯片700的示意性结构图。
如图13所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图13所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图13所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图13所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的 相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200或方法300所示实施例的方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200或方法300所示实施例的方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解, 本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种无线通信方法,其特征在于,包括:
    基于第一调整量进行小区选择和/或小区重选;
    其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述服务小区离开时所述终端设备的服务小区信号质量的调整量;
    其中,所述基于第一调整量进行小区选择和/或小区重选,包括:
    获取所述服务小区离开时所述终端设备的第一服务小区信号质量;
    将所述第一服务小区信号质量、所述第一调整量以及路损差异之和,确定为所述新小区到达时所述终端设备的新小区信号质量;所述路损差异为所述新小区到达时所述终端设备的服务链路的路损相比所述服务小区离开时所述终端设备的服务链路的路损的差异;
    基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
  3. 根据权利要求2所述的方法,其特征在于,所述新小区到达的时刻位于所述服务小区离开的时刻之后。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    基于以下中的至少一项确定所述路损差异:
    所述终端设备的位置信息、星历信息、所述新小区到达的时间信息以及所述服务小区离开的时间信息。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述服务小区离开时启动邻区测量。
  6. 根据权利要求1所述的方法,其特征在于,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述新小区到达时所述终端设备的服务小区信号质量的调整量;
    其中,所述基于第一调整量进行小区选择和/或小区重选,包括:
    获取所述新小区到达时所述终端设备的第二服务小区信号质量;
    将所述第二服务小区信号质量和所述第一调整量之和,确定为所述新小区到达时所述终端设备的新小区信号质量;
    基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
  7. 根据权利要求6所述的方法,其特征在于,所述新小区到达的时刻位于所述服务小区离开的时刻之前。
  8. 根据权利要求6或7所述的方法,其特征在于,所述基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选,包括:
    基于所述新小区到达时所述终端设备的新小区信号质量,在小区选择和/或小区重选的排序操作中,排除所述服务小区。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述服务小区的配置信息,所述配置信息包括所述第一调整量。
  10. 根据权利要求9所述的方法,其特征在于,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述接收所述服务小区的配置信息,包括:
    通过系统消息或无线资源控制RRC专用信令,获取所述服务小区的配置信息。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述配置信息适用于馈线链路发生切换的场景。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一调整量包括以下中的至少一项:
    所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
  15. 一种无线通信方法,其特征在于,包括:
    发送服务小区的配置信息;
    其中,所述配置信息包括第一调整量,所述第一调整量用于表征新小区到达时终端设备的新小区 信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
  16. 根据权利要求15所述的方法,其特征在于,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
  17. 根据权利要求15或16所述的方法,其特征在于,所述接收所述服务小区的配置信息,包括:
    通过系统消息广播或RRC专用信令,获取所述服务小区的配置信息。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述配置信息适用于馈线链路发生切换的场景。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述第一调整量包括以下中的至少一项:
    所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
  21. 一种终端设备,其特征在于,包括:
    处理单元,用于基于第一调整量进行小区选择和/或小区重选;
    其中,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述服务小区离开时所述终端设备的服务小区信号质量的调整量;
    其中,所述处理单元具体用于:
    获取所述服务小区离开时所述终端设备的第一服务小区信号质量;
    将所述第一服务小区信号质量、所述第一调整量以及路损差异之和,确定为所述新小区到达时所述终端设备的新小区信号质量;所述路损差异为所述新小区到达时所述终端设备的服务链路的路损相比所述服务小区离开时所述终端设备的服务链路的路损的差异;
    基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
  23. 根据权利要求22所述的终端设备,其特征在于,所述新小区到达的时刻位于所述服务小区离开的时刻之后。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述处理单元还用于:
    基于以下中的至少一项确定所述路损差异:
    所述终端设备的位置信息、星历信息、所述新小区到达的时间信息以及所述服务小区离开的时间信息。
  25. 根据权利要求22至24中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    所述服务小区离开时启动邻区测量。
  26. 根据权利要求21所述的终端设备,其特征在于,所述第一调整量用于表征所述新小区到达时所述终端设备的新小区信号质量相比所述新小区到达时所述终端设备的服务小区信号质量的调整量;
    其中,所述处理单元具体用于:
    获取所述新小区到达时所述终端设备的第二服务小区信号质量;
    将所述第二服务小区信号质量和所述第一调整量之和,确定为所述新小区到达时所述终端设备的新小区信号质量;
    基于所述新小区到达时所述终端设备的新小区信号质量,进行小区选择和/或小区重选。
  27. 根据权利要求26所述的终端设备,其特征在于,所述新小区到达的时刻位于所述服务小区离开的时刻之前。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述处理单元具体用于:
    基于所述新小区到达时所述终端设备的新小区信号质量,在小区选择和/或小区重选的排序操作中,排除所述服务小区。
  29. 根据权利要求21至28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收所述服务小区的配置信息,所述配置信息包括所述第一调整量。
  30. 根据权利要求29所述的终端设备,其特征在于,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述通信单元具体用于:
    通过系统消息或无线资源控制RRC专用信令,获取所述服务小区的配置信息。
  32. 根据权利要求29至31中任一项所述的终端设备,其特征在于,所述配置信息适用于馈线链路发生切换的场景。
  33. 根据权利要求29至32中任一项所述的终端设备,其特征在于,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
  34. 根据权利要求29至33中任一项所述的终端设备,其特征在于,所述第一调整量包括以下中的至少一项:
    所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
  35. 一种网络设备,其特征在于,包括:
    通信单元,用于发送服务小区的配置信息;
    其中,所述配置信息包括第一调整量,所述第一调整量用于表征新小区到达时终端设备的新小区信号质量相比服务小区离开时或所述新小区到达时所述终端设备的服务小区信号质量的调整量。
  36. 根据权利要求35所述的网络设备,其特征在于,所述配置信息还包括所述服务小区离开的时间信息和/或所述新小区到达的时间信息。
  37. 根据权利要求35或36所述的网络设备,其特征在于,所述通信单元具体用于:
    通过系统消息广播或RRC专用信令,获取所述服务小区的配置信息。
  38. 根据权利要求35至37中任一项所述的网络设备,其特征在于,所述配置信息适用于馈线链路发生切换的场景。
  39. 根据权利要求35至38中任一项所述的网络设备,其特征在于,所述新小区包括多个小区,所述多个小区中的部分小区或全部小区的到达时刻相同,或所述多个小区的到达时刻互不相同。
  40. 根据权利要求35至39中任一项所述的网络设备,其特征在于,所述第一调整量包括以下中的至少一项:
    所述新小区到达时馈线链路的路损相比所述服务小区离开时馈线链路的路损的差异、所述新小区到达时的同步信号和/或物理广播信道块SSB发送功率相比所述服务小区离开时的SSB发送功率的差异、或所述新小区到达时的卫星功率放大倍数相比所述服务小区离开时的卫星功率放大倍数的差异。
  41. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至14中任一项所述的方法。
  42. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求15至20中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14任一项所述的方法或如权利要求15至20中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14任一项所述的方法或如权利要求15至20中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至14任一项所述的方法或如权利要求15至20中任一项所述的方法。
  46. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14任一项所述的方法或如权利要求15至20中任一项所述的方法。
PCT/CN2021/082894 2021-03-25 2021-03-25 无线通信方法、终端设备和网络设备 WO2022198544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/082894 WO2022198544A1 (zh) 2021-03-25 2021-03-25 无线通信方法、终端设备和网络设备
CN202180074757.3A CN116391447A (zh) 2021-03-25 2021-03-25 无线通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082894 WO2022198544A1 (zh) 2021-03-25 2021-03-25 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022198544A1 true WO2022198544A1 (zh) 2022-09-29

Family

ID=83395191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082894 WO2022198544A1 (zh) 2021-03-25 2021-03-25 无线通信方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116391447A (zh)
WO (1) WO2022198544A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581849A (zh) * 2015-01-08 2015-04-29 重庆邮电大学 一种小区切换方法
US20160323800A1 (en) * 2015-05-01 2016-11-03 Qualcomm Incorporated Handoff for satellite communication
CN111405579A (zh) * 2020-03-18 2020-07-10 RealMe重庆移动通信有限公司 网络优化方法、装置、存储介质及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581849A (zh) * 2015-01-08 2015-04-29 重庆邮电大学 一种小区切换方法
US20160323800A1 (en) * 2015-05-01 2016-11-03 Qualcomm Incorporated Handoff for satellite communication
CN111405579A (zh) * 2020-03-18 2020-07-10 RealMe重庆移动通信有限公司 网络优化方法、装置、存储介质及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on feeder link switch for NTN", 3GPP DRAFT; R3-210912, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. e-Meeting; 20210125 - 20210204, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051969257 *
ERICSSON: "Feeder link switch editorial", 3GPP DRAFT; R2-1907163 FEEDER LINK SWITCH EDITORIAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051730607 *

Also Published As

Publication number Publication date
CN116391447A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US20220353714A1 (en) Cell measurement method, terminal device, and network device
US20220110028A1 (en) Method for Cell Handover, Communication Device, and Satellite
US20230345338A1 (en) Cell selection method and apparatus
WO2021159535A1 (zh) 小区重选方法及装置
WO2022067760A1 (zh) 一种小区测量方法、电子设备及存储介质
US20230125129A1 (en) Method and apparatus for cell selection, terminal, network device and storage medium
WO2021062599A1 (zh) 通信方法、小区测量的方法与通信装置
JP2023525201A (ja) セルハンドオーバー方法、電子デバイス及び記憶媒体
EP4250817A1 (en) Cell selection method and apparatus
WO2021046821A1 (zh) 小区选择的方法与通信装置
WO2022027232A1 (zh) 无线通信方法和设备
WO2023245486A1 (zh) 邻小区测量方法、装置、设备、存储介质及程序产品
US20220256424A1 (en) Cell selection method and apparatus, device, and storage medium
WO2022198544A1 (zh) 无线通信方法、终端设备和网络设备
EP4171126A1 (en) Method and device for cell selection
WO2023272490A1 (zh) 小区重选方法、终端设备、ntn设备、芯片和存储介质
WO2023092455A1 (zh) 无线通信方法、第一终端设备和网络设备
WO2023082191A1 (zh) 一种无线通信方法、装置、通信设备及存储介质
WO2023092374A1 (zh) 无线通信方法、终端设备和网络设备
WO2023102728A1 (zh) Ntn中调整门限的方法、装置、设备及存储介质
WO2022227079A1 (zh) 无线通信方法、终端设备、网络设备及存储介质
US20240064629A1 (en) Cell determination method and electronic device
WO2023092456A1 (zh) 无线通信的方法、终端设备和网络设备
US20230139924A1 (en) Cell Selection Method and Apparatus
WO2023097503A1 (zh) Ntn中非连接态终端的rrm测量方式确定方法、装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932172

Country of ref document: EP

Kind code of ref document: A1